
Computer Science

Bachelor’s Project

2000-10

Per-Anders Johansson

Magnus Nilsson

Evaluation of Web Application Servers

© 2000 The author(s) and Karlstad University

Evaluation of Web Application Servers

Per-Anders Johansson

Magnus Nilsson

iii

This report is submitted in partial fulfillment of the requirements for the

Bachelor’s degree in Computer Science. All material in this report which is

not my own work has been identified and no material is included for which

a degree has previously been conferred.

Per-Anders Johansson

__

Magnus Nilsson

Approved, 2000-05-31

Advisor: Niklas Nikitin

Examiner: Stefan Lindskog

iv

Abstract

A web/application server is used to deliver statically or dynamically built web content to cli-

ents on the World Wide Web. This document describes testing of a number of

web/application servers and the criteria with which you can evaluate them. The purpose is to

create guidelines that can be used by Ericsson Infotech to evaluate web/application servers.

v

Credits

We would like to recognize our appreciation to the following people:

Anders Berg, our instructor at Ericsson Infotech: For everything.

Niklas Nikitin, our supervisor at Karlstad University: For guiding us through this project.

Helena Lindskog: For reading our work and for contributing with good ideas on how to

evolve it.

Mikael Johansson: For reading our work and for contributing with good ideas on how to

evolve it.

Richard Hellberg: Our coach at Ericsson Infotech.

vi

Contents

1 Introduction... 1

2 Terminology... 2

3 Background ... 3

3.1 History ... 3

3.2 Task ... 4

3.3 Purpose .. 4

4 Method ... 5

4.1 Choosing the web/application servers ... 5

4.2 Choosing evaluation criterions .. 6
4.2.1 The performance criterion
4.2.2 The technologies criterion
4.2.3 The price criterion
4.2.4 The support criterion
4.2.5 The tools criterion

5 Background Information.. 10

5.1 Literature ... 10

5.2 Lab environment.. 10

5.3 Technologies.. 11
5.3.1 CGI-Technologies
5.3.2 CGI-implementations
5.3.3 CORBA
5.3.4 Enterprise Java Beans
5.3.5 JDK
5.3.6 JSP
5.3.7 Java Servlets
5.3.8 XML

6 Evaluation.. 15

6.1 Apache-JServ... 15
6.1.1 Installing Apache-JServ on Windows NT
6.1.2 Performance
6.1.3 Technologies
6.1.4 Price
6.1.5 Support
6.1.6 Tools

vii

6.2 Apache-Tomcat ... 18
6.2.1 Installing Apache-Tomcat on Windows NT
6.2.2 Performance
6.2.3 Technologies
6.2.4 Price
6.2.5 Support
6.2.6 Tools

6.3 BEA WebLogic Server.. 20
6.3.1 Installing BEA WebLogic Server on Windows NT
6.3.2 Performance
6.3.3 Technologies
6.3.4 Price
6.3.5 Support
6.3.6 Tools

6.4 IBM WebSphere .. 22
6.4.1 Installing IBM WebSphere on Windows NT
6.4.2 Performance
6.4.3 Technologies
6.4.4 Price
6.4.5 Support
6.4.6 Tools

6.5 Sybase Enterprise Server ... 24
6.5.1 Installing Sybase Enterprise Server on Windows NT
6.5.2 Performance
6.5.3 Technologies
6.5.4 Price
6.5.5 Support
6.5.6 Tools

7 Summary.. 27

References ... 29

A Installation of Apache and Apache JServ on Solaris... 30

B Performance test ... 31

B.1 HelloWorld HTML test page... 31

B.2 HelloWorld Java Servlet test application .. 31

B.3 StringManip Java Servlet test application ... 32

C Extra Task ... 33

C.1 Results ... 34

C.2 Source code.. 35

ix

List of Figures

Figure 3.1: Three-tier application overview. .. 4

Figure 5.1: Overview of our lab environment... 10

Figure 5.2: Relationship between technologies. ... 11

x

List of tables

Table 4.1: Evaluation criterions .. 6

Table 4.2: Evaluation test suit... 7

Table 6.1: Result from performance test on Apache-JServ .. 16

Table 6.2: Supported technologies in Apache-JServ .. 17

Table 6.3: Result from performance test on Apache-Tomcat... 18

Table 6.4: Supported technologies in Apache-Tomcat... 19

Table 6.5: Result from performance test on BEA WebLogic Server 20

Table 6.6: Supported technologies in BEA WebLogic Server ... 21

Table 6.7: Result from performance test on IBM WebSphere ... 23

Table 6.8: Supported technologies in IBM WebSphere ... 23

Table 6.9: Result from performance test on Sybase Enterprise Server 25

Table 6.10: Supported technologies in Sybase Enterprise Server 25

Table C.1: Performance results from extra task.. 34

1

1 Introduction

This document is the result of a bachelor’s project at Ericsson Infotech in Karlstad. Our work

began at the end of January 2000 and went on until May 2000. The purpose of our study is to

clarify the strengths and weaknesses of different web/application servers, and thus find out if

one is better than the others. In this work we have used a number of evaluation criterions and

in order to understand the purpose of each evaluation criteria we have chosen to describe them

one by one.

The reason why we chose this bachelor’s project is that we wanted to know more about

how web/application servers work and why they are used on the Internet. We also felt that

Ericsson Infotech provides a good environment to work in and that our project would benefit

from the knowledge available there.

2

2 Terminology

CGI Common Gateway Interface

CORBA Common Object Request Broker Architecture

EIN Ericsson Infotech

EJB Enterprise Java Beans

FAQ Frequently Asked Questions

GUI Graphical User Interface

HTML Hyper Text Markup Language

IIS Internet Information Server

JDK Java Development Kit

JSDK Java Servlet Development Kit

JSP Java Server Pages

JVM Java Virtual Machine

OMG Object Management Group

SSL Secure Sockets Layer

XML Extensible Markup Language

3

3 Background

In this chapter, we will describe the background to our Bachelor’s project. It also includes

some history about web/application servers, such as how they got an important place on the

Internet and why they are needed. We will also describe the main problem and the purpose of

our Bachelor’s project.

3.1 History

Our task in this Bachelor's project was to evaluate different web/application servers. To give a

short description on the area of web/application servers we have tried to put together a short

resume on the subject.

Ever since the day that Tim Berners-Lee built the first web server at CERN1 [1], descen-

dants to this early version have been delivering static web-content to whom ever connected to

the web server. The desire to make web sites more application-like demanded that web serv-

ers could display web pages with content that was dynamically built based on output from

server-side applications. An example of server-side applications is a calendar application,

allowing the site user to schedule his or her week.

