

Traffic Flow Confidentiality in IPsec:

Protocol and Implementation

Csaba Kiraly1, Simone Teofili2, Giuseppe Bianchi2, Renato Lo Cigno1,

Matteo Nardelli1, Emanuele Delzeri2

1 University of Trento,

{kiraly,locigno,matteo.nardelli}@dit.unitn.it

2 University of Rome Tor Vergata,

 { giuseppe.bianchi,simone.teofili,emanuele.delzeri}@uniroma2.it

Traffic Flow Confidentiality (TFC) mechanisms are techniques devised to

hide/masquerade the traffic pattern to prevent statistical traffic analysis at-

tacks.. Their inclusion in widespread security protocols, in conjunction with

the ability for deployers to flexibly control their operation, might boost their

adoption and improve privacy of future networks. This paper describes a TFC

protocol integrated, as a sub-layer, in the IPsec Encapsulated Security Payload

(ESP) protocol. A Linux-based implementation has been developed, support-

ing a variety of per-packet treatments (padding, fragmentation, dummy packet

generation, and artificial alteration of the packet forwarding delay), in an eas-

ily combinable manner. Experimental results are reported to demonstrate the

flexibility and the effectiveness of the TFC implementation.

Introduction1

Extensive literature work demonstrates that the traffic pattern generated in a

communication carries plenty of information, which can be gathered through spe-

cially devised “statistical traffic analysis attacks”. These attacks operate irrespective

of the deployed encryption means, and allow to extract, from the statistical analysis

of the generated packet sizes and of their inter-arrival times, valuable confidential

information such as the employed applications [1], the application layer protocols

[2], the physical devices used [3], or the web page accessed [4,5]. To perform these

attacks, a signature for the protocol or the web site to be recognized is typically pre-

computed as a set of statistical parameters describing packet size and/or packet inter-

This work was supported by the EU IST 6th Framework Program project Discreet, IST No. 027679

2 Kiraly, Teofili, Bianchi, Lo Cigno, Nardelli, Delzeri

arrival time distributions. Flow classification can be performed by matching the

actual statistics with the pre-stored signatures. Quite interestingly, accurate flow

classification may be obtained even by looking only at its very first packets [2,6].

Statistical traffic analysis attacks have been also employed for the purpose of

breaching security (such as for gathering password transmitted over encrypted

sessions [7,8]), and for performing passive [9] or active [10] attacks to anonymiza-

tion (Mix) networks, aimed at uncovering the identity of the communicating parties.

To duly protect the privacy of the users, "Traffic Flow Confidentiality" (TFC)

mechanisms devised to alter or mask the statistical characteristics of the traffic

patterns are necessary.

The contribution of this paper is twofold. First, we propose a TFC approach em-

bedded as a sub-layer (and a separate, self-contained, TFC protocol) of IPsec. We

believe that the inclusion of TFC mechanisms in existing and widely deployed

standards may significantly improve their adoption. Second, our approach is not

bound to provide a “specific” traffic masking pattern, but rather aims at providing a

flexible platform, endowed with a set of packet treatment primitives (including

packet padding, fragmentation2, dummy packet generation, and artificial alteration of

the packet forwarding delay, upon which the system deployers may easily configure

the traffic masking patterns they deem more appropriate for achieving a given

privacy/performance trade-off.

To the best of our knowledge, our approach differs from most of the existing lit-

erature in this field as i) it is deployed as a separate module, rather than integrated in

a specific Mix-like solution [11,12,13], and ii) it is developed as a flexible suite of

easily composable tools rather than as a pre-programmed specific traffic masking

technique (for instance, the frequently employed traffic CBR-ization, i.e. transform-

ing traffic into continuous bit rate pattern composed of packets with maximum size).

The TFC protocol and the related packet treatment tools are implemented in Linux as

part of the packet transformation framework introduced in the 2.6 kernel.

