Computer Science

Johan Thorbj6rnsson

Peter Svensson

Component Based Graphical User Interface

Bachelor’s Project
2000:11

Component Based Graphical User Interface

Johan Thorbj6rnsson

Peter Svensson

© 2000 The authors and Karlstad University

Thisreport is submitted in partial fulfillment of the requirements for the
Bachelor’s degree in Computer Science. All material in this report which
is not our own work has been identified and no material isincluded for

which a degree has previously been conferred.

Johan Thorbjornsson

Peter Svensson

Approved, 2000-05-31

Advisor: Nils Daverhtg

Examiner: Stefan Lindskog

Abstract

The background of the thesisis that Ericsson Infotech (EIN) today has a simulation product
(SEA) that is built using components. The components are combined at run-time to create a
simulation of the system the user needs. The system is divided in a simulation part and a con-
trol part. The component system used only covers the simulation parts not the graphical user

interface (GUI) used to control the system.

In thisthesis we have eval uated some existing technol ogies that can be used to build a GUI that
is run-time extensible using some form of component structure. We propose a technology that
are suitable for EINs needs. We have a'so built ssmple prototypes using the selected technol o-

gies.

The general solution to the problem is divided into two parts, dynamic extension of functional-
ity and comprehensive window control. These two problems are analyzed separately for each
technology. EIN has stated the following technologies to analyze: Tcl/Tk, Java, KDE and
GNOME. For each technology/language a distributed and a non distributed technology is ana-
lyzed.

All the distributed technologies give a overhead and a high level of complexity that is not
needed in this application, therefore the non distributed technologiesis selected. The selected
technologies to implement are:

* Tcl/Tk using the source command and namespaces

» Javausing dynamic class loading.

» KDE2 using the KPart technol ogy.

Finally the technology and language that we recommend to use for the devel opment of a Com-
ponent Based Graphical User Interfaceis Tcl/Tk using namespaces or Java using dynamic
classloading. The selection of these technologiesis based on the analysis and the implementa-

tion of the different technologies.

Table Of Contents

L INtroduCtionot 1
2.Background ... 3
2.1. Telefonaktiebolaget LM Ericsson ...t 3
2.2. EricssoniInfotech (EIN) 3
2.3. Department of Test Support and Simulated Platforms(TSP) 3
2.4. Simulator Environment Architecture 4
241, Simulation Part 4

24.2. Control Part 5

2.5. Control ApplicationProblems 6
2.6. AIMOf ThESIS . ..o 8
2.7, LIMItalionS . ..ottt e 8
2.8, SUMIMIAIY .t e 9
3.General SolUtioN e 11
3.1. Dynamic Extension of Functionalityo, 11
3.1.1. What Componentsare Currently Loaded 13

3.1.2. Doesthe Loaded Component Type HaveaGUI Module 13

3.1.2.1. DistributedSolution............ i 13

3.1.2.2. TheNon Distributed Solution 14

3.2. Comprehensive Window Control e 15
3.21. Selectingand ShowingInstances.o .. 15

3.2.2. Drawing AreafortheSelectedModule 16

3.23. ExtendingtheMenubar 16

3.3 QUMM .o 17

4. Analysisof some Chosen Technologies, 19
4.1. TheTechnologiestobeConsidered 19
A2, Tl K o 20
421, SourceCommandt 20

422, ExtensionPackages. 21

4.2.3. General ASDECES . ..ot e 23

G T - 7 23
4.3.1. DynamicClassLoadingouiiriini i 24

432, JavaRMI ... 25

4.33. General ASPECESot 26

A A, KDE ... 27
4.4.1. KOM/OpenPartst 27

442, KPartS . ..o 29

4.4.3. General ASPECES . . . oottt 30

A5, GNOME ... 31
45.1. The GNOME CORBA Framework, 31

452, BONODO 32

453, General ASDECES . ..ot 32

4.6, SUMMAIY .ottt ettt e e et e 33
4.7. Selected TeChnolOgiest e 34
5.Implementation 37
51, Precondition o 37

B 2. Tl K o 37
521 Precondition 37

5.2.2. Solution for the Main Application, 38

52.3. SolutionfortheModules i 41

524, Implementation i 42

524.1. Thecbguitclfile 42

5242, Theli_guitcl 44

5.25. CONCIUSIONS . .ottt e e 45

5.3, JAVA . .. 46
531, Preconditionscciii 46

5.3.2. SolutionfortheMain Application, 46

5.3.3. SolutionfortheModuleClasses, 47

534. Implementationc i 48

534.1. TheManApplicationiiiiiiiiinnn.. 48

534.2. TheModuleClassccuiiiiiiiiiiii i 51

535, ConClUSION ..ot 53

5.4, KDEZ2 KParts . ..ottt e 54
54.1. TheKPartsTechnologyo 54

54.2. Implementationo it 56

543, CoNCIUSION ..ottt e e 57

B. CONCIUSION e 59
7 RE O BNCES . . o 61
7.1. Indexed ReferencesintheThesis. i, 61
7.2. General BOOK ReferenCest e 61
7.3. General URL ReferenCest e i 62
Appendix A Abbreviations 63
Appendix B. Descriptionof thethesis 65
Appendix C. Tcl/TKSyntaxcc.iuiiiiiiiii . 67
Appendix D. Tcl/TKApplicationc ... 69
Appendix E. JavaApplication i 77

List of Figures

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure7.
Figure 8.
Figure 9.

Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.

SEA OVEIVIBIW . . 4
SEA Control Ceantero 5
SEA MPH CONNECLIONottt e e et 6
SEA Control Center and afew other needed applications. 7
Dynamic extension of functionality 12
Distributed SOIULION 14
Tabbed pane and container Window. iiiiinnnen.n.. 16
Tcl sourceand namespacecommandsot 21
Idserver andclientusing Tcl-DP e 22
Dynamically loaded classinJava. ... 24
JaVa RMI . 25
KDE KOM/OpenPart Technologyoouiiiiieiiienn.. 28
Tcl sourceand namespace commands v v i i 38
Tcl/Tk Control Application with cascadingmenus. 39
Module torn off from the main Tcl/Tk application 41
The Javawithout any moduleclassesloaded. 47
Structure of the Main ApplicationinJava., 49
The Java application with three LI modulesloaded. 52
KPart initiaization function. i, 55
Structure of the Main Applicationusing KParts. 56

Vi

List of Tables

Tablel. Technologiestobeconsidered innnnn...

Table2. Summary of technologies

Vii

viii

1. Introduction

The background of the thesis is that Ericsson Infotech (EIN) today has a simulation product
that is built using components. The components are combined at run-time to create a simula-
tion of the system the user needs. The system is divided in a simulation part and a control part.
The component system used only covers the simulation parts not the graphical user interface
(GUI) used to control the system. This leads to problems with trying to keep the GUI updated
with all the different simulation components designed by EIN and third party providers. To
solve this problem EIN would like to have a GUI system that is extensible arun-time so that a
component can consist of asimulation part and an optional GUI part that adds functionality to
the GUI.

The goal of the thesis work is to propose a suitable technology for designing component based
graphical user interfaces. In other words, to propose a technology to build an application that is

possible to extend with unknown modules, unknown at build time, after the application is built.

In thisthesis we have evaluated some existing technol ogies that can be used to build a GUI that
Is run-time extensible using some form of component structure. Describe the pros and cons of
the different solutions. Finally we propose some technologies that are suitable for EINs needs.

We have a so built simple prototypes using the selected technologies.

The second chapter describes the background of the problem to this thesis. The Simulator
Environment Architecture (SEA) is described, what it is and a overview description of how it
works. At the end of this chapter we state the problems to solve and the limitations of the the-

Sis.

In the third chapter a general analyze of the problemsis done. There are several ways to solve
the control part problem of SEA, problems which has to do with the supervision and graphical
presentation of the different modulesin the SEA. The problems may be divided into two sepa-
rate parts. dynamic extension of functionality and comprehensive window control. The solu-

tion for these problems are discussed in this chapter.

In chapter four we state the different technol ogies to be evaluated. The different technologiesis

analyzed considering how the technology in question can be used to solve dynamic extension

of functionality and comprehensive window control. At the end of each section for each tech-
nology some general aspects of that technology is considered. Finally the technologies to

Implement are selected.
Chapter five is the description of the implementation of the selected technologies. First the Tcl/
Tk implementation is described using the Tcl source command, second Java using dynamic

classloading and finally KDE2 using KParts is described.

Chapter six is the conclusion of the thesis. In this section we state the technology that we find

the most suitable to solve the problem of a component based graphical user interface.

Chapter seven isthe reference list. This chapter states the references used in the thesis.

2. Background

This section describes the background of this thesis. First a description of Ericsson as a com-
pany, Ericsson Infotech (EIN) and the department Test And Simulated Platform (TSP), as they
describe them selves. Then the Simulator Environment Architecture (SEA) is described, what
itisand a overview description of how it works. Finally we state the problems to solve and the

limitations of the thesis.

2.1. Telefonaktiebolaget LM Ericsson

Ericsson is aworld-leading supplier in the fast-growing and dynamic telecommunications and
data communications industry, offering advanced communications solutions for mobile and
fixed networks, as well as consumer products. Ericsson is atotal solutions supplier for al cus-
tomer segments. network operators and service providers, enterprises and consumers. Ericsson
has more than 100,000 employees, representation in 140 countries and clearly the world's larg-

est customer base in the telecommunications field. [1]

2.2. Ericsson Infotech (EIN)

Ericsson Infotech AB, located in Karlstad, with over 550 employees is a product and devel op-
ment company in the field of mobile telecommunications. EIN has product and devel opment
responsibility within a number of product area, including Signalling System No.7 (SS7) and
protocol converters, APZ emulators and simulators, wireless Internet solutions, radio net prod-

ucts, as well as maintenance and customer support systems. [2]

2.3. Department of Test Support and Simulated Platforms (T SP)

The departments goal isto become Ericsson’s leading supplier of simulator products as regards
platforms, systems, and network solutions. The mission isto offer products and services, based
on APZ Emulators and Simulators, for Ericsson’s customers to improve business and within

Ericsson to reduce costs. [3]

2.4. Simulator Environment Architecture

Today Ericsson Infotech (EIN) has a ssimulation product called Simulator Environment Archi-
tecture (SEA) that is used to simulate different complex system, in this case an AXE switch.
SEA is built using different components that each simulates different parts of the system. The
components are combined at run-time to create a simulation of the system the user needs. The
system is divided in a ssmulation part and a control part as shown in figure 1. The separate
parts are discussed in detail below. The component system now used only covers the simula-
tion parts and not the graphical user interface (GUI), the control part, used to control the sys-

tem.

Control part : Simulation part

|
- <
|'O

Netscape | 4 |] rCcY]fig_uraFon_' Configuration
~~ | Virtual | file | | Wizad
' AXE | (fileaxe) |
.
Control «7 A T
application | / Component
o/ library
/
‘L """"""" =

r—— - —-"--=—-—- - = - 1
I

Figure 1: SEA Overview

2.4.1. Simulation Part

The simulation part of SEA consists of a number of interacting components. The configuration
file contains information about everything needed to build the AXE, such as software (dump)
and hardware information. In the configuration file, the name and location of the dump isindi-
cated, and also how the AXE will behave once the dump is loaded. The needed hardware such
as different “physical” components and how they are connected are aso indicated. The SEA
Configuration Wizard is used to create a configuration file. The dump isloaded into the Wizard

and as the Wizard reads the dump, it consults the component library to check for available

“hardware” components. The component library asawholeisapart of SEA and contains every
component so far developed. The configuration file points out the dump and components to be
loaded. When the dump and the components are loaded the virtual AXE is complete. The SEA
Control Center, Netscape and other applications can now be used to work with our virtual
AXE.

2.4.2. Control Part

Today the different componentsin SEA are controlled in different ways, for example thereisa
application called AT-console which is a text based tool used to communicate with the virtual
AXE and its currently loaded components, hereafter named SEA core. While the AT-console
can be used to communicate with severa different types of components in the SEA core there
are a'so some components that have their own component specific control applications, an
example of thisis the graphical component that simulates a telephone which is connected to a

LI1C component in the virtual AXE.

The main application for monitoring and controlling SEA isthe SEA Control Center, shown in
figure 2. The SEA Control Center is used to control and monitor the virtual AXE itself. From
the SEA control center the different component control applications like the AT-console and

other graphical control applications can be started.

SISl SEA Control Center CAA 209 4104 R1A - SEA CRL 119 007 R3A - B X

File Options Tools Help

SEA ERICSSON 2

A0 -
Log Information | Session Prefs

Info: SEA is started (pid: 11851) P
HTTP server started on port 5003

layer fappCore /273c0e38-5787-11d2-bf6a-0800208818ed >Loading ' fproj/ss
ea/hw_dumpspolaris_cm8l/polaris_cmB8l_blocked. 21220 _emudump. gz’ dumgp
Allocating memory: DRS=256 MW3Z2, PS=32 MW3Z, PSCM=206 KW3Z

Loading RS ...

Loading PS5 ...

Loading PS cache ...

Loading 05 ...

Loading */proj/sea/hw_dumps polaris_cmBl/polaris_cm8l_blocked. 21220_e
mudump. gz’ dump completed

/ »MPH started on port 51765

SUT >>

i solstal | 5003 i 51763 i RTS OFF { RUNNING

Figure2: SEA Control Center

All external graphical user interface (GUI) components, like the SEA Control Center and the
L1C-module, communicates with the SEA core using messages between GUI components and
named SEA core entities (instance of a component). To handle the framing and routing of this
messages there is a protocol named MPH (Message Protocol Handler). The MPH offersamul-
tiplexed socket, allowing 255 different channels (virtual TCP/IP sockets) on one socket, each
channel is used to communicate with a named SEA entity. MPH libraries are implemented in
C, Java and Tcl/Tk by EIN/TSP. Figure 3 shows the MPH connection in between the virtual

AXE and the different components which it communicate with.

Control part | Simulation part
Netscape - '
/ Control T/ Virtud AXE "\
application el =
- | | L_d
— A MPH ' ' r—n
[p—— ’ . ' ' oL — 4
o Connection | P ——
L Loaded

L_Module
L — \ o
\ / \ V! components
| ‘ r

- — =4 — 4 woo I
' L
=

£ i
GO G (O

| Standalone applications | -

Figure 3: SEA MPH Connection

Even if the AT-console and the graphical modules for each component that is loaded into the
SEA core can be started from the SEA Control Center they till are stand alone components or

apart of the SEA Control Center that runsin a separate toplevel window.

The SEA core contains a web server and most of the components in the virtual AXE support
functionality to communicate with aweb browser for viewing and controlling data in the com-
ponent. This method of controlling the SEA core components works, but is not flexible

enough. TSP also wants the control and viewing of the componentsin a standalone application.

2.5. Control Application Problems

New components to SEA are under constant development, both by EIN and by third party
developers. One problem with the SEA Control Center, as it works today, is that when a new

component is developed thereis no way to extend the existing SEA Control Center so it can be

used to control or start the new GUI component without altering the source code for it. In other
words, there is no way to just add a new GUI component to the SEA Control Center in the
same way asit ispossible to add a new component to the component library in SEA. Thisleads
to problems while trying to keep the GUI updated with the new components that is being
developed. The SEA Control Center either have to be remade for each new component or a

new component must provide it's own stand alone GUI.

SEA gets the information about which components to load for a specific configuration from a
configuration file at startup, but it is aso possible to add new components to a SEA configura-
tion at runtime. The existing SEA Control Center does not support this kind of dynamic load-

ing of GUI applications.

Since the control applications for the different components al run in their own toplevel win-
dows there is aproblem if there are many components that needs to be supervised. The screen
gets full with windows and it gets difficult to keep track of them all. Figure 4 shows the SEA

Control Center and just afew graphical modules needed to control the simulation.