The entity that provides the application behavior is often viewed as the middle-tier in a

three-tier application [2] as can be viewed in Figure 3.1. The first tier, the front-end, is often a

web based user interface provided by a web server. Usually some kind of terminal2 will re-

ceive and show the interface to a user but for simplicity we will leave this part out and just

view the first three tiers. The second tier, the middle-tier, is the business logic that provides

the ability to get things done in the application. This part of the application often executes on

an application server.

In many enterprise-based applications a storage facility is required. This is often a database

of some sort and it belongs to the third-tier, the back-end of the application.

1 European Centre For Nuclear Research
2 The terminal could be a standard PC with a web browser or a cellular phone supporting the WAP-technology.

4

Figure 3.1: Three-tier application overview.

In some cases the application server is integrated into the web server but it might as well

be a standalone server. If the application server is integrated into a web server we will see

both servers as one entity and call it a web/application server. A web/application server has

one major advantage over a standalone application server; namely it can provide both a web

based user interface and the business logic in one entity.

In order to deploy applications that can be executed on a web/application server, develop-

ers needs a platform. Several platforms or technologies are available and we will give a short

description on how some of the technologies work in chapter 5. Some of the technologies

described are based on the Java technology e.g. Servlets and JSP, and some are based on

separate technologies e.g. CGI.

3.2 Task

In this bachelors project we will try to answer the following question: Is there a

web/application server that is better than other web/application servers?

3.3 Purpose

When EIN needs a web/application server they can’t say if one server is better than the other.

There are also a lot of web/application servers on the market, which makes it even harder to

choose one in specific. Each web/application server has it’s own special trademark and char-

acteristics.

Our task is to find out if there exists a web/application server that can meet all the require-

ments that EIN want from such a server.

5

4 Method

In the beginning of this bachelor’s project, our knowledge in this field was inadequate and

some studies were needed to understand the given problem. Our studies contained both lit-

erature studies and information seeking on the Internet. More information about our studies is

available in chapter 5.1. The first month of this project was used to raise the level of our

knowledge. As our understanding of web/application servers grew we began to look at

web/application servers available on the market. A discussion on how we narrowed the num-

ber of web/application servers down to the five we have decided to use can be viewed in

chapter 4.1.

Once the contenders were picked we concentrated our work on the evaluation criterions,

trying to find what was interesting to compare web/application servers with. Our intention

was to produce a list of evaluation criterions that could be used to simplify the evaluation pro-

cedure. For further details on how our web/application server evaluation criterion checklist

emerged, view chapter 4.2.

4.1 Choosing the web/application servers

There are two things you have to consider when you should compare a group of

web/application servers.

• The scope, how many web/application servers should be included?

• Which web/application servers are of interest?

When we decided how many web/application servers to evaluate we tried to balance two

opposite factors. First the number of web/application servers that EIN were interested in and

then the amount of time available for this project. Considering the given situation we decided

that five contending web/application servers would be appropriate. In the remaining part of

chapter 4.1 we will discuss how we selected the five contenders.

EIN had special interest in four web/application servers and that left one place open in our

survey. Since the thoughts behind EIN´s interest in some of the contending servers3 are un-

known to us we will focus this discussion on how we made our choice. At first we knew little

about different servers on the market so we began our search on a web site [4] that has spe-

3 Apache + JServ, Apache + Tomcat, Sybase Enterprise Application Server and IBM WebSphere.

6

cialized on evaluating different server software e.g. web/application servers. In their opinion

BEA WebLogic Server is a five star4 web/application server and one of the best

web/application servers they have tested. With this in mind we thought that BEA WebLogic

Server would be a worthy opponent to the web/application servers chosen by EIN.

4.2 Choosing evaluation criterions

This part of chapter 4 will discuss the thoughts behind our evaluation criterions. When we

first received the specifications for this project made by EIN, some evaluation criterions were

already mentioned. Table 4.1 describes the criterions used in this survey, the units in which

they are measured and their origin.

Evaluation criterion Unit of measurement Origin
Performance Milliseconds (ms) EIN
Technologies Qualitative EIN
Price USD / Entity EIN
Support Qualitative EIN
Tools Qualitative The authors

Table 4.1: Evaluation criterions

As can be seen in Table 4.1 several criterions are measured in qualitative form. This means

that it is hard to measure the criterion on any given scale. To be able to give some kind of

answer to the qualitative criterions we will try to conduct a discussion on the outcome of the

evaluation.

4.2.1 The performance criterion

This criterion is an outcome of EIN’s desire to obtain information on how fast (in millisec-

onds) a web/application server can respond to a certain request. We will decide this by letting

a client invoke three different tasks on a web/application server. We have decided to use a test

suit containing three different applications and we will describe them in Table 4.2 and a com-

plete view of the source code can be found in appendix B. When building our Servlet appli-

cations we have used Sun JDK-1.2.2-0015.

4 The scale reaches from one to five, one being the lowest and five the highest grade.
5 This information can be obtained by executing "java -fullversion" in the command prompt in Windows NT 4.0.

7

Name Purpose

HelloWorld.html Test the response time for a simple

html request.

HelloWorld.class Test the response time for a simple

Java Servlet displaying "Hel-

loWorld" on the calling client.

StringManip.class Test the response time for a Java

Servlet that concatenates string A

on to string B until string B is

20000 characters long. From the

beginning B is empty and A con-

tains 29 characters.

Table 4.2: Evaluation test suit

When testing the performance of our web/application servers we used the freeware pro-

gram Apache JMeter6. Apache JMeter can be used to test overall performance of a

web/application server. For example: Apache JMeter can simulate heavy load on a server or

network in order to evaluate the performance. The output from the program can be presented

in a various number of graphical diagrams or you can simply write the output-data to a file.

The performance test will be done in the following way. Apache JMeter will simulate one

thousand (1000) requests to each server and we will then calculate the highest response time,

the average response time, the median response time and the lowest response time for each

web/application server. The thousand (1000) requests are done by ten (10) different threads7

and each tread will wait three hundred (300) milliseconds between each call. As Table 4.1

implies we will measure the response time in milliseconds (ms).

4.2.2 The technologies criterion

This criterion will be used to evaluate which technologies the web/application server’s sup-

port. EIN needs this information to decide if a web/application server could be used in their

projects. We have decided to limit the number of technologies in this survey and we will only

6 Apache JMeter can be downloaded at http://java.apache.org/jmeter/dist/
7 Approximately 100 requests by each thread

8

cover the ones EIN showed interest in. For further details about the technologies view chapter

5.

4.2.3 The price criterion

In order for EIN to be able to include a web/application server in a project the price of the

web/application server is essential since it will affect the price of the complete product.