TFC sub-layer design and implementation

To overcome the drawbacks of the (limited) TFC mechanisms specified in the

latest version of the IPsec Encapsulated Security Payload specification [14], we have

designed TFC as a separate sub-layer, thus maintaining backward compatibility with

traditional IPsec implementations. The TFC sub-layer is implemented through a neat

separation between i) the TFC control logic, namely the algorithms devised to

transform a traffic pattern into another one, ii) their protocol support, accomplished

through the specification of a TFC header, and iii) the set of basic mechanisms

2 Indeed fragmentation is a technique traditionally neglected as a tool for traffic masking, as most of the

approaches proposed in the past in fact are based on traffic padding and/or dummy packet generation.

Conversely, we believe that fragmentation is a highly effective tool as i) it has a very low overhead if

compared with padding or dummy packet generation, and ii) it may be selectively employed on the

packets, such as the very first in the flow [1,5,6], which are found to provide most of the information

useful for the classification algorithms.

Traffic Flow Confidentiality in IPsec: protocol and implementation 3

employed by this control logic to modify characteristics at the packet level. Basic

TFC mechanisms can be conveniently categorized as follows:

a) Packet forming: devised to alter the packet size; they include packet padding,

packet fragmentation, and packet aggregation (multiplexing);

b) Dummy packet management: devised to generate and discard dummy packets, in

order to alter the traffic pattern;

c) Packet timing: devised to alter the forwarding latency of packets adding extra

per-packet delay.

Our TFC implementation is developed inside the Linux Kernel 2.6, and leverages the

XFRM framework [15] deployed for integrating the TFC processing in the IP/IPsec

networking stack3. Being developed as a sub-layer, the TFC protocol takes advantage

of all the existing ESP functionalities (confidentiality, data integrity and authentica-

tion, as well as Security Association and policy management).

Packet Forming

To support the three packet forming mechanisms, we have designed an IPsec

Header Extension, the TFC Header (Figure 1), for the encapsulation of the datagram.

The TFC header is internal to the IPsec ESP payload, and it conveys the necessary

information to restore the original packet (padding removal, reassembly, de-

multiplexing). A next header code should be reserved in the ESP trailer to indicate to

the receiver that the protocol contained in the ESP payload is TFC: in our experi-

mentation we used the value 253, reserved by IANA for experimentation and testing.

The next header field in the TFC header identifies the protocol carried in the pay-

load.

Packet padding is the traditional (albeit naïve4) approach to alter the packet size

statistics. The TFC header manages padding simply by explicitly carrying the packet

3

In additional details, TFC, just like other IPsec security services, is managed through Security Associa-

tions, i.e. we have developed a new Security Association type for TFC similarly as what done for the

ESP and AH SAa. This allows controlling TFC through standard security policies included in the IPsec

Security Policy Database (SPD). We use the Netlink interface and XFRM SA and SP databases to

implement these features. For additional implementation details, please refer to the Discreet Project

Deliverable D3102 – available upon request from the authors.
4 Indeed, statistics taken on real IP flows show a high variance in the packet size, and thus padding to the

maximum possible size introduces a massive overhead. Moreover, studies such as [1,5,6] seem to imply

that most of the traffic classification mechanisms use the size information contained in the first few

IP

HEADER

ESP

HEADER

TFC

HEADER
PAYLOAD

TFC

PADDING

ESP

TRAILER

ESP

AUTH

TFC encapsulation

NEXT

HEADER
TOCTM

PAYLOAD

SIZE

8 7116

Figure 1: TFC header format

4 Kiraly, Teofili, Bianchi, Lo Cigno, Nardelli, Delzeri

payload size information in a dedicated field in the TPC header. We point out that

this allows overcoming the significant drawback of the “implicit” padding function

proposed in the current version of IPsec, which impedes its usage for inner protocols

which do not provide an explicit indication of the payload size (e.g. TCP).

