Computer Science

Rickard Holgersson

Compatibility Test: Centura Team Developer

vS. Microsoft ActiveX

Bachelor’s Project
2000:19






Compatibility Test: Centura Team Developer

vS. Microsoft ActivexX

Rickard Holgersson

© 2000 The author(s) and Karlstad University






This report is submitted in partia fulfillment of the requirements for the
Bachelor’'s degree in Computer Science. All material in this report which is
not my own work has been identified and no material is included for which
adegree has previously been conferred.

Rickard Holgersson

Approved, May 31, 2000

Advisor: Dimitri Ossipov

Examiner: Stefan Lindskog






Abstract

This report presents a method of testing programming tools support for component
programming in general, and COM components in particular. The method is then used to
evaluate the development environment Centura Team Developer’s capacity in this area. This

assessment is built up in three steps, where different aspects of component programming are
tested.



Contents

R 014 0o 18 Tox o] o PSSP 1
2 Criteriafor TESHING.....ooeieeieeeiee ettt sttt e et n e n e e sne e 3
2.1 Development Complexity vS. COMPONENE FEUSE..........ccecueereerreerieseesreeneeseesseeeesseenns 3
2.2 Integration with Legacy Systems vs. CUStOMIZatioN..........cccoveveereereeniesienseeneeneenne 3
2.3 Leve of Granularity VS. SIMPIICITY......ccceeieriieiiee e 3
2.4 Easeof Overview VS. COMPIEXITY......ccoiiririieieeiesee et 3
2.5 PEITOMMEINCE .....ocviiiiiiieiieee ettt bbbttt ettt e bbb 4
2.6 Maintenance and Version Handling.........cccceoeiienenienieeneece e 4
3 MOLIVALION OF TESES..cuiiuiiiiiiiiieieie ettt ettt b e e sne e 5
3.1 Development Complexity vs. COmponent REUSE. ..........ccoceeeererrienieenienieeiee e 5
3.2 Integration with Legacy Systems Vs, CUSIOMIZation...........ccevveveeveeseeseesesieeseennns 5
3.3 Leve of Granularity VS, SIMPlICITY......cocvriiiiiiienesiese e 5
3.4 Easeof Overview VS. COMPIEXITY.....ccoeieeieieere e ceese ettt 6
3.5 PEIfOMMANCE ... .o et ae e 6
3.6 Maintenance and Version Handling........c.oocveverieenieii s 6
O N = I o g 0o oo = PR 7
St X Y SR 7

4.1.1 UsersPoint of View
4.1.2 Developers Point of View

4.2 AULOMEBLION. ....ctiteitiitieieeieeeee ettt b e e bbbt bt et et e e et e b e benee b 10
T I 1O | SRS 11
N AN 1 Y= SRR 11
A5  ACHVEX CONIOIS ....eiiiieieeieeee sttt bttt sb e e nne e 12
T @ |1 T 3P 13
ST O 0 U | F TSP UP P URPOTR PRI 15
51 CenturaTeam DEVEIOPES ..o 15
5.2 SOLWINUOWS......coiitiieiiiie et e ettt etee s tee e ete e s saree s stae e s s beeesaaeeesaneeesnbeeesnbeeesateeeenseesnnns 15

5.2.1 ActiveX Support

vi



I B Tc o ] o1 o) o) N = S 19

B.1 TS OF COM oottt et e e ettt e et e e e e s e eeeeeeseesaeeeeeeeeesesaaassrereeeesesnaaans 20
6.1.1 Déefinition
6.1.2 Development Steps
6.1.3 Installation
6.1.4 Test Platform

S == o 5 1 O | R 23
6.2.1 Déefinition
6.2.2 Development Steps
6.2.3 Instalation
6.2.4 Test Platform

=S A0 Ao (A=), G Oa 11 (o R 25
6.3.1 Definition
6.3.2 Development Steps
6.3.3 Installation
6.3.4 Test Platform

7 RESUITS ANT CONCIUSIONS. ... ettt e e e e e e et e e e e e e e s e e e e eeeeeeeeeeasaeeneeeeeeeesaaaanes 29

5 R I === o O Y SRS 29
7.1.1 Development Complexity vs. Component Reuse
7.1.2 Integration with Legacy Systems vs. Customization
7.1.3 Leve of Granularity vs. Simplicity
7.1.4 Ease of Overview vs. Complexity
7.1.5 Performance
7.1.6 Maintenance and Version Handling

7.2 TESEOF DCOM ...ttt ettt et e et e e e eaee e sne e e sabe e e enbeeeeaneeennns 31
7.2.1 Development Complexity vs. Component Reuse
7.2.2 Integration with Legacy Systems vs. Customization
7.2.3 Leve of Granularity vs. Simplicity
7.2.4 Ease of Overview vs. Complexity
7.2.5 Performance
7.2.6 Maintenance and Version Handling

7.3  Test Of ACHVEX CONIOL........cccuieiiecieecie ettt res 33
7.3.1 Development Complexity vs. Component Reuse
7.3.2 Integration with Legacy Systems vs. Customization
7.3.3 Leve of Granularity vs. Simplicity
7.3.4 Ease of Overview vs. Complexity
7.3.5 Performance
7.3.6 Maintenance and Version Handling

T4 CONCIUSIONS......oeiiiiiiictet bbbt nesr e n e e 34
REFEIBNCES.......ecee et e e bbbt bt bt se e sreenenre s 37
A SourceCodeof TESE L....cooiiiiiieiee e Separ ate Document
B  SourceCodeof TESE 2. Separ ate Document
C  SourceCodeof TESE .. ..o Separ ate Document

Vii






List of Figures

Figure4.1:
Figure 4.2:
Figure 4.3:
Figure 4.4:
Figure 4.5:
Figure 4.6:
Figure 4.7
Figure5.1:
Figure 5.2:
Figure5.3:
Figure 5.4
Figure 6.1:
Figure 6.2:
Figure 6.3:
Figure 6.4:
Figure 6.5:
Figure 7.1:

