Privacy-Enhancing Technologies

Using Identity-Based Public-Key Cryptography with Images to Preserve Privacy

Sebastian Pape, Nabil Benamar

U N I K A S S E L V E R S I T 'A' T

Overview

- Motivation
- Identity Based Public-Key Cryptosystems
- Scenario & Setup
- Creation & Validation of tickets
- Privacy Issues & Security Aspects
- Conclusion & Prospect

Motivation / Scenario

Sebastian Pape

U	Ν	1	К	А	s	S	Е	L
V	Е	R	S	1	Т	1	Α.	т

Motivation / Scenario

Motivation / Intention

- Avoid paper tickets
- Remove bonding between picture and ticket based on customer's id

- Use mobile devices (cell phones, PDA)
- Customer should be able to change

Sebastian Pape

ASS

Motivation / Conclusion I

- Avoid paper tickets

 Electronic tickets
- Remove bonding between picture and ticket based on customer's id

Bonding between picture and ticket

- Use mobile devices (cell phones, PDA)
- Customer should be able to change device

Tickets have to be stored at database

Motivation / Conclusion I

- Customer's knowledge and control of information flow
 Encrypted storage at database
 - Identity-Based Public-Key CS
- Use mobile devices (cell phones, PDA)
- Customer should be able to change device
 - Tickets have to be stored at database

Identity-Based Public-Key CS

- Shamir ('85) based on Blom ('82)
- Assymetric system
- Public identific. information ~ public key
- No explicit public key
- Priv. key computed by trusted authority
- Trusted authority needs priv. information

All participants have key pairs
 →secure communication

Setup II

- C has face to face contact with G (and D?)
- Public keys
 - Can easily be checked
 - Reveal no private information
 - C uses picture
 - D and G use identity information

Creation of Tickets С Database n 🔓 (🔪 (🗠)) $enc_{c}(sign_{d}(t))$ C_{pub}

- Tickets stored in relation to C's public key
- Additional information may be necessary
 - Performance vs. privacy

Sebastian Pape

U N I K A S S E L V E R S I T 'A' T

Sebastian Pape

Privacy Issues

- Additional information vs. performance
 - Sparse information to find the ticket faster
- G should not learn anything about the dealers C prefers
 - Group signature schemes
 - Trusted authority could act as group manager if problems arise

Security Aspects (C)

• C is unable to forge tickets

- Valid signature of dealer needed

- C is unable to pass tickets to C'
 - G checks if it originates from database

Security Aspects (D)

• D is unable to forge tickets

- valid signature of dealer needed

- Denial of Service
 - D deletes tickets → database interface
 - D floods database → additional database layer with information who inserted ticket (C has to complain)

Security Aspects (G)

- G can alter data before reaching it to C
 - Aim? G could refuse C's legitimation anyway
 Sign tickets by database
 - Any honest G can prove opposite
- Can manipulate legitimation test
 - Aim? working together with C?
 - \rightarrow C & D no other combination makes sense

Security Aspects (C & D)

- Ticket signed by D and encrypted by C
 - G proves both

- G cannot read the ticket
 - No win ticket could be changed by C

Conclusion

- Application is secure as long as
 - The underlying cryptosystem holds
 - The guard really examines the tickets
- Implicit key management given
- No unnecessary information revealed
 - Customers know symbolic identity
 - Dealer and guard check picture/appearance
- Customer has control about data

Prospect

 Most concrete Identity-Based Public-Key Cryptosystems include additional data

- "Perfect" face recognition software
 - Derive the customer's key straightly from a digital camera