

Rules for Identity and Access Control

Rieks Joosten1, Stef Joosten2,3

1 TNO Information and Communication Technology, P.O.Box 1416,
9701 BK Groningen, the Netherlands, rieks.joosten@tno.nl

WWW home page: http://www.tno.nl/index.cfm?Taal=2
2 Open University of the Netherlands, P.O. Box 2960,
6401 DL Heerlen, the Netherlands, stef.joosten@ou.nl

WWW home page: http://www.ou.nl/eCache/DEF/36.html
3 Ordina B&E Solutions, P.O. Box 7101,

3430 JC Nieuwegein, the Netherlands, stef.joosten@ordina.nl
WWW home page: http://www.ordina.nl/index.asp?LanguageCode=EN

Abstract. The future of Identity in the automated contexts of information
society depends on our ability to (formally) express rules governing their use,
and mechanisms to enforce such rules. Experimental tooling has allowed us to
convert formally represented Identity and Access Management (IAM) rules
into a functional specification for IAM services and a corresponding software
implementation, allowing businesses and enterprise architects to efficiently
prototype IAM rule-based solutions in order to fine-tune the rules they need
and may commit to. Our research proposes a set of IAM business rules,
complemented with a specification of IAM services that fully comply to these
requirements. On a larger scale, this approach may help to solve cross-domain
identity issues e.g. between governmental organizations.

1 Introduction

Information systems deployed by large businesses are like a sunny, hot and busy
Arabic marketplace. All sorts of vehicles (information streams) try to go where they
want to go today. Drivers argue with one another to make way so that they can pass,
without caring all too much about each other. Their state-of-the-art, hi-tech cars do
not prevent them getting stuck in these continuous traffic jams. Obviously, traffic
flow would benefit if drivers could be persuaded to adhere to rules that govern the
right of way. To do this, you need a good set of rules, a mechanism to enforce such
rules and an education program for drivers.

2 Rieks JoostenP1P, Stef JoostenP2,3P

This metaphor also applies to Identity in the market place of Information Society.
All sorts of businesses try to utilize identities for their own day to day purposes.
There is hardly any meaningful alignment of identity information, a lot of
discussions take place in an attempt to align the semantics of identity information,
but progress is little. State-of-the-art technologies and high-tech systems are
deployed, but the problems remain. If businesses could be persuaded to adhere to
rules that govern the way we use identity information, information society as a whole
will benefit. To do this, we need a good set of rules, a mechanism to enforce such
rules and an education program for businesses. Also, we need that these rules and the
enforcement mechanism may also operate in an automated context, which sets
additional requirements to the precision by which such rules are formulated.

This article describes work that has been done to find such rules for the 'market
place' of Identity and Access Management (IAM) in automated contexts. First, we
introduce the idea of automatable IAM rules by giving an example. Then we
describe a demonstrator with different applications (business processes) using an
IAM service layer enforcing the IAM rules. Because these applications use the IAM
service layer, they are provably compliant with the set of IAM rules that was used to
specify the services, and generate the code that implements them.

The importance of the demonstrator is twofold. First, it makes IAM issues, as
well as consequences of IAM rules, tangible to the business. Rather than discussing
technicalities (e.g. standards or vendor products) as is currently often done, this work
allows business people to focus on what it is they want IAM to do for them and have
them express this in terms of business rules. Secondly, it shows that formalizing such
rules may lead straight toward the enforcement thereof in the automated systems of
that business.

The scientific contribution of this work lies in the formalization of IAM, which
yields a thorough understanding of its issues. A compliant service layer has been
specified and built as an embodiment of this result.

As the method we use and the associated tooling become mature, we will be in a
better position to also address cross-domain Identity issues such as those that
governmental agencies struggle with.

2 IAM Rules

Creating rules for IAM is a creative process that captures the essence of IAM.
Both this work and its results are comparable to legislative processes: discussions,
negotiations and compromise ultimately lead to rules (laws) that, once formulated
and approved, are meant to be obeyed. Different sets of IAM rules may exist in
different contexts, as different laws exist in (different parts of) different countries.
Interoperation between contexts (business units, businesses, or countries) requires
that rules are attuned or harmonized, which is basically the same process, albeit that
existing rules in specific contexts should be changed in order to remain consistent
with the harmonized set.

While judicial laws are to be processed by humans, our rules must also be
processable by computers. Therefore, we require that our IAM rules are expressible

Rules for Identity and Access Control 3

in natural language (NL) for use with humans, and also have a formal representation
(FR) such as relational algebra or predicate logic. Because FR is more precise than
NL, the FR of the IAM rules is authoritative in our work. FRs allow us to do formal
reasoning with the IAM rules or rule sets. For example, when trying to harmonize
two IAM rule sets, the consistency proof eliminates the need of discussions, whereas
any proof of inconsistency precisely defines an issue to be discussed. This alone
makes the harmonization process much more efficient.

