Computer Science

Henrik Hedlund

Virtual Reality Applications

Evaluation of Development Environments

Bachelor’s Project
2000:06

Virtual Reality Applications

Evaluation of Development Environments

Henrik Hedlund

© 2000 Henrik Hedlund and Karlstad University

This report is submitted in partia fulfillment of the requirements for the
Bachelor’s degree in Computer Science. All material in this report which is
not my own work has been identified and no material is included for which

adegree has previously been conferred.

Henrik Hedlund

Approved, 00-05-31

Advisor: Hua Shu

Examiner: Stefan Lindskog

Abstract

This thesis is the documentation of a Bachelor's project at the Department of Computer
Science, Karlstad University, for SAAB Bofors Dynamics. It contains an overview and
evaluation of six different Virtual Reality development environments that could be of use to
future Virtual Reality developments at SAAB Bofors Dynamics. The evaluation discusses the
pros and cons of each development environment and in what way it could be valuable to
SAAB Bofors Dynamics. A conclusion is then reached and recommendations are presented.
This thesis also documents the implementation of a testbed that has been created using one
of the evaluated development environments. This testbed is an example of how a three-
dimensional computerized demonstration, or manual, can be designed and constructed.

Contents

1

Introduction

11
1.2
1.3

14

Background and goals
2.1 Background
2.2 Goas

Method and requirements
3.1 Method
3.2 Regquirements

3.3 Concerning the testbed

Simulation/visualization
Three-dimensional graphics
Virtual Reality

131

Head Mounted Displays

1.3.2 Virtua Reality Gloves
1.3.3 Trackers

About thethesis

321
322
323
324
3.25

41.1
4.1.2
413
414
415
4.1.6

Level of abstraction
Connection to I-DEAS
Hierarchical transformation
Rotation in any chosen point
Different levels of immersion

4.1 WorldToolKit

Level of abstraction
Connection to I-DEAS
Hierarchical transformation
Rotation in any chosen point
Different levels of immersion
Conclusion

Level of abstraction
Connection to I-DEAS
Hierarchical transformation
Rotation in any chosen point
Different levels of immersion
Conclusion

Vi

4.3

4.4

4.5

4.6
4.7

Cosmo 3D and OpenGL OPLIMIZENccccv e 18
4.3.1 Levd of abstraction

4.3.2 Connection to I-DEAS

4.3.3 Hierarchical transformation

4.3.4 Rotation in any chosen point

435 Different levels of immersion

4.3.6 Conclusion

4.4.1 Level of abstraction

4.4.2 Connection to I-DEAS

4.4.3 Hierarchica transformation
4.4.4 Rotation in any chosen point
445 Different levelsof immersion
4.4.6 Conclusion

45.1 Externa Authoring Interface
45.2 Cortona SDK

45.3 Cosmo Worlds

45.4 Leve of abstraction

455 Connection to I-DEAS

45.6 Hierarchical transformation
4.5.7 Rotation in any chosen point
45.8 Different levels of immersion
45.9 Conclusion

VR UGN ..ttt bbbttt b ettt b bbb e e e 28
Other development ENVIFONMENLES...........ccviieieeri e 30

5 Testbed created With WOr ldT 00Kt c..ooeeeeeeeeeeeeeeeeeeeeeeeeeee e 32

5.1
5.2
5.3
5.4
5.5

6.1
6.2
6.3
6.4

1SS o] o1 o o SRS S 32
DESIgN @NA SITUCKTUE........eeiiieeete e e 34
(S o U 11 o o OSSP 39
Connection between WorldToolKit's and I-DEAS’ coordinate systems................. 41

IMPIEMENEALION ISSUESecueecieeiece sttt ettt et e et e e neeeeeneenns 41
5.5.1 Coordinate systems

5.5.2 Viewpoints

5.5.3 Project settings

5.5.4 Flawsand errors

A Futurefeatures, implementing Virtual Reality hardware..........c.cccooveveieeiecceceenne. a7
A.1 Head Mounted DiSPlayS.......cccueeiererinierieeeeeeeee e 48

Vii

y N T I = o £ TSRS 49
(€117 T S 50
10 o =X oo [T 52
C.1l Themain fUNCHION. ..o ettt sbe e 52
C.2 TheapPliCAIONceeeeete et nbe e 52
C.3 LiStener @nd SCIrEAIMESccueiuieiieieierie sttt st e e seesbe e 63
C.4 ThemouSE haNIErcocuo i et 64
C.5 The geometry INEITACe.......ccocii e 66
C.6 TheHHROELION ClBSSES........cciieee ettt sae e sne s 67
C.7 TheBamse geOMELIY ClaSS.......cccccviieiiiiieiiesie sttt 77

viii

List of Figures

Figure 1.1 — An example 3D COOrdinate SYStEM.........cceierererenereee e 2
Figure 1.2 — A SIMpPIe SCENE Graph........cceeiieiece et 3
Figure 4.1 — Different levels of abStractioncccccevveveeveieeci e 11
Figure 4.2 — Comparison of VRML 1.0 @nd 2.0........cooeiiiiiinineneeeeeeeee e 14
Figure 4.3 — Rotation in @ SPECITIC POINL........eiiriririeieierese e 15
Figure 4.4 — The RXSCENE ENVIFONMENLcciiiieiieie e sie et se e sreeeesreesaesneenneas 24
Figure 4.5 — VR JUQQIEr’ S SLIUCLUIE........ccveeeeieeeeie ettt s 29
FIQUre 5.1 — A BamSB UNIt.......coiiiiiiieiee et 32
Figure 5.2 — A Bamse unit shown in different Situations.............ccoceverererieeienenescneee, 33
Figure 5.3 — The design of thetesthed.............ccov e 34
Figure 5.4 — The detailed design of theinput handlingc.cccovevevieie e, 35
Figure 5.5 — The detailed design of the geometry handlingccooveeeiiiencncsencnee, 36
Figure 5.6 — The detailed design of the Bamse geometry class..........ccccovevenenenencniene. 38
Figure 5.7 — Recommended design of the geometry Classes........cccoevvveeveecieseeieseennn 39
Figure 5.8 — The WTK Program lO0Pcceeieeiieiieseeeceesie et see st sae e eee e e 40
Figure 5.9 — WTK’S COOrdiNaLe SYSIEIMcoviiiieieiiesieeieseeee e 42

List of tables

Table 4.1 —WTK IMPOIt FOMMELSooeiiiiririeieieieiese e 13
Table 4.2 = WTK CONCIUSIONcouviiiiiiiiiisie et nne s 16
Table 4.3 =V Tree CONCIUSION.......coviiiierie et 18
Table 4.4 — Cosmo 3D and OpenGL Optimizer import formats...........cceeeveneneneneneens 19
Table 4.5 — Cosmo 3D and OpenGL Optimizer coNCluSION..........ccovveeirieeieiciciencine 21
Table 4.6 — Realax import/export fOrMats...........coceeeeieeie e 23
Table 4.7 — RealaX CONCIUSION........cciiiiiiiieieie et 25
Table 4.8 — VRML CONCIUSION.......c.coiiiiiiieie e eee e ee e ee et seeeesneeseeeneesneens 28
Table 4.9 — VR JUQQIEr CONCIUSION......c..oiuiiiriiniinieeieee et 30
Table A.1 —Head Mounted DiSPlays........ccceiieiieiieieeiecee ettt 48
TADIE A2 - GIOVES.....ooiiiiete ettt ettt nre b nre s 49
TaDIE A.3 - TIACKEIS ... ettt sreeeeeneens 49

1 Introduction

Thisis both a general introduction to the areas covered in this project and a brief introduction
to the disposition of the thesis.

1.1 Simulation/visualization

Simulation can be described in two ways, either as an accurate, numeric calculation of how
something behaves under certain conditions, or as a real-time, interactive visualization of a
scenario based on some realistic approximations. Basically this means that it is impossible to
use accurate calculations and behavior models in real-time visualizations. These accurate
simulations are used for exact predictions of a scenario, and are calculated over a large time
gpan. On the other hand it is possible to pre-calculate data and then feed it to a rea-time
visualization. This project does not span al the ingredients of accurate simulation; it is mainly
focused on visualization.

Visualization in turn is a multi-faceted task, ranging from the illustration of simple graphs
and tables to three-dimensional (3D) presentation of a sequence of actions. The particular area
of interest in this project is computer-aided 3-dimensional visualizations of rea-time
calculated data. To achieve the visuaization in real-time, simplified models of behavior are
required. This principle applies in many of today’s popular computer-games, where speed is
crucial for viewing pleasure. Other possible areas of application include architecture, design
and prototyping, education, conferencing, military training simulators, scientific visualization
and surgical practice. SAAB Bofors Dynamics connection to the defense industry leads to
the particular area of military training simulators and demonstrators. These include, but are

not limited to, driving, flight, ship and tank simulators.

1.2 Three-dimensional graphics

In this section, a short introduction to 3D graphics provides the reader with a basic
understanding of 3D graphics programming.

The coordinate system shown in Figure 1.1 is fundamental to understand 3D orientation.
Placement and direction of the axes can vary dependent on different systems and

environments.

The smallest building block is called a vertex, and represents one point in the coordinate
system. Lines consist of two vertices, start-point and end-point.

By connecting multiple lines basic two-dimensional primitives such as triangles (3
vertices), quadrants (4 vertices) and polygons (N vertices) can be formed.

The most common 3D primitives are boxes, cones, cylinders and spheres. In addition,
surfaces and materials are defined and solid objects can be formed. Material consists of
different aspects such as light dependent attributes (shininess and emissiveness) and colors.

To add further realism to the surface a texture can be applied. The texture is a picture that
adds the appearance of areal surface.

(0,0,0)

Figure 1.1 — An example 3D coordinate system

Transformation is used to translate and rotate an object. To translate an object is to place,
or move, it in the coordinate system. Shading and lightning are other features that add realism
and atmosphere to the scene.

A sceneisavirtua environment that contains objects and attributes. A graph is often used
to represent the scene, by ordering all attributes and objects in a hierarchic manner (Figure
1.2). This means that a child inherits the attributes of its parent. A very complex engine

performs the actual rendering, but thisis out of the scope of thisthesis.

R Root-node

N

Light-
L g G Group-node

node
Transform- = T S Shape-node

node

Figure 1.2 — A simple scene graph

A scene graph is a directed acyclic graph. The graph in Figure 1.2 is an example that
contains five different nodes. These are the most common nodes, but the different types of
nodes can vary from system to system. A group-node is a node, which does not have any
attributes in itself, but can have children. The root-node is basically a group-node without any
parents, thus being the group-node of the whole scene. Light-nodes contain light-attributes for
the scene. A transformation-node determines the placement and orientation of the geometry,

which is contained in the shape-node.

1.3 Virtual Reality

Virtual Redlity (VR) was a fashion-word a couple of years ago, when the Internet began to
grow. People thought that within the next decade everybody was going to live on the Internet,
in avirtual reality. Since then, not much has happened that has reached the public audience.
Surely the Internet is bigger than ever, but its citizens still use an ordinary computer to
interact with each other. The technology to immerse oneself within the virtual world exists,
but it is till too expensive for ordinary consumers. ‘Immerse’ is one of the keywords that
surround VR, since it can be thought of as atechnology to increase the level of immersion in
visualizations. Immersion, in the context of VR, is basically the cognitive conviction of being
‘inside’ a 3D scene.

The whole ideaisthat by placing the user in the simulation loop (i.e. increasing the level of
immersion), he can apply his inherent spatia skills to work with the complex data that the
visualization presents. Thus the aim is to create a sense of presence by letting the user’s
sensory inputs receive data generated by a computer, rather than from the physical world [1].
Today thisis accomplished by replacing hearing and vision, but tomorrow’ s technology might

offer replacements for other than these two senses.

1.3.1 Head Mounted Displays

The replacement of hearing is nothing new, and is simply accomplished by using
headphones connected to a computer. Replacing vision is a bit trickier, since depth perception
comes from the difference between the two images that the eyes capture. In order to trick the
mind that it is really in a virtual environment, stereographic viewing is used. Stereographic
viewing means that the computer generates two images of the viewed scene, where one

appears to be seen from a view dightly to the right of the other. The first image is then

presented to the left eye and the second to the right. This emulates depth perception, and the
user think that he sees in 3D. The device that is used to accomplish this is called a Head
Mounted Display (HMD), and generally looks like a set of glasses, or even a helmet, that are
placed on the user's head. A simpler version of the HMD is stereo glasses (or shutter

glasses), which uses an ordinary monitor as the display.

1.3.2 Virtual Reality Gloves

In order to interact with the virtual world, different kinds of input devices have been
developed. The smpler ones include wands and space pucks, which can be thought of as 3-
dimensional mice. A more advanced device is a glove equipped with a number of sensors that
feed the computer of the user’s hand-motions. By using this kind of device a user can grab

and hold objects in the visualized world, and the interactive experience is greatly enhanced.

1.3.3 Trackers

A third device that has been used to deepen the immersion in the virtua environment is
called atracker. A tracker is a device that keeps track of the placement and orientation of the
user’s physical body. The user’s physica motions are translated to motions in the virtual

world, and the user gets afeeling of completely being in the generated environment.

1.4 About thethesis

The following section isabrief introduction to each of the chapters.
Background and goals
Describes the background and the goals of the project, SAAB Bofors Dynamics current
situation and their need for this type of project.
Method and requirements
Describes the requirements for the project and the method used in the project.
Results
An introduction and an evaluation of the different development environments that were
considered to be candidates for SAAB Bofors Dynamics' Virtual Reality development.
Testbed created with WorldT oolK it
A part of this project was the creation of a testbed. This chapter describes the design and

implementation of the program that was written using WorldToolKit.

Recommendations

A discussion concerning the results of the evaluations, as well as the author’s opinions and

recommendations regarding the different devel opment environments.

Please note that chapters 1.1 and 1.2 are written together with Anders Aslund, in conjunction
with his Bachelor’ s project “ Special Effectsin OpenGL.”

2 Background and goals

This chapter describes the background of this project, the problems that are supposed to be
solved, SAAB Bofors Dynamics' current situation and their need for this type of project.

2.1 Background

During 1999 SAAB Bofors Dynamics began to look at the area of real-time simulation and
environment-animation. The idea of using VR to help SAAB Bofors Dynamics develop,
educate, market and maintain their products stemmed from that project.

In today’ s product development, there are a plentitude of advanced software that makes the
work easier for engineers and assemblers. Computer Aided Engineering (CAE) has come a
long way, and in many areas of engineering today there is software that supports different
stages of the product development. SAAB Bofors Dynamics uses a CAD-system called I-
DEAS, which supports adiversity of usable functions related to 3D-product design. However, a
valuable function is lacking, namely the ability to control the assembly of products. Questions
such as “Are there room for the assembler’s hands?” and “Is it possible to assemble in the
correct order?” need to be answered. I-DEAS only offers the functionality to check if individual
parts fit together. Hopefully VR can help answer the other questions.

Today’ s documentation of a product consists of quite a number of folders full of printed
papers. A computerized equivalence to this documentation is of use for both marketing and

documentation purposes.

2.2 Goals

The purpose of this project is threefold:

1. Toexaminein which areas SAAB Bofors Dynamics need VR systems.

2. To examine and evaluate different software, Software Development Kits (SDKS)
and Application Programming Interfaces (APIs), and draw a conclusion of what
software environment that will be of most use in the development of these VR
systems.

3. To examine the VR-hardware market and formulate a requirements specification

for the hardware that will be incorporated in these VR systems.

As a part of the Bachelor’'s project, a small testbed shall be created. This will act as an
example of how a computerized manual can be structured. This manual will include a ssimple

interactive 3-dimensional model of some product, and it should be possible to link the model
together with amanual in a hypertext form.

3 Method and requirements

These conditions and requirements are a combination of the requirements and needs of SAAB
Bofors Dynamics, and the author’ s opinions and ideas.

3.1 Method

This project was carried out in four different phases. The boundaries of these phases were not
completely distinct, because the development of software is an iterative process and the
boundaries of different stages may overlap each other.

The first step in the project was an information gathering process. This is one of the most
important phases in the project, since SAAB Bofors Dynamics is interested in information
about available products and their usein SAAB Bofors Dynamics' business.

After the information has been gathered, it was time to evaluate available products. The
requirements for this are specified in chapter 3.2.

The next phase was the implementation of a simple testbed. This phase was actually an
extension of the evaluation, since the development of the testbed further evaluates the
functionality of a chosen product.

Thefinal phase was the documentation of the whole process.

3.2 Requirements

The evaluation of software and SDKs are necessary to see if they fulfill certain requirements.
The following paragraphs contain the requirements set up for a 3D software development
environment. The first five requirements are considered to be decisive for the decision
whether or not to use the software. The sixth requirement describes the genera guidelines set
up for the testbed (the computerized manual). Note that these requirements were not included
in any specification, but rather devel oped during discussion about what could be demanded of
a 3D application devel opment software.
From now on the evaluated software isreferred to as a SDK, for simplicity.

3.21 Leve of abstraction
This is a general requirement. It should be fairly easy to develop software with the SDK;
otherwise its use would be worthless. A system-developer should not have to be concerned

8

with the lower aspects of the program. By letting the SDK handle the lower, render-specific
details, a developer can concentrate on creating usable applications.

There is a choice to be made whether one should use a highly abstract SDK, which
provides the desired results fast, or use a less abstract one, which perhaps is more flexible. It
IS necessary to weight these two aspects against each other, and see what is best suited for the

given project.

3.2.2 Connection to I-DEAS

The second requirement is aso a very important one. All the geometries that will be used by
the programs developed with the SDK are made by the CAD-system I-DEAS. Therefore it
must be possible to import geometries created in 1-DEAS to the chosen SDK. Preferably this
should be done directly, i.e., the SDK can read the I-DEASfile-data, but thisis not necessary. It
Is enough that some connection exists, for example through converting the 1-DEAS data to
some format recognized by the SDK. Yet, in case of a conversion it is necessary that the
procedure is as simple and accurate as possible, since it might be necessary to replace the
geometry severa times during the development of an application and some conversions

deteriorates the quality of the geometry.

3.2.3 Hierarchical transformation
If the SDK uses hierarchical representation of the scene data (see chapter 1.2), then it is
possible to transform the geometry as a hierarchical structure. This is useful if one wants to
transform awhole group of geometries, for example a missile turret consisting of several sub-
geometries; al that is necessary is to transform a group node containing all of the associated
geometry, and the whole group is transformed.

If, on the other hand, it is not possible to perform a hierarchical transformation, the only

solution isto do calculations on each individual vertex, which is a quite time-consuming task.

3.2.4 Rotation in any chosen point

In order to implement realistic motions and animations, it is necessary to be able to rotate a
geometry, or awhole group of geometries (according to paragraph 3.2.3), at an arbitrary point
in the coordinate system. This is necessary since some systems only allow rotation around
some global axis, which is somewhat limited. This requirement in combination with
paragraph 3.2.2 is discussed further in 3.3.

3.25 Different levelsof immersion

In order to be able to extend developed systemsin the future, it is necessary to have the ability
to develop applications with higher levels of immersion, as well as simple 3D applications
that run on an ordinary PC. Thus, it is important to have some sort of support for the
implementation of VR-hardware, and aso the construction of necessary drivers (if these are

not included with the hardware).

3.3 Concerning thetestbed

As mentioned earlier, part of this project is to develop a simple testbed using the SDK that |
have found most suitable for use at SAAB Bofors Dynamics. The testbed is a prototype of a
computerized manual, consisting of a simple 3D model of BAMSE (one of SAAB Bofors
Dynamics products). This model shall be interactive in the sense that the user can trigger
some reactions in the model, such as the animation of movable parts. It shall be possible to
extend the program so that a window containing a hypertext documentation could be linked
with the model. Using this structure a user can click on one part of the model and get
information about that part in the hypertext-window.
This prototype is also part of the evaluation and further tests of the functionality of the
used SDK. There are two subjects that require special attention:
1. The connection to I-DEAS must be thoroughly evaluated. It may be possible
that the SDK claims to have full support for a certain file format, but in
reality some aspects are missing.
2. Given acertain point in the globa coordinate system of I-DEAS, it is desirable
to have some sort of method to find the same point in the coordinate system
used by the SDK. Thisis most useful when a geometry isto be rotated around
aspecific point (se paragraph 3.2.4).

10

4 Results

After an initial search on the software market, primarily using the Internet, six different
development environments were considered to be of interest. These were chosen because they
are widely used when developing VR applications. Four of these can be seen as SDKs with
varying levels of abstraction (see paragraph 3.2.1), as illustrated in Figure 4.1. The fifth
environment is actually a markup language for creating interactive 3D worlds (see section 4.5
below). In addition to these five environments, a somewhat different API that has no support
of itsown for 3D graphics aso was considered to be of interest (see section 4.6).

Each of the requirements in section 3.2 will be graded according to the scale: poor,
adequate or excellent. The results of each SDK’s evaluation will be presented in a table at the
end of the evaluation.

Level of
abstraction
VTREE
Cosmo 3D

Figure 4.1 — Different levels of abstraction

4.1 WorldToolKit

WORLDTOOLKIT (WTK) is, according to the developer Sense8 Corporation, “a cross-platform
development environment for high-performance, rea-time 3D graphics applications’ [2].
WTK isaSDK that provides a developer with the tools to create virtual worlds through C or
C++ code that calls WTK functions. WTK is a library consisting of over 1,000 functions
written in C that handle low-level graphics and 1/0 operations [3]. To provide the possibility
of an object-oriented development approach, the WTK package aso includes C++ wrapper
classes. These are C++ classes that encapsulate the ordinary WTK functions that are written

11

in C, in a manner that allows a C++ programmer to use WTK. Even though the C code that
WTK consists of is based on object-oriented concepts, the C++ wrappers do not offer such
object-oriented strengths such as inheritance or dynamic binding, which is obviously a serious
drawback.

WTK is available on a plentitude of different platforms, including Windows NT, SGI, Sun,
HP, DEC, PowerPC and Evans & Sutherland. This makes WTK a frequently used
development environment that has a large user base [4]. This is one of the most valuable
aspects of WTK. Since it has been extensively used and evaluated, and most of the
weaknesses should have been corrected by now (WTK has reached its 9th release). Another
strength of WTK isthat it is a complete package supporting the development of awide variety
of VR applications. These applications can range from full immersive systems, such as
Caves], to simple web browser based applications.

There are other softwares included in the WTK development suit. WORLDUP is a viewer
that displays 3D worlds in a simple way, which does not include any programming.
WORLD2WORLD is a system used for developing distributed 3D systems that run in a network.
Unfortunately WTK does not perform as well as some other VR libraries, for instance VTREE,

in terms of the frame rate.

411 Levd of abstraction

WTK is the development environment with the second highest level of abstraction, as shown
in Figure 4.1. Almost every aspect of the development of a 3D application is encapsulated in
WTK'’s functions. The creation of an application is a quite easy task. On the other hand this
can also pose a problem, because the SDK hides much of the functionality that a developer
perhaps wants to change or to implement in a different way. If a situation presents itself,
where the functionality that is implemented in WTK is not satisfactory and need to be
changed, thisis practically impossible.