A SIMPIEODJECT ... s 7
Result of HEIO WOIT SCHPL ..o 8
Interface definNitioN IN IDL ........ocoiiii e 9
Instantiation of 8 COM COMPONENE..........ceerieeiierierieriesieeieee e 10
DCOM @ICNITECIUIE. ......cveeieeiee ettt sn e e nre e 11
A typical ACHVEX CONIOL .......cccuiiieiiieie e 12
ODBC ATCHITECIUN ...t st 13
Main view of SQLWINAOWS........ccoieeririiniesieeiee e 15
Example of Message ACHION ..o 16
How to call aCOM MEthod...........ccooveiiiiieee s 17
SQLWINAOWS ACHVEX WIZArd........ccoveeireeeiiecee e ectee et cee e v e 18
A thee-tier PPIICALION. ..o 19
OVEIVIOW OF TESE L.ttt 20
OVEIVIEW OF TESE 2.ttt 23
OVEIVIEW OF TESE 3.t 25
ActiveX control INtEITACE.........covieeriee e 26
Trandation of call inthe ActiveX COntrol ... 32



List of tables

Table 4.1: Methods of interface TUNKNOWN............ooeriiieiineceeeeereee e 9
Table 4.2: Methods of interface IDISPatCh...........ccvveieiecece e 10
Table 5.1: Important methods of functional class Object..........cccovevivieviece s 17
Table 6.1: Methods of custom interface IDatabase..........ccovevereererese e 21
Table 6.2: Properties of custom interface IDatabase. ..........cccooerererenenenineseeee e 21
Table 6.3: Contents of the ACCESS dat@base ...........oovrirerire e 21
Table 6.4: Test Platform Of TESIL......ccociiiiiiicieeee e 23
Table 6.5: Test Platform Of TESE 2.......coiieeeeee e e 25
Table 6.6: Methods of ISImpleDatabase..........cccoovieeieieiee e 26
Table 6.7: Properties of ISimpleDatabase...........cccvveveeieiiesecie e 26
Table 6.8: Test Platform Of TESE 3. 27
Table 7.1 Test ANalySIS TaDI€......couiiieeee e e 34



1 Introduction

This document suggests a method of testing diverse programming tools support for
component programming, and shows how it can be used in practice.

So what is component programming? It can be related to conventional programming as
building your own stereo versus buying the parts and just plug them together. Because of their
well-defined interfaces, components can be used without any demands on the user to know
how the components works, or even without having access to the source code.

Section 2 describes the criteria’s that should be evaluated for each test, while section 3
describes why they are important. The following section explains the technologiesinvolved in
the particular test. Since Centura Team Developer just recently added support for this
programming paradigm this will be the tool tested using this method. Section 5 describes
what Centura Team Developer is, its parts, and how it is supposed to be used. In the later
sections, all three tests are described and evaluated in detail.






2 Criteriafor testing

Since this test is meant to generally evaluate the tool’ s support for component programming,
it'simportant to make the test as complete as possible. It should span over as many aspects as
possible, while still being consistent.

The four aspects that | found must be covered is:

1. Integration with the tool

2. Ease of development

3. Ease of maintenance

4. Quality of end product

This is the foundation on which this test stands and | believe that they are included in the
items below. Some, like ease of development is covered in many of the items, while quality of
end product is mostly covered in 2.5 Performance.

2.1 Development Complexity vs. Component reuse

How many steps are necessary to integrate a component, and how difficult is it to use the

same interface but with other components?

2.2 Integration with Legacy Systemsvs. Customization

How integrated are the components and how easy is it to customize their behavior?

2.3 Levd of Granularity vs. Simplicity

Isit preferable to use this tool with big monolithic components or a set of small ones that can

be exported as a framework and used with others?

2.4 Ease of Overview vs. Complexity

Is it possible to show component interfaces and bindings in different views, giving different

levels of complexity and overview of them? Is the functionality easy to comprehend?



2.5 Performance

How are the binding of the components created, and does it add something to the

performance? |s the component instantiated many times, and how are the interfaces reached?

2.6 Maintenance and Version Handling

What issues need to be handled when you add or remove functionality to components? How
does splitting one component into many smaller influence the bindings?



3 Motivation of Tests

3.1 Development Complexity vs. Component Reuse

In a good high-level programming tool it should be fast and easy to build complete
applications. Including a component to a project should therefore be a simple and
straightforward job and without any demands on the component user to understand the
underlying technology. It’s much like that you don’t need to know how to build a car to drive
one, and can use a CD-player even though you have no idea of how alaser works.

At the same time the application must be flexible and easy to change. Replacing a
component with another should be ssmple. Moving logic from the GUI to a component, for
example to change it to a three-tier application where presentation, processing, and data is
separated, must not be too painful.

Thisisabit of acontradiction and it’s interesting to see how the development environment

balancesthis.

3.2 Integration with Legacy Systemsvs. Customization

To make it as easy as possible to use the components they should be integrated with the
development tool so that they look and feel like the other parts of the environment in a
consistent way. This makes it easier to use the components and makes the programming tool
less complex.

On the other hand, the components will have unique properties that stand out from the rest
of the environment. To give the user as much flexibility as possible, these special properties

must be exposed to the user.

3.3 Levd of Granularity vs. Simplicity

A small very specialized application does not need to be very modularized. As a conseguence,
the developer may want to make one big component with a complex interface. Big systems on
the other hand, should be very modularized, with objects that are easy to replace and re-use.
It's virtually impossible to make a language that supports big monolithic applications as

easily as object-oriented complex systems.



3.4 Ease of Overview vs. Complexity

It's vital that you as a component user quickly can comprehend the functionality of the
component. To make the development process as fast and simple as possible you should be
ableto grasp the genera ideaat ahigh level of abstraction.

But sometimes you need to get more detailed information of specific parts of a component,
especially in the bug-testing phase.

Thereforeit’s a crucial aspect of the development environment to give the user a choice of

different levels of complexity.

3.5 Performance

In today’ s world of distributed applications, performance again becomes an important aspect
of programming. For servers to be scalable there must not be too much overhead just to call
methods and retrieve and set attributes. Since there's a number of ways to do that such of

thing this becomes a significant part of the test.

3.6 Maintenance and Version Handling

The big software costs lies not in developing new systems. As big an effort that may be, most
of the money and resources are used maintaining and updating the system. To be able to
change parts of an already functioning application is consequently perhaps the most important
part of a development environment.