I 0 52
(Properties w) (Phones v) [Command v) (Communication v) (Reset Emusii) Help | %
-]
OB i HE HH O HE Hit Hit Hi = ;
HH HOHH # HF OHR O OBE OHH HH HH Seize AT @
HHEHHHE HH O HEHE S HHHH a
EmuSTi for SEA CAA 209 4001711 R2A A
COPYRIGHT (C} Telefonaktiebolaget L M Ericsson 1935
PCSLT interpreter for SEA
Loading user macros etc (if found)...
ile not found:/home/qinzthisenusli.onf
Mote that no <alls may be active on the dump at startup, in
order for the internal switch Togic in EmuSli to work correctly Hu 81Ul AT-S TIME 000000 0455 PAGE 1 @
Ok, ready for action....
Trying to connect CIN-0 to LI-O...ok -
Trying to connect CIN-1 to LI-1...o0k %
2 CIMs connected to wirtual hardware! - q
=

=
]

PCSLI co dil:,

£

Connected to solstal ks.ericsson.se on HTTP port S003,

i Back Foward Reload Home Search Mets

i # " Boolmarks A Location: [http: //s0letal

Ay <) o

cDu:

%
£
£

4 # Bokhyllan ¢ C-Degres thesis, Johan & Peter

BISEA - Simulator Environment Architectu
— = SEA ATConsok

S EEFA Fils Edit
Se

AX Tatg »5on

Qathwara and Tarhnalass

Log Information Session Prefs

Info: SEA is started (pid: 20903)
ETIP server started on port 5003

fLager /apptore /273c0238-5787-11d2-bf6a-0800208818ed »>Loading ° /proj/sea/hv_dunps/polaris_cm8l/polaris_cm

81 blocked. 21220_emudump. gz’ dump
Loading RS

Loading PS

Loading PS5 cache

Loading DS

Loading ° /proj/sea/hw_dunps/polaris_cm81/polaris_enS1_blocked. 21220_emudunp. gz* dunp co

J MPH started on port 53451

EmuSli started. (pid: 23206

SUL >>

— EmuSIiCIN-0 [LI-0]

mpleted

— EmuSIiCIN-1 [LI-1]

=
@ a
%P‘U &
o

ERICSS0ON

Mo messages

ERICSSON

No messages

W % E

Phone type: [T) Tone

Phone type: [Z)] Tone

Enr:

U
CEEE

EH

g RATRADQEE

=

[solstal | s003

[mamm]

e

B Netsca | % Netsca | El Fam | B home | El momer | E momes | ibinf‘tcshl B Netsea | s SEAC | a SEAATl o SEAAT || s Emusli

Figure 4: SEA Control Center and afew other needed applications.

£

In conclusion, the main problems with the control part of SEA isthat the GUI must be remade
when a new component is developed, the GUI can not be extended at runtime and controlling

many components generates lots of toplevel windows.

2.6. Aim of Thess

The aim of thisthesisis to evaluate the existing technologies that can be used to build a GUI
that is run-time extensible using some form of component structure. Describe the pros and

cons of the different solutions. Propose some technol ogies that are suitable for EIN’s needs and

to build a simple prototype for each selected technol ogy.1

In other words, the purpose of the thesis is to look into the problems with the control part of
SEA that has to do with the supervision and graphical presentation of the different modulesin
the SEA core. The focus of this thesis will be separated in to two parts. First, how is dynamic
extension of functionality best solved using different technologies to support new modules
without recompiling the complete control part of SEA. Second, look at different technologies
that support some kind of technical solution for the problem with to many top level windows,

that isto get a comprehensive window control.

2.7. Limitations

The SEA simulation and control applications runs on a Sun Solaris Unix platform today, and
will continue to do so. There has been some work porting parts of the SEA to a Linux/PC plat-
form, but thisis not currently working. Thereis also a possibility to port and run control appli-
cations on any platform, i.e Linux/PC, Windows NT/PC etc., but the SEA core still needs to

run on a Sun Solaris platform. The different parts then may communicate through the MPH.

The graphical user interface as in the look and feel is not considered. That is, the usability of

the application is not considered, only the technology to provide a dynamic base to build upon.

1. Theofficial description of the thesisis enclosed in appendix B.

2.8. Summary

Ericsson Infotech (EIN) has a simulation product called Simulator Environment Architecture
(SEA) that is used to simulate different complex system, in this case an AXE. SEA is divided

inasimulation part and a control part.

The main problems with the control part of SEA isthat it must be remade when a new compo-
nent is developed, the GUI can not be extended at runtime and controlling many components

generates | ots of toplevel windows.

The aim of thisthesisis to evaluate the existing technologies that can be used to build a GUI
that is run-time extensible using some form of component structure. Describe the pros and
cons of the different solutions. Propose some technologies that are suitable for EINs needs and

to build simple prototypes using the selected technologies.

10

3. General Solution

This section describes the general solution to solve the stated problems in the previous chapter.
There are several ways to solve the control part problem of SEA, problems which has to do
with the supervision and graphical presentation of the different modulesin the SEA. As stated
in chapter 2.6, Aim of Thesis, the solution to solve the problem will be divided into two parts,
dynamic extension of functionality and comprehensive window control. The solution for these

problems are discussed in this chapter.

3.1. Dynamic Extension of Functionality

The problem of dynamically extending the Main Control Applications functionality can be
solved through a modular design of the Main Control Application so that it is possible to add
functionality to it without changing the already existing code. By using modular design with a
standard interface the Main Control Application could load new or changed modules to extend
its functionality. In this way a new component can be supported by the Main Control Applica-

tion just by adding a new moduleto it.

In practice this modular design could be done by implementing the control functionality for
each component in separate modules and then have the Main Control Application ‘ask’ the
SEA core about which components that are loaded in the current SEA configuration. Then the
Control Application checksif the different types of components have a associated functionality
module. If so, the Main Control Application then loads the associated modules and in this way
extend its functionality. Each module must provide the specific functionality that is needed to
manage its associated component. Figure 5 shows the dynamic loading of modules and the

interaction between a given components and its module.

11

SEA Core Main _Cor_ltrol " Standard |
Application | modules |

L _ 1
~

" seaws | [Gy — - -
| components I\ — > 3
T @
Bh
mod B

" oaed Y,
2
N

®
Y

| components ad
eomon,
_—\— — — |
|_Logical comnection. |\ __ | _L :
Physical through MPH. e I
L _

GUI modulesto ©~ "5 k -~ \/

beinstantiated ; ' modx - S
andloadedinto; --27. | Dynamically loaded |

themanGUlon. . GUl .’ modules, each one pro-
request. - modY .o | viding specific func- |
e L | tionality to manageits |
GUI | associated component. |
modZ L |

Figure 5: Dynamic extension of functionality

For each module that is instantiated and loaded into the SEA core one must know if the loaded
module does or does not have a graphical module associated to it, the name of the module and
where to find it. Once this is known the module can be loaded in runtime into the Control
Application when needed. When the module is not wanted anymore it can be deallocated to

save system resources.

Once a new module is loaded there must be away for the Main Control Application to initiate
and to communicate with the loaded module in a known way. In practice this means that each
module must support some predefined functionality. The module has to implement a set of
standard methods like initiation of the module, drawing the module, callback functions for
communication, etc. The names of the standard methods also have to be defined, for example

compare to a Java I nterface.

12

By using modular design the Control Application can be implemented so that it is possible to
add new functionality to the Control Application not only at startup but also at runtime if the

SEA configuration is changed while running.

In conclusion the dynamic extension of functionality must include the following steps: first,
the components that are currently loaded in the SEA core has to be identified. The second step
isto find out if the loaded components does have a GUI module or not. Finally, the functional-
ity of the matching modules have to be added to the main application. These steps are

described in the following subsections.

3.1.1. What Componentsare Currently L oaded

After the SEA-core has started, components are loaded and configured according to the config-
uration file, it is time for the Control Application to start. The first thing the Control Applica-
tion needs to find out is which the loaded components in the SEA core are. The SEA core has
to support functionality, through MPH or some other connection, that gives information about

all the loaded component types and the instances of it to the Control Application.

3.1.2. Doesthe L oaded Component Type Have a GUI Module

Once knowing the instances of the different components the Control Application has to find
out if agiven component has a GUI module or not, the name of it and wereit islocated. If there
exists a corresponding module to a given component it has to be loaded. There are afew tech-
nical approaches to solve this problem. Two general solutions will be considered, using some
sort of distributed technology, like CORBA or Java RMI, and a simpler solution not involving

distribution, like Tcl source command or KDE Kpart.

3.1.2.1. Distributed Solution

Using adistributed solution gives the advantage of having instances of modules anywhere on a
network, that is the Main Control Application does not need to be loaded full of different mod-
ules and their code, it will just make a remote call to access the functionality. Distribution also
gives the possibility to have a central for all modules, thus giving the advantage of easily

updating and maintaining the modules.

13

In principal the distribution of modules can be implemented as shown in figure 6.

r—— — — " I
|

) Repository
SEA core Control Module Servers

Application

r— T T T T o T L ' _ L
Logical connection between component and module. "

Physical connection via Control Application and MPH. L— 1

Figure 6: Distributed solution

The module servers contains the instances of the available modules. The repository is a data-
base containing information about all available modules. In order for the Control Application
to locate a specific module, the module has to be registered in the repository. That is, when a
new module is created it has to register its name and location. When a specific module is
wanted the Control Application asks the repository for that specific modules location. When
the location of a specific module isknown it is possible for the Control Application to incorpo-

rate the functionality of the remote module.

3.1.2.2. TheNon Distributed Solution

In this case the functionality of the repository has to be handled by either the SEA core or the

Control Application. Some different approaches can be taken. In either case the loaded compo-

nents in the SEA core are known.

e Increasing the functionality of each SEA core component and the MPH is one solution,
where each component will have a method for asking whether it has or has not a graphical
module, if so the name of it and where to look for it.

* Themain GUI hasto check each component for itstype, check for the found component
type in a separate GUI configuration file, if the component type has a GUI module, the

name of it and whereit is located.

14

There are of course a number of solutions but these are the most reasonable, the latter is proba-

bly the easiest to implement for test, because there is no changes needed for the SEA core.

3.2. Comprehensive Window Control

The second part considers the problem of having too many top level windows at the same time.
Thisis solved by making the Main Control Application offer a“drawing area” for each graph-
ical module that is loaded to draw its graphics within. One way is to have a Main Control
Application, where each separate module has its own child window, within the main window.
Each module is then free to use the given child window for its graphical user interface, like a
multi document word processor application. Another way, not using child windows, is using
tabbed panes. The Main Control Application holds the tabbed pane, then each pane is the
drawing area offered to each module to draw its graphical user interface within. The tabbed
pane solution will most likely give a more controllable GUI when having many GUI modules
open at the same time. Yet another solution is to use some kind of tree view, one node for the
module type and the instances of the module as subnodes. When an instance is selected the
instance is given a drawing area to draw its graphica control within. Regardless if the GUI
module is in a child window, a pane or a tree view, the module should be able to be torn off

from the main application, to an own separate top level window.

3.2.1. Selecting and Showing Instances

When all the instances of the different loaded modules are known, and one is to be selected

they must be graphically represented in some way. As mentioned in chapter 2.7 the graphical

issues as in look and feel is not considered, but there are some basic graphical alternatives
namely:

» TheMain Control Applications menubar is extended with aitem “module” containing all
the modul e types |oaded. Each modul e type then has a submenu attached to it with all its
Instances, like menubar -> module type -> instance. Thiswill cause some troubles when
there are to many modul e types or instances of one particular type, sincethelist of all items
will fill up the screen.

» Another approach isusing aFile dialog type. A child window like “open file” is created
having the module type as the directory tree and the instance like the files.

* Yet another approach is having the modules and instances in atree view, one node for the

module type and the instances of the module as subnodes.

15

3.2.2. Drawing Areafor the Selected Module

Once a module is selected a new drawing area must be created by the Control Application.
This area is given, pointed out, to the module upon its creation. The module then uses this
drawing area to draw its graphica components within. The given drawing area can be con-
tained in afew different ways by the Control Application, for example atab in atabbed pane or

achild window in a container window, figure 7.

TabbedPaneDemo = |J|

{hﬁ Two |3 Three |3 Four | [InternalFrameD emo A=

Document

Does nothing at all
Elah

Figure 7: Tabbed pane and container window.

Figure 7 shows the Java Swing graphical classes. Thisisjust to illustrate some different solu-

tions for the drawing area that can be provided for the modules.

3.2.3. Extending the Menubar

Finally when a selected instance of amoduleis graphically drawn in its given area, the Control
Applications menubar should support methods to extend the functionality of the menubar for
the active module. In the same way as the Control Application gives a drawing area to the

module, the Control Application will give, point out, where to extend the menubar.

16

3.3. Summary

The general solution is divided into two parts, dynamic extension of functionality and compre-
hensive window control. The dynamic extension of functionality can in turn be divided into

two subparts, a distributed solution and one that is not distributed.

Dynamic extension of functionality

To extend the functionality of the main GUI application afew steps has to be considered.

» What components are currently loaded
Find out the components types and the instances currently loaded in the SEA core.

* Doestheloaded components have a GUI module
One hasto know if acomponent in the SEA core has graphical module or not. Each mod-
ule has to be extended with this functionality or a separate GUI-configuration file can be
used.

Comprehensive Window Control

L etting the main GUI application contain the different modules graphics. There are afew steps

needed to achieve this.

» Selecting and showing instances
To show a particular instance it has to be selected from some list containing the modules
and the currently loaded instances of it. Thisis graphically represented in three basic ways,
menubar, File dialog child window or atree view.

» Drawing area for the selected module
Once an instance of a particular module type is selected, the main GUI application hasto
offer adrawing areathat is given, pointed out to the module.

* Extending the menubar
Finally, the main GUI applications menubar can be extended with functionality from the
loaded module. In the same way as the Control Application gives adrawing areato the

module, the Control Application will give, point out, where to extend the menubar.

17

18

4. Analysis of some Chosen Technologies

In this section some different technologies are analyzed according to the general solution. First
the technologies to be considered are stated. The following subchapters analyze the different
technologies considering how the technology in question can be used to solve dynamic exten-
sion of functionality and comprehensive window control. At the end of each section for each
technology some general aspects of that technology are considered. Finally the technologiesto

implement are selected.

4.1. The Technologiesto be Considered

Comparison of some chosen technologies to solve both the problem of dynamic extension of
functionality and the problem of comprehensive window control. The following are the tech-

nologies to be considered:

Table 1: Technologiesto be considered

Technology Provided solution
Tcl/Tk Tcl Source command, Tcl-DP
Java Dynamic class loading, RMI
KDE Mico Orb, KParts
Gnome ORBit, Bonobon

Tcl/Tk is a natural choice since most of the GUI applications for SEA is written in Tcl/Tk
today, and EIN/TSP has a wide experience in Tcl/Tk development. Java is a object oriented,
flexible language suited for graphical development with multi platform support through its
binary code and virtual machine solution, al this could be a great advantage for development
now and in the future. KDE and Gnome are selected because they stand for the new generation

of desktop environment in the UNIX community.

19

4.2. Tcl/Tk

Tcl/Tk is divided into two parts. The first part is Tcl, pronounced tickle, stands for Tool Com-
mand Language and was created by John Ousterhout in 1987. Tcl is an interpreted language
and is more like a scripting language than a programming language, so it shares greater simi-
larity to the C shell or Perl than it doesto C++ or C. Tcl provides generic programming facili-
ties, such as variables and loops and procedures. Since Tcl is an interpreted language, it of

course executes slower than compiled C code, but still it is surprisingly fast. [4]

The other part of Tcl/Tk is Tk. Tk isagraphical user interface toolkit that makes it possible to
create powerful GUIs quickly. Tk extends the built-in Tcl commands with commands for creat-
ing and controlling graphical user interface elements called widgets. A widget can be a button,

text window, scrollbar etc.

4.2.1. Source Command

The dynamic extension of functionality problem can be solved using Tcl’s source command.
Since Tcl is an interpreted language it is possible to extend the loaded code while executing.
The source command takes the contents of a specified file and extends the existing code. This
makes it possible to load new modules in away that solves the problem dynamic extension of

functionality.

To get the Main Control Application to interact with the loaded modules, the modules have to
support a set of standard methods, procedures in Tcl. Since each module has its own imple-
mentation of the given standard procedures, there will be a problem when more than one mod-
ule is loaded. In that case there will be more than one procedure using the same procedure

name. Tcl is not a object oriented language and therefore this problem can not be solved using

any class abstraction®. A solution to this problem is using Tcl’s namespace. A namespace is a
collection of commands and variables. It encapsulates the commands and variables to ensure
that they will not interfere with the commands and variables of other namespaces. Figure 8

shows an example code of Tcl source and namespace commands.

1. Eventhough Tcl/Tk is not object oriented there exists packages that extend Tcl/Tk to support object
orientation. Analyzing these packages is beyond the scoop of this thesis.