After having created the rules, they must be put to use, which is to say: they must
be complied with. As an example, consider the following (subset of the real) IAM
rules:
1. Any service (function, or method) that requires a permission may only be

executed from sessions in which that permission is available.
2. A permission is available within a session if and only if that session has

activated a role to which this permission has been assigned.
3. A role is activated within a session if and only if (a) sessions of this type are

designed to activate this role and (b) the session's user has been assigned this
role.

4. Every contract must have been signed by all contract parties.

Now consider the situation where we have a user, John, who wants to review a

contract, and digitally sign it after having agreed to it. Suppose an application called
CRM exists that he might use to do this, as CRM is programmed to activate roles
such as 'Customer' which has been assigned permissions P1 and P2, where P1 is the
permission required by the service 'get_contract' which retrieves contract information
and P2 is required by 'approve_contract', the service used for the digital signing of
contracts. Also assume that CRM uses the IAM service 'AuthUser' for authenticating
a user's credentials (e.g. username and password).

The first thing the CRM application does when John requests a session with it, is
that it invokes 'AuthUser' to check John's credentials and verify that John is really
John. However, as soon as John's credentials have been authenticated, rule 3 calls for
the activation of the 'Customer' role in the session as the session was designed to
activate this role and the session's user (John) has been assigned this role. As soon as
this role is activated, rule 2 demands that permissions P1 and P2 are made available
within the session, as the role of 'Customer' has been activated in that session and
both permissions are assigned to this role. From this we see that IAM rules such as 2
and 3 not only specify functionality that systems should exhibit, but that this
functionality can be automatically provided by 'AuthUser'. Rules of this type are
called 'Automatable Operative Rules', which is a further distrinction from the notion
'Operative Rules' as defined in [2].

Now that the invocation of 'AuthUser' has made permissions P1 and P2 available
within the CRM session, John requests CRM to show his contract information. To do
this, CRM invokes 'get_contract'. This service starts by checking whether P1 exists
in the session it is called from because it must comply with rule 1. As the permission
exists, 'get_contract' returns the required information. Here we see that rule 1
specifies constraints on behavior rather than the behavior itself as rules 2 and 3 did.
Rules of this type are called 'Structural Rules'.

4 Rieks JoostenP1P, Stef JoostenP2,3P

Note that all this time, the contract existed and had not been signed by all
contract parties, implying that rule 4 was being violated all this time. We want rules
like this to exist as they specify a desirable business situation, and violations of such
rules signal that (manual) work needs to be done; that is why we call them 'Manual
Operative Rules'Error! Bookmark not defined.. In fact, rules like this can be used
to drive a process engine [3]. The fact that John's contract hasn't been signed yet
may trigger John to review and sign the contract, and may trigger other parties
involved to either get other parties to sign, or to destroy the contract as either
outcome would satisfy rule 4.

3 A Rule-based IAM Demonstrator

Once a business has established its set of IAM rules, a service layer for IAM
services can be specified directly from the (FR of) these rules. This rule-based
specification has the property that it includes all functions the business may ever
need to become and remain compliant to these rules, and all functional requirements
in the specification can be traced back to one or more rules. Also, it can be proved
that any information system built to these specifications will maintain all IAM rules
when each service complies to its specification and all specified services have been
realized, and non compliance can be proved from the specification.

We have created an IAM
demonstrator in which
1. portals are simulated: one

for a financial context,
another for the business
context (ZM) and the
third for the consumer
context (CM).

2. business services may be
called: one for on-line
bill checking (IOL),
another one for SOx1
accounting.

3. an IAM service layer
provides all necessary
IAM functionality.

The IAM service layer has been generated directly from a set of both IAM and
SOx rules, and consists of a PHP functional layer on top of a MySQL database. The
business services have been programmed in PHP by hand, and run on an Apache
web server. Figure 1 shows the 'home page' of the demo, which has been created
such that clicking on the IOL-box in the CM portal invokes the IOL business service
logic as if it were called from the consumer portal.

Figure 1: IAM Demonstrator

1 SOx refers to the Sarbanes-Oxley act of 2002 [1], which establishes stringent financial

reporting requirements for companies doing business in the United States

Rules for Identity and Access Control 5

Using this demo, we show that one business service is capable of dealing with
identities from different businesses in different contexts. For example, the IOL
service is equally capable of dealing with the creation of a new customer in a
business context as it is in the consumer context. Also, in the business context it is
equally capable of providing functionality to the business (e.g. for creating/deleting a
customer) as it is for customers (e.g. for creating or deleting additional customer
accounts. In fact, the demo shows that decisions with respect to how the IOL service
should operate in the CM context do not affect its operation in the ZM context, even
though it is the same service.