4 TheTechnologies

41 COM

"The Holy Grail of computing is to be able to put applications together quickly and cheaply
from reusable, maintainable code, preferably written by someone else.”
The Idea of COM, Julian Templeman, et al [2]

A technology that has become more and more important when developing new software is
object oriented programming. Object-oriented programming offers a new model that differs
from traditional design, which is based on functions and procedures. The object-oriented
programming technology makes it easier to build modules that can be modified and reused.
Although this technology has proven to be very useful, it does not address the problems when
you want to use different programming language version management and more.

Another way to look at programming is the concept of software components. The big
difference between objects and componentsis that an object is a piece of software source code
while a component is an actual working software module. With a precisely defined interface
and a supporting system software this technology promises a software market where
components can be shared and interchanged without even recompiling the application.

Interface  O—— Object

Figure4.1: A simple object

COM stands for the Component Object Model and tries to deliver that promise. It's a
binary and network standard that allows any two components to communicate regardless of
what machine they are running on, what operating systems the machines are running, and
what language the components were written in.

COM is based on objects, with al properties you expect from an object (encapsulation,
inheritance, polymorphism, etc.). For the user a component is a black box where you don’'t

know anything about its implementation. Of course, you need some way to interact with the



component and for this interfaces are provided. An interface is a well-defined set of functions
that you can call to make the component do something.

Some general way to globally identify a class (object type) and interface is also needed.
For this a 16-byte structure called GUID (globally unique identifier) is used. This provides a
2'% (ca 3,4 * 10*®) sized flat address space.

There are two types of COM servers: in process and out-of-process. In process servers are
dynamically linked libraries (DLLS). They live in the client process address space, which
makes them fast. Out-of-process servers are executable files. The main advantage of out-of-
process servers is that they are isolated from the client, so that if they crash it won't affect the

client.

4.1.1 UsersPoint of View
To use the component you need to ask the COM system to give you access to one of its
interfaces and then you can send and recelve the messages needed.

Let’s say we have a component named MsgBox with only one interface, IMsgBox that can
be used to show simple message boxes on the screen. The user of MsgBox need not concern
about how this is implemented. IMsgBox contains one function: Show(), that displays the
message and one property: Message which is a string.

An examplein VBScript:
Set nmegBox = Create(hject (”MsgBox. Application”)
nsgBox. Message = "Hello Worl d!”
nsgBox. Show()

E

Hella \Warld!

Figure 4.2: Result of Hello World script

4.1.2 DevelopersPoint of View
While using a COM component is simple and straightforward, creating one is a bit more
complicated. COM defines a large set of standard interfaces, and all COM components must

implement the IlUnknown interface.



It contains three methods:

Querylnterface | Gives accessto other interfaces

AddRef Increments the reference counter

Release Decrements the reference counter

Table 4.1: Methods of interface |Unknown

The reference counter determines the lifetime of a single instance. Each time a client
retrieves a reference to an interface of the component the reference counter is incremented.
When the client is done, the counter is decreased. This way each COM object can determine
when it is no longer needed and del ete itself.

You can then add your own interfaces that are expected to inherit from [Unknown. But
how should the interfaces be declared so that they become accessible to the component users?
To make the COM component language independent one must have some way to express the
properties of the interface in a language independent way. COM uses Interface Definition
Language (IDL) for this. It's a language with syntax quite similar to C++. An IDL compiler
then creates the source files needed.

[ uuid(af 7f 3e40- 07d4- 11d4- 8b29- c6725a356d37) ]

interface | MsgBox : | Unknown

{
HRESULT Show();

HRESULT Message([in, propput] BSTR *pbsMsg);
HRESULT Message([out, propget] BSTR *pbsMsg);

3
Figure 4.3: Interface definitionin IDL

An aspect of COM that has been ignored to now is how to create instances of aclass. It is
important that COM is able to have a standard way of creating objects of any type without
requiring the client to know the details of creation. COM therefore uses a class object (also
called class factory) which encapsulates this.

The class object isa COM component in its own right. It implements an interface called
| ClassFactory, which contains two methods: Createlnstance and LockServer. The important
method is Createlnstance which, given the class ID, handles the IlUnknown interface of the

component requested. Createl nstance can be compared with the C++ operator new.



Server
6. Use instance
Client »O Object
COM API

2. Locate server >

3. Load DLL or launch EXE
1. Ask to create 4, Retrieve Class Factory Class
ingtance 5 Ask Factory to create »O Factory

Figure 4.4: Instantiation of a COM component

4.2 Automation

One problem with pure COM s that it does not work well for scripting languages and other
programming languages with no concept of vtables. If you look under the hood, a COM
interface pointer is a pointer to alocation that holds the address of atable of function pointers.
But scripting languages does not understand virtual function tables, and therefore some other
solution must be made for these languages.

Automation is a mechanism to expose the interfaces for a client so clients can resolve
function calls in runtime (late binding). An automation server implements the IDispatch

interface.

Invoke Calls amethod or accesses a property

GetlDsOfNames Returns the ID of a property or a method

GetTypelnfo Retrieves apointer to ITypelnfo, if available

GetTypelnfoCount | Returns the number of type info interfaces available (O or 1)

Table 4.2: Methods of interface I Dispatch

Given a pointer to an IDispatch interface, the scripting language can call GetlDsOfNames,
and then Invoke. This of course becomes much slower than accessing functions directly, but
makes it possible to do quite advanced things with afew linesin a scripting language.

Type libraries accompany most automation servers. They provide information about the
interfaces and components of a server. Type libraries can be used in a variety of ways. For
example, they can be used to implement dispatch interfaces and to provide information to

object browsers. A type library istypically generated from an IDL file.

10



4.3 DCOM

While COM makes it possible to create software modules that are easy to integrate with other
applications, it does not cope with the additional complexity of distributed applications.
Distributed COM (DCOM) extends COM with remote method calls, security, scalability, and
location transparency. For the communication across the network, DCOM uses an “Object
RPC,” extending DCE RPC.

DCOM components are truly location transparent. The client does not need to change any
part of its code or even recompile. Some changes in the registry must be made for the
underlying COM enabling code to locate the component. DCOM was included in NT 4.0 and
Windows 98.

There are implementations of DCOM that runs over other systems than Windows. One
exampleis EntireX DCOM developed by Software AG.

