Computer Science

Peter Nenzén, Anders Ragard

Tail Call Elimination in GCC

Bachelor's Project
2000:12

Tail Call Elimination In GCC

Peter Nenzén, Anders Ragard

© 2000. The authors and Karlstad University

This report is submitted in partial fulfillment of the requirements for the
Bachelor’s degree in Computer Science. All materia in this report which is
not our own work has been identified and no material is included for which
adegree has previously been conferred.

Peter Nenzén

Anders Ragard

Approved, 2000-06-09

Advisor: Donald F. Ross

Examiner: Stefan Lindskog

Abstract

This project is initiated by Ericsson Infotech AB, Department of Test, Support and Simulated
Platforms (TSP) in Karlstad. At TSP, simulation of telephone switches is performed. When
simulating, gotos are used in the simulation language (C). Newer versions of the C compiler,
GCC, do not support the use of gotos between functions. Ericsson needs to develop support
for a technique called “tail calls’ in order to replace the code using gotos. This project
involves investigating the requirements for GCC to support the mechanism for handling tail
calls. As a background, the authors will describe in genera terms, the function and phases of
acompiler, and in particular those of GCC.

We have found some related projects that suffer from the lack of tail call elimination. A
person involved in one of these projects has worked together with us trying to solve the
common problem.

A single user can make a difference to the development of GCC. This project has awoken
the interest for atail call solution. We assert that such a solution has emerged much earlier
due to our actions, than it would have done else.

When a solution was published, our project changed direction from designing a solution to
evaluating an aready implemented solution.

Ericsson’s goa was not achieved one hundred percent. However, this project has brought
Ericsson much closer to a solution that would handle a related problem, that of indirect talil
calls. While finalizing this report, we conferred with our knowledgeable contacts in order to
investigate how much work that remainsin order to adjust the existing GCC version, (with the
Cygnus/Jelinek patches committed) to solve Ericsson’stail call problem.

The authors recommend Ericsson to use the outcome of this report as a springboard for
further investigations and development, if Ericsson intends to develop an in-house solution.

or
to purchase a solution from one of the various companies that supplies GCC support and

hence are possible contractors for the remaining work.

vi

Contents

T T ISTeate N 1
(L1 DEfiNiNg the PrOBIEM c......coveeeeeeeeeeeeeeeeeeeeeeeeeeeeeeereeeeeeeeeeseeensnceeaesncnesne 1
(S =T et Ko T o TUT o o TSP 1

X o T = yJ

.2 SCOPE Of thE ASSIGNMEN........c.ovveeeeeerereeeeeeeerereeeeteeeeeeeeseeeeerenensesteeerensesesseneesnseees 2|
(R T R R o 2|
TS e e TN I — 5|
T ge s eiTe 5|
P.2 Ericsson, Asthe Company DescribDe ItSEIf...........coeweeeeoveeeeeeeeeeeeeeveeeeereeeeeenrnna 5|
P.3 PrOJECE OVEIVIBW........c.eveeeieeeeeeeeseeeeesetsreeeeesnseeeesenseesesnsessessesesssssssssressesesssenseas 6|
R T 7|
P.5 The Functionality of aCompiler in GENeralccovevvueeveveeeereieeeeeieeeeeeeeveae 7
P.5.1 The Symbol Table ManaQEScccueveiueierisiese et eeee et e s st e e e sae s e snesresneeneeneens 9

RSN = e T T L= 9

D53 THE ANAYSIS PRESES oo 9

P.5.4 Generallon Of INterMediale COOEc..eccuuieeieiiiiiecieeciieecieecteeesteeestveeseeesreeeseeesseeeseeesseeas 10

.55 Optl [P (e T T 10

5.6 Generation of Target COOE.......cueririiiiiiii s 10

P57 Exampl€ Of TranSallOn OF @ STAIEMENT ...ovevveveeeeeseeeseseeesnseeeseseesessnseesessnseesessnseeseseseesesees 11

R.6 The Compiler SyStem GCC ..o 12
PB.L TNEPASSES Of GCC oo 13

P.7 Optimization OPtioNS TN GCC........coveeeeeeeeeeeseeeeeeeeseeeeerereesresereeeeseresesenenseseseseracs 16|
R 16|
P.9 Chapter SUMIMEIY........ccovevvveeeeeeeeevereeeeeeteereteereeeseessseesseeseessseessseseeseseesssessseressesesens 17|
RN T ———— 19|
Bl INTOUUCIION.....c.v.eeeeeeeeeeeeeeeeeeseeeseeeeseseeeeseeenseeneensneesneneeneneeesnenesncesseseeeee 19|
B.2 BegiNNiNG the TASKooveeeeeeeeeeeeeeeeeeeeeeeeeeteeeeeeeeeeeeeeeeeseeeesenseraeeensereneeneerseeaeens 19|
B.3 TREPIODIEM ...ttt er st s e n s e e see e sesessesesnsnsasns 20|
B4 Related Projects.................. s s 24
B41 The School of Computer SCIENCE TN TOIONEOcuecvereeeeeieeereeeeiereeseseeereseeeeeeereeneessessessenns 24

2.0 JBCUD JTINEK 25

A3 MarcLehman and Per BOINNET ...ttt e e e e ernr e e e e 25

B.A.4 Jeffrey A Law, TNE GUT RECASE MIANAGET ..o e eeeoweeereesersensererseeseasnsenssesnesesseeseeseesseneeses 26

Vii

B.4.5 PhD Markus Pizkaat Microsoft Research in Cambridge, England.............cc.coovvenirienirrennnee. 27|

B.5 The Authors Cooperation With DI. PiZKa..........coccurveceieieceeiiscesiecsesssscsssesessssneas 28

B.6 RTL Dumps From the EXampPle COOEcoccuerreereeieeeseereeeeeeeseeessensereneeseenses 28|

B.7 Scheme Users Benefiting From the PrOJECEcccoveueeeeveveeeeserseeserereeensenna 29|

B.8 SHITING TN POLcvoveeeveereeeereeeteeeeeeeeeeeeeteeeeteseteteesseesseeseensseesseeeseeseensreesseneaes 29|

B.9 The Solution Provided By CYgQNUS.............c.coveuiereeeeueereereiereeieeeeteereereeereereeneseereenens 30|
B.10 CRADLEY SUMIMBIY........c.voeeeeeeeeeeeeeeeeeseeeseeeeseeereeseenseeneenseeeseeesenenesesncssncesseseeesee 31|

B EVAIUBLION ...ttt sttt sss s snset s st snsssss st s snsssssnses st esnsssassnees 33|
Lo e [NTe T PO —— 33

@.2 The Cygnus Solution to the Tail Call Problem.............cccccoveveveviveeeenirceereernne. 33|

B3 Mr. JEINEK'S SPArC PACN ..ot 34|

B.4 Unforeseen Problems Caused by the PatChesccivcuevicecsicciecccsscie s 35|

U5 Tedi n? the Patches on Ericsson’s Test Program(s) ..o 36

5.1 The FUNCHION Call TESE PrOgram..........c.viviiee ettt 36

5.2 _TNe VOId FUNCHON Call TES PTOOTAM............ooooorreorrrrsoorersoorerssooreereoererssoeeeeesoeeersseeeeeeoen 33

1.5.3 The FUNCLION POINTEr TESE PrOGIaM.......ccveieerieerieeieseeseeeseeeseeeeeeseesreeseeesseeeeseesnessneessnensesnes 39

4.6 CRADEEY SUMIMBIY......c.c.voeeeeeeeeeeeeeeeeeseeeseeeseeeeeeseeenseeneenseeeseenesneneaesnenssncesseseesesne 40|

B CONCIUSION ..ottt sttt st esa st sscs st essst s essessnssessenses s csesensesssssessnssssnsnsessnsssasasens 43|
5.1 INOTUCHION. ...ttt eeseerseserseses e sesensesesensesassesessesesssesnssnsesseseenees 43|

5.2 Background Reading for the ProOjECEccovvuveeeveuieeeietieeeetieeeeeeseeves et 43|

5.3 TheTimetable and the Project Phases.............c.c.cveveuveveveveeeieeeeeeeeee e 43|

5.4 WIiting the REPOMc.ovieceiiieceiiceeeisecsssesesssssssssssssssessesssssssssnssssssssessnssssssssessnasaans 45|

5.5 The DynamiC EVOIULION Of GCC ...ttt eeeseeeeeeeeesessneneesesenenans 45|

5.6 EXPEiENCES GAINEU...........ocooeeeeeeeeeeeeeeeeeserseeeesersreeseeseseeeesesseeeesssessesssesesesessssnens 47|

5.7 What Was AChIEVE. ..o 49

b. 7.1 NON-Ericsson SPeCific BENEFITS.........covoiiiiiicieeeeee e 50
A S = A= TN T e o 50

5.8 What Could Have Been Done Differently?ccvcveveveveeevieeeeiceeereeeeenne, 51|

5.9 Recommendations for Further Investigationsin ThiS Ar€a...........uueweeeeee.. 52|
SR 56|
REFEI ENCES.........coeeeeeeeeeeeeeeeeeeeeeeeseeeeeeseennseneeensnensseeeeesnensseenenssnenssnsnenesnenssnsneseeneseenenesee 57|
R O o 57|
BOOKS QN0 PADEIS ...ttt ettt reenereeeneneenereneereneane 57|
SRR 58|

A Appendix. Influence of Optimization Gradeson RTL COdE........cccoveecreviecrsrinecesnenees 59
A1 Without ANY OPtMIZATON.ceeveeerereereeeereeeteerstereieteeeseeeeeeseeneeeesseeeseereensrenans 59|

viii

R N S AR T2 (e L N ——— 62|
B Appendix. The CYgNUS PALCNcccoveeveeeeeeeeeeeeeteeeeveeeeeseeeeteeeeereteeeneteeneeennseeneans 65|
B.1 The Added File SIDCAILLCoui.iiieieeieieiecietseseseeeeseesesesresesessesnssessasasssssenesessesesneseas 65|
C_ ApPendiX. A GCC PatCh ...ttt st seseeseesesesesesssesesesesesesssesesssssesesessseas 73|
C.1 Mr Jinek S SParC PACh...........cccooveuieeeeeeiieieeeeeeteeeeeteeeeeesee e st see s ensereeeesenanans 74
I e 87|

List of Figures

Figure 2.1 Threaded interpreter [HOGOOcuceirrserieecessisesssssssssssssssssesssssssssssssssssssaness 6|
[Figure 2.2 Phases Of @ COMDIIEYc.oeeeeeeeeeeeeeeeeeeeeeeeseeeereevereseeeeeesenesneneneseseseeneneeeeseces 8|
R R e 1 9|
Figure 2.4 Trandation of astatement [AHOSS6]c.ccovevereevereeverereerereeeereeerereenerennans 12|
Figure 3.1 The function Call tESt PIrOTIAIMc.veeeeeeeeeeeeeeeeeeeeeeseeeseeeeeeeseseceeseceeseseeneene 20|
Figure 3.2 The function pointer teSt Program.......coccueiececuiriieicecieseissesseseressaesssesesesnses 23|
Figure 3.3 The giC COMPIIETccoveeeeeeeieeeeeeeeeeeeeeet ettt eeteee e ste e seeseeeeresresneneereseens 27|
Figure 4.1 The function Call teSt Programcocivceiriiecesresessseesessssssssessesssssessesssssssseas 37
Figure 4.2 The void function Call teSt PrOOraMc.cvueeveeeuveeieeeeeeeeeeseeeserssesneesesanans 39|
Figure 4.3 The function pointer teSt PrOGraM..............ceeeveeeeeeeeerseeererserseeeererseeseeeseeseens 40|
Figure 5.1 Timetable ...ociieesceiiecsecesssiisesiesessessssesssessssssesssssssssssssssssssnssnssssnsesnssnsssnsasacs 44
Figure 5.2 Actorsinfluencing GCC eVOIULIONc.cvovcececeieieecceceeeeeeeeseceseessessecscseesnsnaes 46|
B NI O O 1= - T 46|

Xi

1 Introduction

1.1 Definingthe Problem

This project is initiated by Ericsson Infotech, Department of Test, Support and Simulated
Platforms (TSP) in Karlstad. At TSP simulation of telephone switches is performed. When
simulating, gotos are used in the simulation language (C). Newer versions of the C compiler,
GCC, do not support the use of gotos between functions. Ericsson needs to develop support
for a technique called “tail calls’ in order to replace the code using gotos. This project
involves investigating the requirements for GCC to support tail call elimination. As a
background, the authors will describe in general terms the function and phases of a compiler,
and in particular those of GCC.

The background and assignment as described by Ericsson. [PC7] will be presented in the

following sections.

1.1.1 Background:

“ GCCEI is a free C/C++ compiler available for most commonly used computing platforms
including Linux/i386, Windows/i386 and Solaris/Sparc. The source to GCC isfreely available
to anyone. At Ericsson Infotech we use GCC for most of our development work. In one of our
simulation products we have code where every function ends with acall to a function with the
same signatureEI. In order to speed up the code and avoid running out of stack space we use a
special extension in GCC that allows us to use goto to jump to a label in another function. A
better solution is to have a compiler that performs tail call elimination. When a function ends
with a call to another function with the same signature, we know that we can reuse the space
in the run-time stack for passing arguments to the function and avoid most of the function call
overhead.”

! GCC is an abbreviation for “GNU Compiler Collection”. Earlier the abbreviation stood for “GNU C
Compiler”.
2 Two functions have the same signature when they have the same type and number of arguments.

1

1.1.2 Assignment:
“To investigate if it is possible to implement tail cal elimination in the current release of
GCC (2.95). The goa is to implement the optimization for the Sun Sparc/Ultra Sparc

architectures, but if a generic implementation is possible, that is preferred.”

1.2 Scope of the Assignment

After interpreting the background and assignment that was given to us by Ericsson, we have,
together with Ericsson reached a conclusion. This conclusion is that this project will be
divided into one or possibly two parts.

Thefirst part of the project involves a certain amount of research in order to find out if it is
possible to implement tail call elimination in GCC 2.95. Since tail recursive calls already are
implemented in GCC and the background material from Ericsson describes calls with the
same signature, we can definitely say that the scope of the project in the tail call area has been
narrowed down to sibling calls. When it comes to choise of hardware, the primary target
enviroment is the Sun Sparc/Ultra Sparc architecture, but if possible a generic hardware
solution is prefered.

The second part of the project is dependent of the outcome of the first part. If we in the
first part reach the conclusion that an implementation of tail call elimination is possible, an
attempt to create such an implementation will be performed.

1.3 Reading This Report

Chapter two gives the background to, and an overview of the project. The reader will be
introduced to the project’s initiator, Ericsson Infotech AB. At Ericsson Infotech in Karlstad,
Department of Test, Support and Simulated Platforms, simulation of telephone switches is
performed. When simulating a telephone switch CPU, gotos are used. The problem is that the
new version of GCC does not support the use of gotos between functions. Ericsson needs to
develop support for tail calls in order to replace the code using gotos. A tail call is when a
function ends with a call to another function. GCC does not currently support a mechanism
for handling tail calls. The reader will have an opportunity to acquaint himself with
Compilers, and especially GCC. The chapter will, in general terms, describe the function and
phases of acompiler.

The GNU Compiler Collection (GCC) is an open source compiler system. GCC’s frontend
supports several programming languages. The backend of GCC generates a machine

2

dependent, Lisp-like internal code before it optimizes the code and generates machine code.
When compiling a source code in GCC, one can choose the level of optimization by setting a
flag.

Another topic covered in this chapter is the platform Ericsson uses when the tail call
problem occurs in their simulation

Chapter three describes how we will commence the task by studying various sources, i.e.
papers, books and the Internet, in order to obtain adequate knowledge of the problem. By
subscribing to mailing lists, we found knowledgeable persons. These persons have been a
great source of information when it comes to our understanding of the problem, and also for
the development of a solution to the tail call problem.

We will, with the help of code examples expose the problem with tail calls and also why
the use of gotos in the newer versions of GCC causes problems that did not occur in older
versions. If the tail call problem were to be solved, Ericsson would be able to upgrade their
GCC software.

Severa other related projects, which in different ways would benefit from a solution to the
tail cal problem, have been found. At the School of Computer Science in Toronto, the goal is
to introduce Continuation Passing Style (CPS) for C programmers.

People from other projects have been involved in mailing list discussions of possible
solutions to the tail call problem. Jakub Jelinek and Jeffrey Law have both been involved in
creating implementations of those suggestions.

The authors came in contact-, and cooperated, with a Dr. Pizka in order to find a solution
to the problem. Dr. Pizka is involved in the development of compilers which use the GCC
backend, i.e. the gic- and C-- compiler.

Optimization in RTL by obtaining RTL dumps will be evaluated. By comparing dumps
from different source codes and different stages of the compilation, one can better understand
the connection between source, intermediate, and target code.

From the point we joined the mailing lists, the activity and interest for the tail call problem
increased. A solution to the tail call problem was released by the Cygnus Company, and our
project changed direction.

Chapter four evaluates the provided solution. The Cygnus patch is the major part of the
solution, since it is this patch that deals with evaluating whether the function call is atail call
or not. This patch supports several target architectures, but not Sparc. One week after the
Cygnus patch was rel eased; Jacub Jelinek provided a patch with a solution for Sparc.

The Cygnus/Jelinek solution to the tail call problem is very detailed. Our experience is
insufficient to evaluate the full details of this solution. However, at the same time, the people
involved in the solution are experienced within the area of compiler development and GCC.
They are hence able to provide areliable solution to the tail call problem.

As aways, consequenses of changes in GCC are difficult to predict. The tail call solution
caused a variety of minor negative side effects that will be presented.

The authors will use Ericsson’s test program in order to verify the patches suitability for
Ericsson’s purposes. The outcome of the different test programs will be presented and the
reader will receive the answer to whether the Cygnus/Jelinek solution has brought Ericsson to
afina solution, or if the problem remains.

Chapter five will describe the achievements gained in this project. The issues of
background reading and how the timetable was used in order to optimize each phase of the
project will also be shown.

The process of development of GCC will be presented as well as the experiences the
authors have gained during this project. The most important issue of the project will be
described in the final sections of this chapter.

The reference section contains references to books, papers, Internet URLs and also

personal contacts.

2 Background

2.1 Introduction

This chapter will explain the background to the project. The project’s initiator Ericsson
Infotech AB will be introduced to the reader. The authors will aso try to give the reader an
overview of the project. We will discuss the ideas behind the project, the compiler, and
especially GCC. Other topicsin this chapter will include optimizing and the platform Ericsson

uses when the problem occurs in their simulation.

2.2 Ericsson, Asthe Company Describe I tself

This is a project, which has been initiated by the Department of Test Support and Simulated
Platforms at Ericsson Infotech AB in Karlstad. Infotech is a part of the international Ericsson
group. Ericsson is a world-leading supplier in the fast-growing and dynamic
telecommunications and data communications industry, offering advanced communications
solutions for mobile and fixed networks, as well as consumer products. Ericsson is a total
solutions supplier for all customer segments. network operators and service providers,
enterprises and consumers. Ericsson has more than 100,000 employees, representation in 140
countries and clearly the world's largest customer base in the telecommunications field
[URL11]. The authors have chosen not to challenge these statements. Instead we leave that
task to the supporters of Ericsson’s competitors. The presentation of the company does not
claim to be, and is not intended to give an objective picture of the company. It is merely a
generic orientation for the reader.

Ericsson Infotech AB with over 550 employees is a product and development company in
the field of mobile telecommunications, located in Karlstad. They have product and
development responsibility within a number of product areas, including Signaling System
No.7 and protocol converters, APZ emulators and simulators, wireless Internet solutions,
radio net products, as well as maintenance and customer support systems [URL12].

The Department of Test Support and Simulated Platforms (TSP), is a department at
Ericsson Infotech. The department’s goa is to become Ericsson’s leading supplier of

simulator products as regards platforms, systems, and network solutions. The mission is to

offer products and services - based on APZ Emulators and Simulators - for Ericsson’s

customers to improve business and within Ericsson to reduce costs [URL13].

2.3 Project Overview

When simulating a telephone switch, that is a combination of software and hardware,
software is used in order to ssmulate the hardware. Each instruction in a ssmulated telephone
switch CPU is represented by a procedure call. Every procedure ends with a call to another
procedure. This call sequence is named tail calls. For each call, information about parameters
and status is saved to the program stack. Eventually, the stack will run out of space and the
application crash with a segmentation fault.