20

This is a comment in Tcl
A procedure sonewhere
proc | oadNewivbdul e {} {
nanmespace “nodul eNanme” {
This is the new nanespace
source “nodul eNane.tcl”

}

Call the procedure to create a new namespace
| oadNewiVbdul e

Call a procedure in the new nanespace
nodul eName: : want edPr ocedur e

Figure 8: Tcl source and namespace commands

The procedure | oadNewivbdul e first creates a new namespace named “moduleName”. In
this new namespace, encapsulated by brackets, the new Tcl code is loaded from the sourcefile
“moduleName.tcl”. When the | oadNewiVbdul e procedure has been called, it is possible to
call the procedures in the new namespace using the :: notation to specify the name of the

namespace and one of its procedures.

Tk arranges the widgets in a hierarchical tree structure. Each widget is identified through its
location in the tree, this gives the path to the widget from the root. In Tcl the comprehensive
window control can be solved by letting the main application create a Tk frame. A Tk frame
can be compared to a Java panel. The frames path is passed as an parameter to the module. The
given path is then used by the module as the root of its own widget subtree. That is the module

draws its widgets from the given path.

4.2.2. Extension Packages.

There exists alarge number of packages that extends the functionality of Tcl and Tk. A pack-
age that extends Tcl and provides a technical solution for the dynamic extension of functional-
ity is Tcl-DP, Tcl Distributed Programming. Tcl-DP is a collection of Tcl commands that
simplifies the development of distributed programs. Tcl-DP's most important feature is a

remote procedure call facility, which allows Tcl applications to communicate by exchanging

21

Tcl scripts. For example, the following script shown in figure 9 uses Tcl-DP 4.0 to implement a

trivial “id server”, witch returns unique identifiersin response to Get | d requests.

Server
package require dp 4.0

dp_MakeRPCSer ver 1944 tcpO
set i 4
proc getID {} {

gl obal i

incr i

}

Client
package require dp 4.0

dp_MakeRPCO i ent host.domain 1944 tcpO
set id [dp_RPC tcpO getl D]

Figure 9: 1d server and client using Tcl-DP

The first command executed on both client and server isthe Tcl package command, which
makes Tcl-DP library functions and commands available in the current Tcl interpreter. The
server executes the dp_MakeRPCSer ver command, which creates a socket that is waiting
for a client to connect. Finally, the server defines the get | D command, which generates and

returns a unique identifier.

The client connects to the server using the dp_MakeRPCCl i ent command, which returns a
handle that can be used to communicate to the server. Finally, the client invokes the getlD com-
mand on the server using the dp_ RPC command. This causes a message containing the com-

mand to be evaluated to be sent to the server, whereit is evaluated and the results returned.

The Tcl-DP could be used to solve the problem with dynamic extension of functionality. A
new process acting as a module server has to be created, shown in figure 6. This server holds
all the modules that are dynamically loaded. The advantage of this solution is that the Main
Control Application does not need to source the different modules, and therefore need not to
concern about any namespace problems. The Main Control Application calls functionality of

the different modules using the dp_ RPC command. The major disadvantage of this solution is

22

that it does not really solve the problem, it isjust another way to communicate with the differ-

ent modules. The problem of dynamic loading will now appear in the server instead.

4.2.3. General Aspects

Technical aspects on Tcl/Tk:

e Tcl/Tk runs on a number of platforms, Windows95/98/NT, Mac and nearly every Unix
platform like Solaris, Linux etc.

* Tclisdevelopedin C and the Tcl interpreter isalibrary of C functions that implementsthe
Tcl commands and the grammar for the Tcl language. This fact makesit easy to extend the
Tcl language with new commands by creating new C libraries. Each command isimple-
mented by one single function in the C libraries. Due to this fact alarge number of exten-
sion packages to add new sets of Tcl/Tk commands exist. They provide a variety of
functionality, like databases, network management and platform specific APIs.

* Thereisacompiler available to Tcl that translates the Tcl scripts into a bytecode file mak-
ing it possible to distribute applications without providing access to the original Tcl source

code.

Distribution and licence agreement:

For distribution Tcl/Tk use open source licence agreement. In short, the open source licence
agreement for Tcl/Tk gives permission to use, copy, modify, distribute, and license software
and its documentation for any purpose, provided that existing copyright notices are retained in
all copies and that this notice is included verbatim in any distributions. No written agreement,

license, or royalty feeisrequired for any of the authorized uses. [5]

4.3. Java
Since Java is a widely known language, the language itself will not be described in detail (a

complete description of the Java language can be found on http://java.sun.com). However Java
has a few aspects that reflects on this work which is wort mentioning. First, Java works with
bytecode, which in turn is executed on a virtual machine. This making it possible to use the
same bytecode on different platforms, platform independent. This in turn is useful in distrib-
uted solutions, where the bytecode can be transferred between or executed on different plat-
forms on the server and client machines. Another aspect, Javais strictly object oriented which

makes Java well suited for modular design. In Javait is aso easy to create GUI.

23

4.3.1. Dynamic Class Loading

To solve the problem of dynamic extension of functionality in Java it is possible to use the
dynamic class loading that is offered by the static method Cl ass. f or Nanme() in the class
j ava. |l ang. C ass. The method C ass. f or Nane() takes a fully qualified name of a
class as a parameter and loads that class into the interpreter and returnsa Cl ass object for it.
In Java there is a Cl ass object representing every class loaded into the interpreter, one
Cl ass object for each class. The new nst ance() method in class Cl ass creates an
instance of the class that it represents and returns the newly created instance. Figure 10 shows

an example of adynamically loaded class.

/'l Loads and instanciates class MyC ass
java.lang.d ass t;
Myd ass nyd ass;

try {
t = dass. forNanme("Md ass");

nyClass = (MyC ass)t.new nstance();
}

Figure 10: Dynamically loaded classin Java.

First anew Cl ass object representing MyCl ass is created by the call to Cl ass. f or Nane.
The Cl ass objects method newl nst ance() isthen called to create the actual instance of
M/Cl ass.

The dynamic extension of functionality can be solved using Java's dynamic class loading func-
tionality. Each GUI module has to be implemented as a separate Java class. Since each module
has to contain a set of standard methods, the GUI module class has to implement a given stan-
dard Java interface. The main application then loads and instantiates those classes that are

needed for the current configuration.

In Java, the comprehensive window control can easily be solved by having the main applica-
tion create and control the panels that the module classes use. That is, when the main applica-
tion have instantiated a module class, it creates a panel and calls some standard method in the

newly instantiated object with the created panel as an argument. The object then uses the given

24

panel as a base to draw its widgets on. From the objects point of view this panel isits toplevel

window.

4.3.2. JavaRMI

Java supports a few different distributed object technologies, namely Java RMI and CORBA.
The Java Remote Method Invocation (RMI) system allows an object running in one Java Vir-
tual Machine (VM) to invoke methods on an object running in another JavaVM. RMI provides
remote communication between programs written in Java. CORBA on the other hand gives a
possibility for Java applications to communicate with objects written in any language that sup-
ports CORBA. CORBA solutions will be discussed later on, but not for Java.

Java RMI contains two main parts, clients and a server, figure 11.

Registry

Figure 11. JavaRMI

The server application creates and supplies the remote objects. The clients invoke methods on
the remote objects by a remote reference. The remote reference is obtained from the registry.
RMI provides the mechanism by which the server and the client communicate and pass infor-

mation back and forth.

One of the central features of RMI isits ability to download the bytecode of an object’s class if
the class is not defined in the receiver’s virtual machine. The type and the behavior of an
object, previously available only in asingle virtual machine, can be transmitted to another vir-

tual machine, thus extending the behavior of an application dynamically. [6]
RMI could be used to solve the dynamic extension of functionality problem by implementing a

distributed solution, figure 6. RMI supports functionality to handle the repository, the registry

in Java. That is, functionality to register a new module, get the name and location of a module

25

etc. Once a reference to a remote module, object, is obtained it is referenced as it was a local
object. Thishigh level of abstraction makesit fairly simple to implement a distributed solution
in Java.

4.3.3. General Aspects
First a short description of the main components and the abbreviations commonly used in the

Java community, to avoid confusion.

The Java programming language is currently shipping from Sun Microsystems, Inc. asthe Java
Development Kit (JDK). All Sun releases of the JDK software are available from the JDK soft-
ware home page (http://java.sun.com/products/jdk/). Each release of the Java Devel opment Kit
(JDK) contains:

o JavaCompiler

» JavaVirtua Machine

» JavaClassLibraries

o JavaAppletViewer

» Java Debugger and other tools

* Documentation (in a separate download bundle)

The Java Foundation Classes (JFC) are a comprehensive set of GUI components and services
which dramatically ssimplify the development and deployment of commercial-quality desktop
and Internet/Intranet applications. Swing is the project code name for the lightweight GUI

componentsin JFC.

Technical aspects:
The DK 1.1.x Final and 1.2.1 Final is available on these platforms:

¢ SPARCTM SolarisTM 2.4-2.6
* Intel x86 Solaris 2.5-2.6
¢ Microsoft Windows 95/ NT 4

The JDK 1.0.2 is available on these platforms:

e SPARC Solaris2.3-2.5
e Intel x86 Solaris 2.5

e Windows95/NT

e Macintosh 7.5

26

Distribution and licence agreement:

The Java Development Kit (JDK) is free to download and use for commercia programming,
but not to re-distribute. That is, a source code license is not needed to write and distribute
applets or applications in the Java language. Sun’s binary license permits developers to write
software in the Java language, as well as distribution of the binaries for the Java interpreter

along with applications, at no cost. [7]

4.4. KDE

KDE is a graphical desktop environment for Unix workstations. It combines ease of use, con-
temporary functionality and graphical design with the technological superiority of the Unix
operating system. [8]

KDE is developed in C++ and the KDE library offers a complete range of widgets, based on
the QT widget library, and desktop functionality. The new version of KDE, v2.0, supports a
number of interesting new technologies. To name a few, KDE2 offers a technology named
KOM/OpenParts, which is a technology built upon the open industry standards such as the
object request broker CORBA 2.0. (a complete descripton of the CORBA technology can be
found on http://www.omg.org). Another of KDE2s new technologies is KPart. KPart is used to
embed applications within existing ones. Both these technologies can be used to solve the

dynamic extension of functionality and comprehensive window control in SEA.

Note, KDE2 isonly available as a pre-alpharelease. KDE 2.0 is scheduled to be released in the
spring/summer of 2000. This fact makes the analyzing a bit complicated since it is not given
whether the implementation/API to KDE2 will change in some way or not. Yet another factor
is that there are absolutely no available documentation for the different technologies, just the
present APl reference. To get the information on how the technology is supposed to work the

existing source codes has to be analyzed.

44.1. KOM/OpenParts

The KOM/OpenParts technology is based on the open industry standard for distributed tech-
nology, CORBA 2.0. Around CORBA, KDE has developed a layer called KOM. KOM adds
functionality to CORBA that is not provided by the CORBA Standard and specific to the appli-
cation of distributed object technology to application framework development. KOM stands
for KDE Object Model. The KOM Plug-ins can be implemented as in process (shared librar-

27

ies) or out of process servers (separate processes). There are some additional layers to the
KOM layer to make it more user friendly to use the distributed technology, namely OpenPart-
Controls and OpenPart-Part. [9]

OpenParts -Controls

This solution is for the modules, controlsin KOM. Controls can be a complete module, a web
browser with GUI, or just a simple function converting text. The control part supports controls
to combine KDE components and X11 Windows. Controls can be implemented as in process
or out of process servers. Controls can be swallowed in their parent window to extend embed-

ded functionality. The controls are comparable to Microsoft’s ActiveX Controls.

OpenParts - Parts

This solution is for the shell, the main application. The parts (controls) share limited resources
such as Toolbars, Menubars, Statusbars etc. and they need a special toplevel window: a shell.
The shell owns the File-Menu/Toolbar and the active part has access to the resources. Parts

(Containers) can host other parts. Compare to Microsoft's OLE.

Figure 12 shows an abstract picture of how KDE/KOM OpenParts is constructed.

KDE Ovffice Suite

Crpen Parts
KOM

Xl CORBA

Figure 12: KDE KOM/OpenPart Technology

X11 and CORBA is the base in this technology. X11 is the graphical environment and the
Mico ORB, the CORBA implementation used by KDE, implementing the distributed technol-

28

ogy. KOM and OpenParts provides a more user friendly API to the user (the application) who
does not need to concern about complicated CORBA function calls.

KOM/OpenParts could be used to solve the dynamic extension of functionality problem by
implementing a distributed solution, figure 6. KOM/OpenParts supports functionality to handle
the repository. That is, functionality to register a new module, get the name and location of a
module etc. Once areference to aremote moduleis obtained it isimplemented as it was alocal

module. Thistechnology a so handles the embedding of graphical components.

44.2. KParts

The KDE/KPartsis alibrary that provides a framework for applications that want to use parts
(the loadable modules in KParts). This technology has a lot in common with the KOM/Open-
Parts technology, except that is not distributed. The parts in KParts is similar to the KOM/
OpenParts technology, they can be anything from a complete web browser with a GUI to a

small function executing a calculation. [10]

The main applications need to inherit the main window from KPar t s: : Mai nW ndow and
provide a so-called shell GUI, which provides a basic skeleton GUI with part-independent
functionality/actions. That is to make the shell able to provide the functionality to dynamically
locate, load and show parts.

The parts, the modules to be embedded in the shell, has to implement a given framework to be
embeddable. KParts applications will not be specific to a given part, it has the functionality to
extend the application and to embed any part, for instance, any viewer. For this the basic func-
tionality of any viewer has been implemented inKPar t s: : ReadOnl yPar t , which viewer-
like parts should inherit from. The same applies to KPar t s: : ReadW i t ePart , which is
for editor-like parts.

It is possible to add actions to an existing KParts application from the “outside’, defining the
code for those actions in a shared library. This mechanism is obviously called plugins, and

implemented by KPar t s: : Pl ugi n.

KParts could be used to solve the dynamic extension of functionality problem by creating a

main application. This has to inherit and implement the KPar t s: : Mai nW ndow class. The

29

parts has to inherit and implement either the KParts: : ReadOnl yPart class or the
KParts:: ReadWitePart.

4.4.3. General Aspects
KDE is a complete window manager using the Qt widget library. Qt is developed and sup-
ported by Troll Tech ASlocated in Norway.

Technical aspects:

KDE isaDesktop Environment for any Unix platform. Whileit is true that most KDE devel op-
ers use Linux, KDE runs on a wide range of systems. There might be some problems to com-
pile on some systems, and the source code may have to be altered a bit to get KDE to compile
on anot so popular variant of Unix, or if the GNU development toolsis not used, in particular

the gcc compiler. [11]

Some of systems on which KDE is running are:

e Linux

e Solaris
 FreeBSD
* |RIX

e HP-UX

Distribution and licence agreement:

KDE is an Internet project. Development takes place on the Internet and is discussed on mail-
ing lists and USENET news groups. No single group, company or organization controls the
KDE sources. All KDE sources are open to everyone and may be distributed and modified by

anyone subject to the well known GNU licenses. [§]

KDE is free software according to the GNU General Public License. All KDE libraries are
available under the LGPL making commercia software development for the KDE desktop
possible, all KDE applications are licensed under the GPL.

That is, KDE can be used to write libraries for “commercial and closed source” as well as

“commercia and open source” software. If open source software is written then the Qt free

edition may be used. But if closed source software is written the Qt free edition may not be

30

used. In the case of closed source software the Qt professional edition has to be obtained from
Troll Tech AS[12].

4.5. GNOME
GNOME is the GNU Network Object Model Environment. The GNOME project intends to

build a complete, easy to use desktop environment for the user, and an application framework
for the software developer. GNOME is part of the GNU project, and is free software compliant
with the OpenSource definition. [13]

GNOME provides a framework for building applications by providing a set of core libraries.
These include libraries to create graphical user interfaces, components for creating applica-
tions with auniform look and feel, and a CORBA ORB implementation named ORBiIt. [14]

The widget toolkit that GNOME use, GTK+, iswritten primary in C, although a large number
of language bindings are available. Since GTK+ isimplemented in C it is not as object oriented

as KDE which uses C++.

The GNOME window environment provides a few technical solutions to get a component
structured model. The basic facility is the GNORBA, GNome cORBA framework, that allows
applications to use the GNOME implementation of CORBA, ORBIt. Another facility provided
by GNOME to write reusable software components is the Bonobo. Bonobo components are
pieces of software that provide awell defined interface and are designed to be used in coopera-
tion with other components. Using Bonobo makes it possible for GNOME applications to
embed graphic and functionality supplied by other applications, compare to KDE KPart.
CORBA is used as the communication layer that binds Bonobo components together, making

it possible to distribute components over a network.