4.1.2 Connection to I-DEAS
WTK has the ability to import the following formats:

12

AutoDesk DXF

AutoDesk 3D Studio mesh
Wavefront OBJ
MultiGen/Model Gen Flight
VideoScape GEO
Pro/Engineer RENDER SLP
Sense8 Neutral File Format
Sense8 Binary NFF

VRML 1.0

VRML 2.0

Table 4.1 — WTK import formats

In addition to these file formats, Sense8 offers a CAD geometry loader to WTK. This loader
Is not included in the standard WTK package and has to be purchased additionally to the
approximate price of $10,000.

The format that is currently of most interest is VRML 2.0, since that is the format
supported by both WTK and 1-DEAS. As it happens, WTK has problems with the import of
VRML 2.0 files. An investigation leads to the following hypothesis. A VRML 2.0 scene
consists of a scene graph, which in turn consists of one or more nodes of different types (as
described in paragraph 1.2). There exists one special type of nodes at the meta-level, i.e.itisa
node that describes nodes. This type of nodes, called Prototypes, or PROTO-nodes, is used
for creating and describing new, specialized nodes. VRML geometry exported from I-DEAS
consists almost entirely of PROTO-nodes. It seems that WTK is unable to import and
interpret these nodes. Sense8 has been notified of the problem, but no answer has been
received.

A solution to the problem is to convert the VRML 2.0 geometry to VRML 1.0. Thisis not
a good solution, since it involves an extra step in the connection between 1-DEAS and WTK.
VRML 1.0 is aso a quite clumsy file format of much lower quality than VRML 2.0. Thisis
illustrated in Figure 4.2, where the same geometry isviewed in VRML 1.0 format to the left,
and in VRML 2.0 format to the right.

13

Figure 4.2 — Comparison of VRML 1.0 and 2.0

4.1.3 Hierarchical transformation
All scenes in WTK are structured in a hierarchical manner, which, as described in section
3.2.3, means that WTK allows hierarchical transformation.

4.1.4 Rotation in any chosen point

Every sub-geometry in WTK has alocal coordinate system, where the origin is placed at the
geometry’ s midpoint (see Figure 4.3). When a geometry is rotated, it rotates around one of its
axes that run through the origin of the local coordinate system (also illustrated in Figure 4.3).
Thus a plain rotation only rotates the geometry around its midpoint, which can be quite
limited. The requirements specified that it must be possible to rotate a geometry in any chosen
point. Thisis achieved by the following procedure:

1. Thefirst thing that has to be done is to tranglate the geometry, so that the point of
rotation (marked with an X in Figure 4.3 (a)) is located at the origin of the local
coordinate system. Thisisillustrated in Figure 4.3 (b).

The next step isto perform the actual rotation (Figure 4.3 (¢)).

Finally, the geometry is trandated back to its origina position, i.e. the inverse

tranglation of step oneis performed. The final result isillustrated in Figure 4.3(d).
Since all modifications to geometries in WTK are performed before a scene is rendered (in
each program loop), the sequence above only displays the final result. This means that it does

not show on the screen the results of the intermediate steps.

14

(@ (b)

(c) (d)

Figure 4.3 — Rotation in a specific point

Please note that the pictures shown in Figure 4.3 are screenshots from different angles. That

iswhy the axes are located differently.

415 Different levelsof immersion
There are three different modes of stereographic viewing and WTK supports them all. The
different modes are Field Sequential Mode, Over/Under Mode and Interlaced Mode.

In field sequential mode the two images (one for the left eye and one for the right eye) are
rendered into a single display, and then swapped at 120 Hz to generate a field sequential view
at 60 Hz. This requires the graphics hardware to support quad buffering (i.e. there are four
image buffers), because each image needs a front and a back buffer. The display also must be

capable of supporting 120 Hz update frequency [2].

15

The over/under mode splits the display in two parts along the horizontal axis. The left eye
image is rendered above the right eye image. This mode also requires a display that supports
120 Hz update frequency [2].

“Theinterlaced mode interleaves the left and right images as alternate scan linesin asingle
window. All the even scan lines belong to the left eye image and all the odd scan lines belong
to the right eye image (or vice-versa)” [2].

WTK aso supports many sensor devices, such as trackers, joysticks and VR gloves.
Among the supported devices are: Virtua Technologies CyberGlove, Ascension’s Bird /
Motionstar / Flock of Birds / Extended Range Bird, Fakespace's Pinch Glove, Logitech’s
Head Tracker and Polhemus ISOTRAK / ISOTRAK Il / InsideTRAK / FASTRAK / Sylus. The
VR hardware support that WTK provides should be able to satisfy most of users’ needs. In the
case a certain sensor device is not supported, WTK provides a set of functions that alows a
developer to write specialized drivers to make the device function with WTK applications.

4.1.6 Conclusion

WTK isacomplete VR development package that is very pleasant to work with. All expected
functionalities are provided and everything runs smoothly. As mentioned earlier WTK
applications do not get as high frame rate as applications written using VTREE. This is a
serious disadvantage, since the performance is very important to the quality of an application.
Another disadvantage is the lack of complete object-oriented support, which can be a
nuisance when writing C++ applications.

One thing that inclines towards WTK is that many systems that are used at SAAB Bofors
Dynamics are provided by the same vendor as WTK. The advantage of choosing systems
from the same vendor is that the systems may work better together, and the support may
become easier since the same company maintains al of the systems.

WTK isevaluated further in chapter 5, where the design of atestbed created using WTK is
described.

Leved of abstraction Excdllent

Connection to I-DEAS Excdlent

Hierarchical transformation - Excellent

Rotation in any chosen point | Adequate

Different levels of immersion - Excellent

Table 4.2 — WTK conclusion

16

4.2 VTree

“VTREE is a robust library of C++ classes and functions designed to empower you to create
rich, dynamic, graphical scenes’ [5]. VTREE is a complete SDK for the creation of 3D
visualizations of varying use. It has great support for environmental visualizations and in
particular for military real-time simulations. Just like WTK, VTREE is a complete package for
development of 3D and VR applications that are runnable on ordinary Windows NT or UNIX
workstations, with or without VR hardware [5].

As mentioned above, VTREE performs better than WTK, i.e. VTREE has a higher frame rate.
Otherwise the two environments have about the same to offer to a developer. One major
difference, though, is that vTREE is written in C++ (WTK in C) and offers a complete object-
oriented structure, capable of inheritance, dynamic binding and polymorphism. Thisis a gap
that unfortunately exists in WTK’s object-oriented support. Since VTREE is partly directed
towards military- and environmental visualizations, it has aso a big library of special effects
and other features that WTK lacks.

421 Leve of abstraction

As shown in Figure 4.1, VTREE has a dightly lower level of abstraction than WTK. This
allows a developer to better control the creation of an application, especialy the lower levels
of the scene graph, the different nodes in the scene graph and the geometry. The negative
aspect of thisis that the developer has to do more work. But a careful design may allow for

extensive reuse of code in subsequent projects.

4.2.2 Connection toI-DEAS
There is very little information about the file-formats supported by VTREE. The primary
format used is VTREE's own, and geometries in other formats have to be converted using some

software, which isincluded in the vTREE software package.

4.2.3 Hierarchical transformation
VTREE Uses a hierarchical scene graph to organize all geometries. As mentioned in 3.2.3, all
systems that use a hierarchical representation also alow hierarchical transformation, which

means that v TREE does support hierarchical transformation.

4.2.4 Rotation in any chosen point
The basic method described in the evaluation of WTK (paragraph 4.1.4) is also applicable for

VTREE. The first operation is to trandate the geometry so that the chosen point is located in

17

the geometry’s origin. The second operation is to rotate the geometry. The final operation is

to trandate the geometry back to its original position.

4.25 Different levelsof immersion
VTREE supports stereographic viewing, which means that applications can use HMDs and
similar output devices, as a computerized binocular (widely used in military smulations). The
VTREE user manual provides no other information concerning the types of stereographic
viewing that are supported (see the evaluation of WTK, section 4.1.5) other than that VTREE
supports HMDs.

VTREE also supports a variety of trackers, for example Intersense’s 1S300 and Inter Trax,
Ascension’s Flock of Birds and Polhemus FasTrak, as well as different joysticks and other
3D input devices. To our knowledge, VTREE provides no support for VR gloves, so we have to

assume that this does not exist.

4.2.6 Conclusion

VTREE is dready in use at SAAB Bofors Dynamics, which makes VTREE a suitable candidate
for VR development. Another positive aspect is the high performance that VTREE provides.
On the negative side it seems that there is no simple connection between VTREE and I-DEAS,
I.e. it is necessary to convert the I-DEAS data in severa steps to finally reach the VTREE file
format. Otherwise VTREE is quite pleasant to work with, and it has several features that have

proven to be very useful.

Levd of abstraction Excdllent

Connection to I-DEAS Poor

Hierarchical transformation - Excellent

Rotation in any chosen point - Excellent

Different levels of immersion | Adequate

Table 4.3 —VTree conclusion

4.3 Cosmo 3D and OpenGL Optimizer

cosmo 3D is afreely distributed scene graph API developed by Silicon Graphics, Inc. (SGI).
It is based on SGI’'s graphics APl OPENGL, which is more or less industry-standard, and

provides a developer with a high-level interface for complex 3D graphics applications. cosMo

18

3D iswritten in C++ and is designed in an object-oriented manner, thus providing a developer
with full access to inheritance, polymorphism and other object-oriented strengths [6].

The cosmo 3D API has a dlightly lower level of abstraction than WTK and VTREE (as
shown in Figure 4.1). This means that thereis a bit more coding involved in the creation of an
application, but at the same time the developer has more control. There is always a choice to
be made between flexibility (cosmo 3D) and abstraction (WTK). Since cosmo 3D iswrittenin
C++, careful design of developed applications may permit extensive re-use of code in later
applications, which reduces the amount of development work involved.

When scene graphs have been created using cosmo 3D, a developer can use the OPENGL
OPTIMIZER API to improve the performance of an application. OPENGL OPTIMIZER is also
available from SGI and the two APIs are closely intertwined, making them a full devel opment
package for high quality 3D applications. Neither COSMO 3D nor OPENGL OPTIMIZER iS a
development environment for VR applications. Both lack support for higher levels of
immersion. This is not necessarily a problem due to the fact that cosmo 3D is amost perfect
for use with VR JUGGLER, an API for development of VR applications that has no support of
its own for graphical operations. VR JUGGLER is discussed further in section 4.6.

4.3.1 Levd of abstraction

As mentioned earlier, cosmo 3D has a dlightly lower level of abstraction than WTK or VTREE,
but there seems to be no significant difference. The level of the graphical programming is just
dightly lower than WTK and about the same as VTREE. The scene graph representation is
built on the same structure as both WTK and VTREE, but the major difference between cosmo
3D and WTK, or VTREE, is that both WTK and vTREE are more of complete packages and
provide more support for VR hardware. A solution to this problem is discussed in paragraph
4.3.5 below.

4.3.2 Connection to I-DEAS
cosmo 3D and OPENGL OPTIMIZER combined are able to load the following formats:
Cosmo 3D .csb

Open Inventor .iv
IRIS Performer .pfb
VRML .wrl

Table 4.4 — Cosmo 3D and OpenGL Optimizer import formats

19

In addition to the formats in Table 4.3, OPENGL OPTIMIZER provides the developer with tools
to write new loaders in order to extend the file-format support.

Again VRML isthe format of most interest, and cosmo 3D has support for both VRML 1.0
and VRML 2.0. cosmo 3D has the exact same node representation and scene graph-structure
as VRML 2.0, which enables cosmo 3D to have full VRML support.

4.3.3 Hierarchical transformation
As most 3D systems, cosMO 3D uses a hierarchical representation of 3D geometries, thus

allowing for hierarchical transformation (see paragraph 3.2.3)

4.3.4 Rotation in any chosen point
In the evaluation of WTK a method for rotation is described (paragraph 4.1.4), which is also

applicable to cosmo 3D.

4.3.5 Different levelsof immersion

Neither cosmo 3D nor OPENGL OPTIMIZER has any inherent support of immersion altering
devices. They are only APIs for creating high quality 3D applications, such as CAD systems,
and as such there is no need for VR hardware support. There is one remedy to this situation,
which is described in chapter 4.6, namely VR JUGGLER.

As described earlier, VR JUGGLER has no inherent support for 3D graphics, and has to
utilize an external API for this. cosmMo3D is amost perfect for this purpose, providing an
advanced scene graph structure that allows features such as stereographic viewing and other
necessities for VR implementation. The combination of cosmo3D and VR JUGGLER provides a
developer with a development environment that is as complete as WTK or VTREE. The only
difference is that cosmo3D has a dlightly lower level of abstraction and offers fewer features
in form of special effects, an area that currently is under development at SAAB Bofors
Dynamics (see Anders Aslund’ s thesis “ Special Effectsin OpenGL”).

4.3.6 Conclusion

cosmMo3p and OPENGL OPTIMIZER combined with VR JUGGLER is a most powerful and flexible
solution for creating 3D and VR applications. That the combination is free of charge is
perhaps not as important for a business of SAAB Bofors Dynamics size, but it is worth
mentioning. Both cosMo3D and VR JUGGLER exist on severa platforms, both Windows NT
and UNIX, which can be important if the development is moved from Windows NT to UNIX

(these are the two main platformsin use at SAAB Bofors Dynamics).

20

The major weak point of cosmo 3D is that special effects are missing in the package. As
mentioned earlier specia effectsis currently under development at SAAB Bofors Dynamics.
These are most likely to be created using OPENGL. In that case there is nothing that prevents
the usage of these specia effects in cosmo 3D. On the contrary, cosMO 3D and OPENGL
OPTIMIZER (as the name suggests) are built on top of OPENGL, which makes it very easy to
code pure OPENGL in aCcosmo 3D structure.

In conclusion, cosM03D, and OPENGL OPTIMIZER, in combination with VR JUGGLER, should
be considered as a development environment to be reckoned with because of their flexibility
and availability.

Leved of abstraction Excdllent

Connection to I-DEAS Adequate

Hierarchical transformation : Excelent

Rotation in any chosen point : Excellent

Different levels of immersion : Poor

Table 4.5 — Cosmo 3D and OpenGL Optimizer conclusion

4.4 Realax

According to the REALAX manual, “REALAX is a high-performance virtual reality system,
running on all Silicon Graphics and Windows NT workstations’ [7]. REALAX is a modeling-
as well as areal-time visualization environment. This means that programming is not needed
in the development of an application (although it could be done). REALAX is divided in two
different parts. RXscene and RXrealtime.

RXscene is used for modeling and scene editing. It is possible to use RXscene as a stand-
alone application to create 3D models or in combination with RXrealtime (discussed below)
to provide a whole development environment. The mouse, in combination with the keyboard,
is used to create the models. Various tools and gizmos (usually caled wizards in other
Windows applications) help the user in the creation process. This part of the system is not that
useful for SAAB Bofors Dynamics, since the geometry already is created in I-DEAS.

RXrealtime is a real-time environment that allows the user to view a given scene [7]. To
navigate through the scene an ordinary mouse can be used, but it is aso possible to use more

specialized input-devices, such as a VR glove. RXredtime is primarily made to view worlds,

21

which means that the user flies around in the scene. This is not so useful in creating smaller
applications, for example a computerized manual, where it is only required to view a single
object, not awhole world. All functionality in an ordinary programming SDK is aso available
in RXrealtime, through a convenient graphical user interface (GUI). It is also possible to
extend the basic functionality through the use of RXapi.

RXapi is a part of RXrealtime that allows a developer to include ANSI-C programs in the
RXrealtime environment. RXapi is used as an ordinary APl when writing these RXrealtime-

programs, i.e. consists of alibrary file that is statically linked with the written code.

441 Levd of abstraction

REALAX is actualy the SDK with the highest level of abstraction among those being
evaluated, since adeveloper is ableto use a GUI. Thisis not necessary an advantage; in fact it
can be a disadvantage, but the existence of RXapi improves the situation a bit. Programming
makes it possible to completely control a 3D scene, but when it is necessary to create some
3D application fast and easy, the RXrealtime environment could be quite useful. The RXapi
only alows ANSI-C, which makes an object-oriented approach more difficult and this can
also be problematic when creating larger applications.

To sum things up, REALAX is very user friendly and has a high level of abstraction. This
aso makes it a limiting software to use. The world-oriented approach makes it less
appropriate for applications with few objects, and the absence of an object-oriented API aso
makes it less appropriate for creating larger application, at least if there should be

programming involved.

4.4.2 Connection to-DEAS

REALAX claimsto have support for the following file-formats:

22

Import Export
RXscene DXF
3D Studio ASCII IRIS Inventor 1.0
DXF Multigen .flt (OpenFlt15.4)
IRIS Inventor SGI .sgo
MultiGen .flt (OpenFlt15.4) VRML 1.0
Nurb file VRML 2.0
SGI .bin Wavefront .obj
SGI .sgo
SIG .ydl
STL/STA
VDAFS
VRML 1.0
VRML 2.0
Wavefront .obj

Table 4.6 — Realax import/export formats

VRML 2.0 is again the format of most interest. It seems that REALAX suffers from the same
problem as WTK, i.e. it does not have full VRML 2.0 support. The main suspect is still the
PROTO-node. This problem cannot be solved by converting the VRML 2.0-file to a VRML
1.0-file, since REALAX does not seem to be able to import a ssmple VRML 1.0 geometry with
satisfying results.

An attempt has been made to import one of the ssmple VRML 1.0-geometries used in
evaluating WTK. This geometry consists of one cylinder, one box and two cones, but after
REALAX has loaded the geometry the only primitives that are displayed are the cylinder and
the box. Judging from the result it seems that REALAX ignores the hierarchica data in the
geometry-file, and only imports the geometry at the top of the scene graph (the two cones
were children of the box). REALAX also ignores the transformations that should have been
made to the box. Moreover, some of the surfaces of the geometries were missing. The
imported geometry did not look anything like the one that was stored in the file (compare
Figure 4.4 to Figure 4.3). This is ssimply not acceptable, especialy given that these
geometries are very basic and not even remotely as complex as the geometries that will be

used when SAAB Bofors Dynamics devel ops their applications.

23

i cAmDTATE Wl i

iLeftr=Boloct, <dzRenipilate vies, <Clel#ds=Flg, <®ightssHame, fr=Holp

Figure 4.4 — The RXscene environment

4.4.3 Hierarchical transformation
Even though it seems like REALAX is unable to import hierarchical VRML 1.0 data, it uses a
hierarchical tree structure to represent a scene, meaning that it supports hierarchical

transformation (as described in paragraph 3.2.3).

4.4.4 Rotation in any chosen point
The method described for rotation described in the chapter about WTK (paragraph 4.1.4) is

applicable to REALAX as well.

445 Different levelsof immersion

REALAX' user manual states that “REALAX supports the output on all head-mounted displays
(HMDs), stereo-systems and multi-monitor systems, as well as the input of aimost any VR
input- and tracking device” [7]. Other than this there are no further descriptions of exactly
which products REALAX supports. Since all HMDs follow the same system (actually there are
a handful systems, as described in section 4.1.5, but each HMD uses one of these) it is quite
safe to assume that REALAX really supports all HMDs. The supports for input and tracking
devices are harder to classify, since there are many different systems. It would have been

24

useful with a list of supported devices. There is no possibility to explore this further in this

thesis, without access to the necessary hardware.

4.4.6 Conclusion
REALAX has proven to be disappointing. When using the program we get the feeling that it is
antiquated, even though it is a modern program. Admittedly REALAX is quite easy to use, but
it often fails to deliver what it claims to be able to accomplish. Because of its multi-platform
support, the devel opers have chosen to implement a GUI of their own, which in our opinion is
inferior to Windows' inherent GUI. In comparison, WTK also has multi-platform support, but
uses the platforms’ inherent GUIs, which is a much better solution.

Evidently REALAX does not supply anything that SAAB Bofors Dynamics cannot already
achieve with other software. The conclusion of the evaluation is that REALAX is not of any

value for SAAB Bofors Dynamics.

Leved of abstraction Excdlent

Connection to I-DEAS Poor

Hierarchical transformation ' Adequate

Rotation in any chosen point | Adequate

Different levels of immersion | Adequate

Table 4.7 — Realax conclusion

45 VRML

VRML is an acronym for the Virtua Reality Modeling Language. VRML can be thought of
as several different things. VRML can ssimply be a platform-independent 3D interchange
format, which the first version (VRML 1.0) is designed to be. Another view of VRML is a
modeling language that alows specification of complete 3D scenes and worlds. VRML can
also be seen as a 3D analog to HyperText Markup Language (HTML), which provides online,
interactive, 3D homepages [8]. VRML is designed to distribute 3D worlds over the World
Wide Web (WWW) utilizing the HyperText Transfer Protocol (HTTP).

VRML is quite different from the other environments mentioned in this chapter. VRML is
not a SDK, not even an API, but rather a language that describes geometry and other
environmental aspects of 3D scenes and worlds. The current standard, VRML 2.0 (or VRML

25

97) includes user interactivity, behavior, scripting and audio support, whereas the first version
(VRML 1.0) only described static 3D models[9].

To display aVRML scene, all that is needed isa VRML browser. There are many different
browsers available for almost all platforms, usually as plug-ins to ordinary HTML browsers,
such as Internet Explorer or Netscape Navigator on the Windows NT platform.

45.1 External Authoring Interface

The External Authoring Interface (EAI) is an interface specification that alows an externa
program to communicate with a VRML scene [9]. EAI, which is integrated in VRML 2.0, is
currently only available for Java. EAI for Java functions as a set of classes whose methods
can be called to control a VRML world. An applet written in Java can for example ask a
VRML scene, through the EAI, for a specific geometry and then change the geometry’s
properties, such as color, trandation or rotation. VRML in itself has support for JavaScript to
add behavior to the 3D worlds, but through EAI whole applications can be built around a

VRML worlds, making it much more interesting for more advanced uses.

4.5.2 Cortona SDK

The CORTONA sDK is based on the same principles as EAI, and provides a developer with an
API that enables communication between an application written in either C, C++, Visud
Basicll or Delphi and a VRML world. The CORTONA sDK also alows for scripting within
HTML pages, in both JavaScript and Visual Basic script [10]. It has proven to be difficult to
acquire any real information about the CORTONA SDK, other than ordinary advertisements.

Therefore we have been unable to form any opinion regarding its functionality.

4.5.3 CosmoWorlds
From the beginning, VRML was developed by SGI and cosmo WORLDS was the number one
VRML editing tool available. cosmo WORLDS had all the features that could be expected from
such an editor, and could be of most use to SAAB Bofors Dynamicsif VRML is chosen to be
the environment to develop VR applications. The problem is that in late 1998, SGI decided to
stop financing both the VRML development and cosmo WORLDS. Now it isimpossible to find
avendor that sells cosmo WORLDS. A replacement editor has to be found.

There is a plethora of different VRML software available over the Internet today, but we
have found that most of the products are of low quality. For example, no VRML editor that
have been tested, other than the aforementioned cosMoO WORLDS, has managed to open a

VRML file exported from I1-DEAS, which is an obvious sign of insufficient VRML support. It

26

seems that there is no high-quality VRML editor that can be seen as a replacement of cosmo
WORLDS. Unless this situation changes VRML will not have a future, especially not as a tool

for SAAB Bofors Dynamics' activities.