Today this problem has been temporarily solved by the use of an extension to the GNU C
Compiler that allows gotos to jump to labels in other procedures. A goto instruction does not
consume stack space, as an ordinary parameter passing function call would. Thiswill prevent

the stack from growing with each call.

Service routines

Program store i

Intermediate format

Figure 2.1 Threaded interpreter [HOGOO]

gives an overview of how TSP's APZ simulator works. Intermediate code is
generated during runtime, as soon as an instruction is to be executed that has not been
decoded before this is performed. Decoding is performed one basic block at a time until first
branch instruction. Intermediate format for each instruction is 64 bits, 32 bits service routine
pointer and 32 bits of instruction parameters. If parameters do not fit in 32 bits (few
instructions), the 32 bits instead becomes a pointer to allocated structure where parameters are
filled and retrieved. Parameters are packed for best possible performance when fetching them.

The source code of the ssimulated CPU is generated automatically with a meta-tool,
SmGen. Since tail call elimination is not supported, the code generator is tuned to generate
code with gotos. If it is possible to eliminate tail calls, the code generator can be tuned to
produce code without gotos.

Compilers and compiler construction is a highly complex subject which requires insight
into a variety of areas. For GCC one should be able to fully understand the GCC terminol ogy,
e.g. RTL, tree structure, passes and flow analysis. In order to obtain the necessary knowledge,
the authors of this report have read several publications in the subject of designing and
implementing optimizing compilers [AHOS86, LUN91, MAS99, MUC97, PI1Z97, PIZ00,
STA99, WES92, URL5, URLT7].

In the remainder of this chapter we will introduce some of the most important aspects of
this project and also explain these in further detail. This explanation is presented in order to
give the reader a wider perspective and a suitable starting point in order to be able to
understand the problem and the complexity of the solution.

2.4 Tail Calls

A tail call iswhen afunction ends with afunction call. If the callee is the same function as the
caler, thisis called a self-recursive call. Another kind of tail call is the sibling call. When a
function calls another function and they both have the same signature, i.e. the same number
and type of arguments, it is named sibling call. An example of a sibling call will be shown in

Fiqure 3.1

2.5 TheFunctionality of a Compiler in General

In order to help the less experienced reader to better understand this report, we will try to

explain the functionality of a compiler. A compiler works in phases [AHOS86]. Each phase

transforms a source program to a different representation. A typical picture of a compiler is

shownin [AHOSS6].

SOUECE PEOTIAT

4

lezical aabrzer

i

oyniax analyze

A

sernanty analyze

gymobol tahle eryoe hardle
[CLa [e & ‘l‘

intercoediate code
T2 e o

!

code optirnize

4

code generator

1

tapget prodean

Figure 2.2 Phases of a compiler

The compiler is divided into a frontend and a backend. The frontend is where the source
language is transformed from a high level language into a machine independent intermediate
representation. The frontend encompasses lexical anayzer, syntax analyzer, semantic
analyzer, creation of a symbol table and generation of intermediate code. The frontend also
includes error handling for these phases. The backend is where the machine- and intermediate
language dependent phases belong. It isin the backend where most of the code optimization is
performed and where the machine code is generated. As in the frontend, necessary error
handling is aso included. The phases described in sections|2.5.3 to [2.5.6 will be further
explained in an example (Figure 2.4). The connection between the phases of a general
compiler and GCC' s phases will be described in section[3.4.5

251 The Symbol Table Manager

The Symbol Table is a data structure, which holds information about identifiers such as
functions and variables. The information could be about type, scope and number of
arguments. During compilation the symbol table manager is called in order to control the
validity of an identifier.

252 Error Handler

Each phase can find errors that must be handled in some way in order to be able to continue
the compilation without halting at each error. Every error is reported to the error handler that
handles the error in an appropriate way. When one wants to use a debugger the detected errors

stored in the error handler is very helpful.

25.3 TheAnalysis Phases

First the lexical analyze phase reads the characters in the source program. While doing so, the
lexical analyzer eliminates all spaces and return keystrokes in the code. This procedure is
performed in order to produce token streams. A token could be an identifier, a keyword, a
punctuation character or a multi-character like *!=".

The second phase of the analysis phase is the syntax analyzer. The syntax analyzer checks
if the code follows the grammar rules of that specific programming language. E.g. a function
name must be followed by an open bracket, ‘(*. While performing such tests, the syntax
analyzer creates a syntax tree. An example of asimple syntax tree for the expression
“(9-5)+2" isshownin

N\,
9/ \5

Figure 2.3 Smple syntax tree

The third and last phase of the analysis is the semantic analysis where the compiler
examines the code to see if it follows the semantic conventions of the source language. E.g.
when the same variable is declared twice in a function, both declarations follow the syntactic
conventions but by declaring the variable two times, aviolation of the semantic convention is
performed.

254 Generation of Intermediate Code

Some compilers produce an explicit intermediate representation of the source program. There
are two important properties that the intermediate code should have. The code should be easy
to produce and easy to translate into the target program.

255 Optimization

The code optimizer's task is to improve the intermediate code in order to produce faster
running machine code. Also, the order of instructions can be altered to render the code more
efficient and to make better use of the registers and the instruction set for the CPU.

25.6 Generation of Target Code

The final phase of the compilation is the generation of assembler code or target code.
Intermediate instructions are trandated into a sequence of machine code. Memory locations
are selected for the variables. The assignment of variables to registers is a very important
issue since one has to be convinced that the register is not already used for e.g. another

variable at the sametime.

10

25.7 Exampleof Trandation of a Statement
Let ustake alook at an example code. We will in translate a Pascal statement.

position :=initial + rate * 60
Lexical analyzer
|d1::id2+id3*60

v

Syntactic analyzer

v
idl/ \+
\
id 2 *
id3/ \60

v

Semantic analyzer

v

/'_\
id 2 /*\

id 3 in t to r e a |

continued on next page

11

v

Intermediate code generator

v

templ : = inttoreal (60)
temp2 :=id3 * tenpl
temp3 :=id2 + tenp2
idl := tenp3

v

Code optimizer

templ :=id3 * 60.0
idl :=id2 + tenpl

Code generator
MOVF i d3, R2

MULF #60.0, R2
MOVF id2, RL
ADDF R2, R1
MOVF R1, idl

Figure 2.4 Trandation of a statement [AHOS36]

As shows, the source code is translated step by step during the different phases of

the compilation as described in sections.5.3]to

2.6 The Compiler System GCC

At Ericsson’s Department of Test support and Simulated Platforms, GCC is used for most of
the development work. GCC, an abbreviation for GNU Compiler Collection (former Gnu C
Compiler), is continuously developed and maintained by the Free Software Foundation, and
distributed under the GNU Genera Public License (GPL). GNU stands for “Gnu’s Not
Unix!” According to FOLDOC, a hackish tradition is to choose acronyms and abbreviations
that refer humoroudly to themselves [URL6]. GNU software is always distributed with its

12

sources and anyone may modify the software and redistribute the modified code, provided
that the modified sources are made available in turn. If the modified source code follows the
guidelines of the official FSF devel opment treeEI, the code can become a patcHzl and eventualy
used in alater release of GCC.

GCC is the centerpiece of the GNU software. GCC is a compiler system for multiple
source languages such as C, C++, Objective C, Fortran77 and Java, which produces code for
such hardware targets as Linux/i386, Windows/i386 and Solaris/Sparc. GCC consists of a
frontend, an intermediate representation and a backend. [STA99]

The front-end transforms the high level language into a machine independent intermediate

representation, referred to as an abstract syntax tree. The front-end usually encompasses
scanning, parsing, semantic analyzes and finishes with the synthesis of GCC trees [PI1Z97].
In the backend the abstract syntax tree is converted into Register Transfer Language (RTL),
which is a Lisp-like, machine dependent internal representation. The tree and RTL is called
the intermediate representation of the code. Most of the work of the compiler is performed on
the RTL code. In order to use the registers in the best possible way and to increase the speed
of the executable file, optimization is performed on RTL. The connection between the phases
of ageneral compiler and GCC'’ s phases will be described in section

To better appreciate the complexity of the task, let us take a look at GCC in a wider
perspective. The compiler consists of a total source approaching one million lines of code
[MAS99]. More than 1700 files in about 60 different directories share these lines of code.

2.6.1 ThePassesof GCC

When GCC compiles source code into machine code, the compiler does this in a number of
different passes, which involves several files of the compiler. The RTL intermediate code for
afunction is generated as the function is parsed, a statement at atime. Each statement is read
in as a syntax tree and then converted into RTL, then the storage for the tree for the statement
is reclaimed. Storage for types (and the expressions for their size), declarations and a
representation of the binding contours and how they nest, remains until the function is
finished being compiled. This information is needed for debugging purposes. The overall
control structure of GCC is in the file ‘toplev.c’. This file is responsible for initialization,
decoding arguments, opening and closing files and sequencing the passes. Each pass involves

3 We will in future chapeters refer to the FSF development tree as the GCC tree.
“ A patch is piece of code that is inserted in an existing file. Appendix C will give an example of a GCC patch
and we will also describe the patch procedure.

13

one or more different files. In the list below, the passes of GCC, will be briefly described in

their usual sequence [STA99].

» Parsing. This pass reads the entire text of a function definition and constructs partial
syntax trees.

* RTL generation. Converts syntax trees to RTL code. Optimization for ‘if’-conditions
that are comparisons, Boolean operations or conditional expressions are evaluated.
Tail recursion is also detected here. At the end of this pass decisions are made if the
function can and should be expand inIineEIin itscaller.

e Jump optimization. This pass simplifies jumps to the following instruction. It also
deletes unreferenced labels and unreachable code.

» Register scan. Finds thefirst and last use of each register.

¢ Common sub-expression elimination. This pass also performs propagation of
constants.

* Global common sub-expression elimination. Also performs global constant and copy
propagation.

* Loop optimization. Moves constant expressions out of loops and optionally does
strength reduction and loop unrolling as well.

» Data flow analysis. This pass divides the program into basic blocks and deletes
unreachable loops. Then it computes which pseudo registers are live at each point in
the program, and makes the first instruction that uses a value point at the instruction
that computed the value. The pass also deletes computations whose results are never
used, and combines memory references with add or subtract instructions to make auto
increment or auto decrement addressing.

e Instruction combination. The pass tries to combine groups of instructions that are
related by data flow to single instructions.

* Register movement. The pass looks for cases where matching constraints forces an
instruction to need a reload and this reload would be a register-to-register move. The
pass then attempts to change the registers used by the instruction to avoid the move

instruction.

® One can say that inline expansion is when a function’s code is placed directly into its caller to avoid an
expensive function call

14

Instruction scheduling. This pass looks for instructions whose output will not be
available by the time they are used in subsequent instructions. The pass also reorders
instructions within a basic block to try to separate the definition and the use of items
that otherwise would cause pipeline stalls.

Register class preferencing. The RTL code is scanned to find out which register class
is best for each pseudo register.

Local register allocation. Allocates hard registers to pseudo registers, which are used
only within one basic block.

Global register allocation. The pass allocates hard registers for the remaining pseudo
registers.

Reloading. Renumbers pseudo registers with the hardware registers numbers they
were alocated. Pseudo registers that were not assigned hard registers are replaced
with stack dlots.

Instruction scheduling is repeated.

Jump optimization is repeated.

Delayed branch scheduling. An optional pass that attempts to find instructions that can
go into the delay slots of other instructions, usually jumps and calls.

Branch shortening. On most RISC machines, branch instructions have a limited range.
Therefore longer sequences of instructions must be used for long branches. In this pass
the compiler figures out how far each instruction will be from each other instruction,
and hence if the usual instructions, or the longer sequences, should be used for each
branch.

Final. Outputs the assembler code for the function. This pass is also responsible for
identifying spurious test and compare instructions. Machine specific peephole
optimizations are performed at the sametime. It is also here that the function entry and

exit sequences are generated. These sequences never exist as RTL.

15

2.7 Optimization Optionsin GCC

When compiling source code, one can choose different levels of optimization by including

and setting flags in the command row as shown below.

gcc test.c -0l —o outputfile

In short one can describe the different levels of optimizing as follows. [STA99]

e '-O Setsanumber of other flagsin order to enable calls to functions, which performs
different types of optimizations. This flag is dways used as ‘O0’, ‘O1’, ‘O2’, ‘O3’ or
‘Os.

e ‘-O0 (capitol O-zero) gives the compiler the instruction “Do not perform any
optimization.”

e ‘-0l Thecompiler triesto reduce code size and execution time.

e *-02 Optimize even more. The compiler performs nearly all optimization that does
not involve a space-speed trade-off. GCC does not perform any loop unrolling or
function inlining. Increases the compilation time as well as the performance of the
generated code

e '-O3 Sameas‘-02' but supporting inlining as well.

e '-Os Optimize for size only. Uses al ‘-0O2' functions that do not increase code size

and also other specially designed functionsin order to reduce code size.

Any use of the optimization flags will cause an increasing compilation time and memory

usage.

2.8 Platform

At Ericsson’s Department of Test support and Simulated Platforms, the platform on which the
softwareis run is the Sparc32 architecture. Hence our project will only concentrate on solving
the tail call problem for the Sparc32 architecture. Sparc stands for “Scalable Processor
ARChitecture” and was originally designed by Sun Microsystems in 1985. Sparc has been
implemented in processors used in arange of computers from laptops to supercomputers.

16

2.9 Chapter Summary

This chapter has brought up the issues of this project’s background. The Department of Test,
Support and Simulated Platforms at Ericsson Infotech AB in Karlstad initiated the project.
Ericsson is a worldwide supplier of infrastructure for telecommunication and data
communication. At Ericsson Infotech in Karlstad, simulation of telephone switches is
performed.

When simulating a telephone switch CPU, gotos are used. Newer versions of GCC do not
support the use of gotos between functions. Ericsson needs to develop support for tail cals,
which is when a function ends with a call to another function, in order to replace the code
using gotos. The architecture on which simulation is performed is Sparc.

The chapter has in general terms described the function and phases of a compiler. First, the
compiler analyzes the source code and transforms it into an intermediate representation,
optimization is performed and finally machine code is generated.

The GNU Compiler Collection (GCC) is a free open source compiler system. GCC's
frontend supports severa high level programming languages. The backend of GCC generates
a machine dependent Lisp-like internal representation, RTL. The RTL code is optimized and
machine code is generated. Between the frontend and the backend, an intermediate
representation in form of a abstract syntax treeis used.

When compiling a source code in GCC, one can choose different levels of optimization by

setting aflag.

17

18

3 TheTask

3.1 Introduction

In this chapter we will elucidate the issues of how we begun the work on this project. The
problem that occurs in Ericsson’s simulation program will be thoroughly reviewed. We will
also present some related projects and how the authors came in contact with, and worked
together with a person at Microsoft Research. This project’s effect on the surrounding
environment and how this effect might have lead to a solution to the tail call problem will be
illustrated too.

3.2 Beginning the Task

In order to obtain adequate awareness of the problem, the authors have studied a variety of
different sources as mentioned earlier. The first measure was to read chapters one to three of
“The Dragon Book* [AHOS86]. This book gave a good outline of how a compiler is
constructed and how it works in general. Another source of information we have used is the
GCC mailing lists [URL2, URL3], which is an excellent way to obtain information. One can
read or search for questions that were asked during the last two years by subject or date. The
lists that we have searched and also subscribed to are the “gcc” list and the “gec-patches” list.
The “gcc” list deals with questions of a common nature while the “gcc-patches* list handles
the issues of how to improve GCC by adding patches.

Our supervisor at Ericsson, Magnus Einarsson posted a question about tail calls in October
1999 to the “gec” list. Within 24 hours he received nine answers. These answers became a
starting point for our further studies. The reason we can make this statement is that these
mails provided us with names to experienced people, ideas how to solve the problem of tail
calls and also a solution created by Jacub Jeli nekE!

® Jacub Jelinek who is an employee at the Red Hat Company will be further presented in section 3.4.2.

19

3.3 TheProblem

The main motivation for this project will be discussed in the following section. We will first

show an example of source code, written in C that will produce the same type of problem as

the real simulation program problem. [Figure 3.1

int siblingl(int x1);
int sibling2(int x2);

int nain()

int x0 =1,
si bl i ngl(x0);

int siblingl(int x1)
printf(“%\n", x1);
x1 = x1+1;
return sibling2(x1);
int sibling2(int x2)
printf(“%\n”,x2);

X2=X2+1,;
return siblingl(x2);

Figure 3.1 The function call test program

The main function is the entry point for the program and initializes the variable x0 to zero. In
main the function siblingl is called with actual parameter x0. In siblingl, the value of x0 is
bound to x1. The value of x1 is displayed on the screen. The parameter value is displayed in
order to keep track of the call sequence leading to the segmentation fault. Every time an odd
number is displayed, it shows that siblingl is executing. Correspondingly, an even number is

displayed when executing sibling2.

20

The display will eventually show how many function calls have been made before the
stack runs out of space. After writing the parameter value to the screen, x1 is incremented by
one. The function sibling2 is called in a similar manner and returns x2 to siblingl again. Now
that the call sequence has started, we have the same situation as in the test program run by
Ericsson’s test department. This is where the problem starts. For each call, the return address
and the value of the parameter are pushed on the program stack. Eventually, the stack will run
out of space and the application crash with a segmentation fault. As mentioned earlier, this
problem has been temporarily solved by the use of a GCC extension that allows gotos to jump
to labels in other functions. As mentioned in section , a goto instruction will not consume
stack space and therefore the problem of a full stack never occurs. A program using gotos is
illustrated in [Figure 3.2 below.

Ever since Edsger W. Dijkstra’ s article in the March 1968 “Communications of the ACM”,
“Goto Statement Considered Harmful”, the usage of gotos has been discussed within the
programming community. Nowadays most people involved in programming projects agree on
the fact that the use of gotos may lead to unstructured programs, which in turn makes the code
difficult to read and understand. It is therefore highly recommended that gotos should not be
used.

In version 2.8.1 of GCC, which is currently used at Ericsson, the use of gotos works fine,
but is not recommended. In the GCC manual for version 2.8.1 one can read; the use of gotos
is considered undefined behavior, but can be used for jumps between functions. In later
versions of GCC the text in the manua has changed to; gotos is considered undefined
behavior and can not be used for jumps between functions. The simulation program using
gotos will hence not be able to run under the newer versions. The problem of not being able to
run the simulation program could be solved by not updating GCC. Of course, not updating
GCC in particular or a company’s software in genera, is a solution that will not work in the
long term. There could be several problems involved in using non-updated software. One is
the risk of not being able to get support. There is also arisk of trouble when cooperating with
others working with updated versions of a program.

The reason for the change in the manual is that later versions of GCC performs
optimization “function at once’, rather than “statement at once” as done in GCC, version
2.8.1. “Statement at once” evaluates the code statement by statement in a narrow approach,
not taking the wider view into consideration. Below, in the corresponding text to
we will give amorein depth explanation of the two approaches presented here.

21

“Function at once” evaluates the complete function, rather than statements and does take
the wider view into consideration. The benefit of “Function at once” is that it enables a higher
grade of optimization. The higher grade of optimization however, makes it impossible for
Ericsson to use gotos in their smulation. The reason why Ericsson cannot use gotos in their
simulation is that when the compiler performs optimization at RTL level, the compiler tries to
use the fast registers in the best possible way. The compiler does this by changing the order of
code while initializing the variables in order to avoid unnecessary swapping. If the compiler
finds dead code, i.e. code that is considered never to be used, the compiler simply disregards
that code and hence do not generate assembler code. The problem with gotos and the better
optimization in “function at once* will be illuminated in the text corresponding to the
example shown in[Figure 3.3. Unfortunately this code example was not presented to us until
April 14™. Thisisthe code that corresponds closest to the real simulation program.