 When looking at the price criterion we will simply check how much the web/application

server will cost. We will only consider the price for the version used in this survey. As a unit

of measurement we will use the currency USD (US Dollar). If we have failed to obtain the

price in USD and instead found a price in SEK (Swedish krona) we will transform SEK to

USD using an exchange rate of 9:1. Usually we will obtain the price information from the

manufacturer homepage or equal.

4.2.4 The support criterion

When evaluating the support criterion we will look at what kind of support the manufacturer

will supply with their product. We will check whether upgrades are included in the package

and if so, for how long time. Maybe you will have to pay extra for any upgrade. We will also

investigate if there are any support number you can call or a mail address where you can get

help. To proceed with this work we have chosen to use five questions:

• How long after purchase can the customer get free support?

• In what ways can the customer receive support? (Fax, phone, e-mail)

• At what hours is the support available?

• Are upgrades free?

• For how long are upgrades free?

Our methods in this work are fairly arbitrary. We will try to illustrate the support available

for each web/application server by conducting a discussion based on the questions mentioned

above. We have obtained the support information through direct contact with representatives

from the manufacturers.

4.2.5 The tools criterion

The list of criterions produced by EIN seems to cover all of the interesting parts of the

evaluation work. We felt however that something was missing. As with all new areas of com-

puter science web/application servers tend to require a certain amount of knowledge in order

to profit from all built-in features. To make it easier to understand and administrate, some of

the web/application servers on the market are equipped with easy to use administration tools.

9

We will use this criterion to evaluate if this is the case with any of the web/application servers

in our survey.

10

5 Background Information

In this chapter we will try to give some background information concerning web/application

servers. We will discuss the source of our information and a short description of our lab envi-

ronment.

5.1 Literature

When we first began this work we didn’t know much about the different technologies avail-

able to deploy web applications on the Internet. Even though our main concern in this bache-

lor’s project was to evaluate which technologies the different web/application servers support,

we thought that a small introduction to the different technologies would come in handy. To

make this introduction we have used several books available at EIN [3][5] and some resources

on the Internet [2].

5.2 Lab environment

As you can see in Figure 5.1, our lab environment consists of one server and one client. The

client (3) is a standard PC running Microsoft Windows NT 4.0, with 64 MB RAM and a

Pentium processor working at 133 MHz. The server (1) is a PC running Microsoft Windows

NT 4.0, with 384 MB RAM and a Pentium II processor working at 266 MHz. The computers

are connected via a switched (2) network, running at 10 Mbit with half-duplex transfer rate.

Figure 5.1: Overview of our lab environment

If another platform is desired the server (1) could easily be replaced with another system

e.g. Solaris. As mentioned in chapter 4.2.1 we will use the Java based Apache JMeter as our

11

test tool. This makes it possible to run the performance test from any Java supporting platform

and we can easily replace our workstation (3) to fit our platform needs.

5.3 Technologies

This part of chapter 5 will discuss the different technologies mentioned in this evaluation.

Even though several pages or even books could be written about some of the technologies

mentioned below, our intention is to give a brief information about the different topics that

follows. Figure 5.2 shows the relationship between the technologies mentioned later in this

chapter. CORBA and EJB can to some extent be used in several of these areas, but for sim-

plicity we will leave them out of this figure.

Web server

JSP

Servlets

JDK

CGI - Technologies

ASP

CGI -
implementations

XML

Java implementations

Front tier

Middle tier

End tier
Technologies not

discussed in this

Bachelor’s project

Perl

C

C++

HTML

Data-
base

Figure 5.2: Relationship between technologies.

5.3.1 CGI-Technologies

GET and POST are two ways of delivering data from a web server to an application[5]. Sev-

eral technologies use GET or POST or equivalent methods to obtain the transfer between web

12

server and application. In this document we will use the term CGI-Technologies to describe

this relationship.

5.3.2 CGI-implementations

CGI was designed to enable a web server to communicate and execute applications outside of

the web server. A side effect of this is that a web server can receive parameters through an

HTML form, pass them to a CGI application, which returns the result to the server. The web

server then sends the result as an HTML document back to the client who can use a browser

to view it. A web server can use two different methods to transfer data to a CGI application,

the GET method and the POST method [5].

Because of the way that CGI works, it requires time and a lot of server resources [2],

making it less desirable as a development platform for web applications. To overcome the

weaknesses of CGI new techniques have been developed, techniques that are less resource

consuming. A CGI application can be based on different programming languages such as C,

C++ or PERL.

5.3.3 CORBA

CORBA was developed by OMG; it is an architecture for creating, distributing and managing

distributed program objects in a network. This means that different programs can communi-

cate between each other over a network via an “interface broker”. CORBA allows applica-

tions to communicate with one another no matter where they are located or who has designed

them.

The essential component in CORBA is the Object Request Broker (ORB). The (ORB) is

the middleware that establishes the client-server relationship between objects. Using an ORB,

a client can transparently invoke a method on a server object, which can be on the same ma-

chine or across a network. The client does not have to know where the object is located, its

programming language, its operating system, or any other system aspects that are not part of

an object's interface. Doing so, the ORB provides interoperability between applications on

different machines in distributed environments.

5.3.4 Enterprise Java Beans

Enterprise Java Beans are reusable components written in Java, for Java application develop-

ment. They run in the server-side of a client server network relationship. An example of this

could be a button that appears on a web page. Beans are "capsules" of code, designed for a

specific purpose. The advantage of Enterprise Java Beans over other standard components is

13

that Beans are independent. They are not specific to operating systems or development envi-

ronments. If you create a bean in one development environment, you can easily copy and

modify it in an another. This allows Java Beans to be more flexible in enterprise computing,

as components are easily shared between developers.

So instead of upgrading a lot of clients when a component is changed or added, you only

have to update the server instead of all clients. And this way you can distribute program com-

ponents to clients in a network.

5.3.5 JDK

A JDK contains all you need to develop, compile and run Java applications [9]. As with all

software, newer versions are frequently released and the latest version available at the current

time is 1.2.2.

5.3.6 JSP

JSP, or Java Server Pages, is a technology invented by Sun Microsystems. With Java Server

Pages you can create and maintain server-side HTML pages. These pages can be used both as

a kind of dynamic HTML and a replacement for CGI. Java Server Pages mixes static HTML

with dynamically generated HTML. The good side to this is that it’s more convenient to write

and/or modify regular HTML code than to have a lot of println statements that generates

HTML, which is the case in Servlets. You can compare Java Server Pages with Microsoft’s

Active Server Pages (ASP) or Embedded Perl scripts.

5.3.7 Java Servlets

Servlets are small Java programs (small servers), that run on web/application servers and

build web pages dynamically. Therefore you can compare it with CGI. Building web pages

dynamically can be very useful. An example is when you use a search engine or put some-

thing in a shopping-cart in a Webshop.