Packet fragmentation allows splitting a large packet into smaller packets, and

hence avoids the need to add a very large amount of per-packet overhead in the

presence of many small packets and a few large ones. We support fragmentation by

reusing the IPv6 fragmentation header inside the TFC header. Fragments are

reassembled at the end of the overlay link, before the packet is handed to upper

protocols.

Packet aggregation allows multiplexing packets into a bigger datagram, thus in-

creasing the size of the packet through useful information and not through wasted

padding bytes. Packet multiplexing is supported by introducing a flag in the TFC

header. If this flag is set, after the defined length of the payload, another TFC header

and payload follows instead of padding. With this mechanism, several payloads

(even fragments) can be transferred in one datagram.

Finally, the TFC header is also exploited to deliver a field, called TOCT (Type of

Confidentiality Treatment) which enables to carry information about the type of

treatment the packet may be subjected to, when multiple IPsec links are used in a

multi-hop fashion, and especially for building IPsec-based Mix Networks. For

reasons of space this operation is not described in this paper.

Dummy Packets

The use of dummy (artificially generated) packets is frequently referred to as

“traffic padding”. It allows filling traffic gaps and avoids disclosing inactivity

periods (i.e., provide unobservability). Moreover, dummy packets are a powerful

instrument to alter the traffic pattern statistics, especially when real packets, due to

quality of service constraints, cannot be delayed to an extent that allows proper

reshaping of the traffic profile. Finally, dummy packet generation is a technique

extensively employed in Mix Networks to counteract correlation and several types of

active attacks (e.g., the “n-1” attack).

Protocol support for dummy packet management is straightforward, setting the

next header code to "dummy". In our implementation the value 59 is employed, as

this value has been standardized in the IPsec ESP specification. For a more homoge-

neous implementation of the TFC tools we use the dummy packet value 59 inside the

inner TFC header, rather than inside the ESP trailer.

Packet Timing

Information extracted from packet inter-arrival times is a usual source for statis-

tical traffic analysis methods [1,5,10]. To counter these attacks, scheduling algo-

rithms (externally programmed in the “control logic” module discussed next - see

Figure 2) should alter the forwarding time of packets.

packets of a session which are those that convey the protocol fingerprint, making it less important to

`heavily' pad subsequent traffic.

Traffic Flow Confidentiality in IPsec: protocol and implementation 5

Our implementation supports two methods to alter the packet delays. A first

“event-driven” method allows a packet, upon its arrival (top arrow in Figure 2), to be

associated with a specific, possibly packet-dependent, delay. The packet is then

delivered inside the TFC module queues5 only when the associated timer elapses. A

second “timer-driven” method allows de-queuing packets stored inside the TFC

module queues at scheduling instants computed according to an algorithm controlled

by the Control Logic module. Note that in the case queues are empty, a dummy

packet will be de-queued from the dummy packet buffer and delivered.

Implementation complexity is delegated to the control logic implementation, as

packet delivery is internally accomplished through appropriate setting of standard

Linux timers which drive the invocation of a de-queuing primitive. Trivial methods,

such as fixed or random packet clocking, may be easily replaced by adaptive clock-

ing algorithms which explicitly take into account the status of the queues and the

related congestion level (although, to the date of writing, the effectiveness of such

adaptive approaches in terms of performance/privacy gains and trade-offs is still to

be assessed).

Control Logic

The "intelligence" of the system is implemented in a separate "control logic"

module, which can combine the TFC basic mechanisms arbitrarily. For the time

being, in order to provide flexibility, we have implemented batching, CBR (Continu-

ous Bit rate), random padding, and random delay algorithms. The ease of such

implementation shows the flexibility of the proposed framework, as well as its

amenability to implement new algorithms.

We believe that a significant asset of our work is the accomplished decoupling

between the algorithmic logic devised to masquerade/shape the traffic pattern, and its

5 Multiple queues may be internally deployed to differentiate packets incoming from different streams,

where a stream may be defined either as a classification rule on the incoming packets, and/or in depend-

ence of the different TFC Security Association mapped over the same IPsec ESP Security Association

(for reasons of space, details are omitted).