22

0lint x =0;

02

03 voi d one();

04 void two();

05

06 void *array[2];

07

08 int main()

09 {

10 one():

11 two();

12 goto *array[0];

13}

14 voi d one()

15 {

16 array[0] = &-3onel abel ;
17 return;

18 onel abel :

19 printf(“Qe %\n”, x++);
20 goto *array[1];

21}

22 void two()

23 {

24 array[1] = &t wol abel ;
25 return;

26 twol abel :

27 printf(“Two %\n”, x++);
28 goto *array[O];

29 }

Figure 3.2 The function pointer test program

The reason for this approach in programming style is to boost the performance of the
simulator. Function calls will be costly in time due to the parameter passing, hence one wants
to avoid function calls as much as possible. To avoid function calls this example code uses a
globa array (row 06) for storing pointers to labels. The addresses to the labels are collected
and stored when main calls function one and two (rows 10-11). The only action function one

and two performs when called, is to copy the label addresses into the global array. (rows 16

23

and 24). They then return to the caller (rows 17 and 25). After this procedure all other
interfunction communication is made by jumps to labels inside functions. E.g. from row 28 a
jump is made to row 18.

In GCC version 2.8.1 the program behaves as described above while the later versions of
GCC will behave as shown as in the following example: Let us take a closer look at the
function called one (row 14 to 21). When the compiler evaluates the function, it checks the
code to see if there is any unreachable code. The compiler notices that a jump to the label at
row 18 never occurs within the code in function one. After detecting the supposed dead code
at rows 18 to 20, the compiler disregards them when creating the assembler code. The
compiler also tries to optimize the register handling when it initializes the variables by
changing the order of the variable depending on in which order the variables will be used. The
conclusion of this example isthat the use of gotos and labels will cause perfectly good code to
be ignored and dismissed as unreachable.

3.4 Related Projects

This section will describe the different researchers that have been found on the Internet. Our
supervisor, Mr. Einarsson, found one of the researchers, the School of Computer Science, as
he was performing benchmarking. The goal was to get some background information about
this project and also evaluate the value of such a project. The other actors were found on the
GCC mailing list.

3.4.1 The School of Computer Sciencein Toronto

At the School of Computer Science in Toronto, Canada, a group has investigated the
possibilities of a modification to GCC that would support tail call elimination. The primary
motivation for their work was to enable Continuation Passing Style (CPS) in C since CPS
resolves a longstanding structural problem in the composition of software reliability
[MAS99]. Experiments with several different program styles were conducted. Most functions
(fragments) that result from CPS conversion will want to pass control to a different function.
Thisiswhere the CPStail call problem occurs.

Theinterest of their work lies far from ours but there is one common denominator: tail call
elimination. When the group started to look into the possibilities of invoking generic tail call
elimination in GCC they discovered that it was quite difficult. As they write: “A very
complex 1600 line function would have to be rewritten to support general tail call removal.

Not only is the function large, but also intimately interwoven with the rest of the compiler.

24

With the total source approaching a million lines of code, even if only ten per cent is
involved, this remains a daunting task!” In their paper they mention that a lesser solution
would get most of the gain by modifying the existing self-tail recursion code.

By March 1999 the group’s work was still ongoing but since then they have abandoned
that project due to lack of time and other resources.

3.4.2 Jacub Jelinek
Mr. Jelinek is one of the most active people on the gcc-patches list when it comes to mall
correspondence and the production of patches. He is an employee of the Red Hat Company
where he works with the Linux operating system and especially on the Sparc architecture. In
the correspondence in which Mr. Einarsson, our supervisor was involved in, in October, Mr.
Jelinek claimed to have a solution to the tail call problem for the Sparc architecture. The
accuracy of Mr. Jelinek’s patch was debated and deemed not to be the “right” solution. The
reason for this judgment was that the tail call check must be handled earlier in the compiler
than Mr. Jelinek’ s solution did. We have not been able to test and evaluate the patch in our
project since the patch is constructed for an older version of GCC (2.7), which is not available
for download from GCC’s homepage anymore. The GCC version the patch was created for
also belongs to an older generation of GCC. With the 1999 GCC version 2.95, a new
generation of GCC was born, hence a comparison between the versions is quite inappropriate.
Mr. Jelinek would later provide the GCC patches list with a patch, which would be the link
to a complete solution for Sparc. See Appendix

3.4.3 MarcLehman and Per Bothner

Mr. Lehman and Mr. Bothner both took part in the debate concerning Mr. Jelinek’s patch.
Their opinion on the subject was as follows. Mr. Bothner, who is an independent consultant,
claims that detecting that something is a tail call should be performed at the tree level.
However, the actual hard part of the stack adjustment should be performed at a rather low
level. A problem with tail calls in standard C calling conventions is that the caler pops the
argument from the stack. It would be better if the callee pops the argument. Mr. Bothner feels
that the fully general tail call case is hard to implement, but a sibling call with the same
parameter type would be relatively simple to implement. “Just evaluate the arguments into
their proper outgoing parameter locations, and jump to the target’s address.” He also says that
a sibling call solution would be valuable, as it would provide a cleaner solution for those

people who want to compile functional languages such as Scheme and ML into C.

25

Mr. Lehman, an employee at the Technische Universitét in Karlsruhe and also a member of
the GCC steering committee, agreed to Mr. Bothner’ s ideas and added that the solution would
also alow writing efficient threading interpreters without resorting to GCC extensions like

computed gotos. Since TSP's simulation programs use computed gotos, efficient threading
interpretersisjust what they want!? See Figure 3.2

3.4.4 Jeffrey A. Law, the GCC Release Manager

Mr. Law was one of the most prominent participants of the Jelinek-patch-debate. As the
release manager of GCC, he obvioudy has a greater insight in the structure and functionality
of GCC. He aso has access to the future plans of the GCC development and maintenance and
therefore the ability to recognize a suitable solution. Mr. Law was the person who most
objected to the functionality of Mr. Jelinek’s patch.

Mr. Law agrees to what Mr. Bothner said but says that a general solution is not that hard to
implement if the deal with “the arg stuff at the tree level (which is what my implementation
does). It’s not that bad, once you determine that there’ s enough space to use you're set.” Asa
comment to the low level work, Mr. Law says that the stack, epilogue and related code needs
to be done at the RTL level with RTL based epilogues and that it would be possible, but ugly
to make them work with the old style epilogues.

In an answer to our supervisor Mr. Einarsson, Mr. Law wrote that he had created a solution
to the problem of tail calls. The solution was created for MIPS, pa and x86 and was shipped to
“selected Cygnus customers’. His solution ports to targets with RTL epilogues easily by
defining a sibling call epilogue pattern and sibling call patterns. According to Mr. Law, the
code would need some cleaning up, particularly in its interface into the integration phase and
exception handling. Writing the solution for MIPS, pa & x86, Mr. Law had the Sparc
architecture in mind in order to simplify a future expansion. To the question if it was possible
to obtain a copy of the code, Mr. Law chose not to answer. As the GCC Release Manager he
received a large amount of emails every day and was certainly not able to respond to all. Mr.
Law’s solution to the tail call problem was later used as a starting point of another solution
that will be presented in section

" The authors comment.

26

345 PhD MarkusPizka at Microsoft Research in Cambridge, England
In February 2000, Dr. Pizka posted a contribution to the GCC mailing list, declaring his

eagerness to find a solution to the tail call problem. Dr. Pizka had been working at the
Technische Universitét in Minchen with the development of the GNU Insel-Compiler (GIC)
among other duties. GIC uses the GCC back end and its own front end for the Insel
programming language. [Figure 3.3 [P1Z97] shows how GIC connects to the GCC backend, it
also describes the phases of a compiler in general in a well-arranged way. One can say that
the static analysis corresponds to the GCC frontend and the four first step shown in
One can aso say that GIC's synthesisl corresponds to the GCC intermediate
representation and the output from the phase intermediate code generator in
GIC’s synthesis2 corresponds to the GCC backend and the two final phases, code optimizer

and code generator of

IMSEL
input il

Toool Lo o ;;m;E.:“.,' *}" atrituk
oo stream of SnmEr stream of r term shestract abstact evaluabr
T chamcters take s represent. Sy symax-tree

{INSEL AST)

slatic amalyzes

synthesis 1
tree fra nsformation W
INSEL abtstract syniax
_ atfributed abstact
INSEL syrmEx -tnee
GCCabstractsymax

synthesis 2 - target code generation (GCC bac k-end)

assembler

opimi@ionseps i

RTL

e

atetact PG | pny | STEAMOR
Symax-trees inATL inRATL ™ | chemcters

[GCCtress) - represenation : represemation .-+

AHR L] S

GUG SYMEOLTABLE

Figure 3.3 The gic compiler

27

Dr. Pizkais currently employed at Microsoft Research. One of his tasks at the moment is to
investigate the C-- compiler. In both cases mentioned above, GIC and C--, GCC is a major
issue and so is also thetail call problem. Thisisthe reason why Dr. Pizkais so anxious to find
a solution to the problem. We approached Dr. Pizka via the GCC mailing list, with some
questions about tail calls and if he knew of any way to gain information or how to connect
with people with knowledge in the area. The correspondence that followed almost instantly
lead to the point where Dr. Pizka offered to support our effort by guiding us through the task
of creating a solution to the tail call problem. According to Dr. Pizka himself, he had the
capability but not the time to implement such a solution. The further cooperation with Dr.
Pizkawill be described in section[3.5

3.5 TheAuthors Cooperation With Dr. Pizka

First Dr. Pizka wanted to know more about our knowledge in the area of compiler
construction, and also the schedule of our thesis. After receiving this information Dr. Pizka
instructed us what we should read and where we could find the material for this purpose. He
also informed us about which GCC files we should take a closer ook at and try to understand.
Having studied the recommended material we were able to ask questions of a more informed
kind to Dr. Pizka. Dr. Pizka has kindly answered these questions and tried to give us a clearer
picture of how a compiler works and how to solve the tail call problem. In the discussions
with Dr. Pizka it became clear to usthat RTL was an important part of the compiler and hence
important to investigate further. We will in section go further into details about RTL.

Our cooperation with Dr. Pizka stopped when Richard Henderson at Cygnus publicized the
improved Jeffrey A. Law solution to the tail call probl errﬁ| After this point, as far as Dr. Pizka

and we were concerned, there were no reasons for further investigations.

3.6 RTL DumpsFrom the Example Code

We have studied the GCC manual’s chapter about passes and files of the compiler and RTL
representation. While studying the manual, we discovered that it is possible to obtain dumps
of the RTL code as the compiler performs the optimization. The benefit of such an RTL dump
is the possibility to connect the GCC source code to the resulting RTL code as the outcome of

our test program. We recognized the RTL dumps to be a help for us to better understand the

8 This solution is presented in section 4.2.

28

optimizing stages of the GCC compiler. By understanding the RTL code and the connection
between RTL, our test program and the GCC source code, we should be able to suggest and,
if it fits our schedule, possibly implement the necessary changes to the GCC source code.

There are several different ways to obtain dumps of the RTL code as the compiler
performs the optimization. By setting different flags before compiling a source file, one can
choose how many steps the compiler will optimize before creating the dump. E.g. the option
“-df” causes a RTL dump after the flow analysis pass. This is where the program divides the
program into “basic blocks’ and deletes unreachable code. This pass also controls which
pseudo registers are live at each point in the program.

By using various options one can obtain RTL code in form of dumps from different stages
of the compilation. The dumped RTL code is saved in a file. Appending an extension to the
input file name automatically generates the file's name. Every option has a different
extension. E.g. the “-df” option creates a file with the extension “.flow”.

An example with different optimization levels from our evaluation of RTL code will be
shown in Appendix

3.7 Scheme Users Benefiting From the Proj ect

A possible side effect of the outcome of this project might be to satisfy Scheme users who
want to convert Scheme into C-code and then to compile the code in GCC. There are many
such Scheme-to-C compilers used today despite their complexity. The reason for converting
Scheme to C is the large number of target environments supported by the GCC backend
[PC6]. GCC does not support Scheme. Scheme is a program language that to a large extent
uses recursion. Since GCC does not yet supports tail call elimination, the Scheme-to-C
compiler not only converts Scheme to C, but also performs elimination of tail callsin order to
increase the performance of the executable code.

If asolution to the tail call problem in GCC would emerge, it would enable the conversion
from Scheme to C to be performed in a ssimpler manner. The Scheme-to-C compilers could

therefore be designed in aless complex manner.

3.8 Sirring the Pot

From the point where we posted our first questions on the GCC mailing lists, the interest for
tail calls has increased. The tail call discussion activity on these lists reached an “al time
high” in the beginning of March. The discussion about Mr. Law’s earlier solution led to an

29

agreement that an improvement of the earlier solution was the best way to go in order to solve
the tail call problem. After about a week a suggestion to a solution was presented to the GCC
patches list. The person who posted this suggestion was Richard Henderson, an employee of
the Cygnus Company. Over a period of aweek some improvement details were discussed and
also implemented. A “fina” version of the patch was implemented in a GCC snapshot (egcs-
20000313) .EIUnfortunater the snapshot did not support the Sparc architecture.

From this point the authors project changed direction. After conferring with our advisor at
Karlstad University, Donald F. Ross, we decided to make some changes in the aim of our
project. Instead of trying to find a solution together with Dr. Pizka, the mission changed to
evaluating the proposed solution. Step one was to see if the suggested solution was suitable
for Ericsson’s purposes. If the outcome of step one was, positive, then step two would be to
implement a solution for the Sparc architecture. While evaluating step one, less than one week
after the snapshot was published, Mr. Jelinek published a solution for the Sparc architecture
on the GCC patches list. Aswith Mr. Henderson' s patch, some discussion followed this patch.
After aweek an improved version for the Sparc architecture was published.

As the chapter headline implies it seems like the authors' activity on the mailing lists have
really awoken the interest for tail cals and brought forward the long time perceived

requirement for a solution for thetail call problem.

3.9 The Solution Provided By Cygnus

As previously mentioned, a solution was implemented in the snapshot egcs-20000313. At this
point it seamed to be the best possible outcome of the authors project since persons closely
connected to GCC provided the solution. The motivation for this statement is that an Ericsson
specific solution produced by the authors might have led to future problems, if the solution
would not have been a part of the main trunk, as GCC is continuously developing. The
Cygnus solution covers the problem in the test program mentioned in section[3.3. The Cygnus
solution was provided by the end of the experiment phase of our project. Since the solution
was provided by Cygnus and passed the test program without any problems, we decided that
this would be the suitable solution to evaluate in chapter f]

® During the time between two official releases, an “unofficial” patched version is available for download from
the GCC homepage. This patched version is called a snapshot.

30

3.10 Chapter Summary

This chapter describes how the authors began the task. In order to obtain adequate knowledge
of the problem we studied various sources, i.e. papers, compiler construction books and the
Internet. By subscribing to the GCC mailing lists, we have been able to find knowledgeable
people. These personal contacts have been a great source of information when it comes to our
understanding of the problem and also for the development of a solution to the tail call
problem.

We have with the help of code examples exposed the problem with tail calls and also why
the use of gotos in the new version of GCC causes problem. It is nowadays considered, by
most programmers, that the undisciplined use of gotos may lead to unstructured programs. In
versions later than GCC 2.8.1 the use of gotos is considered undefined behavior and can not
be used for jumps between functions. The optimization is performed “function by function”
rather than “statement by statement”. If GCC does not find a corresponding jump to a label
within the same function, all code below that label will be classified as dead code and will be
removed. If a solution to the tail call problem would be solved, Ericsson could rewrite their
simulation program and use tail calls instead of gotos, and hence be able to upgrade their
GCC software.

We have found several other related projects. At the School of Computer Science in
Toronto, the goal is to introduce CPS for C programmers. A solution to the tail call problem
would enable them to reach their goal. Severa persons have been involved in mailing list
discussions of possible solutions to the tail calls problem. Jakub Jelinek and Jeffrey Law, both
had been involved in creating implementations from those suggestions. Dr. Marcus Pizka is
involved in the development of the GIC and C-- compiler. The idea of these compilersis to
use the GCC backend. The authors and Dr. Pizka cooperated in trying to find a solution to the
problem but when the Cygnus patch was published the cooperation was ended.

In order to evaluate the optimization in RTL we used the possibility of obtaining RTL
dumps. By comparing dumps from different source codes and different stages of the
compilation, we would be able to understand the connection between source, intermediate,
and target code.

From the point we joined the mailing lists, the activity and interest for the tail call problem
increased. The Cygnus patch was released and our project changed direction. A solution to the

tail call problem would not only benefit our project, but also Scheme users.

31

32

4 Evaluation

4.1 Introduction

This chapter evaluates the solution provided by Cygnus and Mr. Jelinek. The Cygnus/Jelinek
solution to the tail call problem is very detailed. The authors conclude that their experience is
insufficient to evaluate the full details of this solution. However, at the same time, we
consider that the Cygnus staff, as well as Mr. Jelinek have sufficient experience with GCC
and are hence able to provide a reliable solution to the tail call problem. These facts make it
difficult to measure the value and correctness of the proposed solution, as far as Ericsson is
concerned. Therefore, will this evaluation primarily concentrate on testing the solution on the
test program provided.

We will first present each part of the solution and also mention some unexpected side
effects. Then we will use the test program provided in order to evaluate the validity of the
solution. During the project’s evaluation phase, the project’s initial premises have been
changed. The reason for this change is that the first test program we received from Ericsson
did not correspond to the real simulation program. New test programs have been provided
during the evaluation phase.

4.2 The Cygnus Solution to the Tail Call Problem

The Cygnus patch is primarily the work of Mr. Law, as mentioned in section though
there are several other Cygnus employees that have contributed to the work. Mr. Henderson's
role has been to clean the code up so that it appliesto the current GCC tree.

The theory of operation is as follows: for each eligible call, generate three instruction
sequences, one for a "normal” call, one for a "sibling" call, and one for tail recursion. These
are placed into a CALL_PLACEHOLDER patterrlEi and pass relatively unchanged through
inlining. As one of the first optimization passes, the Control Flow Graplm for the function is
built and simplified. Calls that appear at the end of a block that is a predecessor for exit are
replaced by one of the saved tail-call sequences. All other calls get replaced by the saved

10 A pattern could be described as a rule that describes a set of strings.
YA Control Flow Graph is the graph that describes the jumps between blocks of code.

33

normal call sequence. A new file, sibcall.c, was created in order to handle the new data
structure CALL_PLACEHOLDER and its different actions. The complete file sibcall.c is
shown in Appendix. Except from the new file, the Cygnus patch affects the following
twelve files: calls.c, final.c,. flow.c, function.c, genflags.c, integrate.c, jump.c, rtl.c, rtl.h,
toplev.c, tree.c and tree.h. Some architecture dependent files are also affected, but since they
do not concern our project, we have chosen not to mention them any further. As a whole, the
patch consists of more than 4100 rows (~75 pages).

It is not easy, even for a very experienced eye, to interpret a patch because the patch
consists only of fragments of the original file, taken out of its context. In order to fully
understand a patch, one has to know and understand the original file's code. It would have
been interesting if both the Cygnus patch as well as the Jelinek Sparc patch had surfaced at an
earlier stage of our project. That would have given us time to really investigate the code and
hence be able to evaluate and describe the full details of the patches.

The Cygnus patch does not offer a solution for the future. A long-term, tree-based solution
is aready planned by the GCC steering committee [URL1]. When the tree-based solution is
implemented sometime in the future, it would enable a solution for generic tail call
elimination. Multiple return types and variable number of function arguments are some of the
additional features that will be supported. We have not found any time schedule or details

about the future work with the tree-based solution.

4.3 Mr. Jelinek's Sparc Patch

When Cygnus published their taill call problem-patch, the patch had support for the
architectures Alpha, PA, MIPS and x86. Unfortunately Sparc was not supported. Mr. Jelinek
reported that he had found some errors in the Cygnus patch and he also suggested some
improvements to other flaws that could cause major problems when compiling for Sparc.

After less than a week, Mr. Jelinek had produced and published first version of a Sparc
patchEI. A few days later, after some improvements a final version was published. This patch
made it possible for us to test the Cygnus patch on the specified target environment. In order
to produce the patch, Mr. Jelinek had to rewrite code in the files spark.c, spark.h, spark.md
and spark-protos.h.

The complete patch has a total length of 800 rows and also consists of code correcting

some of the remaining errors and flaws in the Cygnus patch. As for the Cygnus patch, it is

34

difficult to interpret this patch. We will try to in a simple manner describe some of the
changes and extensions of the existing file that Mr. Jelinek has performed in the patch. Mr.
Jelinek has for instance implemented support for sibling calls by changing the register
handling and adding new functions and data types in order to handle sibling calls. When
adding new types he had to change some conditions as well. Mr. Jelinek has himself,
commented the changes in the patch’s code. For those readers with sufficient knowledge in
the area, we recommend more in depth study of Appendix

Since this patch has been implemented in the GCC main trunk, we have no reason to doubt
the correctness of this patch. In section we will examine if this patch together with the

Cygnus patch solves Ericsson’s problems with tail calls.

