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Abstract. In recent years, a handful of anonymity metrics have been proposed
that are either based on(i) the number participants in the given scenario,(ii) the
probability distribution in an anonymous network regarding which participant is
the sender/ receiver, or(iii) a combination thereof. In this paper, we discuss el-
ementary properties of metrics, and evaluate the behavior of a recent anonymity
metrics in a set of application scenarios. Then, we define criteria for anony-
mity metrics and show than none of the studied metrics fulfill all criteria. Lastly,
based on previous work on entropy-based anonymity metrics, we propose a new
metric designed to fulfill these criteria – the so-called scaled anonymity set size.

1 Introduction

Anonymitycan be defined as “the state of being not identifiable within a set of sub-
jects, the anonymity set” [7]. Anonymity both involves preserving the confidentiality
of user data (data level anonymity) and hiding with whom a user is communicating
(communication level anonymity).Sender anonymitymeans that a message cannot be
linked to the sender, whilereceiver anonymityimplies that a certain message cannot
be linked to the receiver of that message [7]. In this paper, we limit our scope to sender
anonymity, although most ideas are also valid for receiver anonymity.

This paper discussesanonymity metrics, which can be applied to measure the de-
gree of anonymity in a certain scenario. State-of-the-art metrics are normally based on
either(ii) the number participants in the given scenario,(ii) the probability distribution
in an anonymous network regarding which participant is the sender/ receiver, or(iii)
a combination thereof. In this paper, we first discuss the basics of measurements and
anonymity metrics. Then, a basic model of anonymity attacks is proposed and some
recent anonymity metrics are introduced. After this, we define a set of “typical” sce-
narios for anonymous communication, and then quantify the degree of anonymity in
these scenarios using the earlier introduced metrics. On the basis of this evaluation –
and taking elementary properties of each anonymity metric into account – we there-
after propose a set of criteria that an anonymity metric should fulfill and assess whether
the studied anonymity metrics fulfill these criteria. In the scenarios, the Crowds system
[9] is used – a theoretically well studied protocol that is easy to understand.

A subsequent result is that, although some metrics fulfill most criteria, there is none
that fulfill all criteria. Using existing entropy-based metrics [3, 10] as a starting point,
we thereafter propose and evaluate an adapted entropy-based metric that better fulfills
the stated criteria. We denote this metric thescaled anonymity set size.
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2 Preliminaries

2.1 Introduction to Crowds.

Later, four scenarios are presented that use theCrowds system– an anonymous com-
munication mechanism based on traffic forwarding through virtual paths. The anony-
mity set is denoted acrowd, and all users in the crowd run ajondo application. In
addition, ablenderapplication administrates user membership. Path in Crowds are
created randomly: first, a user extends to path to a random jondo, which, in turn, flips a
biased coin (based on the probability of forwarding,pf ) to determine whether the path
should be ended, or extended to another jondo (which repeats the same procedure).

2.2 A Model for Anonymity Attacks

An anonymity attackentails a attackerA trying to uniquely map a userui in the ano-
nymity setU = {u1,u2, ...,un} to an observed sender by gathering knowledge about the
system, the user base/anonymity setU and the sender. These entities have attributes
that can be modeled as sets of attribute types/ values. The system has attributes such as
ai = (application, “Crowds”) anda j = (pf , 3

4). One essential attribute in the system is
the distributionP containing{p1, p2, . . . , pn}, a vector such thatpi denotes the proba-
bility that ui is the sender for each communication.U has attribute sets about its users
(or their devices), such asai = {name, “Alice” } anda j ={IP, 192.168.10.20}. Lastly,
the sender initially has only attribute types (same types asU), but no values. Using
this terminology, a strategy for an anonymity attack can be described as follows:

1. Initially, A can be assumed to know at least the public parameters of the system
and some information about the users inU.1 A initially possess no knowledge
about the sender. This entails that the distributionP is initially uniform;