45.1. TheGNOME CORBA Framework
The GNOME CORBA framework allows applications to use ORBIt, the CORBA implementa-
tion used by GNOME.

To alow applications to request access to a specific CORBA object, GNOME CORBA servers
place information in the repository named GOAD, GNOME Object Activation Directory, in

31

GNOME. The GOAD stores information on the CORBA objects that a program can provide to
other programs. Each entry contains a unique implementation identifier (the “GOAD ID”), a
list of interfaces that the object supports and information on how to create a new instance of the

object implementation.

If an application provides the implementation for a CORBA object, it is necessary to integrate
that object into the GOAD. An application would install a ’'.goad’ data file into the correct
directory as part of its installation process. Then a few function calls must be made when the
object is created and destroyed. Once an object implementation is registered with GOAD, cli-

ent applications can activate that implementation with a single function call. [15]

GNORBA could be used to solve the dynamic extension of functionality problem by imple-
menting a distributed solution, figure 6. GNORBA supports functionality to handle the GOAD.
That is, functionality to register a new module, get the name and location of a module etc.

Once areference to aremote module is obtained it isimplemented as it was alocal module.

4.5.2. Bonobo

Bonobo is a set of CORBA interfaces that define the interactions required for writing compo-
nents. Bonobo is the architecture that makes components available to other applications as a
Bonobo component. This enables applications to be embedded into another application for
editing or displaying information. Bonobo makes GNORBA more user friendly by providing
wrapper functionality for it. [16]

Bonobo can be used to solve both the dynamic extension of functionality and the comprehen-
sive window control. By constructing the modules as a Bonobo component, the component
provides new functionality to the Control Application. Since a Bonobo components also sup-
ports functionality to be graphically embedded a module can provide its own GUI that is pre-
sented by the Control Application.

45.3. General Aspects
GNOME is not awindow manager and is not tied to any one window manager. GNOME isthe
GNU Network Object Model Environment. The GNOME project intends to build a complete

desktop environment for the user.

32

Technical aspects:

GNOME was started by several people well-known in the Linux and GNU communities, but it
Isintended to run on any modern and functional Unix-like system. GNOME has been reported
to work under the following [17]:

GNU/Linux

BSD (FreeBSD, NetBSD and OpenBSD)
Solaris

IRIX

HP-UX

AlX

What are the System Requirements for GNOME?
Currently, amachine with Unix or a Unix-like operating system installed is needed, with the X
Window System (X11R5 or later). GNOME needs at least 16MB of RAM, athough 32MB or

more is recommended.

Distribution and licence agreement:
The widget toolkit that GNOME use, GTK+, is licensed under the LGPL. Like KDE GNOME
isan Internet project. All sources are open to everyone and may be distributed and modified by

anyone.

4.6. Summary

All the technologies discussed offers one or several ways to solve the problems of dynamic
extension of functionality and comprehensive window control in SEA. Each technology pro-

vides two main solutions, one distributed and one that is not.

The distributed solution in general makes it possible to have instances of modules anywhere on
anetwork. A disadvantage is that the degree of complexity increases using distributed technol-
ogies. All the distributed technologies provide functionality to get the name and location of
modules to be loaded, this information is stored in the repository, figure 6. Tcl-DP provides
RPC functionality, and does not support functionality to locate distributed modules.

33

Using a nhon distributed solution is alot simpler at cost of flexibility. A problem that has to be
solved in anon distributed solution is were to find the modules, a couple of solutions are possi-

ble, namely: Increase the functionality of each module in SEA or to have the information in a

separate GUI configuration file.

Table 2 isasummary of the analyzed technologies

Table 2: Summary of technologies

DEoF?2 DEoF b
Techrology Distributed Non Distributed cwc
Tcl/Tk Tcl-DP Tcl source command | Passing widget paths
as argument
Java RMI / CORBA Dynamic class Java panels
loading
KDE2 KOM/OpenParts KParts KParts
GNOME Bonobo - Bonobo

a. DEoF: Dynamic Extension of Functionality
b. Comprehensive Window Control

4.7. Selected Technologies

All the distributed solutions will work, but they will all give a overhead and a high level of
complexity to the application that is not needed. So the selected technologies are al non dis-
tributed alternatives. The selected technologies to implement are:
* Tcl/Tk using the source command and namespaces.
This solution is selected since it is the simplest way to modify the existing code EIN/TSP
aready have.
e Javausing dynamic class loading.
Javais selected because is a popular object oriented language well suited for graphical
development.
» KDEZ2 using the KPart technol ogy.
KDEZ2 is selected because its KParts technology solves both the problems of dynamic

extension of functionality and the comprehensive window control.

The reason why GNOME is not one of the selected technologies to implement is that there is
not enough time to make atest implementations using all technologies listed in Table 2. Since
KDE2 and GNOME are both desktop environments the authors decided to only implement one
of them. The reason why KDE2 is selected over GNOME is mainly because of KDE2's K Part
that solves both the dynamic extension of functionality and the comprehensive window control

in anon distributed way.

35

36

5. Implementation

This part describes the implementation of the selected technologies. First the Tcl/Tk imple-
mentations is described, second the Javaimplementation and finally the KDE2 implementation
Is described. Each technology describes how to solve the earlier stated problems with dynamic

extension of functionality and comprehensive window control.

5.1. Precondition

The following implementations does not initiate or start the SEA core, it just uses the MPH
library to communicate with a already running SEA core. That is, first the SEA core applica-
tion has to be started and initiated according to given configuration file. Once the SEA is up

and running the main application in question can be started.

The different implementations are examples of how the component based GUI application
could be implemented in the technology in question. The implemented test application does
not support any functionality like the SEA Control Center as shown in figure 2. The purposeis
just to show the possibilities to extend the Main Control Application with modules that are

unknown at buildtime for the Main Control Application.

Each module in the Control Application can only communicate with one given component
instance in the SEA core. That is a given graphical module can not communicate with more

than one SEA core component instance to show their status in one and the same window.

52. Tcl/Tk

The Tcl/Tk application consists of a main Tcl/Tk application that handles the window control
and modules that implements the functionality for controlling the separate components in the
SEA core.

5.2.1. Precondition
This solution uses a separate configuration file to tell what GUI modules that corresponds to a

given instantiated component in the SEA core.

The notebook widget is a part of the extension package BWidget, which therefore must be
included in the Tcl/Tk application.

37

5.2.2. Solution for the Main Application
The description of the solution for the main application is divided into three parts. First the
start of the Tcl/Tk application, second the instantiation of a selected component in the SEA

core and third, afew other supported functionalities.

Sart of the GUI Application

The Tcl/Tk application is started with two parameters, the first is the name of the machine on
which the SEA core is running, the second parameter is the port to connect to. These parame-
ters can be obtained from the status bar in The Sea Control Center, figure 2. In the figure 2
example the name of the machine on which the SEA coreisrunning is‘solstal’ and the port for
the MPH is*51765'. First the connection to the SEA coreis set up, the MPH connection, using
the MPH: : OpenConnect i on procedure. Next the Tcl/Tk application asks the SEA core,
through the MPH socket connection, what instances it has using the MPH: : Sear chByNane

procedure. The procedure call returnsalist of al instancesin the SEA core.

Thereturned list of al instancesisiterated to seeif a given instance of a component has a cor-
responding graphical module associated to it or not, according to the GUI-configuration-file, as
illustrated in figure 13. That is, the Tcl/Tk application receives a list containing for example
compl.instl, compl.inst2, comp3.instl and comp4.instl. The actual name of the component
will be like LI-1, LI-2 etc. where LI is the name of the component and the number is the

Instance of the component.

Configuration
file

SEA core mod modL.tcl
mod2 mod2.tcl

Tcl/Tk application / N
mod3 mod3.tcl
modLl.instl

compl.instl

SEA core -

compl.inst2 Main Tcl/Tk

[| \
I
wer | [|
- - modLtcl | \\ !
L
~ Tmodz.tcl !)
L — 4
Instantianted modules, living Modaxd !
N own separate namespaces. L — 4 |
r— "
L1/

Figure 13: Tcl source and namespace commands

38

Once the list is obtained it will be iterated to see if there is any corresponding graphical mod-
ules according to the GUI configuration file that are associated to a given component type. If
there is a corresponding module the component name and instance number, the identifier
name, will be added to a list of available GUIs. The list of available modules may be graphi-
cally represented in a number of ways, in this solution it is shown as cascading menus with
module type in the main menu and all the instances of each module in a submenu. The cascad-

Ing menus are shown in figure 14.

- ETE
Toas | |
Lt u-a |
il wi-n
=7
LB
-6

-4 |_
wi-1
-2
-1
wi-n

Figure 14: Tcl/Tk Control Application with cascading menus

Instantiation of a Module

The second step is to instantiate a module. When a instance of a given component is selected
from the cascading menus, the newent r y procedure will be executed and the corresponding
module to the selected component will be instantiated. First a new namespace is created using
the Tcl command nanmespace, the new namespace will have the same name as the identifier.
In the new namespace the module will be sourced using the Tcl command sour ce, that is
loaded into the existing Tcl/Tk code.

The module is now instantiated. Next step is to set up a MPH connection between the new

module and the corresponding component in the SEA core. To do this a unique identification

number has to be obtained from the module using the procedure get | | D, which is a proce-

39

dure that all modules have to support. Theget | | D procedure returns the unique identification

number.

Next step is to open a new MPH virtual socket using the MPH: : OQpenChannel procedure.
The channel isavirtual socket over the MPH socket connection. This procedure is called with
anumber of parameters. One of the parametersisthe 1D for the module, telling the SEA core
which component to connect to. If the procedure call MPH: : OpenChannel was successful a

new connection exists.

The last step in the instantiation scenario is to make an area for the module to draw its widgets

in. In this Tcl/Tk solution the notebook® widget is used. A new tab is added to the notebook
with the name of the identifier, module name and number. To create a new tab the cr e-

t at eTab procedureis called. The return value of the call is the path to a frame widget within
the tab, which should be used by the module to draw its graphics within. Finaly the initializa-
tion procedure of the module is called, pr oc i ni t, with the path where to draw its widgets

passed as an argument.

At this point the module is instantiated, connected to the right component in the SEA core and

the graphics of the module is drawn in a notebook tab widget.

Other Functionality Supported

The extra functionality supported by the main Tcl/Tk application is the ability to tear off atab
into a new toplevel window. That is, the main application supports this functionality for each
separate tab that is created by adding an extra button to the tab. This tear-off functionality has
to be done by hand in Tcl/Tk, in other languages there may be a direct support for tearing off
graphical partsinto own top level windows. Figure 15 shows the main Tcl/Tk application with

anumber of LI-telephone modules embedded and one torn off.

1. The notebook widget is a part of the extension package BWidget, which therefore must be included.

40

Tcl/Tk main Control Application

o T
Tools
[U-3 U6 |L-7 [U-8 [L-9 |
Inst: LI-6 Remove TearOff
caliBack: 00 00 i
Phone off the hook
Phone on the hook
callBack: 05
Off Hock g Tcl/Tk L1 telephone module
(oI (IDE S e aroffLi-1 e [mpe
1 i 2 i 3 i Inst: LI-1 TearOn
4 i 5 i 6 i Dial O Iy
Off Hock i Dial 0O
7 i 8 i] i Dial 0O
Dial 0O
On Hock Dial 0
0 § Dial 0
Dial 0O
L I R
Dial 2
4 i 4 i & i callBack: 03
callBack: 02 03
¥ i il i 9 i callBack: 03
callBack: 03
----- 1] i callBack: 03

Figure 15: Module torn off from the main Tcl/Tk application

Yet another functionality that can be supported but still not implemented is the functionality
for the module to extend the main applications menubar. In other words, when a given module
tab is activated the modul e should extend the main applications menubar with extra functional-
ity supporting the activated module. This can be solved using the same approach as when the
main application gives the path to draw the modules widgets within. In the case of menu exten-
sion the path where to extend the menu has to be passed as an argument to a standard proce-

dure in the module, that extends the functionality of the menubar.

5.2.3. Solution for the Modules

The LI-telephone module is the only module that is implemented. The LI-telephone module
represents the general structure for a module. The modules structure is in short, a number of
standardized procedures to support initialization and communication with the main application
and the corresponding component in SEA, then a number of procedures to support the modules

functionality.

There are some standard procedures that is needed for the module to set up the MPH connec-

tion and some standard procedures needed to create the GUI for the module, like the pr oc

41

I ni t toinitializethe GUI. The standard procedures can be compared to apure virtual classin
C++ since they have to be implemented. The rest of the procedures have specific functionality

for the given module.

5.2.4. Implementation
The Tcl/Tk implementation consists of two separate files types, cbgui.tcl which is the main
application in Tcl and the modules modX.tcl. The modules modX.tcl is only implemented for

the L1-telephone module, li_gui.tcl.

5.2.4.1. Thecbgui.tcl file
Implementation file for the main application. Thefile isdivided into three parts, procedures for
the MPH communication, procedures for GUI functionality and finally general procedures for

adding and removing new modules.

MPH procedures

e proc SendMessage {channel nessage}
This procedure is used by the GUI instances to send text messages to its SEA entity. The
parameters are channel which isthe channel given to the instance and nessage isthe
text message to be written. The procedure does not return anything.

« proc SendBi naryMessage {channel |ength nessage}
This procedure is used by the GUI instances to send binary messagesto its SEA entity. The
parameters are channel which isthe channel given to the instance, message whichis
the text message to be sent and the | engt h which isthe length of the message. The proce-
dure does not return anything.

e proc concl oseport {}
Thisisacallback procedure required by MPH, itiscalled if the MPH connection is closed.

The procedure does not take any arguments and does not return anything.

GUI procedures

e proc draw {}
This procedure creates and places the widgets, menubar and notebook, on the main win-
dow. The procedure does not take any arguments and does not return anything.

e proc addToMenu {cascade nane comrand}

This procedure adds a new command to the given cascade menu in the menu pointed out by

42

the global variable menuPat h. If the cascade do not exist it is created and placed on the
main window. The parameters are cascade which isthe name of the cascading menu,
name which is the name of the new command and conmraind which is the code to be exe-
cuted when the item is selected from the menu. The procedure does not return anything.
proc kill Tab {inst}

This procedure deletes atab from the notebook. The parameter i nst isthe name of the tab
to delete. The procedure does not return anything.

proc tearOf {inst channel nod}

This procedure makes a new toplevel window, deletes the specified instance and adds it to
the new toplevel window. The parametersarei nst which isthe name of the instanceto be
in anew top level window (the tab to tear off), channel whichisthe MPH channel given
to the module for communication with its component and nod which is type of instance.
The procedure does not return anything.

proc tearOn {inst channel nod}

Thisisthereverse procedure of t ear O f . It destroys a given toplevel window and creates
anew tab in the notebook and initiates the module there. The parametersarei nst which
Is the name of the toplevel to be placed in anew tab, channel whichisthe MPH channel
given to the module for communication with its component and nod which is the type of
instance. The procedure does not return anything. Note, the namet ear On was a joke at
the beginning, but since we did not come up with a better name it remained this way.
proc initTearOfPage {page inst channel nod}

This procedure initiates the new toplevel window and creates a frame for the module to
draw itswidgets in. The parameters are page which isthe new toplevel window, i nst
which isthe name of the instance, channel which isthe MPH channel given to the mod-
ule for communication with its component and nod which is type of instance. The proce-
dure returns the path to the drawing area for the module.

proc initPage {nod page inst channel}

This procedureis called immediately after a new tab has been created. It creates widgets
for some standard functionality and the frame that is by sent to the GUI instance. The
parameters are page which isthe new page (tab), i nst which isthe name of theinstance,
channel whichisthe MPH channel given to the module for communication with its
component and nod which istype of instance. The procedure returns the path to the draw-

ing areafor the module.

43

proc createTab {nod inst channel}

This procedureis called immediately after ainstance has been selected from the menu. It
creates anew tab and call i ni t Page toinitiate it. The parametersarei nst which isthe
name of the instance, channel which isthe MPH channel given to the module for com-
munication with its component and nod which is type of instance. The procedure returns

the path to the drawing area for the module.