4.4 Unforeseen Problems Caused by the Patches

The patch provided by Cygnus had some negative side effects. Different users around the
world have reported these side effects viathe GCC mailing lists.

One problem was reported by Jan Hubicka, who experienced a compilation performance
slowdown by approximately 15%. Gerald Pfeifer also noted a 10-15% slowdown. Mr.
Hubicka has worked hard for a solution to this and other minor problems that might have
caused the slowdown. Mr. Hubicka has provided the GCC patches list with several patchesto
solve the problems. The performance slowdown mainly refers to the new flow graph
construction.

Bruno Haible reported debugging problems after installing the new patch. He had
problems with getting a full debugging report since the patch isin fact created in order to save
space and cut the “connection” between caler and callee. “Many GNU programs are
compiled with "-O2 -g" by default, which has been up to now a good compromise between
speed and ease of debugging.” Mr. Henderson draws the conclusion that Mr. Haible is
working on x86 since the problem described is well known for other architectures. According
to Mr. Henderson the effect on Sparc is no worse than before. “On alpha and other wide RISC
targets the instruction scheduling turned on with -O2 makes debugging quite a challenge most
of thetime. *

Mr. Jelinek and Bernd Schmidt, each describes the same problem. Mr. Schmidt reports:
“Theinstruction that pushes the address of the label isinsidea CALL_PLACEHOLDER, so

2 Mr. Jelinek’ s patch is shown as an example of a patch in Appendix C.1.

35

we never notice that the label isused, and turn it into aNOTE_INSN_DELETED_LABEL.
This later causes mark_jump_label to call abort.” This problem was quickly solved. Mr.
Schmidt and Mr. Jelinek each suggested a solution to the problem and Mr. Schmidt’s solution
was preferred by those responsible at GCC.

4.5 Testing the Patcheson Ericsson’s Test Program(s)

As a part of verifying the suitability of those patches for Ericsson’s purposes, we have used
the test programs made available to us by our supervisor at Ericsson. After successfully have
tested the Cygnus/Jelinek solution with the test program described in section|4.5.1], we started
evaluating the patch. Mr. Einarsson created another test program, this one with function
pointers, described in more detail in section

45.1 TheFunction Call Test Program

In an early stage in this project, a test program was given to us. This test code has been the
foundation of the project and has been used as an example in discussions about tail calls both
on the Internet and persona contacts. The code has earlier been thoroughly described in
section B.3]and will now be used in order to verify the solution provided by Cygnus/Jelinek.

36

int siblingl(int x1);
int sibling2(int x2);

int nain()

int x0 =1,
si bl i ngl(x0);

int siblingl(int x1)
printf(“%\n", x1);
x1 = x1+1,
return sibling2(x1);
int sibling2(int x2)
printf(“%\n", x2);

X2=X2+1,
return siblingl(x2);

Figure 4.1 The function call test program

When we evaluated the provided solution with the function call test program, the outcome
was not satisfactory. However, Mr. Einarsson tested the solution on a void function call test
program as well and that code worked. The void function call test program will be described
in section

Testing the function call test program, the same segmentation fault error occurred as for
the function call program without the new patch. The outcome of the test concerned Mr.
Einarsson so he provided us with the void function test program (Figure 4.7). He asked us to
investigate the reason why the function call test program did not work, while the void
function test program did, and if possible find a solution.

Since Mr. Jelinek was the provider of the Sparc architecture patch, we forwarded Mr.
Einarsson’ question to him in order to se if it was a Sparc related problem. As usual, Mr.
Jelinek answered within a day. He could not see any problem and asked us which grade of
optimizing we used, i.e. which flag we used when compiling the function call test program.
We were using the *-O3’ flag as we had done in al previous test cases. Mr. Jelinek suggested
the use of the ‘-O2 flag instead, which worked out just fine. The ‘O3 flag enables
optimization by inlining. Inlining is a good solution when a program only has a few function

37

calls. In the case with tail calls, there are not a few calls, rather the opposite, so ‘O3’ is not
possible to use.

After running the test program on the patched GCC snapshot we could draw the conclusion
that the patches satisfied all of Ericsson’s requirements for this test program. The tests were
performed on the Sparc architecture at Ericsson. We have not taken the other architectures
into consideration, although the Cygnus patch does support severa others. We have followed
the discussion on the mailing lists and there have been very few architecture problems
reported due to the new Cygnus tail call patch. Cygnus patch combined with Mr. Jelinek’s
patch, both improved with minor bug fixes, creates a solution that covers the most commonly
used architectures.

At this point Ericsson’s requirements were satisfied. The experiment phase was over and
the time limit for the project’s evaluation phase was almost reached. It was time to reach a
closure of the evaluation phase and enter the phase of completing the report.

4.5.2 TheVoid Function Call Test Program

During the evaluation of the function call test program, Mr. Einarsson came up with the idea
of testing avoid function rather than the non-working function with return values (in this case
int). The void function call program turned out to work fine The function call test program,
dightly modified is shown in [Figure 4.3. With this working test program in mind, we
contacted Mr. Jelinek.

38

int main()
{
int x0=1;
si bli ng1(x0);
}
void siblingl(int x1)
{
printf(“%\n", x1);
x1 = x1+1,
si bl ing2(x1);
}
voi d sibling2(int x2)
{
printf(“%\n",x2);
X2=x2+1;
si bl i ngl(x2);

Figure 4.2 Thevoid function call test program

4.5.3 TheFunction Pointer Test Program

A couple of weeks later, Mr. Einarsson created yet another test program, containing function
pointers, more similar to the simulation program that Ericsson uses in their APZ simulator. At
this point we understood that the first test program Mr. Einarsson provided us with, did not
correspond to the real program. When we received the first code, the function call test
program, Mr. Einarsson told us that the code in the test program was not exactly the same, but
a solution for that code would also be a solution for the real simulation program as far as he
knew. One can comment here, that the authors supervisor at Karlstad University, Mr. Ross
asked us at an early point, if the test program really was representative for the simulation
problem. Asfar as the authors then knew, this was the case.

When testing the function pointer test program (Figure 4.3) on the snapshot, this new test
program caused the same segmentation fault as in GCC without the tail call patch. The
conclusion is that the snapshot at this specific point, is not a sufficient solution to Ericsson’s
problem.

As mentioned earlier, the time limits for our phases “research and background reading”
and “evaluation”, had expired and there was no time left to further investigate the reason why
the snapshot did not satisfy Ericsson’s needs.

39

/*FUNCTI ON DEFI N TIONS */
void one(int x);
void two(int x);

void (*onePtr)(int) = &one;
void (*twoPtr) (int) = & wo;

int mai n(voi d)
onePtr(0);
void one(int x)

printf("one %\n",x);
twoPtr (x+1);

void two(int Xx)

printf("two %\n",x);
onePtr(x+1);

Figure 4.3 The function pointer test program

4.6 Chapter Summary

A solution to the tail call problem has been presented. The Cygnus patch is the major part of
the solution since it is this patch that deals with evaluating whether the function call is atall
call or not. To make this possible sibcall.c was created and twelve other files were changed.
This patch supports several target architectures, but not Sparc.

The main idea of the solution is to store a function cal in the data structure
CALL_PLACEHOLDER. Three instruction sequences are generated, one for a "normal” call,
one for a "sibling" call, and one for tail recursion. Depending on which kind of cal it is, the
corresponding instruction sequence is used.

Jacub Jelinek provided a patch with a solution for Sparc. In the content, the propotions of
this solution were not as wide ranging as the Cygnus patch, but for our project, the Jelinek

patch is very significant.

40

As aways, consequenses of changes in GCC are difficult to predict. The tail call solution
caused a variety of minor negative side effects. After afew weeks, a number of negative side
effects had been reported, but also, most of them were solved.

As apart of verifying the patches suitability for Ericsson’s purposes, the authors have used
Ericsson’'s test program. The verification of the function call test program, which was
provided to us in the early stages of the project, showed that the program fulfilled all
requirements. The void function call test program was also verified to be correct.

The function pointer test program has not yet passed the verification. However, the
Cygnus/Jelinek solution has brought Ericsson much closer to afinal solution to their problem.

41

42

5 Conclusion

5.1 Introduction

This chapter will describe the achievements arrived at in this project. The issues of
background reading and how the timetable was used in order to optimize each phase of the
project will also be shown.

The interesting developments in the GCC compiler and how a single user can make a
difference to such changes will be presented as well as the experiences the authors have
gained during this project. The most important issue of a project will be described in the final
sections 5.7 What Was Achieved, 5.8 What Could Have Been Done Differently? and

5.9 Recommendations for Further Investigations on the Subject.

5.2 Background Reading for the Project

This section will concentrate on the issue of how the background reading was performed.
Could we have performed the background reading in another way? Due to our prior
experience in compiler construction, we needed to do a great deal of reading about compilers
in general and GCC in particular in order to be able to understand the width of the tail call
problem. Considering the complexity of GCC, the relatively short time the schedule alowed
for background reading was not quite enough to fully understand all details of GCC.
Nevertheless, the background reading was very valuable and helped us to better comprehend
details of GCC as the project proceeded.

5.3 TheTimetable and the Project Phases

The figure below will give the reader an overview of our timetable for this project. As one can
see in the timetable, apart from the documentation there are five other phases in the project.

Our objective was to perform documentation continuously as the project proceeded.

43

Month January | February | March | April | May |June
Week 2 3 4 5 6 7 8 9 0 11 12 13 14 15 16 17 18 19 20 2 2
[1 T T T T 1 I
Research and
background reading
E
A T 1 :
¢ t
t Evaluation =
i
a
v C T [T 1
; Construct, implement t Prep. for
and testing i opposition
Y m
I I I
e
POEEEEHem F|na||2|ng a Finalizing
prel. version the report
[1 1 [[1 [1 [| | | ||

Figure5.1 Timetable

The other phases of the project are:

Research and background reading. During this eight-week phase we read background
material and searched the Internet for useful information about the subject and related
topics. When we reached week ten, the Cygnus patch was released. The following week
Mr. Jelinek released his Sparc patch. These two events prolonged the research and
background reading phase.

Evaluation. After the release of the two patches, the evauation phase changed from
evaluating suggested solutions to evaluating an aready implemented one. Due to the
implemented solution and the new Ericsson test programs, this phase was also extended
by afew weeks.

Construction, implementation and testing. Ericssons' s requirements resulted in this phase
becoming optional. If we in an early stage of the project could see a possibility of
implementing a suitable solution, this phase would be carried out. The phase began as we
established contact with Dr. Pizka. As mentioned earlier he had agreed to guide us
through an implementation. Implementation and documentation of such a solution would
have taken more time than the timetable allowed. Hence an agreement was reached with
Ericsson, to design the solution during the remainder of the construction, implementation

and testing phase. The predominant part of the implementation and testing could be

carried out as a separate summer project. This phase was discontinued when the Cygnus
solution became public.

» Completing the report. Planning and layout of the report had to be altered when the
unexpected release of the Cygnus/Jelinek solution appeared. Instead of designing a
solution together with Dr. Pizka, we decided that the most appropriate solution was to
resume the work of evaluating and documenting solutions. This time we had an already

implemented solution to work with.

5.4 Writing the Report

A few weeks into the “research and background reading” phase we began to write our project
report. Prior to the project, we had to write a short summary about the project and hand thisin
to Karlstad University. We used this summary as a foundation for the background chapter in
our report. When writing the report we have used a Swedish-English lexicon [PET89]. We
have also used both an online Swedish-English lexicon [9] and an online English dictionary
[10], which has both proved very useful and timesaving.

5.5 TheDynamic Evolution of GCC

The development and maintenance of GCC is a dynamic process that proceeds continuously
with users all over the world affecting GCC’s evolution. When one comes to work in the
morning, there is aways a chance that a new patch has been posted to the mailing lists.
Depending on which participants are active on the lists, their questions and their answers, the
GCC development can follow a certain direction. will illustrate the dynamic

influences of the GCC evolution aswe seeiit.

45

Cygnus

Regular This
users D : project

Red Hat

Temporary
user

Release

manager

Figure5.2 Actorsinfluencing GCC evolution

The GCC release manager is responsible for the direction of the GCC development and
answers to the GCC steering committee and its guidelines. The release manager has the
authority to support or reject suggestions or patches that is posted on the mailing lists. GCC

could be seen as atree with a trunk and branches| Figure 5.8 will illustrate how the GCC tree
could look like at a specific moment.

branch

GCC main trunk

Figure 5.3 The GCC tree

46

If the patch follows the guidelines for the trunk, it can be accepted and become a part of the
official version of GCC. Even if a patch does not follow the guidelines for the trunk, it could
be very useful for many users. The approach when this occursisto allow abranch to grow out
from the trunk. There could be severa branches alive at a particular time. Later updates in the
trunk could support the requirements that caused a branch. When there is no longer a need for
a branch one can prune the branch and return to the trunk again.

When a subject is heavily discussed on the mailing lists and the need for a solution is
desirable, GCC staff takes an active interest in finding an appropriate solution. As an example
of this, it seems like the authors' activity on the mailing lists aroused the interest of tail call
elimination within the GCC organization. Less than two months after we first addressed the
mailing lists, a solution supported by GCC was published.

5.6 Experiences Gained

During the project, the authors have gained increased knowledge in several areas such as
compiler development, the Unix operating system, project management and writing technical
English. Further more we have gained new personal contacts and also knowledge as how to

extend our personal network viathe Internet. We will discuss several of the areas below:

 GCC. The area that has obviously engaged us the most is the compiler system GCC.
We had not understood earlier, the size and complexity of the GCC compiler system.
After the background research, we realized that we had a task of considerable
proportion in front of us. We have aso learned how the development and maintenance
of GCC is a dynamic process, involving a large amount of interested parties. This
dynamic process has been discussed in section[5.8. We have learned that GCC is a
compiler with afrontend that support multiple high level programming languages, and
that GCC also has a backend for generating and optimizing machine dependent code
for various hardware architectures. Closely interwoven with the backend, there is a
Lisp like intermediate language, the Register Transfer Language (RTL). It isin the
RTL stage that nearly all optimization is performed. We have understood that GCC,
during compilation, involves a number of different files in the different passes that is
needed in order to complete the compilation. These passes have been introduced to the
reader in section

47

e Unix. The author’s experience of the Unix operating system prior to this project was
limited. It would have been valuable to the initial phase of the project if we had taken
the course “C and Unix” at the University last semester. Our experience had come
from those courses at Karlstad University, where the Linux operating system was
used. The experiences we have gained throughout this project are in file management,
different printing commands and other essential Unix commands.

o Compilers. During our background research we learned that there are a large number
of compilers for different uses. Since our main concern has been GCC, we have
chosen not to look into details about any other specific compilers than GCC. The
overview we acquired from the various compiler systems though, helped us to
understand how a compiler in general works. By looking at other compilers, one can
obtain a different view of sections in the GCC documentation that are difficult to
understand, and hence be able to better understand a GCC phase or a section in the
GCC manual. Looking at those different compilersEI has helped us to understand the
passes that are normally performed in a general compiler.

* Project management. Earlier, we have only worked together in short term projects. A
project, such as this is a new experience when it comes to having a client to
continuously report to, and a time schedule of more than four months to take into
consideration. When it comes to this project’s time schedule we think that we have
succeeded in following the time schedule and its time limits. In a project, it is
important to keep a record of what has been done and take notes about events as they
happen. It is also important to have a version number system for source code and other
documents.

e Technical English. The multinationa company Ericsson has the policy of using
English as business language. Due to this policy they wanted us to write the project
report in English. All information gathering via the Internet, both reading and personal
contacts have required a good knowledge of English. Also, the vast mgjority of
literature in the area of compilers and compiler construction isin English, so it is not
an understatement to say that we have been deeply involved in learning more about
reading and writing technical English. In doing so, our advisor Donald F. Ross has
been a great resource when it comes to giving the report its final touch. There are not

B The studied compilers are XMPL [LUN91], “An example compiler” [URL5], “A simple compiler”
[AHOSS86] and gic [PIZ97]

48

many groups that have had the opportunity to have such an experienced adviser when
it comes to English grammar. As a conclusion, all the reading and writing technical
English throughout the project has developed our ability to read, analyze and rephrase
English technical literature.

» Ericsson. The opportunity to work for Ericsson a whole semester has given us insight
into working for a multinational company. Despite Ericsson’s size, one has theillusion
of working in asmall scale, intimate environment. At TSP, they took time in order to
inform us about the structure of the department and the phases of one of their projects.
We had also the opportunity to follow and learn the daily routines of TSP.

» People available on the web. When searching for information, we have learnt that
there are many people willing to help, once you have found the right place to look for
these people. Mailing lists of various kinds are often an excellent source of
information. People, active on amailing list are often very skilled and knowledgeable
in their particular area and see the possibility of personal development by helping
others. All of the author’s questions have met with a positive reception on the GCC
mailing lists. Therefore we can recommend this way of searching and gaining
knowledge.

5.7 What WasAchieved

This section describes the most important benefits of the project Tail Call Elimination in
GCC. The project’s primary goal was to satisfy the needs of Ericsson. Since GCC is a world
wide commonly used compiler, all improvements as a result of this project would also be of
gain for alarge number of other users.

According to Ericsson, our project has accelerated the development of a solution for the
tail call problem. When Mr. Einarsson posted his tail call questions on the GCC mailing list,
he met with a positive response. There were some suggestions as how one can approach the
problem but nobody seemed interested in beginning the task themselves.

These statements strengthen and supports the authors' own opinion in the matter: The
project Tail Call Elimination in GCC has indeed accelerated the development of a solution for

thetail call problem.

49

5.7.1 Non-Ericsson Specific Benefits
Some of the benefits from this project will be useful for other GCC users and developers

besides Ericsson.

» Support for tail call elimination on several architectures; MIPS, PA, Alpha and x86.
The Cygnus patch is integrated in the GCC tree and people closely connected to GCC
have created the patch. These facts emphasize the strength of the solution.

e Scheme users have benefited from the project. Since some of the Scheme-to-C
compilers typicaly call continuations with no parameters, tail call elimination would
turn al of those calsto jumps for asignificant improvement in performance [MAS99].

» Therelated project presented in section hasthe possibility to resume their work in
introducing CPS for C-programmers. The main problem in their project was the lack of
support for tail call elimination in C compilers and especially GCC. This obstacle has
now been eliminated.

» Facilitate the implementation of the C-- compiler. For those (including Dr. Pizka)
involved in the work of creating a language better suited as an intermediate language
than C [P1Z00].

 Cygnus “selected customers’ that Mr. Law had supplied with a GCC-tree-branch
solution have a possibility to swap to the trunk solution. With the trunk solution they
can obtain support from a wider sphere of developers and also update their software

continuoudly if they want.

5.7.2 Benefitsto Ericsson

The assignment was to investigate if it is possible to implement tail call elimination in GCC
2.95 and if so, implement a solution for the Sparc architecture. If possible a hardware generic
solution wasto prefer.

It did not take long before we could give an answer to the first part of the assignment.
After some background reading it became obvious that it, with no doubt, was possible to
implement tail call elimination in GCC.

The second part of the project was to implement a solution for the Sparc architecture.
When Cygnus and Mr. Jelinek released their patches, such an implementation existed. The
Cygnus/Jelinek solution also fulfilled the additional requirement of the second part of the

assignment since the most commonly used architectures are supported.

50

As mentioned in section[4.5, the solution satisfies Ericsson’s requirements for the first two
test programs. Unfortunately, the solution is not sufficient for the function pointer test
program. However, this project has brought Ericsson much closer to a solution that would

handle the remaining problem. Several sub-goals have been achieved.

» Asfar as our supervisor and we have understood, Mr. Jelinek's Sparc patch, as it
looks today, needs little, or no further development in order to solve the remaining
problem.

» The scope of the Cygnus patch leads to the fact that the extent of any remaining
work is quite limited compared to the origina situation.

» The authors persona contacts during this project can be used if Ericsson wants to
proceed in any further investigations.