45.4 Levd of abstraction

VRML is alanguage in itself, and as such is quite easy to work with. The way that VRML
describes geometry is easy to understand for someone who has a basic understanding of 3D
graphics. There are aso plenty of tools that help a developer in the creation of a VRML
world. The fact that VRML is alanguage of its own is both a strength and a weakness. The
strength is that it is structured in a way that is specially designed just for 3D use. The
weakness is that a developer has to learn a new language, which is quite different from all

programming languages, since it describes the world and its behaviors.

4.5.5 Connection to I-DEAS
I-DEAS exports VRML, which means that basic foundation islaid. All that is then needed is to

specify the scene’ s behaviors and appearance.

45.6 Hierarchical transformation
VRML is built upon a hierarchical structure, which is in fact identical to the one used in
cosmo 3b, and therefore supports hierarchical transformation.

45.7 Rotation in any chosen point

The principles described in section 4.1.4 also apply to rotation in VRML.

45.8 Different levelsof immersion

VRML has no inherent support for different levels of immersion, but does not prevent it
either. We have heard of solutions where HMDs are used in conjunction with VRML, but
have not seen any specifications of the practical details.

In order to get input devices such as trackers and VR gloves to work with VRML, some
sort of communications software between them has to be used. One such software is VR
JUGGLER. It is not clear whether this works or not, since VR JUGGLER is a C++ APl and VRML
only has inherent support for Java. Another possible solution to this is to use the CORTONA
SDK to handle the communication between VR JUGGLER and the VRML world. This solution
still needs to be verified.

27

45.9 Conclusion

VRML has one major strength, i.e. it is designed to be used over anetwork. Thus VRML isan
excellent environment for 3D manuals that can be viewed over the Internet, or over a
company’s Intranet. Other than this VRML does not seem to have much to offer to SAAB
Bofors Dynamics, especially not since VRML's future is quite uncertain. VRML has not
changed much since SGI decided to stop financing it in 1998 and the format is in dire need of
a enhancement. VRML files are usually rather large in size and therefore not suitable to
download, especially when using a slow connection. Other competing formats are starting to
show up, for example Cult3D, and perhaps one of these will become a new standard for
Internet 3D graphics. Some day, perhaps one of these new formats will have something to
offer SAAB Bofors Dynamics. VRML is truly not a suitable development environment for

VR applications, unless it undergoes quite afew radical changesin the near future.

Level of abstraction Adegquate

Connection to I-DEAS Adequate

Hierarchical transformation ' Adequate

Rotation in any chosen point | Adequate

Different levels of immersion : Poor

Table 4.8 — VRML conclusion

4.6 VR Juggler

“VR Juggler is an application framework and set of C++ classes for writing
virtual reality applications. It is designed to allow the developer direct access to
various graphics APIs for maximum control over applications, while still
providing a generalized, easy to understand view of displays as well as input and
output devices.”
The above is cited from “VR Juggler: A Framework for Virtual Reality Development” [11],
and narrates what VR JUGGLER iS. VR JUGGLER has been developed at the lowa Center for
Emerging Manufacturing Technology (ICEMT), lowa State University, since the beginning of
1997. The goal of VR JUGGLER isto aid a developer in the creation of VR applications, so that

the developer does not have to worry about the low-level details of VR [11]. One important

28

thing to mention at this point is that VR JUGGLER is still under development and is not a
finished product.

VR JUGGLER functions as a middleware between an application and “the complex
interworkings of distributed computing, shared memory, multiprocessing, and device 1/O”
[11]. An example of this is the device handling, where different devices with similar
functionality can be programmed using the same function calls. Data received from the
devices will also have the same format. In comparison, WTK, which aso supports a
plentitude of 1/0O devices, requires that a developer write different code for each type of
device. VR JUGGLER also offers run-time flexibility. This means that it is possible to
reconfigure the whole system without stopping a running application. An application created
using VR JUGGLER is never aware of the lower levels of the system, and thus never notices any
changes, such as arestart of atracker, or aswitch fromaHMD toa CAVE™ [11].

VR JUGGLER supports the following input and output devices: Ascension Technologies
Flock of Birds, Logitech’'s 3D Mouse, Fakespace's BOOM, Fakespace's PINCH gloves,
Virtual Technologies CyberGloves, Immersion boxes, CAVE™, C2 (a CAVE™-like device),
HMDs and ordinary screens. VR JUGGLER is currently available on the SGI-, HP- and
Windows NT platforms, but since it is written using standard C++ it is an easy task to port VR
JUGGLER to new platforms[11].

Environment
Manager Application

S301N8(

Hardware

Graphics API

Figure4.5 - VR Juggler’s structure

Figure 4.5 illustrates the structure of VR JUGGLER. As shown in the figure, VR JUGGLER
consists of objects called managers. Each manager handles a different aspect, or part, of the
system and encapsulates all functionality and system specific details of that part. An

application has to communicate with a given part through that part’'s manager. The kernel is

29

the glue that binds all the managers and the application together, and also handles all the
communication within the system [4].

All of these managers will not be described in more detail; their names tell in what area
they operate. This section will concentrate on the major difference between VR JUGGLER and
al of the other SDKs that is mentioned in this report, namely the draw manager. As
illustrated in Figure 4.5 above, the draw manager uses an external graphics- and windowing
API; i.e. VR JUGGLER has no support of its own for graphics. Instead, this part of the system
has to be provided by some other API, for example SGI's oPENGL (multi-platform) or
Microsoft’s DIRECT3D (Win32 only). This aso means that VR JUGGLER can be combined with
any of the aforementioned SDK s to enhance their support for VR hardware, which can prove
to be of most value. The fact that VR JUGGLER is a free and open source API is aso a very
positive aspect and provides a developer with the possibility to change the functionality of vR
JUGGLER to acertain project’s needs.

Given that VR JUGGLER only fulfills the requirement described in 3.2.5, different levels of
immersion, there is no need to further evaluate this API. From a developer’s viewpoint, VR
JUGGLER should be considered to be a possible, and valuable, extension to another API or

SDK that handles the graphical operations.

Leved of abstraction Excdllent

Connection to I-DEAS -

Hierarchical transformation :-

Rotation in any chosen point - -

Different levels of immersion - Excellent

Table 4.9 — VR Juggler conclusion

4.7 Other development environments

The development environments being evaluated are not the only ones available on the market.
Obvioudly there are more than those covered in this project. Examples of other VR
development environments include DVISE, ALICE, AVOCADO, the CAVE LIBRARY and
LIGHTNING. The following information is fetched from Software Tools for Virtual Reality

Application Development by Allen Bierbaum and Chrisopher Just [4].

30

DVISE is a high-level VR development environment available on several platforms,
including Windows NT and Sun Microsystems. DVISE is primarily used to create virtual
representations of products. As such it emphasizes the import of CAD data for the creation of
such applications. Due to its specialization on virtual prototyping, DVISE is not well suited for
other tasks. While it can be excellent in the development of a virtual manual, it can
complicate the development of other applications. Even though it is not in the scope of this
project to examine and evaluate DVISE, it should still be considered as a possible development
environment for SAAB Bofors Dynamics.

ALICE is a freely available prototyping system running on Windows platforms. ALICE is
designed to be easily used by non-technical users. Applications can be written using Python,
which is an interpreted, object-oriented scripting language. Unfortunately ALICE is not a good
candidate for SAAB Bofors Dynamics' VR developments due to some limitations regarding
large and very complex geometries.

AVOCADO is a VR software system running only on SGI platforms. Thus making it
impossible for SAAB Bofors Dynamics to use it as a development environment. AVOCADO is
designed for rapid prototyping of applications and utilizes Scheme as a scripting language.

The CAVE LIBRARY provides a fairly low-level API for creating VR applications for
projection-based system (e.g. the CAVE™). This is not an environment that SAAB Bofors
Dynamics is currently looking for, and since the CAVE LIBRARY is only available on SGI
platformsit is of little interest to this project.

LIGHTNING is an object-oriented VR devel opment environment. LIGHTNING differs from the
other environments discussed above, since it supports multiple programming languages;
different parts of a system can be written with different languages, for example C++ or

Scheme. LIGHTNING is unfortunately only available for SGI computers.

31

5 Testbed created with WorldToolK it

A part of the Bachelor’s project was to create a testbed of a simple computerized manual
using one of the evaluated SDKs. This testbed serves both as an example of how such an
application could be designed, and as a further evaluation of the chosen SDK. WTK has been
chosen because it is a likely candidate and it has not been used earlier aa SAAB Bofors
Dynamics (unlike VTREE). The product that is to be used in the manual is BAMSE, which is an
anti-aircraft defence system that SAAB Bofors Dynamics develops. For more information

about BAMSE, please visit SAAB Bofors Dynamics homepage at http: //mwww.saab.se/missiles.

5.1 Description

The testbed that has been created using WTK is more of a 3D demonstration of a BAMSE unit
than a computerized manual (see Figure 5.1 and Figure 5.2). The application presents an
interactive 3D model of a BAMSE unit. A user can left click on different parts of the model
with the mouse to get information about that specific part. The information is presented in the
same window, on top of the 3D model. By double clicking on either of the missile turrets the
user can elevate or de-elevate them, depending on if they are elevated or not. The same thing
can be doneto the radar pylon. To illustrate these events, Figure 5.1 (a) shows the BAMSE unit

with de-elevated missile turrets and elevated radar pylon. Figure 5.1 (b) shows the same
BAMSE unit with left turret elevated and the radar pylon de-elevated.

@ (b)

Figure 5.1 — A Bamse unit

32

If the user holds down the left mouse button and moves the mouse, the viewport zooms in
or out depending of the direction of the movement. If, on the other hand, the user holds down
the right mouse button and moves the mouse, the model is rotated. Holding down the middle
mouse button and moving the mouse results in the rotation of the cannon turrets on the
BAMSE-station. The radar can be controlled using the arrow keys. The up and down arrows
angle the radar, ranging from 0° to 90°. The left and right arrows rotate the radar, ranging
from —540° to 540°. By pressing the numeric 1 — 4 keys a user can shoot missiles from one of
the turrets. The chosen turret must be elevated in order to shoot missiles. All these different
features are illustrated in the following figures. Figure 5.2 (a) show the BAMSE unit with
rotated turrets. In Figure 5.2 (b) the BAMSE unit has a dightly rotated radar. Finaly, Figures

5.2 (c) and 5.2 (d) shows the BAME unit firing missiles.

(@) (b)

(©) (d)

Figure 5.2 — A Bamse unit shown in different situations

When pressing the space key, the application enters a demo mode. In this mode, the
program basically runs in a demonstration loop, where all the effects are displayed. The

33

viewport zooms in and out, the model rotates, the radar angles and rotates, the turrets elevate,
de-elevate and shoot missiles and all the information about the different BAMSE parts are

showed each in turn.

5.2 Design and structure

The following diagram illustrates the object-oriented design used in the implementation of the
testbed:

/\/

_
HHListener S

HHScreamer

HHGeometry HHV|rtuaIMa HHMouseHa
/ dj;(nual ndler
\

_j
/ /:H Ba mse \ o~

(HHRotatlong
AN o ~— (
s / HHRotation (/ﬁR;QoF/ L/J
~—
VAN
N s

Figure 5.3 — The design of the testbed

There are two major areas in the structure: input handling and geometry handling. They are
described in turn.

The input handling is only designed to handle an ordinary mouse. It is possible to extend
the design to enable the handling of other types of input devices, but this was not necessary
for this testbed. WTK has built in functions to handle the mouse, and it is possible to map the
mouse movements directly to an object, e.g. a viewport or a geometry, in a WTK application.
This inherent mouse handling can be configured in two different ways, where the mouse
movements are trandlated to different actions in the application. None of these configurations
work in away that is suitable for this type of application. Therefore it was necessary to write
a new mouse handling system, i.e. the class HHMouseHandler. The detailed design of the
input handling isillustrated in Figure 5.4.

AN -~
HHListener /HHScreamer\
(*isten() ((\“setListener()
G I
N\
S
/AN
\
HHVirtualManual \ myListener
/ #run()
/ #setManState() J
%setSpecMode()
/ #HHActionFn()
#HHDrawFn() — 7
#HHFgDrawFn() HHM ouseHandler /
#HHDemoTask() *myMHandler—{ L #examineMouse ()
adisplay Splash() ™)

giupdateMHandler() \ L - ~

\ ghresetViewport()
ghrotateViewport()
grz oomV iewport())

gfcompleteSeene()
' @rock%oﬁ%/
g+demoMode()
ghradar()
N

Figure 5.4 — The detailed design of the input handling

The class HHVirtualManual is the central class in the structure (best illustrated in Figure
5.3). This class contains the actual application, as well asinstances of the other classes used in
the design. One of the instances is a HHMouseHandler, which, as mentioned earlier, is the
class that handles all input from the mouse. The handling of the keyboard events is
encapsulated in HHVirtualManual. Together these two classes implement all input handling.

As shown in Figure 5.4, there are two abstract classes included in the input handling:
HHListener and HHScreamer. These two ‘interfaces’ represents a relationship widely used in
Java, namely that of events and event listeners. HHVirtualManual inherits from HHL istener,
thus making it an event listener. HHMouseHandler inherits from HHScreamer, which enables
it to generate events, which HHVirtualManual can ‘listen’ to. This simple structure makes it
possible for HHMouseHandler to send information (‘scream’) to HHVirtualManual. This
would otherwise be impossible, since HHMouseHandler is instanced in HHVirtualManual.
Thus it is possible for HHVirtualManual to invoke one of HHMouseHandler’s (public)

methods, but not vice versa.

35

This design is used to minimize the information flow between HHVirtualManual and
HHMouseHandler. HHMouseHandler only send information to HHVirtualManual when it is
necessary, i.e. when something interesting has happened to the mouse, for example a button
click.

The geometry handling consists of several different classes, as shown in Figure 5.3.
HHGeometry is an abstract class that defines how a geometry class (i.e. a class that

encapsulates some sort of geometry) should be structured. It has four children, of which three
can be separated from the fourth.

Py

N\
/ HHVirtualManual \
— \/\ %run() W
/ — #setManState()
HHGeometry \ %s etSpecMode() /
/ ®addAsChild() / ®HHActionFn()
Wrotate() / #HHDrawFn() /
#rotate() . #HHFgDrawFn()
%chkNode() #HHDem oTask()
~ ®getMidpoint() \ gidisplaySplash()
 @MoadGeometry() ghupdateMHandler() \
ErdestroyGeometry() \\ giresetViewport()
4 — ‘grotateViewport() /
\ A \gzoomViewport()
ompleteSeene
/;/ ?t ockNfoll() /
/ gidemoMode()
/ \ Erl/adar()
HHRotation97
/
//\ .\ o~ < ®HHRotationTask()
Ve hreation . / HHRotation2 EfturretRotatmn() \
- / EflocateTw:Let(L/
~__ ®HHRotationTask() / *HHRotationTask() " —
\EflurretRotatlon()J @urretRotation() \
ﬁfseparatejunetjp

N

Figure 5.5 — The detailed design of the geometry handling

The three children are geometry classes that have been used for evaluation purposes only.
They contain the simple geometry that is shown in Figure 4.3. This geometry consists of one
cylinder and a box that has two cones as children, i.e. it is a hierarchical structure. The basic

ideaisthat the box and its children should be able to rotate while the cylinder is unaffected.

36

To achieve this, HHRotation simply loads the geometry from two files, where the movable
part is separated from the rest of the geometry. This is the usual method used to create
movable parts of a geometry. It is not satisfactory for use at SAAB Bofors Dynamics though,
since it complicates the connection to 1-DEAS (the geometry has to be divided into different
files).

To solve this problem, HHRotation2 |oads the whole geometry as a single file. After the
file is loaded, the scene graph is traversed until the specific sub-geometry (the box) is found.
Then this geometry is removed from the scene, converted into a movable geometry (WTK
separates movable geometry from ordinary, non-movable geometry), and finally put back in
the scene. This way all geometry can be stored in one file and then be divided after the file
has been loaded.

HHRotation97 is basically the same class as HHRotation2, but usesa VRML 2.0 geometry
fileinstead of aVRML 1.0. This class has been used to evaluate WTK’s VRML 2.0 support.
It has been proven that even if there are no PROTO-nodes in a geometry, it still isimpossible
to traverse the scene graph after loading aVRML 2.0 file. Thus VRML 2.0 is useless together
with WTK, since it isimpossible to localize specific parts of a geometry.

The three HHRotation classes were only used for evaluation and a fourth geometry class
was created for the actual testbed: HHBamse. This class is more complex than the previous
three classes. It also contains more behaviors, so it was necessary to change the ‘interface’

HHGeometry.

37

/ ~ /L
HHGeometry \

%addAsChild()
%rotate() /
%rotate()
< %chkNode() (
%getMidpoint()
EnullAll)

\ %shoot()

\difoadG eometry()

estroyGeometry()
T

\

~ N\
/ \
HHB amse \

/ ®turretElevation()
WslLeft()
#HHLeftTask() J
/ ®HHRightTask()
®WHHPoleTask() /

%HHRadarTask()
%HHScreenTask()
BHHMissileTask()
A#turretRotation()

ApoleRotation()
##headRotation()

##opRotation()
\!’lradarRotation()

s creenRotation())

EcomputeTurrets)
#compu},é‘;ole()

AseparateTop()

ﬁe&%ateNode()

Figure 5.6 — The detailed design of the Bamse geometry class

HHBamse works in the same way as HHRotation2, i.e. it loads the whole geometry (a
BAMSE unit) from a single file and then separates the movable parts. The HHBamse geometry
contains several movable parts: two missiles turrets, a missile, the turret base, the radar pylon
and the radar disc. All of these are localized in the scene graph and converted into movable
geometry. The HHVirtualManual can then invoke methods, through the HHGeometry
‘interface’, to rotate the different parts and shoot missiles.

The design of the HHBamse class is not recommended for a real application. It is only
used here since the whole structure is designed to be used as an evaluation of WTK’s
functions. There are too many different aspects that are encapsulated in a single class. It is
recommended to move these aspects into several separate classes, to better utilize the object-

oriented paradigm. An example of one such structureis shown in Figure 5.7.

38

—

(HHGeometry\
N a
Y
— T ™
(ﬁ E—I/Top\ \ ’(r HHPart) /ﬁHHBamse \
—
HHTurret w HH Radar \
\ HHPonn N /,,/%\
e/ ol -~
\ \ o
\\\\\ \/ / -
[
(HHMissile ﬂ
o
w

Figure 5.7 — Recommended design of the geometry classes

Each of the movable parts is separated into different classes. In this manner each class
handles it’'s own geometry, instead of one large class handling all of the different geometries.
HHBamse still loads the geometry from a single file, separates the geometry into the different
movable parts and instances classes that encapsulates the parts. The HHVirtualManual still
only has access to HHBamse and thus HHBamse has to coordinate the behaviors of the

different parts.

5.3 Execution

When the application is executed, HHVirtualManual initiates all WTK attributes and
instantiates an HHBamse and an HHMouseHandler. The HHBamse instance then loads the
BAMSE-geometry and initiates the movable parts of the geometry (as described above). WTK
has an interna program loop that every application must follow. Thisis illustrated in Figure
5.8.

39

}

Read input devices

v

Call the action function

v

Tasks are performed

v

Sceneisrendered

v

Figure 5.8 — The WTK program loop

This program loop, designed for C programs, poses a problem when making an object-
oriented design. The universe's action function, located in box number two in Figure 5.8, is
the mgjor function that is called in each program loop. In this function al logical operations
have to be performed. The problem is that C++ does not have functions, it has methods that
are part of classes, and WTK expects a function. The solution is to either write a special
function for the program loop, and disregard object-oriented rules, or include the program
loop as a static method in some class. | chose the latter approach in which the action function
Isimplemented as a static method in HHVirtualManual .

In the action function the keyboard is read and corresponding actions are taken (as
described in section 5.1). After that HHVirtualManual tells the HHMouseHandler to check
the mouse. If anything interesting happens to the mouse, the HHMouseHandler will inform
the HHVirtualManual about this viathe HHListener/HHScreamer relationship.

If, for example, a missile turret is to be elevated, or de-elevated, the HHBamse assigns a
task to that movable part. A task is a function (in functional programming terms), thus the
C++ programmer has to use a static method as described above regarding the action function.
This function executes outside the normal program loop (or action function). All tasks are
executed after the action function, but before the scene is rendered. This means that changes
to objects can be made automatically through the use of a task. | have used this in such a way
that each task is assigned to a specific geometry, for example a missile turret, and then rotates
it alittle bit in each program loop, until a given value has been reached, e.g. the turret is fully

elevated. This results in the effect of the missile turret elevating itself after a user has double

40

clicked on it. When the application enters the demo mode, a special task is assigned to handle
all the functionality described in 5.1 (i.e. the zooming, the rotations, etc.).

The source code of the testbed, where each method and class is commented, is included in

Appendix B.

5.4 Connection between WorldToolKit’sand 1-DEAS’ coor dinate systems

One task in the evaluation of WTK was to find a method to locate a specific point in the
coordinate system for a specific geometry, given the global coordinates of this point in I1-DEAS
(described in requirement 3.2.6). The following procedure accomplishes that task. Note that
the whole scene has a global coordinate system, and each geometry node has a local
coordinate system of its own.
1. Calculate the full transformation for the given geometry node (there are functions
in WTK to do this). The result is the coordinate of the local coordinate system’'s
origin in the global coordinate system.
2. Inverse the result of step 1 (-x, -y, -z) to get the coordinate of the global
coordinate system’ s origin in the local coordinate system.
3. Subtract the rotation-point’s coordinate (the one taken from the global coordinate
system of I-DEAS) from the result of step 2.
4. Trandate the result of step 3 so that it is located in the origin of the local
coordinate system.
5. Perform the actua rotation that is the goa of this procedure. This usualy is
around one or more of the three axes X, Y and Z.
6. Perform an inverse trandation of the onein step 4, i.e. trandate the geometry back
toitsorigina position.
Steps 4 to 6 are actually the same procedure as the rotation in any chosen point described in
section 4.1.4 (the evaluation of WTK). The only difference is that a coordinate from I-DEAS is

used, after a conversion.
5.5 Implementation issues

There are some issues that are important to keep in mind when developing applications using

WTK. | raninto four of them and they are discussed in the following sections.

41

5.5.1 Coordinate systems

WTK uses the coordinate system shown in Figure 5.9. When compared to the coordinate
system shown in the introduction (Figure 1.1), one can see that the y-axis is inverted. This
can cause some problems when importing models from formats that use another coordinate
system. An example of thisis VRML 1.0, which uses the previously mentioned coordinate
system (with an y-axis pointing up). The result of this is that when one imports a geometry
from aVRML 1.0-file, this geometry is displayed up-side-down in WTK. An easy solution to
this problem is to rotate the geometry 180° around the z-axis (or the x-axis) directly after
loading it. However, this problem does not exist when loading the geometry from a VRML
2.0-file!