A Java thread in a single daemon process handles every request that comes in to a Servlet.

Servlets can also share data among other Servlets, which is an advantage when handling with

databases. Because Servlets are written in Java they are highly portable. For example they can

be run under Apache, Microsoft IIS or almost any major web/application server.

14

5.3.8 XML

XML is like HTML a “tag” language. But unlike HTML, where you have a fixed set of tags,

you define the tags as you go along. For example, if you like a tag to be named “<BACHE-

LORSPROJECT>” it’s ok. Also, unlike HTML, XML is a “valid” language, that means for

every start-tag you will need a stop-tag or else the parser will complain. When you make your

XML page you separate content from appearance, that means that you have the data in one

file and the layout/style in another. This way authors and designers can work more independ-

ently.

XML was derived from SGML (Standard Generalized Markup Language), and is a meta-

language8.

8 A meta-language is a language describing another language

15

6 Evaluation

In this chapter we will evaluate the web/application servers Apache-JServ, Apache-Tomcat,

IBM WebSphere, BEA WebLogic Server and Sybase Enterprise application server. Together

with EIN we came up with the following questions:

• Performance

- How will the web/application server handle stressful situations like many users at the

same time? Will it deal with it in a satisfying way?

• Technologies

- Does the web/application server support any special technologies, like Servlets,

CORBA or CGI?

• Price

- What is the cost of buying the web/application server?

• Support

- Is the web/application server supported? Does it cost extra? Are upgrades included in

the price?

• Tools

- Does the web/application server come with any development environments, or any-

thing else useful, like a GUI configuration tool?

We will try to answer all these questions and summarize it and see if there exists a

web/application server that is better than all the others.

6.1 Apache-JServ

Apache is one of the most used web servers on the Internet today. Combined with JServ

Servlet engine, Apache works as a web/application server. In this evaluation we have used

Apache web server version 1.3.12 and Apache JServ 1.1.

6.1.1 Installing Apache-JServ on Windows NT

Installing Apache-JServ on Windows NT is pretty straightforward. First we installed Apache

web server by following the installation wizard included. The next step was to integrate JServ

into apache; this to was easily done using the installation wizard for JServ.

16

6.1.2 Performance

The results from the Apache-JServ test on NT can be viewed in table 6.1. As you can see the

result differs a lot between the highest and lowest result. The lowest value could be the result

of a denied request and due to weaknesses in Apache JMeter we were unable to measure

them. This will affect the calculation of the average and median values and we think that the

highest value would be the most accurate value to use in this evaluation.

HelloWorld.html (ms) HelloWorld.class (ms) StringManip.class (ms)

Highest 511 531 9804

Average 96 126 5715

Median 70 110 6469

Lowest 10 10 70

Table 6.1: Result from performance test on Apache-JServ

As mentioned in chapter 7, a higher degree of accuracy could be obtained by using another

performance-test application. You should however see this results as guidelines and not as

statistically correct. Nevertheless it can be useful data when comparing between different

web/application servers.

6.1.3 Technologies

The different technologies supported by Apache-JServ can be viewed in Table 6.2. The lack

of support for new "hot" technologies like CORBA and EJB and the fact that JServ never will

support any higher version of Java Servlet API than 2.0 makes this combination less attractive

to web/application developers. Neither Apache nor JServ supports XML but there are solu-

tions to this weakness and one of them is Cocoon from The Apache XML project [8].

17

Technology Version/Supported

CGI Yes

CORBA No

EJB No

JDK 1.2.2

JSP No

Servlets 2.0

XML No

Table 6.2: Supported technologies in Apache-JServ

Apache-JServ is not JDK dependent, this means that you can use any JDK in your

web/application server runtime environment. The ability to execute CGI-applications is in-

cluded in the Apache web server and this might be useful if older9 web/applications are still

being used.

6.1.4 Price

Apache web server and JServ Servlet engine are both freeware and new version can easily be

downloaded at The Apache Software Foundation homepage [7]. Apart from some legal de-

tails concerning the Apache-JServ product name and under which form redistribution is al-

lowed, anyone is free to use and develop Apache-JServ to fit there needs.

6.1.5 Support

The Apache Software Foundation does not have any support agreement included in their

products. Instead the user can obtain information about bugs, upgrades and more on their

homepage [7]. The online support contains FAQ’s and guides that will help the user solve the

most ordinary problems.

6.1.6 Tools

No tools are included in the Apache-JServ configuration. The web/application environment is

established through the use of configuration files e.g. httpd.conf for the Apache web server.

Since the source code for both Apache and Jserv are available for everyone, tools may already

be available or perhaps under development. This type of resources usually ends up on the

Internet and can be downloaded from there.

18

6.2 Apache-Tomcat

In this chapter we will try to evaluate Apache combined with Tomcat. Tomcat is a Servlet

engine that is supposed to take over after the JServ Servlet engine and even further down the

line be integrated into Apache. In this survey we will use Tomcat 3.1 together with Apache

1.3.12. As can be seen in chapter 6.2.3 Tomcat supports newer versions of the Java Servlet

API compared to Jserv.

6.2.1 Installing Apache-Tomcat on Windows NT

Installing Apache-Tomcat on Windows NT does not differ too much from the installation of

Apache-JServ. First we installed Apache web server by following the installation wizard in-

cluded. The next step was to integrate Tomcat into apache. This was done with a little help

from the user manual included in the Tomcat distribution.

6.2.2 Performance

The result from the performance test on Apache-Tomcat can be viewed in Table 6.3. As

mentioned earlier this result is not statistically correct but it could be used as a guideline dur-

ing evaluations.

HelloWorld.html (ms) HelloWorld.class (ms) StringManip.class (ms)

Highest 481 1712 15032

Average 99 215 8425

Median 70 140 9153

Lowest 10 20 110

Table 6.3: Result from performance test on Apache-Tomcat

6.2.3 Technologies

Apache with Tomcat is a solid base for developers with interest for Java Servlet and

JavaServer Pages technology. Through the concern of Apache this web/application server

configuration grants access to the CGI technology. Even though CGI is on the verge of extinct

several web applications still use this technology and they should be able to use Apache-

Tomcat to overcome the transition. Table 6.4 describes in short the technologies supported by

Apache-Tomcat web/application server.

9 By older we mean applications based on C, C++, Perl and other.

19

Technology Version/Supported

CGI Yes

CORBA No

EJB 1.1

JDK 1.2.2

JSP 1.1

Servlets 2.2

XML No

Table 6.4: Supported technologies in Apache-Tomcat

As with Apache-JServ XML support can be obtained through the Cocoon [8] add-on from

the Apache Software Foundation.

