
Computer Science

Johan Thorbjörnsson

Peter Svensson

Component Based Graphical User Interface

Bachelor’s Project

2000:11

Component Based Graphical User Interface

Johan Thorbjörnsson

Peter Svensson

© 2000 The authors and Karlstad University

i

This report is submitted in partial fulfillment of the requirements for the

Bachelor’s degree in Computer Science. All material in this report which

is not our own work has been identified and no material is included for

which a degree has previously been conferred.

Johan Thorbjörnsson

Peter Svensson

Approved, 2000-05-31

Advisor: Nils Dåverhög

Examiner: Stefan Lindskog

ii

iii

Abstract
The background of the thesis is that Ericsson Infotech (EIN) today has a simulation product

(SEA) that is built using components. The components are combined at run-time to create a

simulation of the system the user needs. The system is divided in a simulation part and a con-

trol part. The component system used only covers the simulation parts not the graphical user

interface (GUI) used to control the system.

In this thesis we have evaluated some existing technologies that can be used to build a GUI that

is run-time extensible using some form of component structure. We propose a technology that

are suitable for EINs needs. We have also built simple prototypes using the selected technolo-

gies.

The general solution to the problem is divided into two parts, dynamic extension of functional-

ity and comprehensive window control. These two problems are analyzed separately for each

technology. EIN has stated the following technologies to analyze: Tcl/Tk, Java, KDE and

GNOME. For each technology/language a distributed and a non distributed technology is ana-

lyzed.

All the distributed technologies give a overhead and a high level of complexity that is not

needed in this application, therefore the non distributed technologies is selected. The selected

technologies to implement are:

• Tcl/Tk using the source command and namespaces

• Java using dynamic class loading.

• KDE2 using the KPart technology.

Finally the technology and language that we recommend to use for the development of a Com-

ponent Based Graphical User Interface is Tcl/Tk using namespaces or Java using dynamic

class loading. The selection of these technologies is based on the analysis and the implementa-

tion of the different technologies.

iv

Table Of Contents

1. Introduction . 1

2. Background . 3
2.1. Telefonaktiebolaget LM Ericsson . 3
2.2. Ericsson Infotech (EIN) . 3
2.3. Department of Test Support and Simulated Platforms (TSP) 3
2.4. Simulator Environment Architecture . 4

2.4.1. Simulation Part . 4
2.4.2. Control Part . 5

2.5. Control Application Problems . 6
2.6. Aim of Thesis . 8
2.7. Limitations . 8
2.8. Summary . 9

3. General Solution . 11
3.1. Dynamic Extension of Functionality . 11

3.1.1. What Components are Currently Loaded . 13
3.1.2. Does the Loaded Component Type Have a GUI Module 13

3.1.2.1. Distributed Solution . 13
3.1.2.2. The Non Distributed Solution . 14

3.2. Comprehensive Window Control . 15
3.2.1. Selecting and Showing Instances . 15
3.2.2. Drawing Area for the Selected Module . 16
3.2.3. Extending the Menubar . 16

3.3. Summary . 17

4. Analysis of some Chosen Technologies . 19
4.1. The Technologies to be Considered . 19
4.2. Tcl/Tk . 20

4.2.1. Source Command . 20
4.2.2. Extension Packages. 21
4.2.3. General Aspects . 23

4.3. Java . 23
4.3.1. Dynamic Class Loading . 24
4.3.2. Java RMI . 25
4.3.3. General Aspects . 26

4.4. KDE . 27
4.4.1. KOM/OpenParts . 27
4.4.2. KParts . 29
4.4.3. General Aspects . 30

4.5. GNOME . 31
4.5.1. The GNOME CORBA Framework . 31

v

4.5.2. Bonobo . 32
4.5.3. General Aspects . 32

4.6. Summary . 33
4.7. Selected Technologies . 34

5. Implementation . 37
5.1. Precondition . 37
5.2. Tcl/Tk . 37

5.2.1. Precondition . 37
5.2.2. Solution for the Main Application . 38
5.2.3. Solution for the Modules . 41
5.2.4. Implementation . 42

5.2.4.1. The cbgui.tcl file . 42
5.2.4.2. The li_gui.tcl . 44

5.2.5. Conclusions . 45
5.3. Java . 46

5.3.1. Preconditions . 46
5.3.2. Solution for the Main Application . 46
5.3.3. Solution for the Module Classes . 47
5.3.4. Implementation . 48

5.3.4.1. The Main Application . 48
5.3.4.2. The Module Class . 51

5.3.5. Conclusion . 53
5.4. KDE2 KParts . 54

5.4.1. The KParts Technology . 54
5.4.2. Implementation . 56
5.4.3. Conclusion . 57

6. Conclusion . 59

7. References . 61
7.1. Indexed References in the Thesis . 61
7.2. General Book References . 61
7.3. General URL References . 62

Appendix A Abbreviations . 63
Appendix B. Description of the thesis . 65
Appendix C. Tcl/Tk Syntax . 67
Appendix D. Tcl/Tk Application . 69
Appendix E. Java Application . 77

vi

List of Figures

Figure 1. SEA Overview . 4

Figure 2. SEA Control Center . 5

Figure 3. SEA MPH Connection . 6

Figure 4. SEA Control Center and a few other needed applications. 7

Figure 5. Dynamic extension of functionality . 12

Figure 6. Distributed solution . 14

Figure 7. Tabbed pane and container window. 16

Figure 8. Tcl source and namespace commands . 21

Figure 9. Id server and client using Tcl-DP . 22

Figure 10. Dynamically loaded class in Java. 24

Figure 11. Java RMI . 25

Figure 12. KDE KOM/OpenPart Technology . 28

Figure 13. Tcl source and namespace commands . 38

Figure 14. Tcl/Tk Control Application with cascading menus . 39

Figure 15. Module torn off from the main Tcl/Tk application . 41

Figure 16. The Java without any module classes loaded. 47

Figure 17. Structure of the Main Application in Java. . 49

Figure 18. The Java application with three LI modules loaded. 52

Figure 19. KPart initialization function. 55

Figure 20. Structure of the Main Application using KParts. . 56

vii

List of Tables

Table 1. Technologies to be considered . 19
Table 2. Summary of technologies . 34

viii

1

1. Introduction

The background of the thesis is that Ericsson Infotech (EIN) today has a simulation product

that is built using components. The components are combined at run-time to create a simula-

tion of the system the user needs. The system is divided in a simulation part and a control part.

The component system used only covers the simulation parts not the graphical user interface

(GUI) used to control the system. This leads to problems with trying to keep the GUI updated

with all the different simulation components designed by EIN and third party providers. To

solve this problem EIN would like to have a GUI system that is extensible a run-time so that a

component can consist of a simulation part and an optional GUI part that adds functionality to

the GUI.

The goal of the thesis work is to propose a suitable technology for designing component based

graphical user interfaces. In other words, to propose a technology to build an application that is

possible to extend with unknown modules, unknown at build time, after the application is built.

In this thesis we have evaluated some existing technologies that can be used to build a GUI that

is run-time extensible using some form of component structure. Describe the pros and cons of

the different solutions. Finally we propose some technologies that are suitable for EINs needs.

We have also built simple prototypes using the selected technologies.

The second chapter describes the background of the problem to this thesis. The Simulator

Environment Architecture (SEA) is described, what it is and a overview description of how it

works. At the end of this chapter we state the problems to solve and the limitations of the the-

sis.

In the third chapter a general analyze of the problems is done. There are several ways to solve

the control part problem of SEA, problems which has to do with the supervision and graphical

presentation of the different modules in the SEA. The problems may be divided into two sepa-

rate parts: dynamic extension of functionality and comprehensive window control. The solu-

tion for these problems are discussed in this chapter.

In chapter four we state the different technologies to be evaluated. The different technologies is

analyzed considering how the technology in question can be used to solve dynamic extension

2

of functionality and comprehensive window control. At the end of each section for each tech-

nology some general aspects of that technology is considered. Finally the technologies to

implement are selected.

Chapter five is the description of the implementation of the selected technologies. First the Tcl/

Tk implementation is described using the Tcl source command, second Java using dynamic

class loading and finally KDE2 using KParts is described.

Chapter six is the conclusion of the thesis. In this section we state the technology that we find

the most suitable to solve the problem of a component based graphical user interface.

Chapter seven is the reference list. This chapter states the references used in the thesis.

3

2. Background

This section describes the background of this thesis. First a description of Ericsson as a com-

pany, Ericsson Infotech (EIN) and the department Test And Simulated Platform (TSP), as they

describe them selves. Then the Simulator Environment Architecture (SEA) is described, what

it is and a overview description of how it works. Finally we state the problems to solve and the

limitations of the thesis.

2.1. Telefonaktiebolaget LM Ericsson

Ericsson is a world-leading supplier in the fast-growing and dynamic telecommunications and

data communications industry, offering advanced communications solutions for mobile and

fixed networks, as well as consumer products. Ericsson is a total solutions supplier for all cus-

tomer segments: network operators and service providers, enterprises and consumers. Ericsson

has more than 100,000 employees, representation in 140 countries and clearly the world’s larg-

est customer base in the telecommunications field. [1]

2.2. Ericsson Infotech (EIN)

Ericsson Infotech AB, located in Karlstad, with over 550 employees is a product and develop-

ment company in the field of mobile telecommunications. EIN has product and development

responsibility within a number of product area, including Signalling System No.7 (SS7) and

protocol converters, APZ emulators and simulators, wireless Internet solutions, radio net prod-

ucts, as well as maintenance and customer support systems. [2]

2.3. Department of Test Support and Simulated Platforms (TSP)

The departments goal is to become Ericsson’s leading supplier of simulator products as regards

platforms, systems, and network solutions. The mission is to offer products and services, based

on APZ Emulators and Simulators, for Ericsson’s customers to improve business and within

Ericsson to reduce costs. [3]

4

2.4. Simulator Environment Architecture

Today Ericsson Infotech (EIN) has a simulation product called Simulator Environment Archi-

tecture (SEA) that is used to simulate different complex system, in this case an AXE switch.

SEA is built using different components that each simulates different parts of the system. The

components are combined at run-time to create a simulation of the system the user needs. The

system is divided in a simulation part and a control part as shown in figure 1. The separate

parts are discussed in detail below. The component system now used only covers the simula-

tion parts and not the graphical user interface (GUI), the control part, used to control the sys-

tem.

Figure 1: SEA Overview

2.4.1. Simulation Part

The simulation part of SEA consists of a number of interacting components. The configuration

file contains information about everything needed to build the AXE, such as software (dump)

and hardware information. In the configuration file, the name and location of the dump is indi-

cated, and also how the AXE will behave once the dump is loaded. The needed hardware such

as different “physical” components and how they are connected are also indicated. The SEA

Configuration Wizard is used to create a configuration file. The dump is loaded into the Wizard

and as the Wizard reads the dump, it consults the component library to check for available

Virtual
AXE

Component
library

Netscape
Configuration

file
(file.axe)

AXE
Dump

Configuration
Wizard

App X App Y ...

Standalone applications

Control
application

Control part Simulation part

5

“hardware” components. The component library as a whole is a part of SEA and contains every

component so far developed. The configuration file points out the dump and components to be

loaded. When the dump and the components are loaded the virtual AXE is complete. The SEA

Control Center, Netscape and other applications can now be used to work with our virtual

AXE.

2.4.2. Control Part

Today the different components in SEA are controlled in different ways, for example there is a

application called AT-console which is a text based tool used to communicate with the virtual

AXE and its currently loaded components, hereafter named SEA core. While the AT-console

can be used to communicate with several different types of components in the SEA core there

are also some components that have their own component specific control applications, an

example of this is the graphical component that simulates a telephone which is connected to a

LIC component in the virtual AXE.

The main application for monitoring and controlling SEA is the SEA Control Center, shown in

figure 2. The SEA Control Center is used to control and monitor the virtual AXE itself. From

the SEA control center the different component control applications like the AT-console and

other graphical control applications can be started.

Figure 2: SEA Control Center

6

All external graphical user interface (GUI) components, like the SEA Control Center and the

LIC-module, communicates with the SEA core using messages between GUI components and

named SEA core entities (instance of a component). To handle the framing and routing of this

messages there is a protocol named MPH (Message Protocol Handler). The MPH offers a mul-

tiplexed socket, allowing 255 different channels (virtual TCP/IP sockets) on one socket, each

channel is used to communicate with a named SEA entity. MPH libraries are implemented in

C, Java and Tcl/Tk by EIN/TSP. Figure 3 shows the MPH connection in between the virtual

AXE and the different components which it communicate with.

Figure 3: SEA MPH Connection

Even if the AT-console and the graphical modules for each component that is loaded into the

SEA core can be started from the SEA Control Center they still are stand alone components or

a part of the SEA Control Center that runs in a separate toplevel window.

The SEA core contains a web server and most of the components in the virtual AXE support

functionality to communicate with a web browser for viewing and controlling data in the com-

ponent. This method of controlling the SEA core components works, but is not flexible

enough. TSP also wants the control and viewing of the components in a standalone application.

2.5. Control Application Problems

New components to SEA are under constant development, both by EIN and by third party

developers. One problem with the SEA Control Center, as it works today, is that when a new

component is developed there is no way to extend the existing SEA Control Center so it can be

Netscape

MPH
Connection

Module

Virtual AXE

Loaded
components

Control
application

Simulation partControl part

App X App Y ...

Standalone applications

7

used to control or start the new GUI component without altering the source code for it. In other

words, there is no way to just add a new GUI component to the SEA Control Center in the

same way as it is possible to add a new component to the component library in SEA. This leads

to problems while trying to keep the GUI updated with the new components that is being

developed. The SEA Control Center either have to be remade for each new component or a

new component must provide it’s own stand alone GUI.

SEA gets the information about which components to load for a specific configuration from a

configuration file at startup, but it is also possible to add new components to a SEA configura-

tion at runtime. The existing SEA Control Center does not support this kind of dynamic load-

ing of GUI applications.

Since the control applications for the different components all run in their own toplevel win-

dows there is a problem if there are many components that needs to be supervised. The screen

gets full with windows and it gets difficult to keep track of them all. Figure 4 shows the SEA

Control Center and just a few graphical modules needed to control the simulation.

Figure 4: SEA Control Center and a few other needed applications.

8

In conclusion, the main problems with the control part of SEA is that the GUI must be remade

when a new component is developed, the GUI can not be extended at runtime and controlling

many components generates lots of toplevel windows.