An aternative technology providing the same type of functionality as DCOM, is Common
Object Request Broker Architecture (CORBA). CORBA is a standard that was developed by
the Object Management Group [4].

Client Proxy —[&--=-=------- > Stub Server
DCE Securit! DCE Securit!
RPC provid; <__ _> RPC provid;/
Client Side T;spm T;spm Server Side
Entity DS Rt Entity
Figure 4.5: DCOM architecture
4.4 ActiveX

ActiveX does not refer to some well-defined technology, instead it’s more like a brand name
for a series of objects and technologies based on COM. The history of ActiveX begins with
OLE, which is atechnology for creating compound documents. It’s successor OLE2 included

COM and became more flexible. Shortly after, more technologies took advantage of the COM

11



architecture. Microsoft therefore chose to cal all kinds of COM solutions OLE, but later
changed it to ActiveX.

Some examples of technologies calling themselves ActiveX are ActiveX controls, ActiveX
Data Objects (ADO), and ActiveX Server Pages (ASP).

45 ActiveX Controls

What most people think of if you mention ActiveX are ActiveX controls: in process, local
COM components that implement interfaces enabling it to look and feel like a control (for
example a button, or text field. There are really no required interfaces to implement, except
for IlUnknown, but for a control that can be used anywhere (in a browser, in a VB-script, C++
application, etc.), it must have an interface to expose its methods to the outside world, to be
in-place activated and more. As the figure shows, atypical ActiveX control is avery complex

component and nothing you want to implement from scratch.

OCX

/ \ ,
__O 10leObject

——O 10leControl

H- 10leinPraceactiveObject

——O 10lel nPlaceObjectWindowless

__O |0leCache
__O 1ViewObjectEx
Control __O |DataObject
__O 1QuickActivate
——O | PersistMemory
__O |PersistPropertyBag
——O | PersistStorage
__O |Persist Streami nit
_—O IDispatch
__O |ProvideClassinfo2
__O 1SpecifyPropertyPages

__O |PerPropertyBrowsing

——O |ConnectionPointContainer

-/

Figure 4.6: Atypical ActiveX control

Commonly an ActiveX control has some custom interfaces making it possible for the
window it lives in to send messages to it. The control also can send messages to the window

in the form of events.

12



The control needs some context to live in. This ActiveX control container is also a
complex COM component, implementing a control site object (one control site object gets
instantiated for each control) and takes care of the events the control is sending using a special

COM component called an event sink.

4.6 ODBC

ODBC is an industry standard for accessing relation databases. It has become so successful
that virtually all databases support the standard. From the programmers point of view it is
simply an API that makes database access a bit less demanding. The architecture of ODBC
contains four layers. The top layer is the application itself. It makes calls to a dynamically
linked library named the Driver Manager. The Driver Manager knows which driver to load
and sends the call to that driver. The bottom layer is the data source, which is the combination
of the database managing system (DBMS), the operating system, and the network. For more
information about ODBC, see Open Database Connectivity Without Compromise, by
Kingsley Idehen [3].

Application
1L
Driver Manager
4L JL L
Driver Driver Driver
Lo L
Data Source Data Source Data Source

Figure4.7: ODBC Architecture

13



14



5 Centura

5.1 CenturaTeam Developer

Centura Team Developer (CTD) is a development environment for creating databases and
user interfaces to these. There is support to give end users access to a database for example
through a web-browser. CTD is not one single tool, but a palette of co-working tools. There
are a number of tools to setup and configure database servers, create reports, and debug
finished applications. The main tool and the important part of CTD for this essay is
SQLWindows. It's a programming environment for creating user interfaces to the databases.
It's possible to, within the tool, both make direct database calls and process the data before

it's presented to the user.

52 SQLWindows

et Sl w1 - AppBcetien ) - [AppSostien i) =iE x|

BB Bl peen Cwpomnt Ll [l Ddwos Lok wedoe e a8 =]
DjcH@] f|nlelx] o] siEw Ao 8o n <

MY e e 8 e S 1T EETEETTTE o

Apph-sin] Thseipham | S
mmm s 10 L rakesa S Srarcasd Appke sann [ avelsie ﬁ

) E il Pt
P e
i o M

o) Ll

b ek

Conmumedy Jf Sojiuws , Mirmmiplion,y Coptandt  Linmes f mabie 7 Duiies

Figure 5.1: Main view of SQLWindows

15



SQLWindows is a fourth generation language for creating graphical user interfaces (GUIs).
These interfaces can be standal one applications or integrated in a web browser.

Y ou start the process of making a SQLWindows application in the layout view. From here
you can view the graphical interface of the program. Typically you create a main window
(called a form) and drag and drop the controls you need into the window. The controls are
collected in a tool called the Controls Palette, and contains various set of controls ranging
from conventional items like buttons, to more database-specific like tables with special
support to map them to database tables. The attributes of a control can be viewed and edited
through a window called Attribute Inspector. There are also a number of wizards to ease the
process of making user interfaces.

When you have finished the view of the program you switch to the outline view. Here you
can connect your buttons and text fields with code that actually does something. To your help
there is a window called the Coding Assistant which shows all options at any given point in
the code. Most of the coding is event driven, which means that your program waits until a
certain event arrives (for example that a button was pressed) and reacts on that event. Events
in SQLWindows are called Message Actions. The actions defined in SQLWindows are called
Scalable Application Messages (SAMs), and you can also define your own custom message

actions.

Pushbutton: pbQuit
Message Actions
On SAM dick

Call SalQuit ()

Figure 5.2: Example of Message Action

To simplify the work there is a huge function library to perform operations like showing
dialogs, converting between data types and get data from controls.

SQLWindows is a mix of object based and procedural programming. While there are
support for classes and inheritance, there are also functions that manipulates object “from
outside’. An example is the function SalScrollGetPos, which retrieves the position of a
scrollbar cursor. Most of the time you inherit from a control or window to create new classes.

Classes that have no base class and no graphical view are called Functional Classes.

16



5.2.1 ActiveX Support

All COM components registered are listed in the Control Palette and can be inserted by
using drag and drop. This makes it quick and easy to insert new controls to the application.
The Attributes Inspector supports ActiveX, so that you can use it to view and modify a
control. All events supported by the ActiveX control are listed in the outline as Message
Actions and you can therefore easily add the logic needed to respond to events emitted by the
control. All forms and dialogs in SQLWindows can act like control containers, so an ActiveX
control can be included in any type of window.