» The source material, which the authors have assembled at Ericsson, is a resource

for further investigations.

5.8 What Could Have Been Done Differently?

In summarizing a project, one can always say that there are certain aspects that might have
been done differently. This project is of course no exception. We have, during evaluation
found some issues in our project that, if done differently, could have altered the outcome of
the project.

» The connection between the function call test program and the real simulation program
should have been verified in an early stage of the project. Had this been carried out, the
outcome of the project might have been different.

 The GCC manua is an excellent source of information. If we, in an early stage of the
project had known just how much information we could obtain from the manual, we
would have paid the manual more attention at this stage. We did though, study the manual
at an early stage, but more as an overview. A deeper exploration was performed during
our cooperation with Dr. Pizka. The conclusion is that we could have performed a more in
depth study of the GCC manual at the early stages of the project, but the question is:
Would we, as inexperienced in the compiler area, have benefited from the detailed

information in the early stages of the project?

51

* Could we have been more active on the mailing lists? Of course, but the conclusion is
similar to the one above. Did we have the knowledge to ask adequate questions, and did
we have the ability to interpret the answers? Probably not in the earlier stages of the
project.

* We could have worked more with writing the report earlier. By doing so, an earlier
evaluation of the accumulated material would have been performed. The understanding of
the material would also benefit from the early writing. The drawback of allocating time
for writing is that we would have lost the same amount of time for further investigations
and background reading.

» Looking back, an office of our own would have facilitated the work. For a couple of
months we had the office printer in our room. Sometimes it could be disturbing when
people collected their printouts. During the entire project, we shared office with another

group from Karlstad University.

5.9 Recommendationsfor Further Investigationsin ThisArea

Some of the material in this section springs from information, which we have received while
finalizing the report. Since our recommendations to Ericsson partly depend on this last minute
information, we have chosen to include the material even though the information is not
previously mentioned in the report.

As we were finalizing this report, we have aso tried to investigate how much work has to
be done in order to adjust the existing GCC version, (with the Cygnus/Jelinek patches
committed) to solve Ericsson’s tail call problem. We have conferred with our knowledgeable
contacts [PC3, PC4, PC5]. “...How much work remains before one can get the function
pointer test program to work?...” Their summarized opinionsin the matter are as follows:

Jan Hubicka:

Basically you are asking here for indirect tail cals. The main problem is that you need
register for destination address. This register must be caller saved, since it must be live after
epilogue. Second problem (that appears at Sparc) are register windows. Basically it is not too
hard to implement this - you need to add new a constraint in sparc.md for caller saved
registers, add pattern and enable this stuff in calls.c. | think that with expectable problems
related to everything in calls.c area it may take about two days to add. On the other hand, | am

52

not sure that this optimization will ever save so much CPU time. Caling indirectly is not too

common and calling indirectly in tail call sequence even less.

Jeffrey Law:
Optimizing tail call sequences for indirect calls is not likely to work anytime soon. There are

some particularly tricky issues that would have to be resolved before it could work.

Richard Henderson:
That depends. It's not solvable in general, only for specific targets. For instance:

(1) Alphacan only perform tail call elimination to functions that use the same GP. When
calling through a pointer, we cannot prove that will be true. This is fallout from the
calling conventions -- on return from a function, the GP must be correct for that
function.

(2) ARM has 4 call-clobbered registers, all of which are used for passing arguments. So
if the target function needs more than three arguments, it's not possible to tail-call
through a pointer.

(3) 1386, with -fpic, requires %ebx to contain a pointer to the function's GOT during
function calls. Since %ebx is a call-saved register, we cannot make tail cals of any
kind.

For other targets, it suffices to define a register class, which contains all of the call-clobbered
non-argument registers, and have the sibcall pattern accept only that register class. It would

take about a day to implement for any one target.

After our contacts with these people, it has become clear that they refer to the call convention
used by Ericsson as, tail calls through pointers, or indirect tail calls. If we trust Mr.
Henderson and Mr. Hubicka, a solution that satisfies Ericsson's requirements would only take
an experienced compiler developer a couple of days to implement.

Mr. Law’s statement might be interpreted as: “At the moment, Cygnus has other projects
with higher priority.” If Cygnus where to participate in developing a solution, the solution
would be integrated in the GCC main trunk and contributed to the GCC community. Ericsson
would obtain support from a wider sphere of developers and also be able to update their

software continuoudly if they want.

53

Since we did not achieve our goa one hundred percent, this report can serve as a

springboard for further work. These are our recommendations as to what Ericsson can do in

order to obtain an implementation that solves their tail call problem:

Wait and see. A future tree-based solution is planned. This could provide Ericsson
with afinal solution to their problem.
Advantages:. No development cost. No risk for developing a product that could be
out-of-date in a near future. No loss of performance. Someone else could solve the
problem.
Disadvantages: Not upgrading the software is not a good solution. The
development of software and hardware is a constantly ongoing parallel process. Old
software and new hardware does not always go together.
In-house solution. Use this report, and the accumulated material at Ericsson, as a
springboard for further work. A good ideais also to contact the people that have been
involved in the development of the Cygnus/Jelinek solution, and to whom the authors
have established contact. E-mail addresses could be found under the section Personal
Contactsin the chapter References.
Advantages: If there are persons at Ericsson, with the sufficient knowledge, such a
solution would be less expensive and also custom made for Ericsson’s needs.
Disadvantages:. An in-house solution would probably not belong to the GCC trunk
and hence difficult to support. A similar situation as we have today can occur. A
future change in the GCC trunk can cause new unforeseen problems, as with the
gotos.
Purchase a solution. There are several companies that supply GCC support and hence

are possible contractors for the remaining work.

Codesorcery. It is possible to contact them viajnfo@codesource.com|

Cygnus. According to Mr. Law, ales@cygnus.com would be a proper starting point.

However, Cygnus does not accept anything less than four weeks of work.
SUSE. Mr. Hubicka, working for them, says that SUSE definitely can provide a

solution. They can be contacted viafinfo@suse.de,
RedHat. Mr. Jelinek’ s employer. We did not find any suitable e-mail address. Instead

we refer to www.redhat.com|

mailto:info@codesource.com
mailto:info@suse.de
http://www.redhat.com/

Advantages: Such a solution would probably be a part of the GCC trunk and hence
easier to support and upgrade. The time it would take to implement the solution is
probably shorter.

Disadvantages: Probably a more expensive solution.

Before Ericsson decides which recommendation they want to pursue, there are some facts to

take into consideration:

Examine the possibility to avoid the dead code elimination in GCC 2.95. This could
lead to a possibility to use gotosin this version.

Is it worth waiting for a tree-based solution, or even financially support the
development of a tree-based solution? If so, this might be a long-term solution for
Ericsson’s needs.

55

5.10 Final Words

This has been an interesting project. We have brought Ericsson closer to a solution to the tail
call problem. The authors have gained new experience in several different areas and we are

very satisfied with the outcome of this project.

Our achievements could not have been possible without the help and understanding from the

following persons.

Donald. F Ross, our advisor at Karlstad University.
Magnus Einarsson, our supervisor at Ericsson Infotech AB.
Patrick Carlén, Ericsson Infotech AB.

Dr. Markus Pizka, our guide in the GCC jungle.

Peter and Johan, roommates at Ericsson.

All the employees at TSP, Ericsson Infotech AB.

All the helpful persons we met on the Internet.

Last but not least, our families who have endured the privation we have caused them.
Lenaand Simon
Kerstinand Lars
Ewaand Tomas

and little Trolle

Thank you all!

56

References

Personal Contacts

[PC1] Dr Markus Pizka. marcus.pizka@softwareag.com|
[PC2] Jacub Jelinek. [akub@redhat.com|
[PC3] Jeffrey Law. [aw@cygnus.com|

[PC4] Richard Henderson. fth@cygnus.com|

[PC5] Jan Hubicka.

[PC6] Jorgen Sigvardsson. jorgen.sigvardsson@kau.se|

[PC7] Magnus Einarsson. M agnus.einarsson@ks.ein.se|

Books and Papers

[AHOS86] Alfred V. Aho, Ravi Sethi and Jeffrey D. Ullman Compilers - Principles,

[HOGOO]
[LUNO1]
[MASO9]
[MUC97]
[PIZ97]
[PIZ00]
[STA99]

[WES92]

[PETSY]

Techniques, and Tools. Addison Wesley 1986.
Johan Hogberg, SMZQY technology, Ericsson Infotech AB, 2000.
Hans Lunell. Kompilatorkonstruktion i teori och praktik. Studentlitteratur 1991.

David V. Mason. Continuation Passing Style in C and the Cost of Tail-call
Elimination With GCC. School of Computer Science, Ryerson Polytechnic
University. March 1999.

Steven S. Muchnick. Advanced Compiler Design and Implementation. Morgan
Kaufman, 1997.

Markus Pizka. Design and Implementation of the GNU INSEL-Compiler gic.
Technische Universitét Munchen, Institut fir informatik, 1997.

Markus Pizka. The Portable Assembly Language C--: A Critacal Review and a
GCC Based Prototype. Microsoft Research, Cambridge. February 2000.

Richard M. Stallman. Using and Porting the GNU Compiler Collection. Free
Software Foundation. July 1999.

Anthony Weston. A Rulebook for Arguments. Hackett Publishing Company, 2™
edition, 1992.

Petti et. as. Sora svensk.engel ska ordboken. Esselte studium AB. 1989.

57

mailto:marcus.pizka@softwareag.com
mailto:jakub@redhat.com
mailto:law@cygnus.com
mailto:rth@cygnus.com
mailto:jh@suse.cz
mailto:jorgen.sigvardsson@kau.se
mailto:Magnus.einarsson@ks.ein.se

URLs

[URL1]
[URL2]
[URL3]
[URL4]
[URL5]
[URL6]
[URL7]
[URLS]
[URLY]
[URL10]
[URL11]
[URL12]
[URL13]

http://www.fsf.org/software/gec/gce.html| (00-03-06. 15:32)
http://gcc.gnu.org/ml/gec/| (00-03-06. 15:32)
http://gcc.gnu.org/mi/gcc-patches/| (00-03-06. 15:32)
http://wwwspi es.informati k.tu-muenchen.de/personen/pi zkal(00-03-06. 15:32)
http://www.iecc.com/compil ers/crenshaw| (00-03-06. 15:32)
http://www.nightflight.com/fol doc/index.htm| (00-03-06. 15:32)
http://www.suif.stanford.edu/~diwan/243/| (00-03-06. 15:32)
http://www.cs.nwu,edu/groups/su/resources.html|(00-03-06. 15:32)
http://www-| exikon.nada.kth.se/skol verket/sve-eng.html| (00-03-06. 15:32)
http://websters.searchopolis.com/|(00-03-06. 15:32)
http://www.ericsson.se/pressroom/comp newtw.shtml|(00-03-06. 15:32)
http://www.ericsson.se/infotech/ company (00-03-06. 15:32)
http://bokhyllan.ks.ericsson.se/|(00-03-06. 15:32)

[URL12] is not available outside Ericsson.

58

http://www.ericsson.se/pressroom/comp_newtw.shtml
http://bokhyllan.ks.ericsson.se/

A Appendix. Influence of Optimization Gradeson RTL Code

When the project changed direction from designing a solution to evaluating the
Cygnus/Jelinek solution, we decided to cease the evaluation of RTL code. Despite this, we
consider that it would be interesting for the reader to see the RTL code. The following pages
will give an example of how a user can choose different levels of optimization and how this
affects the RTL code for the source code below. Chapter 15 in the GCC manual [STA99]
describes the RTL instructions in an informative way.

int main()
int x0 = 0;
si bli ng1l(x0);

}

int siblingl(int x1)

{
X1 = x1+1;
printf("sib 2 %", x1);
return sibling2(x1);

}
int sibling2(int x2)

{
X2=X2+1;
printf("sib 2 %", x2);
return siblingl(x2);

}

A.1 Without Any Optimization

The example's RTL code when the *-O0’ flag is used.

;5 Function nain
(note 2 0 3 "" NOTE_| NSN_DELETED)
(note 3 2 6 "" NOTE_I NSN_FUNCTI ON_BEGQ)
(note 6 3 9 ef541ae0 NOTE_| NSN_BLOCK_BEG
(insn 9 6 12 (set (nmemf:SlI (plus:Sl (reg:SlI 30 % p)
(const _int -20 [Oxffffffec])) O)
(const_int 0 [0x0])) -1 (nil)
(nil))
(insn 12 9 13 (set (reg:Sl 8 %0)

(memf:SlI (plus:SlI (reg:Sl 30 % p)
(const_int -20 [Oxffffffec])) 0)) 112 {*novsi _insn} (nil)
(nil))

(call_insn 13 12 15 (parallel]
(set (reg:SI 8 %0)
(call (mem Sl (synbol _ref:SlI ("siblingl")) 0)

59

(const_int 0 [0x0])))
(cl obber (reg:Sl 15 %7))

1) -1(nil)

(nil)

(expr_list (use (reg:Sl 8 %0))
(nil)))

(note 15 13 16 ef 541ae0 NOTE_I NSN_BLOCK_END)
(note 16 15 18 " NOTE_| NSN_FUNCTI ON_END)

(insn 18 16 20 (clobber (reg/i:Sl 24 %0)) -1 (nil)
(nil))

(insn 20 18 0 (use (reg/i:SI 24 %0)) -1 (nil)
(nil))

;; Function siblingl
(note 2 0 4 "" NOTE_I NSN_DELETED)

(insn 4 2 5 (set (menmf:Sl (plus:Sl (reg:Sl 30 % p)
(const_int 68 [0x44])) 0)
(reg: Sl 24 %0)) 112 {*novsi_insn} (nil)
(nil))

(note 5 4 8 "" NOTE_| NSN_FUNCTI ON_BEG)
(note 8 5 11 ef 520720 NOTE_|I NSN_BLOCK_BEG)

(insn 11 8 13 (set (reg: Sl 106)
(mem f:SlI (plus:SI (reg:SlI 30 % p)
(const_int 68 [0x44])) 0)) 112 {*movsi _insn} (nil)
(nil))

(insn 13 11 15 (set (reg:SlI 107)
(plus:SlI (reg:Sl 106)
(const_int 1 [0x1]))) -1 (nil)
(nil))

(insn 15 13 17 (set (mem f:Sl (plus:SI (reg:SlI 30 % p)
(const_int 68 [0x44])) 0)
(reg: Sl 107)) 112 {*novsi _insn} (nil)
(nil))

(insn 17 15 18 (set (reg: Sl 108)
(high:SlI (synbol _ref:SI ("*.LLC0")))) -1 (nil)
(nil))

(insn 18 17 20 (set (reg:SlI 8 %0)
(lo_sum Sl (reg: Sl 108)
(symbol _ref:SlI ("*.LLCO")))) -1 (nil)
(nil))

(insn 20 18 21 (set (reg:SlI 9 %1)
(mem f:SlI (plus:SI (reg:SlI 30 % p)
(const _int 68 [0x44])) 0)) 112 {*novsi _insn} (nil)
(nil))

(call _insn 21 20 24 (parallel[
(set (reg:SI 8 %0)
(call (mem Sl (synbol _ref:SlI ("printf")) 0)
(const_int 0 [0x0])))
(cl obber (reg:Sl 15 %7))
1) -1 (nil)
(nil)
(expr_list (use (reg:Sl 9 %1))
(expr_list (use (reg:Sl 8 %0))
(ni1))))

(insn 24 21 25 (set (reg:Sl 8 %0)

(mem f:SlI (plus:SI (reg:SlI 30 % p)
(const _int 68 [0x44])) 0)) 112 {*novsi _insn} (nil)
(nil))

(call _insn 25 24 27 (parallel[
(set (reg:SI 8 %0)

60

(call (mem Sl (synbol _ref:SlI ("sibling2")) 0)
(const_int 0 [0x0])))
(cl obber (reg:Sl 15 %7))

1) -1(nil)

(nil)

(expr_list (use (reg:Sl 8 %00))
(nil)))

(insn 27 25 29 (set (reg:SlI 109)
(reg:SI 8 %0)) -1 (nil)
(nil))

(insn 29 27 30 (set (reg/i:Sl 24 % 0)
(reg:SlI 109)) -1 (nil)
(nil))

(jump_insn 30 29 31 (set (pc)
(label _ref 37)) -1 (nil)
(nil))

(barrier 31 30 33)
(note 33 31 37 ef 520720 NOTE_| NSN_BLOCK_END)
(code_l abel 37 33 38 3 "" "" [numuses: 1])

(insn 38 37 0 (use (reg/i:SI 24 %0)) -1 (nil)
(nil))

;; Function sibling2
(note 2 0 4 "" NOTE_I NSN_DELETED)

(insn 4 2 5 (set (nemf:SlI (plus:Sl (reg:SI 30 % p)
(const_int 68 [0x44])) 0)
(reg:SlI 24 %0)) 112 {*novsi _insn} (nil)
(nil))

(note 5 4 11 "* NOTE_| NSN_FUNCTI ON_BEG)

(insn 11 5 13 (set (reg:SlI 106)
(mem f:SlI (plus:SI (reg:SlI 30 % p)
(const _int 68 [0x44])) 0)) 112 {*novsi _insn} (nil)
(nil))

(insn 13 11 15 (set (reg:SlI 107)
(plus: Sl (reg:Sl 106)
(const _int 1 [0x1]))) -1 (nil)
(nil))

(insn 15 13 17 (set (mem f:SlI (plus:SI (reg:SlI 30 % p)
(const _int 68 [0x44])) 0)
(reg: Sl 107)) 112 {*movsi _insn} (nil)
(nil))

(insn 17 15 18 (set (reg: Sl 108)
(high:SlI (synbol _ref:SI ("*.LLC0")))) -1 (nil)
(nil))

(insn 18 17 20 (set (reg:SlI 8 %00)
(lo_sum Sl (reg: Sl 108)
(symbol _ref:SlI ("*.LLCO")))) -1 (nil)
(nil))

(insn 20 18 21 (set (reg:Sl 9 %1)
(mem f:SlI (plus:SI (reg:SlI 30 % p)
(const_int 68 [0x44])) 0)) 112 {*movsi _insn} (nil)
(nil))

(call _insn 21 20 24 (parallel[
(set (reg:SI 8 %0)
(call (mem Sl (synbol _ref:Sl ("printf")) 0)
(const _int 0 [0x0])))
(cl obber (reg:Sl 15 %7))
1) -1 (nil)
(nil)
(expr_list (use (reg:Sl 9 %1))

61

(expr_list (use (reg:Sl 8 %00))
(ni1))))

(insn 24 21 25 (set (reg:Sl 8 %0)
(memf:SlI (plus:SlI (reg:Sl 30 % p)
(const_int 68 [0x44])) 0)) 112 {*novsi _insn} (nil)
(nil))

(call _insn 25 24 27 (parallel[
(set (reg:SI 8 %0)
(call (mem Sl (synbol _ref:SlI ("siblingl")) 0)
(const_int 0 [0x0])))
(cl obber (reg:Sl 15 %7))

1) -1 (nil)

(expr_list: REG EH REG ON (const_int 0 [0x0])
(nil))

(expr_list (use (reg:Sl 8 %0))
(nil)))

(insn 27 25 29 (set (reg:SlI 109)
(reg:SI 8 %0)) -1 (nil)
(nil))
(insn 29 27 30 (set (reg/i:Sl 24 % 0)
(reg:SlI 109)) -1 (nil)
(nil))
(jump_insn 30 29 31 (set (pc)
(label _ref 36)) -1 (nil)
(nil))
(barrier 31 30 36)
(code_l abel 36 31 37 4 "" "" [numuses: 1])

(insn 37 36 0 (use (reg/i:SI 24 %0)) -1 (nil)
(nil))

A.2 With Optimization

The example code’ s RTL code when the *-02’ flag is used.