2.6. Aim of Thesis

The aim of this thesis is to evaluate the existing technologies that can be used to build a GUI

that is run-time extensible using some form of component structure. Describe the pros and

cons of the different solutions. Propose some technologies that are suitable for EIN’s needs and

to build a simple prototype for each selected technology.1

In other words, the purpose of the thesis is to look into the problems with the control part of

SEA that has to do with the supervision and graphical presentation of the different modules in

the SEA core. The focus of this thesis will be separated in to two parts. First, how is dynamic

extension of functionality best solved using different technologies to support new modules

without recompiling the complete control part of SEA. Second, look at different technologies

that support some kind of technical solution for the problem with to many top level windows,

that is to get a comprehensive window control.

2.7. Limitations

The SEA simulation and control applications runs on a Sun Solaris Unix platform today, and

will continue to do so. There has been some work porting parts of the SEA to a Linux/PC plat-

form, but this is not currently working. There is also a possibility to port and run control appli-

cations on any platform, i.e Linux/PC, Windows NT/PC etc., but the SEA core still needs to

run on a Sun Solaris platform. The different parts then may communicate through the MPH.

The graphical user interface as in the look and feel is not considered. That is, the usability of

the application is not considered, only the technology to provide a dynamic base to build upon.

1. The official description of the thesis is enclosed in appendix B.

9

2.8. Summary

Ericsson Infotech (EIN) has a simulation product called Simulator Environment Architecture

(SEA) that is used to simulate different complex system, in this case an AXE. SEA is divided

in a simulation part and a control part.

The main problems with the control part of SEA is that it must be remade when a new compo-

nent is developed, the GUI can not be extended at runtime and controlling many components

generates lots of toplevel windows.

The aim of this thesis is to evaluate the existing technologies that can be used to build a GUI

that is run-time extensible using some form of component structure. Describe the pros and

cons of the different solutions. Propose some technologies that are suitable for EINs needs and

to build simple prototypes using the selected technologies.

10

11

3. General Solution

This section describes the general solution to solve the stated problems in the previous chapter.

There are several ways to solve the control part problem of SEA, problems which has to do

with the supervision and graphical presentation of the different modules in the SEA. As stated

in chapter 2.6, Aim of Thesis, the solution to solve the problem will be divided into two parts,

dynamic extension of functionality and comprehensive window control. The solution for these

problems are discussed in this chapter.

3.1. Dynamic Extension of Functionality

The problem of dynamically extending the Main Control Applications functionality can be

solved through a modular design of the Main Control Application so that it is possible to add

functionality to it without changing the already existing code. By using modular design with a

standard interface the Main Control Application could load new or changed modules to extend

its functionality. In this way a new component can be supported by the Main Control Applica-

tion just by adding a new module to it.

In practice this modular design could be done by implementing the control functionality for

each component in separate modules and then have the Main Control Application ‘ask’ the

SEA core about which components that are loaded in the current SEA configuration. Then the

Control Application checks if the different types of components have a associated functionality

module. If so, the Main Control Application then loads the associated modules and in this way

extend its functionality. Each module must provide the specific functionality that is needed to

manage its associated component. Figure 5 shows the dynamic loading of modules and the

interaction between a given components and its module.

12

Figure 5: Dynamic extension of functionality

For each module that is instantiated and loaded into the SEA core one must know if the loaded

module does or does not have a graphical module associated to it, the name of the module and

where to find it. Once this is known the module can be loaded in runtime into the Control

Application when needed. When the module is not wanted anymore it can be deallocated to

save system resources.

Once a new module is loaded there must be a way for the Main Control Application to initiate

and to communicate with the loaded module in a known way. In practice this means that each

module must support some predefined functionality. The module has to implement a set of

standard methods like initiation of the module, drawing the module, callback functions for

communication, etc. The names of the standard methods also have to be defined, for example

compare to a Java Interface.

A1

Loaded
components

Standard
components

GUI
mod X

GUI
mod Y

GUI
mod Z

SEA Core

GUI
mod A

GUI
mod C

GUI
mod B

GUI
mod X2

GUI
mod Z1

Main Control
Application

Dynamically loaded
modules, each one pro-
viding specific func-
tionality to manage its
associated component.

Standard
modules

B1
C1

X1

X2

Y1
Z1

Logical connection.
Physical through MPH.

GUI modules to
be instantiated

and loaded into
the main GUI on

request.

MPH

13

By using modular design the Control Application can be implemented so that it is possible to

add new functionality to the Control Application not only at startup but also at runtime if the

SEA configuration is changed while running.

In conclusion the dynamic extension of functionality must include the following steps: first,

the components that are currently loaded in the SEA core has to be identified. The second step

is to find out if the loaded components does have a GUI module or not. Finally, the functional-

ity of the matching modules have to be added to the main application. These steps are

described in the following subsections.

3.1.1. What Components are Currently Loaded

After the SEA-core has started, components are loaded and configured according to the config-

uration file, it is time for the Control Application to start. The first thing the Control Applica-

tion needs to find out is which the loaded components in the SEA core are. The SEA core has

to support functionality, through MPH or some other connection, that gives information about

all the loaded component types and the instances of it to the Control Application.

3.1.2. Does the Loaded Component Type Have a GUI Module

Once knowing the instances of the different components the Control Application has to find

out if a given component has a GUI module or not, the name of it and were it is located. If there

exists a corresponding module to a given component it has to be loaded. There are a few tech-

nical approaches to solve this problem. Two general solutions will be considered, using some

sort of distributed technology, like CORBA or Java RMI, and a simpler solution not involving

distribution, like Tcl source command or KDE Kpart.

3.1.2.1. Distributed Solution

Using a distributed solution gives the advantage of having instances of modules anywhere on a

network, that is the Main Control Application does not need to be loaded full of different mod-

ules and their code, it will just make a remote call to access the functionality. Distribution also

gives the possibility to have a central for all modules, thus giving the advantage of easily

updating and maintaining the modules.

14

In principal the distribution of modules can be implemented as shown in figure 6.

Figure 6: Distributed solution

The module servers contains the instances of the available modules. The repository is a data-

base containing information about all available modules. In order for the Control Application

to locate a specific module, the module has to be registered in the repository. That is, when a

new module is created it has to register its name and location. When a specific module is

wanted the Control Application asks the repository for that specific modules location. When

the location of a specific module is known it is possible for the Control Application to incorpo-

rate the functionality of the remote module.

3.1.2.2. The Non Distributed Solution

In this case the functionality of the repository has to be handled by either the SEA core or the

Control Application. Some different approaches can be taken. In either case the loaded compo-

nents in the SEA core are known.

• Increasing the functionality of each SEA core component and the MPH is one solution,

where each component will have a method for asking whether it has or has not a graphical

module, if so the name of it and where to look for it.

• The main GUI has to check each component for its type, check for the found component

type in a separate GUI configuration file, if the component type has a GUI module, the

name of it and where it is located.

SEA core Module ServersControl
Application

Repository

MPH

Components

Modules
Logical connection between component and module.
Physical connection via Control Application and MPH.

RPC call

15

There are of course a number of solutions but these are the most reasonable, the latter is proba-

bly the easiest to implement for test, because there is no changes needed for the SEA core.

3.2. Comprehensive Window Control

The second part considers the problem of having too many top level windows at the same time.

This is solved by making the Main Control Application offer a “drawing area” for each graph-

ical module that is loaded to draw its graphics within. One way is to have a Main Control

Application, where each separate module has its own child window, within the main window.

Each module is then free to use the given child window for its graphical user interface, like a

multi document word processor application. Another way, not using child windows, is using

tabbed panes. The Main Control Application holds the tabbed pane, then each pane is the

drawing area offered to each module to draw its graphical user interface within. The tabbed

pane solution will most likely give a more controllable GUI when having many GUI modules

open at the same time. Yet another solution is to use some kind of tree view, one node for the

module type and the instances of the module as subnodes. When an instance is selected the

instance is given a drawing area to draw its graphical control within. Regardless if the GUI

module is in a child window, a pane or a tree view, the module should be able to be torn off

from the main application, to an own separate top level window.

3.2.1. Selecting and Showing Instances

When all the instances of the different loaded modules are known, and one is to be selected

they must be graphically represented in some way. As mentioned in chapter 2.7 the graphical

issues as in look and feel is not considered, but there are some basic graphical alternatives

namely:

• The Main Control Applications menubar is extended with a item “module” containing all

the module types loaded. Each module type then has a submenu attached to it with all its

instances, like menubar -> module type -> instance. This will cause some troubles when

there are to many module types or instances of one particular type, since the list of all items

will fill up the screen.

• Another approach is using a File dialog type. A child window like “open file” is created

having the module type as the directory tree and the instance like the files.

• Yet another approach is having the modules and instances in a tree view, one node for the

module type and the instances of the module as subnodes.

16

3.2.2. Drawing Area for the Selected Module

Once a module is selected a new drawing area must be created by the Control Application.

This area is given, pointed out, to the module upon its creation. The module then uses this

drawing area to draw its graphical components within. The given drawing area can be con-

tained in a few different ways by the Control Application, for example a tab in a tabbed pane or

a child window in a container window, figure 7.

Figure 7: Tabbed pane and container window.

Figure 7 shows the Java Swing graphical classes. This is just to illustrate some different solu-

tions for the drawing area that can be provided for the modules.

3.2.3. Extending the Menubar

Finally when a selected instance of a module is graphically drawn in its given area, the Control

Applications menubar should support methods to extend the functionality of the menubar for

the active module. In the same way as the Control Application gives a drawing area to the

module, the Control Application will give, point out, where to extend the menubar.

17

3.3. Summary

The general solution is divided into two parts, dynamic extension of functionality and compre-

hensive window control. The dynamic extension of functionality can in turn be divided into

two subparts, a distributed solution and one that is not distributed.

Dynamic extension of functionality

To extend the functionality of the main GUI application a few steps has to be considered.

• What components are currently loaded

Find out the components types and the instances currently loaded in the SEA core.

• Does the loaded components have a GUI module

One has to know if a component in the SEA core has graphical module or not. Each mod-

ule has to be extended with this functionality or a separate GUI-configuration file can be

used.

Comprehensive Window Control

Letting the main GUI application contain the different modules graphics. There are a few steps

needed to achieve this.

• Selecting and showing instances

To show a particular instance it has to be selected from some list containing the modules

and the currently loaded instances of it. This is graphically represented in three basic ways,

menubar, File dialog child window or a tree view.

• Drawing area for the selected module

Once an instance of a particular module type is selected, the main GUI application has to

offer a drawing area that is given, pointed out to the module.

• Extending the menubar

Finally, the main GUI applications menubar can be extended with functionality from the

loaded module. In the same way as the Control Application gives a drawing area to the

module, the Control Application will give, point out, where to extend the menubar.

18

19

4. Analysis of some Chosen Technologies

In this section some different technologies are analyzed according to the general solution. First

the technologies to be considered are stated. The following subchapters analyze the different

technologies considering how the technology in question can be used to solve dynamic exten-

sion of functionality and comprehensive window control. At the end of each section for each

technology some general aspects of that technology are considered. Finally the technologies to

implement are selected.

4.1. The Technologies to be Considered

Comparison of some chosen technologies to solve both the problem of dynamic extension of

functionality and the problem of comprehensive window control. The following are the tech-

nologies to be considered:

Tcl/Tk is a natural choice since most of the GUI applications for SEA is written in Tcl/Tk

today, and EIN/TSP has a wide experience in Tcl/Tk development. Java is a object oriented,

flexible language suited for graphical development with multi platform support through its

binary code and virtual machine solution, all this could be a great advantage for development

now and in the future. KDE and Gnome are selected because they stand for the new generation

of desktop environment in the UNIX community.

Table 1: Technologies to be considered

Technology Provided solution

Tcl/Tk Tcl Source command, Tcl-DP

Java Dynamic class loading, RMI

KDE Mico Orb, KParts

Gnome ORBit, Bonobon

20

4.2. Tcl/Tk

Tcl/Tk is divided into two parts. The first part is Tcl, pronounced tickle, stands for Tool Com-

mand Language and was created by John Ousterhout in 1987. Tcl is an interpreted language

and is more like a scripting language than a programming language, so it shares greater simi-

larity to the C shell or Perl than it does to C++ or C. Tcl provides generic programming facili-

ties, such as variables and loops and procedures. Since Tcl is an interpreted language, it of

course executes slower than compiled C code, but still it is surprisingly fast. [4]

The other part of Tcl/Tk is Tk. Tk is a graphical user interface toolkit that makes it possible to

create powerful GUIs quickly. Tk extends the built-in Tcl commands with commands for creat-

ing and controlling graphical user interface elements called widgets. A widget can be a button,

text window, scrollbar etc.

4.2.1. Source Command

The dynamic extension of functionality problem can be solved using Tcl’s source command.

Since Tcl is an interpreted language it is possible to extend the loaded code while executing.

The source command takes the contents of a specified file and extends the existing code. This

makes it possible to load new modules in a way that solves the problem dynamic extension of

functionality.

To get the Main Control Application to interact with the loaded modules, the modules have to

support a set of standard methods, procedures in Tcl. Since each module has its own imple-

mentation of the given standard procedures, there will be a problem when more than one mod-

ule is loaded. In that case there will be more than one procedure using the same procedure

name. Tcl is not a object oriented language and therefore this problem can not be solved using

any class abstraction1. A solution to this problem is using Tcl’s namespace. A namespace is a

collection of commands and variables. It encapsulates the commands and variables to ensure

that they will not interfere with the commands and variables of other namespaces. Figure 8

shows an example code of Tcl source and namespace commands.

1. Even though Tcl/Tk is not object oriented there exists packages that extend Tcl/Tk to support object
orientation. Analyzing these packages is beyond the scoop of this thesis.

21

Figure 8: Tcl source and namespace commands

The procedure loadNewModule first creates a new namespace named “moduleName”. In

this new namespace, encapsulated by brackets, the new Tcl code is loaded from the sourcefile

“moduleName.tcl”. When the loadNewModule procedure has been called, it is possible to

call the procedures in the new namespace using the :: notation to specify the name of the

namespace and one of its procedures.

Tk arranges the widgets in a hierarchical tree structure. Each widget is identified through its

location in the tree, this gives the path to the widget from the root. In Tcl the comprehensive

window control can be solved by letting the main application create a Tk frame. A Tk frame

can be compared to a Java panel. The frames path is passed as an parameter to the module. The

given path is then used by the module as the root of its own widget subtree. That is the module

draws its widgets from the given path.

4.2.2. Extension Packages.

There exists a large number of packages that extends the functionality of Tcl and Tk. A pack-

age that extends Tcl and provides a technical solution for the dynamic extension of functional-

ity is Tcl-DP, Tcl Distributed Programming. Tcl-DP is a collection of Tcl commands that

simplifies the development of distributed programs. Tcl-DP’s most important feature is a

remote procedure call facility, which allows Tcl applications to communicate by exchanging

This is a comment in Tcl
A procedure somewhere
proc loadNewModule {} {

namespace “moduleName” {
 # This is the new namespace
 source “moduleName.tcl”
}

}

Call the procedure to create a new namespace
loadNewModule

Call a procedure in the new namespace
moduleName::wantedProcedure

22

Tcl scripts. For example, the following script shown in figure 9 uses Tcl-DP 4.0 to implement a

trivial “id server“, witch returns unique identifiers in response to GetId requests.