(0,0,0)

Figure 5.9 — WTK’ s coordinate system

There is another occasion when it is important to keep the coordinate system in mind. In
WTK it is possible to draw 2D objects (images, points, lines, text, etc.) on top of the 3D
scene. Thisis very useful when one wants to textually display information along with the 3D
scene, or when one is creating a heads up display (HUD). The important matter is that the 2D
coordinate system is somewhat strange; the lower left corner has the coordinate (0.0, 0.0) and
the upper right corner has the coordinate (1.0, 1.0). Usually the origin of such coordinate
systems is located in the top left corner of the screen. If one just keeps this in mind, this
should not be a problem. This kind of relative coordinates is otherwise very useful because
there is no need to keep track of what size the current window has, since the upper right

corner always has the coordinates (1.0, 1.0).

5.5.2 Viewpoints

It is important to keep in mind that some file formats contain more information, or objects,
than what is displayed. An example of thisis that VRML-files can contain viewpoints, called
Cameras in VRML. When a VRML-file that contains a camera is imported into WTK, this
camera is added to the universe's list of viewpoints. However, it cannot be modified as a
regular viewpoint. It is for example not possible to get any information about the viewpoint’s

(camerd s) location or to move it, which can cause quite annoying errors.

42

5.5.3 Project settings
It is important to have correct project settings. There are different settings for different types

of projects. These are al described in chapter 3 of the WorldToolKit Hardware Guide.

554 Flawsand errors
WTK is not 100% correct and still contains flaws and errors, especially the C++ wrapper-
classes. Sense8's homepage (http: //www.sense8.com) provides the updates. If one encounters

an error in WTK it isimportant to notify Sense8, so that they can fix the error.

6 Recommendations

| have reached the conclusion that three development environments are suitable for SAAB
Bofors Dynamics VR development; WTK, VTREE and COSMO 3D/OPENGL OPTIMIZER
combined with VR JUGGLER. Each of the three has its positive and negative aspects and these

are mentioned in the evaluations in chapter 4.

6.1 WorldToolKit

WTK is acomplete VR development package that has all the functionality that are needed.
SAAB Bofors Dynamics already uses software systems from the same vendor, and it is
preferable that the whole software suit originates from the same company. WTK’s devel oper
also offers a CAD conversion add-on, which allows WTK to import CAD data directly from
I-DEAS, which is of great value for the development of VR applications. This is the strong
point of WTK. It isagreat tool for VR prototyping of products. On the other hand, WTK has
some flaws in its object-oriented structure that can be a nuisance when developing
applications. WTK also has a performance that is worse than for instance VTREE. When
developing large applications that run with VR hardware such as HMDs, this performance
loss can lead to problems such as simulator sickness.

6.2 VTree

VTREE is dightly more flexible than WTK. However, it does not have as much VR support.
While WTK is excellent for product prototyping, VTREE is more directed towards large-scale
simulations, such as environmental visualizations. VTREE also lacks the import capabilities
that WTK offers. Since SAAB Bofors Dynamics already uses VTREE in simulations and

visualizations, it could be practical to also use VTREE in the VR development as well.

6.3 Cosmo 3D, OpenGL Optimizer and VR Juggler

The combination of cosMO 3D/OPENGL OPTIMIZER and VR JUGGLER provides the same
flexibility as VTREE. It adso provides the same, or probably better, VR hardware support as
WTK. What the combination lacks are the specia effects included in the vTREE SDK, and the
import capabilities of WTK. Other than that cosMO 3D/OPENGL OPTIMIZER and VR JUGGLER

44

offer a solid object-oriented foundation for developing dynamic VR applications. The fact
that the three APIs are also completely free is aso a positive aspect, although the purchase

costs are usually not an issue for a company of SAAB Bofors Dynamics' size.

6.4 Summary

| cannot really point out one development environment that | recommend SAAB Bofors
Dynamics' to use. It all depends on the priority. WTK is great for prototyping and importing
CAD data, VTREE provides better performance, but are directed towards a dslightly different
use, and COSMO3D/OPENGL OPTIMIZER/VR JUGGLER lies somewhere in between the two. WTK
is developed by the same vendor as other systems already in use, VTREE is aready used in
other developments, while SAAB Bofors Dynamics has no previous experience with

COSMO3D/OPENGL OPTIMIZER/VR JUGGLER.

45

References

[1]

[2]
[3]
[4]

[S]
[6]
[7]
[8]

[9]

[10]
[11]

Michael Louka. An Introduction to Virtual Reality. @stfold College, 3" revision, 1998.
http: //w1.2691.telia.conV~u269100246/vr /vr hiof98/

Engineering Animation, Inc. WorldToolKit” Reference Manual. Release 9, 1999.
Sense8 Corporation. WorldToolKit ™ Release 8 Technical Overview. Release 8, 1998.

Allen Bierbaum and Christopher Just. Software Tools for Virtual Reality Application
Development. lowa Center for Emerging Manufacturing Technology, lowa State
University, 1998.

CG?, Inc. VTree User’s Manual. 5" edition, 1999.
George Eckel. Cosmo 3D ™ Programmer’s Guide. Silicon Graphics, Inc., 1998.
Realax Software. Real ax Reference Manual. 1999.

Rikk Carey and Gavin Bell. The Annotated VRML 2.0 Reference Manual. Addison-
Wesley Developers Press, 1997.

Daniel K. Schneider and Sylvere Martin-Michiellot. VRML Primer and Tutorial.
TECFA, Faculte de Psychologie et des sciences de I’ education, University of Geneva,
Draft version 1.1a, 1998. http://tecfa.unige.ch/guides/vr ml/vrmiman/vrmiman.html

Parallel Graphics. Cortona Software Devel opers Kit Documentation.1999.

Christopher Just, Allen Bierbaum, Albert Baker and Carolina Cruz-Neira. VR Juggler:
A Framework for Virtual Reality Development. lowa Center for Emerging
Manufacturing Technology, lowa State University, 1998.

46

A Futurefeatures, implementing Virtual Reality hardware

The computer market has always been turbulent and the VR market is no exception. Vendors
and products that are popular today might be gone tomorrow. Because of this we have chosen
only to include vendors with a good reputation in the following product overview. We have
also chosen only to include prices that we are certain are up to date, thus we only include
prices that have been given to us directly from the vendor or an distributor.

There are three types of hardware included, that are of interest to SAAB Bofors Dynamics.
These are HMDs, gloves and trackers (all of these are introduced in chapter 1.3). There are a
plentitude of other devices available on the VR market, but judging from the preliminar
guidelines we have been given from SAAB Bofors Dynamics, these three types are all that is
needed.

47

A.1 Head Mounted Displays

Vendor Products Price-class
Virtual Research V6 $6,900
V8 $11,900
Interactive Imaging VFX3D $1,795
i-O Display Systems |-glasses LC $399
|-glasses $499
I-glasses X2 $799
|-glasses ProTec $4,000
OlIP HOPROS
Ericsson SAAB Avionics AB AddVisor 100 160,000 SEK
Virtual Vision Inc. V-Cap 1000 $1,500
eGlass $4,000
Kaiser Electro Optics HiDef 60°
HiDef 90°
ProView 30 $7,995
ProView 40ST
ProView 50ST
ProView 60 $11,995
ProView 80
ProView XL35
ProView XL50
StereoGraphics CrystalEyes $795
CrystalEyes Wired $299

Table A.1 — Head Mounted Displays

A.2 Gloves

Vendor

Products

Price-class

iRedlity, Inc.

5th Glove
5th Glove — 14 Sensor

$500 - $2,000
~$4,000

Virtual Technologies

CyberGlove

Fakespace

Pinch Gloves

A.3 Trackers

Table A.2 - Gloves

Vendor

Products

Price-class

Ascension Technology

Flock of Birds
MotionStar
MotionStar Wireless
pcBIRD

SpacePad

Polhemus

FastTrak
IsoTrak Il
Star* Trak

InterSense

S-300
IS-600 Mark 2 Plus
1S-900

InterTrax

Table A.3 - Trackers

49

B Glossary

3D, 3-dimensional

API, Application Programming Interface

Bamse, an anti-aircraft defence system that SAAB Bofors Dynamics develops

CAD, Computer Aided Design

CAE, Computer Aided Engineering

Cave™, a VR projection system, where a cube surrounds the user with projections on several,
or al, of thewalls

Direct3D, a 3D graphics API developed by Microsoft

Directed acyclic graph, a graph, e.g. a scene graph, that is directed, i.e. it's nodes direct to
order of the graph, and acyclic, i.e. there cannot be cycles in the node structure

EAI, Externa Authoring Interface

External Authoring Interface, an interface that allows external programs to communicate
with VRML scenes

Gizmo, awizard, i.e. aprogram guide, in Realax

Glove, aVR input device consisting of a glove equipped with sensors

GUI, Graphical User Interface

Head Mounted Display, a pair of glasses, or a helmet, that utilizes stereographic viewing to
produce a visua 3D effect

HMD, Head Mounted Display

HTTP, HyperText Transfer Protocol

OpenGL, Open Graphics Library, low-level graphics APl developed by SGI. Industry
standard used in several CAD and 3D applications

Open sour ce, the source code is freely available for anyone who wants it

[-DEAS, a CAD-system that SAAB Bofors Dynamics uses. Homepage: http://www.sdrc.com
I mmer sion, the cognitive conviction of being ‘inside’ a 3D scene

PROTO-node, a prototype node in VRML that is used to describe other specialized nodes
Render, to generate an image, from a 3D scene, that will be displayed on a 2D screen

Scene graph, ahierarchical representation of a 3D graphics scene

SDK, Software Development Kit

SGil, Silicon Graphics, Inc.

50

Shutter glasses, see stereo glasses

Simulator sickness, disturbances, such as headaches, nausea and vomiting, produced by
simulators

Stereo glasses, LCD screens that are linked to the frame rate of a monitor to produce a
stereographic effect

Stereographic viewing, the use of two images of the same scene, where one is presented to
the left eye and the other to the right eye

Tracker, aVR input device that tracks the user’ s motions

Tranglation, the position of a geometry in a coordinate system; to transate, to position a
geometry in the coordinate system

Vertex, The smallest component of a 3D scene, consisting of just one point

VR, Virtual Reality

VRML, Virtual Reality Modeling Language

WTK, WorldToolKit

WWW, World Wide Web

51

C Sourcecode

This appendix contains all the source code that have been written during this project. The
source code is divided into different sections, based on the design described in chapter 6.2.
Each section contains the header file as well as the source code file, if one exists (abstract
classes only have headers files). Each file begins with a comment describing the content, as
shown at the top of section C.1 below.

All the classes and methods are commented directly in the source code. Thus there are no

need for more descriptions.

C.1 Themain function

N N NN NN NN
/1 main.cpp - The main-function I
I NN NNy

#i ncl ude <i ostream h>
#i ncl ude "HHVI rtual Manual . h"

[*** J obal variables ***/
HHVi r t ual Manual *application; /1 The application (nust be global so that the
/1 global (static) action-functions can access it.

/** The main-function, which instantiates HHVirtual Manual, i.e. the whole application,
and then runs it. At the end it shows whether the execution was a success or not.
*/
int main(voi d)
{
application = new HHVi rtual Manual ;
if (0 == application->run())
cout << "Application successfully executed." << endl;
return O;
}
el se
{ . N
cout << "Failed to properly execute application." << endl;
return -1,
}
}

C.2 Theapplication

N N NN NN
/1 HHVirtual Manual . h - The application 11
I NN NNy

fndef __HH VI RTUAL_MANUAL_H_

#define __HH VI RTUAL_MANUAL_H_

#i ncl ude <mat h. h>

52

#i nclude "wt.h"
#i ncl ude "w cpp. h"

#i ncl ude "HHBanse. h" /1

[/ #i ncl ude "HHRot ati on. h"
/'] #i ncl ude "HHRot ati on2. h"
/1 #i ncl ude "HHRot ati on97. h"
#i ncl ude "HHLi st ener. h"

#i ncl ude "HHWbuseHandl er. h"

[*** Constants ***x**x*xkx/
#define LI GHTS_FI LENAME "li ghts"

#defi ne BG_RED 150
#defi ne BG_GREEN 150
#defi ne BG BLUE 210

#defi ne WN_XPCS 0
#define WN_YPCS 0
#defi ne WN_W DTH 800
#defi ne W N_HEI GHT 600

[*** Enumerations ***x*x*/

Il
/1

/1

I ncl ude one of these depending on what geonetry
/1 that should be used.

Filenane for the light-data

Background-col or for the w ndow

Posi tion and size for the w ndow.

enum HHVanual St at e { BAMSE_| DLE, BAMBE_WHOLE, BAMSE_TURRET, BAMSE_POLE, BAMSE_SPEC};

/** The actual

application which includes all

necessary functions (WK unfortunately

needs sone thing done in C-style) and methods for the programloop and the
interactivity. The class inplenments the HHLi stener-interface, which is necessary
for effective comunication with the nouse-handl er (HHWbuseHandl er).

*
/
cl ass HHVi rt ual Manual public HHLi stener
public:
HHVI r t ual Manual () ;
~HHVi r t ual Manual () ;

int run(bool
void |isten(void* data);

di spl ayTree = fal se);

voi d set ManSt at e(HHVanual St ate newSt ate);

voi d set SpecMode();

static void HHActi onFn();

static void HHDr awFn(W W ndow* wi n,

static void HHDenpTask(voi d *nmyApp);

private:
voi d di spl aySpl ash();
voi d updat eMHandl er () ;
voi d reset Vi ewport();
voi d rotateViewort (fl oat

voi d conpl et eScene();

voi d rockNrol | (int thatOne);
voi d denoMode();
voi d radar(int part,

HHGeonetry *nyGeonetry;

W Root *nyRoot ;

W Vi ewPoi nt *nyVi ew,

W W ndow *nmyW ndow;
HHVbuseHandl er *nyMHandl er;
W P3 ori gPos;
WQorigOrient;

HHVanual St ate currManSt at e;

BOOL denpOn;

W Task *denpTask;

i nt viewPort Count,
radar Count, headCount;

BOOL count Up, radarUp, headUp;

current Turret,

radi ans);
voi d zoonVi ewport (fl oat transz);

int positive);

/1
11
11

FLAG eye);
static voi d HHFgDr awkFn(W W ndow* wi n,

FLAG eye);

A geonetry-cl ass of sone sort

The root-node to the primary scene-graph
The viewpoint to the primary scene-graph
The window to the primary scene-graph
The nouse-handl er (which is a HHScreaner)
Original position of the viewpoint
Oiginal orientation of the viewpoint

Current state of the 'nanual’

I's the application in denp-node?
The task that handl es the denp-ani mati ons

Counters for the deno-I|oop
Direction-flags (up/down) for the counters

53

#endi f

N N NN NN
/1 HHVi rtual Manual . cpp - The application 11
I NN NNy

#i ncl ude "HHVI rtual Manual . h"

1A R R AR EEE SRR EEEEE LRy

/*** PUBLI C METHODS. . . *Ex

/~k~k~k~k~k~k~k~k~k**~k**/

/** The default-constructor. Creates a new universe, a new geonetry, and a nouse-handl er
(to which it registers itself as a listener).
*/
HHVi r t ual Manual : : HHVI r t ual Manual ()

W Uni ver se: : New(WIDI SPLAY_DEFAULT, WIW NDOW DEFAULT | WIW NDOW NOBORDER) ;

new HHBanse;
new HHVbuseHandl er (t hi s);

myGeonetry =

nyMHandl er =
currManSt ate = BAVSE_| DLE; /1 HHBamse-specificl!!
denoOn = FALSE;
denpTask = NULL;

}

/** The destructor. Releases the nenory used by the instance, it's geonetry and nouse-
handl er .
*/
HHVI r t ual Manual : : ~HHVi r t ual Manual ()

del ete myMHandl er;
del ete nmyGeonetry;

/** Activates the application. Initiates the variables that is used by the application.
HHVi rtual Manual 's static function HHActionFn is registered as the universe's
action function.

The paraneter specifies whether or not a scene-tree should be printed to the screen.
The return value is the result of the execution (0 = fine, -1 = bad).
*/
int HHVi rtual Manual : : run(bool displayTree)
{
nyRoot = W Uni verse: : Get Fi r st Root Node() ;
nmyVi ew = W Uni ver se: : Get Fi rst Vi ewPoi nt () ;
myW ndow = W Uni verse: : Get Fi r st Wndow() ;

nyW ndow >Set BJRGB(BG_RED, BG GREEN, BG BLUE);
nyW ndow >Set Posi ti on(W N_XPOS, WN_YPOS, WN WDTH, W N_HEl GHT) ;

nyRoot - >Li ght NodeLoad(LI GHTS_FI LENAME) ;
if (nmyGeonetry->addAsChil d(nmyRoot))
{
if (displayTree) nyRoot->Print();
nyW ndow >ZoonVi ewPoi nt () ;
nyVi ew >Cet Posi ti on(ori gPos);
nyVi ew->CGet Ori entation(origOrient);
W Uni ver se: : Set Acti ons(HHVi rt ual Manual : : HHAct i onFn);
nyW ndow- >Set FgAct i ons(HHVi r t ual Manual : : HHFgDr awFn) ;
[/ nyW ndow >Set Dr awFn(HHVi r t ual Manual : : HHDr awFn) ; // Unconmment this line if a
/] picture should be used as the
/'l background.
W Keyboar d: : Open();
W Uni ver se: : Ready();
di spl aySpl ash();

W Uni verse: : Go();

W Keyboard: : d ose();
W Uni verse: : Del ete();

return O;

el se
return -1;

/** Since HHVirtual Manual inplenents the HHLi stener-interface this nethod is needed.
It enables the transfer of data between the nouse-handler (a HHScreaner) and the
application. The information that is received fromthe nouse-handler is a
HHVbuseDat a- struct, which is sent as an void*. The information is extracted and
rel evant actions are taken, for exanple rotation of the geonetry.

*/
voi d HHVi rtual Manual : : 1isten(voi d* data)
{
float transX, transy,
int x0, y0, width, height;
WIpoly *pi ckedPol y;
W NodePat h *nodePat h;
W P2 point;
W P3 poi nt 3D,
if (!denmoOn)
transX = (fl oat) ((HHVbuseDat a*) dat a) - >del t aX;
transY = (fl oat) ((HHWuseDat a*) dat a) - >del t aY;
if (NONE == ((HHWbuseDat a*) dat a) - >doubl ed i ck)
if (((HHVbuseDat a*) dat a) - >l ef t Butt on)
nyCGeonetry->rotate(transyY, transX, O0);
if ((((HHVbuseDat a*)data)->ri ghtButton)&&(0 != transyY))
zoonVi ewport (transyY);
if ((((HHVbuseDat a*) dat a) - >mi ddl eButton) & (0 ! = transX))
nyGeonetry->rotate(transX, transY, 5);
}
el se
{ : .
switch (((HHVbuseDat a*)dat a) - >doubl eCl i ck)
{
case LEFT: nyW ndow >Get Posi ti on(&x0, &y0, &w dth, &height);
point[0] = transX - xO;
point[1] = transY - yO;
pi ckedPol y = nyW ndow- >Pi ckPol y(poi nt, &nodePat h,
poi nt 3D) ;
if (NULL != pickedPoly)
nmyGeonet ry- >chkNode(nodePat h) ;
del et e nodePat h;
br eak;
case M DDLE: reset Vi ewport ();
br eak;
}
}
}
}
/** Sets the state of the manual, i.e. the textual content that are displayed on the
screen.
*/
voi d HHVi rtual Manual : : set ManSt at e(HHVanual St at e newSt at e)
{
currManState = newSt at e;
}

/** Initiates the specification-node, which shows the specifications on the screen, as
wel | as resets the geonetry.

*/
voi d HHVi rtual Manual : : set SpecMbde()
{
nyGeonet ry->nul | Al | (FALSE);
reset Vi ewport ();
currManSt at e = BAVSBE_SPEC,
}

55

[R K KKk ok kR Kk ok ok kK ARk Kk kR ARk kk kR ARk kk kR ARk k ok kR Ak k ok ok kA k ok ok ok Ak k ok kR Ak k ok kR Ak k ok kR Rk kk ok ok ok ok k [

/*** STATI C METHODS. . . *kx |

/~k~k~k~k~k~k~k~k**/

/** 1s used as the WIK uni verse's action-function, which is executed every programl oop.
It reads the keyboard and activates events considering this, and tells the
application to update the nouse-handl er.

*/
voi d HHVi rtual Manual : : HHAct i onFn()
{
extern HHVi rtual Manual *application;
short key = W Keyboard:: Get Last Key();
switch (key)
{
case 27:
case 'Q:
case 'q': WUniverse::Stop();
br eak;
case 'C:
case 'c': if (!application->denoOn) application->conpl eteScene();
br eak;
case 'Z':
case 'z': if (!application->denoOn)
application->myGeonetry->nul | All (TRUE);
application->resetViewort();
br eak;
case 'H:
case 'h': application->set ManSt at e(BAVSE_I DLE) ;
br eak;
case 'S':
case 's': if (!application->denoOn) application->set Spechde();
br eak;
case 'F':
case 'f' Wrnessage("Current franmerate: %\n", WUniverse::FraneRate());
br eak;
case 1003: if (!application->denoOn) application->radar(6, 1);
br eak;
case 1002: if (!application->denoOn) application->radar(6, -1);
br eak;
case 1000: if (!application->denoOn) application->radar(7, 1);
br eak;
case 1001: if (!application->denoOn) application->radar(7, -1);
br eak;
case '1':
case '2':
case '3':
case '4': if (!application->denoOn) application->rockNroll ((int)key - 48);
br eak;
case ' ': application->denoMde();
br eak;
//default: Wnessage("%\n", key);
}
appl i cati on- >updat eMHandl er () ;
appl i cati on->myW ndow >Set FgAct i ons(HHVI rt ual Manual : : HHFgDr awkn) ;
}
/** A function that displays an i nage behind the 3D scene.
*/
voi d HHVi rt ual Manual : : HHDr awFn(W W ndow* wi n, FLAG eye)
{

wi n->Loadl mage("sky3.tga", -0.999f, FALSE, TRUE);

56

}
/~k~k

*/
voi d HHVi rt ual Manual : : HHFgDr awFn(W W ndow* wi n,
{

extern HHVi rtual Manual *application;

w n- >Set 2DCol or (255, 255, 255);
wi n->Dr aw2DText (0. f, 0. 005f,

if (application->denmoOn)

wi n->Set 2DCol or (255, 0, 0);
wi n->Dr aw2DText (0. 89f, 0. 005f,

}
wi n- >Set 2DCol or (0, 0, 0);
swi tch(application->currManSt at e)

case (BAMSE_ | DLE):
Vi rtual Manual ") ;

The function that draws the 2D-content (text

FLAG eye)

wi n- >Dr aw2DText (0. O1f,

0. 95f,

wi n->Dr aw2DText (0. 01f,

-- ")

W n- >Dr aw2DText (0.

wi n- >Dr aw2DText (0.
nedtryckt - Rotera");

W n- >Dr aw2DText (0.
klick - Aktivera");

wi n- >Dr aw2DText (0.
nedtryckt - Rotera |lavett");

W n- >Dr aw2DText (0.
nedtryckt - Zooma");

W n- >Dr aw2DText (0.

wi n->Dr aw2DText (0
mssil");

wi n->Dr aw2DText (0. 01f, 0. 75f,

wi n->Dr aw2DText (0.
node av/pa");

W n->Dr aw2DText (0.
vyn");

wi n->Dr aw2DText (0.
till foénster");

W n- >Dr aw2DText (0.
denna hjal p");

wi n- >Dr aw2DText (0.
specificationer");

W n- >Dr aw2DText (0.
Avsluta");

br eak;

case (BAMSE_WHOLE):
Luft var nsr obot systent');

Wi

Wi
den svenska regeringen");

Wi
utveckl ing av | uftvarnsrobotsystenmet RBS');

Wi
systemet &r ett");

Wi
nel | an Bofors M ssiles och");

Wi
Systems i vil ket Bofors har");

Wi
systemansvaret. Serieproduktion");

Wi
paborjas vid sekel skiftet.");

Wi
al | vader skapaci tet och en réackvidd");

Wi

maxi mal a st andof f - avst andet for");

wi n->Dr aw2DText (0. O1f,

n- >Dr aw2DText (0.