General procedures

proc newentry {nod inst tclappsourc}

This procedureis caled if the user selects a entity from the menu. It loads the source code
for the given instance. The parameters are nod which isthetype of instance, i nstwhichis
the name of theinstanceandt cl appsour ce whichisthefile containing the new source

code to load. The procedure does not return anything.

proc destroyEntry {nod inst channel}

This procedure removes a GUI instance by disconnecting its MPH channel, enable it in the

menu and remove its tab. The parameters are nod which isthe type of instance, i nst whichis

the name of the instance and channel which isthe MPH channel given to the module. The

procedure does not return anything.

proc addEntities {}

This procedure checks available entities in SEA against the configuration file ’ cbgui.cfg’
and adds the matching entities. The procedure does not take any arguments and does not
return anything.

mai n

main is not areal procedurein Tcl/Tk, it isthe global code in the file which acts like the
main code. All the necessary calls and initiations are done form here. Note al the variables

in amodule that are declared here will belong to the global namespace.

5.2.4.2. Theli_gui.tcl

Implementation file for the L1 module, representing any module. The file is divided into two

parts, general procedures that has to be supported to interact with the main application and pro-

cedures specific to the module.

General procedures needed to interact with the main application.

proc getlID {}

This procedure returns the unique I1D number for the specific module. The procedure does
not take any arguments.

proc nessagecal | back {l ength nessage}

This procedure is called when a message has been received. The parametersarel engt h
which isthe length of the message and message which is the actual message. The proce-
dure does not return anything.

proc nessagecal | back {}

This procedureis caled if the channel isremotely closed by the SEA component. The pro-
cedure does not take any argument and does not return anything.

proc init { path _channe}

Thisprocedureis called when the moduleisinstantiated. The parametersare _pat h which
is the path to draw the modules widgetsin and _channel whichisthe MPH channel to

communicate with the corresponding component. The procedure does not return anything.

Specific functionality for the given module. In this case the LI-telephone module.

proc of f Hook {}

This procedure sends a offHook message to its SEA component. The procedure does not
take any argument and does not return anything.

proc onHook {}

This procedure sends a onHook message to its SEA component. The procedure does not
take any argument and does not return anything.

proc dial {digit}

This procedure sends a selected digit to its SEA component. The parameter di gi t isthe
digit to dial. The procedure does not return anything.

proc setlnfotext {text}

This procedure prints text in the textarea. The parameter t ext isthetext to print. The pro-

cedure does not return anything.

Note in the module there can not be any “main” code, this code will never be executed.

5.2.5. Conclusions

45

Using Tcl/Tk isasimple way to solve this problem in asmall scale application like this exam-
ple. In afar more complex structure like in the SEA it has to be well designed with hard speci-
fications on naming conventions and functionality that each standard function should perform.
If Tcl/Tk isto be used in alarge scale application it would be agood ideato look at some class

abstraction package to extend Tcl.

5.3. Java

The Java implementation consists of the main application that handles the window control and
the code modules that implements the functionality for controlling the separate components in
the SEA core. The code for controlling the components isimplemented as separate Java classes
(module classes). Both the main application and the module classes uses the already imple-
mented MPH library for Java to communicate with SEA. In this implementation the Java
Swing classesis used for the GUI. The main application isimplemented as a Java applet.

5.3.1. Preconditions

In the Tcl and C versions of the MPH library there exists functionality to get the name of all
the currently loaded components in SEA, but not in the Java version. This functionality must
be added to the Java MPH library in order for this implementation to work in reality. To get
around this problem in this test implementation a few known component names are explicitly

declared in the code.

5.3.2. Solution for the Main Application

The main application consists of a menu bar (JMenuBar) and a tabbed pane (JTabbedPane).
The menu bar has one menu (JMenu), named “tools’. The tools menu contains the name of the
components that can be selected. Each pane in the tabbed pane contains a panel (JPanel) that is

used by the module classes, one panel for each module class.

To start the application two parameters are needed, the host and port for the running SEA. In
this test application those parameters is given in the html file that is used to start the applet.
When the Java application starts it creates a object of the MPHclient class, this object contains
the methods that is used to communicate with the SEA core. Now the application should get
the names of the loaded componentsin SEA and compare these to a configuration file in order
to know which components that have an associated module class and add these to the menu.

Thisis not possible, see the precondition for Java, so instead a few known component names

46

are added to the menu. Finaly an instance of class Tabs that inherits from aJTabbedPane
is created and added to the main application window. Figure 16 shows the main application
with the cascading menu.

ol Applet Yiewer: ChguiAppletclass B X
Applet

Tools |

Ly Lo
AT» | LI
LI-2
LI-3
LI-4
LIS
LI-6
LI-7

Applet started.

Figure 16: The Java without any module classes |oaded.

When the user selects a component name from the menu a callback method is called with the
name of the component as a parameter. This name is the same as the class that is to be loaded,
for example, in SEA the LIC components are called LI-1, LI-2,.... so the module class to load
when the user has selected a LIC moduleis called LI.class. Then the given class is loaded into
the Java interpreter with the static method Cl ass. f or Nane() and instantiated with the
method newl nst ance() inthe Cl ass object returned by f or Nane() . After the module
class has been instantiated it has to be initiated. The service provided by the main application
to the module classes are a MPH connection to the SEA component associated with the given
module class and aJPanel that is used by the module class for all its user interaction. To set
up a connection to a SEA component the main application calls the method connect inthe
MPHcl i ent object, this method returns an instance of the class MPHconnecti on. The
MPHconnect i on class contains methods used for sending messages to SEA. A JPanel is
created and added to a new tab in the JTabbedPane. The MPHconnecti on and the

JPanel are passed as argumentsto the method i ni t () inthe module class.

5.3.3. Solution for the M odule Classes

47

The module classes is where the functionality for controlling the different components are
implemented. In order for this classes to work with the main application and the MPH library
they must implement two interfaces, MPHcl i ent Li st ener and the Conpl nt er f ace.
The MPHcl i ent Li st ener interface contains method declarations that is used to receive
messages from the SEA component. The Conpl nt er f ace contains methods used by the

main application to initiate the Module Class.

When a component is selected in the main application an instance of the given module classis
created. After the creation of the Module Class object it is initiated by a call to the method

conpl ni t withthe MPHconnect i on andaJPanel as parameters.

In order for the Module Class to interact with the user of the Control Application it must use
the given JPanel . The placement of this panel is controlled by the main application. In this
implementation the JPanel isplaced on atab in the JTabbedPane in the main application

but could just as well be placed in its own toplevel window.

For the communication between the Module Class and its SEA component the MPHconnec-
t i on object and the methods defined in the MPHcl i ent Li st ener interface is used. The
MPHconnect i on object contains the method send() that the Module class use to send
MPH messagesto its SEA component. The MPHcl i ent Li st ener interface contains decla-
rations for callback methods used by SEA to send MPH messages back its client. Since the

Module Class must implement the MPHcl i ent Li st ener it must implement these methods.

5.34. Implementation
The implementation is divided into two implementation parts. First, the implementation for the
Main Application is described and secondly the implementation of one Module Class, the LIC

component, is described.

5.3.4.1.TheMain Application

The main application consists of three classes, CbhguiApplet, Tabs and ComponentList.
CbguiApplet isthe main class, Tabsis used to create and handle the tabs in the tabbed pane and
ComponentList isthe class that handles the representation of the available module classes. Fig-

ure 17 shows small design pattern for the Javaimplementation drawn in Booch notation.

48

PR D N T TN

(~ ActionListener ~ (7 JFrame (JTabbedPane ™~
|) |) |)
—//“T/q\ /“——T/Q\ —//R—’T/q\
(~ ComponentList ™~ (~ CbguiApplet ~ _ { Tabs RN
| T])

Figure 17: Structure of the Main Application in Java.

public class CbguiApplet extends JApplet:

Thisisthe applet class which is executed from the html file.

Class members:

MPHcl i ent nph

The MPHCclient object contains the methods to communicate with SEA core. It getsinstan-
tiated in the constructor.

Conmponent Li st conpLi st = new ConponentLi st(this).

This object handles the menu.

Tabs tabs = new Tabs(this).

This object handles the TabbedPane.

public init()

This method is called when the applet is created, it gets the host and port parameters from
the html file and establish a new connection to SEA by creating an instance of MPHclient.
public voi d addConponent s()

This method is supposed to retrieve the loaded SEA components and the available module
classes and adding those to the component list, the menu, by calling the newEntry in the
ComponentL.ist object. However, this can not be done due to the problem with the MPH
library described in the Java precondition. Instead afew known component names are
added to the menu.

49

public void itentel ect Cal |l back(String inst)

Thisisthe callback method that is called when the user selects an item in the component
list. It loads and initiates the module class for the selected item. A new JPanel is created
and added to the TabbedPane by calling addComponent in the Tabs object. A new instance
of the module classis created by first loading it into the Javainterpreter with Class.for-
Name and then instantiate it with the method newlnstance in the Class object returned by
Class.forName. A MPH channel to the given SEA component is created with the method
connect in the MPHCclient object, this method returns an instance of MPHconnection.
Finally the method init in the module class object is called with the newly created M PH-
connection and the JPanel as parameters.

public void destroy()

This method is called when the applet is destroyed. Is closes the MPH connection by call-

ing the closeConnection method in the MPHclientListener class.

class Tabs extends JTabbedPane:
This class handles the TabbedPane and the JPanels that the Module Classes use as their draw-

Ing areas.

Class members:

publ i c Tabs(JFrane parent)

Adds the Tabbed pane to the given JFrame.

publ i c JPanel addConponent (String inst)

Creates a new JPanel and adds a new tab to the tabbed pane. Then adds the JPanel to the
new tab and returns the JPanel.

Class ComponentList implements ActionListener:

This class handles the menu representation of the available module classes.

Class members:

JMenuBar menuBar
The menu bar.
JMenu nmenu

The“Tools’ menu.

50

* Cbgui Appl et owner
The instance that created this object.

* public ConponentLi st (Cbogui Appl et cb)
Constructor, creates and adds the menu bar and the menu to the application.

* public void newentry(String nod, String inst)
Adds anew item, “inst”, to the cascade menu “mod”. If “mod” does not exist it is created.
Since the class ComponentList implements ActionListener the item is assigned this as the
action listener.

* public void actionPerforned(Acti onEvent e)
Method defined in the interface ActionListener. It gets called when the menu item is
selected. It calls the itemSel ectCallback() method in the Cbgui class with the instance

name as a parameter.

5.3.4.2.The Module Class
Every module class must implement two interfaces, the MPHc | i ent Li st ener interface and

the Conpl nt er f ace interface.

MPHCclientListener
The MPHCclientListener defines the callback methods used by SEA to send MPH messages to

the client.

Members:

e public void recei veMessage(byte[] data, int |ength)
It isthis method that receives the messages to the Module Class. The message comes as a
byte array, it is up to the implementation of the Module Class to convert the message to
something that can be understood by the receiver.

* public void connectionC osed()
Thismethod is called if the Main Application loses its connection with SEA, which means
that the Module Class MPH channel also gets closed.

* public void channel C osed()
Thismethod is called if the MPH channel is closed.

* public void error(String errMsQg)

This method is called if an error occursin the MPH communication.

51

Complnterface
The Complnterface defines the methods used by the Main Application to initiate and embed
the GUI of the Module Class.

Members:

e public void init(MPHconnection nph, JPanel p)
This method is used to initiate the Module Class. The parametersis the MPHconnection
used to communicate with SEA. The JPanel which isthe drawing area that this Module
Class must use for all user interactions.

e public String getllD()
Every component in SEA has an identifier id. This method must return the identifier for its

SEA component.

public class LI implements Compl nterface, MPHclientListener, ActionListener

This class is a smple Module Class implementation that communicate with a LIC component
in SEA. It is dynamically loaded and instantiated by the CbguiApplet. The GUI consist of a
simple keypad and a text field. Figure 18 shows the main application with three LIC modules
loaded.

SRl Applet Viewer: Chguidppletolss [NENEIDE
Applet
Tools

1 2 3 |

4] i

7 8 9

Off 0 On

Applet started.

Figure 18: The Java application with three LI modules |oaded.

52

Class members:

MPHconnect i on nphConn

Contains methods for sending messages to the given LIC component.

JText Area text

The text area.

public String conpGetl|D()

Method required by the Complnterface interface, it returns the identifier ID for the LIC
component.

public void conplnit(MPHconnecti on nph, JPanel p)

Method required by the Compl nterface interface, thismethod is called right after the object
has been created. In this method the GUI is created and added to the given JPanel. The
parameters is the MPHconnection and the JPanel used by this class.

public void recei veMessage(byte[] data, int |ength)

Callback method required by the MPHclientListener interface. This method is called when
amessage from the given SEA component is received by the MPH.

public void connectionC osed()

Method required by the MPHclientListener interface, it does not do anything.

public voi d channel C osed()

Method required by the MPHclientListener interface, it does not do anything.

public void error(String errMg)

Method required by the MPHclientListener interface, it does not do anything.

public void actionPerforned(Acti onEvent e)

Method required by the ActionListener interface. Since the buttons on the keypad in the

GUI usesthis as actionlistener this method define the action for the buttons.

5.3.5. Conclusion

Using Java would be a ssmple way to implement the Control Application. Java is object ori-

ented and the problem to solve is suited for object orientation. It is also simple to handle GUI

in Java. This makes Java suitable for the implementation of the Control Application. The prob-

lem is that the Java MPH library does not include the same functionality asthe Tcl and C ver-

sions of it, se the Java preconditions.

53

5.4. KDE2 KParts

We intended to make an implementation using KParts, but there was a number of circum-
stances that made it rather complicated. One of the main problems was that KDE2 is till in
alpha release and there were great difficulties to build the KDE2 source code for the Sun
Solaris platform. After approximately two weeks of non successful compilation of the KDE2

source code for the Solaris platform, it was given up®. Instead we tried to build the KDE2
source code for the Linux platform on an Intel x86. This was eventually successful. Since
KDEZ2 is not officially released there exists absolutely no documentation for the different parts
and technologies supported by KDE2, like the KParts technology. To get the necessary infor-
mation the source code for the different parts has to be analyzed. Due to lack of time we have
not been able to make a complete KPart implementation, so this section only describes the idea

of the KPart technology and how it could be used to implement a SEA Control Application.

5.4.1. TheKParts Technology

The Kparts technology supports solutions for both dynamic loading and graphical embedding
of new modules. KPartsisa C++ library that consists of several classes to provide aframework
for development of both the main application, a shell in KParts, and the modules, parts in
KParts.

All the KParts classes are encapsulated in a namespace, KParts. In other words, when instanti-
ating a KParts class the syntax is KParts::ClassName().

A KPartspart isa GUI component, featuring a widget embeddable in any shell application. If a
part does not support editing functionality, a “viewer”, it must inherit and implement the
KParts:: ReadOnl yPart class. If the part is both viewable and editable, an “editor”, it

must inherit and implement the KPart s: : ReadW i t ePart class.

The shell isa KPart-aware main window, that isawindow that can embed the GUI of adynam-
icaly loaded class. A shell application has to inherit the KPar t s: : Mai nW ndow class in
order to embed KParts parts.

1. TheKDE2isin alpharelease and consists of hundreds of megabytes of source code. Compiling a sta-
ble version, which means no compilation errors, takes approximately one day for all parts.

In order for the shell to be able to load and instantiate a given part, the part has to be compiled
asashared library. The shared library must contain ainitialization function, afactory class and

the implementation of the part as a separate class.

The initialization function must follow a specified naming convention, for example the part
notepad’s library name must be libnotepad.la and the initialization function must be named

I nit_libnotepad(),asshowninfigure 19.

extern "C
{
void* init_I|ibnotepad()
{
return new Not epadFactory;
}

s

Figure 19: KPart initialization function.

The initialization function is declared as extern C so that the compiler does not change the
function name, which it does for ordinary functions. Thisis needed due to the fact that the part
Is never linked to the shell application. It is only known by name and therefore the name of the
initialization function must be standardized. The initialization function returns a static factory

object for the given part.

The factory class must inherit and implement the KLi bFact or y and overload the functions
create and i nst ance. The KLibFactory implements the singleton pattern. The create
function creates the part of the given type and returns a reference to it. Now the shell has a

pointer to ainstance of apart of any type.

The shell has GUI elements that the parts want to share and extend, like the menubar, toolbar
and statusbar. The layout of these elements are described in a XML file for the shell. The parts
also supports GUI elements that will be merged in the shell’s user interface. The layout of the
parts element interface in the GUI is also defined by an XML file for each part.