Figure 9: Id server and client using Tcl-DP

The first command executed on both client and server is the Tcl package command, which

makes Tcl-DP library functions and commands available in the current Tcl interpreter. The

server executes the dp_MakeRPCServer command, which creates a socket that is waiting

for a client to connect. Finally, the server defines the getID command, which generates and

returns a unique identifier.

The client connects to the server using the dp_MakeRPCClient command, which returns a

handle that can be used to communicate to the server. Finally, the client invokes the getID com-

mand on the server using the dp_RPC command. This causes a message containing the com-

mand to be evaluated to be sent to the server, where it is evaluated and the results returned.

The Tcl-DP could be used to solve the problem with dynamic extension of functionality. A

new process acting as a module server has to be created, shown in figure 6. This server holds

all the modules that are dynamically loaded. The advantage of this solution is that the Main

Control Application does not need to source the different modules, and therefore need not to

concern about any namespace problems. The Main Control Application calls functionality of

the different modules using the dp_RPC command. The major disadvantage of this solution is

Server
package require dp 4.0

dp_MakeRPCServer 1944 tcp0
set i 4
proc getID {} {

global i
incr i

}

Client
package require dp 4.0

dp_MakeRPCClient host.domain 1944 tcp0
set id [dp_RPC tcp0 getID]

23

that it does not really solve the problem, it is just another way to communicate with the differ-

ent modules. The problem of dynamic loading will now appear in the server instead.

4.2.3. General Aspects

Technical aspects on Tcl/Tk:

• Tcl/Tk runs on a number of platforms, Windows95/98/NT, Mac and nearly every Unix

platform like Solaris, Linux etc.

• Tcl is developed in C and the Tcl interpreter is a library of C functions that implements the

Tcl commands and the grammar for the Tcl language. This fact makes it easy to extend the

Tcl language with new commands by creating new C libraries. Each command is imple-

mented by one single function in the C libraries. Due to this fact a large number of exten-

sion packages to add new sets of Tcl/Tk commands exist. They provide a variety of

functionality, like databases, network management and platform specific APIs.

• There is a compiler available to Tcl that translates the Tcl scripts into a bytecode file mak-

ing it possible to distribute applications without providing access to the original Tcl source

code.

Distribution and licence agreement:

For distribution Tcl/Tk use open source licence agreement. In short, the open source licence

agreement for Tcl/Tk gives permission to use, copy, modify, distribute, and license software

and its documentation for any purpose, provided that existing copyright notices are retained in

all copies and that this notice is included verbatim in any distributions. No written agreement,

license, or royalty fee is required for any of the authorized uses. [5]

4.3. Java

Since Java is a widely known language, the language itself will not be described in detail (a

complete description of the Java language can be found on http://java.sun.com). However Java

has a few aspects that reflects on this work which is wort mentioning. First, Java works with

bytecode, which in turn is executed on a virtual machine. This making it possible to use the

same bytecode on different platforms, platform independent. This in turn is useful in distrib-

uted solutions, where the bytecode can be transferred between or executed on different plat-

forms on the server and client machines. Another aspect, Java is strictly object oriented which

makes Java well suited for modular design. In Java it is also easy to create GUI.

24

4.3.1. Dynamic Class Loading

To solve the problem of dynamic extension of functionality in Java it is possible to use the

dynamic class loading that is offered by the static method Class.forName() in the class

java.lang.Class. The method Class.forName() takes a fully qualified name of a

class as a parameter and loads that class into the interpreter and returns a Class object for it.

In Java there is a Class object representing every class loaded into the interpreter, one

Class object for each class. The newInstance() method in class Class creates an

instance of the class that it represents and returns the newly created instance. Figure 10 shows

an example of a dynamically loaded class.

Figure 10: Dynamically loaded class in Java.

First a new Class object representing MyClass is created by the call to Class.forName.

The Class objects method newInstance() is then called to create the actual instance of

MyClass.

The dynamic extension of functionality can be solved using Java’s dynamic class loading func-

tionality. Each GUI module has to be implemented as a separate Java class. Since each module

has to contain a set of standard methods, the GUI module class has to implement a given stan-

dard Java interface. The main application then loads and instantiates those classes that are

needed for the current configuration.

In Java, the comprehensive window control can easily be solved by having the main applica-

tion create and control the panels that the module classes use. That is, when the main applica-

tion have instantiated a module class, it creates a panel and calls some standard method in the

newly instantiated object with the created panel as an argument. The object then uses the given

 // Loads and instanciates class MyClass
 java.lang.Class t;
 MyClass myClass;

 try {
 t = Class.forName("MyClass");
 myClass = (MyClass)t.newInstance();
 }

25

panel as a base to draw its widgets on. From the objects point of view this panel is its toplevel

window.

4.3.2. Java RMI

Java supports a few different distributed object technologies, namely Java RMI and CORBA.

The Java Remote Method Invocation (RMI) system allows an object running in one Java Vir-

tual Machine (VM) to invoke methods on an object running in another Java VM. RMI provides

remote communication between programs written in Java. CORBA on the other hand gives a

possibility for Java applications to communicate with objects written in any language that sup-

ports CORBA. CORBA solutions will be discussed later on, but not for Java.

Java RMI contains two main parts, clients and a server, figure 11.

Figure 11: Java RMI

The server application creates and supplies the remote objects. The clients invoke methods on

the remote objects by a remote reference. The remote reference is obtained from the registry.

RMI provides the mechanism by which the server and the client communicate and pass infor-

mation back and forth.

One of the central features of RMI is its ability to download the bytecode of an object’s class if

the class is not defined in the receiver’s virtual machine. The type and the behavior of an

object, previously available only in a single virtual machine, can be transmitted to another vir-

tual machine, thus extending the behavior of an application dynamically. [6]

RMI could be used to solve the dynamic extension of functionality problem by implementing a

distributed solution, figure 6. RMI supports functionality to handle the repository, the registry

in Java. That is, functionality to register a new module, get the name and location of a module

Client

Server

Registry

RMI

RMI RMI

26

etc. Once a reference to a remote module, object, is obtained it is referenced as it was a local

object. This high level of abstraction makes it fairly simple to implement a distributed solution

in Java.

4.3.3. General Aspects

First a short description of the main components and the abbreviations commonly used in the

Java community, to avoid confusion.

The Java programming language is currently shipping from Sun Microsystems, Inc. as the Java

Development Kit (JDK). All Sun releases of the JDK software are available from the JDK soft-

ware home page (http://java.sun.com/products/jdk/). Each release of the Java Development Kit

(JDK) contains:

• Java Compiler
• Java Virtual Machine
• Java Class Libraries
• Java AppletViewer
• Java Debugger and other tools
• Documentation (in a separate download bundle)

The Java Foundation Classes (JFC) are a comprehensive set of GUI components and services

which dramatically simplify the development and deployment of commercial-quality desktop

and Internet/Intranet applications. Swing is the project code name for the lightweight GUI

components in JFC.

Technical aspects:

The JDK 1.1.x Final and 1.2.1 Final is available on these platforms:

• SPARCTM SolarisTM 2.4-2.6
• Intel x86 Solaris 2.5-2.6
• Microsoft Windows 95 / NT 4

The JDK 1.0.2 is available on these platforms:

• SPARC Solaris 2.3-2.5
• Intel x86 Solaris 2.5
• Windows 95 / NT
• Macintosh 7.5

27

Distribution and licence agreement:

The Java Development Kit (JDK) is free to download and use for commercial programming,

but not to re-distribute. That is, a source code license is not needed to write and distribute

applets or applications in the Java language. Sun’s binary license permits developers to write

software in the Java language, as well as distribution of the binaries for the Java interpreter

along with applications, at no cost. [7]

4.4. KDE

KDE is a graphical desktop environment for Unix workstations. It combines ease of use, con-

temporary functionality and graphical design with the technological superiority of the Unix

operating system. [8]

KDE is developed in C++ and the KDE library offers a complete range of widgets, based on

the QT widget library, and desktop functionality. The new version of KDE, v2.0, supports a

number of interesting new technologies. To name a few, KDE2 offers a technology named

KOM/OpenParts, which is a technology built upon the open industry standards such as the

object request broker CORBA 2.0. (a complete descripton of the CORBA technology can be

found on http://www.omg.org). Another of KDE2s new technologies is KPart. KPart is used to

embed applications within existing ones. Both these technologies can be used to solve the

dynamic extension of functionality and comprehensive window control in SEA.

Note, KDE2 is only available as a pre-alpha release. KDE 2.0 is scheduled to be released in the

spring/summer of 2000. This fact makes the analyzing a bit complicated since it is not given

whether the implementation/API to KDE2 will change in some way or not. Yet another factor

is that there are absolutely no available documentation for the different technologies, just the

present API reference. To get the information on how the technology is supposed to work the

existing source codes has to be analyzed.

4.4.1. KOM/OpenParts

The KOM/OpenParts technology is based on the open industry standard for distributed tech-

nology, CORBA 2.0. Around CORBA, KDE has developed a layer called KOM. KOM adds

functionality to CORBA that is not provided by the CORBA Standard and specific to the appli-

cation of distributed object technology to application framework development. KOM stands

for KDE Object Model. The KOM Plug-ins can be implemented as in process (shared librar-

28

ies) or out of process servers (separate processes). There are some additional layers to the

KOM layer to make it more user friendly to use the distributed technology, namely OpenPart-

Controls and OpenPart-Part. [9]

OpenParts -Controls

This solution is for the modules, controls in KOM. Controls can be a complete module, a web

browser with GUI, or just a simple function converting text. The control part supports controls

to combine KDE components and X11 Windows. Controls can be implemented as in process

or out of process servers. Controls can be swallowed in their parent window to extend embed-

ded functionality. The controls are comparable to Microsoft’s ActiveX Controls.

OpenParts - Parts

This solution is for the shell, the main application. The parts (controls) share limited resources

such as Toolbars, Menubars, Statusbars etc. and they need a special toplevel window: a shell.

The shell owns the File-Menu/Toolbar and the active part has access to the resources. Parts

(Containers) can host other parts. Compare to Microsoft’s OLE.

Figure 12 shows an abstract picture of how KDE/KOM OpenParts is constructed.

Figure 12: KDE KOM/OpenPart Technology

X11 and CORBA is the base in this technology. X11 is the graphical environment and the

Mico ORB, the CORBA implementation used by KDE, implementing the distributed technol-

29

ogy. KOM and OpenParts provides a more user friendly API to the user (the application) who

does not need to concern about complicated CORBA function calls.

KOM/OpenParts could be used to solve the dynamic extension of functionality problem by

implementing a distributed solution, figure 6. KOM/OpenParts supports functionality to handle

the repository. That is, functionality to register a new module, get the name and location of a

module etc. Once a reference to a remote module is obtained it is implemented as it was a local

module. This technology also handles the embedding of graphical components.

4.4.2. KParts

The KDE/KParts is a library that provides a framework for applications that want to use parts

(the loadable modules in KParts). This technology has a lot in common with the KOM/Open-

Parts technology, except that is not distributed. The parts in KParts is similar to the KOM/

OpenParts technology, they can be anything from a complete web browser with a GUI to a

small function executing a calculation. [10]

The main applications need to inherit the main window from KParts::MainWindow and

provide a so-called shell GUI, which provides a basic skeleton GUI with part-independent

functionality/actions. That is to make the shell able to provide the functionality to dynamically

locate, load and show parts.

The parts, the modules to be embedded in the shell, has to implement a given framework to be

embeddable. KParts applications will not be specific to a given part, it has the functionality to

extend the application and to embed any part, for instance, any viewer. For this the basic func-

tionality of any viewer has been implemented in KParts::ReadOnlyPart, which viewer-

like parts should inherit from. The same applies to KParts::ReadWritePart, which is

for editor-like parts.

It is possible to add actions to an existing KParts application from the “outside”, defining the

code for those actions in a shared library. This mechanism is obviously called plugins, and

implemented by KParts::Plugin.

KParts could be used to solve the dynamic extension of functionality problem by creating a

main application. This has to inherit and implement the KParts::MainWindow class. The

30

parts has to inherit and implement either the KParts::ReadOnlyPart class or the

KParts::ReadWritePart.

4.4.3. General Aspects

KDE is a complete window manager using the Qt widget library. Qt is developed and sup-

ported by Troll Tech AS located in Norway.

Technical aspects:

KDE is a Desktop Environment for any Unix platform. While it is true that most KDE develop-

ers use Linux, KDE runs on a wide range of systems. There might be some problems to com-

pile on some systems, and the source code may have to be altered a bit to get KDE to compile

on a not so popular variant of Unix, or if the GNU development tools is not used, in particular

the gcc compiler. [11]

Some of systems on which KDE is running are:

• Linux
• Solaris
• FreeBSD
• IRIX
• HP-UX

Distribution and licence agreement:

KDE is an Internet project. Development takes place on the Internet and is discussed on mail-

ing lists and USENET news groups. No single group, company or organization controls the

KDE sources. All KDE sources are open to everyone and may be distributed and modified by

anyone subject to the well known GNU licenses. [8]

KDE is free software according to the GNU General Public License. All KDE libraries are

available under the LGPL making commercial software development for the KDE desktop

possible, all KDE applications are licensed under the GPL.

That is, KDE can be used to write libraries for “commercial and closed source” as well as

“commercial and open source” software. If open source software is written then the Qt free

edition may be used. But if closed source software is written the Qt free edition may not be

31

used. In the case of closed source software the Qt professional edition has to be obtained from

Troll Tech AS [12].

4.5. GNOME

GNOME is the GNU Network Object Model Environment. The GNOME project intends to

build a complete, easy to use desktop environment for the user, and an application framework

for the software developer. GNOME is part of the GNU project, and is free software compliant

with the OpenSource definition. [13]

GNOME provides a framework for building applications by providing a set of core libraries.

These include libraries to create graphical user interfaces, components for creating applica-

tions with a uniform look and feel, and a CORBA ORB implementation named ORBit. [14]

The widget toolkit that GNOME use, GTK+, is written primary in C, although a large number

of language bindings are available. Since GTK+ is implemented in C it is not as object oriented

as KDE which uses C++.