6.2.4 Price

Apache web server and Tomcat Servlet engine are both freeware and new version can easily

be downloaded at The Apache Software Foundation homepage [7]. Apart from some legal

details concerning the Apache-Tomcat product name and some limits concerning redistribu-

tion, anyone is free to use and develop Apache Tomcat to fit there needs.

6.2.5 Support

The Apache Software Foundation does not have any support agreement included in their

products. Instead the user can obtain information about bugs, upgrades and more on their

homepage [7]. The online support contains FAQ’s and guides that will help the user solve the

most ordinary problems.

6.2.6 Tools

Apache-Tomcat web/application server does not come with any fancy development tools but

it does include the Ant build tool [7]. Ant can be viewed as a Java based equivalent to "make"

in the Unix world.

20

6.3 BEA WebLogic Server

BEA WebLogic Server has won a lot of awards and they claim to be the market leader with

their web/application server. The BEA WebLogic Server also supports Java, and is thought by

many to be the best web/application server for e-commerce. In this test we will use version

5.1.

6.3.1 Installing BEA WebLogic Server on Windows NT

Like most major Windows applications BEA WebLogic Server came with an installation wiz-

ard. By using the default settings, it was very easy to install the web/application server on our

machine.

6.3.2 Performance

The result from the performance test on BEA WebLogic Server can be viewed in Table

6.5. As mentioned earlier this result is not statistically correct but it could be used as a guide-

line during evaluations.

HelloWorld.html (ms) HelloWorld.class (ms) StringManip.class (ms)

Highest 921 461 6780

Average 102 74 4184

Median 60 50 4757

Lowest 10 10 100

Table 6.5: Result from performance test on BEA WebLogic Server

6.3.3 Technologies

As you can see in Table 6.6, BEA WebLogic Server provides a number of features that today

are industry standard components. Since BEA WebLogic Server is strongly connected to

Java, it supports the latest versions of EJB, JSP and Servlets.

21

Technology Version/Supported

CGI Yes

CORBA 2.2 (2.3)

EJB 1.1

JDK 1.2.2

JSP 1.1

Servlets 2.2

XML Yes

Table 6.6: Supported technologies in BEA WebLogic Server

BEA WebLogic Server also provides XML integration examples that will work with any

XML-compliant parser, and everything is provided for developers to build XML-enabled ap-

plications. If CORBA support is wanted you can easily integrate that with BEA WebLogic

Enterprise. CGI is also supported so those with many CGI applications will not be left out in

the cold. More information is available at the BEA homepage [11].

6.3.4 Price

As with many of the web/application server developers on the market, BEA delivers several

different editions of their server. We will list some of them below.

• WebLogic Server Base Edition/CPU USD 13 000

• WebLogic Server Cluster Edition/CPU USD 20 000

• WebLogic Commerce Server/CPU USD 52 000

• WebLogic Personalization Server/CPU USD 33 000

• WebLogic Server Developer license/license USD 3 300

As you can se the price varies depending on the version you are interested in.

6.3.5 Support

Once you purchase the BEA WebLogic Server you will have the option to choose what type

of support you want. Depending on the amount of availability you desire you’ll have various

packages to choose from. The lightest package stretches over office-hours (8 hours, 5

days/week), and the heaviest is “around the clock” support 365 days a year. Support is in-

cluded in the price the first year. After that the support fees are paid annually and entitle you

to new BEA product upgrades as long as the maintenance and support remains current. Cus-

tomers can receive support via phone, fax or e-mail.

22

6.3.6 Tools

The tools included in the test package wasn’t that rich, but BEA has a package, WebGain

Studio, which can be purchased separately. WebGain Studio is an integrated suite of tools to

support development of server applications. WebGain Studio provides an all-round suite that

contains all of the products required designing, developing, debugging, and deploying web

applications. Unfortunately no price information were available for WebGain Studio when we

wrote this evaluation.

6.4 IBM WebSphere

IBM WebSphere can be purchased in three different editions, Standard edition, Advanced

edition and Enterprise edition. In this evaluation we will use IBM WebSphere Standard edi-

tion version 3.02. Some of the differences between the editions will be discussed in chapter

6.4.3.

6.4.1 Installing IBM WebSphere on Windows NT

The installation was performed in three steps. First we installed IBM's own JDK 1.1.7p for

Windows NT. Then we installed the IBM HTTP Server version 1.3.6. And then finally IBM

WebSphere Application Server 3.02 Standard Edition. The four other web/application servers

we tested came with an installation wizard, and IBM WebSphere was no exception. By fol-

lowing the wizard it was quite simple to perform the installation.

6.4.2 Performance

Because IBM WebSphere requires a special JDK version10, it’s not completely fair to com-

pare the IBM WebSphere performance test with the other web/application performance tests.

Nevertheless the results between the two JDK versions shouldn’t differ too much.

A complete overview of the test result can be viewed in Table 6.7. As with all the other

performance tests done during this bachelor's project the statistical value can be discussed.

We will only consider these values as guidelines.

10 JDK 1.1.7 IBM

23

HelloWorld.html (ms) HelloWorld.class (ms) StringManip.class (ms)

Highest 671 480 10014

Average 85 123 2717

Median 50 100 2073

Lowest 10 10 60

Table 6.7: Result from performance test on IBM WebSphere

6.4.3 Technologies

The Standard edition of IBM WebSphere is pretty modest and some of the techniques sup-

ported are of older versions. IBM WebSphere lacks the ability to run on any JDK and as you

can se in our extra task in appendix C, the JDK version can have a crucial effect on the per-

formance. In Table 6.8 a complete listing of the supported technologies can be viewed.

Technology Version/Supported

CGI Yes

CORBA No

EJB No

JDK 1.1.7p (IBM JDK)

JSP 1.0

Servlets 2.1

XML 1.0

Table 6.8: Supported technologies in IBM WebSphere

IBM WebSphere Standard edition comes with support for XML technology, this makes it

complete as a lightweight application server but with no support for EJB and CORBA de-

manding web/application developers will be better off using the Advanced or Enterprise edi-

tion [10].

6.4.4 Price

As with most web/application servers IBM provides several distributions of WebSphere ap-

plication server. Potential customers can choose between Standard, Advanced or Enterprise

edition, all with different configuration and function. In this evaluation the price criterion will

be represented by WebSphere Standard Edition version 3.0.2 distributed on CD-ROM. As

24

mentioned above several other distributions are available and the price for these can easily be

obtained at ShopIBM [6]. The price for the distribution we have used is USD 755 and it to

was found at ShopIBM [6].