2. Now,A’s objective is to either passively observe or actively trigger events to learn
information about the sender. The triggering can be accomplished using arbitrary
active attacks, such as predecessor [13], intersection [8], or Sybil attack [5]. IfA

is successful, the events may enable him to learn one or more attribute values of
the sender’s attribute types, or at least restrict the corresponding value domains;

3. Then,A analyzes the collected attribute values of the sender, together with the
attributes of the system and the users inU. A’s objective is to calculate a new
(less uniform)P′. The wayP′ is calculated varies from scenario to scenario; in
this paper we base our calculations on the internal structure of Crowds [9];

4. A’s goal is to map a single user inU to the sender. Depending onP′, there are
three possible next steps:(i) if any ofA’s resources are exhausted, he fails;(ii) if
P′ does not single out as the sender with a specifically large likelihood, repeat step
two; and(iii) if there is api ∈ P

′ that is close or equal to 1, the attacker succeeds.

When assessing a system’s resistance against anonymity attacks, an analyst can
simulate these steps. In step three, the analyst can use an anonymity metric to de-
termine the degree of anonymity. In the next section, we thus discuss the basics of
measurement and anonymity metrics, and give examples of anonymity metrics.

1 Compare for example with the information distributed by the Blender in Crowds [9].
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2.3 Anonymity Metrics

The Basics of Measurements.Measurementcan be defined as “a mapping from the
empirical world to the formal, relational world. Consequently, ameasureis the number
or symbol assigned to an entity by this mapping in order to characterize an attribute”
where “the real world is thedomainof the mapping, and the mathematical world is
the range” [6]. One important rule is therepresentation conditionwhich asserts that
“a measurement mappingM must map entities into numbers and empirical relations
into numerical relations in such a way that the empirical relations preserve and are pre-
served by the numerical relations” [6]. Lastly, ametric is a standard of measurement.

Introduction to Anonymity Metrics. An anonymity metric is a mapping from the
empirical world (the domain) to the mathematical world (the range), where numbers
or symbols are assigned to entities in a system to describe the degree of anonymity:
(i) thedomainis the knowledge of the attackerA about the studied entities in the real
world – the system and its anonymity setU = {u1,u2, ...,un}. The attackerA is often a
model defined to test the resistance of a system against anonymity attacks. The system
can both be a real world instance or a theoretical model;(ii) therangeis the mapping of
an attribute in the real world to a mathematical system. Here, there are many options, as
different anonymity metrics use different units for presenting the degree of anonymity;
(iii) themappingitself can be seen as a function behaving according to set of rules. An
important parameter in the mapping is the probability distributionP = {p1, p2, ..., pn}

among the users inU regarding which user is the sender in a communication.

Examples of Anonymity Metrics. Below, we introduce some of the most notorious
anonymity metrics that have been proposed in recent years.

– Anonymity set size:a classic degree is the size of the anonymity set,|U| = n (anony-
mity set concept first used in [2]). Alteratively, this can be specified aslog2(n) [1];

– Crowds-based metric:in this metric (initially developed for Crowds, but has since
been used in other contexts), the degree of anonymityA is measured on a continuum
between 0 (provably exposed) and 1 (absolute privacy), wereA = 1− pi [9]. The
continuum includes the intermediary points:possible innocence: p̄i thatui is not
the sender is non-negligible, thus ¯pi ≥ 0+ δ, where the thresholdδ > 0. Hence,we
get A = 1 − pi = p̄i ≥ 0 + δ; probable innocence: pi thatui is the sender is less
than 1/2, thusA ≥ 1/2; andbeyond suspicion: ui is not more likely than any other
u j ∈ U to be the sender, and thusA = max{A1,A2, ...,Ai , ...,An} amongU.