The GNOME window environment provides a few technical solutions to get a component

structured model. The basic facility is the GNORBA, GNome cORBA framework, that allows

applications to use the GNOME implementation of CORBA, ORBit. Another facility provided

by GNOME to write reusable software components is the Bonobo. Bonobo components are

pieces of software that provide a well defined interface and are designed to be used in coopera-

tion with other components. Using Bonobo makes it possible for GNOME applications to

embed graphic and functionality supplied by other applications, compare to KDE KPart.

CORBA is used as the communication layer that binds Bonobo components together, making

it possible to distribute components over a network.

4.5.1. The GNOME CORBA Framework

The GNOME CORBA framework allows applications to use ORBit, the CORBA implementa-

tion used by GNOME.

To allow applications to request access to a specific CORBA object, GNOME CORBA servers

place information in the repository named GOAD, GNOME Object Activation Directory, in

32

GNOME. The GOAD stores information on the CORBA objects that a program can provide to

other programs. Each entry contains a unique implementation identifier (the “GOAD ID”), a

list of interfaces that the object supports and information on how to create a new instance of the

object implementation.

If an application provides the implementation for a CORBA object, it is necessary to integrate

that object into the GOAD. An application would install a ’.goad’ data file into the correct

directory as part of its installation process. Then a few function calls must be made when the

object is created and destroyed. Once an object implementation is registered with GOAD, cli-

ent applications can activate that implementation with a single function call. [15]

GNORBA could be used to solve the dynamic extension of functionality problem by imple-

menting a distributed solution, figure 6. GNORBA supports functionality to handle the GOAD.

That is, functionality to register a new module, get the name and location of a module etc.

Once a reference to a remote module is obtained it is implemented as it was a local module.

4.5.2. Bonobo

Bonobo is a set of CORBA interfaces that define the interactions required for writing compo-

nents. Bonobo is the architecture that makes components available to other applications as a

Bonobo component. This enables applications to be embedded into another application for

editing or displaying information. Bonobo makes GNORBA more user friendly by providing

wrapper functionality for it. [16]

Bonobo can be used to solve both the dynamic extension of functionality and the comprehen-

sive window control. By constructing the modules as a Bonobo component, the component

provides new functionality to the Control Application. Since a Bonobo components also sup-

ports functionality to be graphically embedded a module can provide its own GUI that is pre-

sented by the Control Application.

4.5.3. General Aspects

GNOME is not a window manager and is not tied to any one window manager. GNOME is the

GNU Network Object Model Environment. The GNOME project intends to build a complete

desktop environment for the user.

33

Technical aspects:

GNOME was started by several people well-known in the Linux and GNU communities, but it

is intended to run on any modern and functional Unix-like system. GNOME has been reported

to work under the following [17]:

• GNU/Linux
• BSD (FreeBSD, NetBSD and OpenBSD)
• Solaris
• IRIX
• HP-UX
• AIX

What are the System Requirements for GNOME?

Currently, a machine with Unix or a Unix-like operating system installed is needed, with the X

Window System (X11R5 or later). GNOME needs at least 16MB of RAM, although 32MB or

more is recommended.

Distribution and licence agreement:

The widget toolkit that GNOME use, GTK+, is licensed under the LGPL. Like KDE GNOME

is an Internet project. All sources are open to everyone and may be distributed and modified by

anyone.

4.6. Summary

All the technologies discussed offers one or several ways to solve the problems of dynamic

extension of functionality and comprehensive window control in SEA. Each technology pro-

vides two main solutions, one distributed and one that is not.

The distributed solution in general makes it possible to have instances of modules anywhere on

a network. A disadvantage is that the degree of complexity increases using distributed technol-

ogies. All the distributed technologies provide functionality to get the name and location of

modules to be loaded, this information is stored in the repository, figure 6. Tcl-DP provides

RPC functionality, and does not support functionality to locate distributed modules.

34

Using a non distributed solution is a lot simpler at cost of flexibility. A problem that has to be

solved in a non distributed solution is were to find the modules, a couple of solutions are possi-

ble, namely: Increase the functionality of each module in SEA or to have the information in a

separate GUI configuration file.

Table 2 is a summary of the analyzed technologies

4.7. Selected Technologies

All the distributed solutions will work, but they will all give a overhead and a high level of

complexity to the application that is not needed. So the selected technologies are all non dis-

tributed alternatives. The selected technologies to implement are:

• Tcl/Tk using the source command and namespaces.

This solution is selected since it is the simplest way to modify the existing code EIN/TSP

already have.

• Java using dynamic class loading.

Java is selected because is a popular object oriented language well suited for graphical

development.

• KDE2 using the KPart technology.

KDE2 is selected because its KParts technology solves both the problems of dynamic

extension of functionality and the comprehensive window control.

Table 2: Summary of technologies

Technology DEoFa

Distributed

a. DEoF: Dynamic Extension of Functionality

DEoF
Non Distributed CWCb

b. Comprehensive Window Control

Tcl/Tk Tcl-DP Tcl source command Passing widget paths
as argument

Java RMI / CORBA Dynamic class
loading

Java panels

KDE2 KOM/OpenParts KParts KParts

GNOME Bonobo - Bonobo

35

The reason why GNOME is not one of the selected technologies to implement is that there is

not enough time to make a test implementations using all technologies listed in Table 2. Since

KDE2 and GNOME are both desktop environments the authors decided to only implement one

of them. The reason why KDE2 is selected over GNOME is mainly because of KDE2’s KPart

that solves both the dynamic extension of functionality and the comprehensive window control

in a non distributed way.

36

37

5. Implementation

This part describes the implementation of the selected technologies. First the Tcl/Tk imple-

mentations is described, second the Java implementation and finally the KDE2 implementation

is described. Each technology describes how to solve the earlier stated problems with dynamic

extension of functionality and comprehensive window control.

5.1. Precondition

The following implementations does not initiate or start the SEA core, it just uses the MPH

library to communicate with a already running SEA core. That is, first the SEA core applica-

tion has to be started and initiated according to given configuration file. Once the SEA is up

and running the main application in question can be started.

The different implementations are examples of how the component based GUI application

could be implemented in the technology in question. The implemented test application does

not support any functionality like the SEA Control Center as shown in figure 2. The purpose is

just to show the possibilities to extend the Main Control Application with modules that are

unknown at buildtime for the Main Control Application.

Each module in the Control Application can only communicate with one given component

instance in the SEA core. That is a given graphical module can not communicate with more

than one SEA core component instance to show their status in one and the same window.

5.2. Tcl/Tk

The Tcl/Tk application consists of a main Tcl/Tk application that handles the window control

and modules that implements the functionality for controlling the separate components in the

SEA core.

5.2.1. Precondition

This solution uses a separate configuration file to tell what GUI modules that corresponds to a

given instantiated component in the SEA core.

The notebook widget is a part of the extension package BWidget, which therefore must be

included in the Tcl/Tk application.

38

5.2.2. Solution for the Main Application

The description of the solution for the main application is divided into three parts. First the

start of the Tcl/Tk application, second the instantiation of a selected component in the SEA

core and third, a few other supported functionalities.

Start of the GUI Application

The Tcl/Tk application is started with two parameters, the first is the name of the machine on

which the SEA core is running, the second parameter is the port to connect to. These parame-

ters can be obtained from the status bar in The Sea Control Center, figure 2. In the figure 2

example the name of the machine on which the SEA core is running is ‘solstal’ and the port for

the MPH is ‘51765’. First the connection to the SEA core is set up, the MPH connection, using

the MPH::OpenConnection procedure. Next the Tcl/Tk application asks the SEA core,

through the MPH socket connection, what instances it has using the MPH::SearchByName

procedure. The procedure call returns a list of all instances in the SEA core.

The returned list of all instances is iterated to see if a given instance of a component has a cor-

responding graphical module associated to it or not, according to the GUI-configuration-file, as

illustrated in figure 13. That is, the Tcl/Tk application receives a list containing for example

comp1.inst1, comp1.inst2, comp3.inst1 and comp4.inst1. The actual name of the component

will be like LI-1, LI-2 etc. where LI is the name of the component and the number is the

instance of the component.

Figure 13: Tcl source and namespace commands

....

mod3.tcl

mod2.tcl

SEA core
Tcl/Tk application

Configuration
file

mod1 mod1.tcl
mod2 mod2.tcl
mod3 mod3.tcl
....

mod1.tcl

Module files

mod3.inst1

mod1.inst2

mod1.inst1Main Tcl/Tk
code.MPH

comp3.inst1

comp1.inst2

comp1.inst1

...

comp4.inst1

SEA core

Instantianted modules, living
in own separate namespaces.

39

Once the list is obtained it will be iterated to see if there is any corresponding graphical mod-

ules according to the GUI configuration file that are associated to a given component type. If

there is a corresponding module the component name and instance number, the identifier

name, will be added to a list of available GUIs. The list of available modules may be graphi-

cally represented in a number of ways, in this solution it is shown as cascading menus with

module type in the main menu and all the instances of each module in a submenu. The cascad-

ing menus are shown in figure 14.

Figure 14: Tcl/Tk Control Application with cascading menus

Instantiation of a Module

The second step is to instantiate a module. When a instance of a given component is selected

from the cascading menus, the newEntry procedure will be executed and the corresponding

module to the selected component will be instantiated. First a new namespace is created using

the Tcl command namespace, the new namespace will have the same name as the identifier.

In the new namespace the module will be sourced using the Tcl command source, that is

loaded into the existing Tcl/Tk code.

The module is now instantiated. Next step is to set up a MPH connection between the new

module and the corresponding component in the SEA core. To do this a unique identification

number has to be obtained from the module using the procedure getIID, which is a proce-

40

dure that all modules have to support. The getIID procedure returns the unique identification

number.

Next step is to open a new MPH virtual socket using the MPH::OpenChannel procedure.

The channel is a virtual socket over the MPH socket connection. This procedure is called with

a number of parameters. One of the parameters is the IID for the module, telling the SEA core

which component to connect to. If the procedure call MPH::OpenChannel was successful a

new connection exists.

The last step in the instantiation scenario is to make an area for the module to draw its widgets

in. In this Tcl/Tk solution the notebook1 widget is used. A new tab is added to the notebook

with the name of the identifier, module name and number. To create a new tab the cre-

tateTab procedure is called. The return value of the call is the path to a frame widget within

the tab, which should be used by the module to draw its graphics within. Finally the initializa-

tion procedure of the module is called, proc init, with the path where to draw its widgets

passed as an argument.

At this point the module is instantiated, connected to the right component in the SEA core and

the graphics of the module is drawn in a notebook tab widget.

Other Functionality Supported

The extra functionality supported by the main Tcl/Tk application is the ability to tear off a tab

into a new toplevel window. That is, the main application supports this functionality for each

separate tab that is created by adding an extra button to the tab. This tear-off functionality has

to be done by hand in Tcl/Tk, in other languages there may be a direct support for tearing off

graphical parts into own top level windows. Figure 15 shows the main Tcl/Tk application with

a number of LI-telephone modules embedded and one torn off.

1. The notebook widget is a part of the extension package BWidget, which therefore must be included.

41

Figure 15: Module torn off from the main Tcl/Tk application

Yet another functionality that can be supported but still not implemented is the functionality

for the module to extend the main applications menubar. In other words, when a given module

tab is activated the module should extend the main applications menubar with extra functional-

ity supporting the activated module. This can be solved using the same approach as when the

main application gives the path to draw the modules widgets within. In the case of menu exten-

sion the path where to extend the menu has to be passed as an argument to a standard proce-

dure in the module, that extends the functionality of the menubar.

5.2.3. Solution for the Modules

The LI-telephone module is the only module that is implemented. The LI-telephone module

represents the general structure for a module. The modules structure is in short, a number of

standardized procedures to support initialization and communication with the main application

and the corresponding component in SEA, then a number of procedures to support the modules

functionality.

There are some standard procedures that is needed for the module to set up the MPH connec-

tion and some standard procedures needed to create the GUI for the module, like the proc

Tcl/Tk main Control Application

Tcl/Tk LI telephone module

42

init to initialize the GUI. The standard procedures can be compared to a pure virtual class in

C++ since they have to be implemented. The rest of the procedures have specific functionality

for the given module.

5.2.4. Implementation

The Tcl/Tk implementation consists of two separate files types, cbgui.tcl which is the main

application in Tcl and the modules modX.tcl. The modules modX.tcl is only implemented for

the LI-telephone module, li_gui.tcl.

5.2.4.1. The cbgui.tcl file

Implementation file for the main application. The file is divided into three parts, procedures for

the MPH communication, procedures for GUI functionality and finally general procedures for

adding and removing new modules.

MPH procedures

• proc SendMessage {channel message}

This procedure is used by the GUI instances to send text messages to its SEA entity. The

parameters are channel which is the channel given to the instance and message is the

text message to be written. The procedure does not return anything.

• proc SendBinaryMessage {channel length message}

This procedure is used by the GUI instances to send binary messages to its SEA entity. The

parameters are channel which is the channel given to the instance, message which is

the text message to be sent and the length which is the length of the message. The proce-

dure does not return anything.

• proc concloseport {}

This is a callback procedure required by MPH, it is called if the MPH connection is closed.

The procedure does not take any arguments and does not return anything.

GUI procedures

• proc draw {}

This procedure creates and places the widgets, menubar and notebook, on the main win-

dow. The procedure does not take any arguments and does not return anything.

• proc addToMenu {cascade name command}

This procedure adds a new command to the given cascade menu in the menu pointed out by

43

the global variable menuPath. If the cascade do not exist it is created and placed on the

main window. The parameters are cascade which is the name of the cascading menu,

name which is the name of the new command and command which is the code to be exe-

cuted when the item is selected from the menu. The procedure does not return anything.

• proc killTab {inst}

This procedure deletes a tab from the notebook. The parameter inst is the name of the tab

to delete. The procedure does not return anything.

• proc tearOff {inst channel mod}

This procedure makes a new toplevel window, deletes the specified instance and adds it to

the new toplevel window. The parameters are inst which is the name of the instance to be

in a new top level window (the tab to tear off), channel which is the MPH channel given

to the module for communication with its component and mod which is type of instance.

The procedure does not return anything.

• proc tearOn {inst channel mod}

This is the reverse procedure of tearOff. It destroys a given toplevel window and creates

a new tab in the notebook and initiates the module there. The parameters are inst which

is the name of the toplevel to be placed in a new tab, channel which is the MPH channel

given to the module for communication with its component and mod which is the type of

instance. The procedure does not return anything. Note, the name tearOn was a joke at

the beginning, but since we did not come up with a better name it remained this way.

• proc initTearOffPage {page inst channel mod}

This procedure initiates the new toplevel window and creates a frame for the module to

draw its widgets in. The parameters are page which is the new toplevel window, inst

which is the name of the instance, channel which is the MPH channel given to the mod-

ule for communication with its component and mod which is type of instance. The proce-

dure returns the path to the drawing area for the module.