The Object classis afunctional class that represents a COM component in the project. It's
actually athin layer over the dispatch interface of an automation server (see section 4.2 for an

explanation of automation servers).

Create Creates an instance of the component

Invoke Invokes a method

PushDate/Number/String, etc. | Push avariable on the stack

PopDate/Number/String, etc. | Pop avariable from the stack

FlushArgs Reset the stack

Table 5.1: Important methods of functional class Object

There are four steps needed when you invoke a method:
Push the parameters onto the stack
Execute the method by calling invoke.
Pop the parameters off the stack.

A 0w D RE

Flush the parameters from the stack.

Call PushString(”datasource”) ! Push the argunment on the stack
Set bRet = I nvoke(”Connect”, | NVOKE FUNCTI ON)
I f (bRet)
Call PopBool ean(-1, bRet) ! Pop the return val ue
I f (bRet)
I Connect ed!
Call FlushArgs()

Figure 5.3: How to call a COM method

17



Asyou can seeit’s quite alot of job just to call one single method. To make the job easier
thereis a special ActiveX wizard. The wizard lists all COM components found in the registry
and gives you the opportunity of making a functional class representing that component. This
class derives from the Object class (see above) and abstracts the Invoke calls, enabling you to
use ordinary function calls when you use the component methods. To speed up the generation
of the functional classes, SQLWindows adds the information to the include library. This way

the application can just include the library each time you re-use a component.

ActiveX Wizard

Select a Reagistered Type Library ar browese wour systen;

|45 Helper COM Component 1.0 Ty Browsze, |
145 BADIUS Protocol 1.0 Type Libr

Acrobat Control for Activel Ilze the Browse
Active D5 Type Library button ta select
Active Setup Control Library and register an

ActiveMovie contral type library unregistered

ATL 2.0 Type Library tupe librany.
CatalogServer 1.0 Tupe Library

Centura ReportBuilder Autamation Lil

CetCh 1.0 Type Librany

Certkdar 1.0 Type Library

cic 1.0 Type Librany j

— |45 Helper COK Component 1.0 Type Library
Location: C:WwINM T System3®iazhlpr.di

Figure 5.4: SQLWindows' ActiveX wizard

18



6 Description of Tests

COM is a huge area to test, and to make the test as exhaustive as possible it is separated in
three different parts. These parts should represent different uses of COM. Of course, there are
millions of ways to setup the test, but this division covers most norma ways to take
advantage of the COM technology. The three tests can be summed up as follows:

* How SQLWindows supports asimple in process COM component.

¢ How SQLWindows supports a component that lives in another address space than the

SQLWindows application itself.
*  What support SQLWindows has for a complete ActiveX control, acting like one of
SQLWindows native controls.

The first test is needed to secure that SQLWindows can be used at all with the whole tree
of ActiveX technology. If it has this basic support then it is theoretically possible to use any
technology that builds on COM.

The same line of thinking can be made for the test of Distributed COM. The possibility of
creating network applications with COM really stands and falls with the support for DCOM.

The last, and perhaps most important, test checks how SQLWindows can be used with the
ever-growing set of finished and hopefully well tested ActiveX controls. Support for this part
of COM technology can increase development speed vastly. Instead of having everyone in the
whole world making their own implementations of Rich Text editors and calculators, you can
just include the needed control to your application.

The simplest possible type of COM component is a collection of methods and data to
perform some simple set of operations. An example of when such a component can be useful

isin athree-tier application, where presentation, logic and data are separated.

Graphical Logic Data
. P <+—>
interface

Figure 6.1: Athee-tier application

Here the logic tier can be implemented using COM and the graphical user interface,
written in SQLWindows makes calls on that component to process the data. A loca COM
component which lives in the process space of the GUI has its limitations, but can often be

very useful.

19



One big problem with local components is that they work on the client’s machine, and uses
the client machines resources to perform its tasks. This is not very suitable if the component
performs more complex operations. It may also clog the network if lots of information needs
to be exchanged between the data and the logic tier. It's interesting to inspect what kind of
DCOM components are supported by SQLWindows, how they must be designed and how
they perform.

The first two tests are components without a graphical user interface of their own. The user
of the components must add controls that trigger method calls and property retrieval on the
component. A complete ActiveX control in turn has its own user interface, and many times
the only thing the SQLWindows programmer needs to do is to include the control to the
project. This makes for short development time and makes it easy to move the control to some
other development tool. Examples of uses are some specialized control to view or edit atable
of adatabase, and to display documents and reports.

6.1 Test of COM

SQL »0— Server

Windows

Database

i

v

A A

Y
ODBC API

Y
ODBC API

!
Y

Figure 6.2: Overview of Test 1

6.1.1 Definition
The first test consists of three components. First a GUI is created in SQLWindows. This user
interface needs access to a database to perform its actions. It does not access the database
directly though, instead it usesa COM component.

The COM component implements one user interface, IDatabase, which can be used to
retrieve data from one table. An important part of this test is to make the COM component as
simple as possible. Thisisto enable to really check which interfaces must be implemented.

20



Connect(BSTR sSource) | Connects to the specified data source
Disconnect Disconnects from the data source
FetchNext Fetches next post of the table
FetchPrior Fetches previous post of the table
FetchLast Fetches the last post of the table
FetchFirst Fetches the first post of the table

Table 6.1;: Methods of custom interface | Database

ID Long, ID of current post

NAME String, Name field in current post

CONNECTED | Trueif connected to data source, else false

Table 6.2: Properties of custom interface IDatabase

The database is very simple, each row of the table contains a name and a unique ID.

ID | Name

1 Adam Anderson

2 Beate Bowman

3 CinderdllaCarlide

Table 6.3; Contents of the Access database

To access the database, the COM component uses ODBC, which is briefly described in
section 4.6.

6.1.2 Development Steps

1. Create adummy user interface in SQLWindows.
Create adummy, local, in process COM component.
Connect the user interface with the COM component.
Create the database.

o &~ w DN

Connect the COM component with the database.