)

n- >Dr aw2DText (0.
n- >Dr aw2DText (0.
n- >Dr aw2DText (0.
n- >Dr aw2DText (0.
n- >Dr aw2DText (0.
n- >Dr aw2DText (0.

n- >Dr aw2DText (0.

n- >Dr aw2DText (0.

n- >Dr aw2DText (0.

57

01f,
01f,

01f,
01f,
01f,

01f,

. 01f,

pilar -

01f,
01f,
01f,
01f,
01f,

01f,

0. 95f,

01f,

01f,
01f,
01f,
01f,
01f,
01f,

01f,

01f,

01f,

"Val kormen till

0. 94f,
0. 91f,
0. 89f,
0. 87f,
0. 85f,
0. 83f,

0. 79f,
0.77f,

0.73f,
0. 71f,
0. 69f,
0.67f,
0. 65f,

0. 63f,

information) on top of the 3D scene.

" CREATED USI NG WORLDTOOLKI T, FROM SENSE8") ;

BAVSE

"Mus:");

Vanst er
Vanst er dbl
Mtten
Hoger

"Tangent bord: ");
" 1-4 - Avfyra

Rotera radar");

space - Deno
z - Nollstall
c - Anpassa
h - Visa
s - Visa
g/ Esc -

"Bofors RBS 23 BAMSE -

0. 94f,

0. 91f,
0. 89f,
0. 87f,
0. 85f,
0. 81f,
0. 79f,

0.77f,

0.73f,

0. 71f,

"Ar 1993 bestal | de
"fullskalig

"23 BAMSE. BAMSE-
"samar bet spr oj ekt
"Ericsson M crowave
"det Overgripande

"kommer att

"BAMBE har

"som Overstiger det

styrda vapen. Med en effektiv");

upp till 15 kmoch en rackvidd pd");

BAVBE- systenet | anpligt inte");
vitala nmilitéara objekt och rorliga");
ocksd for skydd av infrastruktur");
for hela nationen. | s&dana fall da");
avfyras fran ett flygplan utanfor");

"luftforsvarssystemets rackvidd har

formaga att bekanpa den attackerande");

case (BAMSE_TURRET):
héghasti ghetsmi ssil");

har en snabb accel eration och");

hastighet, vilket resulterar i kort");

| anga avstand. Inomkortare tid an");

accelererar mssilen upp till en");
an 3000 kmi h och bibehdller");
hasti ghet och stora mandvrerbarhet");

for sin réackvidd.");

hogeffektiva stridsdel initieras av");

i ntegrerade allvaderszonroéret eller vid");

ansl agsr or.
tryckverkan har effekt
fran smd snabba mdl somt ex");

attackrobotar eller kryssnings-");

stora | angsamma mal somt ex");

case (BAMSE_POLE):

| RV-kanera, |K (igenkannings-");
vader sensor &ar nonterade pa en");
plattform p& toppen av en hoj- och");
mast .

Roboten styrs i banan av");

BAVBE") ;

wi n->Dr aw2DText (0. 01f,

Den konbi nerade effekten");

not alla typer");

wi n->Dr aw2DText (0

W n- >Dr aw2DText (0.
wi n- >Dr aw2DText (0.
W n- >Dr aw2DText (0.

W n- >Dr aw2DText (0.

wi n->Dr aw2DText (0

W n- >Dr aw2DText (0.
wi n- >Dr aw2DText (0.
W n- >Dr aw2DText (0.

wi n- >Dr aw2DText (0.

br eak;

W n- >Dr aw2DText (0.
)i

wi n- >Dr aw2DText (0.
W n- >Dr aw2DText (0.
wi n- >Dr aw2DText (0.

W n- >Dr aw2DText (0.

wi n->Dr aw2DText (0

W n- >Dr aw2DText (0.

wi n- >Dr aw2DText (0.

W n- >Dr aw2DText (0.
wi n- >Dr aw2DText (0.
W n- >Dr aw2DText (0.
wi n- >Dr aw2DText (0.

W n- >Dr aw2DText (0.

wi n->Dr aw2DText (0

W n- >Dr aw2DText (0.

wi n->Dr aw2DText (0.

br eak;

Wi n->Dr aw2DText (0. O1f,

wi n->Dr aw2DText (0.
W n- >Dr aw2DText (0.
wi n->Dr aw2DText (0.

W n- >Dr aw2DText (0.

wi n->Dr aw2DText (0

W n- >Dr aw2DText (0.

el dl edni ngsradar som ar en vidareutveckling av");

radar och som arbetar pa Ka-");

GHz.");

wi n->Dr aw2DText (0.

wi n- >Dr aw2DText (0.

br eak;

58

0. 95f,

.01f, 0.69f,
01f, 0.67f,
01f, O0.65f,
01f, 0.63f,
01f, 0.61f,

.01f, 0.59f,
01f, 0.57f,
01f, O0.55f,
01f, 0.53f,
01f, O0.51f,

"Robot 23 -
01f, 0. 94f,
01f, 0.91f,
01f, O0.89f,
01f, O0.87f,
01f, 0. 85f,

.01f, 0. 81f,
01f, 0. 79f,
01f, 0.77f,
01f, 0.73f,
01f, 0. 71f,
01f, 0.69f,
01f, 0.67f,
01f, O0.65f,

.01f, 0.63f,
01f, 0.61f,
01f, 0.59f,

0.95f, "Eldle
01f, 0.94f,
01f, 0.91f,
01f, O0.89f,
01f, 0.87f,

.01f, 0. 85f,
01f, 0.83f,
01f, O.81f,
01f, 0. 79f,

"mar kt r upper,

"av vital

" BAMSE-

"anda till

"m ssiler

"sankbar

"bandet ,

"el ektro-opti skt
"hoj dt ackni ng pa
"mer anl5 km ar

"bara for skydd av

ut an

bet ydel se

"en standof f-m ssil

"fortfarande

"mssilen.");

BAMSE

m ssil en

"déarav foljande hog
"flygtid aven pa
"en sekund
"hastighet av mer

"sedan sin

gransen

"M ssilens
"antingen det
"direkttraff ett
"av splitter och
"av flygande nél,

"si gnal s6kande

och till

"transportplan.");

dni ngsradar") ;

"El dl edni ngsr adar,
"utrustning) och

"gyrostabiliserad

8 neters

"en

"Eri cssons Eagl e-

dvs 34-35

case (BAMSE_SPEC):

SPECI FI KATI ON') ;

(robot):");

wi n->Set 2DCol or (39, 255, 25);

wi n- >Dr aw2DText (0. 38f,

wi n->Dr aw2DText (0. 38f,

Wi
Wi

W n- >Dr aw2DText (0.
W n- >Dr aw2DText (0.
n- >Dr aw2DText (0.

=3

=3

hoj dt &ckning (robot):");

den effektiva");

den effektiva");

neter");

"Siktlinjestyrning");

£ 2s=

=3

W n- >Dr aw2DText (0.
n- >Dr aw2DText (0.

=3

W n- >Dr aw2DText (0.
n- >Dr aw2DText (0.
. 25f,

-3

funktion splitter- och");

ansl agsror");

och transportplan,");

transporthelikoptrar,");

(Kryssnrb, Ssarb,");

| aserstyrda bonber");

")
(BEER): ") ;

el dl edning");
sj6- och land-");
NBC-") ;

operatorer");

Eri csson Eagle");

"mal f 6l j ni ngsradar");

W n- >Dr aw2DText (0.
n- >Dr aw2DText (0.

£ 2sss =3

£ssz=

s =

£

B3

i n- >Dr aw2DText (0.
n- >Dr aw2DText (0.

n- >Dr aw2DText (0.

n- >Dr aw2DText (0

n- >Dr aw2DText (0.

n- >Dr aw2DText (0

n- >Dr aw2DText (0.
n- >Dr aw2DText (0.

n- >Dr aw2DText (0.
n- >Dr aw2DText (0.

n- >Dr aw2DText (0.
n- >Dr aw2DText (0.
n- >Dr aw2DText (0.

n- >Dr aw2DText (0.

n- >Dr aw2DText (0.
n- >Dr aw2DText (0.
n- >Dr aw2DText (0.
n- >Dr aw2DText (0.
. 52f,

n- >Dr aw2DText (0

n- >Dr aw2DText (0.
n- >Dr aw2DText (0.
n- >Dr aw2DText (0.
n- >Dr aw2DText (0.

n- >Dr aw2DText (0.
n- >Dr aw2DText (0.

n- >Dr aw2DText (0.
. 75f,

n- >Dr aw2DText (0

n- >Dr aw2DText (0.
n- >Dr aw2DText (0.

n- >Dr aw2DText (0.

n- >Dr aw2DText (0.

59

001f,
001f,

001f,
001f,
001f,

001f,

. 001f,
n- >Dr aw2DText (0.
n- >Dr aw2DText (0.
n- >Dr aw2DText (0.

001f,
001f,
001f,
25f,

25f,
25f,

25f,
25f,
25f,
25f,

25f,
25f,

25f,
25f,
25f,

25f,

52f,
52f,

52f,
52f,
52f,
52f,

52f,
52f,
52f,
52f,
75f,
75f,
75f,
75f,
75f,
75f,

75f,

0. 95f,

0. 94f,

0

0.

. 50f,
49f,

46f,
42f,
38f,

36f,

34f,
32f,
28f,
26f,

. 46f,

44f
42f

40f,
38f,
36f,

. 34f,

. 32f,

30f,

. 28f,

. 26f,

. 24f,

. 22f,

. 20f,

88f,
87f,

84f,
82f ,
78f,
741,
72f,

68f,
66f ,
64f ,
62f ,

. 84f,

. 82f,

80f ,
78f,

76f,
74f,

. 72f,

. 70f,

"Hog hasti ghet

"Attackflyg,

"attack-

"Dragen,

'BOFORS BAMSE -

"Hastighet:");
"Mandver bar het:");
"Effektiv rackvidd

"Effektiv
"Styrning:");
"Ver kansdel : ") ;
"Tandror:");
"Maltyper:");

hel a

"réackvi dden");
"Mycket stor inom

"réackvi dden");
"15 km (+)");
"Upp till

15. 000

" Konbi ner ad

"RSV- 1 addni ng");
" Zonr or

och
bonb-

och

"standof f m ssiler

"etc.) och

"Funktion:");
"Hydda: ") ;

"Skydd: ") ;
"Besattning:");
"Ml f 6l j ni ngsr adar

"Frekvens:");
"Rackvidd: ") ;
"Andra sensorer:");
"TKM);

"Stridsl edning och

luft-,

"transportabel ");
"Mot splitter och

"stridsmedel ");
"1- 2

"Baserad pa

wi n->Dr aw2DText (0. 75f, 0.68f, "Ka (K) -band, 34-
35 GHz");

wi n- >Dr aw2DText (0. 75f, 0.66f, "30 knm');

wi n- >Dr aw2DText (0. 75f, 0. 64f, "I RV-kanera,
vadersensor");

wi n->Dr aw2DText (0. 75f, 0.62f, "Inbyggd I K-
antenn");

br eak;

}

/** This task is run during the denp-node. It rotates the geonmetry, zooms the viewpoint in
and out, shoots missiles, operates the radar (on the geonetry) and changes the
manual - st at e!
*/
voi d HHVi rtual Manual : : HHDenpTask(voi d *nmyApp)

HHGeonetry *tenp;
if (!((HHVI rtual Manual *) nyApp) - >denoQOn)
{

del ete ((HHVirtual Manual *) myApp) - >denpTask;
((HHVI rt ual Manual *) myApp) - >denoTask = NULL;

el se

tenp = ((HHVI rtual Manual *) myApp) - >nyGeonetry;
tenp->rotate(0.f, 1.f, 0);

i f (((HHVirtual Manual *) nyApp) - >count Up)

{

((HHVI rt ual Manual *) myApp) - >vi ewPor t Count ++;

if (((HHVI rtual Manual *) myApp) - >vi ewPor t Count > 100)
((HHVI rt ual Manual *) myApp) - >count Up = FALSE;

el se
((HHVI rt ual Manual *) myApp) - >zoonVi ewport (2.f);

el se

((HHVi rt ual Manual *) nyApp) - >vi ewPor t Count - -;

if (((HHVIrtual Manual *) myApp) - >vi ewPor t Count < -400)
((HHVI rt ual Manual *) myApp) - >count Up = TRUE;

el se
((HHVI rt ual Manual *) myApp) - >zoonVi ewport (-2.f);

i f (((HHVirtual Manual *) nyApp) - >r adar Up)
{
((HHVI r t ual Manual *) myApp) - >r adar Count ++;

if (((HHVIrtual Manual *) myApp) - >r adar Count > 30)
((HHVi rt ual Manual *) myApp) - >r adar Up = FALSE;

el se
temp->rotate(Pl/180, O0.f, 7);
}
el se
{
((HHVi rt ual Manual *) nyApp) - >r adar Count - - ;
if (((HHVIrtual Manual *) myApp) - >r adar Count < 0)
((HHVI rt ual Manual *) myApp) - >radar Up = TRUE;
el se
temp->rotate(-PI/180, 0.f, 7);
}

i f (((HHVirtual Manual *) nyApp) - >headUp)

((HHVI rt ual Manual *) myApp) - >headCount ++;
if (((HHVIrtual Manual *) myApp) - >headCount > 90)
((HHVI rt ual Manual *) myApp) - >headUp = FALSE;

el se
{
temp->rotate(Pl/180, O0.f, 6);
//tenp->rotate(l.f, 0.f, 5);
}
}
el se

((HHVi r t ual Manual *) nyApp) - >headCount - -;

60

if (((HHVirtual Manual *) nyApp) - >headCount < -90)
((HHVI rt ual Manual *) nyApp) - >headUp = TRUE;

el se

{
tenmp->rotate(-Pl/180, 0.f, 6);
//tenp->rotate(-1.f, 0.f, 5);

}

if ((-1 == ((HHVirtual Manual *) nyApp) - >current Turret) &&((HHBanse*) t enp) -
>turretEl evati on(TRUE))
((HHVI rtual Manual *) myApp) - >current Turret = 1;
else if ((0 == ((HHVI rtual Manual *) myApp) - >current Turr et) &&((HHBanse*)t enp) -
>turretEl evati on(FALSE))
((HHVi rtual Manual *) nyApp) - >current Turret = 3;
else if (tenp->shoot (((HHVI rtual Manual *) myApp)->current Turret))

((HHVi rtual Manual *) nyApp) - >current Turr et ++;

if (3 == ((HHVirtual Manual *) myApp) - >current Turret)
((HHVI rt ual Manual *) myApp) - >current Turret = 0;

else if (5 == ((HHVi rtual Manual *) myApp) - >current Turret)
((HHVi rtual Manual *) myApp) - >current Turret = -1;

if ((-400 > ((HHVirtual Manual *) nyApp) - >vi ewPort Count) | | (100 <
((HHVI rt ual Manual *) myApp) - >vi ewPor t Count))
{
switch (((HHVI rtual Manual *) myApp) - >cur r ManSt at e)
{
case (BAMSE_WHOLE) : ((HHVi r t ual Manual *) nyApp) -
>set ManSt at e(BAMSE_TURRET) ;

br eak;

case (BAMSE_TURRET): ((HHVI r t ual Manual *) my App) -
>set ManSt at e(BAMSE_POLE) ;

br eak;
case (BAMBSE_POLE): ((HHVI r t ual Manual *) ny App) -
>set ManSt at e(BAMSE_SPEC) ;
br eak;
case (BAMSE_SPEC): ((HHVI r t ual Manual *) ny App) -
>set ManSt at e(BAMSE_WHOLE) ;
br eak;
}
}
}
}
/**/
/*** PRI VATE METHCDS. .. xxx)

[R KKKk kR Rk ok ok kK ARk kk kK ARk Kk kR ARk Kok kR ARk k ok ok kA k ok ok kA k ok ok ok Ak k ok ok ok Ak k ok ok kA kok ok ok ko k ok ok ok ok ok k [

/** Displays a sinple wel cone-nessage in the consol e wi ndow and | oads the splash screen
to the render-w ndow.

*/
voi d HHVi rt ual Manual : : di spl aySpl ash()
{
Wrnessage("\ n\ n\Wel cone to the BAMBE test-session of Wrld Tool Kit.\n");
WImessage(M ----------- - oo \n");
Wrnessage(" Witten by Henrik Hedlund.\n\n\n");

myW ndow >Loadl mage("banse.tga", 1.0, TRUE, FALSE);

for (unsigned int i=0; i<200000000; i++) ; /1 No wait-nmethod worked with WIK, and all
/'l keyboard-events nust be
read fromthe
/1 consol e wi ndow, since
t he Universe

}

/** Tells the nouse-handler that it should check the nouse. This nmethod is used
by the HHActi onFn at every programl oop.

[/ isn't activated yet...

*/
voi d HHVi rtual Manual : : updat eMHandl er ()

{
nmyMHandl er - >examni neMuse();

61

}

/** Resets the viewpoint to the starting-point...

*/
voi d HHVi rtual Manual : : reset Vi ewport ()
{
myVi ew >Set Posi ti on(ori gPos);
myVi ew->Set Orientation(origOient);
}

/** Rotates the viewpoint according to the transfornmations along both the X- and the
Y-axes that the nouse-handl er reports!
*/
voi d HHVi rtual Manual : : rot at eVi ewport (fl oat radi ans)
{
W P3 geoM d, ol dPos, newPos;
float radius, angle, refAngle;

geoM d = nyGeonetry->get M dpoi nt();
nmy Vi ew >Cet Posi ti on(ol dPos);

ol dPos -= geoM d;
radi us = sqrtf (ol dPos[0] *ol dPos[0] + ol dPos[2] *ol dPos[2]);

angl e = acosf (ol dPos[0] / radius);
ref Angl e = asinf (ol dPos[2] / radius);

if (0 >refAngle) angle *= -1,
angl e += radi ans;

newPos| 0]
newPos| 1]
newPos| 2]

radi us * cosf(angle);
ol dPos[1] ;
radi us * sinf(angle);

newPos += geoM d;

myVi ew >Set Posi ti on(newPos) ;
nyVi ew >Al i gnAxi s(Z, (geoM d-newPos));
}

/** Zooms the viewpoint in and out of the 3D scene (i.e. zooms along the z-axis). The
degree of zooming is specified with transz.

*/
voi d HHVi rtual Manual : : zoonVi ewport (fl oat transz)
{
W P3 newPos;
newPos[0] = 0.0;
newPos[1] = 0.0;
newPos[2] = (float)(1l * transz);
nyVi ew >Tr ansl at e(newPos, WFRAVE_WORLD) ;
}
/** Fits the conplete scene in the w ndow.
*/

voi d HHVi rtual Manual : : conpl et eScene()

nmyW ndow >ZoonVi ewPoi nt () ;
}

/** Tells the HHBanse-geonetry to rotate the radar. "part" specifies which part of the
radar that shall be rotated, and "positive" specifies if the rotation is positive
or negative.

*/
voi d HHVi rtual Manual : :radar (int part, int positive)
float rot;
if (6 == part)

rot = (float)(positive * 2.5 * PI/180);
el se
rot = (float)(positive * 1.5 * PI/180);
nyGeonetry->rotate(rot, 0.f, part);
}

/** Tells the HHBanse-geonetry to shoot a missile fromthe "thatOne"-turret.
*/

62

voi d HHVi rtual Manual : : rockNrol | (i nt thatOne)
{

}

/** Activates and deactivates the denmpb-nbde. Initiates the variable that are needed
(rmostly counters) for the deno-task.

myGeonet ry- >shoot (t hat One) ;

*/
voi d HHVi rt ual Manual : : denoMode()

if (!denmpOn)
{

demoOn = TRUE;

vi ewPor t Count =

radar Count =

headCount = O;

countUp =

r adar Up

headUp = TRUE;

nyGeonetry->nul | All (FALSE);

reset Vi ewport ();

set ManSt at e(BAMSE_WHOLE) ;

if (!((HHBanse*)nyGeonetry)->isLeft()) ((HHBanse*)nyGeonetry)-
>turretEl evati on(TRUE) ;

current Turret = 1,

denmpTask = new W Task(this, HHVirtual Manual : : HHDenpTask, 1.f);
}
el se

denoOn = FALSE;

C.3 Listener and screamer

NNy
/1 HHLi stener.h - Listener-interface /1
IR NN NN NN NN NN NN NN

fndef __ HH LI STENER_
#define __HH LI STENER_

/** The interface that a class nust inplement to make it possible to use the
HHLi st ener / HHScreaner-system A nessage froma HHScreaner-class is sent to the
HHLi st ener-cl ass (which has registered itself as a listener at the screaner-class)
as a voi d*, which one have to typecast to the information that should be read from

it.
*/
cl ass HHLi st ener
public:
virtual void listen(void* data) = O;
I
#endi f

IR NN NN NN NN NN NN NN
/1 HHScreaner.h - Screaner-interface /1
NNy

#i fndef __HH SCREAMER H_
#define __ HH SCREAMER H_

#i ncl ude "HHLi stener. h"

/** The interface that nmust be inplenmented to nake a class use the HHLi stener / HHScreaner
rel ati onshi p. See HHLi stener for nore information on this.
*/
cl ass HHScreamner

{

63

public:
virtual void setListener(HHLi stener* newLi stener) = O;

#endi f

C.4 Themouse handler

NNy
/'l HH\WbuseHandl er. h - The npuse handl er /1
IR NN NN NN NN NN NN NN

fndef __ HH MOUSE_HANDLER H_
#define __HH_MOUSE_HANDLER H_

#i ncl ude "wt.h"
#i ncl ude "w cpp. h"
#i ncl ude "HHScreaner. h"

enum HHVsDbl G k { NONE, LEFT, M DDLE, RI GHT}; /1 |I's used to show if there has been
/1 a doubl eclick

/** Contains all the information the nouse-handl er needs to send to the application.
*/
typedef struct HH MOUSE_DATA

int del t aX;

int del tay;

FLAG | eft Button;
FLAG m ddl eBut t on;
FLAG ri ght Button;

HHVsDbl d k doubl ed i ck;
} HHMWbuseDat a;

/** A class that is used to handl e the nouse instead of WIK's own nouse-routines (which
are working in a very strange way). The nouse-handl er inplenments the HHScreamner-
interface, which makes conmuncation with the application possible.