• proc initPage {mod page inst channel}

This procedure is called immediately after a new tab has been created. It creates widgets

for some standard functionality and the frame that is by sent to the GUI instance. The

parameters are page which is the new page (tab), inst which is the name of the instance,

channel which is the MPH channel given to the module for communication with its

component and mod which is type of instance. The procedure returns the path to the draw-

ing area for the module.

44

• proc createTab {mod inst channel}

This procedure is called immediately after a instance has been selected from the menu. It

creates a new tab and call initPage to initiate it. The parameters are inst which is the

name of the instance, channel which is the MPH channel given to the module for com-

munication with its component and mod which is type of instance. The procedure returns

the path to the drawing area for the module.

General procedures

• proc newEntry {mod inst tclappsourc}

This procedure is called if the user selects a entity from the menu. It loads the source code

for the given instance. The parameters are mod which is the type of instance, inst which is

the name of the instance and tclappsource which is the file containing the new source

code to load. The procedure does not return anything.

proc destroyEntry {mod inst channel}

This procedure removes a GUI instance by disconnecting its MPH channel, enable it in the

menu and remove its tab. The parameters are mod which is the type of instance, inst which is

the name of the instance and channel which is the MPH channel given to the module. The

procedure does not return anything.

• proc addEntities {}

This procedure checks available entities in SEA against the configuration file ’cbgui.cfg’

and adds the matching entities. The procedure does not take any arguments and does not

return anything.

• main

main is not a real procedure in Tcl/Tk, it is the global code in the file which acts like the

main code. All the necessary calls and initiations are done form here. Note all the variables

in a module that are declared here will belong to the global namespace.

5.2.4.2. The li_gui.tcl

Implementation file for the LI module, representing any module. The file is divided into two

parts, general procedures that has to be supported to interact with the main application and pro-

cedures specific to the module.

45

General procedures needed to interact with the main application.

• proc getIID {}

This procedure returns the unique IID number for the specific module. The procedure does

not take any arguments.

• proc messagecallback {length message}

This procedure is called when a message has been received. The parameters are length

which is the length of the message and message which is the actual message. The proce-

dure does not return anything.

• proc messagecallback {}

This procedure is called if the channel is remotely closed by the SEA component. The pro-

cedure does not take any argument and does not return anything.

• proc init {_path _channe}

This procedure is called when the module is instantiated. The parameters are _pathwhich

is the path to draw the modules widgets in and _channel which is the MPH channel to

communicate with the corresponding component. The procedure does not return anything.

Specific functionality for the given module. In this case the LI-telephone module.

• proc offHook {}

This procedure sends a offHook message to its SEA component. The procedure does not

take any argument and does not return anything.

• proc onHook {}

This procedure sends a onHook message to its SEA component. The procedure does not

take any argument and does not return anything.

• proc dial {digit}

This procedure sends a selected digit to its SEA component. The parameter digit is the

digit to dial. The procedure does not return anything.

• proc setInfotext {text}

This procedure prints text in the textarea. The parameter text is the text to print. The pro-

cedure does not return anything.

Note in the module there can not be any “main” code, this code will never be executed.

5.2.5. Conclusions

46

Using Tcl/Tk is a simple way to solve this problem in a small scale application like this exam-

ple. In a far more complex structure like in the SEA it has to be well designed with hard speci-

fications on naming conventions and functionality that each standard function should perform.

If Tcl/Tk is to be used in a large scale application it would be a good idea to look at some class

abstraction package to extend Tcl.

5.3. Java

The Java implementation consists of the main application that handles the window control and

the code modules that implements the functionality for controlling the separate components in

the SEA core. The code for controlling the components is implemented as separate Java classes

(module classes). Both the main application and the module classes uses the already imple-

mented MPH library for Java to communicate with SEA. In this implementation the Java

Swing classes is used for the GUI. The main application is implemented as a Java applet.

5.3.1. Preconditions

In the Tcl and C versions of the MPH library there exists functionality to get the name of all

the currently loaded components in SEA, but not in the Java version. This functionality must

be added to the Java MPH library in order for this implementation to work in reality. To get

around this problem in this test implementation a few known component names are explicitly

declared in the code.

5.3.2. Solution for the Main Application

The main application consists of a menu bar (JMenuBar) and a tabbed pane (JTabbedPane).

The menu bar has one menu (JMenu), named “tools”. The tools menu contains the name of the

components that can be selected. Each pane in the tabbed pane contains a panel (JPanel) that is

used by the module classes, one panel for each module class.

To start the application two parameters are needed, the host and port for the running SEA. In

this test application those parameters is given in the html file that is used to start the applet.

When the Java application starts it creates a object of the MPHclient class, this object contains

the methods that is used to communicate with the SEA core. Now the application should get

the names of the loaded components in SEA and compare these to a configuration file in order

to know which components that have an associated module class and add these to the menu.

This is not possible, see the precondition for Java, so instead a few known component names

47

are added to the menu. Finally an instance of class Tabs that inherits from a JTabbedPane

is created and added to the main application window. Figure 16 shows the main application

with the cascading menu.

Figure 16: The Java without any module classes loaded.

When the user selects a component name from the menu a callback method is called with the

name of the component as a parameter. This name is the same as the class that is to be loaded,

for example, in SEA the LIC components are called LI-1, LI-2,.... so the module class to load

when the user has selected a LIC module is called LI.class. Then the given class is loaded into

the Java interpreter with the static method Class.forName() and instantiated with the

method newInstance() in the Class object returned by forName(). After the module

class has been instantiated it has to be initiated. The service provided by the main application

to the module classes are a MPH connection to the SEA component associated with the given

module class and a JPanel that is used by the module class for all its user interaction. To set

up a connection to a SEA component the main application calls the method connect in the

MPHclient object, this method returns an instance of the class MPHconnection. The

MPHconnection class contains methods used for sending messages to SEA. A JPanel is

created and added to a new tab in the JTabbedPane. The MPHconnection and the

JPanel are passed as arguments to the method init() in the module class.

5.3.3. Solution for the Module Classes

48

The module classes is where the functionality for controlling the different components are

implemented. In order for this classes to work with the main application and the MPH library

they must implement two interfaces, MPHclientListener and the CompInterface.

The MPHclientListener interface contains method declarations that is used to receive

messages from the SEA component. The CompInterface contains methods used by the

main application to initiate the Module Class.

When a component is selected in the main application an instance of the given module class is

created. After the creation of the Module Class object it is initiated by a call to the method

compInit with the MPHconnection and a JPanel as parameters.

In order for the Module Class to interact with the user of the Control Application it must use

the given JPanel. The placement of this panel is controlled by the main application. In this

implementation the JPanel is placed on a tab in the JTabbedPane in the main application

but could just as well be placed in its own toplevel window.

For the communication between the Module Class and its SEA component the MPHconnec-

tion object and the methods defined in the MPHclientListener interface is used. The

MPHconnection object contains the method send() that the Module class use to send

MPH messages to its SEA component. The MPHclientListener interface contains decla-

rations for callback methods used by SEA to send MPH messages back its client. Since the

Module Class must implement the MPHclientListener it must implement these methods.

5.3.4. Implementation

The implementation is divided into two implementation parts. First, the implementation for the

Main Application is described and secondly the implementation of one Module Class, the LIC

component, is described.

5.3.4.1.The Main Application

The main application consists of three classes, CbguiApplet, Tabs and ComponentList.

CbguiApplet is the main class, Tabs is used to create and handle the tabs in the tabbed pane and

ComponentList is the class that handles the representation of the available module classes. Fig-

ure 17 shows small design pattern for the Java implementation drawn in Booch notation.

49

Figure 17: Structure of the Main Application in Java.

public class CbguiApplet extends JApplet:

This is the applet class which is executed from the html file.

Class members:

• MPHclient mph

The MPHclient object contains the methods to communicate with SEA core. It gets instan-

tiated in the constructor.

• ComponentList compList = new ComponentList(this).

This object handles the menu.

• Tabs tabs = new Tabs(this).

This object handles the TabbedPane.

• public init()

This method is called when the applet is created, it gets the host and port parameters from

the html file and establish a new connection to SEA by creating an instance of MPHclient.

• public void addComponents()

This method is supposed to retrieve the loaded SEA components and the available module

classes and adding those to the component list, the menu, by calling the newEntry in the

ComponentList object. However, this can not be done due to the problem with the MPH

library described in the Java precondition. Instead a few known component names are

added to the menu.

ActionListener

ComponentList

JFrame

CbguiApplet

JTabbedPane

Tabs

50

• public void itemSelectCallback(String inst)

This is the callback method that is called when the user selects an item in the component

list. It loads and initiates the module class for the selected item. A new JPanel is created

and added to the TabbedPane by calling addComponent in the Tabs object. A new instance

of the module class is created by first loading it into the Java interpreter with Class.for-

Name and then instantiate it with the method newInstance in the Class object returned by

Class.forName. A MPH channel to the given SEA component is created with the method

connect in the MPHclient object, this method returns an instance of MPHconnection.

Finally the method init in the module class object is called with the newly created MPH-

connection and the JPanel as parameters.

• public void destroy()

This method is called when the applet is destroyed. Is closes the MPH connection by call-

ing the closeConnection method in the MPHclientListener class.

class Tabs extends JTabbedPane:

This class handles the TabbedPane and the JPanels that the Module Classes use as their draw-

ing areas.

Class members:

• public Tabs(JFrame parent)

Adds the Tabbed pane to the given JFrame.

• public JPanel addComponent(String inst)

Creates a new JPanel and adds a new tab to the tabbed pane. Then adds the JPanel to the

new tab and returns the JPanel.

Class ComponentList implements ActionListener:

This class handles the menu representation of the available module classes.

Class members:

• JMenuBar menuBar

The menu bar.

• JMenu menu

The “Tools” menu.

51

• CbguiApplet owner

The instance that created this object.

• public ComponentList(CbguiApplet cb)

Constructor, creates and adds the menu bar and the menu to the application.

• public void newEntry(String mod, String inst)

Adds a new item, “inst”, to the cascade menu “mod”. If “mod” does not exist it is created.

Since the class ComponentList implements ActionListener the item is assigned this as the

action listener.

• public void actionPerformed(ActionEvent e)

Method defined in the interface ActionListener. It gets called when the menu item is

selected. It calls the itemSelectCallback() method in the Cbgui class with the instance

name as a parameter.

5.3.4.2.The Module Class

Every module class must implement two interfaces, the MPHclientListener interface and

the CompInterface interface.

MPHclientListener

The MPHclientListener defines the callback methods used by SEA to send MPH messages to

the client.

Members:

• public void receiveMessage(byte[] data, int length)

It is this method that receives the messages to the Module Class. The message comes as a

byte array, it is up to the implementation of the Module Class to convert the message to

something that can be understood by the receiver.

• public void connectionClosed()

This method is called if the Main Application loses its connection with SEA, which means

that the Module Class MPH channel also gets closed.

• public void channelClosed()

This method is called if the MPH channel is closed.

• public void error(String errMsg)

This method is called if an error occurs in the MPH communication.

52

CompInterface

The CompInterface defines the methods used by the Main Application to initiate and embed

the GUI of the Module Class.

Members:

• public void init(MPHconnection mph, JPanel p)

This method is used to initiate the Module Class. The parameters is the MPHconnection

used to communicate with SEA. The JPanel which is the drawing area that this Module

Class must use for all user interactions.

• public String getIID()

Every component in SEA has an identifier id. This method must return the identifier for its

SEA component.

public class LI implements CompInterface, MPHclientListener, ActionListener

This class is a simple Module Class implementation that communicate with a LIC component

in SEA. It is dynamically loaded and instantiated by the CbguiApplet. The GUI consist of a

simple keypad and a text field. Figure 18 shows the main application with three LIC modules

loaded.

Figure 18: The Java application with three LI modules loaded.

53

Class members:

• MPHconnection mphConn

Contains methods for sending messages to the given LIC component.

• JTextArea text

The text area.

• public String compGetIID()

Method required by the CompInterface interface, it returns the identifier ID for the LIC

component.

• public void compInit(MPHconnection mph, JPanel p)

Method required by the CompInterface interface, this method is called right after the object

has been created. In this method the GUI is created and added to the given JPanel. The

parameters is the MPHconnection and the JPanel used by this class.

• public void receiveMessage(byte[] data, int length)

Callback method required by the MPHclientListener interface. This method is called when

a message from the given SEA component is received by the MPH.

• public void connectionClosed()

Method required by the MPHclientListener interface, it does not do anything.

• public void channelClosed()

Method required by the MPHclientListener interface, it does not do anything.

• public void error(String errMsg)

Method required by the MPHclientListener interface, it does not do anything.

• public void actionPerformed(ActionEvent e)

Method required by the ActionListener interface. Since the buttons on the keypad in the

GUI uses this as actionlistener this method define the action for the buttons.

5.3.5. Conclusion

Using Java would be a simple way to implement the Control Application. Java is object ori-

ented and the problem to solve is suited for object orientation. It is also simple to handle GUI

in Java. This makes Java suitable for the implementation of the Control Application. The prob-

lem is that the Java MPH library does not include the same functionality as the Tcl and C ver-

sions of it, se the Java preconditions.

54

5.4. KDE2 KParts

We intended to make an implementation using KParts, but there was a number of circum-

stances that made it rather complicated. One of the main problems was that KDE2 is still in

alpha release and there were great difficulties to build the KDE2 source code for the Sun

Solaris platform. After approximately two weeks of non successful compilation of the KDE2

source code for the Solaris platform, it was given up1. Instead we tried to build the KDE2

source code for the Linux platform on an Intel x86. This was eventually successful. Since

KDE2 is not officially released there exists absolutely no documentation for the different parts

and technologies supported by KDE2, like the KParts technology. To get the necessary infor-

mation the source code for the different parts has to be analyzed. Due to lack of time we have

not been able to make a complete KPart implementation, so this section only describes the idea

of the KPart technology and how it could be used to implement a SEA Control Application.

5.4.1. The KParts Technology

The Kparts technology supports solutions for both dynamic loading and graphical embedding

of new modules. KParts is a C++ library that consists of several classes to provide a framework

for development of both the main application, a shell in KParts, and the modules, parts in

KParts.

All the KParts classes are encapsulated in a namespace, KParts. In other words, when instanti-

ating a KParts class the syntax is KParts::ClassName().

A KParts part is a GUI component, featuring a widget embeddable in any shell application. If a

part does not support editing functionality, a “viewer”, it must inherit and implement the

KParts::ReadOnlyPart class. If the part is both viewable and editable, an “editor”, it

must inherit and implement the KParts::ReadWritePart class.

The shell is a KPart-aware main window, that is a window that can embed the GUI of a dynam-

ically loaded class. A shell application has to inherit the KParts::MainWindow class in

order to embed KParts parts.