6.4.5 Support

IBM’s support service is quite extensive. Several support configurations are available and the

price depends on the content of each configuration. One support configuration contains an

upgrade protection, which can be signed for one or two years. If the customer choose a sup-

port configuration with upgrade protection IBM will provide newer versions as they appear.

Support is available during office hours but for customers with other needs, special agree-

ments can be arranged. Support from IBM can be obtained through phone, fax or e-mail.

6.4.6 Tools

IBM delivers WebSphere with two built-in tools, the HTTP server administration tool based

on a GUI and the site analysis tool [10]. The HTTP server administration tool will help the

server administrator configure and manage the HTTP server11. The site analysis tool can be

used to help the server administrator increase the performance of the HTTP server.

6.5 Sybase Enterprise Server

In this evaluation we will use Sybase Enterprise Server 3.5 Enterprise edition. This is a pack-

age containing several components including Sybase PowerJ 3.5, Sybase PowerBuilder 7,

Jaguar CTS and PowerDynamo.

6.5.1 Installing Sybase Enterprise Server on Windows NT

Installing Sybase Enterprise Server on Windows NT or any other Windows12 system for that

matter is often all about clicking the Next button, and so we did. During the installation we

choosed to include the Jaguar CTS component, which is the servlet-engine, and continued

through the installation wizard.

11 An HTTP server is equal to a web server, both provides the calling client with web pages.
12 Microsoft Windows 95 or Microsoft Windows 98

25

6.5.2 Performance

Table 6.9 displays the result obtained during our performance test of Sybase Enterprise

Server. Although this test is done with some accuracy the result is not statistically correct, we

have only done the performance test once and without statistic methods in mind.

HelloWorld.html (ms) HelloWorld.class (ms) StringManip.class (ms)

Highest 1241 501 17055

Average 131 99 7877

Median 90 80 10135

Lowest 10 10 50

Table 6.9: Result from performance test on Sybase Enterprise Server

6.5.3 Technologies

Sybase Enterprise Application Server seams to cover it all. As can be viewed in Table 4.1 all

of the technologies included in this survey are supported. Even if we didn’t find information

on which version that is supported in all of the technologies, a deeper investigation should

give an answer in this matter. In Table 6.10 all the supported technologies are listed.

Technology Version/Supported

CGI Yes

CORBA Yes

EJB 1.1

JDK 1.2.2

JSP 1.1

Servlets 2.2

XML Yes

Table 6.10: Supported technologies in Sybase Enterprise Server

6.5.4 Price

Sybase Enterprise Application Server is split up in two main packages. The package we

tested, the Development Edition, contains among several things a development suite were you

can develop your own Java applications. The other package, Small Business Edition, is a little

26

more expensive, about USD 3 200, but on the other hand it supports for example database

publishing. The price for the first package is USD 645.

6.5.5 Support

Sybase provides support on different levels or plans as they call it. The support is divided into

5 plans:

• Incident Plan

• Basic Plan

• Extended Plan

• Enterprise Plan

• Enterprise Plan Support Option

The differences between the different plans are the level of support included and the avail-

ability of the support. Some of the plans13 include new version release, which means that

newer versions can be obtained through the supplier. Users of the Incident Plan will have to

purchase an update subscription plan annually in order to receive new releases. For customers

with really high demands, Enterprise Plan Support Option is available. This plan will allow

the user to personalize the support to fit the need of their projects. All of the support plans

mentioned above expire after some time and renewal is vital in order to avoid difficulties ob-

taining support.

The support is usually available through several forms e.g. email lists, telephone and

through the Technical Library CD, containing technical documents. For multi-country instal-

lations global support agreements can be obtained, this will save the customer from having to

purchase a separate support agreement in each of the country they are active in.

6.5.6 Tools

Sybase Enterprise Application Server is a complete suit with development tools and servers.

Among many other components Sybase Enterprise Application Server contains a tool called

PowerJ [12]. PowerJ is supposed to help developers create Java programs without problems

and in a less time consuming fashion.

13 Basic plan, Extended plan and Enterprise plan.

27

7 Summary

It seems that different web/application servers have different advantages. In this evaluation

we have used five different web/application servers and we will now try to summarize the

outcome of our evaluation.

First we have the heavy group containing BEA WebLogic Server and Sybase Enterprise

Application Server. These servers are capable of handling new technologies and they often

come equipped with complete development tools and a large support organization to back

them up. Our opinion is that these web/application servers would suit developers of large web

based applications like e-commerce web-sites.

In this group we would choose Sybase Enterprise Server as the winner. The main reason

for this is that Sybase Enterprise Server comes with an easy-to-understand user interface and

good support. Also, you don’t have to edit any configuration files before you can get your

Servlets to work. On the other hand, Sybase Enterprise Server didn’t perform as well as BEA

WebLogic Server did in the performance test. But the overall impression leads Sybase Enter-

prise Server to victory.

The other group contains Apache-JServ, Apache-Tomcat and IBM WebSphere. Our opin-

ion, based on the impressions gained during this work, is that these web/application servers

though widely spread on the Internet lack the ability to compete with the other two regarding

supported technologies and tools available. The support for the Java Servlet technology does

however give these web/application servers a place on the Internet. Apache-Tomcat and it's

predecessor Apache-JServ has the advantage of being free, you can download them and in-

clude them in your projects without having to pay for them.

Even though IBM WebSphere have many similarities with Apache-JServ and Apache-

Tomcat one difference is the configuration and management tool included. This makes IBM

WebSphere more professional in its appearance but bare in mind that IBM WebSphere is a

commercial product.

Trying to summarize this group was not easy but we have decided that IBM WebSphere is

the winner. Even though some weak spots can be found (mostly regarding the old version of

the JDK), the overall impression is that this web/application server is a commercial product

with advantages like full-scale support, fully developed user interface and a fast Servlet en-

gine.

28

We feel that some future extensions could be made to make this work more complete.

From the beginning of this bachelor’s project our intentions was to test the performance in

both Windows NT (PC) and Sun Solaris (UNIX) environment. As we experienced a shortage

of time we decided to only run the performance test on Windows NT. The method we have

used should work fine on any Solaris systems, so an extension of our performance test could

easily be done. Some information on how to install Apache-JServ on Solaris can be found in

appendix A.

We also feel that more precise performance tests could be achieved if the following com-

ponents where made more accurate.

• A standalone lab environment with no connection to the other network.

• A more precise test application which reveals more information about each request e.g.

if the web/application server is too busy the test application will log this information

and not just regard it as a very fast response.

• Our methods regarding the calculation of test results could be made statistically cor-

rect.

• More work could be done to optimize the web/application server’s performance.

Both the configurations of the JVM and the web/application server could affect the per-

formance.