The demo cannot show rule violations, as all rules are upheld by the IAM service
layer and both business services use this layer for all IAM (and SOx) functionality. It
can however show the consequences thereof: a customer that is logged in to the ZM
portal can only see its own data and its own users, whereas a properly authorized
user from the business can see all customer accounts.

The demo also shows that when functions that are necessary for the financial
people within a large organization, such as inspection of a SOX-log, can be made
available to other business units as well, by simple administrative actions. Simply
providing the ZM-administrator with the permission to look into the SOX-log is
sufficient. After all, the rule stating that financial information may only be seen
either by the domains that have a direct interest, or the financial administration,
cannot be violated as the service layer upholds it. Therefore, we need not fear that
the ZM-administrator will see financial information from the CM-context.

Similarly, and this is new for many businesses, this functionality can be made
available in exactly the same way to customers. The rules enforced by the IAM
service layer ensure that each customer can only see or do things within the room
defined by these rules. Businesses can now easily provide customers with
information that is relevant for their SOX report.

4 Rules used in the demonstrator

In order to give the reader an idea of what rules look like, we provide most of the
IAM rules that we used for our demonstrator. These rules define how responsibilities
are modeled in relation to performing actions, a simple form of authentication using
'tokens' (a generic notion, covering username/passwords as well as certificates) and
authorizations based on RBAC [4] and a rule implementing 'Chinese walls':
1. Every domain, i.e. a named set of responsibilities, has at least one domain-

manager that bears all domain responsibilities.
2. Whatever happens in a session is the responsibility of precisely one domain.
3. Every session is of precisely one type (the sessiontype).
4. Sessions of a given type may only run within a domain if there exists a valid

sessiontype approval within that domain for this sessiontype.
5. A tokenadministration consists of entries, each of which is uniquely

characterized by a token, the type of that token and the token's issuer.
6. Each entry in the tokenadministration has precisely one userid.

6 Rieks JoostenP1P, Stef JoostenP2,3P

7. Each entry in the tokenadministration has precisely one 'responsible domain', i.e.
the domain that bears all responsibility for every use of the token.

8. If one userid is associated with multiple tokenadministration entries, each of
them has the same responsible domain.

9. Logging into a session means providing a token, its tokentype and its issuer.
10. A sessiontoken is a login-token where the provided token, tokentype and issuer

identify an entry in the tokenadministration.
11. A sessionCoactor is the userid associated with a sessiontoken.
12. A sessionCodomain is the domain that is responsible for every use of a

sessiontoken.
13. There is at most one sessionCoactor and one sessionCodomain at any time.
14. Whenever a token, tokentype and tokenissuer combination is presented in a

session that already has or has had a sessiontoken, this token shall only become
a sessiontoken if its associated userid equals the sessionCoactor.

15. A session shall only access dataobjects containing a list of Codomains if the
sessionCodomain appears in that list. Note that this access always requires a
valid login. (This rule helps to define so-called 'Chinese walls')

16. Every action whose execution implies taking a risk, must require a permission.
17. An action that requires permissions may only execute in sessions that have all

such permissions.
18. The permissions a session has is the union of all permissions of all sessionroles.
19. A sessionrole for a session of a certain type is any role that (1) has been assigned

to the sessionCoactor, and (2) has been defined as a role that may be activated
for sessions of this type.

20. A role may only be assigned to existing userid's.
21. A token can only become a sessiontoken (i.e.: you may only login) in a session

of a certain type if the userid associated with that token has been assigned at
least one role that is relevant for sessions of that type.

5 Results

We have applied the above approach to define business rules for an IAM service
layer for a large Telco in the Netherlands. Talking to people from various business
departments made us particularly aware of how diverse the ideas with respect to
IAM really are. For example, for the business unit ZM (corporate market), IAM is
equivalent with a part of customer care, where ZM-customers can create accounts
and accompanying permissions for their own employees. The finance department
sees IAM primarily in the context of having to be compliant with the Sarbanes-Oxley
act [1].

Abstracting from the use-cases provided by the business people and reconciling
their needs, resulted in a set of unambiguous and consistent business rules which we
could both represent formally and in a way that the business could understand. In our
experience, good rule sets tend to remain stable, meaning that each time they are
used, only slight variations occur. Judging by this criterion, the demonstration rules

Rules for Identity and Access Control 7

have some good parts, whereas other parts still need work. Earlier versions of this
work are documented in [5, 6]

 Experimental tooling for generating a PHP service layer on top of a MySQL
database allowed us to evaluate various rule sets 'hands on'. Such exercises have
been invaluable in discovering which rules we need, how they should be formulated,
and how to conceptually think about Identity management.