1. The KDE2 is in alpha release and consists of hundreds of megabytes of source code. Compiling a sta-
ble version, which means no compilation errors, takes approximately one day for all parts.

55

In order for the shell to be able to load and instantiate a given part, the part has to be compiled

as a shared library. The shared library must contain a initialization function, a factory class and

the implementation of the part as a separate class.

The initialization function must follow a specified naming convention, for example the part

notepad’s library name must be libnotepad.la and the initialization function must be named

init_libnotepad(), as shown in figure 19.

Figure 19: KPart initialization function.

The initialization function is declared as extern C so that the compiler does not change the

function name, which it does for ordinary functions. This is needed due to the fact that the part

is never linked to the shell application. It is only known by name and therefore the name of the

initialization function must be standardized. The initialization function returns a static factory

object for the given part.

The factory class must inherit and implement the KLibFactory and overload the functions

create and instance. The KLibFactory implements the singleton pattern. The create

function creates the part of the given type and returns a reference to it. Now the shell has a

pointer to a instance of a part of any type.

The shell has GUI elements that the parts want to share and extend, like the menubar, toolbar

and statusbar. The layout of these elements are described in a XML file for the shell. The parts

also supports GUI elements that will be merged in the shell’s user interface. The layout of the

parts element interface in the GUI is also defined by an XML file for each part.

extern "C"
{
 void* init_libnotepad()
 {
 return new NotepadFactory;
 }
};

56

5.4.2. Implementation

Since the KParts technology supports both dynamic loading and graphical embedding of new

modules it is possible to create a SEA Control Application using this technology. In practice a

solution for this could be solved as illustrated in Booch notation in figure 20.

Figure 20: Structure of the Main Application using KParts.

The main application inherits and implements the KParts::MainWindow to be able to

embed KPart modules. The modules, which must be compiled to a shared library, has to inherit

and implement both the KParts::MainWindow class and the KParts::MainWindow

class. The Main application has to use the MPH C library function MPH_SearchByName(),

to get a list of all instances in the SEA Core. This list has to be analyzed to see if there exists a

corresponding library file to the component. If there exists a module it will be added to a list of

available modules, like the Tcl and Java solutions.

When a module is selected by the user to be shown, it has to be instantiated. For example let’s

say the user selects to show a LIC-telephone component. This is done in the following way.

First the name of the module determines the name of the library to be loaded. In this case it

would be libli.la. Then the init_libli() function is called and a factory for the LI class is

returned. The LI factory object is then used to obtain the instance of a LI object using the

create function in the LI factory. One of the arguments the create function takes is the name

of the parent widget, this is for the module to know where to draw its widgets. The create func-

tion returns a pointer to the newly created LI instance. At this point the Main Application is

extended with a LI module. When the LI module gets activated the li.rc file is executed. The

KParts::Main-
Window

A

KParts::ReadOnlyPart KParts::KLibFactory

MainApplica-
tion

Module ModuleFactory

Main Application Module

A A

57

li.rc file contains the XML code for the LI module extend to the Main Application. In this way

the Main Application updates the functionality for each activated module.

5.4.3. Conclusion

Even if we did not make an implementation of this technology, we still believe that when the

KDE2 comes in a final and stable release this technology is an interesting candidate for the

SEA Control Application. Hopefully the final release will contain a much more detailed docu-

mentation of the KParts.

58

59

6. Conclusion

All the analyzed technologies offers one or several ways to solve the problems of dynamic

extension of functionality and comprehensive window control in SEA. The problems can be

solved in a distributed and a non distributed way as described in chapter 3, general solution.

Using a non distributed solution is a lot simpler than using a distributed, at cost of flexibility.

We have chosen to focus on the non distributed solutions provided by Tcl/Tk, Java and KDE2/

KParts.

Using Tcl/Tk is a simple way to solve the problems of dynamic extension of functionality and

the problem of comprehensive window control. Since Tcl/Tk is a interpreted language it is

easy to extend its functionality at runtime. In a small scale application Tcl/Tk is easily man-

aged and structured but in a large and complex application the structure might get a bit confus-

ing.

Java is a widely known object oriented language that works with bytecode running on a virtual

machine making it possible to run the same bytecode on different platforms. It is also possible

to run the same code both as an applet and a standalone application. The Java swing classes

makes it easy to create GUIs. The disadvantage of Java is that it is slower than for example Tcl.

Both when running but especially at startup when the Java interpreter has to start.

KDE2/KParts technology offers a nice technical solution to solve the problems of dynamic

extension of functionality and comprehensive window control. This is an interesting solution

but will have to wait for the final KDE2 release to be a real candidate. The solution will most

likely be a bit larger and more complex than both the Tcl/Tk and Java solutions. An advantage

for KDE is that it is “pure” binary code and therefore is fast to execute. A disadvantage is that

KDE only exists for the Unix community.

Finally the technology and language that we recommend to use for the development of a Com-

ponent Based Graphical User Interface is:

• Java using dynamic class loading functionality

• Tcl/Tk using namespaces.

60

Tcl/Tk is chosen since it is a tool for fast development of graphical applications. It is well

suited to extend the functionality of already existing applications, that is using the source com-

mand. The drawback of Tcl is the namespace functionality. Using this in a large scale applica-

tion will probably be difficult and hard to organize. To solve this problem of abstraction we

propose that some class abstraction package to extend the Tcl is analyzed.

Java is chosen because it is a object oriented language and the problems to solve is suited for

object orientation. Using the dynamic class loading functionality in Java makes it easy to

extend the functionality of an already existing application, thus solving the problem of

dynamic extension of functionality in a object oriented way.

KDE/KParts is not selected because it will most likely be a bit larger and more complex than

both the Tcl/Tk and Java solutions. This higher level of complexity is not needed in this kind of

solution. This decision is not based in the fact that we did not manage to make an implementa-

tion using KParts.

61

7. References

This chapter includes all references used in this thesis. First all the references used in the text

then some books that are frequently used throughout the time of the thesis and last some gen-

eral World Wide Web links were a lot of information on the different subjects can be found.

7.1. Indexed References in the Thesis

[1] http://www.ericsson.se/pressroom/comp_newtw.shtml

[2] http://www.ericsson.se/infotech/company/

[3] http://bokhyllan.ks.ericsson.se/

[4] http://www.pconline.com/~erc/tcl.htm

[5] http://dev.scriptics.com/software/tcltk/license_terms.html

[6] http://java.sun.com/docs/books/tutorial/rmi/overview.html

[7] http://java.sun.com/nav/business/license-faq.html

[8] http://www.kde.org

[9] http://www.kde.org/whatiskde/openparts.html

[10] http://developer.kde.org/documentation/tutorials/components/index.html

[11] http://www.kde.org/documentation/faq/kdefaq-2.html#ss2.3

[12] http://www.trolltech.com

[13] http://www.gnome.org/

[14] http://developer.gnome.org/arch/

[15] http://developer.gnome.org/arch/component/gnorba.html

[16] http://developer.gnome.org/arch/component/bonobo.html

[17] http://www.gnome.org/gnomefaq/html/x131.html

7.2. General Book References

David Flanagan, Java in a nutshell, Second Edition, O’Reilly, 1997

John K. Osterhout, Tcl and the Tk Toolkit, Addisson Wesley, 1994

Grady Booch, Object-Oriented analysis and design, Second Edition, Addison Wesley, 1998

62

7.3. General URL References

CORBA Technoligies

www.omg.org General information about CORBA

Tcl/Tk

www.scriptics.com The homepage of Tcl/Tk

www.sco.com/Technology/tcl Miscellaneous information

www.tcltk.com Miscellaneous information

Java

java.sun.com The Source for Java Technology

KDE

www.kde.org General information about KDE

developer.kde.org KDE Developers’ Web Site

www.mico.org Mico, the CORBA implementation used by KDE

www.trolltech.com Qt homepage

Gnome

www.gnome.org The GNOME Project

developer.gnome.org GNOME Developers’ Web Site

orbitcpp.sourceforge.net ORBit, the CORBA implementation used by GNOME

Licences

www.gnu.org/copyleft/gpl.html GNU General Public License, GPL

www.gnu.org/copyleft/lgpl.html GNU Lesser General Public License, L-GPL

(formerly known as the GNU Library GPL)

www.opensource.org/osd.html Open Source Licence

63

Appendix A: Abbreviations

List of abbreviations used in the thesis.

API Application Programmers Interface

CORBA Common Object Request Broker Architecture

EIN Ericsson Infotech AB.

GNU GNU is Not Unix

GPL GNU General Public License

GUI Graphical User Interface

L-GPL GNU Lesser General Public License

LIC Line Interface Circuit

MPH Message Protocol Handler.

Multiplexed TCP/IP socket connection protocol.

ORB Object Request Broker (Often a specific implementation of the CORBA

technology, “an ORB”)

SEA Simulated Environment Architecture.

EIN/TSP’s simulator environment to simulate an AXE switch.

SS7 Signaling System no.7

TSP Department of Test and Simulated Platform.

QPL Q Public License

XML Extended Markup Language

64

65

Appendix B: Description of the thesis

This appendix shows the official description of the thesis, stated by Ericsson Infotech AB.

C-DEGREE THESIS

COMPONENT BASED GRAPHICAL USER INTERFACE

Students

Johan Torbjörnsson and Peter Svensson at Karlstads Universitet.

Goal

The goal of the thesis work is to propose a suitable technology for designing component based

user interfaces.

Background

Today Ericsson Infotech (EIN) has a simulation product that is built using components. The

components are combined at run-time to create a simulation of the system the user needs. The

system is divided in a simulation part and a control part. The component system used only cov-

ers the simulation parts not the graphical user interface (GUI) used to control the system. This

leads to problems with trying to keep the GUI updated with all the different simulation compo-

nents designed by EIN and third party providers. To solve this problem EIN would like to have

a GUI system that is extensible a run-time so that a component can consist of a simulation part

and an optional GUI part that adds functionality to the GUI.

Execution

Evaluate the existing technologies that can be used to build a GUI that is run-time extensible

using some form of component structure. Describe the pros and cons of the different solutions.

Propose one or two technologies that are suitable for EINs needs. Build simple prototypes

using the selected technologies.

66

Time estimate

The time for the thesis work is 20 weeks at 50%.

Result

Report describing the available solutions. Prototypes demonstrating the capabilities of the two

most promising solutions. A presentation of the work at EIN.

Contacts at EIN

Magnus Einarsson 054 19 35 20

Magnus.Einarsson@ein.ericsson.se

67

Appendix C: Tcl/Tk Syntax

This appendix gives a brief introduction in Tcl/Tk and its syntax. For more information please

use the links for Tcl/Tk in the reference chapter 7. For Tcl syntax information se http://

www.sun.com/960710/cover/tcl-syntax.html#syntax.

The first part of Tcl/Tk is the Tcl interpreter which is a library of C procedures that implements

the Tcl commands and the grammar for the Tcl language. This means that Tcl has no fixed

grammar that explains the entire language. Instead, Tcl is defined by the interpreter that parses

single Tcl commands and the procedures that executes the commands. The interpreter and its

substitution rules are fixed, but new commands can easily be added and existing ones can be

modified and replaced. In Tcl assignments, procedure calls and features that control the pro-

gram flow such as if and while are all implemented as commands, that is, they are not under-

stood directly by the Tcl interpreter.

The other part of Tcl/Tk is Tk. Tk is a graphical user interface toolkit that makes it possible to

create GUIs quickly. Tk extends the built-in Tcl commands with commands for creating and

controlling graphical user interface elements called widgets. A widget can be a button, text

window, scrollbar etc. Widgets are arranged hierarchically on screen with one toplevel window

as ‘root’. The syntax for accessing the different widgets in the hierarchy use dots (.). Tk ships

with all distributions of Tcl.

A Tcl script file can be executed just like a shell script via the tclsh (Tcl shell) or wish

(windowing shell). The tclsh does not support the Tk extension.

As mentioned earlier the Tcl interpreter is implemented as a library of C procedures and it is

easy to extend the Tcl and Tk functionality by writing new C procedures and incorporate these

in the Tcl interpreter as new commands. Due to this fact there is a lot of packages of extended

functionality available to Tcl/Tk. Two of those extensions are Tcl-Dp and BWidget. Tcl-Dp

contains functionality for distributed programming and BWidget is an extension of Tk with a

number of new widgets.

68

Basic syntax

Tcl scripts are made up of commands separated by new lines or semicolons. Commands all

have the same basic form illustrated by the following example:

expr 20 + 10

This command computes the sum of 20 and 10 and returns the result, 30. Each Tcl command

consists of one or more words separated by spaces. In this example there are four words: expr,

20, +, and 10. The first word is the name of a command and the other words are arguments to

that command. All Tcl commands consist of words, but different commands treat their argu-

ments differently. The expr command treats all of its arguments together as an arithmetic

expression, computes the result of that expression, and returns the result as a string. In the expr

command the division into words isn’t significant: you could just as easily have invoked the

same command as

cmd arg arg arg
A Tcl command is formed by words separated by white space. The first word is the name of the

command, and the remaining words are arguments to the command.

$foo
The dollar sign ($) substitutes the value of a variable. In this example, the variable name is foo.

[clock seconds]
Square brackets execute a nested command. For example, if you want to pass the result of one

command as the argument to another, you use this syntax. In this example, the nested com-

mand is clock seconds, which gives the current time in seconds.

"some stuff"
Double quotation marks group words as a single argument to a command. Dollar signs and

square brackets are interpreted inside double quotation marks.

{some stuff}
Curly brackets also group words into a single argument. In this case, however, elements within

the brackets are not interpreted.