The handl er reads raw data fromthe nouse and interprets these in a way that is

proper for HHVirtual Manual!

*/
cl ass HHWbuseHandl er : public HHScreamer
public:

HHVbuseHandl er () ;
HHVbuseHandl er (HHLi st ener *newLi st ener);
~HHVbuseHandl er () ;

voi d exam neMouse();
voi d setLi stener(HHLi stener *newlLi stener);

private:
W Mouse *nyMouse;
HHLi st ener *nyLi st ener;

int lastX, lastY;
FLAG l eftdicked, mddledicked, rightdicked;

#endi f

IR NN
// HHVbuseHandl er.cpp - The nopuse handl er /1
N NN NNy
#i ncl ude "HHWbuseHandl er. h"

/** The default constructor. Creates a new nouse device and resets all necessary

64

vari abl es.

*/

HHVbuseHandl er : : HHVbuseHandl er ()

{
myMouse = new W Mouse;
nyLi stener = NULL;
leftdicked = FALSE;
m ddl ed i cked = FALSE;
rightdicked = FALSE;

}

/** A constructor where the |listener (HHListener) is registered directly at the
instantiation.
*/
HHVbuseHandl er : : HHVbuseHandl er (HHLi st ener *newli st ener)
{
myMouse = new W Mouse;
set Li st ener (newLi st ener);

leftdicked = FALSE;
m ddl eCl i cked = FALSE;
rightdicked = FALSE;
}
/** The destructor. Deallocates the nenory used by the instance!
*/
HHVbuseHandl er : : ~HHVbuseHandl er ()

del et e nmyMouse;

}

/*: Regi sters the class (HHListener) that shall listen to the nobuse handl er (HHScreaner).
VOi ij HHVbuseHandl er: : set Li st ener (HHLi st ener *newLi st ener)

{}: nyLi stener = newli stener;

/** Exami nes the nouse and collects all the raw data and analyzes it. The information is
stored in a HHWwuseData struct. |If there is any interesting information collected,
this struct is sent to the listener as a void* (only zero values are not sent).

*/

voi d HHVbuseHandl er: : exam neMouse()

{
int buttonData = nyMyuse->Get M scDat a(),

current X, currenty,
WInouse_r awdat a *nouseDat a;
HHVbuseDat a *screamer Data = NULL;

nyMouse- >RawUpdat e() ;

nouseData = (WInouse_r awdat a*) nyMouse- >Get RawDat a() ;
current X = (int)nouseDat a- >pos[0] ;

currentY = (int)nouseData->pos[1];

[**** Check for buttons just pressed ****/
if (buttonData & WIMOUSE_LEFTBUTTON)
{

last X = current X;

lastY = currentY;

leftdicked = TRUE;

}
if (buttonData & WIMOUSE_RI GHTBUTTON)
{

last X = currentX;

lastY = currentY;

rightdicked = TRUE;
}
if (buttonData & WIMOUSE_M DDLEBUTTON)
{

| ast X = current X;

lastY = currentY;

m ddl ed i cked = TRUE;

/**/

[**** Check for buttons released *****xx*x/

65

f (buttonData & WIMOUSE_LEFTUP)

i
{

|l eftdicked = FALSE;
}

if (buttonData & WIMOUSE_M DDLEUP)

{
m ddl ed i cked = FALSE;

}

if (buttonData & WIMOUSE_RI GHTUP)

{
rightdicked = FALSE;
;**/
/*** Check for other button-functions ***/
if ((buttonData & WIMOUSE_LEFTDOWN) | | (buttonData & WIMOUSE_M DDLEDOWN) | | (buttonData &
WIMOUSE_RI GHTDOWN))
{
screaner Data = new HHWbuseDat a;
screaner Dat a->del taX = current X - lastX;
screaner Dat a->deltaY = currentY - lastY,
screanerData- >l eftButton = | eft i cked;
scr eaner Dat a- >mi ddl eButton = mi ddl ed i cked;

screamer Dat a->ri ght Button = rightdicked;
screaner Dat a- >doubl ed i ck = NONE;

last X = currentX;

lastY = currentY;

}
else if ((buttonData & WIMOUSE _LEFTDBLCLK) | | (buttonData &
WIMOUSE_M DDLEDBLCLK) | | (butt onDat a & WIMOUSE_RI GHTDBLCLK))
{
screanerData = new HHWuseDat a;
screaner Dat a- >del taX = current X;
screaner Dat a- >del taY = currentY;
screaner Dat a- >l eft Button =
screaner Dat a- >mi ddl eButton =
screamner Dat a- >ri ght Butt on = FALSE;
if (buttonData & WIMOUSE_LEFTDBLCLK) screaner Dat a- >doubl ed i ck = LEFT,;
else if (buttonData & WIMOUSE_RI GHTDBLCLK) screaner Dat a- >doubl el i ck = RI GHT;
else if (buttonData & WIMOUSE_M DDLEDBLCLK) screaner Dat a- >doubl eCl i ck =
M DDLE;

}

if ((NULL != screanerData) &% ((NONE != screaner Dat a- >doubl ed ick)|| (0 != screaner Dat a-
>deltaX)|| (0 ! = screanerData->deltaY)))

{

nyLi st ener->l i st en(screaner Dat a) ;

/**/

del et e screanerDat a;

C.5 Thegeometry interface

NNy
/1 HHGeonetry.h - Geonetry interface /1
IR NN

fndef __ HH GEOVETRY_H_
#define __ HH GEOVETRY H_

#include "wt.h"
#i ncl ude "w cpp. h"

/** The interface that specifies how all geonetry classes should be structured. Contains
all methods that are of interest to a geonmetry class. This HHGeonetry is nodified to
suit the HHBanmse geonetry cl ass!

*/
cl ass HHGeonetry

public:
virtual FLAG addAsChild(W G oup *parent) = 0;

66

virtual void rotate(int axis, float radians = PI/180) = O;

virtual void rotate(const float &ransX, const float &ransY, int part) = O;
virtual void chkNode(W NodePath *nodePath) = O;

virtual WP3 getMdpoint() = O;

virtual void null All (BOCL justOrient) = O;

virtual BOOL shoot (int whichOne) = O;

private:
virtual void | oadGeonetry() = 0;
virtual void destroyGeonetry() = O;

}s

#endi f

C.6 TheHHRotation classes

N N NN NN NN
/'l HHRotation.h — The test geonetry #1 I
I NN NNy

#i fndef __HH ROTATI ON_H_
#define __HH ROTATI ON_H_

#i ncl ude <nat h. h>
#i ncl ude "HHCGeonetry. h"

/** The first of the HHRotation classes, which |oads a sinple geonetry fromtwo different
different files. This class is used to test the functionality of WK
*/
class HHRotation : public HHGeonetry

public:
HHRot ati on() ;
~HHRot ati on();

FLAG addAsChi | d(W Group *parent);

void rotate(int axis, float radians = PI/180);

void rotate(const float &ransX, const float &ransY, int part);
voi d chkNode(W NodePat h *nodePat h) ;

W P3 get M dpoint();

static void HHRotati onTask(void *nyRotation);
private:

voi d | oadGeornetry();

voi d destroyGeonetry();

void turretRotation(float angle);

[*** Geonetry variables ***/

W Node *whole, *turret; /1 The geonetries
W P3 extents; /'l The extents of the turret geonetry (the
box)
[*** Task variabl es *******/
FLAG t askRunni ng; /1 I's a task active right now?
int currentAngl e; /1 The actual angle (if a task is running)
W Task *rotationTask; /1 The task
b
#endi f

IR NN
// HHRotation.cpp - The test geonetry #1 /1
N NN NNy

#i ncl ude "HHRot ati on. h"

67

[R K KKk ok kR Kk ok ok kK ARk Kk kR ARk kk kR ARk kk kR ARk k ok kR Ak k ok ok kA k ok ok ok Ak k ok kR Ak k ok kR Ak k ok kR Rk kk ok ok ok ok k [

/*** PUBLI C METHODS. . . *kx |

/~k~k~k~k~k~k~k~k**/

/** The default constructor. Creates a new HHRotation instance and | oads it's geonetry.
*/
HHRot at i on: : HHRot at i on()

| oadGeonetry();
taskRunni ng = FALSE;

}

/** The destructor. Deallocates the menory that the instance has used.
*/
HHRot at i on: : ~HHRot at i on()

destroyGeonetry();
}

/** Adds the HHRotation geormetry as last child to the specified group-node parent.
The return value is the result of the operation (TRUE / FALSE),

*/
FLAG HHRot at i on: : addAsChi | d(W G- oup *parent)
{
return parent->AddChi | d(whol e);
}

/** Rotates the specified geonetry (part) around the specified axis (x, Y, Z). The angle
radi ans shoul d of course be in radi ans.

*

/

void HHRotation::rotate(int axis, float radians)
{

}

/** Rotates the specified geonetry (part) according to the transfornmation val ues al ong
the X and Y axes that have been read by the nouse.
*/
voi d HHRot ation::rotate(const float & ransX, const float &ransY, int part)

switch (part)
{

case 0: ((W Movabl e*) whol e) - >MovAxi sRot ati on(X, transX*Pl/180);
((W Movabl e*) whol e) - >MovAxi sRot ation(Y, transY*Pl/180);
br eak;

case 1: turretRotation(transY*Pl/180);
br eak;

}

/** Controls the given node path if any of the novable parts of the geonetry is along it.
If so, a task is activated (HHRotationTask), which rotates this geonetry.

*/
voi d HHRot ati on: : chkNode(W NodePat h *nodePat h)
{
int current NodeNum
W Node *current Node;
current NodeNum = nodePat h- >NunNodes() - 1;
while (0 <= current NodeNum
{
current Node = nodePat h- >Get Node(current NodeNumn ;
if (turret == current Node)
if (!taskRunning)
{
currentAngle = 0;
t askRunni ng = TRUE;
rotationTask = new W Task(this, HHRotation::HHRotationTask, 1.f);
}
br eak;
current NodeNum - ;
}
}

68

/*: Returns the m dpoint of the whole geonetry.
WP/S HHRot at i on: : get M dpoi nt ()

W P3 mi dpoi nt;

((W G oup*) whol e) - >Get M dpoi nt (mi dpoint);

return m dpoint;

/**/
[*** STATI C METHODS. . . *xx |

[R KKKk kR Rk ok ok kKRR Kk ok kK ARk kk kK ARk Kk kA ARk ok ok kA Rk k ok ok kA k ok ok ok Ak k ok ok ok Ak k ok ok ok Ak kok ok ok ko kk ok ok ok ok k [

/** The rotations task function for the turret geometry. This function rotates the
specified HHRotation instance's turret geonetry 360 degrees (one degree each turn),
and then term nates the task.

*
/
voi d HHRot ati on: : HHRot ati onTask(voi d *myRot ati on)
{
((HHRot ati on*) nyRotati on)->rotate(1, 1, 1);
((HHRot ati on*) nyRot ati on) - >current Angl e += 1;
if (((HHRotation*)myRotation)->currentAngle >= 360)
((HHRot ati on*) nyRot ati on) - >t askRunni ng = FALSE;
del ete ((HHRotati on*)nyRotation)->rotationTask;
}
}
/**/
[*** PRI VATE METHODS. . . *rxf

/**/

/** Loads all geonetry used in the instance and nakes sure that it's |ocation and
rotation is correct (a VRML 1.0 geonetry needs to be rotated 180 degrees, due to
di fferent coordinate systens).

*/

voi d HHRot ati on: : | oadGeonetry()

{
float trans[3] = {-2, -2, 0};
W P3 turretTrans(trans);
whol e = MovNodeLoad("rotatel. wil", 1.f);
whol e- >Set Nane(" Wol e");
turret = MovNodeLoad("rotate2.wl", 1.f);
turret->Set Nane(" Turret");

((W Movabl e*)turret)->Set Transl ati on(turret Trans);
((WGoup*)turret)->Get Extents(extents); // Far en FLAGGA somjag inte fangar
((W G oup*)whol e) - >AddChi I d(turret);

}

/** Destroys the geonetry that previously have been | oaded.
PRECON: Ceonetry nust have been | oaded with | oadGeonetry().
*/
voi d HHRot ati on: : destroyGeonetry()

del et e whol e;
delete turret;

}
/** Rotates the HHRotation instance's turret geonmetry the given angle (in radians).
*
VOi g HHRot ati on: :turret Rotation(float angle)
W P3 transl ation;

((W Movabl e*)turret)->MvVAxi sRotation(Z, angle);

I NN NNy
/1 HHRotation2.h - The test geonetry #2 11
N N N NN NN NN

69

#ifndef __HH ROTATION 2 H_
#define _ HH ROTATION 2 H_

#i ncl ude <nat h. h>
#i ncl ude "HHGeonetry. h"

/** HHRotation2 is basically the same as HHRotation, but it has a significant
difference; all geonetries are |oaded fromONE file and then separated into different
parts.
*/
class HHRotation2 : public HHGeonetry

publi c:
HHRot at i on2() ;
~HHRot ati on2();

FLAG addAsChi | d(W Group *parent);

void rotate(int axis, float radians = PI/180);

void rotate(const float &ransX, const float &ransY, int part);
voi d chkNode(W NodePat h *nodePat h) ;

W P3 get M dpoint();

static void HHRotati onTask(void *nmyRotation);

private:
voi d | oadCeonetry();
voi d destroyCeonetry();
void turretRotation(float angle);
voi d separateTurret (W Node *current Node);

[*** Geonetry variables ***/

W Node *whole, *turret; /1 The geonetries
W P3 extents; /'l Extents of the turret geonetry
FLAG rockOn; /1 1s used to recursively search for a sub-
/1 geonetry
/*** Task variabl es ***xxxx/
FLAG t askRunni ng; /1 1s a task running right now?
int currentAngle; /1 The current angle (if a task is running)
W Task *rotationTask; /1 The actual task
FLAG t askEl evat e; /1 Shall the turret be elevated or de-
el evat ed?
b
#endi f

N NN NNy
// HHRotation2.cpp - The test geonetry #2 /1
IR NN NN

#i ncl ude "HHRot ati on2. h"

[R KKKk ok kR Kk ok ok ok kR Rk kok kK ARk kk kR ARk kk kR ARk k ok kR Ak k ok ok ok Ak k ok kR Ak k ok kR Rk k ok kR Rk k ok kR Rk kk ok ok ok ok k [

/*** PUBLI C METHODS. . . *kx |

/**/

/** The default constructor. Creates a new HHRotation2 instance and | oads it's geonetries.
*/
HHRot at i on2: : HHRot at i on2()

| oadGeonetry();
taskRunni ng = FALSE;
t askEl evate = FALSE;

}

/** The destructor. Deallocates the nenory used by the instance.
*/
HHRot at i on2: : ~HHRot at i on2()

destroyGeonetry();

70

}

/** Adds the HHRotation2 geonmetry as last child to the specified griup-node parent.
The return value is the result of the operation (TRUE / FALSE).
*/
FLAG HHRot at i on2: : addAsChi | d(W G- oup *parent)
{
return parent->AddChi | d(whol e);
}
/** Rotates the specified part of the geonetry around the specified axis (X, Y, Z). The
angl e radi ans shoul d of course be given in radians!
*/
void HHRotation2::rotate(int axis, float radians)
{
}
/** Rotates the specified part of the geonetry according to the transfornmation val ues
read fromthe nouse.
*/

voi d HHRot ati on2::rotate(const float &ransX, const float & ransY, int part)

switch (part)
{

case 0: ((W Movabl e*) whol e) - >MovAxi sRot ati on(X, transX*Pl/180);
((W Movabl e*) whol e) - >MovAxi sRot ation(Y, transY*Pl/180);
br eak;
case 1: turretRotation(transY*Pl/180);
br eak;
}

}

/** Controls the specified node path if any of the novable parts of the geonetry is
along it. If so, a task (HHRotati onTask) is activated, which makes sure that this
sub-geonetry is rotated in a specific pattern (different for different parts).

*/
voi d HHRot ati on2: : chkNode(W NodePat h *nodePat h)
{

i nt current NodeNum
W Node *current Node;

current NodeNum = nodePat h- >NumNodes() - 1;

char *nane;
while (0 <= current NodeNum
{
current Node = nodePat h- >Get Node(cur r ent NodeNun) ;

if (NULL != current Node)
{

nane = current Node- >Get Nane() ;
if ((turret == currentNode)||((NULL != nane)&(0 == strcnp(nane, turret-
>Get Nare()))))
i f (!taskRunning)

if (taskEl evate) // Thus the turret is elevated; tinme to de-

el evate
{
current Angl e = 60;
t askEl evate = FALSE;
}
el se /] Tinme to elevate
{
currentAngle = 0;
t askEl evate = TRUE;
}
taskRunni ng = TRUE;
rotati onTask = new W Task(thi s, HHRotation2:: HHRot ati onTask,
}
br eak;
}
current NodeNum - ;
}

71

1.1);

/** Returns the mdpoint of the geonetry.
*/
W P3 HHRot ati on2:: get M dpoi nt ()

W P3 mi dpoi nt;
((W G oup*) whol e) - >Get M dpoi nt (mi dpoint);

return mdpoint;

[R KK Kk ok kR Kk ok ok ok kAR k Kk kK ARk kk kR ARk Kk kA ARk k ok kR ARk k ok ok kA k ok ok kA k ok ok kA k ok ok kA k ok ok kR kk ok ok ok ok k [

/*** STATI C METHODS. . . *kx |

/**/

/** the rotation task function that rotates HHRotation2's turret geonetry. If the turret
geonetry is already elevated, it de-elevates it (0 degrees), otherwise it el evates the
turret
geonetry (60 degrees).
*
/
voi d HHRot ati on2: : HHRot ati onTask(voi d *nyRot ati on)
if (((HHRotation2*) myRotation)->taskEl evat e)
{
((HHRot ati on2*) nyRot ati on)->rotate(1, -1, 1);
((HHRot ati on2*) myRot ati on) - >current Angle += 1;
i f (((HHRot ation2*)nyRot ation)->currentAngl e >= 60)
{

((HHRot at i on2*) nyRot ati on) - >t askRunni ng = FALSE;
del ete ((HHRotati on2*)nyRot ati on)->rotati onTask;

}
}
el se
{
((HHRot ati on2*) myRot ation)->rotate(1, 1, 1);
((HHRot ati on2*) myRot ati on)->currentAngle -= 1;
i f (((HHRot ati on2*)nyRot ati on)->currentAngl e <= 0)
((HHRot at i on2*) myRot at i on) - >t askRunni ng = FALSE;
del ete ((HHRotati on2*)nyRot ati on)->rotationTask;
}
}
}
/**/
/*** PRI VATE METHODS. . . *kx |

/**/

/** Loads all the geonetries used in the instance. Al so nakes sure that the |ocation and
rotation of the geonetries are correct (a VRML 1.0 geonetry mnmust be rotated 180
degrees).

*/
voi d HHRot ati on2: : | oadGeonet ry()
{
float trans[3] = {-2, -2, 0};
W P3 turretTrans(trans);
whol e = MovNodeLoad("rotateT.wl", 1.f); [/l "rotate.w|" for an untextured geonetry
whol e- >Set Nane(" Wol e");

rockOn = TRUE;

separ at eTur r et (whol e) ;

((W G oup*)turret)->Get Extents(extents);

((W Movabl e*) whol e) - >MbvAxi sRotation(Z, Pl);
}

/** Destroys the geonetry that previously have been | oaded.
PRECON: Ceonetry nust have been | oaded with | oadGeonetry().
*/
voi d HHRot ati on2:: destroyGeonetry()

del et e whol e;
delete turret;

}

/** Rotates the HHRotation2 instance's turret geonetry the given angle (in radians),

72

around a point that is located in the geonetry's left end.
*/
void HHRotation2::turretRotation(float angle)

{
W P3 transl ation;

translation[0] = extents[O];

translation[1l] = -extents[1];

translation[2] = O;

((W Movabl e*)turret)->Transl ate(transl ati on, WIFRAVE_LOCAL) ;

((W Movabl e*)turret)->MVAxi sRotation(Z, angle);

translation[0] *= -1;

translation[1] *= -1;

((W Movabl e*)turret)->Transl ate(transl ati on, WIFRAME_LCOCAL) ;
}

/** Separates the turret sub-geonetry fromthe other, nakes it to a novable
node and finally puts it back at the same place in the scene graph.

*/
voi d HHRot ati on2: : separat eTurret (W Node *current Node)
if (rockOn)
{
char *name = current Node- >Get Nane() ;
if ((NULL != nane) &(0 == strcnp(nane, "Turret")))
W Node *parent = current Node->Get Parent (0);
if (NULL == parent)
Wrnessage("Unable to trace turret...\n");
el se
{ . . .
int childNum = ((W G oup*) parent)->NuntChi |l dren();
for (int i=0; i<childNum i++)
if (((WGoup*)parent)->GetChild(i) == current Node) break;
W G oup *newlurret = new W MovSep(NULL);
newTur r et - >AddChi | d(cur r ent Node) ;
((W G oup*)parent)->lnsertChild(newTurret, i);
((W G oup*) parent)->Del eteChil d(i+1);
current Node- >Set Nanme(" Turr et Geo") ;
newTurr et - >Set Nane(" Turret");
turret = newTurret;
}
rockOn = FALSE;
}
el se
t . .
int children = ((W G oup*)current Node) - >NunChi | dren() ;
if (0 != children)
for (int i=0; i<children; i++)
separateTurret (((W G oup*) current Node) ->Get Chi l d(i));
}
}
}

I NN NNy
/1 HHRot ation97.h - The test geonetry adapted for VRML 2.0 / VRWML 97 1
N N N NN NN

#i fndef __HH ROTATION 97_H_
#define _ HH ROTATION 97 _H_

#i ncl ude <nath. h>
#i ncl ude "HHCGeonetry. h"

/** HHRotation97 is basically th sane as HHRotation2, but it uses VRWML 2.0-geonetry instead

73

of VRML 1.0. Another difference is that it does not work, since WIK is unable to handle
VRML 2. 0!
*/
class HHRotati on97 : public HHGeonetry

publi c:
HHRot at i on97() ;
~HHRot ati on97() ;

FLAG addAsChi | d(W Group *parent);

void rotate(int axis, float radians = PI/180);

void rotate(const float &ransX, const float &ransY, int part);
voi d chkNode(W NodePat h *nodePat h) ;

W P3 get M dpoint();

static void HHRot ati onTask(voi d *nmyRotation);

private:
voi d | oadGeonetry();
voi d destroyCeonetry();
void turretRotation(float angle);
voi d | ocateTurret (W Node *current Node);

[*** Geonetry variables ***/

W Node *whole, *turret; /1 The geonetries
W P3 extents; /1 The extent of the turret geonetry
FLAG rockOn; /1 1s used to recursively search after a
/'l geonetry
/*** Task variabl es ***xxxx/
FLAG t askRunni ng; /1 I's a task currently active?
int currentAngle; /1 The current angle (is a task is running)
W Task *rotationTask; /1 The actual task
FLAG t askEl evat e; /1 Should the turret be el evated, or de-
el evat ed?
b
#endi f

I NN NN NN NN NN NN
// HHRotation97.cpp - The test geonetry adapted for VRML 2.0 / VRML 97 /1
NNy

#i ncl ude "HHRot ati on97. h"

[R K KKk kR Rk ok ok kK ARk Kk kK ARk Kk kR ARk Kk ok kA Rk k ok ok kA k ok ok kAR k ok ok kA k ok kR Ak k ok kR Rk k ok kR Rk kk ok ok ok ok k [

/*** PUBLI C METHODS. . . *kx |

/**/

/** The default constructor. Creates a new HHRot ati on97 instance and | oads it's geonetry.
*
/
HHRot at i on97: : HHRot at i on97()
{
| oadGeonetry();
taskRunni ng = FALSE;
taskEl evate = FALSE;

}

/** The destructor. De-allocates the nenory used by the instance.
*
/
HHRot at i on97: : ~HHRot at i on97()

destroyGeonetry();
}

/** Adds the HHRotation97 geormetry as the last child of the specified group-node parent.
The return value is the result of the operation (TRUE / FALSE).