– Source-hiding property:here,Θ is defined as the greatest probability you can assign
to any userui of being the sender of a message, thusΘ = max(P) [12]. Naturally,Θ
varies between1n and 1, where in this caseΘ = 1

n denotes maximum anonymity;
– Entropy-based metrics:in Serjantov/Danezis’s metric [10], “the effective anony-

mity set size”S is defined as the uncertaintyH(P) regarding which user inU
sent a message. Using Shannon’s theories on entropy [11]), we getS = H(P) =
−
∑n

i=1 pi log2(pi), where 0≤ H(P) ≤ log2(n). Dı́az et al. [3] instead calculate the
degree of anonymityd as H(P)

log2(n) . Here,d varies between 0 and 1. BothS andd output
a maximum degree of anonymity whenP equals the uniform distribution.
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2.4 Measuring the Uniformness of Probability Distributions

To study how an anonymity metric behaves when the probability distributionP change,
a functiond(P,U) is needed, where the parameterU is the uniform distribution. Such
a functiond(P,U) should by some means quantify the distance (or quotient) between
P andU. There are several alternatives ford(P,U), such asd(P,U) = H(U) − H(P)
or d(P,U) = H(P)

H(U) . Another option that we think could be used as well is to calculate
thed(P,U) as the Euclidean distance inn-space, according to the following:

d(P,U) =

√√
n∑

i=1

(pi − u)2 (1)

Here,u is the probability assigned to each user whenP is the uniform distribution
(that is, 1

n, assumingn users). Intuitively, Equation (1) outputs the ordinary distance
between the two pointsP and U when they are plotted in ann-dimensional space.

Equation (1) varies between 0 (whenP = U) and
√(

n(n−1)
n2

)
(when there is api in P

such thatpi = 1). Forn→ ∞, the term
(

n(n−1)
n2

)1/2
approaches 1.

3 Evaluation of Anonymity Metrics

3.1 Example Scenarios

This section evaluates the degree of anonymity in a set of example scenarios using
Crowds[9]. The scenarios involves a user communicating with an external web server
through the Crowds network. The following parameters are varied in the scenarios: the
number of usersn, the number of rogue usersc (note thatc is a subset ofn), andpf :

– In scenario one,n = 10,c = 1, andpf = 11/20;
– In scenario two,n = 1000,c = 10, andpf = 11/20;
– In scenario three,n = 1000,c = 200, andpf = 11/20;
– In scenario four,n = 1000,c = 200, andpf = 3/4.

Attacker Model.As Crowds does not provide anonymity against global observers or
eavesdroppers directly observing the sender, we omit these entities from the attacker
model, and instead only include(i) thec corrupted users and(ii) the web server. In the
analysis, we assume that a corrupted user is succeeding the sender in the virtual path.

3.2 Anonymity Evaluations

Below, we evaluate the above scenarios against the metrics introduced in Section 2.3.
We provide the details of the calculations only for scenario one. For the entropy-based
metrics and the source-hiding property, we need the probability distributionP. From
the perspective of thec corrupted users,P is {0.56, 0.44

8 ,
0.44

8 ,
0.44

8 ,
0.44

8 ,
0.44

8 ,
0.44

8 ,
0.44

8 ,
0.44

8 ,0}, while P from the perspective of the web server is uniform. The probability

pi = 0.56 is calculated as:pi =
n−pf (n−c−1)

n = 10−0.55∗8
10 = 0.56 [9].
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– Anonymity set size:the set size evaluates to|U| = 10 (or log2(|U|) = 3.32 bits);
– Crowds-based metric: Aagainst the web server isbeyond suspicion, as all users in
U are equally likely of being the sender. If expressingA as 1− pi , we getA = 9

10, as
pi that anyui is the sender is110. Assuming that one of thec corrupted users succeeds
the userui in the path,A against the corrupted users ispossible innocence. This is
because the following inequality does not hold [9]:n ≥ pf

(pf−1/2) ∗ (c+1). Instead, the
corrupted users can say withpi = 0.56 thatui is the sender (i.e.,A = 1− pi = 0.44);