69

Appendix D: Tcl/Tk Application

This is the Tcl/Tk implementation of the application. First the main application which is imple-

mented in one single file, cbgui.tcl, then the module which also is implemented in one single

file li_gui.tcl.

cbgui.tcl

#==
Name : cbgui.tcl
#
Component :
#
------------------C o p y r i g h t------------------------
#
Copyright (C) Telefonaktiebolaget LM Ericsson 2000.
The copyright to the computer program herein is the
property of Telefonaktiebolaget LM Ericsson Sweden.
The program may be used and/or copied only with the
written permission from Telefonaktiebolaget LM
Ericsson or in accordance with the terms and conditions
stipulated in the agreement/contract under which the
program has been supplied.
#
----------------------C r e a t e d------------------------
#
Created: March 2, 2000
Creator: Peter Svensson
#
------------------D o c u m e n t a t i o n----------------
<add> files
<name>cbgui.tcl
ADD FILE DESCRIPTION HERE!!!
<end>
#
#==
#

###
#
IMPORTS
#
###

package require BWidget 1.2
package require MPH 2.0

###
#
GLOBAL VARIABLES
#
###

variable menuPath

###
#
MPH PROCEDURES
#
###

#--
Procedure : SendMessage
Abstract : This procedure is used by the GUI instances to
: send text messages to ’its’ SEA entity.
Parameters: channel, the channel given to the instance
: message, the text message.
Returns : ---
#--
proc SendMessage {channel message} {
 global conId

 MPH::SendMessage $conId $channel $message
}

#--
Procedure : SendBinaryMessage
Abstract : This procedure is used by the GUI instance to

70

: send binary messages to ’its’ SEA entity.
Parameters: channel, the channel given to the instance
: message, the binary message.
Returns : ---
#--
proc SendBinaryMessage {channel length message} {
 global conId

 MPH::SendBinaryMessage $conId $channel $length $message
}

#--
Procedure : concloseproc
Abstract : This is a callback procedure required by MPH,
: it is called if the MPH connection is closed
Parameters: ---
Returns : ---
#--
proc concloseproc {} {
 puts "MPH connection closed"
}

###
#
GUI PROCEDURES
#
###

#--
Procedure : draw
Abstract : This procedure creates and places the widgets,
: menubar and notebook, on the main window.
Parameters: ---
Returns : ---
#--
proc draw {} {
 global menuPath

 frame .mbar -relief raised -bd 2
 pack .mbar -side top -fill x

 set menuPath .mbar.mbAdded.menu
 menubutton .mbar.mbAdded -text Tools -menu $menuPath
 menu $menuPath -tearoff 0
 pack .mbar.mbAdded -side left

 NoteBook .nb
 pack .nb -side left -expand 1 -fill both
}

#--
Procedure : addToMenu
Abstract : Adds a new command to the given cascade menu
: in the menu pointed out by the global variable
: menuPath. If the cascade dont exist it is created
Parameters: cascade, name of the cascade menu
: name, name of the new command
: command, code to be executed when the command is
selected from the menu
Returns : ---
#--
proc addToMenu {cascade name command} {
 global menuPath

 if {![catch { menu ${menuPath}.cascade_$cascade -tearoff 0 } result]} {
 # If cascade ’mod’ does not exist we create it.
 $menuPath add cascade -label $cascade -menu ${menuPath}.cascade_$cascade
 }

 ${menuPath}.cascade_$cascade add command -label $name -command $command
}

#--
Procedure : killTab
Abstract : Deletes a tab from the notebook
Parameters: ---
Returns : ---
#--
proc killTab {inst} {
 .nb delete $inst
}

#--
Procedure : tearOff
Abstract : This procedure makes a new toplevel window,
: deletes the specified instance and adds it to
: the new toplevel window

71

Parameters: inst, name of the instance, tab, to tear off
: channel, the MPH channel given to the module
: mod, type of instance
Returns : --
#--
proc tearOff {inst channel mod} {
 toplevel .tearoff$inst
 killTab $inst
 set tearOffClient [initTearOffPage .tearoff$inst $inst $channel $mod]
 ${inst}::init $tearOffClient $channel
}

#--
Procedure : tearOn
Abstract : This procedure destroys a given toplevel window
: and creates a new tab in the notebook and initiates
: the module there.
Parameters: inst, the name of the instance
: channel, the channel given to the GUI instance
: mod, the type of instance.
Returns : ---
#--
proc tearOn {inst channel mod} {
 destroy .tearoff$inst
 set clientPath [createTab $mod $inst $channel]
 .nb raise $inst
 ${inst}::init $clientPath $channel
}

#--
Procedure : initTearOffPage
Abstract : This procedure initiates the new toplevel window
: and creates a frame for the module to draw its widgets in.
Parameters: page,
: inst, the name of the instance
: channel, the channel given to the GUI instance
: mod, the type of instance.
Returns : The path to the drawing area for the module
#--
proc initTearOffPage {page inst channel mod} {
 frame $page.info
 frame $page.client -relief sunken -bd 2
 pack $page.info -side top -fill x
 pack $page.client -side top -expand 1 -fill both

 label $page.info.label -text "Inst: $inst"
 button $page.info.tearOff -text TearOn -command "tearOn $inst $channel $mod"
 pack $page.info.label -side left
 pack $page.info.tearOff -side right

 return $page.client
}

#--
Procedure : initPage
Abstract : This procedure is called immediately after a new
: tab has been created. It creates widgets for some
: standard functionality and the frame that is by
: sent to the GUI instance.
Parameters: mod, the type of instance.
: page, the tab page to add the frame to
: inst, the name of the instance
: channel, the channel given to the GUI instance
Returns : The frame that the GUI instance will use
#--
proc initPage {mod page inst channel} {
 frame $page.info
 frame $page.client -relief sunken -bd 2
 pack $page.info -side top -fill x
 pack $page.client -side top -expand 1 -fill both

 label $page.info.label -text "Inst: $inst"
 button $page.info.tearOff -text TearOff -command "tearOff $inst $channel $mod"
 button $page.info.remove -text Remove -command "destroyEntry $mod $inst $channel"
 pack $page.info.label -side left
 pack $page.info.tearOff $page.info.remove -side right
 return $page.client
}

#--
Procedure : createTab
Abstract : This procedure is called immediately after a
: has been selected from the menu. It creates a
: new tab and call initPage to initiate it
Parameters: mod, the type of instance.
: inst, the name of the instance
: channel, the channel given to the GUI instance

72

Returns : The frame that the GUI instance will use
#--
proc createTab {mod inst channel} {
 global menuPath

 $menuPath.cascade_$mod entryconfigure $inst -state disabled

 set page [.nb insert end $inst -text "${inst}"]
 set clientPath [initPage $mod $page $inst $channel]
 .nb raise $inst
 return $clientPath
}

###
#
PROCEDURES
#
###

#--
Procedure : newEntry
Abstract : Called if the user selects a entity from the menu
: It loads the source code for the given instance
Parameters: mod, the type of instance.
: inst, the name of the instance
: tclappsource, file containing the new source code
: to load
Returns : ---
#--
proc newEntry {mod inst tclappsource} {
 global conId

 namespace eval $inst {}

 proc ${inst}::loadtclappsource {inst} {
 source $inst
 }

 ${inst}::loadtclappsource $tclappsource
 set iid [${inst}::getIID]
 set channel [MPH::OpenChannel $conId $iid $inst \
 ${inst}::messagecallback ${inst}::closecallback]
 set userpath [createTab $mod $inst $channel]
 ${inst}::init $userpath $channel
}

#--
Procedure : destroyEntry
Abstract : Removes a GUI instance by disconnecting its MPH
: channel, enable it in the menu and remove its tab
Parameters: mod, the type of instance.
: inst, the name of the instance
: channel, the channel given to the GUI instance
Returns : ---
#--
proc destroyEntry {mod inst channel} {
 global conId menuPath

 namespace delete $inst

 MPH::CloseChannel $conId $channel
 $menuPath.cascade_$mod entryconfigure $inst -state normal
 killTab $inst
}

#--
Procedure : addEntities
Abstract : Checks available entities in SEA against the
: config file ’cbgui.cfg’ and adds those entities
: that have a GUI to the menu
Parameters: ---
Returns : ---
#--
proc addEntities {} {
 global conId

 set entities [MPH::SearchByName $conId ".*"]

 set file [open cbgui.cfg r]
 set supported [list]
 while { [gets $file line] >= 0} {
 regexp {(^[^:]+): *(.*)} $line junk mod tclfile
 foreach i $entities {
 if {[regexp ${mod}\[0-9\]$ $i match] == 1} {
 addToMenu $mod $match "newEntry $mod $match $tclfile"
 }
 }

73

 }
 close $file

 puts [lsort -increasing $supported]
}

###
#
MAIN
#
###
wm geometry . 640x480

set conId closed

set seaHost [lindex $argv 0]
set seaPort [lindex $argv 1]

set conId [MPH::OpenConnection $seaHost $seaPort concloseproc]
puts "Using MPH connection on socket: $conId"

draw
addEntities

tkwait window .

if {$conId != "closed"} {
 MPH::CloseConnection $conId
}

li_gui.tcl

#==
Name : li_gui.tcl
#
Component :
#
------------------C o p y r i g h t------------------------
#
Copyright (C) Telefonaktiebolaget LM Ericsson 2000.
The copyright to the computer program herein is the
property of Telefonaktiebolaget LM Ericsson Sweden.
The program may be used and/or copied only with the
written permission from Telefonaktiebolaget LM
Ericsson or in accordance with the terms and conditions
stipulated in the agreement/contract under which the
program has been supplied.
#
----------------------C r e a t e d------------------------
#
Created: March 3, 2000
Creator: Peter Svensson
#
------------------D o c u m e n t a t i o n----------------
<add> files
<name>li_gui.tcl
ADD FILE DESCRIPTION HERE!!!
<end>
#
#==
#

###
#
IMPORTS
#
###

###
#
GLOBAL VARIABLES
#
###

###
#
NAMESPACES
#

74

###

###
#
PROCEDURES CALLED FROM THE MAIN CONTROL APPLICATION
#
###

#--
Procedure : getIID
Abstract : Returns the IID number of the module
Parameters: None
Returns : Returns the IID of the module
#--
proc getIID {} {
 return 75bfa730-2e15-11d3-81b3-08002093ddf7
}

#--
Procedure : messagecallback
Abstract : This procedure is called when a message has
: been received
Parameters: length
: message
Returns : -
#--
proc messagecallback {length message} {
 set l [expr $length - 1]
 set l [expr $l * 8]
 binary scan $message "H2H*" cmd arg
 setInfotext "callBack: $cmd $arg"
}

#--
Procedure : closecallback
Abstract : This procedure is called if the channel is
: closed remotely by the SEA component.
Parameters: -
Returns : -
#--
proc closecallback {} {

}

#--
Procedure : init
Abstract : This procedure is called when the module is
: instantiated.
Parameters: _path, The modules virtual root to draw its
: widgets in.
: _channel, the MPH channel id, connected to the
:
Returns : -
#--
proc init {_path _channel} {
 variable [namespace current]::channel
 variable [namespace current]::path

 set channel $_channel
 set path $_path

 frame ${path}.numbers -relief sunken -bd 2

 button ${path}.numbers.offhock -text "Off Hock" -command [namespace current]::offHook
 button ${path}.numbers.onhock -text "On Hock" -command [namespace current]::onHook
 pack ${path}.numbers.offhock ${path}.numbers.onhock -padx 3 -pady 3 -fill x

 frame ${path}.numbers.one
 foreach i {1 2 3} {
 button ${path}.numbers.one.$i -text $i -command "[namespace current]::dial $i"
 }
 pack ${path}.numbers.one.1 ${path}.numbers.one.2 ${path}.numbers.one.3 -side left

 frame ${path}.numbers.two
 foreach i {4 5 6} {
 button ${path}.numbers.two.$i -text $i -command "[namespace current]::dial $i"
 }
 pack ${path}.numbers.two.4 ${path}.numbers.two.5 ${path}.numbers.two.6 -side left

 frame ${path}.numbers.three
 foreach i {7 8 9} {
 button ${path}.numbers.three.$i -text $i -command "[namespace current]::dial $i"

75

 }
 pack ${path}.numbers.three.7 ${path}.numbers.three.8 ${path}.numbers.three.9 -side left

 button ${path}.numbers.zero -text "0" -command "[namespace current]::dial 0"
 pack ${path}.numbers.one ${path}.numbers.two ${path}.numbers.three ${path}.numbers.zero

 frame ${path}.info
text ${path}.info.info -relief sunken -bd 2 -yscrollcommand "${path}.info.scroll set" -height 15 -width 16

-state disabled
 scrollbar ${path}.info.scroll -command "${path}.info.info yview"
 pack ${path}.info.scroll -side right -fill y
 pack ${path}.info.info -fill both -expand yes

 pack ${path}.numbers -padx 3 -pady 3 -side left
 pack ${path}.info -padx 3 -pady 3 -side left -fill both -expand yes
}

###
#
COMPONENT SPECIFIC PROCEDURES
#
###
variable channel
variable path

#--
Procedure : offHook
Abstract : Sends a offHook message to its SEA component.
Parameters: -
Returns : -
#--
proc offHook {} {
 variable [namespace current]::channel

 set OFF_HOOK [binary format "H2" 00]
 SendBinaryMessage $channel 1 $OFF_HOOK
 setInfotext "Phone off the hook"
}

#--
Procedure : onHook
Abstract : Sends a onHook message to its SEA component.
Parameters: -
Returns : -
#--
proc onHook {} {
 variable [namespace current]::channel

 set ON_HOOK [binary format "H2" 01]
 SendBinaryMessage $channel 1 $ON_HOOK
 setInfotext "Phone on the hook"
}

#--
Procedure : dial
Abstract : Sends a selected digit to its SEA component.
Parameters: digit, digit to send.
Returns : -
#--
proc dial {digit} {
 variable [namespace current]::channel

 switch $digit {
 0 {set bin [binary format "H4" 0300]}
 1 {set bin [binary format "H4" 0301]}
 2 {set bin [binary format "H4" 0302]}
 3 {set bin [binary format "H4" 0303]}
 4 {set bin [binary format "H4" 0304]}
 5 {set bin [binary format "H4" 0305]}
 6 {set bin [binary format "H4" 0306]}
 7 {set bin [binary format "H4" 0307]}
 8 {set bin [binary format "H4" 0308]}
 9 {set bin [binary format "H4" 0309]}
 }

 SendBinaryMessage $channel 2 $bin
 [namespace current]::setInfotext "Dial $digit"
}

#--
Procedure : setInfotext
Abstract : Prints text in the textarea
Parameters: text, text to print.
Returns : -
#--

76

proc setInfotext {text} {
 variable [namespace current]::path

 ${path}.info.info configure -state normal
 ${path}.info.info insert end "${text}\n"
 ${path}.info.info see end
 ${path}.info.info configure -state disabled
}

77

Appendix E: Java Application

This is the Java applet implementation of the application. First the main application which is

implemented as three classes, CbguiApplet, ComponentList and Tabs, then the module which

is implemented in one single class, LI.

The main Java application.