55

5.4.2. Implementation
Since the KParts technology supports both dynamic loading and graphical embedding of new
modulesit is possible to create a SEA Control Application using this technology. In practice a

solution for this could be solved asillustrated in Booch notation in figure 20.

Main Application Module
Pl N : ~ = — 7 TN\ T TN
(KParts:Main- >~ | (Kparts:ReadOnlyPart> KParts KleFactoTy\
| Window))

- _ W/// | \—\\ W/// W/

b f T
—— 77N | e - 7N

~ - \ -
("MainApplica >~ + (7 Module > (” ModuleFactory ~
| tion) | \ [J—o Y)
\ — \ — - N — -7
~ _ / ™~ o / T~ /

Figure 20: Structure of the Main Application using KParts.

The main application inherits and implements the KPar t s: : Mai nW ndow to be able to
embed KPart modules. The modules, which must be compiled to ashared library, hasto inherit
and implement both the KPar t s: : Mai nW ndow class and the KPar t s: : Mai nW ndow
class. The Main application has to use the MPH C library function MPH_Sear chByNane() ,
to get alist of al instancesin the SEA Core. Thislist hasto be analyzed to seeif there existsa
corresponding library file to the component. If there exists amoduleit will be added to alist of

available modules, like the Tcl and Java solutions.

When amodule is selected by the user to be shown, it has to be instantiated. For example let’s
say the user selects to show a LIC-telephone component. This is done in the following way.
First the name of the module determines the name of the library to be loaded. In this case it
would belibli.la. Thenthei ni t _|'i bli () functioniscalled and afactory for the LI classis
returned. The LI factory object is then used to obtain the instance of a LI object using the
cr eat e function in the L1 factory. One of the arguments the create function takes is the name
of the parent widget, thisisfor the module to know where to draw its widgets. The create func-
tion returns a pointer to the newly created LI instance. At this point the Main Application is
extended with a LI module. When the L1 module gets activated the li.rc file is executed. The

56

li.rc file contains the XML code for the L1 module extend to the Main Application. In this way

the Main Application updates the functionality for each activated module.

5.4.3. Conclusion

Even if we did not make an implementation of this technology, we still believe that when the
KDE2 comes in a final and stable release this technology is an interesting candidate for the
SEA Control Application. Hopefully the final release will contain a much more detailed docu-
mentation of the KParts.

57

58

6. Conclusion

All the analyzed technologies offers one or several ways to solve the problems of dynamic
extension of functionality and comprehensive window control in SEA. The problems can be
solved in a distributed and a non distributed way as described in chapter 3, general solution.
Using a non distributed solution is alot simpler than using a distributed, at cost of flexibility.
We have chosen to focus on the non distributed solutions provided by Tcl/Tk, Javaand KDE2/
KParts.

Using Tcl/Tk is asimple way to solve the problems of dynamic extension of functionality and
the problem of comprehensive window control. Since Tcl/Tk is a interpreted language it is
easy to extend its functionality at runtime. In a small scale application Tcl/Tk is easily man-
aged and structured but in alarge and complex application the structure might get a bit confus-

ing.

Javais awidely known object oriented language that works with bytecode running on avirtual
machine making it possible to run the same bytecode on different platforms. It is also possible
to run the same code both as an applet and a standalone application. The Java swing classes
makesit easy to create GUIs. The disadvantage of Javaisthat it is slower than for example Tcl.
Both when running but especially at startup when the Javainterpreter has to start.

KDE2/KParts technology offers a nice technical solution to solve the problems of dynamic
extension of functionality and comprehensive window control. This is an interesting solution
but will have to wait for the final KDE2 release to be areal candidate. The solution will most
likely be a bit larger and more complex than both the Tcl/Tk and Java solutions. An advantage
for KDE isthat it is“pure” binary code and therefore is fast to execute. A disadvantage is that

KDE only exists for the Unix community.

Finally the technology and language that we recommend to use for the devel opment of a Com-
ponent Based Graphical User Interfaceis:
» Javausing dynamic classloading functionality

» Tcl/Tk using namespaces.

59

Tcl/Tk is chosen since it is a tool for fast development of graphical applications. It is well
suited to extend the functionality of already existing applications, that is using the source com-
mand. The drawback of Tcl is the namespace functionality. Using thisin alarge scale applica-
tion will probably be difficult and hard to organize. To solve this problem of abstraction we

propose that some class abstraction package to extend the Tcl is analyzed.

Javais chosen because it is a object oriented language and the problems to solve is suited for
object orientation. Using the dynamic class loading functionality in Java makes it easy to
extend the functionality of an already existing application, thus solving the problem of

dynamic extension of functionality in a object oriented way.

KDE/KParts is not selected because it will most likely be a bit larger and more complex than
both the Tcl/Tk and Java solutions. This higher level of complexity isnot needed in this kind of
solution. Thisdecision is not based in the fact that we did not manage to make an implementa-

tion using KParts.

60

7. References

This chapter includes all references used in this thesis. First al the references used in the text
then some books that are frequently used throughout the time of the thesis and last some gen-

eral World Wide Web links were alot of information on the different subjects can be found.

7.1. Indexed Referencesin the Thesis

[1] http://www.ericsson.se/pressroom/comp_newtw.shtml
[2] http://www.ericsson.se/infotech/company/

[3] http://bokhyllan.ks.ericsson.se/

[4] http://www.pconline.com/~erc/tcl.htm

[9] http://dev.scriptics.com/software/tcltk/license_terms.html
[6] http://java.sun.com/docs/books/tutorial/rmi/overview.html
[7] http://java.sun.com/nav/busi ness/license-fag.html

[8] http://www.kde.org

[9] http://www.kde.org/whatiskde/openparts.html

[10] http://devel oper.kde.org/documentati on/tutorial s’'components/index.html
[11] http://www.kde.org/documentation/fag/kdefag-2.html#ss2.3

[12] http://www.trolltech.com

[13] http://www.gnome.org/

[14] http://devel oper.gnome.org/arch/

[15] http://devel oper.gnome.org/arch/component/gnorba.html

[16] http://devel oper.gnome.org/arch/component/bonobo.html

[17] http://www.gnome.org/gnomefag/html/x131.html

7.2. General Book References

David Flanagan, Java in a nutshell, Second Edition, O’ Reilly, 1997
John K. Osterhout, Tcl and the Tk Toolkit, Addisson Wesley, 1994
Grady Booch, Object-Oriented analysis and design, Second Edition, Addison Wesley, 1998

61

7.3. General URL References

CORBA Technoligies

WWW.omg.org

Tcl/Tk
WWW.SCriptics.com
www.sco.com/Technol ogy/tcl

www.tcltk.com

Java

java.sun.com

KDE
www.kde.org
devel oper.kde.org
WWW.MiCO.0rg

www.trolltech.com

Gnome
WWW.gnome.org
devel oper.gnome.org

orbitcpp.sourceforge.net
Licences
www.gnu.org/copyleft/gpl.html

www.gnu.org/copyleft/Igpl.html

www.opensource.org/osd.html

General information about CORBA

The homepage of Tcl/Tk
Miscellaneous information

Miscellaneous information

The Source for Java Technology

General information about KDE
KDE Developers Web Site
Mico, the CORBA implementation used by KDE

Qt homepage

The GNOME Project
GNOME Developers Web Site
ORBIt, the CORBA implementation used by GNOME

GNU General Public License, GPL
GNU Lesser General Public License, L-GPL
(formerly known asthe GNU Library GPL)

Open Source Licence

62

Appendix A: Abbreviations

List of abbreviations used in the thesis.

AP
CORBA
EIN
GNU
GPL
GUI
L-GPL
LIC
MPH

ORB

SEA

SS7

TSP

QPL
XML

Application Programmers Interface

Common Object Request Broker Architecture

Ericsson Infotech AB.

GNU isNot Unix

GNU General Public License

Graphical User Interface

GNU Lesser General Public License

Line Interface Circuit

Message Protocol Handler.

Multiplexed TCP/IP socket connection protocol.

Object Request Broker (Often a specific implementation of the CORBA
technology, “an ORB")

Simulated Environment Architecture.

EIN/TSP's simulator environment to simulate an AXE switch.
Signaling System no.7

Department of Test and Simulated Platform.

Q Public License

Extended Markup Language

63

Appendix B: Description of thethesis

This appendix shows the official description of the thesis, stated by Ericsson Infotech AB.

C-DEGREE THESIS
COMPONENT BASED GRAPHICAL USER INTERFACE

Students

Johan Torbjdrnsson and Peter Svensson at Karlstads Universitet.

Goal

The goal of the thesiswork is to propose a suitable technology for designing component based

user interfaces.

Background

Today Ericsson Infotech (EIN) has a simulation product that is built using components. The
components are combined at run-time to create a simulation of the system the user needs. The
system isdivided in asimulation part and a control part. The component system used only cov-
ers the simulation parts not the graphical user interface (GUI) used to control the system. This
leads to problems with trying to keep the GUI updated with all the different simulation compo-
nents designed by EIN and third party providers. To solve this problem EIN would like to have
aGUI system that is extensible a run-time so that a component can consist of a simulation part
and an optional GUI part that adds functionality to the GUI.

Execution

Evaluate the existing technologies that can be used to build a GUI that is run-time extensible
using some form of component structure. Describe the pros and cons of the different solutions.
Propose one or two technologies that are suitable for EINs needs. Build simple prototypes

using the selected technologies.

65

Time estimate
Thetime for the thesis work is 20 weeks at 50%.

Result

Report describing the available solutions. Prototypes demonstrating the capabilities of the two
most promising solutions. A presentation of the work at EIN.

Contacts at EIN
Magnus Einarsson 054 19 35 20

Magnus.Einarsson@ein.ericsson.se

66

Appendix C: Tcl/Tk Syntax

This appendix gives abrief introduction in Tcl/Tk and its syntax. For more information please
use the links for Tcl/Tk in the reference chapter 7. For Tcl syntax information se http://

www.sun.com/960710/cover/tcl-syntax.html#syntax.

Thefirst part of Tcl/Tk isthe Tcl interpreter whichisalibrary of C procedures that implements
the Tcl commands and the grammar for the Tcl language. This means that Tcl has no fixed
grammar that explains the entire language. Instead, Tcl is defined by the interpreter that parses
single Tcl commands and the procedures that executes the commands. The interpreter and its
substitution rules are fixed, but new commands can easily be added and existing ones can be
modified and replaced. In Tcl assignments, procedure calls and features that control the pro-
gram flow such asif and while are all implemented as commands, that is, they are not under-

stood directly by the Tcl interpreter.

The other part of Tcl/Tk is Tk. Tk isagraphical user interface toolkit that makes it possible to
create GUIs quickly. Tk extends the built-in Tcl commands with commands for creating and
controlling graphical user interface elements called widgets. A widget can be a button, text
window, scrollbar etc. Widgets are arranged hierarchically on screen with one toplevel window
as ‘root’. The syntax for accessing the different widgets in the hierarchy use dots (.). Tk ships
with al distributions of Tcl.

A Tcl script file can be executed just like a shell script viathet cl sh (Tcl shell) or wi sh

(windowing shell). Thet cl sh does not support the Tk extension.

As mentioned earlier the Tcl interpreter is implemented as a library of C procedures and it is
easy to extend the Tcl and Tk functionality by writing new C procedures and incorporate these
in the Tcl interpreter as new commands. Due to this fact there is alot of packages of extended
functionality available to Tcl/Tk. Two of those extensions are Tcl-Dp and BWidget. Tcl-Dp
contains functionality for distributed programming and BWidget is an extension of Tk with a

number of new widgets.

67

Basic syntax
Tcl scripts are made up of commands separated by new lines or semicolons. Commands all

have the same basic form illustrated by the following example:

expr 20 + 10

This command computes the sum of 20 and 10 and returns the result, 30. Each Tcl command
consists of one or more words separated by spaces. In this example there are four words: expr,
20, +, and 10. The first word is the name of a command and the other words are arguments to
that command. All Tcl commands consist of words, but different commands treat their argu-
ments differently. The expr command treats all of its arguments together as an arithmetic
expression, computes the result of that expression, and returns the result as a string. In the expr
command the division into words isn’t significant: you could just as easily have invoked the

same command as

cnd arg arg arg
A Tcl command isformed by words separated by white space. Thefirst word isthe name of the

command, and the remaining words are arguments to the command.

$f oo
The dollar sign ($) substitutes the value of avariable. In this example, the variable nameisfoo.

[cl ock seconds]
Square brackets execute a nested command. For example, if you want to pass the result of one

command as the argument to another, you use this syntax. In this example, the nested com-

mand is clock seconds, which gives the current timein seconds.

"some stuff”
Double quotation marks group words as a single argument to a command. Dollar signs and

square brackets are interpreted inside double quotation marks.

{sone stuff}
Curly brackets also group words into a single argument. In this case, however, elements within

the brackets are not interpreted.

68

Appendix D: Tcl/Tk Application

Thisisthe Tcl/Tk implementation of the application. First the main application which isimple-
mented in one single file, cbgui.tcl, then the module which aso is implemented in one single

fileli_gui.tcl.

cbqui.tcl

Nane : cbgui.tcl

Component

Copyright (C) Tel ef onaktiebol aget LM Ericsson 2000.

The copyright to the conputer programherein is the
property of Tel ef onakti ebol aget LM Ericsson Sweden.

The program nmay be used and/or copied only with the
written perm ssion from Tel ef onakti ebol aget LM
Ericsson or in accordance with the terms and conditions
stipulated in the agreenment/contract under which the
program has been supplied.

Created: March 2, 2000
Creator: Peter Svensson

------------------ Documentati on---------------
<add> files
<nanme>cbgui . t cl
ADD FI LE DESCRI PTI ON HERE!'!'!
<end>

R A I I T T S S I T T S S S

H*

I MPORTS

o H

package require BWdget 1.2
package require MPH 2.0

#
GLOBAL VARI ABLES
#

vari abl e menuPat h

#

MPH PROCEDURES

#
o
Procedure : SendMessage

Abstract : This procedure is used by the GU instances to
: send text nessages to 'its' SEA entity.

Paraneters: channel, the channel given to the instance

: nessage, the text nmessage.

Returns -
e

proc SendMessage {channel nessage} {
gl obal conld

MPH: : SendMessage $conld $channel $nessage

}

Hm mm m o m e m e m e m
Procedure : SendBi naryMessage

Abstract : This procedure is used by the GU instance to

69

: send binary nessages to 'its’ SEA entity.
Paraneters: channel, the channel given to the instance
. nessage, the binary nessage.

proc SendBi naryMessage {channel |ength nmessage} {
gl obal conld

MPH: : SendBi nar yMessage $conld $channel $l ength $nessage

Procedure : concl oseproc

Abstract : This is a callback procedure required by MPH,
it is called if the MPH connection is closed
Paraneters: ---

Returns Do---

proc concl oseproc {} {
puts "MPH connection cl osed"

}

#

QU PROCEDURES

#

- T T e e
Procedure : draw

Abstract : This procedure creates and places the widgets,
: menubar and not ebook, on the main wi ndow.

Paraneters: ---

Returns o=

proc draw {} {
gl obal nenuPat h

frame .nbar -relief raised -bd 2
pack .nmbar -side top -fill x

set nmenuPat h . nbar. nbAdded. nenu

menubutton . nbar. mbAdded -text Tools -nenu $nenuPat h
menu $nmenuPath -tearoff 0

pack . nbar. nbAdded -side |eft

Not eBook . nb
pack .nb -side left -expand 1 -fill both

-

Procedure : addToMenu

Abstract : Adds a new conmand to the given cascade nmenu

:in the nenu pointed out by the global variable

: menuPath. |If the cascade dont exist it is created
Paraneters: cascade, nanme of the cascade nmenu
.
#
#
#

I+

nane, nanme of the new command
command, code to be executed when the command is
sel ected fromthe nmenu
Ret ur ns Do

proc addToMenu {cascade nanme conmand} {
gl obal nenuPat h

if {![catch { menu ${nmenuPat h}.cascade_$cascade -tearoff 0 } result]} {
If cascade 'nod’ does not exist we create it.
$nenuPath add cascade -I|abel $cascade -nenu ${nenuPat h}.cascade_$cascade

}

${nmenuPat h}. cascade_$cascade add command - abel $nane -command $command

Procedure : killTab

Abstract : Deletes a tab fromthe notebook
Paraneters: ---

Returns Do---

proc killTab {inst} {
.nb del ete $inst

}

- e e
Procedure : tearOf

Abstract : This procedure nakes a new toplevel w ndow,

: deletes the specified instance and adds it to
: the new topl evel w ndow

70

Paranmeters: inst, nane of the instance, tab, to tear off

: channel, the MPH channel given to the nodul e

: nod, type of instance

Returns --

Ho o m mm emmae

proc tearOf {inst channel nod} {
topl evel .tearoff$inst
killTab $inst
set tearOffdient [initTearOfPage .tearoff$inst $inst $channel $nod]
${inst}::init $tearOFfCient $channel

}

Hoe e m e e e e e e e e e e e e e e e e e e mmmemm e e
Procedure : tearOn

Abstract : This procedure destroys a given toplevel w ndow
: and creates a new tab in the notebook and initiates
: the nodul e there.