• On some systems the amount of logging could be of importance for the performance.

We have tried to introduce facts about the different contenders and our intention was to

give enough information to be able to compare them on by one. We feel however that more

could be done to make this evaluation more fair, other technologies like SSL and database

support could be measured and deeper investigations could lead to more information regard-

ing tools available for each web/application server.

29

References

[1] Ben Laurie and Peter Laurie. Apache The Definitive Guide. O’REILLY, 1997.

[2] Whatis.com. http://www.whatis.com. Whatis.com Inc, 2000.

[3] Jason Hunter and William Crawford. JAVA Servlet Programming. O’REILLY, 1998.

[4] ServerWatch.com. http://serverwatch.internet.com. Internet.com Corp, 2000-04-13.

[5] Mohammed J. Kabir. Apache Server Bible. IDG Books Worldwide Inc, 1998.

[6] ShopIBM. http://commerce.www.ibm.com. IBM Corp, 2000-04-28.

[7] The Apache Software Foundation. http://www.apache.org. The Apache Software Foun-
dation Org, 2000-04-28.

[8] The Apache XML Project. http://xml.apache.org/cocoon. The Apache Software Foun-
dation Org, 2000-04-28.

[9] The Source For Java Technology. http://java.sun.com. Sun Microsystems Inc, 2000-05-
03.

[10] IBM Corporation. http://ibm.com. IBM Corp, 2000-05-04.

[11] BEA Systems. http://www.bea.com. BEA Systems Inc, 2000-05-04.

[12] Sybase. http://www.sybase.com. Sybase Inc, 2000-05-11.

30

A Installation of Apache and Apache JServ on Solaris

While standing in the Apache source directory we first executed the following line:

./configure --prefix=/home/qinxpaj/APP_SERVERS/apache;

make;

make install;

Then we edited the httpd.conf –file located in the conf directory in the Apache directory.

There we set the variable ServerName.

To include so -(shared object) -support following line was executed:

./configure \

--prefix=/home/qinxpaj/APP_SERVERS/apache \

--enable-rule=SHARED_CORE \

--enable-module=so;

make install;

Now we were ready to install JServ. While standing in the JServ source directory we executed

this line:

./configure \

--prefix=/home/qinxpaj/APP_SERVERS/jserv \

--with-apache-src=/home/qinxpaj/shared/solaris/Uncompressed/apache_1.3.12 \

--with-jdk-home=/opt/JDK/jdk1.2_01 \

--with-JSDK=/home/qinxpaj/shared/solaris/JSDK/JSDK2.0/lib/jsdk.jar \

--disable-debugging;

make;

make install

After changing back to the Apache source directory we executed:

make;

make install

Finally we edited the httpd.conf –file located in the conf directory in the Apache directory.

There we added this line: Include /home/qinxpaj/APP_SERVERS/jserv/etc/jserv.conf

Finally finished.

31

B Performance test

B.1 HelloWorld HTML test page

<!--->

<!--Hello World - Test HTML Page -->

<!--Per-Anders Johansson & Magnus Nilsson -->

<!--->

<HTML>

<TITLE>

Hello World - Test HTML Page

</TITLE>

<BODY TEXT="#000000" BGCOLOR="#FFFFFF">

<H1>Hello World</H1>

</BODY>

</HTML>

B.2 HelloWorld Java Servlet test application

/***/

/*Hello World - Test Servlet */

/*Per-Anders Johansson & Magnus Nilsson */

/**/

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class HelloWorld extends HttpServlet

{

public void doGet(HttpServletRequest request, HttpServletResponse respons)throws ServletException, IOException

{

respons.setContentType("text/html");

PrintWriter out = respons.getWriter();

out.println("<HTML>");

out.println("<HEAD>");

out.println("<TITLE>HelloWorld-Test Servlet</TITLE>");

out.println("</HEAD>");

out.println("<BODY>");

out.println("<H1>Hello World</H1>");

out.println("</BODY>");

out.println("</HTML>");

}

}

32

B.3 StringManip Java Servlet test application

/**/

/* StringManip - Test Servlet */

/*Magnus Nilsson & Per-Anders Johansson */

/***/

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

import java.util.*;

public class StringManip extends HttpServlet

{

String smallStr = new String("abcdefghijklmnopqrstuvwxyzåäö");

String bigStr = new String();

long counter = 0;

long totaltime; //holds the execution time

public void manipulate()

{

Date start = new Date();

long total_s_time = start.getTime(); //get start time

while (bigStr.length() < 100000) //manip

{

counter++;

bigStr = bigStr + smallStr + " " + counter;

}

Date stop = new Date();

long total_e_time = stop.getTime(); //get stop time

totaltime = total_e_time - total_s_time; //calculate the difference

}

public void doGet(HttpServletRequest request, HttpServletResponse respons)throws ServletException, IOException

{

respons.setContentType("text/html");

PrintWriter out = respons.getWriter();

out.println("<HTML>");

out.println("<HEAD><TITLE>String Manipulator</TITLE></HEAD>");

out.println("<BODY>");

out.println("<BIG>Performing String Manipulation...</BIG>");

manipulate();

out.println("
" + totaltime + " ms"); //print total time

out.println("

<BIG>DONE!!!</BIG>");

out.println("</BODY>");

out.println("</HTML>");

}

}

33

C Extra Task

As a little side task we were asked to develop a program that tested how Java’s virtual ma-

chine handled multiple threads in multiple CPU environment.

The idea was to start one, two or four threads, and let them each go through an iterative

loop. By timing each thread and comparing it to the total time taken, we could see if the

threads were split up on the CPU’s and working parallel.

The conclusion was that the JDK version played a big part in the result.

34

C.1 Results

The result from running our test-program can be viewed in Table C.1.

Multiple threads in multiple CPU environment

1 Processor UNIX (300MHz) einks648

Solaris_JDK_1.1.7_08a Thread 1 (ms) Thread 2 (ms) Thread 3 (ms) Thread 4 (ms) Total (ms)

1 Thread / 50000000 Iterations 2857 2870

2 Threads 50000000 Iterations 5723 5257 5731

4 Threads 50000000 Iterations 5637 5702 5712 5667 11433

One could think that the total time should be twice as big here because it’s a one CPU machine.

2 Processor UNIX (400MHz) kswas01

Solaris_JDK_1.1.7_08a Thread 1 (ms) Thread 2 (ms) Thread 3 (ms) Thread 4 (ms) Total (ms)

1 Thread / 50000000 Iterations 2151 2159

2 Threads 50000000 Iterations 2192 2172 2199

4 Threads 50000000 Iterations 2185 2189 2140 2172 4369

The result here is quite good. Two threads runs parallel the whole time.