Class CbguiApplet

//## begin module.cm preserve=no
// %X% %Q% %Z% %W%
//## end module.cm

/* IMPORTS */
import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
import java.applet.Applet;
import MPHclient.*;
/* INTERFACE DEFINITIONS */

/**
* Class : CbguiApplet
* Extends : JApplet
* Implements : ---
* Abstract : The main Cbgui Applet is implemented as an applet.
**/
public class CbguiApplet extends JApplet {
 ComponentList compList = new ComponentList(this);
 Tabs tabs = new Tabs(this);
 MPHclient mph;

 /**
 * Method : addComponents
 * Abstract : This method is meant to get the names of the loaded
 * components in the SEA core and check if these
 * components have an associated module class. If they
 * have a module class they are added to the component
 * list. But since the Java MPH library does not have
 * any functionality that makes it possible to get
 * the loaded components from SEA this method just
 * adds a few known component names to the list.
 * Parameters: ---
 * Returns : ---
 **/
 public void addComponents() {
 compList.newEntry("LI", "LI-0");
 compList.newEntry("LI", "LI-1");
 compList.newEntry("LI", "LI-2");
 compList.newEntry("LI", "LI-3");
 compList.newEntry("LI", "LI-4");
 compList.newEntry("LI", "LI-5");
 compList.newEntry("LI", "LI-6");
 compList.newEntry("LI", "LI-7");
 compList.newEntry("AT", "AT-0");
 compList.newEntry("AT", "AT-1");
 compList.newEntry("AT", "AT-2");
 compList.newEntry("AT", "AT-3");
 compList.newEntry("AT", "AT-4");
 compList.newEntry("AT", "AT-5");
 compList.newEntry("AT", "AT-6");
 compList.newEntry("AT", "AT-7");
 }

 /**
 * Method : init
 * Abstract : This method is called when the applet is created.
 * It gets the host and port for the running SEA and
 * sets up the MPH connection to it.
 * Parameters: ---
 * Returns : ---
 **/
 public void init() {
 String host = getParameter("host");

78

 int port = (Integer.decode(getParameter("port"))).intValue();

 System.out.println("Host: " + host);
 System.out.println("Port: " + port);

 try{
 mph = new MPHclient(host, port);
 }
 catch(MPHException e){
 System.out.println("Failed to establish connection to "
 + host + ":" + port);
 System.out.println("Error: " + e.getMessage());
 return;
 }

 System.out.println("MPH client created to Host: "
 + host + "on Port: " + port);
 addComponents();
 }

 /**
 * Method : itemSelectCallback
 * Abstract : This is a callback method that get called by the
 * componentList object when a component has been
 * selected from the component list. This method
 * loads and instantiates a new object of type ’mod’,
 * sets up a new MPHconnection to component ’inst’,
 * calls the addComponent in class tabs to get a new
 * JPanel in a new tab in the JTabbedPane and finally
 * calls the method init in the newly created object
 * with the MPHconnection and the JPanel as parameters.
 * Parameters: String mod, name of the class to load.
 * String inst, name of the SEA component to connect to.
 * Returns : ---
 **/
 public void itemSelectCallback(String mod, String inst) {
 CompInterface module;
 MPHconnection mphConn;

 try {
 java.lang.Class t = Class.forName(mod);
 module = (CompInterface)t.newInstance();
 }
 catch (Throwable e) {
 System.out.println("Could not load or instanciate " + mod + ".class");
 System.out.println("Error: " + e.getMessage());
 return;
 }
 System.out.println("Loaded " + mod + ".class");

 String iid = module.compGetIID();
 try{
 mphConn = mph.connect(inst, iid, (MPHclientListener)module);
 }
 catch(MPHException e){
 System.out.println("Failed to connect to " + inst);
 System.out.println("Error: " + e.getMessage());
 return;
 }

 JPanel panel = tabs.addComponent(inst);
 module.compInit(mphConn, panel);
 }

 /**
 * Method : destroy
 * Abstract : This method is called when the applet is destroyed.
 * It close the MPHconnection.
 * Parameters: ---
 * Returns : ---
 **/
 public void destroy() {
 try{
 mph.closeConnection();
 }
 catch(MPHException e){
 System.out.println("Failed to close connection");
 System.out.println("Error: " + e.getMessage());
 }
 System.out.println("MPH socket closed");
 }
}

79

Class ComponentList

/* IMPORTS */
import javax.swing.*;
import java.awt.*;
import java.awt.event.*;

/**
* Class : ComponentList
* Extends : ---
* Implements : ActionListener
* Abstract : This class handles the representation of the
* names of the loaded components in the SEA
* core. The list of loaded components is implemented
* as a menu.
**/
public class ComponentList implements ActionListener {
 JMenuBar menuBar;
 JMenu menu;
 CbguiApplet owner;

 /**
 * Method : ComponentList (Constructor)
 * Abstract : Creates the menubar and adds a menu to it. The
 * menubar is then added to the main applet window.
 * Parameters: CbguiApplet cb, the object that instantiate
 * the class
 * Returns : ---
 **/
 public ComponentList(CbguiApplet cb){
 owner = cb;
 menuBar = new JMenuBar();
 owner.setJMenuBar(menuBar);

 menu = new JMenu("Tools");
 menu.setMnemonic(KeyEvent.VK_C);
 menu.getAccessibleContext().setAccessibleDescription("The only menu");
 menuBar.add(menu);
 }

 /**
 * Method : newEntry
 * Abstract : Adds new entries to the menu. The new entry ’inst’
 * is placed in the cascade menu ’mod’. If cascade mod
 * does not exist it is created. Since this class implements
 * actionlistener the action for every new entry is set to
 * this.
 * Parameters: String mod, name of the cascade menu.
 * String inst, name of the new entry.
 * Returns : ---
 **/
 public void newEntry(String mod, String inst) {
 JMenu subMenu = null;
 JMenuItem menuItem;
 int count;

 count = menu.getItemCount();

 for(int i=0; i < count; i++){
 if(menu.getItem(i).getText().equals(mod)){
 subMenu = (JMenu)menu.getItem(i);
 }
 }
 if(subMenu == null) {
 subMenu = new JMenu(mod);
 menu.add(subMenu);
 }

 menuItem = new JMenuItem(inst);
 menuItem.addActionListener(this);

 subMenu.add(menuItem);
 }

 /**
 * Method : actionPerformed
 * Abstract : Declared in the ActionListener interface. Define
 * the action for the menu entries. The action performed
 * is calling the owner class callback method
 * itemSelectCallback with the type and name of the
 * selected menu entry.
 * Parameters: ActionEvent e.
 * Returns : ---
 **/
 public void actionPerformed(ActionEvent e) {

80

 JMenuItem source = (JMenuItem)(e.getSource());

 owner.itemSelectCallback(source.getText().substring(0,2), source.getText());
 source.setEnabled(false);
 }
}

Class Tabs

/* IMPORTS */
import javax.swing.*;
import java.awt.*;
import java.awt.event.*;

/* INTERFACE DEFINITIONS */

/**
* Class : Tabs
* Extends : JTabbedPane
* Implements : ---
* Abstract : This class handles the module classes drawing
* areas. The drawing areas are JPanels placed in
* a JTabbedPane
**/
public class Tabs extends JTabbedPane {

 /**
 * Method : Tab (Constructor)
 * Abstract : Adds the JTabbedPane to the main class window
 * Parameters: JApplet parent, the object that instantiate
 * the class
 * Returns : ---
 **/
 public Tabs(JApplet parent){
 parent.getContentPane().add(this);
 }

 /**
 * Method : addComponent
 * Abstract : Creates a new JPanel, adds this to a new tab
 * in the JTabbedPane named ’inst’ and returns
 * the JPanel.
 * Parameters: String inst, the name for the new tab
 * Returns : The created JPanel
 **/
 public JPanel addComponent(String inst) {
 JPanel panel = new JPanel();

 addTab(inst, panel);

 return panel;
 }
}

Class LI

/* IMPORTS */
import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
import MPHclient.*;
/* INTERFACE DEFINITIONS */

/**
* Class : LI
* Extends : ---
* Implements : CompInterface, MPHclientListener, ActionListener
* Abstract : This class is to be used as a dynamically loaded
* class by the CbguiApplet. It is a simple test
* implementation to communicate with a LIC component
* in SEA. The GUI consist of a simple keypad and a
* textfield
**/
public class LI
 implements CompInterface, MPHclientListener, ActionListener {
 MPHconnection mphConn;
 JTextArea text;

 /**
 * Method : compGetIID

81

 * Abstract : Declared in the CompInterface interface. It
 * returns the identifier ID for the LIC component.
 * Parameters: ---
 * Returns : The IID for the LIC component
 **/
 public String compGetIID() {
 return "75bfa730-2e15-11d3-81b3-08002093ddf7";
 }

 /**
 * Method : compInit
 * Abstract : Declared in the CompInterface interface. This method
 * is called after an instance of this class has been
 * created, It is used for setting up the GUI used to
 * control the LIC component.
 * Parameters: MPHconnection mph, an instance of the MPHconnection
 * used to communicate with the LIC.
 * : JPanel p, this is the JPanel that this class must
 * use for all user interaction
 * Returns : ---
 **/
 public void compInit(MPHconnection mph, JPanel p){
 JButton jb;

 mphConn = mph;

 JPanel numPad = new JPanel();
 numPad.setLayout(new GridLayout(4, 3));
 numPad.add(jb = new JButton("1")); jb.addActionListener(this);
 numPad.add(jb = new JButton("2")); jb.addActionListener(this);
 numPad.add(jb = new JButton("3")); jb.addActionListener(this);
 numPad.add(jb = new JButton("4")); jb.addActionListener(this);
 numPad.add(jb = new JButton("5")); jb.addActionListener(this);
 numPad.add(jb = new JButton("6")); jb.addActionListener(this);
 numPad.add(jb = new JButton("7")); jb.addActionListener(this);
 numPad.add(jb = new JButton("8")); jb.addActionListener(this);
 numPad.add(jb = new JButton("9")); jb.addActionListener(this);
 numPad.add(jb = new JButton("Off"));jb.addActionListener(this);
 numPad.add(jb = new JButton("0")); jb.addActionListener(this);
 numPad.add(jb = new JButton("On")); jb.addActionListener(this);

 text = new JTextArea();
 text.setEditable(false);

 JScrollPane editorScrollPane = new JScrollPane(text);
 editorScrollPane.setVerticalScrollBarPolicy(
 JScrollPane.VERTICAL_SCROLLBAR_ALWAYS);
 editorScrollPane.setPreferredSize(new Dimension(250, 145));

 p.add(numPad);
 p.add(editorScrollPane);
 }

 /**
 * Method : receiveMessage
 * Abstract : Declared in the MPHclientListener interface. This
 * is a callback method used by the MPH to pass messages
 * to this instance. The message comes as a byte array
 * that is checked and printed in the textfileld.
 * Parameters: byte[] data, the message.
 * : int length, number of bytes in the message
 * Returns : ---
 **/
 public void receiveMessage(byte[] data, int length){
 String inData;

 switch((int)data[0]) {
 case 0: inData = "RING SIGNAL\n"; break;
 case 1: inData = "STOP RING SIGNAL\n"; break;
 case 2: inData = "TONE\n"; break;
 case 3: inData = "STOP TONE\n"; break;
 case 4: inData = "CONNECT INFO\n"; break;
 case 5: inData = "IDLE PHONE\n"; break;
 case 6: inData = "SPEECH DATA LIC\n"; break;
 case 7: inData = "VIRTUAL SECOND\n"; break;
 case 8: inData = "SPEECH AS TEXT\n"; break;
 case 9: inData = "FSK MESSAGE\n"; break;
 default: inData = "Unkown message: "
 + Integer.toString((int)data[0]) +"\n";
 }

 text.append(inData);
 }

 /**
 * Method : connectionClosed
 * Abstract : Declared in the MPHclientListener interface.

82

 * Callback method that is called if the MPH connection
 * is closed.
 * Parameters: ---
 * Returns : ---
 **/
 public void connectionClosed(){
 }

 /**
 * Method : channelClosed
 * Abstract : Declared in the MPHclientListener interface.
 * Callback method that is called if the MPH channel
 * is closed.
 * Parameters: ---
 * Returns : ---
 **/
 public void channelClosed(){
 }

 /**
 * Method : error
 * Abstract : Declared in the MPHclientListener interface.
 * Callback method that is called if there is an
 * error in the communication with MPH.
 * Parameters: String errMsg, error message.
 * Returns : ---
 **/
 public void error(String errMsg){
 }

 /**
 * Method : actionPerformed
 * Abstract : Declared in the ActionListener interface. Define
 * the action for the buttons in the keypad.
 * Parameters: ActionEvent e.
 * Returns : ---
 **/
 public void actionPerformed(ActionEvent e) {
 JButton source = (JButton)(e.getSource());
 String button = source.getText();
 byte action[] = new byte[3];
 int length = 0;
 String info;

 if(button.equals("Off")){
 action[0] = 0;
 length = 1;
 info = "Phone is off hook\n";
 } else if(button.equals("On")){
 action[0] = 1;
 length = 1;
 info = "Phone is on hook\n";
 } else switch((Integer.valueOf(button)).intValue()){
 case 0: action[0] = 3; action[1] = 0; length = 2; info = "Dial 0\n"; break;
 case 1: action[0] = 3; action[1] = 1; length = 2; info = "Dial 1\n"; break;
 case 2: action[0] = 3; action[1] = 2; length = 2; info = "Dial 2\n"; break;
 case 3: action[0] = 3; action[1] = 3; length = 2; info = "Dial 3\n"; break;
 case 4: action[0] = 3; action[1] = 4; length = 2; info = "Dial 4\n"; break;
 case 5: action[0] = 3; action[1] = 5; length = 2; info = "Dial 5\n"; break;
 case 6: action[0] = 3; action[1] = 6; length = 2; info = "Dial 6\n"; break;
 case 7: action[0] = 3; action[1] = 7; length = 2; info = "Dial 7\n"; break;
 case 8: action[0] = 3; action[1] = 8; length = 2; info = "Dial 8\n"; break;
 case 9: action[0] = 3; action[1] = 9; length = 2; info = "Dial 9\n"; break;
 default: info = "error";
 }

 try{
 mphConn.send(action, length);
 }
 catch(MPHException c){
 System.out.println("Faild to send message" + button);
 System.out.println("Error: " + c.getMessage());
 return;
 }
 text.append(info);
 }
}

83

interface CompInterface

/* IMPORTS */
import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
import MPHclient.*;
/* INTERFACE DEFINITIONS */

/* TYPE DEFINITIONS */

/**
* Interface : CompInterface
* Abstract : This interface has to be implemented by a class
* that is to be dynamically loaded by the CbguiApplet
**/
public interface CompInterface {

 /**
 * Interface : compInit
 * Abstract : This method is called after the class has been
 * initiated.
 * Parameters: MPHconnection mph, an instance of the MPHconnection
 * used to communicate with a given SEA component.
 * : JPanel p, this is the JPanel that this class must
 * use for all user interaction
 * Returns : ---
 **/
 public void compInit(MPHconnection mph, JPanel p);

 /**
 * Method : compGetIID
 * Abstract : This method must return identifier ID for the
 * given component.
 * Parameters: ---
 * Returns : The IID for the given component.
 **/
 public String compGetIID();
}

84