Paraneters: inst, the nane of the instance

: channel, the channel given to the GU instance
: nmod, the type of instance.

Returns Do---
g

proc tearOn {inst channel nod} {
destroy .tearof f$inst
set clientPath [createTab $npd $i nst $channel]
.nb raise $inst
${inst}::init $clientPath $channel

R

Procedure : initTear O f Page

Abstract : This procedure initiates the new topl evel w ndow

: and creates a frane for the nodule to draw its widgets in.
Paraneters: page,

: inst, the name of the instance

channel, the channel given to the QU instance

. nmod, the type of instance.

Returns : The path to the drawing area for the nodul e

proc initTear O f Page {page inst channel nod} {
frame $page.info
frame $page.client -relief sunken -bd 2
pack $page.info -side top -fill x
pack $page.client -side top -expand 1 -fill both

| abel $page.info.label -text "Inst: $inst"

button $page.info.tearOff -text TearOn -command "tearOn $inst $channel $nod"
pack $page.info.label -side left

pack $page.info.tearOf -side right

return $page. client

Procedure : initPage

Abstract : This procedure is called inmediately after a new
. tab has been created. It creates wi dgets for sone
standard functionality and the frane that is by
: sent to the GUI instance.

Paraneters: nod, the type of instance.
:
#
#
#

H*

page, the tab page to add the frame to
inst, the name of the instance
. channel, the channel given to the GU instance
Ret ur ns : The frame that the GU instance will use

proc initPage {nod page inst channel} {
frane $page.info
frame $page.client -relief sunken -bd 2
pack $page.info -side top -fill x
pack $page.client -side top -expand 1 -fill both

| abel $page.info.label -text "Inst: $inst"

button $page.info.tearOf -text TearOf -command "tearOff $inst $channel $nod"
button $page.info.remove -text Renpve -conmand "destroyEntry $nod $i nst $channel "
pack $page.info.label -side left

pack $page.info.tearOff $page.info.renpve -side right

return $page. client

}

I N e
Procedure : createTab

Abstract : This procedure is called imediately after a

. has been selected fromthe nenu. It creates a
: newtab and call initPage to initiate it

Paraneters: nod, the type of instance.

: inst, the name of the instance

channel , the channel given to the GU instance

71

#

p

Ret ur ns : The frame that the GU instance will use
roc createTab {nmod inst channel} {
gl obal menuPat h

$nmenuPat h. cascade_$nod entryconfigure $inst -state disabled

set page [.nb insert end $inst -text "${inst}"]
set clientPath [initPage $nod $page $inst $channel]
.nb raise $inst

return $clientPath

}

#

PROCEDURES

#

e

Procedure : newentry

Abstract : Called if the user selects a entity fromthe nenu
: It loads the source code for the given instance
Paraneters: nod, the type of instance.

: inst, the name of the instance

tcl appsource, file containing the new source code
: to |oad

Returns o---

- T N e N~
proc newentry {nod inst tclappsource} {

-

HHHFHHF R

p

-

oW H N H R

p

gl obal conld
nanmespace eval $inst {}

proc ${inst}::loadtclappsource {inst} {
sour ce $inst
}

${inst}:: | oadtcl appsource $tcl appsource

set iid [${inst}::getllD]

set channel [MPH: : OpenChannel $conld $iid $inst \
${inst}::messagecal | back ${inst}::closecallback]

set userpath [createTab $nod $i nst $channel]

${inst}::init $userpath $channel

Procedure : destroyEntry
Abstract : Renpves a GUI instance by disconnecting its MPH

. channel, enable it in the nmenu and renobve its tab
Paraneters: nod, the type of instance.

: inst, the name of the instance

: channel, the channel given to the QU instance
Ret ur ns Do---
roc destroyEntry {nod inst channel} {
gl obal conld nenuPat h

nanespace del ete $inst
MPH: : O oseChannel $conld $channel

$nenuPat h. cascade_$nod entryconfigure $inst -state nornal
kill Tab $inst

Procedure : addEntities

Abstract : Checks available entities in SEA against the
: config file 'cbgui.cfg" and adds those entities
: that have a GU to the nenu

Paraneters: ---

Ret ur ns Do---

roc addentities {} {
gl obal conld

set entities [MPH: :SearchByNanme $conld ".*"]

set file [open cbgui.cfg r]
set supported [list]
while { [gets $file line] >= 0} {
regexp {(M7™:]+): *(.*)} $line junk nod tclfile
foreach i $entities {
if {[regexp ${rmod}\[0-9\]$ $i match] == 1} {
addToMenu $nod $match "neweEntry $nod $match $tclfile"”
}
}

72

close $file

puts [Isort -increasing $supported]

}

#
MAIN

#

wm geonetry . 640x480

set

set
set

set

conld cl osed

seaHost [lindex $argv 0]
seaPort [lindex $argv 1]

conld [MPH: : OpenConnecti on $seaHost $seaPort concl oseproc]

puts "Using MPH connection on socket: $conld"

draw
addEntities

tkwait wi ndow .

if {$conld !'= "closed"} {
MPH: : O oseConnecti on $conld

}

li_gui.tcl

Copyright (C) Tel ef onaktiebol aget LM Ericsson 2000.

The copyright to the conputer programherein is the
property of Tel ef onaktiebol aget LM Ericsson Sweden.

The program nmay be used and/or copied only with the
witten perm ssion from Tel ef onakti ebol aget LM
Ericsson or in accordance with the terns and conditions
stipulated in the agreenment/contract under which the
program has been suppli ed.

Created: March 3, 2000
Creator: Peter Svensson

————————————————— Documentati on---------------

<add> files
<name>li _gui.tcl
ADD FI LE DESCRI PTI ON HERE! !'!

HHHFHHFHFFHFFEHFEHTFHT TSR

<end>
#
| MPORTS
#
#
GLOBAL VARI ABLES
#

*

NAMESPACES

73

PROCEDURES CALLED FROM THE MAI N CONTRCL APPLI CATI ON

E YOI W 3

e
Procedure : getllD

Abstract : Returns the 11D nunber of the nodul e

Paraneters: None

Returns : Returns the 11D of the nodul e
o

proc getlID {} {
return 75bfa730-2e15-11d3- 81b3- 08002093ddf 7

}

Hoe e e e e e e e e e e e e e e e e e mmmme e e
Procedure : nessagecal | back

Abstract : This procedure is called when a nessage has

: been received

Paraneters: |ength

. message

Returns Lo
o

proc nessagecal | back {length nmessage} {
set | [expr $length - 1]
set | [expr $I * 8]
bi nary scan $nessage "H2H*" cnd arg
setInfotext "callBack: $cnd $arg"

}

- T N e N~
Procedure : closecall back

Abstract : This procedure is called if the channel is

: closed renptely by the SEA conponent.

Paraneters: -

Returns Lo
o
proc closecal |l back {} {

}

- S N e N
Procedure : init

Abstract : This procedure is called when the nodule is

instantiated.

Paraneters: _path, The nodul es virtual root to drawits
: wi dgets in.

_channel, the MPH channel id, connected to the
:

Returns Do

- N N N e N

proc init {_path _channel} {
vari abl e [namespace current]:: channel
vari abl e [namespace current]::path

set channel $_channel
set path $_path

frame ${path}.nunbers -relief sunken -bd 2
button ${path}.nunmbers. of fhock -text "Of Hock" -command [namespace current]:: of f Hook
button ${pat h}. nunbers. onhock -text "On Hock" -command [nanmespace current]::onHook
pack ${path}.nunbers. of f hock ${path}. nunmbers. onhock -padx 3 -pady 3 -fill x
frame ${path}.nunbers. one
foreach i {1 2 3} {

button ${path}.nunbers.one.$i -text $i -command "[nanespace current]::dial $i"
}
pack ${path}.nunbers. one.1 ${path}. nunbers. one.2 ${path}. nunbers.one.3 -side left
frame ${path}.nunbers.two
foreach i {4 5 6} {

button ${path}.nunmbers.two.$i -text $i -command "[nanespace current]::dial $i"
}
pack ${path}.nunbers.two.4 ${path}.nunbers.two.5 ${path}.nunbers.two.6 -side left
frame ${path}.nunbers.three

foreach i {7 8 9} {
button ${path}.nunbers.three. $i -text $i -command "[namespace current]::dial $i"

74

}
pack ${path}.nunbers.three.7 ${path}.nunbers.three.8 ${path}.nunbers.three.9 -side left

button ${pat h}. nunbers. zero -text
pack ${path}.nunbers. one ${path}.nunbers.two ${path}. nunbers.three ${path}. nunbers. zero

frame ${path}.info

text ${path}.info.info -relief sunken -bd 2 -yscrollcommand "${path}.info.scroll

-state disabl ed

scrol I bar ${path}.info.scroll
pack ${path}.info.scroll
pack ${path}.info.info -fill

pack ${path}.nunbers -padx 3 -pady 3 -side left
pack ${path}.info -padx 3 -pady 3 -side left -fill

"0" -command "[nanmespace current]::dial

-command "${path}.info.info yview
-side right -fill y
both -expand yes

both -expand yes

*FH W HH

COVPONENT SPECI FI C PROCEDURES

vari abl e channel

vari abl e path

Procedure :
Abstract
Paraneters:
Returns

of f Hoo

k

Sends a of f Hook message to its SEA conponent.

proc of f Hook {} {
vari abl e [namespace current]::channel

set OFF_HOXK [binary format
SendBi nar yMessage $channel
"Phone off the hook"

set | nf ot ext

Procedure :
Abstract
Par aneters:
Ret ur ns

onHook

" e

00]

1 $OFF_HOOK

Sends a onHook nessage to its SEA conponent.

proc onHook {} {
vari abl e [namespace current]::channel

set ON_HOXX [bi nary format
SendBi nar yMessage $channel

set | nf ot ext

Procedure :
Abstract
Par aneters:
Ret ur ns

"t 0

1 $ON |

"Phone on the hook"

di al

1]
HOOK

Sends a selected digit to its SEA conponent.
digit to send.

digit,

proc dial {digit} {
vari abl e [namespace current]::channel

switch $digit {

{set bi
{set bi
{set bi
{set bi
{set bi
{set bi
{set bi
{set bi
{set bi
{set bi

©CoO~NOOUAWNEO

}

n

5 53353535 35 35 35S

bi nal
bi na
bi nal
bi nal
bi na
i na
i nal
i na
i na
i nal

=3

ry format
ry format
ry format
ry format
ry format
ry format
ry format
ry format
ry format
ry format

SendBi nar yMessage $channel
[namespace current]:: setlnfotext

Procedure :
Abstract
Paraneters:
Returns

set | nf
Prints
text,

ot ext

text in the textarea

" g
e
e
" g
e
e
" g
e
e
" g

2 $bin

text to print.

0300] }
0301]}
0302] }
0303] }
0304] }
0305] }
0306] }
03071}
0308] }
0309] }

"Di al

$digit"

75

0"

set" -height 15 -width 16

proc setlnfotext {text} {
vari abl e [namespace current]::path

${ pat h}.
${ pat h}.
${ pat h}.
${ pat h}.

info.
info.
info.
info.

info
info
info
info

configure -state nornal
insert end "${text}\n"
see end

configure -state disabled

76

Appendix E: Java Application

This is the Java applet implementation of the application. First the main application which is
implemented as three classes, CbguiApplet, ComponentList and Tabs, then the module which

Isimplemented in one single class, LI.
The main Java application.

Class CbguiAppl et

/1 ## begi n nodul e. cm preserve=no
11 X% Y Y% W
/1 ## end nodul e.cm

/* | MPORTS */

inmport javax.sw ng.*;
inport java.awt.*;

inmport java.aw.event.*;
inmport java.applet. Applet;
inport MPHclient.*;

/* | NTERFACE DEFI NI TI ONS */

[Hr KA KK I KKKk kKK h kKKK kR kKK KKK IR A Kk Kk kk Kk kA Kk kA h ok k x

* O ass : Cbgui Appl et

* Extends : JAppl et

* | nplements : ---

* Abstract : The main Cbgui Applet is inplemented as an applet.

Kk kkkkkkkkkkkkkkkkkhkkkhkkkkkkkhkkkkhkkkkkkkkkkkkkkkkkkkkk k% [

public class Cbgui Appl et extends JApplet {
Conmponent Li st conpLi st = new ConponentList(this);
Tabs tabs = new Tabs(this);
MPHcl i ent nph;

[Rk Rk ok ok ok ok ok ok kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkokk ok kk ok kk ok kkokkk ok

* Met hod : addConponent s

* Abstract : This nmethod is nmeant to get the nanes of the | oaded
* conponents in the SEA core and check if these

* conponents have an associ ated nodul e class. |f they
* have a nodul e class they are added to the conponent
* list. But since the Java MPH |ibrary does not have

* any functionality that makes it possible to get

* the | oaded conponents from SEA this method just

* adds a few known conponent nanmes to the list.

* Parameters: ---

* Returns Do---

*

Kokkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkhkhkkkkkhkkhhkkhkkkkkkkkkkkk ok [

public void addConmponents() {

conpLi st. neweEntry("LI", "LI-0");

conplLi st. newEntry("LI", "LI-1");

conpLi st. newEntry("LI", "LI-2");

conpLi st. neweEntry("LI", "LI-3");

conplLi st. newEntry("LI", "LI-4");

conpLi st. newEntry("LI", "LI-5");

conpLi st. newentry("LI", "LI-6");

conplLi st. newEntry("LI", "LI-7");

conplLi st. newEntry("AT", "AT-0");

conpLi st. neweEntry("AT", "AT-1");

conplLi st. newEntry("AT", "AT-2");

conplLi st. newEntry("AT", "AT-3");

conpLi st. neweEntry("AT", "AT-4");

conplLi st. newEntry("AT", "AT-5");

conplLi st. newEntry("AT", "AT-6");

conpLi st. neweEntry("AT", "AT-7");
}
/**
* Met hod init
* Abstract : This method is called when the applet is created.
* It gets the host and port for the running SEA and
* sets up the MPH connection to it.
* Parameters: ---
* Returns Do---
*

Kok kkkkkkkkkkkkkkkkkkkkkkkkkkhkkhkhkkkkkhkkkhkkkkkkkkkkkkk kx|

public void init() {
String host = getParaneter("host");

7

}

int port = (Integer.decode(getParanmeter("port"”))).intValue();

Systemout.println("Host: " + host);
Systemout.println("Port: " + port);
try{

mph = new MPHcl i ent (host, port);

}
cat ch(MPHException e){
Systemout.println("Failed to establish connection to
+ host + ":" + port);
Systemout.printin("Error: " + e.getMessage());
return;

}

Systemout.printin("MPH client created to Host: "
+ host + "on Port: " + port);

addConponent s();
}

[RA KK KKk kK k kK kh kK k kA ok kh Ak Kk h Ak kKK Kk h kA khkk kK hkkhkkkk Kk kK Kk ok

Met hod : itenBel ect Cal | back

Abstract : This is a callback method that get called by the
conponent Li st obj ect when a conponent has been
sel ected fromthe conponent list. This nethod
| oads and instantiates a new object of type ’'nod,
sets up a new MPHconnection to conponent 'inst’,
calls the addConponent in class tabs to get a new

calls the method init in the newy created object

with the MPHconnection and the JPanel as paraneters.

Paranmeters: String nod, name of the class to |oad.

String inst, name of the SEA conponent to connect to.