6.1.3 Installation
It's smple and straightforward to construct the interface. Being a fourth generation language,
you just need to point and click to create the GUI. The first thing to do is to add a form (top-

21



level window) to the project, and then drag and drop the data fields and buttons needed into
the form.

The construction of COM component is of course much more complicated. For the first
test there is a need of complete control over which interfaces are implemented, and Visual
C++ was chosen as a development tool. The component was made from scratch, without any
help from a wizard. The class must be registered in the Windows registry. To simplify that
part, the helper class CRegObject from MFC (Microsoft Foundation Classes) was used. The
next step is to create an IDL-file and use the IDL-compiler MIDL to generate a code skeleton
and type library. Then the component and its associated class factory can be implemented.

As a first step the component only supported IUnknown and the database-enabling
interface |Database.

During the installation phase it was clear that SQLWindows could not handle COM
components that are not automation servers (see section 4.2 for information of automation
servers). Since SQLWindows has no concept of pointers it cannot reach the methods of
IDatabase directly. Therefore a dispatch interface had to be added to the COM component.
While it's possible to compile a SQLWindows GUI using pure automation servers, the end
product is very unstable. The component was tested in Visual Basic (which does not use the
IDispatch interface) and VBScript (which accesses al methods and properties through
IDispatch), but in SQLWindows it was incredibly unstable.

The component triggered a page fault in one of Centuras software modules
(CDLLI15.DDL) the second time the application accessed a method on the component. and
each time the application was closed it crashed. There was no way to be found around this
problem, other than to make a complete, but invisible, ActiveX control of the COM
component. Since ActiveX controls are so complicated, you don’'t make one from scratch.
The only solution was to completely re-make the component as an invisible control using
some more advanced tool. For this test the Visua C++ MFC ActiveX Control Wizard was
used. Thiswizard generates most of the skeleton code needed for a simple control.

The database can be created in any type of tool aslong as the driver supports ODBC.

Lastly the data source must be connected with the database. For this test the Visual C++
ODBC API was used, which has afairly complete support for ODBC.

22



6.1.4 Test Platform

Component development and testing | Visual C++ version 6.0 Personal Edition

Application development and testing | Centura SQLWindows/32 version 1.5.1

Test system

Microsoft Windows 98 version 4.10.1998
Intel Pentium 11 processor
192 MB RAM

6.2 Test of DCOM

Table 6.4: Test Platform of Test1

SQL -

Windows

ActiveX

o—]
o—
o—
o—

control

F»>0—]

6.2.1 Definition

The next step in the test was to move the COM component out of the process space of the
GUI. The component is reconstructed to become an out-of-process DCOM component. This

makes for areal three-tier application where the three parts can be distributed anywhere in the

world.

Y ou could imagine that you put the database in USA, the component handling the logic in
Sweden, and run the GUI from Japan, and it would still work! It adds new demands on the
component though, it must provide stubs and proxies for the COM system to use and

Database

A
\

ODBC
APl

Layer Layer

! |

! |

Proxy : Stub —0—] Server !

-t -

1 |

A ! A A |

1 |

\ : y '

DCE -< ' > DCE ODBC |
RPC ! RPC AP >

|

A | ) !

| I

1 |

y ! Y |

1 |

Transport Lo Transport i

| I

1 |

1 |

1 |

Figure 6.3: Overview of test 2

preferably be multithreaded. The interfaces needed were unchanged.

One problem arises here. The experience from the first test showed that the component

accessed from Centura must be a full-fledged ActiveX control. An ActiveX control is always

alocal, in process component, and therefore some design changes had to be made.

23




To give SQLWindows the illusion that it still works with a local component an invisible
ActiveX control was added which sends the messages it gets to the DCOM component.

6.2.2 Development Steps

1. Create adummy user interface in SQLWindows

2. Create adummy DCOM component implementing | Database.

3. Create an ActiveX control that retrieves an interface pointer to the DCOM component’s
| Database interface when constructed.

4. Connect the user interface with the control.

5. Create the database.

6. Change the DCOM component’s implementation so that it makes real ODBC calls when

it's methods are invoked.

6.2.3 Installation
It's a bit more complicated to make a distributed COM component, mostly because you have
to implement the proxies and stubs needed to make the communication location transparent.
Microsoft’s library ATL was used to ease the process. ATL stands for active template
libraries, and is a collection of wrapper classes around the COM system functions, much like
MFC abstracts the gory details of the Windows API. For more information of ATL, see The
World of ATL [5].

No big changes were needed for the ActiveX control. To retrieve the interface of the
remote component, it calls the COM system function CoCreatel nstance, which takes a class
ID and has an interface pointer as an out parameter.

CoCr eat el nst ance(
CLSID Server, // dass ID
NULL, /1 Parent
CLSCTX_ALL, /1l Type of conponent
1D IServer, [/ Interface expected
(void **) & pl EXEServer); // Return paraneter

After this, the control can call methods on the interface just like with any other object:

_pl EXESer ver - >Fet chNext (); // Fetches next record in the database

24



The ODBC callsin the DCOM component are identical to thosein test 1 (section 6.1.3).

6.24 Test Platform

Component development and testing | Visual C++ version 6.0 Enterprise Edition

Application development and testing | Centura SQLWindows/32 version 1.5.1

Test system Microsoft Windows 2000 version 5.00.2195
x86 Family 6 Model 3 Stepping 4
64 MB RAM

Table 6.5: Test Platform of Test 2

6.3 Test of ActiveX Control

ISimpleDatabase |Database

1 1
: |Database :
; 1 1
SQL —>g: ActiveX H»-0— Proxy <] Stub —-0— Server L Database
Windows o control 1 - —: -
1
1
Size negotiation, etc “ : “ ‘} | A
o+ | |
Control Ho Y | ' v
Site :3 : :
DCE DCE ODBC | ODBC
1
-o— i e A [T am
Event “ | “ :
Sink ' :
« | |
i 1
Control :3 Creation v : Y :
i 1Y Transport T rt |
Container H-O - - jl_ - ranspol !
Layer 1 Layer :
| |
1 1
1 1
'

Figure 6.4: Overview of test 3

6.3.1 Definition
The last part tests how easy it is to use complete visible ActiveX controls in Centura Team
Developer. Since these types of components sometimes do not even need any extrainput from
the surrounding application, it's important that it is very simple to include controls to the
application. On the other hand, there is a massive increase in complexity, and the tool must be
able to make using controls both simple and flexible.