TFC
Control
Logic

Dummy
generation

De-queuing

D
u
m

m
y
 p

a
c
k
e
ts

Packet
queuing

Packet
forming

 OS integration

IPsec ESP

 OS integration

TCP , UDP / Overlay routing

T
F
C
 S

A
 M

a
n
a
g
e
m

e
n
t &

 S
ta

tis
tic

s

Figure 2: TFC module architecture

6 Kiraly, Teofili, Bianchi, Lo Cigno, Nardelli, Delzeri

underlying implementation as a set of basic tools. This decoupling allows the net-

work deployer to configure (or eventually directly program in the control logic) the

most appropriate TFC algorithm suited for its purposes. For instance, in an anonymi-

zation network such as Tarzan [13] (which may be built on top of IPsec tunnels

extended with the proposed TFC functionalities) the user activity is “well known”

but it is necessary to modify the flow fingerprint in order to avoid correlation attack.

Conversely, in a point to point connection (e.g., user to proxy) the main goal is to

avoid protocol or web site fingerprinting, which may be more adequately countered

with different masking algorithms.

Demonstration

To demonstrate the flexibility of the TFC protocol, we set up a test environment

(Figure 3) similar to the one used in [5] and [16]. We analyze how the information

content of fingerprints can be reduced, while performance degradation remains

limited.

A client downloads web pages from a normal, unmodified web server (we use

http://www.ist-discreet.org and https://www.prime-project.eu/ for our experiments).

To protect against traffic classification attacks, the client creates an IPsec protected

tunnel to an exit node. Two ESP SAs and two TFC SAs are set up to cover the traffic

of the bi-directional communication. Throughout our tests, we were using symmetric

configuration for the SAs, but of course parameters (as well as the control logic)

used in the two directions may differ.

The client downloads a full web page, with all of its inline images, using the wget

program. We record traces of the packets traveling on the tunnel. We do not consider

crypto analysis, therefore, according to our model, the only useful information for

the attacker are: the packet length, packet time (and packet inter-arrival time) and the

packet direction.

Figure 4 shows typical unprotected and protected packet size and packet inter-

arrival time fingerprints, based on packet cardinality. It can easily be seen how

information is removed from such fingerprint: padding and fragmentation makes

packet size useless, while timing removes large part of the information contained in

packet inter-arrival times.

IPsec tunnel: ESP + TFC

Web browser

(wget)
Linux router, providing:

Tunnel termination (ESP, TFC), NAT

Standard web server

Figure 3: Test setup

Traffic Flow Confidentiality in IPsec: protocol and implementation 7

How much protection this gives? Figure 5 shows the answer: packet counting

and packet number based algorithms (such as [2,5,16]) can be fooled without ran-

domization and without dummy traffic. However, looking at the figure, it can easily

be seen that (using the same browser application) the traffic pattern mapped into the

"cumulative length" - "elapsed time" space remains characteristic of the site.

The figure also shows results achieved with dummy packets using a CBR control

logic. We should emphasize that here we show only the simplest use of dummy

packets. We are investigating other dummy strategies as well as the effect of ran-

domization.

Figure 5 shows the performance drawback of each control logic as well. The end-

point of each line shows the overhead in user perceived page download time and in

traffic amount. For example, without TFC, the Discreet page downloads in 1.3

seconds and generates 88 Kbytes of traffic. The same download with CBR TFC

takes 4.7 seconds and 130 KBytes (to improve readably, we did not report the whole

curve for CBR TFC for the Prime site: it took 15.5 seconds and 422 Kbytes). It can

be seen that the overhead remains in reasonable limits for each of the algorithms.