– Entropy-based metrics:according to Serjantov/Danezis [10], the effective ano-
nymity set sizeS against the corrupted users is calculated as:S = H(P) =
−
∑n

i=1(pi ∗ log2pi) = 1.83477≈ 1.83 bits. According to the metric proposed by
Dı́az et al. [3], the degree of anonymityd is instead calculated as follows (using
H(P) from above):d = H(P)

log2(n) =
1.834767
3.321928 ≈ 0.55. Regarding the web server, Dı́azet

al.’s metric gives usd = 1, asP is uniform, and for this reasonH(P) = log2(n). Us-
ing Serjantov/Danezis’s metric, we get the following effective anonymity set size:
S = H(P) = −

∑n
i=1(pi ∗ log2(pi)) = 10∗ ( 1

10 ∗ log210)≈ 3.32 bits;
– The source-hiding property:the greatestpi the corrupted users can assign to anyui

is max(P) = 0.56, and thusΘ = 0.56. Against the web server,Θ = max(P) = 1
10.

In Table 1, we list the degrees of anonymity for the above scenarios. For comparison,
we also included(P,U) according the the Euclidean distance inn-space.

Table 1: Anonymity evaluation of scenarios (incl. Euclidean distance).

Scen. c corrupted users Web server

Anonymity S1 |U| = 10/3.32 bits |U| = 10/3.32 bits

set size S2-4 |U| = 1000/9.97 bits |U| = 1000/9.97 bits

Crowds- S1 & S3 possible innocence beyond suspicion

based m. S2 & S4 probable innocence beyond suspicion

Entropy- S1 S = 1.83 bits S = 3.32 bits
based S2 S = 6.37 bits S = 9.97 bits
metric S3 S = 5.23 bits S = 9.97 bits
(Serjantov/Danezis) S4 S = 6.75 bits S = 9.97 bits
Entropy- S1 d = 0.55 d = 1
based S2 d = 0.63 d = 1
metric S3 d = 0.52 d = 1
(Dı́azet al.) S4 d = 0.68 d = 1

Source- S1 Θ = 0.56 Θ = 1/10

hiding S2 Θ = 0.46 Θ = 1/1000

property S3 Θ = 0.56 Θ = 1/1000

S4 Θ = 0.40 Θ = 1/1000

Euclidean- S1 d(P,U) = 0.49 (max: 0.95) d(P,U) = 0

distance in S2 d(P,U) = 0.46 (max: 0.995) d(P,U) = 0

in n-space S3 d(P,U) = 0.56 (max: 0.995) d(P,U) = 0

S4 d(P,U) = 0.40 (max: 0.995) d(P,U) = 0
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Some Observations from the Evaluation Results.

– All metrics except the anonymity set size metric consider probabilities;
– All metrics except anonymity set size scored higher against the web server than

against the corrupted users, asPwas uniform from the perspective of the web server;
– Although stated in [10], we do not think that Serjantov/Danezis’s metrics reflect

the “effective anonymity set size” (as the endpoints do not overlap with those of the
anonymity set size metric). We also think that the max anonymity (givenn) should
be made explicit. That is,S could be expressed asH(P) out of log2(n) bits;

– Against the corrupted users, most metrics yielded the highest anonymity inS4;
– d(P,U) according to the Euclidean distance inn-space seems to be fairly alike mea-

suring distance based on entropy, although not exactly similar. Further analysis on
the deviation between these different measures ofd(P,U) is left as future research.

3.3 Criteria for Anonymity Metrics

As it is essential that an anonymity metric gives an accurate picture about the degree
of anonymity, we below state a set of criteria an anonymity metric should meet.

– A user can be said to be de-anonymized when an attacker can, beyond reasonable
doubt, pinpoint a user as the sender of a message (step three in Section 2.2). Thus,
the analyst must, in one way or another, consider probabilities;
⇒ C1: An anonymity metric should base its analysis on probabilities.

– The endpoints in an anonymity metric are “no anonymity” and “max anonymity”.
E.g., in metrics solely based onP, max anonymity happens whenP is uniform, and
no anonymity occurs if there is api ∈ P such thatpi >> max{P− pi}. An anonymity
metric should model these two endpoints in a well defined and intuitive manner;
⇒ C2: An anonymity metric must have well defined and intuitive endpoints.