Ret ur ns Lo---

KKK KKK A KKK I KA KKK KKK A KKK IR KKK KKK KKK KA KA KKK IR KKK KKK R KKk

*
*
*
*
*
*
*
* JPanel in a newtab in the JTabbedPane and finally
*
*
*
*
*
*

public void itenSel ectCallback(String mod, String inst) {
Conpl nterface nodul e;
MPHconnect i on nphConn;

try {
java.lang.Cass t = O ass. forNane(nod);
nmodul e = (Conpl nterface)t.new nstance();

catch (Throwabl e e)

Systemout.println("Could not |load or instanciate " + nod +
Systemout.printin("Error: " + e.getMessage());
return;

}

Systemout.println("Loaded " + nod + ".class");
String iid = nodul e. compGet |1 D();
try{
mphConn = nph. connect (inst, iid, (MPHclientListener)nodule)

}
cat ch(MPHException e){

Systemout.println("Failed to connect to " + inst);
Systemout.printin("Error: " + e.getMessage());
return;
}
JPanel panel = tabs.addConponent(inst);
nmodul e. conpl ni t (mphConn, panel);
}
/**
* Met hod . destroy
* Abstract : This nethod is called when the applet is destroyed
* It close the MPHconnecti on.
* Parameters: ---
* Returns Do---
*

***/
public void destroy() {

try{
nph. cl oseConnection();

}

cat ch(MPHException e){
Systemout.println("Failed to cl ose connection");
Systemout.printin("Error: " + e.getMessage());

}
System out. println("MPH socket closed");

}

78

.class");

Class ComponentL.ist

/* | MPORTS */

inport javax.swi ng.*;
inport java.awt.*;
inmport java.aw.event.*;

/**

* O ass : Conponent Li st

* Extends R

* | npl ements : ActionListener

* Abstract : This class handles the representation of the

* names of the | oaded conmponents in the SEA

* core. The list of |oaded conponents is inplenented
* as a menu.

*

KKK KKK K Ik KKKk I KKKk IR K IR K KKK KK IR K I kA Kk kA Kk Kk h kKKK [

public class ConponentList inplenents ActionListener {
JMenuBar nenuBar ;
JMenu menu;
Cbgui Appl et owner;

[RrK AR I kA Kk kK KKk kKKK kKKK Kk Ak K I KKk Ik k Kk kA kk kK kh ok x

* Met hod : Conponent Li st (Constructor)
* Abstract : Creates the nmenubar and adds a nenu to it. The
* menubar is then added to the main applet w ndow.
* Paraneters: Cbgui Appl et cb, the object that instantiate
* the class
* Returns R
**/
publ i c Conponent Li st (Cbgui Appl et cb){

owner = cb;

menuBar = new JMenuBar () ;

owner . set JMenuBar (menuBar) ;

menu = new JMenu(" Tool s");

menu. set Mhenoni c(KeyEvent . VK_C) ;

menu. get Accessi bl eCont ext (). set Accessi bl eDescription("The only nmenu");
nmenuBar . add(menu) ;

}

[R A F KK A KKK KK KKK KR KKK KKK KA KKK KA KKK KKK KKK KA KKK KKK F KKKk **

* Met hod T newentry
* Abstract : Adds new entries to the menu. The new entry ’inst’
* is placed in the cascade nenu 'nod’. |f cascade nod
* does not exist it is created. Since this class inplenents
* actionlistener the action for every new entry is set to
* this.
* Paraneters: String nod, name of the cascade menu.
* String inst, name of the new entry.
* Returns Do
**/
public void newEntry(String nmod, String inst) {
JMenu subMenu = nul | ;
JMenul t em nenul tem
int count;

count = menu. getltemCount();

for(int i=0; i < count; i++){
if(menu.getlten(i).getText().equal s(nod)){
subMenu = (JMenu) nenu. getlten(i);
}

}

if(subMenu == null) {
subMenu = new JMenu(nod);
menu. add(subMenu) ;

}

menul tem = new JMenul ten(inst);
menul t em addAct i onLi stener (this);

subMenu. add(menul tem ;

[HRHEFE KA KK I kA Kk kKKK kKKK kKKK KAk K Ik K Kk kA Kk Kk kA k ok kX KKk

* Met hod : actionPerfornmed

* Abstract : Declared in the ActionListener interface. Define

* the action for the nenu entries. The action perforned
* is calling the owner class callback nethod

* itenSel ect Cal | back with the type and name of the

* sel ected nenu entry.

* Paraneters: ActionEvent e.

* Returns Do---

*

KKK KA KK I kKKK kI kKKK kKKK K I KKK KKK KK IRk Kk Ik Ak k kA Kk h kK KKk [

public void actionPerformed(Acti onEvent e) {

79

JMenul t em source = (JMenultem) (e. get Source());

owner . i tenBel ect Cal | back(source. get Text (). substring(0,2), source.getText());
sour ce. set Enabl ed(f al se);
}
}

Class Tabs

/* 1 MPORTS */

inmport javax.sw ng.*;
inport java.awt.*;
inmport java.aw.event.*;

/* | NTERFACE DEFI NI TI ONS */

[RHEFE KA KK I A KKk kKK Kk kKKK kKKK KKK KKK KKk Ak k kA Kk Kk k kK Kk

* O ass : Tabs

* Extends : JTabbedPane

* | nplements : ---

* Abstract : This class handl es the nodul e cl asses drawi ng
* areas. The drawi ng areas are JPanels placed in
* a JTabbedPane

*

KR KKK KKK KKK IR KKK KKK KKK KA KKK KKK IR KKK KA KR KKK IR KKK KA F kK [

public class Tabs extends JTabbedPane {

[R A F KKK KKK kKKK KKK KK KKK KA KKK IR KKK KA KKK IR KKK KA KA R KKk kA k ok *

* Met hod . Tab (Constructor)

* Abstract : Adds the JTabbedPane to the main class w ndow
* Paraneters: JAppl et parent, the object that instantiate

* the class

* Returns Do---

*

KR KKK KKK KKK IR KKK KKK KKK KA KKK KA IR KKK KA KR KRR K KA KR KK * A h ok k[

public Tabs(JAppl et parent){
par ent . get Cont ent Pane() . add(this);

[RHEF I KA KK I kA Kk kKK Kk kA K Kk kKKK KA KK Ik KKk kA kk kA Kk ok kK KKk

* Met hod : addConponent

* Abstract : Creates a new JPanel, adds this to a new tab
* in the JTabbedPane naned 'inst’ and returns
* the JPanel .

* Paraneters: String inst, the nane for the new tab

* Returns : The created JPanel

*

KR KKK KK KKK KKK KKK KKK KKK KKK KKK IR KKK KA KR KRR KRR KKK h A h ok k[

public JPanel addConponent(String inst) {
JPanel panel = new JPanel ();

addTab(i nst, panel);

return panel;
}
}

Class LI

/* | MPORTS */

inmport javax.sw ng.*;
inport java.awt.*;

inport java.awt.event.*;
import MPHclient.*;

/* | NTERFACE DEFI NI TI ONS */

[R E KRk ok kkkk ok kk kK kkkk Kk kK kkkkkhkkhkkkhkhkhhkkkkkkkkkkkkk Kk kkkk*

* O ass :oLl

* Extends o---

* Inplements : Conplnterface, MPHclientlListener, ActionListener

* Abstract : This class is to be used as a dynanically | oaded
* class by the Cbgui Applet. It is a sinple test

* i mpl ementation to conmunicate with a LI C conponent
* in SEA. The QU consist of a sinple keypad and a
* textfield

*

Kk kK k ok ko k ko kk kK kkkkhh ok khkkkkkkkkhh kK hkkhhkk kK hkhk Kk kkkk ok [

public class LI
i npl ements Conpl nterface, MPHclientListener, ActionListener {
MPHconnect i on nphConn;
JText Area text;

[R E KRk kkkkk ok kkkkkkkkkkkkkkkkkhkkhkkkhkkhkk Kk kkkhkkkkkkkkkkkk*

* Met hod : conpCet !l D

80

* Abstract : Declared in the Conplnterface interface. It
* returns the identifier ID for the LIC conponent.
* Paraneters: ---
* Returns : The 11D for the LIC conponent
**/
public String compGetl|ID() {

return "75bfa730-2el15-11d3- 81b3- 08002093ddf 7";
}

[Rr KA KK Ik A Kk kKKK k kKKK kKKK IR K K IRk I kA kK k kA k Kk kK kh ok ok

* Met hod : conplnit
* Abstract : Declared in the Conplnterface interface. This method
* is called after an instance of this class has been
* created, It is used for setting up the GU wused to
* control the LIC conponent.
* Paraneters: MPHconnection nph, an instance of the MPHconnection
* used to communicate with the LIC
* JPanel p, this is the JPanel that this class nust
* use for all user interaction
* Returns Do---
***************'k*****************'k**************************/
public void conplnit(MPHconnection nph, JPanel p){

JButton jb;

nmphConn = nph;

JPanel nunPad = new JPanel ();

nunPad. set Layout (new Gri dLayout (4, 3));

nunPad. add(j b = new JButton("1")); jb.addActionListener(this);
nunPad. add(j b = new JButton("2")); jb.addActionListener(this);
nunPad. add(jb = new JButton("3")); jb.addActionListener(this);
nunPad. add(j b = new JButton("4")); jb.addActionListener(this);
nunPad. add(j b = new JButton("5")); jb.addActionListener(this);
nunPad. add(jb = new JButton("6")); jb.addActionListener(this);
nunPad. add(j b = new JButton("7")); jb.addActionListener(this);
nunPad. add(j b = new JButton("8")); jb.addActionListener(this);
nunPad. add(jb = new JButton("9")); jb.addActionListener(this);
nunPad. add(j b = new JButton("Of"));jb.addActionLi stener(this);
nunPad. add(j b = new JButton("0")); jb.addActionListener(this);
nunPad. add(j b = new JButton("On")); jb.addActionListener(this);

text = new JTextArea();
text.set Editabl e(fal se);

JScrol | Pane editorScrol | Pane = new JScrol | Pane(text);
editorScrol | Pane. set Vertical Scrol | Bar Pol i cy(

JScrol | Pane. VERTI CAL_SCROLLBAR_ALWAYS) ;
edi torScrol | Pane. set PreferredSi ze(new D mensi on(250, 145));

p. add(nunPad) ;
p. add(edi tor Scr ol | Pane) ;

}

/**

* Met hod . recei veMessage

* Abstract : Declared in the MPHclientListener interface. This

* is a callback nmethod used by the MPH to pass nessages
* to this instance. The nessage cones as a byte array
* that is checked and printed in the textfileld.

* Paraneters: byte[] data, the message.

* :int length, nunber of bytes in the nessage

* Returns Do---

*

KKK KKk KK kKK KKk KK I KKK KKK KKK KKK KKK KK KKK KKK KKK KKKk KKk kK Kk kK kx|

public void recei veMessage(byte[] data, int |ength){
String inData;
switch((int)data[0]) {

case 0: inData = "RING SIGNAL\n"; break;

i

| =
case 1: inData = "STOP RING SI GNAL\ n"; break;
case 2: inData = "TONE\n"; break;
case 3: inData = "STOP TONE\n"; break;
case 4: inData = "CONNECT | NFO n"; break;
case 5: inData = "IDLE PHONE\n"; break;
case 6: inData = "SPEECH DATA LICn"; break;
case 7: inData = "VIRTUAL SECOND\n"; break;
case 8: inData = "SPEECH AS TEXT\n"; break;
case 9: inData = "FSK MESSAGE\n"; break;
default: inData = "Unkown nessage:

+ Integer.toString((int)data[0]) +"\n";

}

t ext . append(i nDat a) ;

[HRHEFE KKK KKk kA k ok kKK k kKK k kR kKK kA KKk Kk Kk kA kk kA Kk kk kK Kk

* Met hod : connectiond osed
* Abstract : Declared in the MPHclientListener interface.

81

Cal | back method that is called if the MPH connection

*

* is closed.
* Paraneters: ---

* Returns o=

*

KKK I KKK I A KKK K I kKKK KR A KK IR K KKK KK IRk h kI kA Kk Kk kA Kk h kX kKK [

public void connectionC osed(){

}
/**
* Met hod : channel d osed

* Abstract : Declared in the MPHclientListener interface.

* Cal | back method that is called if the MPH channel
* is closed.

* Paraneters: ---

* Returns Do

*

KKK KKK K I A KKK I KKKk I KKK K I KKK KKK KKK K kI kA Kk kA Kk h kX KKK [

public void channel d osed(){

}
/**
* Met hod . oerror

* Abstract : Declared in the MPHclientListener interface.

Cal I back nmethod that is called if there is an

*
* error in the comunication with MPH
* Paraneters: String errMsg, error nessage.

* Returns Do---

*

KKK KKk KKk KKKk KKK AR KK kKK KKk KKK KKk Kk k Kk kA kK kk kK kk kK Kk kkk kK Kk x [

public void error(String errMsg){

Defi ne

}
/**
* Met hod : actionPerfornmed

* Abstract : Declared in the ActionListener interface.

* the action for the buttons in the keypad.

* Paraneters: ActionEvent e.

* Returns Do

*

KKK KKK K I kKK KKk KKKk kKKK I KKK KK I KKK IRk K Kk kA Kk kA Kk Kk k kKKK [

public void actionPerfornmed(Acti onEvent e) {
JButton source = (JButton)(e.getSource());
String button = source.getText();
byte action[] = new byte[3];
int length = 0;
String info;

if(button.equals("Of")){
action[0] = O;
length = 1;
info = "Phone is off hook\n";
} else if(button.equals("On")){
action[0] = 1;

length = 1;

info = "Phone is on hook\n";
} else switch((Integer.valueO (button)).intValue()){
case 0: action[0] = 3; action[1] = 0; length = 2; info
case 1: action[0] = 3; action[1] = 1; length = 2; info
case 2: action[0] = 3; action[1] = 2; length = 2; info
case 3: action[0] = 3; action[1] = 3; length = 2; info
case 4: action[0] = 3; action[1] = 4; length = 2; info
case 5: action[0] = 3; action[1] = 5; length = 2; info
case 6: action[0] = 3; action[1] = 6; length = 2; info
case 7: action[0] = 3; action[1] = 7; length = 2; info
case 8: action[0] = 3; action[1] = 8; length = 2; info
case 9: action[0] = 3; action[1] = 9; length = 2; info
default: info = "error";
}
try{

nmphConn. send(action, |ength);

}

cat ch(MPHException c){
Systemout.println("Faild to send nmessage" + button)
Systemout.printin("Error: " + c.getMessage());
return;

}

t ext. append(info);

82

"Di al
"Di al
"Di al
"Di al
"Di al
"Di al
"Di al
"Di al
"Di al
"Di al

o\ n";
1\ n";
2\n";
3\n";
A\ n";
5\ n";
6\n";
\n";
8\n";
9\ n";

break;
br eak;
br eak;
break;
br eak;
br eak;
break;
br eak;
br eak;
break;

interface Compl nterface

/* | MPORTS */

import javax.sw ng.*;
inport java.awt.*;

inmport java.aw.event.*;
inmport MPHclient.*;

/* | NTERFACE DEFI NI TI ONS */

/* TYPE DEFI NI TIONS */

/~k***
* Interface : Conplnterface

* Abstract : This interface has to be inplenented by a class
* that is to be dynanmically | oaded by the Cbgui Appl et

KKK KKK KK I I KKK kI AR KKK K IR KKK I K KKK KK IRk k kA KKk kX KKk [

public interface Conplnterface {

[Rr KA KKKk A A KKk kA KKk kKK Kk kA KKk KKK I KKk I Ak k Kk kA k Kk kK kh ok x

* Interface : conplnit

* Abstract : This method is called after the class has been

* initiated.

* Paraneters: MPHconnection nph, an instance of the MPHconnection
* used to conmmunicate with a given SEA conponent.

* : JPanel p, this is the JPanel that this class nust

* use for all user interaction

* Returns Do---

*

KKK KKK K Ik KKK K I AR K kKKK K I KKK KK I K K IRk K K IRk k kA Kk Kk kA KKk [

public void conplnit(MHconnecti on nph, JPanel p);

[Rr KA KK Ik A Kk kKKK kKKK kA KKk Ak K I KKk I kKK k kA Kk k kK kh ok x

* Met hod : conpCet | I D

* Abstract : This nmethod nust return identifier ID for the
* gi ven conponent .

* Paraneters: ---

* Returns : The 11D for the given conponent.

*

KKK KA KKKk K KKK Ik KKKk kKKK IR K KKK KK IRk K kI kA k kA Kk h kK KKK [

public String compGet!lID();

83