The project uses the same DCOM component as in section 6.2 Test of DCOM, but this
time the interface is used directly by the control and all SQLWindows needs to do is to

include the control.

25



The custom interface of the control is a subset of |Database:

Connect(BSTR sSource) | Connects to the specified data source

Disconnect Disconnects from the data source

Table 6.6: Methods of | SmpleDatabase

ID Long, ID of current post

NAME String, Name field in current post

CONNECTED | Trueif connected to data source, elsefalse

Table 6.7: Properties of ISmpleDatabase

The control consists of two text fields showing the data at the current row in the table, and

four buttons to move between rows.

E=| Database

Figure 6.5: ActiveX control interface

To give the container a chance to react on changes in the control, an event DataUpdated
was added to the control.

6.3.2 Development Steps

1. Create an ActiveX control with adummy user interface and 1SimpleDatabase.
2. Create a SQLWindows project including the control.

3. Create adummy DCOM component implementing |Database.

4. Connect the control with the DCOM component.

26



5. Change the interface of the ActiveX control so that it makes calls on the DCOM
component.

6. Create the database.

7. Change the DCOM component’s implementation so that it makes real ODBC calls when
its methods are invoked.

6.3.3 Installation
The ActiveX control was made using the Visual C++ MFC ActiveX Wizard. The control acts
as a simple container of MFC controls. The controls get initialized when the ActiveX control
receives a CREATE signal from the operating system, and a message map is used to connect
“button clicked” messages with function cals. MFC controls and message maps are
thoroughly explained in Programming Windows with MFC, by Jeff Prosise [1].

When a button is clicked, one of the Fetch* methods on the DCOM component (see Table
6.1: Methods of custom interface IDatabase) is called, and the text fields are updated.

No changes were needed in the DCOM component. It has exactly the same implementation
asintest 2 (section 7.2).

6.3.4 Test Platform

Component development and testing | Visual C++ version 6.0 Enterprise Edition

Application development and testing | Centura SQLWindows/32 version 1.5.1

Test system Microsoft Windows 2000 version 5.00.2195
x86 Family 6 Model 3 Stepping 4
64 MB RAM

Table 6.8; Test Platform of Test 3

27



28



7 Resultsand Conclusions

7.1 Test of COM

7.1.1 Development Complexity vs. Component Reuse
It's quite easy to add an in process component to a SQLWindows project. To integrate a
component you need to execute the ActiveX wizard and select the library needed. If it’s not
registered you can choose browse and find the type library manually. The wizard will then
create the necessary functional classes. After this you must drag the ActiveX control into a
window. Finally you retrieve a reference to the dispatch interface by calling
SalActiveX GetObject.

Splitting components into many smaller ones is not as easy, since much of the code in the

SQLWindows graphical user interface must be rewritten.

7.1.2 Integration with Legacy Systemsvs. Customization

Even though the component does not have any user interface, and should not be used as a
control, it gets added to the Controls Palette (see section 5.2). This is a bit counter-intuitive,
and it does not feel right to add the component this way. To get a dispatch interface to the
component you call the function SalActiveXGetObject, which takes a window as an in
parameter and an object of type Object as out parameter.

The component would have felt much more as a part of the development environment if
you just could add it asafunctional class and useit directly.

There is some information loss when the communication between the COM component
and the SQLWindows application fails. All methods of the interfaces in COM returns an error
code with information about what went wrong, but the Invoke method of the Object class
representing a COM component in SQLWindows only returns True or False. So some specid
properties of the COM component become hidden because of this, and customized behavior

on different return values of the component is not easy to implement.

7.1.3 Leve of Granularity vs. Simplicity
It's difficult to have many components controlled by the same container control (in other

words. the same window), since the only function supported to retrieve controls is

29



SalActiveX GetObject. This means that it may be better to create a control as a collection of
all controls needed in an application and flip through the controls using the Object class
function Next. Hopefully this will become better in a future release of Centura Team
Developer.

It is easier to develop user interfaces in SQLWindows that works with only one big

component.

7.1.4 Easeof Overview vs. Complexity

You can view the contents of a component by selecting “ classes\<name of type library>" in
the classes view, or directly when you write the logic in the outline. You can aso see all
methods and properties supported by using the Coding Assistant.

Something missing is the ability to see help text, even though IDL has extensive support
for giving the user information about how the component should be used. In Visual Basic for
example auto completion of method names as well as popup windows with helpful
information and links to help documents is supported. In this area there's a lot of
improvements possible to make SQLWindows easier to use with COM.

To sum up, you get an acceptable overview of the different components, but more detailed
information is difficult to get.

7.1.5 Performance

Early binding makes the function calls faster than late binding. Since SQLWindows only
supports late binding of components, this slows down the performance when calling methods.
The fact that you must create a complete ActiveX control, even if you just make a simple one-
interface component, means that there is a huge overhead of both memory and performance.
The situation becomes even worse if the user of the component does not have access to the
source code. The only solution then is to create a wrapper ActiveX control masquerading as

the COM component.

7.1.6 Maintenance and Version Handling

The ActiveX include libraries are a nice addition to the ActiveX support of Centura. It does
not work very well when changes are made in the interface of a component though. Centura
does not automatically detect that the type library has changed. Instead you have to find the
path to “Directories\Locations\ActiveX Libraries’ and remove the type library file. To force
SQLWindows to create a new include library you must start a project and use the ActiveX
Wizard to create anew one.

30



This means that there's a big risk that the application crashes if you forget to make al
these steps when you, or someone else, changes the interface of a component.

If you want to split a big component into many smaller, you should consider adding them
all to one collection and add it to the project. A lot of logic must be added to get a dispatch
interface to the part needed.

7.2 Test of DCOM

7.2.1 Development Complexity vs. Component Reuse

It's difficult to add a DCOM component to a SQLWindows graphical user interface (GUI).
This is because you have no other option than to make an ActiveX control in some other
language that can act as a proxy between your GUI and the component.

Since it’s the ActiveX control’s responsibility to load and unload all components needed
by SQLWindows, it redly is the development environment of the control that sets the limits
to how easy it is to change to other components. If the interfaces differ you can try to tweak
the calls of the control to fit that of the components, or change the control’s interface and
make the changes directly in SQLWindows.