;» Function nmain
(note 2 0 3 "" NOTE_| NSN_DELETED)
(note 3 2 6 "" NOTE_I NSN_FUNCTI ON_BEG)
(note 6 3 30 ef520b20 NOTE_| NSN_BLOCK_BEG)
(note 30 6 9 [bb 0] NOTE_I NSN_BASI C_BLOCK)
(insn 9 30 16 (set (reg/v:Sl 106)
(const_int 0 [0x0])) -1 (nil)
(nil))
(insn 16 9 17 (set (reg:Sl 24 %0)
(reg/v:Sl 106)) -1 (nil)
(nil))
(call _insn/j 17 16 18 (parallel[
(set (reg:Sl 24 %0)

(call (mem Sl (synbol _ref:SlI ("siblingl")) 0)
(const_int 0 [0x0])))

(return)
1) -1 (nil)
(nil)
(expr_list (use (reg:Sl 24 %0))
(nil)))

(barrier 18 17 22)

62

(note 22 18 24 "" NOTE_| NSN_DELETED)

(note 24 22 0 ef 520b20 NOTE_| NSN_BLOCK_END)
;; Function siblingl

(note 2 0 61 "" NOTE_| NSN_DELETED)

(note 61 2 4 [bb 0] NOTE_|I NSN_BASI C_BLOCK)

(insn 4 61 5 (set (reg/v:Sl 106)
(reg:Sl 24 %0)) -1 (nil)
(nil))

(note 5 4 8 "" NOTE_| NSN_FUNCTI ON_BEG)
(note 8 5 11 ef 521b40 NOTE_I NSN_BLOCK_BEG)

(insn 11 8 25 (set (reg/v:Sl 106)
(plus: Sl (reg/v:Sl 106)
(const_int 1 [0x1]))) -1 (nil)
(nil))

(insn 25 11 26 (set (reg:SlI 111)
(high:SlI (synbol _ref:SI ("*.LLC0")))) -1 (nil)
(nil))

(insn 26 25 28 (set (reg:SlI 110)
(lo_sum Sl (reg:SI 111)
(symbol _ref: Sl ("*.LLCO")))) -1 (nil)
(nil))

(insn 28 26 30 (set (reg:Sl 8 %0)
(reg:SlI 110)) -1 (nil)
(nil))

(insn 30 28 31 (set (reg:Sl 9 %1)
(reg/v:Sl 106)) -1 (nil)
(nil))

(call _insn 31 30 32 (parallel[
(set (reg:SI 8 %0)
(call (mem Sl (synbol _ref:SlI ("printf")) 0)
(const_int 0 [0x0])))
(cl obber (reg:Sl 15 %7))
1) -1(nil)
(nil)
(expr_list (use (reg:Sl 9 %1))
(expr_list (use (reg:Sl 8 %0))
(nil))))

(note 32 31 39 "" NOTE_| NSN_DELETED)

(insn 39 32 40 (set (reg:Sl 24 %0)
(reg/v:SlI 106)) -1 (nil)
(nil))

(call _insn/j 40 39 41 (parallel[
(set (reg:Sl 24 %0)
(call (mem Sl (synbol _ref:SlI ("sibling2")) 0)
(const_int 0 [0x0])))

(return)
1) -1 (nil)
(nil)
(expr_list (use (reg:Sl 24 %0))
(nil)))

(barrier 41 40 49)

(note 49 41 55 "" NOTE_| NSN_DELETED)

(note 55 49 0 ef 521b40 NOTE_| NSN_BLOCK_END)
Function sibling2

(note 2 0 60 "* NOTE_| NSN_DELETED)

63

(note 60 2 4 [bb 0] NOTE_I NSN_BASI C_BLOCK)

(insn 4 60 5 (set (reg/v:Sl 106)
(reg:SlI 24 %0)) -1 (nil)
(nil))

(note 5 4 11 "" NOTE_I NSN_FUNCTI ON_BEG)

(insn 11 5 25 (set (reg/v:Sl 106)
(plus:Sl (reg/v:Sl 106)
(const_int 1 [0x1]))) -1 (nil)
(nil))

(insn 25 11 26 (set (reg:SlI 111)
(high:SlI (synbol _ref:SI ("*.LLQ0")))) -1 (nil)
(nil))

(insn 26 25 28 (set (reg:SlI 110)
(lo_sum Sl (reg:SI 111)
(symbol _ref:SlI ("*.LLCO")))) -1 (nil)
(nil))

(insn 28 26 30 (set (reg:SlI 8 %0)
(reg: Sl 110)) -1 (nil)
(nil))

(insn 30 28 31 (set (reg:Sl 9 %1)
(reg/v:Sl 106)) -1 (nil)
(nil))

(call _insn 31 30 32 (parallel[
(set (reg:SI 8 %0)
(call (mem Sl (synbol _ref:SlI ("printf")) 0)
(const _int 0 [0x0])))
(cl obber (reg:Sl 15 %7))
1) -1 (nil)
(nil)
(expr_list (use (reg:Sl 9 %1))
(expr_list (use (reg:Sl 8 %0))
(nil))))

(note 32 31 39 "" NOTE_| NSN_DELETED)

(insn 39 32 40 (set (reg:Sl 24 %0)
(reg/v:Sl 106)) -1 (nil)
(nil))

(call _insn/j 40 39 41 (parallel[
(set (reg:Sl 24 %0)
(call (mem Sl (synbol _ref:SlI ("siblingl")) 0)
(const _int 0 [0x0])))

(return)
1) -1 (nil)
(expr_list:REG EH REG ON (const _int 0 [0x0])
(nil))
(expr_list (use (reg:Sl 24 %0))
(nil)))

(barrier 41 40 49)

(note 49 41 0 "" NOTE_I NSN_DELETED)

64

B Appendix. The Cygnus Patch

This patch is quite extensive. It contains more than 4000 rows (> 70 pages), which is
approximately the same amount as the entire report. We have chose not to attach the whole
patch. If the interested reader would like to see a whole patch, we recommend section
Thefile sibcall.cisapart of the Cygnus patch and will be presented in section

B.1 TheAdded Filesbcall.c

On the following pages we will present the added file sibcall.c. Except from the changes in
twelve existing files, this file had to be added to GCC in order to obtain a better structure

when solving thetail call problem.

/* Ceneric sibling call optimzation support
Copyright (C 1999, 2000 Free Software Foundation, |nc

This file is part of GNU CC

G\NU CCis free software; you can redistribute it and/or nodify

it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any |l ater version.

G\NU CCis distributed in the hope that it will be useful

but W THOUT ANY WARRANTY; without even the inplied warranty of
MERCHANTABI LI TY or FI TNESS FOR A PARTI CULAR PURPCSE. See the
GNU General Public License for nore details

You shoul d have received a copy of the GNU General Public License
along with GNU CC, see the file COPYING If not, wite to

the Free Software Foundation, 59 Tenple Place - Suite 330

Boston, MA 02111-1307, USA. */

#i ncl ude
#i ncl ude

"config. h"
"system h"

"rtl.h"

"regs. h"
"function. h"
"hard-reg-set.h"
"flags. h"
"insn-config.h"
"recog. h"
"basi c- bl ock. h"
"out put. h"
"except. h"

#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude

static int identify_call _return_val ue
static rtx skip_copy_to_return_val ue
static rtx skip_use_of _return_val ue

PARAMS ((rtx, rtx *, rtx *));
PARAMS ((rtx, rtx, rtx));
PARAME ((rtx, enumrtx_code));

static rtx skip_stack_adj ustnent
static rtx skip_junp_insn

static int uses_addressof

static int sequence_uses_addressof
static void purge_reg_equiv_notes

PARAMS ((rtx));
PARAMS ((rtx));
PARAMS ((rtx));
PARAMS ((rtx));
PARAME ((void));

/* Examine a CALL_PLACEHOLDER pattern and determine where the call's

return value is |ocated

P_HARD RETURN receives the hard register

65

that the function used; P_SOFT_RETURN receives the pseudo register
that the sequence used. Return non-zero if the values were |ocated. */

static int

identify_call_return_value (cp, p_hard_return, p_soft_return)
rex cp;
rtx *p_hard_return, *p_soft_return;

{

rtx insn, set, hard, soft;

/* Search forward through the "normal" call sequence to the CALL insn. */

insn = XEXP (cp, 0);

while (GET_CODE (insn) != CALL_I NSN)
insn = NEXT_INSN (insn);

/* Assune the pattern is (set (dest) (call ...)), or that the first
menber of a parallel is. This is the hard return register used
by the function. */

if (GET_CODE (PATTERN (insn)) == SET
&& GET_CODE (SET_SRC (PATTERN (insn))) == CALL)
hard = SET_DEST (PATTERN (i nsn));

else if (CGET_CODE (PATTERN (insn)) == PARALLEL

&& GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET
&& GET_CODE (SET_SRC (XVECEXP (PATTERN (insn), 0, 0))) == CALL)
hard = SET_DEST (XVECEXP (PATTERN (insn), 0, 0));

el se
return O;

/* If we didn't get a single hard register (e.g. a parallel), give up. */

if (GET_CCODE (hard) != REQ
return O;

/* If there's nothing after, there's no soft return value. */

insn = NEXT_I NSN (insn);

if (! insn)
return O;

/* We're looking for a source of the hard return register. */

set = single_set (insn);

if (! set || SET_SRC (set) != hard)

return O;

soft = SET_DEST (set);

insn = NEXT_I NSN (insn);

/* Allowthis first destination to be copied to a second register,
as mght happen if the first register wasn't the particul ar pseudo
we' d been expecting. */

if (insn
&& (set = single_set (insn)) != NULL_RTX
&& SET_SRC (set) == soft)

{
soft = SET_DEST (set);
insn = NEXT_I NSN (insn);
}
/* Don't fool with anything but pseudo registers. */
if (GET_CODE (soft) != REG || REGNO (soft) < FIRST_PSEUDO REG STER)
return O;
/* This value nust not be nodified before the end of the sequence. */
if (reg_set_between_p (soft, insn, NULL_RTX))
return O;

*p_hard_return = hard;

*p_soft_return = soft;

return 1,

}

/* If the first real insn after ORIG INSN copies to this function's
return value from RETVAL, then return the insn which perforns the
copy. Oherwise return ORIGINSN. */

static rtx

skip_copy_to_return_value (orig_insn, hardret, softret)
rtx orig_insn;

66

rtx hardret, softret;
rtx insn, set = NULL_RTX;

insn = next_nonnote_insn (orig_insn);
if (! insn)
return orig_insn;

set = single_set (insn);
if (! set)
return orig_insn;

/* The destination nust be the sane as the called function's return
value to ensure that any return value is put in the sane place by the
current function and the function we're calling.

Further, the source must be the sanme as the pseudo into which the
called function's return value was copied. Oherwise we're returning
sone ot her value. */

#i f ndef QOUTGO NG_REGNO
#def i ne QUTGO NG REGNQ(N) (N)
#endi f

if (SET_DEST (set) == current_function_return_rtx
&% REG P (SET_DEST (set))
&& OUTGO NG_REGNO (REGNO (SET_DEST (set))) == REGNO (hardret)
&& SET_SRC (set) == softret)
return insn;

/* It did not look like a copy of the return value, so return the
sane insn we were passed. */
return orig_insn;

}

/* If the first real insn after ORIGINSN is a CODE of this function's return
value, return insn. Oherwise return ORIG INSN. */

static rtx

ski p_use_of return_value (orig_insn, code)
rtx orig_insn;
enum rt x_code code;

{

rtx insn;
insn = next_nonnote_insn (orig_insn);

if (insn
&& GET_CODE (insn) == I NSN
&& GET_CODE (PATTERN (insn)) == code
&& (XEXP (PATTERN (insn), 0) == current_function_return_rtx
|| XEXP (PATTERN (insn), 0) == constO_rtx))
return insn;

return orig_insn;

}
/* If the first real insn after ORI G INSN adjusts the stack pointer
by a constant, return the insn with the stack pointer adjustnment.
QO herwise return ORIG INSN. */
static rtx
ski p_stack_adj ust ment (orig_insn)
rtx orig_insn;
{
rtx insn, set = NULL_RTX;
insn = next_nonnote_insn (orig_insn);

if (insn)
set = single_set (insn);

/* The source nust be the same as the current function's return value to
ensure that any return value is put in the same place by the current

function and the function we're calling. The destination register
must be a pseudo. */
if (insn

67

&& set

&8& GET_CODE (SET_SRC (set))

&& XEXP (SET_SRC (set), 0)

&% GET_CODE (XEXP (SET_SRC (set),

&& SET_DEST (set)
return insn;

== PLUS

1)

stack_pointer_rtx)

/* It did not
sane insn we were passed.

return orig_insn;

*/
}
/* If the first real
QG herwise return ORIG_INSN. */
static rtx
ski p_junmp_insn (orig_insn)

rtx orig_insn;

{ .
rtx insn;
insn = next_nonnote_insn (orig_insn);
if (insn
&& GET_CODE (insn) == JUWP_I NSN
&& sinmpl ejunmp_p (insn))
return insn;
return orig_insn;
}

/* Scan the rtx X for an ADDRESSOF expressions.

expresion is found, else return zero. */
static int
uses_addr essof (x)
rtx x;
{
RTX_CODE code;
int i, j;
const char *fnt;
if (x == NULL_RTX)
return O;
code = CGET_CODE (X);
if (code == ADDRESSOF)
return 1;
/* Scan all subexpressions. */
fm = CGET_RTX_FORMAT (code);
for (i = 0; i < GET_RTX_LENGTH (code); i ++,
if (*fnmt =="e")
if (uses_addressof (XEXP (X,
return 1;
o}
else if (*fm =="E)
for (j =0; j < XVECLEN (x, i);
if (uses_addressof (XVECEXP (X,
return 1;
}
}
return O;

}

/* Scan the sequence of
rtl expression.
el se return zero.

insns in SEQto see if
I f an ADDRESSOF expression

look l'ike a copy of the return val ue,

insn after ORIGINSN is a junp,

stack_pointer_rtx
== CONST_I NT

so return the

return the JUVP_I NSN.

Return nonzero if an ADDRESSOF

fnt ++)

i)))

j+t)
i,

i)

any have an ADDRESSOF
is found, return nonzero,

This function handl es CALL_PLACEHOLDERs which contain nultiple sequences

of insns. */

static int

68

sequence_uses_addressof (seq)

rtx seq
{ .
rtx insn;
for (insn = seq; insn; insn = NEXT_INSN (insn))
if (GET_RTX_CLASS (GET_CODE (insn)) =="i")
{
/* 1f this is a CALL_PLACEHOLDER, then recursively call ourselves
wi th each nonenpty sequence attached to the CALL_PLACEHOLDER. */
if (GET_CODE (insn) == CALL_INSN
&& GET_CODE (PATTERN (insn)) == CALL_PLACEHOLDER)
if (XEXP (PATTERN (insn), 0) != NULL_RTX
&& sequence_uses_addressof (XEXP (PATTERN (insn), 0)))
return 1;
if (XEXP (PATTERN (insn), 1) != NULL_RTX
&& sequence_uses_addressof (XEXP (PATTERN (insn), 1)))
return 1;
if (XEXP (PATTERN (insn), 2) != NULL_RTX
&& sequence_uses_addressof (XEXP (PATTERN (insn), 2)))
return 1;
}
else if (uses_addressof (PATTERN (insn))
|| (REG_NOTES (insn) && uses_addressof (REG NOTES (insn))))
return 1;
}
return O
}

/* Rermove all REG EQUIV notes found in the insn chain. */

static void
purge_reg_equi v_notes ()

rtx insn;
for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
while (1)
{

rtx note = find_reg_note (insn, REG EQU YV, 0)
if (note)
{
/* Renpve the note and keep | ooking at the notes for
this insn. */
remove_note (insn, note)
conti nue;

br eak;

}

}

/* Replace the CALL_PLACEHOLDER with one of its children. |INSN should be
the CALL_PLACEHOLDER insn; USE tells which child to use. */

voi d

repl ace_cal | _pl acehol der (insn, use)
rtx insn;
si bcal | _use_t use

if (use == sibcall _use_tail_recursion)

emt _insns_before (XEXP (PATTERN (insn), 2), insn)
else if (use == sibcall _use_sibcall)

emt_insns_before (XEXP (PATTERN (insn), 1), insn)
else if (use == sibcall _use_normal)

emt _insns_before (XEXP (PATTERN (insn), 0), insn)
el se

abort ();

/* Turn off LABEL_PRESERVE P for the tail recursion label if it
exists. W only had to set it |long enough to keep the junp
pass above fromdeleting it as unused. */

if (XEXP (PATTERN (insn), 3))

LABEL_PRESERVE_P (XEXP (PATTERN (insn), 3)) =0

69

/* "Del ete" the placehol der insn. */
PUT_CODE (i nsn, NOTE);

NOTE_SOQURCE_FI LE (i nsn)
NOTE_LI NE_NUMBER (i nsn)

0;
NOTE_| NSN_DELETED;

}

/* Gven a (possibly empty) set of potential sibling or tail recursion call
sites, determne if optimzation is possible.

Potential sibling or tail recursion calls are marked wi th CALL_PLACEHOLDER
insns. The CALL_PLACEHOLDER insn holds chains of insns to inplenment a
normal call, sibling call or tail recursive call.

Repl ace the CALL_PLACEHOLDER with an appropriate insn chain. */

voi d

optim ze_sibling_and_tail_recursive_calls ()

{
rtx insn, insns;
basi c_bl ock alternate_exit = EXI T_BLOCK PTR;
int current_function_uses_addressof;

int successful _sibling_call = 0;
int replaced_cal |l _pl acehol der = 0;
edge e;

insns = get_insns ();

/* We do not performthese calls when flag_exceptions is true, so this
is probably a NOP at the current time. However, we may want to support
sibling and tail recursion optimzations in the future, so let's plan
ahead and find all the EH | abels. */

find_exception_handl er_labels ();

/* Run a junp optimzation pass to clean up the CFG W primarily want
this to thread junps so that it is obvious which blocks junp to the
epi | ouge. */

junmp_optim ze_mnimal (insns);

/* We need cfg information to determine which blocks are succeeded
only by the epilogue. */

find_basic_bl ocks (insns, max_reg_num (), 0);

cl eanup_cfg (insns);

/* |If there are no basic blocks, then there is nothing to do. */
if (n_basic_blocks == 0)
return;

/* Find the exit bl ock.

It is possible that we have bl ocks which can reach the exit block
directly. However, nost of the time a block will junp (or fall into)
N BASIC BLOCKS - 1, which in turn falls into the exit block. */
for (e = EXI T_BLOCK_PTR- >pred;
e & alternate_exit == EXI T_BLOCK_PTR
e = e->pred_next)

{ .
rtx insn;
if (e->dest != EXIT_BLOCK PTR || e->succ_next != NULL)
conti nue;

/* Wal k forwards through the |last normal block and see if it

does nothing except fall into the exit block. */
for (insn = BLOCK HEAD (n_basic_blocks - 1);
insn;

insn = NEXT_INSN (insn))
/* This should only happen once, at the start of this bl ock.
if (GET_CODE (insn) == CODE_LABEL)

conti nue;

if (GET_CODE (insn) == NOTE)

conti nue;
if (GET_CODE (insn) == INSN
&% GET_CODE (PATTERN (insn)) == USE)
conti nue;

70

*/

br eak;

}

/* If INSNis zero, then the search wal ked all the way through the
bl ock without hitting anything interesting. This block is a
valid alternate exit block. */
if (insn == NULL)
alternate_exit = e->src;
}

/* 1f the function uses ADDRESSOF, we can't (easily) determ ne
at this point if the value will end up on the stack. */
current_function_uses_addressof = sequence_uses_addressof (insns);

/* Walk the insn chain and find any CALL_PLACEHOLDER insns. W need to
sel ect one of the insn sequences attached to each CALL_PLACEHOLDER

The different sequences represent different ways to inplenent the call,
ie, tail recursion, sibling call or normal call.

Since we do not create nested CALL_PLACEHOLDERs, the scan
continues with the insn that was after a replaced CALL_PLACEHOLDER;
we don't rescan the replacenent insns. */

for (insn = insns; insn; insn = NEXT_INSN (insn))

if (GET_CODE (insn) == CALL_INSN
&8 GET_CODE (PATTERN (insn)) == CALL_PLACEHOLDER)
{

int sibcall = (XEXP (PATTERN (insn), 1) != NULL_RTX);

int tailrecursion = (XEXP (PATTERN (insn), 2) != NULL_RTX);
basi c_bl ock succ_bl ock, call _bl ock;

rtx tenmp, hardret, softret;

/* We nust be careful with stack slots which are live at
potential optimzation sites.