*/
FLAG HHRot at i on97: : addAsChi | d(W G- oup *parent)
{
return parent->AddChi | d(whol e);
}

74

] **

*/
voi d
{

}

/**

*/
voi d

}

/**

*/
voi d

{

1.1);

}

/**
*/

W P3

Rot ates the specified part of the geonetry around the given axis (X, Y, Z). The angl e,
radi ans, should of course be in radians! NOT | MPLEMENTED! !!

HHRot at i on97: :rotate(int axis, float radians)
Rot ates the specified part of the geonetry according to the transformation val ues that
have been read fromthe nouse.
HHRot at i on97: : rot ate(const float & ransX, const float &ransY, int part)
switch (part)
case 0: ((W Movabl e*) whol e) - >MovAxi sRot ati on(X, transX*Pl/180);
((W Movabl e*) whol e) - >MovAxi sRot ation(Y, transY*Pl/180);
br eak;
case 1: turretRotation(transY*Pl/180);
br eak;
}
Controls the incom ng node path if any of the intsance's novable parts lies init.
If so, is activates a task (HHRotationTask), which rotates the geonetry accordingly.
THI'S METHOD DOES NOT WORK BECAUSE WK DO NOT SUPPORT VRML 2.0 PROPERLY!!!
HHRot at i on97: : chkNode(W NodePat h *nodePat h)

i nt current NodeNum
W Node *current Node;

current NodeNum = nodePat h- >NunNodes() - 1;

char *nane;
while (0 <= current NodeNum

{
current Node = nodePat h- >Get Node(cur r ent NodeNun) ;
i f (NULL != current Node)
{
nane = current Node- >Get Nane() ;
if ((turret == currentNode)|| ((NULL != name)&&(0 == strcnp(name, "Turret"))))
i f (!taskRunning)
if (taskEl evate)
{
current Angl e = 60;
t askEl evate = FALSE;
}
el se
{
currentAngle = 0;
t askEl evate = TRUE;
}
taskRunni ng = TRUE;
rotati onTask = new W Task(thi s, HHRotati on97:: HHRot at i onTask,
}
br eak;
}
current NodeNum - ;
}

Returns the m dpoint of the geonetry.
HHRot at i on97: : get M dpoi nt ()
W P3 ni dpoi nt;

((W G oup*) whol e) - >Get M dpoi nt (mi dpoi nt);

75

return mdpoint;

[R KKKk kR kR k ok ok kKRR k Kk kR ARk kk kR ARk kk kR ARk k ok ok kA k ok kR ARk k ok ok kAR k ok ok ok Ak k ok kR Ak k ok ok kR kkk ok ok ok ok k [

/*** STATI C METHODS. . . *kx |

/**/

/** The rotation task function for HHRotation97's turret geometry. Elevates (60 degrees
angle) or de-elevates (0 degrees angle) the turret according to it's initial position.
*
/
voi d HHRot ati on97: : HHRot at i onTask(voi d *nyRot ati on)
if (((HHRotati on97*) nyRot ati on) - >t askEl evat e)
{
((HHRot ati on97*) nyRot ation)->rotate(1, -1, 1);
((HHRot ati on97*) myRot ati on) - >current Angl e += 1;
i f (((HHRot ation97*)nyRot ati on)->current Angl e >= 60)

((HHRot at i on97*) nmyRot at i on) - >t askRunni ng = FALSE;
del ete ((HHRotati on97*) nyRot ati on)->rot ati onTask;

}
}
el se
{ . .
((HHRot ati on97*) nyRot ati on)->rotate(1, 1, 1);
((HHRot ati on97*) nyRot ati on) - >currentAngle -= 1;
if (((HHRot ation97*)nyRot ation)->currentAngle <= 0)
{
((HHRot ati on97*) nyRot ati on) - >t askRunni ng = FALSE;
del ete ((HHRotati on97*) nmyRot ati on) - >rot ati onTask;
}
}
}
/**/
[*** PRI VATE METHODS. . . *rxf

/**/

/** Loads all geonetry that is used in the instance. One difference between using VRM. 2
geonmetry and VRML 1, is that there is no need to rotate the geonetry after |oading a
VRML 2 geonetry.

*/
voi d HHRot ati on97: : | oadGeonet ry()
{
float trans[3] = {-2, -2, 0};
WP3 turretTrans(trans);
whol e = MovNodeLoad("banse666. wl", 1.f); //"assy*.wl" "rotate2_OT.wl"
whol e- >Set Nane(" Whol e") ;
rockOn = FALSE;
| ocat eTurr et (whol e) ;
if (NULL == turret) Wnmessage("Unable to trace turret...\n");
}

/** Destroys the geonetry that previously has been | oaded.
PRECON: The geonetry has been | oaded using | oadGeonetry().
*/
voi d HHRot ati on97: : destroyGeonetry()

del et e whol e;
delete turret;

}

/** Rotates the HHRotation97 instance's turret geonetry the given angle (in radians)
around a point that is |located on the geonetry's |eft end.
*/
voi d HHRot ati on97: :turret Rotati on(fl oat angl e)
W P3 transl ation;
translation[0] = extents[O0];
translation[1l] = -extents[1];

translation[2] = 0;
((W Movabl e*)turret)->Transl ate(transl ati on, WIFRAVE_LOCAL) ;

76

((W Movabl e*)turret)->MvAxi sRotation(Z, angle);

translation[0] *= -1,
translation[1] *= -1,
((W Movabl e*)turret)->Transl ate(transl ati on, WIFRAVE_LOCAL) ;

}

/** Separates the turret part of the geometry fromthe others.
DOES NOT WORK WTH VRML 2.0!!1'!!

*/
voi d HHRot ati on97: : 1 ocat eTurret (W Node *current Node)
{
if (rockOn)
char *name = current Node- >Get Nane() ;
if ((NULL != nane) &&(0 == strcnp(nanme, "Turret")))
turret = current Node;
rockOn = FALSE;
}
el se
t . .
int children = ((W G oup*)current Node) - >NunChi | dren() ;
if (0 != children)
for (int i=0; i<children; i++)
| ocateTurret (((W G oup*)current Node) ->Get Chil d(i));
}
children = ((W Movabl e*) current Node) - >NumAt t achment s() ;
if (0 != children)
for (int i=0; i<children; i++)
| ocateTurret (((W Mvabl e*) current Node) - >Get Att achment (i));
}
}
}
}

C.7 The Bamse geometry class

N N N NN NN NN

/'l HHBamse.h - The Bamse geonetry class... Il
I NN NN NNy

#ifndef __ HH BAVBE_H_
#define _ HH BAMSE H_

#i ncl ude <math. h>
#i ncl ude "HHGeonetry. h"
#i ncl ude "HHVI rtual Manual . h"

enum HHParts {LTURRET, RTURRET, POLE, HEAD, TOP, RADAR, SCREEN};

/** A geonetry class that contains the Banse geonetry, which is the geonetry actually
used in the testbed. |Is based on HHRotation2 and thus provides the same functionality,
but slightly enhanced, as it.

*
/
cl ass HHBanse : public HHGeonetry

public:
HHBanse() ;
~HHBanse() ;

FLAG addAsChi | d(W Group *parent);

void rotate(int axis, float radians = PI/180);

void rotate(const float &ransX, const float &ransY, int part);
voi d chkNode(W NodePat h *nodePat h) ;

W P3 get M dpoint();

77

void null ALl (BOCL justOrient);
BOOL
BOOL
BOOL

shoot (i nt whi chOne);
turretEl evati on(BOCL |eft);
isLeft();

voi d
voi d
voi d
voi d
voi d
voi d

static
static
static
static
static
static

private:
voi d
voi d
voi d
voi d
voi d
voi d
voi d
voi d
voi d
voi d
voi d
voi d

| oadGeonetry();
destroyGeonetry();

turret Rotation(float angle,
pol eRot ati on(fl oat angle);
headRot ati on(fl oat angl e);
topRot ation(fl oat angle);
radar Rot ati on(fl oat angle);
screenRotation(fl oat angle);
conmputeTurrets();

conput ePol e() ;

separ at eTop() ;

separ at eNode(W Node *current Node,

void |l oadM ssile();

/*** CGeonetry variables ***/
W Node *whol e;

HHLef t Task(voi d *nyRot ati on);
HHRi ght Task(voi d *nyRot ati on);
HHPol eTask(voi d *nyRot ati on);
HHRadar Task(voi d *nyRot ati on);
HHScr eenTask(voi d *nyRot ati on);
HHM ssi | eTask(voi d *nyRot ation);

int part);

char* partName, HHParts whichPart);

W Goup *left, *right, *top;
WP3 |eftExt, rightExt; /1 The extent of the turret geonetries
W G oup *pole, *head, *radar, *screen;
W P3 pol eExt, headExt, screenExt;
W M4 pol eTrans, headTrans, whol eTrans, topTrans, |eftTrans, rightTrans,
radar Trans, screenTrans;
fl oat radarAngl e, screenAngle;
[*** Seek variabl es ****xxx/
FLAG rockOn; /1 I's used to seek recursively for a sub-
/1 geonetry
W Node *theParent; /1 The parent of the sought node
int thelLocation; /1 The location at the parent that the sought

[*** Task variabl es *******/

/1 node was | ocated

BOOL | eftRun, rightRun; /1 |I's tasks running?
int leftAngle, rightAngle; /1 The actual angles (if tasks is running)
W Task *|eftTask, *rightTask; /'l The tasks

BOOL | eft El evate, rightElevate,; I
BOOL pol eRun, pol eEl evat e,
i nt pol eAngl e, headAngl e;

W Task *pol eTask, *radar Task,

/*** Mssile related ****xx/

W Node *mi ssile, *notor;

W P3 nilr ansl ati on, noTransl ation;

WM initMssileTrans, initMtorTrans,

int mssileCount;

fl oat notorAngle;

BOOL nmissil eRun, missileSeparat ed;
b
#endi f

*screenTask,

Shoul d we el evate or de-el evate?

el evat eCt her;

*m ssi | eTask;

m ssi | eTrans, notorTrans;

I N NN NNy

/'l HHBamse.cpp - The Banmse geonetry class...

Il

N NN NN NN

#i ncl ude "HHBanse. h"

78

/~k~k~k~k~k~k~k~k~k~k~k~k~k***/

[*** PUBLI C METHODS. . . *Exf

1A R R R AR R R EEEEEREEEEEEEEEEEEEEEEEEEEEEEREEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE LRy

/** The default constructor. Creates a new HHBanmse instance and |loads it's geonetry.
*/
HHBanse: : HHBanse()

{
| oadGeonetry();

/1 Initiates task variables
| ef t Run = FALSE;

ri ght Run = FALSE;

pol eRun = FALSE;

| ef t El evate = FALSE;
ri ght El evate = FALSE;
pol eEl evate = TRUE;

| eft Task = NULL;

ri ght Task = NULL;

pol eTask = NULL;
radar Task = NULL;
screenTask = NULL;

radar Angl e =
screenAngle = 0.f;

m ssil eTask = NULL;
m ssil eRun = FALSE;

el evat et her = FALSE;
}

/** The destructor. De-allocates the nenory used by the instance.
*
/

HHBanse: : ~HHBanse()

destroyGeonetry();
}

/** Adds the HHBamse geonetry as |ast child of the specified group-node parent.
The return value is the result of the operation (TRUE / FALSE).

*/
FLAG HHBanse: : addAsChi | d(W Group *parent)
{
return parent->AddChi | d(whol e);
}

/** Rotates the specified part of the geometry around the given axis (X Y, 2).
NOT USED, THUS NOT | MPLEMENTED! !'!

*

/

voi d HHBanse: :rotate(int axis, float radians)
{

}

/** Rotates the specified part of the geonetry according to the transfornation val ues
. read fromthe nouse.
voi d HHBanse: :rotate(const float &ransX, const float &ransY, int part)
switch (part)
{ case 0: if (mssileRun)

((W Movabl e*) mi ssi | e) - >Set Tr ansf or n(i ssi | eTrans);
((W Movabl e*) not or) - >Set Tr ansf or n{ not or Tr ans) ;

}
((W Movabl e*) whol e) - >MovAxi sRot ation(Y, transY*Pl/180);

br eak;

case 1:

case 2: turretRotation(transY*PlI/ 180, part);
br eak;

case 3: poleRotation(transY*Pl/180);
br eak;

79

case 4: headRotation(transY*Pl/180);
br eak;

case 5: t opRot ati on(transx*Pl/180);
br eak;

case 6: i f (pol eEl evate) radarRotation(transX);
br eak;

case 7: i f (pol eEl evate) screenRotation(transX);
br eak;

}

/** Controls if if the specified node path contains any of the instance's novabl e
geonetries. If so, a task is activated that rotates the geonmetry accordingly!
*/
voi d HHBanse: : chkNode(W NodePat h *nodePat h)
{

extern HHVi rtual Manual *application;

i nt current NodeNum
W Node *current Node;

current NodeNum = nodePat h- >NumNodes() - 1;

char *nane;
while (0 <= current NodeNum

{
current Node = nodePat h- >Get Node(cur r ent NodeNun) ;

if (NULL != current Node)
{

nane = current Node- >Get Nane() ;

if ((left == currentNode) || ((NULL != nanme)&&(0 == strcnp(nane, left-
>GetNane()))))

appl i cati on- >set ManSt at e(BAMSE_TURRET) ;
turret El evati on(TRUE) ;
br eak;

}
else if ((right == currentNode)|| ((NULL != nane)&&(0 == strcnp(nane, right-
>Get Nare()))))

appl i cati on- >set ManSt at e(BAMSE_TURRET) ;
turret El evati on(FALSE);
br eak;

}
else if ((pole == currentNode)|| ((NULL != nane)&&(0 == strcnp(nane, pole-
>Cet Nanme()))))

appl i cati on- >set ManSt at e(BAMSE_POLE) ;
if (!pol eRun)

if (pol eEl evate)

headAngl e = 180;

pol eAngl e = 90;

pol eEl evat e = FALSE;
}
el se

headAngl e =

pol eAngl e = O;

pol eEl evate = TRUE;
}

if (0 !'= radarAngle)
{ radar Task = new W Task(thi s, HHBanse:: HHRadar Task, 1.f);
i}f (0 !'= screenAngl e)

i screenTask = new W Task(thi s, HHBanse:: HHScreenTask, 1.f);

80

pol eRun = TRUE;

pol eTask = new W Task(thi s, HHBanse:: HHPol eTask, 1.f);

}

br eak;

}
else if ((whole == currentNode)||((NULL != name)&&(0 ==
>Get Nare()))))
appl i cati on->set ManSt at e(BAMSE_WHOLE) ;

current NodeNum - ;

}

/** Returns the mdpoint of the whole geonetry.
*/
W P3 HHBanse: : get M dpoi nt ()

W P3 mi dpoi nt;
((W G oup*) whol e) - >Get M dpoi nt (mi dpoint);

return mdpoint;

}

voi d HHBamse: : nul | ALl (BOOL justOrient)

{
((W Movabl e*) whol e) - >Set Tr ansf or n{ whol eTr ans) ;
((W Movabl e*) t op) - >Set Tr ansf or n{t opTr ans) ;
((W Movabl e*) radar) - >Set Tr ansf or m(r adar Tr ans) ;
((W Movabl e*) screen) - >Set Tr ansf or n{ screenTr ans) ;
radar Angle = 0.f;
screenAngle = 0.f;

if ('justOrient)
if (('leftRun)&&(!IeftElevate))
{

turret El evati on(TRUE) ;
}

if ((!pol eRun) &&(! pol eEl evat e))

headAngl e
pol eAngl e = 0;

pol eEl evate = TRUE;

pol eRun = TRUE;

pol eTask = new W Task(thi s, HHBanse:: HHPol eTask, 1.f);

}
BOOL HHBanse: :turretEl evati on(BOOL |eft)
{

if (!nissileRun)

if ((!'leftRun)&&(!rightRun))

strcnp(nane, whol e-

if (left)
if (leftElevate)
{
| eft Angle = 60;
| eft El evate = FALSE;
| eft Run = TRUE;
| eft Task = new W Task(thi s, HHBanse:: HHLeft Task, 1.f);
}
el se
{

if (rightElevate)
{

el evateQt her = TRUE;
turret El evati on(FALSE);

el se

| eft Angl e

= 0;
| eftEl evate =

TRUE;

81

| eft Run = TRUE;
| eft Task = new W Task(this, HHBanse::HHLeft Task, 1.f);

}
}
return TRUE;
}
el se
if (rightElevate)
ri ght Angle = 60;
ri ght El evate = FALSE;
ri ght Run = TRUE;
ri ght Task = new W Task(thi s, HHBanse:: HHRi ght Task, 1.f);
}
el se
{ .
if (leftElevate)
{
el evat et her = TRUE;
turret El evati on(TRUE) ;
}
el se
{
right Angle = 0;
ri ght El evate = TRUE;
ri ght Run = TRUE;
ri ght Task = new W Task(thi s, HHBanse::HHRi ght Task, 1.f);
}
return TRUE;
}
}
}
return FALSE;
}
/** 1s the left turret el evated? Return TRUE or FALSE.
*
/
BOOL HHBanse: :islLeft()
{
return | eftEl evate;
}
/**/
/*** STATI C METHODS. . . *kx |

[R KK Kk ok kR Kk ok ok ok kR KRk k ok kK ARk kk kR ARk kk kR ARk k ok kR ARk k ok ok ok Ak k ok kR Ak k ok kR Rk ok k ok kR Rk kk ok kR Rk kk ok ok ok ok k [

/** The rotation task function for the HHBanmse instance's left turret geonetry.
*
/
voi d HHBanse: : HHLef t Task(voi d *nyRot ati on)
{

if (((HHBanse*)nyRotation)->leftElevate)
{

((HHBanse*) nyRot ation)->rotate(1, -1, 1);

((HHBamse*) myRot ati on) - >l eft Angle += 1;

if (((HHBanse*)nyRotation)->leftAngle >= 60)
((HHBanse*) nyRot ati on) - >l eft Run = FALSE;
del ete ((HHBanmse*) nmyRot ati on)->| ef t Task;
((HHBanse*) nyRot at i on) - >l eft Task = NULL;

el se

((HHBanse*) nyRot ation)->rotate(1, 1, 1);

((HHBanse*) nyRot ation)->leftAngle -= 1;

i f (((HHBanse*)nyRotation)->leftAngle <= 0)
((HHBanse*) nyRot ati on) - >l eft Run = FALSE;
if (((HHBanse*) nyRot ati on)->el evat eQt her)
{

((HHBanse*) nyRot at i on) - >el evat e her = FALSE;
((HHBanse*) nyRot ati on) - >t urret El evati on(FALSE) ;

82

}

del ete ((HHBanmse*) nmyRot ati on)->| ef t Task;
((HHBanse*) nmyRot at i on) - >l eft Task = NULL;

}

/** The rotation task function for the HHBanmse instance's right turret geonetry.
*
/
voi d HHBanse: : HHRi ght Task(voi d *nyRot ati on)

if (((HHBamse*) myRotation)->rightEl evate)

((HHBanse*) nyRot ati on)->rotate(1, -1, 2);
((HHBamse*) myRot ati on) - >ri ght Angle += 1;

i f (((HHBanse*)nyRot ation)->rightAngle >= 60)
{

((HHBanse*) nyRot ati on) - >ri ght Run = FALSE;
del ete ((HHBanmse*)nyRot ati on)->ri ght Task;
((HHBanse*) myRot at i on) - >ri ght Task = NULL;

el se

((HHBanse*) nyRot ation)->rotate(1, 1, 2);
((HHBanse*) nyRot ati on)->rightAngle -= 1;

i f (((HHBanse*)nyRotation)->rightAngle <= 0)
{

((HHBanse*) nyRot ati on) - >ri ght Run = FALSE;
if (((HHBamse*) myRot ati on)->el evat eQt her)

((HHBamse*) myRot at i on) - >el evat et her = FALSE;
((HHBanse*) nyRot ati on) - >t urret El evati on(TRUE) ;

}

del ete ((HHBanmse*)nyRot ati on)->ri ght Task;
((HHBanse*) nyRot ati on) - >ri ght Task = NULL;

}

/** The rotation task function for the HHBanse instance's radar pylon geonetry.
*/
voi d HHBamnse: : HHPol eTask(voi d *nyRot ati on)

if (((HHBanmse*) nyRot ati on) - >pol eEl evat e)
{

((HHBanse*) nyRot ati on) - >pol eAngl e += 1;
i f (((HHBanse*)nyRot ati on) - >pol eAngl e <= 90)
((HHBanse*) nyRot ation)->rotate(1l, (float)(90 - ((HHBanse*)nyRotation)-
>pol eAngl e), 3);

((HHBanse*) nyRot at i on) - >headAngl e += 2;
i f (((HHBanse*)nyRot ati on) - >headAngl e <= 180)
((HHBanse*) nyRot ati on)->rotate(1l, (float)(180 - ((HHBanse*)nyRotation)-
>headAngl e), 4);
el se

((HHBanse*) nyRot at i on) - >pol eRun = FALSE;
del ete ((HHBanse*) nmyRot ati on)->pol eTask;
((HHBanse*) nyRot at i on) - >pol eTask = NULL;

el se

((HHBanse*) nyRot ati on) - >pol eAngle -= 1;
i f (((HHBanse*)nyRot ati on) - >pol eAngl e >= 0)
((HHBanse*) nyRot ati on)->rotate(1l, (float)(90 - ((HHBanse*)nyRotation)-
>pol eAngl e), 3);

((HHBamse*) nyRot at i on) - >headAngl e -= 2;
if (((HHBanse*)nyRotati on) - >headAngl e >= 0)
((HHBanse*) nyRot ati on)->rotate(1, (float)(180 - ((HHBanse*)nyRotation)-
>headAngl e), 4);
el se

83

}

/**

*/

((HHBanse*) nyRot at i on) - >pol eRun = FALSE;
del ete ((HHBanmse*) nmyRot ati on) - >pol eTask;
((HHBanse*) nmyRot at i on) - >pol eTask = NULL;

The rotation task function for the HHBanmse instance's radar 'head geonetry.

voi d HHBanse: : HHRadar Task(voi d *nyRot ati on)

{

}
/**

*/

if (((HHBamse*) myRot ati on)->radarAngle < 0)
{

((HHBanse*) nyRot ati on) - >radarAngle += 7.f * PI/180;

i f (((HHBanse*)nyRot ati on)->radarAngle > 0) ((HHBanse*)nyRotati on)->radarAngl e

else if (((HHBanse*)nyRotation)->radarAngle > 0)

((HHBamse*) nmyRot ati on) - >radarAngle -= 7.f * PI/180;

i f (((HHBanse*)nyRot ation)->radarAngle < 0) ((HHBanse*)nyRot ati on)->radarAngl e

((HHBanse*) nyRot at i on) - >r adar Rot ati on(0.f); /1 Just to update the screen!

if (0 == ((HHBanse*) nyRot ati on) - >r adar Angl e)

del ete ((HHBanse*)nyRot ati on) - >r adar Task;
((HHBanse*) nyRot at i on) - >r adar Task = NULL;

The rotation task function for the HHBanmse instance's radar disc geonetry.

voi d HHBanse: : HHScr eenTask(voi d *nyRot ati on)

{

}

((HHBanse*) myRot at i on) - >screenAngl e -= Pl /180;

if (((HHBanse*) myRotation)->screenAngle < 0) ((HHBanse*)nyRotation)->screenAngle = 0;

((HHBanse*) nyRot ati on) - >screenRotation(0.f); // Just to update the screen!

if (0 == ((HHBanmse*) nmyRot ati on) - >scr eenAngl e)

del ete ((HHBanse*)nyRot ati on)- >screenTask;
((HHBanse*) nyRot at i on) - >screenTask = NULL;

/**/

[*** PRI VATE METHODS. ..