From a reasonable rule set (described above) a service layer was generated
allowing us to demonstrate the effects such rules would have for the business. A
service layer such as ours, that guarantees compliance with a set of rules, goes a step
beyond work as described e.g. in [7] where a tool only checks compliance.

Also, the ability to create functional specifications for the rule set, allows us to
give the business a pretty good estimate of what actual implementation of the service
layer is going to cost in terms of function points, which is the basis on which IT
organizations make their offerings. For example, the functional specification for the
demo has 118 function points. With a price of say 1000 euro per function point, a
business implementation of the service layer would cost about 118.000 euro.

While creating the demo, we noticed that the application programming required
limited knowledge of the rules (as we expected): programmers only need to know
how to use the IAM service interface. For the business, this means that rules may be
changed at will as long as this does not affect the functional interface specification.

We also noticed that programming actually becomes easier as programmers no
longer need to calculate permissions from roles or check whether or not a function
might be executed. All such concerns are hidden, and taken care of in the IAM
service layer. This not only limits the amount of code to be written, but also frees the
minds of programmers of IAM concerns, allowing them to keep their attention
focused on the actual business service to be programmed.

The demo shows that it is possible to share the same IAM functionality in
contexts that did not use to do this before. The reason for this is that instead of
implementing IAM for a particular context using the context's particular vocabulary
and views, we have abstracted from use-cases of multiple contexts, and created rules
that describe all of them. Then, obviously, a service layer implementing such rules is
useful for every such context.

Showing the demo in workshops with business architects puts the message across
that if identity situations similar to Arabic marketplaces are to be avoided, cross-
domain IAM issues are to be considered as a coherent set of issues rather than
individual sets of concerns. Also, the demo helps discussions to stay much more
focused on what the business wants rather than on technicalities such as the systems
or standards to use for implementation.

6 Conclusions and future work

Abstracting from multiple use-cases in multiple business contexts, we have
derived a set of formal Identity and Access Management (IAM) rules, from which
we have generated IAM service layer software that enforces these rules. We have
built a demonstrator on top of this, consisting of multiple applications and simulated

8 Rieks JoostenP1P, Stef JoostenP2,3P

portals that are provably compliant with these IAM rules. We have found that the
short turnaround time for building a demo for a set of rules is an invaluable
instrument for fine tuning of the IAM rule set. We also found that the final
demonstrator helps the business to focus on the real IAM issues (rather than on
technicalities), putting them in a position to commit to such rules. This work shows
that it is practically feasible to reconcile different business needs in such a way that a
single set of automatable services can do the job, which is what is not only needed
for IAM within large businesses, but also for Identity management over multiple
countries.

Future research will work towards IAM rule sets that address other issues such as
privacy, token management and claim based access control. We intend to further
interoperability across businesses, in particular where businesses have decided to use
different rules. Another focus will be on making the relation explicit with areas such
as process architecture and/or commercial products. Additional research is required
to professionalize the tools we have been working with, in an attempt to provide all
necessary artifacts that state-of-the-art software factories need to produce
commercial products.

Acknowledgement

The work presented here has partly been carried out in the collaborative project
PNP2008 [8], which is supported by the Freeband Communication technology
program of the Dutch Ministry of Economic Affairs.

References

1. United States Code: Sarbanes-Oxley Act of 2002, HR 3763, PL 107-204, 116 Stat 745.
Codified in sections 11, 15, 18, 28, and 29 USC (2002).

2. OMG, Semantics of Business Vocabulary and Business Rules (SBVR), 2005-08-01.
3. S. Joosten and R. Joosten, Specifying business processes by means of rules, in:

Proceedings European Business Rules Conference, Amsterdam, June 2005.
4. American National Standards Institute, ANSI INCITS 359-2004 for Information

Technology – Role Based Access Control, February 2004.
5. R. Joosten and B.Beute, Requirements for Personal Network Security Architecture

Specifications, Freeband PNP2008 Deliverable 2.4, April 2005.
6. E. van Essen, B. Beute and R. Joosten: Realizing PNP architecture descriptions, Freeband

PNP2008 Deliverable 3.2, May 2005.
7. S. Höhn and J. Jürjens, Automated Checking of SAP Security Permissions, Sixth IFIP TC-

11 WG 11.5 Working Conference on Integrity and Internal Control in Information Systems
(IICIS 2003).

8. Freeband PNP2008 project: http://pnp2008.freeband.nl (2005)

http://pnp2008.freeband.nl/

	1 Introduction
	2 IAM Rules
	3 A Rule-based IAM Demonstrator
	4 Rules used in the demonstrator
	5 Results
	6 Conclusions and future work
	Acknowledgement
	References