– Intuitively, the more uniform theP, the more uncertain the attacker is. A metric
should preserve this relation (recall the representation condition [8]). Thus, a degree
of anonymity should increase if the uniformness ofP increases, and vice verse;
⇒ C3: The more uniform the distributionP, the higher the anonymity.

– Assuming a static degree of uniformness ofP: the more the users inU, the more the
potential senders, and thus the higher the uncertainty of the attacker. A metric should
preserve this relation according to the representation condition. Thus, the degree of
anonymity should increase if the number of users increases, and vice verse;
⇒ C4: The more the users in the anonymity set, the higher the anonymity.

– By studying the degree of anonymity in a scenario, an analyst should be able to judge
where in between the two endpoints (no & max anonymity) the current degree is.
Thus, all values in the value domain of an anonymity metric should be well defined;
⇒ C5: The elements in the metric’s value domain should be well defined.

– An anonymity metric should use a scale that preserves the ordering among elements,
such as ordinal, interval, ratio, or absolute scale [8]. Moreover, the metric should be
fined-grained enough to differ between similar, but not equal, scenarios.
⇒ C6: The value domain of the metric should be ordered and not too coarse.

Next, we evaluate the aforementioned anonymity metrics against these criteria.



On the Fundamentals of Anonymity Metrics 7

3.4 Evaluation of Anonymity Metrics against Criteria

In Table 2, we assess whether the studied metrics fulfill the earlier stated criteria.

Table 2: Evaluation against criteria.

Anonymity C1 - Neither|U| = n nor log2(|U|) consider probabilities.

set size
C2 - As this is an absolute measure, the metric always outputsn, which can

vary between 1 and∞. Difficult to state a “good-enough” value forn.metric
C3 - Not fulfilled, as this metric does not consider probabilities.
C4 + Fulfilled, as the degree of anonymity is|U| = n.
C5 + n simply entails the number of users in the anonymity set (|U|).
C6 + Fulfilled, as this metric uses absolute scale.

Crowds- C1 +
Fulfilled, as output corresponds directly to the probability of being the
sender an attacker can assign to the sending user in a system.

based
C2 +

The metric varies betweenprovably exposed andabsolute privacy, where
each intermediary category is semantically mapped to probabilities.metric

C3 - Not always true as individual probabilities are quantified.

C4 +
In general fulfilled, assuming that the correspondingpi > 0. Specifi-
cally, increasingn helps fulfillingn ≥

pf

(pf −1/2) ∗ (c+ 1) in the scenarios.

C5 + Categories are based on the underlying probability of being the sender.
C6 - Although ordinal scale is used, the output is fairly coarse.

Entropy- C1 + Based on the entropy of the probability distribution.
based C2 - The endpoints are 0 andlog2(n). The latter is hard to calculate by hand.
metric C3 + Fulfilled, if we assumed(P,U) = H(U) − H(P).
(Serjantov/Danezis)C4 + Fulfilled. Note that the maximum increases with an increasingn.

C5 +
States that an attacker on average has to find the answer forH(P) binary
questions to identity the sender.

C6 + This criterion is fulfilled as ratio scale is used.
Entropy- C1 + Based on the entropy of the probability distribution.
based C2 + Clear endpoints: 0 (no anonymity) and 1 (max anonymity).

metric C3 + Fulfilled, if we assumed(P,U) = H(P)
H(U) .

(Dı́azet al.) C4 - This criterion is not fulfilled, as the resultingd is normalized.
C5 + Easy to interpret asd denotes the quotient betweenH(P) andH(U).
C6 + This criterion is fulfilled as ratio scale is used.

Source- C1 + Θ is directly based on the greatest probability inP, asΘ = max(P).
hiding C2 - The use of an inverted scale is somewhat confusing (best case:Θ = 0).
property

C3 - Although it can be expected to be true in many real scenarios, it may
not coincide as the output is merely an individual probability.