[R K KKk ok kR Kk ok ok kKRR k ok kR ARk Kk kR ARk kk kR ARk k ok kR Ak ok ok kAR k ok kR Ak k ok kR Ak k ok kR Ak k ok kR Rk kk ok ok ok ok k [

/**

*/

Loads all the geonetry used by the instance and rotates it 180 degrees,

***/

to conpensate

for the fact that VRML 1.0 has an inverse coordi nate system conpared to WK

voi d HHBanse: : | oadGeonetry()

{

}

/**

*/

float trans[3] = {-2, -2, 0};

W P3 turretTrans(trans);

whol e = MovNodeLoad(" xxxxBanse. wrl", 1.f);
whol e- >Set Nane(" Wol e");

conmput eTurrets();
conput ePol e() ;

separ at eTop() ;

theParent = NULL;

((W Movabl e*) whol e) - >MbvAxi sRotation(Z, Pl);
((W Movabl e*) whol e) - >Get Tr ansf or n{ whol eTr ans) ;

| oadM ssi l e();

Destroys the geonetry that previously have been | oaded.

PRECON: The geonetry nust have been | oaded using | oadGeonetry().

84

voi d HHBanse: : destroyGeonetry()

del et e whol e;
//delete turret;

}
/** Rotates the HHBamse instance's turret geonetry the given angle (in radians)
. around a point at the base of the missile turret.
voi d HHBanse: :turret Rotati on(float angle, int part)
W P3 transl ation;

if (1 == part)
{

translation[0] = leftExt[0];
translation[1] = -leftExt[1];
translation[2] = O;

((W Movabl e*)l eft)->Transl ate(transl ati on, WIFRAME_LOCAL) ;
((W Movabl e*) | eft) - >MovAxi sRot ation(Z, angle);

translation[0] *= -1;
translation[1] *= -1;
((W Mvabl e*) 1 eft)->Transl ate(transl ati on, WIFRAME_LOCAL) ;

}

else if (2 == part)

{
transl ation[0] ri ght Ext[0];
transl ation[1] -rightExt[1];
transl ation[2] 0;
((W Mvabl e*)right)->Transl ate(transl ati on, WI'FRAVE_LCCAL) ;

((W Movabl e*) ri ght) - >MovAxi sRot ation(Z, angle);

translation[0] *= -1;
translation[1] *= -1;
((W Mvabl e*)right)->Transl ate(transl ati on, WI'FRAVE_LCCAL) ;

}

/** Rotates the radar pylon geonetry the specified angle.
*
/
voi d HHBanse: : pol eRot ati on(fl oat angl e)
{
WM r, s;
W P3 transl ation;

((W Movabl e*) radar) - >Get Transforn(r);
((W Movabl e*) screen) - >Get Transf orn(s) ;

((W Movabl e*) pol e) - >Set Tr ansf or n{ pol eTr ans) ;
((W Movabl e*) head) - >Set Tr ansf or n{ headTr ans) ;
((W Movabl e*) radar) - >Set Tr ansf or m(r adar Tr ans) ;
((W Movabl e*) screen) - >Set Tr ansf or n{ screenTr ans) ;

transl ation[0] 8.f;

translation[1] -pol eExt[1];
transl ation[2] 0;
((W Movabl e*) pol e) - >Transl ate(transl ati on, WIFRAVE_LOCAL) ;

((W Movabl e*) pol e) - >MovAxi sRot ation(Z, -angle);

translation[0] *= -1;
translation[1] *= -1;
((W Movabl e*) pol e) - >Transl ate(transl ati on, WIFRAME_LOCAL) ;

((W Movabl e*) radar) - >Set Transforn(r);
((W Movabl e*) screen) - >Set Tr ansf or n(s) ;
}

/** Rotates the radar the given angle.
*
/
voi d HHBanse: : headRot ati on(fl oat angl e)
{
WM r, s;
W P3 transl ation;

85

((W Movabl e*) radar) - >Get Transforn(r);
((W Movabl e*) screen) - >Get Transforn(s) ;

((W Movabl e*) head) - >Set Tr ansf or n{ headTr ans) ;
((W Movabl e*) radar) - >Set Tr ansf or m(r adar Tr ans) ;
((W Movabl e*) screen) - >Set Tr ansf or n(screenTr ans) ;

translation[0] = O;
translation[1l] = -headExt[1];
translation[2] = 0;

((W Movabl e*) head) - >Transl ate(transl ati on, WIFRAVE_LOCAL) ;
((W Movabl e*) head) - >MovAxi sRot ati on(Z, angle);

translation[1] *= -1;
((W Movabl e*) head) - >Transl ate(transl ati on, WIFRAVE_LOCAL) ;

((W Movabl e*) radar) - >Set Transformn(r);
((W Movabl e*) screen) - >Set Tr ansf or n{(s) ;

}

/** Rotates the base of the missile turrets the given angle.
*
/
voi d HHBanse: : t opRot ati on(fl oat angl e)
{
WM h, p, I, r, rd, s;
W P3 translation;

((W Movabl e*) head) - >Get Tr ansf or n(h) ;
((W Movabl e*) pol e) - >Get Tr ansf or n(p) ;
((W Movabl e*) | eft)->CGet Transforn(l);
((W Movabl e*)ri ght)->Get Transforn(r);
((W Movabl e*) radar) - >Get Transforn{(rd);
((W Movabl e*) screen) - >Get Transf orm(s) ;

((W Movabl e*) head) - >Set Tr ansf or n{ headTr ans) ;

((W Movabl e*) pol e) - >Set Tr ansf or n{ pol eTr ans) ;

((W Movabl e*) | eft) ->Set Transforn(| eft Trans);

((W Movabl e*) ri ght) - >Set Transf orn(ri ght Trans);

((W Movabl e*) radar) - >Set Tr ansf or n{ r adar Tr ans) ;

((W Movabl e*) screen) - >Set Tr ansf or n{ screenTr ans) ;

if (mssileRun)

{
((W Movabl e*) m ssi | e) - >Set Transf or m(mi ssi | eTrans);
((W Movabl e*) not or) - >Set Tr ansf or m(not or Tr ans) ;

transl ation[0]
transl ation[1] 0;
transl ation[2] 0;

((W Movabl e*)top) ->Transl ate(transl ati on, WIFRAME_LOCAL) ;

-31.f;

((W Movabl e*) t op) - >MbvAxi sRot ati on(Y, angle);

translation[0] *= -1,
((W Movabl e*)top) ->Transl ate(transl ati on, WIFRAME_LOCAL) ;

((W Movabl e*) head) - >Set Tr ansf or n(h) ;
((W Movabl e*) pol e) - >Set Tr ansf or n(p) ;
((W Movabl e*) | ef t)->Set Transforn(l);
((W Movabl e*)ri ght)->Set Transforn(r);
((W Movabl e*) radar) - >Set Transf orn{(rd);
((W Movabl e*) screen) - >Set Transf or n(s) ;

}

/** Rotates the radar head the given angle.

*/
voi d HHBanse: : radar Rot ati on(fl oat angl e)

WM s;
W P3 transl ation;

((W Movabl e*) screen) - >Get Transf orn(s) ;
((W Movabl e*) radar) - >Set Tr ansf or n{ r adar Tr ans) ;

86

((W Movabl e*) screen) - >Set Tr ansf or n{ screenTr ans) ;

if ((radarAngle + angle) < (-3*Pl))
angle = (-3*Pl) - radarAngle;
else if ((radarAngle + angle) > (3*Pl))
angle = (3*Pl) - radarAngle;
radar Angl e += angl e;

translation[0] =
translation[1] =
translation[2] =
((W Movabl e*) r adal

>Transl ate(transl ati on, WIFRAME_LOCAL) ;

)

((W Movabl e*) radar) - >MobvAxi sRot ati on(Y, radarAngle);

5. f
0.f
0.f
r)-

translation[0] *= -1,
((W Movabl e*) radar) - >Transl at e(transl ati on, WIFRAME_LCOCAL) ;

((W Movabl e*) screen) - >Set Tr ansf or n{(s) ;
}

/** Rotates the radar disc the given angle.
*
/
voi d HHBanse: : screenRot ati on(fl oat angl e)

W P3 transl ation;

if ((screenAngle + angle) < 0)
angl e = -screenAngl e;
else if ((screenAngle + angle) > (PI/2))
angle = (PI/2) - screenAngle;
screenAngl e += angl e;

((W Movabl e*) screen) - >Set Tr ansf or n(screenTr ans) ;

translation[0] = 4.5f;
translation[1] = 5.f;
translation[2] = O.f;

((W Movabl e*) screen) - >Transl ate(transl ati on, WIFRAVE_LOCAL) ;
((W Movabl e*) screen) - >MovAxi sRot ati on(Z, -screenAngle);

translation[0] *= -1;

translation[1] *= -1;

((W Movabl e*) screen) - >Transl ate(transl ati on, WIFRAME_LCOCAL) ;
}

/** Separates the novable parts of the geonetry fromthe other geonetry and
converts themto novabl e nodes.
*/
voi d HHBanse: : separ at eNode(W Node *current Node, char* nodeNane, HHParts whichPart)

if (rockOn)
{
char *name = current Node- >Get Nane() ;
if ((NULL != nane) &(0 == strcnp(nane, nodeNane)))

t heParent = current Node- >Cet Par ent (0) ;
nanme = theParent->GCet Nanme();

if (NULL == theParent)
Wnmessage("Unabl e to trace node...\n");
el se

{
int childNum = ((W G oup*)theParent)->NuntChildren();

for (theLocation=0; theLocation<childNum thelLocation++)
if (((WGoup*)theParent)->CGet Child(theLocation) == currentNode)
br eak;

switch (whichPart)

{
case LTURRET: | ef t - >AddChi | d(curr ent Node) ;
br eak;
case RTURRET: ri ght - >AddChi | d(current Node) ;
br eak;

87

case POLE: pol e- >AddChi | d(current Node) ;

br eak;
case HEAD: head- >AddChi | d(current Node) ;
br eak;
case TOP: t op- >AddChi | d(cur r ent Node) ;
br eak;
case RADAR: r adar - >AddChi | d(curr ent Node) ;
br eak;
case SCREEN: screen->AddChi | d(current Node) ;
br eak;
}
}
rockOn = FALSE;
}
el se
{ . . .
int children = ((W G oup*)current Node) - >Nunthi | dren();
if (0 != children)
{
for (int i=0; i<children; i++)
separ at eNode(((W G oup*) current Node) - >Get Chi | d(i), nodeNane,
whi chPart);
}
}
}
}

/** Performs all the calculations needed to convert the missile turrets to novabl e nodes.
*/
voi d HHBanse: : conput eTurrets()

{
left = new W MovSep(NULL) ;
| eft->Set Name("Left-turret");
rockOn = TRUE;
separ at eNode(whol e, "DOF_H RanmpV12", LTURRET);
if (NULL != theParent)
((W G oup*)theParent)->InsertChild(left, thelLocation);
((W G oup*) theParent)->Del et eChil d(thelLocation+1);
}
rockOn = TRUE;
separ at eNode(whol e, "H RorVU13", LTURRET);
if (NULL !'= theParent) ((W G oup*)theParent)->Del eteChild(theLocation);
rockOn = TRUE;
separ at eNode(whol e, "H RorVN14", LTURRET);
if (NULL != theParent) ((W G oup*)theParent)->Del eteChild(theLocation);
left->Get Extents(leftExt);
((W Movabl e*) | eft)->Get Transforn(l eft Trans);
/1 Search for right turret
right = new W MovSep(NULL);
ri ght->Set Name("Right-turret");
rockOn = TRUE;
separ at eNode(whol e, "DOF_H RanpH15", RTURRET);
if (NULL != theParent)
((W G oup*)theParent)->InsertChild(right, theLocation);
((W G oup*)theParent)->Del eteChil d(theLocati on+1);
}
rockOn = TRUE;
separ at eNode(whol e, "H Ror HUL6", RTURRET);
if (NULL !'= theParent) ((W G oup*)theParent)->Del eteChild(theLocation);
rockOn = TRUE;
separ at eNode(whol e, "H Ror HN17", RTURRET);
if (NULL != theParent) ((W G oup*)theParent)->DeleteChild(theLocation);
ri ght->Get Extents(rightExt);
((W Movabl e*) ri ght)->Get Transforn{ri ght Trans);
}
/** Performs all calculations needed to convert the whol e radar pylon to novable

nodes.

88

*
/
voi d HHBanse: : conput ePol e()

{
/1 Search for pole
pol e = new W MovSep(NULL) ;
pol e- >Set Nane(" Pol e") ;
rockOn = TRUE;
separ at eNode(whol e, "01719", PCOLE);
if (NULL != theParent)
((W G oup*)theParent)->lnsertChild(pole, theLocation);
((W G oup*)theParent)->Del eteChil d(theLocation+1);
}
rockOn = TRUE;
separ at eNode(whol e, "04136", POLE);
if (NULL != theParent) ((W G oup*)theParent)->DeleteChild(theLocation);
/1 Search for head
head = new W MovSep(NULL);
head- >Set Nane(" Head") ;
rockOn = TRUE;
separ at eNode(whol e, "01618", HEAD);
if (NULL != theParent)
{
pol e- >AddChi | d(head) ;
((W G oup*)theParent)->Del eteChil d(theLocation);
}
rockOn = TRUE;
separ at eNode(whol e, "04035", HEAD);
if (NULL !'= theParent) ((W G oup*)theParent)->Del eteChild(theLocation);
rockOn = TRUE;
separ at eNode(whol e, "H Vagga20", HEAD);
if (NULL != theParent) ((W G oup*)theParent)->DeleteChild(theLocation);
rockOn = TRUE;
separ at eNode(whol e, "M Vagga37", HEAD);
if (NULL !'= theParent) ((W G oup*)theParent)->Del eteChild(theLocation);
radar = new W MovSep(head);
r adar - >Set Nane(" Radar") ;
rockOn = TRUE;
separ at eNode(whol e, "02621", RADAR);
if (NULL != theParent) ((W G oup*)theParent)->DeleteChild(theLocation);
rockOn = TRUE;
separ at eNode(whol e, "04238", RADAR);
if (NULL !'= theParent) ((W G oup*)theParent)->DeleteChild(theLocation);
screen = new W MovSep(radar);
screen- >Set Nanme(" Radar Screen") ;
rockOn = TRUE;
separ at eNode(whol e, "d522", SCREEN);
if (NULL != theParent) ((W G oup*)theParent)->Del eteChild(theLocation);
rockOn = TRUE;
separ at eNode(whol e, "d1539", SCREEN);
if (NULL !'= theParent) ((W G oup*)theParent)->DeleteChild(theLocation);
head- >Get Ext ent s(headExt) ;
pol e- >Cet Ext ent s(pol eExt);
screen- >Cet Ext ent s(screenExt);
((W Movabl e*) head) - >Get Tr ansf or n{ headTr ans) ;
((W Movabl e*) pol e) - >Get Tr ansf or n{ pol eTr ans) ;
((W Movabl e*) radar) - >Get Tr ansf or m(r adar Tr ans) ;
((W Movabl e*) screen) - >Get Tr ansf or n(screenTr ans) ;
}

/** Separates and converts the base of the missile turrets.
*/

voi d HHBanse: : separ at eTop()

{
top = new W MovSep((W G oup*)whol e);
t op- >Set Nane(" Top") ;
rockOn = TRUE;
separ at eNode(whol e, "02511", TOP);
if (NULL !'= theParent) ((W G oup*)theParent)->DeleteChild(theLocation);
rockOn = TRUE;
separ at eNode(whol e, "03928", TOP);
if (NULL != theParent) ((W G oup*)theParent)->Del eteChild(theLocation);

89

rockOn = TRUE;

separ at eNode(whol e, "Left-turret", TOP);

if (NULL !'= theParent) ((W G oup*)theParent)->DeleteChild(theLocation);
rockOn = TRUE;

separ at eNode(whol e, "Right-turret", TOP);

if (NULL !'= theParent) ((W G oup*)theParent)->DeleteChild(theLocation);

((W Movabl e*) t op) - >Get Tr ansf or n(t opTr ans) ;

/***************** M SSI LE RELATED m *************************/

/** Loads the geonetry needed for the missile.
*/
voi d HHBanse: : | oadM ssil e()
{
m ssile = MovNodeLoad("xM ssile.wl", 1.f);
m ssi | e->Set Name("M ssile");

notor = MovNodelLoad("xMdtor.wl", 1.f);

not or - >Set Nane(" Mot or") ;

((W G oup*)m ssile)->AddChi | d(notor);

((W Movabl e*) not or) - >Get Tr ansf or n{i ni t Mot or Tr ans) ;

((W Movabl e*) mi ssi |l e)->Get Transforn{initMssileTrans);
}

/** Shoots a missile fromone of the turrets, specified by whi chOne.
*/
BOOL HHBanse: : shoot (i nt whi chOne)

if (!nissileRun)

if ((((whichOne < 3)&&(leftElevate)) || ((whichOne >=
3)&&(rightEl evate))) &&(! 1 eft Run) &&(! ri ght Run))
{

((W Movabl e*) not or) - >Set Tr ansf or n(i ni t Mot or Tr ans) ;
((W Movabl e*) mi ssi |l e) - >Set Transforn(initMssileTrans);

if (whichOne < 3)
((WGoup*)left)->AddChild(m ssile);
el se
((W G oup*)right)->AddChi |l d(missile);

swi t ch(whi chOne)

{
case 1: mTransl ation[0] = -40.f;
mransl ation[1] = 62.f;
miransl ation[2] = 0.f;
br eak;
case 2: nmTransl ation[0] = -40.f;
miransl ation[1] = 42.f;
miransl ation[2] = 0.f;
br eak;
case 3: nmTransl ation[0] = -40.f;
miransl ation[1] = 62.f;
mTransl ation[2] = -60. 5f;
br eak;
case 4: mTransl ation[0] = -40.f;
miransl ation[1] = 42.f;
nmTransl ation[2] = -60. 5f;
br eak;
}

((W Movabl e*) mi ssi | e) - >Transl at e(nilr ansl ati on, WIFRAVE_LOCAL) ;
((W Movabl e*) mi ssi | e) - >MovAxi sRotation(Z, PI/6.f);

((W Movabl e*) mi ssi | e) - >Get Transf orn(ni ssi | eTrans);
((W Movabl e*) not or) - >Get Tr ansf or n(not or Tr ans) ;

((W Movabl e*) mi ssi | e) - >CGet Transl ati on(nilransl ati on);
((W Movabl e*) not or) - >Get Transl ati on(noTransl ati on);
m ssil eRun = TRUE;

90

m ssi | eSepar at ed = FALSE;

m ssi |l eCount = 0;

mot or Angle = 0.f;

m ssil eTask = new W Task(thi s, HHBanse:: HHM ssil eTask, 1.f);
return TRUE;

}

return FALSE;
}

/** The task function that handl es the novenent of the mssile!
*/
voi d HHBanse: : HHM ssi | eTask(voi d *nyRot ati on)

{
W Node *tenp;

tenp = ((HHBanse*)nyRot ati on)->notor;

((W Movabl e*) t enp) - >Set Tr ansf or n{ ((HHBanse*) nyRot at i on) - >not or Tr ans) ;
tenmp = ((HHBanse*) nmyRot ati on)->m ssil e;

((W Movabl e*) t enp) - >Set Tr ansf or n{ ((HHBanse*) myRot at i on) - >ni ssi | eTrans);

if (!((HHBanse*) nyRotati on)->ni ssil eSepar at ed)
{

((HHBamse*) myRot at i on) - >nilr ansl ati on[0] += -15.f;
((W Movabl e*) t enp) - >Set Tr ansl ati on(((HHBanse*) nyRot ati on) - >nilr ansl ati on) ;

el se

((HHBanse*) nyRot ati on) - >nilransl ati on[0] += -45.f;
((W Movabl e*) t enp) - >Set Tr ansl ati on(((HHBanse*) nyRot ati on) - >nilr ansl ati on) ;

tenp = ((HHBanse*) nmyRot ati on) - >not or ;
((HHBanse*) nyRot at i on) - >m ssi | eCount ++;

((HHBanse*) nyRot ati on) - >motorAngle += Pl / 30.f;
((W Movabl e*) t enp) - >MovAxi sRot ation(Z, ((HHBamse*)nyRot ati on)->not or Angl e);

((HHBanse*) nyRot ati on) - >noTransl ation[0] += 45.f * 0.9f - 25/
((HHBanse*) nyRot at i on) - >m ssi | eCount ;
((HHBamse*) myRot ati on) - >moTransl ation[1] += -27.0f * 1.5f - ((HHBamse*)nyRotation)-
>mi ssi | eCount ;
((HHBanse*) nyRot ati on) - >mdTransl ation[2] += 0.f;
((W Movabl e*) t enp) - >Set Tr ansl ati on(((HHBanse*) nyRot ati on) - >noTr ansl ati on);
}

if (((HHBanse*)nyRotation)->nlransl ation[0] < -200) ((HHBanse*)nyRotation)-
>m ssi | eSeparated = TRUE;

if (((HHBamse*) nmyRotation)->nilranslation[0] < -2650)

{

((HHBanse*) nyRot at i on) - >m ssi | e- >Renove() ;

((HHBanse*) nyRot ati on) - >m ssi | eRun = FALSE;
del ete ((HHBanse*)nyRotati on)->m ssil eTask;
((HHBamse*) myRot ati on) - >m ssi | eTask = NULL;

91