?1? This test is overly conservative and will be replaced. */
if (frame_offset)
goto failure;
/* alloca (until we have stack slot life analysis) inhibits
sibling call optimzations, but not tail recursion.
Simlarly if we have ADDRESSOF expressions.
Simlarly if we use varargs or stdarg since they inplicitly
may take the address of an argunent. */
if (current_function_calls_alloca || current_function_uses_addressof
|| current_function_varargs || current_function_stdarQg)
sibcall = 0;

cal | _bl ock = BLOCK_FOR_I NSN (i nsn);

/* If the block has nore than one successor, then we can not
performsibcall or tail recursion optimzations. */
if (call_block->succ == NULL
|| call _bl ock->succ->succ_next != NULL)
goto failure;

/* |If the single successor is not the exit block, then we can not

performsibcall or tail recursion optimzations.

Note that this test conbined with the previous is sufficient
to prevent tail call optimzation in the presense of active

exception handlers. */
succ_bl ock = cal |l _bl ock->succ->dest;

if (succ_block !'= EXIT_BLOCK PTR && succ_block != alternate_exit)

goto failure;

/* 1If the call was the end of the block, then we're K */
tenp = insn;
if (temp == call _bl ock->end)

got o success;

/* Skip over copying fromthe call's return val ue pseudo into
this function's hard return register. */

71

if (identify_call _return_value (PATTERN (insn), &hardret, &softret))

tenp = skip_copy_to_return_value (tenp, hardret, softret)
if (temp == call _bl ock->end)
got 0 success;

}

/* Skip any stack adjustment. */
tenp = skip_stack_adjustment (tenp);
if (temp == call_bl ock->end)

got 0 success;

/* Skip over a CLOBBER of the return value (as a hard reg). */
temp = skip_use_of _return_value (tenp, CLOBBER);
if (temp == call_bl ock->end)

got 0 success;

/* Skip over a USE of the return value (as a hard reg). */
temp = skip_use_of _return_val ue (tenp, USE)
if (temp == call _bl ock->end)

got o success;

/* Skip over the JUW_INSN at the end of the block. */
tenp = skip_junp_insn (tenp)
if (CGET_CCDE (tenp) == NOTE)
tenp = next_nonnote_insn (tenp);
if (temp == call _bl ock->end)
got 0 success;

/* There are operations at the end of the block which we nust
execute after returning fromthe function call. So this cal
can not be optimzed. */

failure
sibcall = 0, tailrecursion = 0;
success:
/* Select a set of insns to inplenent the call and emt them
Tail recursion is the nost efficient, so select it over
atail/sibling call. */
if (sibcall)
successful _sibling_call = 1;
repl aced_cal | _pl acehol der = 1;
repl ace_cal | _pl acehol der (insn
tailrecursion !=0
? sibcall _use_tail _recursion
sibcall =0
? sibcal |l _use_si bcal
si bcal | _use_normal) ;
}
}

/* A sibling call sequence invalidates any REG EQUI V notes nade for
this function's inconing argunents

At the start of RTL generation we know the only REG EQUI V notes
in the rtl chain are those for incom ng argunents, so we can safely
flush any REG EQUIV note.

This is (slight) overkill. W could keep track of the highest argunent
we cl obber and be nore selective in renmoving notes, but it does not
seemto be worth the effort. */

if (successful _sibling_call)
purge_reg_equiv_notes ();

/* There may have been NOTE_|I NSN_BLOCK_{BEG N, END} notes in the
CALL_PLACEHOLDER alternatives that we didn't emit. Rebuild the
I exical block tree to correspond to the notes that still exist. */
if (replaced_call _pl acehol der)
reorder_bl ocks ();

/* This information will be invalid after inline expansion. Kill it now */
free_basic_block_vars (0);

72

C Appendix. A GCC Patch

This is an example of how a GCC patch could look like. This patch is constructed to be able
to use the Cygnus patch on the Sparc architecture. When a developer wants to improve a
program, he (she) takes the original source code and creates a copy of it. Implement the
changes and write the necessary comments. When the implementation is finished, one
performs an act called “diff”. The diff command creates a new file, a patch that consists of
pairs of code pieces and corresponding comments. A pair consist of old code and new code.
Now that a patch has been created, one can distribute the patch. Thisrelatively small sized file
is easier to distribute than a complete source file. A user can apply the patch on a file by
specifying the files names and write the “ patch” command in a shell-tool.

When looking at a patch, some rows begin with ‘+++ and ‘---, as in the following

example.

--- gcc/config/sparc/sparc.h.jj Fri Mar 24 09:13:57 2000
+++ gcc/ confi g/ sparc/sparc. h Fri Mar 24 09:17:10 2000

@ -131,7 +131,7 @@
;; Attributes for instruction and branch scheduling

(define_attr "in_call _delay" "fal se,true"
- (cond [(eq_attr "type"
"uncond_branch, branch, call,call _no_delay slot,return, nulti")
+ (cond [(eq_attr "type"
"uncond_branch, branch, cal |l ,sibcall,call_no_delay slot,return, nulti")
(const _string "fal se")
(eq_attr "type" "load,fpload, store, fpstore")
(if_then_else (eq_attr "length" "1")

The' @@ tells where in the file the changes will take place and the *; ; ’ tells that the row is a
comment. The ‘---* tells which file that will be patched and the ‘+++’ tells the new name of

the file with the new timestamp. A single’-" means that this expression will be replaced with
the expression that follows asingle’+' as shown above.

It is not easy, even for a very experienced eye, to interpret a patch because the patch
consists only of fragments of the original file, taken out of its context. In order to fully
understand a patch, one has to know and understand the original file's code. The complete

Sparc patch will be presented in section

73

C.1 Mr Jelinek’s Sparc Patch

--- gcc/configl/sparc/sparc.h.jj Fri Mar 24 09:13:57 2000
+++ gcc/ confi g/ sparc/sparc. h Fri Mar 24 09:17:10 2000
@ -1066,8 +1066,8 @@ do

\

% p, but output it as %7. */ \
fixed_regs[31] = 1; \
reg_nanes[FRAME_PO NTER_REGNUM = "% 7"; \

- [* 2?2?22 This is a hack to disable |eaf functions. */ \

- gl obal _regs[7] = 1; \

+ /* Disable | eaf functions */ \

+ bzero (sparc_| eaf _regs, FIRST_PSEUDO REG STER); \
} \

if (profile_block_flag) \

@m-1373,26 +1373,8 @ extern enumreg_class sparc_regno_reg_cl
#defi ne ORDER_REGS_FOR LOCAL_ALLQOC order _regs_for_local _alloc ()

-/* ??? %97 is not a leaf register to effectively #undef LEAF_REG STERS when
- -nflat is used. Function only_leaf _regs_used will return 0 if a gl obal
- register is used and is not permitted in a |leaf function. W nake %97

- a global reg if -nflat and voila. Since %97 is a systemregister and is
- fixed it won't be used by gcc anyway. */

-#define LEAF_REG STERS \

{1, 1,1, 1, 1, 1, 1, o, \
- 0,0 0 0 0, 0 1, 0, \
- 0,0 0 0 0 0 0, O, \
- 1,1, 1, 1, 1, 1, 0, 1, \
- 01,1, 1,1, 1, 1, 1, 1, \
- 1,1, 1,1, 1, 1, 1, 1, \
- 01,1, 1,1, 1, 1, 1, 1, \
- 1,1, 1,1, 1, 1, 1, 1, \
- 1,1, 1,1, 1, 1, 1, 1, \
- 1,1, 1,1, 1, 1, 1, 1, \
- 1,1, 1,1, 1, 1, 1, 1, \
- 1,1, 1,1, 1, 1, 1, 1, \
- 1,1, 1, 1, 1}

+ext ern Ch;;ll’ ’spar c_leaf _regs[];
+#def i ne LEAF_REQ STERS sparc_| eaf _regs

extern char leaf_reg_remap[];
#def i ne LEAF_REG REMAP(REGNO) (| eaf _reg_remap[REGNC)
@-2144,6 +2126,10 @@ LFLGRET"ID":\ n\
For the v9 we want NAMED to nean what it says it means. */

#define STRI CT_ARGUVMENT_NAM NG TARGET_V9

+

+/* W do not allow sibling calls if -nflat, nor

+ we do not allowindirect calls to be optinized into sibling calls. */
+#defi ne FUNCTI ON_OK_FOR_SI BCALL(DECL) (DECL && ! TARGET_FLAT)

/* CGenerate RTL to flush the register windows so as to make arbitrary frames
avail able. */

--- gcc/config/sparc/sparc.nd. jj Mon Mar 13 18: 05:46 2000

+++ gcc/ confi g/ sparc/sparc. nd Fri Mar 24 09:17:10 2000

@@-88,7 +88,7 @@

;; type "call _no_delay_slot" is a call followed by an uninp instruction.

(define_attr "type"

"nove, unary, bi nary, conpar e, | oad, sl oad, store, ial u,shift,uncond_branch, branch, call, ca

74

Il _no_delay _slot,return, address,iml, fpload,fpstore,fp,fpnove, f pc-
nove, f pcnp, f pnul , f pdi vs, f pdi vd, fpsqrts, fpsqrtd, cnove, nul ti, m sc”
+
"nmove, unary, bi nary, conpar e, | oad, sl oad, store, ial u, shift,uncond_branch, branch, cal |, si
bcall,call _no _delay_slot,return, address,inul, fpload,fpstore,fp, fprove, f pc-
nmove, f pcnp, f pnul , f pdi vs, f pdi vd, fpsqrts, fpsqrtd, cnove, nul ti, m sc”
(const _string "binary"))

;; Set true if insn uses call-clobbered internediate register.
@-131,7 +131,7 @@
Attributes for instruction and branch schedul i ng

(define_attr "in_call _delay" "fal se,true"
- (cond [(eq_attr "type"
"uncond_branch, branch, cal |, call _no_delay_slot,return, multi")
+ (cond [(eq_attr "type"
"uncond_branch, branch, cal |, sibcall,call_no_delay_slot,return,multi")
(const_string "fal se")
(eq_attr "type" "load,fpload, store, fpstore")
(if_then_else (eq_attr "length" "1")
@-148,6 +148,12 @@
(define_delay (eq_attr "type" "call™")
[(eg_attr "in_call _delay" "true") (nil) (nil)])

+(define_attr "eligible_for_sibcall _delay" "fal se,true"
+ (synbol _ref "eligible_for_sibcall_delay(insn)"))
+
+(define_delay (eq_attr "type" "sibcall")
+ [(eq_attr "eligible for_sibcall_delay" "true") (nil) (nil)])
+
(define_attr "leaf_function" "fal se, true"
(const (synbol _ref "current_function_uses_only_leaf_regs")))

@-179, 19 +185, 19 @@
;; because it prevents us from noving back the final store of inner |oops.

(define_attr "in_branch_del ay" "fal se, true"
- (if_then_else (and (eqg_attr "type"
"luncond_branch, branch, call,call _no_delay_slot,mlti")
+ (if_then_else (and (eqg_attr "type" "!uncond_branch, branch, call, sib-
call,call _no_delay_slot,multi")
(eq_attr "length" "1"))
(const_string "true")
(const _string "false")))

(define_attr "in_uncond_branch_del ay" "fal se, true"
- (if_then_else (and (eq_attr "type"
"luncond_branch, branch, call,call _no_delay_slot,mlti")
+ (if_then_else (and (eqg_attr "type" "!uncond_branch, branch, call, sib-
call,call _no_delay_slot,multi")
(eq_attr "length" "1"))
(const _string "true")
(const_string "false")))

(define_attr "in_annul _branch_del ay" "fal se,true”
- (if_then_else (and (eq_attr "type"
"luncond_branch, branch, call,call _no_delay_slot,mlti")
+ (if_then_else (and (eqg_attr "type" "!uncond_branch, branch, call, si b-
call,call _no_delay_slot,multi")
(eq_attr "length" "1"))

(const _string "true")

(const_string "false")))
@ -453,7 +459,7 @@

(define_function_unit "ieuN' 2 0
(and (eqg_attr "cpu" "ultrasparc")
- (eq_attr "type" "ialu,binary, nove, unary, shift,com
pare, call,call _no_del ay_sl ot, uncond_branch"))

75

+ (eq_attr "type" "ialu,binary, nove, unary, shift, conpare, call, sib-
call,call _no_delay_slot,uncond_branch"))
11)

(define_function_unit "ieu0" 1 0
@@-468,7 +474,7 @@

(define_function_unit "ieul" 1 0
(and (eqg_attr "cpu" "ultrasparc")
- (eq_attr "type" "conpare,call,call_no_del ay_sl ot,uncond_branch"))
+ (eq_attr "type" "conpare,call,sibcall,call_no_delay_sl ot, uncond_branch"))
11)

(define_function_unit "cti” 1 0
@ - 8569, 6 +8575,59 @@

DONE
)
+
+;;- tail calls
+(define_expand "sibcal | "
+ [(parallel [(call (match_operand 0 "call _operand"” "") (const_int 0))
+ (return)])]
T
)
+

+(define_insn "*sibcall _synbolic_sp32"

[(call (mem SI (match_operand: SI 0 "synbolic_operand" "s"))
(match_operand 1 "" ""))
(return)]
"1 TARGET_PTR64"

"* return output_sibcall (insn, operands[O0]);"
[(set_attr "type" "sibcall")])

+ o+ + + + o+ o+

+(define_insn "*sibcall _synmbolic_sp64"

+ [(call (mem Sl (match_operand: DI 0 "synbolic_operand" "s"))
+ (match_operand 1 "" ""))

+ (return)]

+ "TARGET_PTR64"

+ "* return output_sibcall(insn, operands[O0]);"

+ [(set_attr "type" "sibcall")])

+

+(define_expand "sibcal | _val ue"

+ [(parallel [(set (match_operand O "register_operand" "=rf")
+ (call (match_operand:SI 1 "" "") (const_int 0)))
+ (return)])]

T

£

+

+(define_insn "*sibcall _val ue_synbolic_sp32"

+ [(set (match_operand 0 "" "=rf")

+ (call (mem Sl (rmatch_operand: SI 1 "synbolic_operand" "s"))
+ (match_operand 2 "" "")))

+ (return)]

+ "1 TARCGET_PTR64"

+ "* return output_sibcall(insn, operands[1]);"

+ [(set_attr "type" "sibcall")])

+

+(define_insn "*sibcall_val ue_synbol i c_sp64"

"* return output_sibcall(insn, operands[1]);"
[(set_attr "type" "sibcall")])

+ [(set (match_operand O ""

+ (call (mem SI (rmatch_operand: DI 1 "synbolic_operand" "s"))
+ (match_operand 2 "" "")))

+ (return)]

+ "TARGET_PTR64"

+

+

+

+(define_expand "sibcal | _epil ogue”

76

+ [(const_int 0)]

" DONE; ")

+ +

;; UNSPEC_VOLATI LE is considered to use and cl obber all hard registers and
;; all of menory. This blocks insns from being noved across this point.
--- gcc/ configl/sparc/sparc-protos.h.jj Thu Feb 17 16:31: 05 2000

+++ gcc/ confi g/ sparc/sparc-protos. h Fri Mar 24 09:17:10 2000

@»-96,6 +96,7 @extern int sparc_splitdi _|egitinmte PARA

extern int sparc_absnegfloat_split_legitimte PARAMS ((rtx, rtx));

extern char *output_cbranch PARAMS ((rtx, int, int, int, int, rtx));
extern const char *output_return PARAMS ((rtx *));

+extern const char *output_sibcall PARAMS ((rtx, rtx));

extern char *output_v9branch PARAMS ((rtx, int, int, int, int, int, rtx));
extern void emt_v9 brxx_insn PARAMS ((enumrtx_code, rtx, rtx));

extern void output_double_int PARAMS ((FILE *, rtx));

@-121,6 +122,7 @extern int cc_arithopn PARAMS ((rtx, enu

extern int data_segnment_operand PARAMS ((rtx, enum machi ne_node));
extern int eligible_for_epilogue_delay PARAMS ((rtx, int));
extern int eligible for_return_delay PARAMS ((rtx));

i
i
i

+extern int eligible_for_sibcall_delay PARAMS ((rtx));
i
i
i

extern int emt_nove_sequence PARAMS ((rtx, enum nmachi ne_node));
extern int extend_op PARAMS ((rtx, enum nmachi ne_node));
extern int fcc_reg_operand PARAMS ((rtx, enum machi ne_node));

--- gcc/config/sparc/sparc.c.jj Wed Mar 22 08:49:19 2000
+++ gcc/ confi g/ sparc/sparc.c Fri Mar 24 09:17:11 2000
@ -99,6 +99,24 @char |eaf _reg_remap[] =

88, 89, 90, 91, 92, 93, 94, 95,

96, 97, 98, 99, 100};

+/* Vector, indexed by hard register nunber, which contains 1
+ for aregister that is allowable in a candi date for | eaf
+ function treatment. */

+char sparc_| eaf _regs[]

+H 1, 1, 1, 1, 1, 1, 1, 1,
+ 0, 0, O, O, O, O, 1, O,
+ 0, 0, O, O, O, O, 0, O,
+ 1, 1, 1, 1, 1, 1, O, 1,
+ 1, 1, 1, 1, 1, 1, 1, 1,
+ 1, 1, 1, 1, 1, 1, 1, 1,
+ 1, 1, 1, 1, 1, 1, 1, 1,
+ 1, 1, 1, 1, 1, 1, 1, 1,
+ 1, 1, 1, 1, 1, 1, 1, 1,
+ 1, 1, 1, 1, 1, 1, 1, 1,
+ 1, 1, 1, 1, 1, 1, 1, 1,
+ 1, 1, 1, 1, 1, 1, 1, 1,
+ 1, 1, 1, 1, 1};

+

#endi f

/* Name of where we pretend to think the frame pointer points.