C4 + Fulfilled, assuming correspondingpi > 0 for added users.

C5 +

Θ is the max probability (of being the sender) any user in the anonymity
set can be assigned of by the attacker. In real scenarios, it will probably
often overlap with the probability assigned to the real sender.

C6 + This criterion is fulfilled as ratio scale is used.

We can note in Table 2 above that there is no metric that fulfill all criteria.
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4 Proposal: Scaled Anonymity Set Size

In Section 3.4, we saw that no metric fulfilled all criteria. Thus, we propose a entropy-
based anonymity metricA that, in particular, avoids the following problems:(i) in the
Dı́az et al. metric, the number of users does not contribute tod, and(ii) the Serjan-
tov /Danezis metric has nonintuitive endpoints. We propose to quantifyA as follows:

A = 2H(P) (2)

Equation (2) grows with an increasing uniformity ofH(P) and varies between 1
(when there is onepi ∈ P, wherepi = 1) andn (whenP = U). Semantically,A = 2H(P)

can be explained as follows – given thatH(P) denotes the average number of binary
questions an attacker needs to find the answer to in order to identity the sender:

2H(P) is the number of possible outcomes given the expected amount of
binary questions the attacker needs to answer to identify the sender.

For instance, ifH(P) = 2, then 2H(P) = 4, the possible outputs are:{0,0}, {0,1},
{1,0}, and {1,1}. Equation (2) has a desirable property: the max value (n) overlaps
with the actual size of the anonymity set, while the min value (1) denotes a singleton
anonymity set, i.e. no anonymity. For this reason, we denote this metric thescaled
anonymity set size. In Table 3, we calculateA for the four aforementioned scenarios,
while in Table 4, we evaluate the proposed metric against the aforementioned criteria.

Table 3: Degrees of anonymity for the scaled anonymity set size.

Scen. c corrupted users Web server
Scaled S1 A = 21.83 = 3.6 (for n = 10) A = 2log2(10) = 10
anonymity S2 A = 26.37 = 83 (forn = 1000) A = 2log2(1000)= 1000
set size S3 A = 25.23 = 38 (forn = 1000) A = 2log2(1000)= 1000

S4 A = 26.75 = 108 (forn = 1000) A = 2log2(1000)= 1000

In Table 3, we can note that the ordering among the scenarios according toA over-
laps with that of the Serjantov/Danezis metric. However, we think that the linear scale
more clearly shows e.g. thatA in scenario one is far lower than in the other scenarios.

Table 4: Evaluation of scaled anonymity set size against criteria.

Scaled C1 + Fulfilled, as this metric is based on probabilities.
anonymityC2 + Intuitive and well defined endpoints whereA varies between 1 andn.
set size C3 + This criterion is fulfilled asA is based on the uniformity ofP.

C4 + Fulfilled, as max anonymity increases withn: max(2H(P)) = 2log2(n).

C5 +
A = 2H(P) is the number of possible outcomes given the expected num-
ber of binary questions an attacker has to answer to identify the sender.

C6 + Fulfilled, as the scaled anonymity set size metric uses ratio scale.

In Table 4, we can see that all criteria are fulfilled for the scaled anonymity set size.
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5 Summary & Outlook

In this paper we discussed elementary properties of anonymity metrics. We defined
a set of example scenarios using Crowds, and then quantified the degree of anony-
mity in these scenarios for some recent anonymity metrics. Based on this evaluation
and elementary properties of metrics, we then defined a set of criteria for anonymity
metrics. We then assessed whether these metrics fulfilled the earlier defined criteria.
Lastly, we proposed a new metric: the scaled anonymity set size, defined asA = 2H(P).
Future work includes further analyzing the scaled anonymity set size, as well as study-
ing the correlation between different ways of expressing the degree of uniformity in
probability distributions and their relation to different anonymity metrics.
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