4 Processor UNIX (400MHz) solstal

Solaris_JDK_1.1.7_08a Thread 1 (ms) Thread 2 (ms) Thread 3 (ms) Thread 4 (ms) Total (ms)

1 Thread / 50000000 Iterations 2130 2137

2 Threads 50000000 Iterations 2132 2130 2137

4 Threads 50000000 Iterations 2130 2127 2126 2128 4263

Here should the threads be split up on all 4 CPU’s, but the result is the same as on a 2 CPU machine.

Solaris_JDK_1.2_01 Thread 1 (ms) Thread 2 (ms) Thread 3 (ms) Thread 4 (ms) Total (ms)

1 Thread / 50000000 Iterations 1764 1777

2 Threads 50000000 Iterations 1987 1879 1998

4 Threads 50000000 Iterations 2426 2200 2440 2333 2539

This is the same test as the latest above but with a newer JDK-version. As you can see on the

result the threads are split up on all 4 CPU’s. Interesting.

Table C.1: Performance results from extra task

As you can see, the JVM version plays a big part in the result. The newer JDK_1.2_01 seems

to improve the performance a lot compared to the older one.

35

C.2 Source code

/*

* Thread tester (UNIX version)

* Modified: 2000-02-25

* Author: Magnus Nilsson (QINXNIM)

* Per-Anders Johansson (QINXPAJ)

*/

import java.util.*;

/*--

* class Tt

---/

public class Tt extends Thread

{

 public static long thread1 = 1;

 public static long thread2 = 2;

 public static long thread3 = 3;

 public static long thread4 = 4;

 /*--

 * Method startThreads

 * Creates instances of inner class Process.

 * Responsible of starting and interrupting the threads.

 ---/

 public void startThreads(int choice, double iterations)

 {

 switch (choice) //check the choice made

 {

 /*One Thread*/

 case 1:

 {

 Process p1 = new Process("1", iterations);

 p1.aktivitet.start();

 try

 {

 p1.aktivitet.join(); //the main thread (this) waits for p1 to finish.

 }

 catch (Exception e_p1)

 {

 System.out.println("Exception in join()");

 }

 }break;

 /*Two Threads*/

 case 2:

 {

 Process p1 = new Process("1", iterations);

36

 Processp 2 = new Process("2", iterations);

 p1.aktivitet.start();

 p2.aktivitet.start();

 try

 {

 p1.aktivitet.join();

 p2.aktivitet.join();

 }

 catch (Exception e_p2)

 {

 System.out.println("Exception in join() (2 threads)");

 }

 }break;

 /*Four Threads*/

 case 4:

 {

 Process p1 = new Process("1", iterations);

 Process p2 = new Process("2", iterations);

 Process p3 = new Process("3", iterations);

 Process p4 = new Process("4", iterations);

 p1.aktivitet.start();

 p2.aktivitet.start();

 p3.aktivitet.start();

 p4.aktivitet.start();

 try

 {

 p1.aktivitet.join();

 p2.aktivitet.join();

 p3.aktivitet.join();

 p4.aktivitet.join();

 }

 catch (Exception e_p4)

 {

 System.out.println("Exception in join() (4 threads)");

 }

 }break;

 default:

 {

 System.out.println("\nIllegal argument!");

 System.out.println("Valid argument is 1, 2 or 4.");

 }

 }//end switch

 }//end startThreads

37

 /*---

 * class Process (inner class)

 * This is where the threads are created

 --/

 public class Process implements Runnable

 {

 public Thread aktivitet = new Thread(this); //new thread

 private String text;

 private double iteration;

 private double i;

 //constructor

 public Process(String txt, double _iteration)

 {

 text = txt;

 iteration = _iteration;

 }

 /*--

 * Method run

 * This is what every thread do.

 ---/

 public void run()

 {

 try

 {

 Date start = new Date(); //get start time

 long s_time = start.getTime();

 for (int i=0; i<iteration; i++); //loop baby loop...

 Date finish = new Date(); //get the finish time

 long f_time = finish.getTime();

 long time = f_time - s_time; //how long time did it take

 if (text == "1") //checks which thread it is

 thread1 = time;

 else if (text == "2")

 thread2 = time;

 else if (text == "3")

 thread3 = time;

 else if (text == "4")

 thread4 = time;

 }

 catch (Exception ee)

 {

 System.out.println("Exception in class Process, method run!");

 }

 }

 }

38

 /*--

 * Main

 * Checks the arguments and starts the program if the arguments are ok

 ---/

 public static void main(String args[])

 {

 int choice = -1;

 double iterations = -1;

 String choiceString;

 String iterationString;

 //check that number of arguments is correct

 if (args.length != 2)

 {

 System.out.println("\nThread Tester 1.0 (unix) by QINXNIM & QINXPAJ 2000");

 System.out.println("USAGE: java Tt <arg1> <arg2>");

 System.out.println("<arg1> is number of threads and\n<arg2> is number of iterations in every thread.");

 }

 else //number of args is ok

 {

 //try to extract the arguments

 try

 {

 choiceString = args[0];

 iterationString = args[1];

 Double d = new Double(iterationString);

 Integer i = new Integer(choiceString);

 iterations = d.doubleValue();

 choice = i.intValue();

 }

 catch(Exception e) //catch exception but do nada

 {

 }

 //check if less than zero

 if ((choice < 0) || (iterations < 0))

 {

 System.out.println("\nIllegal argument!");

 System.out.println("USAGE: java Tt <arg1> <arg2>");

 System.out.println("<arg1> is number of threads (1, 2 or 4)\n<arg2> is number of iterations in every thread.");

 }

 else //OK

 {

 Tt tt = new Tt();

 //start clocking total time

 Date totalstart = new Date();

 long total_s_time = totalstart.getTime();

39

 //run threads

 tt.startThreads(choice, iterations);

 //clock the endtime

 Date totalend = new Date();

 long total_e_time = totalend.getTime();

 long totaltime = total_e_time - total_s_time;

 if (choice == 1)

 System.out.println("Thread 1 finished in " + thread1 + " ms");

 else if (choice == 2)

 {

 System.out.println("Thread 1 finished in " + thread1 + " ms");

 System.out.println("Thread 2 finished in " + thread2 + " ms");

 }

 else if (choice == 4)

 {

 System.out.println("Thread 1 finished in " + thread1 + " ms");

 System.out.println("Thread 2 finished in " + thread2 + " ms");

 System.out.println("Thread 3 finished in " + thread3 + " ms");

 System.out.println("Thread 4 finished in " + thread4 + " ms");

 }

 System.out.println("Total operation time = " + totaltime + " ms.");

}

 }//end else

 }// end main

}