@@ - 2458, 6 +2476,98 @@el igible_for_epilogue_delay (trial, slot
return O;

}

+/* Return nonzero if TRIAL can go into the sibling call
+ delay slot. */

+

+i nt

+eligible_for_sibcall _delay (trial)

+ rtx trial;

+

+ rtx pat, src;

+

+ if (GET_CODE (trial) !'= INSN || GET_CODE (PATTERN (trial)) != SET)
+ return O;

+

+ if (get_attr_length (trial) !'=1 || profile_block_flag == 2)

77

T T Tk Tk T i i S e S S S S S e I T T Tk T T T T Tk T i i o o i S e S S S e e e S . T T T 1 Tk T T T T i o it S s

return O;
pat = PATTERN (trial);
if (current_function_uses_only_| eaf _regs)

/* If the tail call is done using the call instruction,
we have to restore %7 in the delay slot. */

i f (TARGET_ARCH64 && ! TARGET_CM MEDLOW

return O;

/* %91 is used to build the function address */
if (reg_nmentioned_p (gen_rtx_REG (Pnode, 1), pat))
return O;

return 1;

/* OQtherwise, only operations which can be done in tandemw th
a ‘restore’ insn can go into the delay slot. */
if (CET_CODE (SET_DEST (pat)) != REG
|| REGNO (SET_DEST (pat)) < 24
|| REGNO (SET_DEST (pat)) >= 32)
return O;

/* If it mentions %7, it can't go in, because sibcall will clobber it
in nost cases. */

if (reg_mentioned_p (gen_rtx_REG (Pnode, 15), pat))
return O;

src = SET_SRC (pat);
if (arith_operand (src, GET_MODE (src)))

i f (TARGET_ARCH64)
return GET_MODE_SI ZE (GET_MODE (src)) <= GET_MODE_SI ZE (DI node) ;
el se
return GET_MODE_SI ZE (GET_MODE (src)) <= GET_MODE_SI ZE (Sl node) ;
}

else if (arith_double_operand (src, GET_MODE (src)))
return GET_MODE_SI ZE (GET_MODE (src)) <= GET_MODE_SI ZE (DI node) ;

else if (! TARGET_FPU && restore_operand (SET_DEST (pat), SFnode)
&& regi ster_operand (src, SFnode))
return 1;

else if (GET_CODE (src) == PLUS
&& arith_operand (XEXP (src, 0), Slnode)
&& arith_operand (XEXP (src, 1), Slnode)
&& (regi ster_operand (XEXP (src, 0), Sl node)
|| register_operand (XEXP (src, 1), Slnode)))
return 1;

else if (GET_CODE (src) == PLUS
&& arith_doubl e_operand (XEXP (src, 0), Dl node)
&& arith_doubl e_operand (XEXP (src, 1), Dl node)
&& (regi ster_operand (XEXP (src, 0), Dl node)
|| register_operand (XEXP (src, 1), Dinode)))
return 1;

else if (GET_CODE (src) == LO SUM
&& ! TARCGET_CM MEDM D
&& ((register_operand (XEXP (src, 0), SlInode)
&& i medi at e_operand (XEXP (src, 1), Slnode))
|| (TARGET_ARCH64
&& regi ster_operand (XEXP (src, 0), DI node)
&& i medi at e_operand (XEXP (src, 1), Dinode))))

78

+ return 1

+

+ else if (GET_CODE (src) == ASHI FT

+ && (regi ster_operand (XEXP (src, 0), Slnode)
+ || register_operand (XEXP (src, 0), Dl node))
+ && XEXP (src, 1) == constl_rtx)

+ return 1

+

+ return O

+}

+

static int
check_return_regs (x)

rex x;
@@ - 3423, 6 +3533,40 @@ out put _function_prol ogue (file, size, le
}
}
+/* Qutput code to restore any call saved registers. */
+

+static void

+out put _restore_regs (file, |eaf_function)
+ FILE *file;

+ int [eaf function

+
—~

int offset, n_regs;
const char *base

of fset = -apparent_fsize + frane_base_offset;
if (offset < -4096 || offset + numgfregs * 4 > 4096 - 8 /*doubl e*/)

bui I d_bi g_nunber (file, offset, "%gl");
fprintf (file, "add%s, %gl, %g@l\n", frame_base_nane);

base = "9%gl";
offset =0
}
el se
{
base = franme_base_ nane;
}
n_regs = 0;

if (TARGET_EPILOGUE && ! | eaf _function)
[* ??? Originally saved regs 0-15 here. */
n_regs = restore_regs (file, 0, 8, base, offset, 0);
else if (leaf _function)
[* 2?2 Originally saved regs 0-31 here. */
n_regs = restore_regs (file, 0, 8, base, offset, 0);
i f (TARGET_EPI LOGUE)
restore_regs (file, 32, TARCGET_V9 ? 96 : 64, base, offset, n_regs);

e T Tk T Tk T i i i I S S S S S S S S S 8

+
—

+

/* Qutput code for the function epilogue. */

voi d
@@ - 3457, 35 +3601, 8 @@ out put _function_epilogue (file, size, le
got o out put _vectors;

}

- /* Restore any call saved registers. */
i f (num.gfregs)

- int offset, n_regs;
- const char *base

- of fset = -apparent_fsize + frane_base_offset;
- if (offset < -4096 || offset + numgfregs * 4 > 4096 - 8 /*doubl e*/)
- {

79

- bui I d_bi g_number (file, offset, "%gl");

- fprintf (file, "add¥%, %Wgl, %gl\n", frame_base_nane);

- base = "%l";

- of fset = 0;

- }

- el se

- {

- base = frane_base_nane;
- }

- n_regs = 0;

- if (TARGET_EPILOGUE && ! | eaf _function)

- [* ??? Originally saved regs 0-15 here. */

- n_regs = restore_regs (file, 0, 8, base, offset, 0);
- else if (leaf _function)

- [* ??? Originally saved regs 0-31 here. */

- n_regs = restore_regs (file, 0, 8, base, offset, 0);
- i f (TARGET_EPI LOGUE)

- restore_regs (file, 32, TARGET_V9 ? 96 : 64, base, offset,

}

output _restore_regs (file, leaf_function);

+

/* Work out howto skip the caller’s uninp instruction if
if (leaf_function)
@@ - 3575, 6 +3692, 139 @@ out put _function_epilogue (file, size
out put _vectors:
sparc_out put _deferred_case_vectors ();

}

+

+/* Qutput a sibling call. */

+

+const char *

+out put _si bcall (insn, call _operand)
+ rtx insn, call_operand;

+
P

int leaf _regs = current_function_uses_only_|eaf _regs
rtx operands[3];
int delay_slot = dbr_sequence_length () > O;

if (num.gfregs)

/* Call to restore global regs mght clobber
the delay slot. Instead of checking for this
output the delay slot now */

if (delay_slot)

{
rtx delay = NEXT_INSN (insn);

if (! delay)
abort ();

final _scan_insn (delay, asmout _file, 1, 0, 1);
PATTERN (del ay) = gen_bl ockage ();
I NSN_CCODE (del ay) = -1;
del ay_slot = 0;
}

output _restore_regs (asmout_file, |eaf_regs);

}
operands[0] = call _operand;
if (leaf_regs)

{

int spare_slot = (TARGET_ARCH32 || TARGET_CM MEDLOW ;
int size = 0;

if ((actual _fsize || ! spare_slot) && delay_slot)

T Tk Tk Tk Tk T T I A S S R R R i I I T T T T e s

80

le

n_regs);

required. */

T T Tk Tk T i i S e S S S S S e I T T Tk T T T T Tk T i i o o i S e S S S e e e S . T T T 1 Tk T T T T i o it S s

rtx delay = NEXT_INSN (insn);

if (! delay)
abort ();

final _scan_insn (delay, asmout _file, 1, 0, 1);
PATTERN (del ay) = gen_bl ockage ();

I NSN_CCODE (del ay) = -1;

delay_slot = 0;

(actual _fsize)

~——h

if (actual _fsize <= 4096)
size = actual fsize;
else if (actual _fsize <= 8192)

fputs ("sub%p, -4096, %p\n", asmout _file);
size = actual fsize - 4096;

}
else if ((actual _fsize & 0x3ff) == 0)
fprintf (asmout _file,
"set hi %¥4i (%), %@l\naddWsp, Wgl, %Wsp\n",
actual _fsize);
el se

fprintf (asmout _file,
"set hi %4i (%), %@l\norWgl, %4 o(%), %Wgl\n",
actual _fsize, actual _fsize);

fputs ("add%Wsp, YWgl, Wsp\n", asmout_file);

(spare_slot)

~——h

out put _asm.insn ("sethi %®4i (%0), %Qgl", operands);
out put _asm.insn ("jnpl %%gl + %48 o(%0), %g@0", operands);
if (size)
fprintf (asmout _file, " sub%Wsp, -%, %Wsp\n", size);
else if (! delay_slot)
fputs (" nop\n", asmout_file);
}

el se

if (size)
fprintf (asmout _file, "sub%Wsp, -%, %sp\n", size);
out put _asm.insn ("nmov®e7, %Wgl", operands);
out put _asm.insn ("call %0, 0", operands);
out put _asminsn (" nov®@l, %We7", operands);
}

return "";

}

out put _asm.insn ("call %0, 0", operands);
if (delay_slot)
{

rtx delay = NEXT_INSN (insn), pat;

if (! delay)
abort ();

pat = PATTERN (del ay);

if (CET_CODE (pat) != SET)
abort ();

operands[0] = SET_DEST (pat);
pat = SET_SRC (pat);

switch (GET_CODE (pat))

{
case PLUS:

81

operands[1] = XEXP (pat, 0);
operands[2] = XEXP (pat, 1);
out put _asminsn (" restore %1, %, %r0", operands);
br eak;
case LO Suwm
oper ands| 1] XEXP (pat, 0);
oper ands| 2] XEXP (pat, 1);
output_asminsn (" restore %1, %bo(%2), %0", operands);
br eak;
case ASHI FT:
operands[1] = XEXP (pat, 0);
out put _asminsn (" restore %1, %1, %0", operands);
br eak;
defaul t:
operands[1] = pat;
out put _asminsn (" restore %Qg0, %, %0", operands);
br eak;

}
PATTERN (del ay) = gen_bl ockage ();

Tk Tk Tk T T i i i S S e ¢

| NSN_CCDE (del ay) -1;
}
el se
fputs (" restore\n", asmout _file);
return "";

+
—

/* Functions for handling argunent passing.

@ -7014,6 +7264,7 @ultra_code_from mask (type_nask)
return | EWO;
else if (type_mask & (TMASK (TYPE_COVPARE) |
TMASK (TYPE_CALL) |
+ TMASK (TYPE_SI BCALL) |
TMASK (TYPE_UNCOND_BRANCH)))
return | EUL;
else if (type_mask & (TMASK (TYPE_I ALU) | TMASK (TYPE_BI NARY) |
@ - 7486, 6 +7737,7 @ ul trasparc_sched_reorder (dunp, sched_ve
/* If we are not in the process of enptying out the pipe, try to
obtain an instruction which nmust be the first init’s group. */
ip=ultra_find_type ((TMASK (TYPE_CALL) |
+ TVASK (TYPE_SI BCALL) |
TVASK (TYPE_CALL_NO DELAY_SLOT) |
TMVASK (TYPE_UNCOND BRANCH)),
ready, this_insn);
--- gec/tmtexi.jj Fri Mar 24 09: 13:52 2000
+++ gcc/tmtexi Fri Mar 24 09:17:11 2000
@ - 1652, 7 +1652, 7 @@ acconplish this.
@ abl e @ode
@i ndex LEAF_REGQ STERS
@t em LEAF_REQ STERS
-ACinitializer for a vector, indexed by hard regi ster nunber, which
+Nanme of a char vector, indexed by hard regi ster nunber, which
contains 1 for a register that is allowable in a candidate for |eaf
function treatnent.

--- gcc/sibecall.c.jj Sun Mar 19 06: 26: 47 2000

+++ gcc/sibecall.c Fri Mar 24 09:17:11 2000

@ -140,9 +140, 13 @@ ski p_copy_to_return_value (orig_insn, ha
called function’s return val ue was copied. Oherwise we’'re returning
sone ot her value. */

+#i f ndef OUTGO NG_REGNO
+#def i ne OQUTGO NG_REGNQ(N) (N)
+#endi f
+
if (SET_DEST (set) == current_function_return_rtx
&& REG P (SET_DEST (set))
- && REGNO (SET_DEST (set)) == REGNO (hardret)

82

+ && OUTGO NG_REGNO (REGNO (SET_DEST (set))) == REGNO (hardret)
&& SET_SRC (set) == softret)
return insn;

@ -352,7 +356,6 @replace_call _placeholder (insn, use)
NOTE_SOURCE_FI LE (i nsn) 0;
NOTE_LI NE_NUMBER (i nsn) NOTE_I NSN_DEL ETED;
}

/* Gven a (possibly enpty) set of potential sibling or tail recursion call
sites, determine if optimzation is possible.

--- gcc/final.c.jj Sun Mar 19 20:31:03 2000

+++ gcc/final.c Fri Mar 24 09:17:11 2000

@@ - 4015, 7 +4015,8 @@ eaf _function_p ()

for (insn = get_insns (); insn; insn = NEXT_INSN (insn))

- if (GET_CODE (insn) == CALL_I NSN)

+ if (GET_CODE (insn) == CALL_I NSN
+ &% ! SIBLING CALL_P (insn))
return O;
if (GET_CODE (insn) == | NSN

&% GET_CODE (PATTERN (insn)) == SEQUENCE
@@ - 4025, 7 +4026,8 @@ eaf _function_p ()

}
for (insn = current_function_epilogue_delay list; insn; insn = XEXP (insn,
{
- if (CGET_CODE (XEXP (insn, 0)) == CALL_INSN)
+ if (GET_CODE (XEXP (insn, 0)) == CALL_I NSN
+ && ! SIBLING CALL_P (insn))
return O;
if (GET_CODE (XEXP (insn, 0)) == |INSN

&& GET_CODE (PATTERN (XEXP (insn, 0))) == SEQUENCE
@@ - 4048, 8 +4050,6 @I eaf _function_p ()

#i f def LEAF_REQ STERS

-static char permitted_reg_in_|leaf _functions[] = LEAF_REGQ STERS;

/* Return 1 if this function uses only the registers that can be
safely renunbered. */

@ - 4057, 6 +4057,7 @i nt
only_l eaf _regs_used ()

{
int i;
+ char *permitted_reg_in_|leaf _functions = LEAF_REG STERS;

for (i = 0; i < FIRST_PSEUDO REG STER i ++)

if ((regs_ever_live[i] || 9lobal _regs[i])
--- gcc/global.c.jj Mon Mar 6 18:37:42 2000
+++ gcc/ gl obal . c Fri Mar 24 09:17:11 2000

@-374,7 +374,7 @ gl obal _alloc (file)
a leaf function. */
{
char *cheap_regs;
- static char |eaf _regs[] = LEAF_REQ STERS;
+ char *l eaf _regs = LEAF_REGQ STERS;

if (only_leaf _regs_used () & leaf_function_p ())
cheap_regs = | eaf _regs;
--- gcc/jump.c.jj Fri Mar 24 09:13:52 2000
+++ gcc/junmp.c Fri Mar 24 09:17:11 2000
@@ - 3879, 6 +3879,13 @ nmark_junp_l abel (x, insn, cross_junp, in
cross_junp, in_men);
}

return;

83

1)

/* Look at the Normal call sequence attached to the CALL_PLACEHOLDER */
case CALL_PLACEHOLDER:
for (insn = XEXP (x, 0); insn; insn = NEXT_INSN (insn))

+ o+ o+ + + o+ o+

if (GET_RTX_CLASS (GET_CODE (insn)) == "'i")
mar k_j unp_I abel (PATTERN (insn), NULL_RTX, cross_junp, 0);
return;
defaul t:
br eak;
--- gcc/calls.c.jj Fri Mar 24 09:13:51 2000

+++ gcc/calls.c Fri Mar 24 09:17:11 2000

@ -165,7 +165,7 @®static void initialize_argument _infornat
int, tree, tree,
CUMULATI VE_ARGS *,
int, rtx *, int *,

- int *, int *));

+ int *, int *, int));

static void conpute_argunment _addresses PARAMS ((struct arg_data *,
rtx, int));

static rtx rtx_for_function_call PARAMVS ((tree, tree));

@ -980,7 +980,8 @@ static void
initialize_argument _information (numactuals, args, args_size, n_naned_args,
act parns, fndecl, args_so_far,
reg_parm stack_space, ol d_stack_| evel,
- ol d_pendi ng_adj, must_preal |l ocate, is_const)
+ ol d_pendi ng_adj, nust_preallocate, is_const,
+ ecf _fl ags)
int numactuals ATTRI BUTE_UNUSED,
struct arg_data *args;
struct args_size *args_si ze;
@»-993,6 +994,7 @initialize_argunent_information (num act
int *ol d_pending_adj ;
int *rmust _preall ocate;
int *is_const;
+ int ecf_flags;

/* 1 if scanning parnms front to back, -1 if scanning back to front. */
int inc;
@ -1150,8 +1152,19 @initialize_argunment_information (num act

args[i].unsignedp = unsignedp;
args[i].node = node;
- args[i].reg = FUNCTI ON_ARG (*args_so_far, node, type,
- argpos < n_naned_args);
+
+#i f def FUNCTI ON_I NCOM NG_ARG

+ /* If this is a sibling call and the nmachi ne has regi ster wi ndows, the
+ regi ster wi ndow has to be unwi nded before calling the routine, so
+ argunents have to go into the incom ng registers. */

+ if (ecf_flags & ECF_SI BCALL)

+ args[i].reg = FUNCTI ON_| NCOM NG_ARG (*args_so_far, node, type,

+ argpos < n_naned_args);

+ el se

+#endi f

+ args[i].reg = FUNCTI ON_ARG (*args_so_far, node, type,

+ argpos < n_naned_args);

+

#i f def FUNCTI ON_ARG_PARTI AL_NREGS
if (args[i].reQg)
args[i].partial
@@ -2131,7 +2144,7 @@ expand_call (exp, target, ignore)
call expansion. */
i nt save_pendi ng_st ack_adj ust;
rtx insns;
- rtx before call;
+ rtx before_call, next_arg_reg;

84

if (pass == 0)

{

@@ - 2284, 7 +2297,8 @@ expand_call (exp, target, ignore)
n_named_args, actparnms, fndecl,
&args_so_far, reg_parm stack_space,
&ol d_stack_| evel , &ol d_pendi ng_adj,

- &must _preal l ocate, & s_const);

+ &must _preal |l ocate, & s_const,

+ (pass == 0) ? ECF_SIBCALL : 0);

#i f def FI NAL_REG PARM STACK_SPACE
reg_parm stack_space = FI NAL_REG PARM STACK_SPACE (args_si ze. const ant,
@@ - 2305, 6 +2319, 13 @@ expand_call (exp, target, ignore)
sibcall _failure = 1;

}

}

/* Compute the actual size of the argunment block required. The variable
and constant sizes nust be conbined, the size may have to be rounded,
and there may be a mininumrequired size. Wen generating a sibcall

@@ - 2569, 9 +2590,9 @@ expand_call (exp, target, ignore)

+ if (args_size.constant > current_function_args_size)

+

+ /* If this function requires nore stack slots than the current
+ function, we cannot change it into a sibling call. */

+ sibcall _failure = 1;

+

+

if (pcc_struct_val ue)
valreg = hard_function_val ue (build_pointer_type (TREE_TYPE (exp)),

- fndecl, 0);
+ fndecl, (pass == 0));
el se
- valreg = hard_function_val ue (TREE_TYPE (exp), fndecl, 0);
+ valreg = hard_function_val ue (TREE_TYPE (exp), fndecl, (pass == 0));
}
/* Preconpute all register paraneters. It isn't safe to conpute anything

@ - 2665, 14 +2686, 24 @@ expand_cal |l (exp, target, ignore)
| ater safely search backwards to find the CALL_INSN. */

before_call = get_last_insn ();
+ /* Set up next argument register. For sibling calls on machines
+ with register windows this should be the incoming register. */
+#i f def FUNCTI ON_I NCOM NG_ARG
+ if (pass == 0)
+ next _arg_reg = FUNCTI ON_I NCOM NG_ARG (args_so_far, VO Dnode,
+ voi d_type_node, 1);
+ el se
+#endi f
+ next _arg_reg = FUNCTI ON_ARG (args_so_far, VO Dnode,
+ voi d_type_node, 1);
+
/* Al argunents and registers used for the call nust be set up by
now */
/* Cenerate the actual call instruction. */

emt_call_1 (funexp, fndecl, funtype, unadjusted_args_size,
args_si ze.constant, struct_val ue_size,
- FUNCTI ON_ARG (args_so_far, VO Dnode, void_type_node, 1),
- val reg, ol d_inhibit_defer_pop, call_fusage,
+ next _arg reg, valreg, old_inhibit_defer_pop, call_fusage,
((is_const ? ECF_IS CONST : 0)
| (nothrow ? ECF_NOTHROW: 0)
| (pass == 0 ? ECF_SIBCALL : 0)));

85

86

D Appendix. Concepts

APZ — Real time -OS used in the AXE-system.

Backend — The backend is where the machine- and intermediate language dependent phases
of the compiler belong. In the backend, most of the code optimization is performed, and
machine code is generated.

Basic block — A basic block is a sequence of statements in which the flow of control enters at
the beginning and leaves at the end without the possibility of branching, except at the
end.

CPS — Continuation Passing Style. CPS is ment to resolve a longstanding structural problem
in the composition of software redibility.

Cygnus—A Red Hat company. Works with software support and devel opement.

Epilogue — The way a function ends.

Frontend — The front end is where the source language is transformed from a high level
language into a machine independent intermediate representation.

FSF — Free Software Foundation.

GCC — GNU Compiler Collection

GNU — GNU’s Not Unix

Inlining — A functions code is placed directly into its caller in order to avoid an expensive
function call.

Intermediate representation — Syntax trees and RTL (for GCC).

Pattern — A rule that descrives a set of strings.

RTL — Register Transfer L anguage.

Self recursive call — A kind of tail call. The function ends with acall to itself.

Sibling call — A kind of tail call when the caller and the callee has the same signature.

Signature — Two functions have the same signature when they have the same type and
number of arguments.

Snapshot — An "unofficial” patched vesion of GCC, available for download inbetween two
official releases.

Spar ¢ — Scalable Processor ARCitecture

Tail call — A function ends with a call to another function.

87

Tail call elimination — A technique used in order to reduce the run time stack usage. Do not
save the caller return adress to the stack and do not save the callers local variables. Pass
the caller registersto the callee.

Tail recursive call — The same as self recursive call..

TSP — Ericsson Infotech in Karlstad, Department of Test, Support and simulated Platforms

88