Conclusions

As shown by many recent papers, statistical traffic analysis techniques provide

good results based on packet size and packet inter-arrival time statistics. We have

designed the TFC IPsec security service to protect against such attack, discussed its

implementation and demonstrated its effectiveness.

Our approach gives a further level of protection, as masking performed at the IP-

sec layer impedes reconstruction of application-layer message size. It also introduces

fragmentation, aggregation and packet inter-arrival time variation to balance the

protection-performance tradeoff.

Our future work includes the evaluation of different (deterministic and stochastic,

traffic independent and adaptive) control logics.

Figure 4: Packet size and inter-arrival time fingerprints, obtained by downloading the

Discreet page with different TFC control logics. Control logics used are: padding or

fragmentation to a fixed size; padding or fragmentation to a random size; timing of

packet transmission to release at most one packet in timeslots of 4ms

8 Kiraly, Teofili, Bianchi, Lo Cigno, Nardelli, Delzeri

References

[1] L. Bernaille, R. Teixeira, and K. Salamatian, “Early Application Identification”, Proceed-

ings of The 2nd ADETTI/ISCTE CoNEXT Conference, Portugal, 2006.

[2] M. Crotti, F. Gringoli, P. Pelosato, L. Salgarelli, “A statistical approach to IP-level classi-

fication of network traffic”, IEEE ICC 2006, 11-15 Jun. 2006.

[3] T. Kohno, A. Broido, K. C. Claffy. “Remote physical device fingerprinting”, in IEEE

Symposium on Security and Privacy, pp. 211–225. IEEE Computer Society, 2005.

[4] A. Hintz, “Fingerprinting Websites Using Traffic Analysis", Privacy Enhancing Technolo-

gies, PET 2002, S. Francisco, USA, April 2002

[5] G. D. Bissias, M. Liberatore, D. Jensen, B. N. Levine, “Privacy Vulnerabilities in En-

crypted HTTP Streams”, PET 2005, Cavtat, Croatia, May 30-June 1, 2005.

[6] L. Bernaille, R. Teixeira, “Early Recognition of Encrypted Application” Proc. PAM,

April 2007.

[7] D. X. Song, D. Wagner, X. Tian, “Timing analysis of keystrokes and timing attacks on

SSH”, 10th USENIX Security Symposium, 2001.

[8] B. Canvel, A. Hiltgen, S.Vaudenay, M. Vuagnoux, “Password Interception in a SSL/TLS

Channel”, CRYPTO2003, Aug 2003, Santa Barbara, USA

[9] Y. Zhu, X. Fu, B. Graham, R. Bettati, W. Zhao “On Flow Correlation Attacks and Coun-

termeasures in Mix Networks”, PET 2004, May 2004

[10] X.Wang, S. Chen, S. Jajodia, “Tracking anonymous peer-to-peer VoIP calls on the

internet”, ACM Conf. on Computer and Communications Security, November 2005.

[11] G. Danezis, R. Dingledine, N. Mathewson, “Mixminion: Design of a Type III Anony-

mous Remailer Protocol”, 2003 IEEE Symp. on Security and Privacy, May 2003.

[12] R. Dingledine N. Mathewson, P. Syverson, “Tor: The Second-Generation Onion Router”,

13th USENIX Security Symp. Aug 2004.

[13] M. J. Freedman, R. Morris, “Tarzan: a Peer-to-Peer Anonymizing Network Layer”, ACM

Conf. on Computer and Communications Security, Washington, DC, November 2002.

[14] S. Kent, "IP Encapsulating Security Payload (ESP)", RFC 4303, December 2005.

[15] M. Kanda, K. Miyazawa, H. Esaki, “USAGI IPv6 IPsec development for Linux”, Int.

Symp. Applications and the Internet Workshops (SAINT) 2004. pp. 159-163, Jan. 2004.

[16] M. Liberatore, B. N. Levine, "Inferring the Source of Encrypted HTTP Connections",

CCS2006, October 2006

Figure 5: Download of different web pages using different control logics