7.2.2 Integration with Legacy Systemsvs. Customization

The result of thistest is similar to that in test one (see section 7.1.2). The components must be
treated as ActiveX controls and added to a window in the SQLWindows project. It would
have been much better if you could treat the component just as a functional class (see the

description of SQLWindows in section 5.2).

7.2.3 Leve of Granularity vs. Simplicity

Each component needs its own ActiveX control as a proxy. It may be better to create a control
implementing all interfaces of all components and let it be a gateway to the different types of
COM components.

A problem with that approach is that each time one component changes its interface, the
type library information of the control needs to be removed and updated on every computer
developing the SQLWindows user interface. This becomes really hazardous when the
component lies on a server for abig company. It could mean hundreds of changes just for one

little change in a distributed component.

31



After you have made you proxy control its not that big difference between using it with a

big monolithic component or many smaller.

7.24 Easeof Overview vs. Complexity
Just like in test one (see section 7.1.4), there are improvements to be made in this area. You

get about the same level of detail as when developing a GUI to an in process server.

7.25 Performance

Out-of-process servers always have bad performance when methods are called. The method
calls needs to be marshaled and sent to the other process via some type of inter-process
communication. A server that may not event be on the same computer as the client is of
course even more affected by this. Because of this, the speed penalty of the call to the
ActiveX control, and trandation to a call on the client proxy is negligible. A bigger problem is
memory usage at the client. A smple DCOM component needs a complete ActiveX control to

back it up.

7.2.6 Maintenance and Version Handling

Since the project effectively consists of two components the out-of-process server and the
proxy control, it can sometimes be possible, and useful to add some conversion logic in the
control, to adapt the call to the component. If someone decided that it would be better to
change the Fetch* cals into one Fetch() call with the direction as a parameter, you could

trandate the callsin the ActiveX control.

voi d CDat abaseCirl :: Fet chNext ()

{
i nt next:;
_pl EXESer ver - >NEXT_POST( &next); // Get property NEXT_POST
_pl EXESer ver - >Fet ch( next);

}

Figure 7.1: Trandlation of call in the ActiveX control

This way you get around the hassle of changing the interface of the ActiveX control. If there

are any completely new additions to the DCOM component, this does not work.

32



7.3 Test of ActiveX Control

7.3.1 Development Complexity vs. Component Reuse
It's extremely simple to use a visible ActiveX control in a SQLWindows project. The only
thing you need to do is to open the Controls Palette, which lists all controls found.
SQLWindows has a special ActiveX Control Palette showing the ActiveX controls. You
select the control and click in aform window.

Replacing a control or splitting it into many smaller is a bit more problematic though. It's
not enough to delete the old ActiveX control and inserting new ones. You must also remove
all references to the old include library and change the outline. See section 5.2 for explanation

of the Include Library and the Outline.

7.3.2 Integration with Legacy Systemsvs. Customization
The control feels very much like a part of the development environment, and often you just
point and click afew timesto insert new ActiveX controls. After this you can use it much like
one of SQLWindows own controls. The event driven paradigm of SQLWindows is nicely
supported. All ActiveX control events are shown as Centura Message Actions (section 5.2),
and you can add code to react on events from the control directly in the Outline. ActiveX
controls are very seemly integrated with SQLWindows.

Most of the properties of the control can be viewed and changed directly when the control
isincluded, and other types of properties can be reached by simply right-clicking the ActiveX
control and selecting “ Control Properties’. Here the ActiveX control gets a chance to show its

properties to the user in adialog window.

7.3.3 Leve of Granularity vs. Simplicity
Since visible ActiveX controls takes care of most of the interaction with its environment
without consulting its container, it does not at that much complexity to have many controls in
the same container.

A big monolithic control, like a control representing a calendar, is easy to use. You just

have to paste it into awindow and compile.

7.34 Easeof Overview vs. Complexity
There are the same problems with getting a good overview over the control as with Test 1

(section 7.1.4). It's alittle bit easier to change and view the properties of the control though,

33



as you can see al its properties in the Attributes Inspector and that the control is getting a

chance to show its features when you right-click it and selects “ Control Properties’.

7.3.5 Performance
There is no direct performance penalty when working with ActiveX controls in
SQLWindows. Unlike in the test of COM and the test of DCOM there is no need for a proxy
class masguerading as the real component. The events of the control are sent through the
dispatch interface of the control containers’ event sink (see automation, section 4.2). There
has not been any possibility to examine if the conversion from events to Centura Message
Actions slows down the performance.

Apart from that SQLWindows calls methods through the dispatch interface of the control,

the performance is good.

7.3.6 Maintenance and Version Handling
Since ActiveX controls are more like stand-alone controls, where there is little
communication between the control and its container, it's easy to add new functionality to the
control. You don’'t even need to re-compile the SQLWindows application to take advantage of
the updated control.

If changes are made to the custom interfaces between the SQLWindows application and

the control, you still have to take all the actions described in section 7.1.6.

7.4 Conclusions

1 2 3 4 5 6
COM Average | Poor Poor | Average | Poor Poor
DCOM Average | Poor | Average | Average | Average Poor
ActiveX Control | Average | Good | Good | Average | Good | Average

Table 7.1 Test Analysis Table

Development complexity vs. Component reuse
Integration with Legacy Systems vs. Customization
Level of Granularity vs. Simplicity

Ease of Overview vs. Complexity

Performance

o gk W DN PF

Maintenance and Version Handling

34



As the table above shows, it’'s easy to see that Centura Team Developers support for pure
COM and DCOM is very poor, while ActiveX controls have a much better support. This
comes naturally from the fact that COM/DCOM really is not supported without some special
solutions and “hacks”.

The technology that is most problematic to use with SQLWindows is COM. It is not
integrated with the rest of the environment, and maintenance and performance is bad. The
only acceptable aspects are that it's fairly easy to get an overview of the functionality of the
component within the tool. It's also not too difficult to add to the SQLWindows application
once you are sure it behaves, from SQLWindows point of view, as an ActiveX control.

DCOM shares many of its properties with COM, and therefore the test results of using
DCOM amost the same as with using COM. When you have made a proxy control
masqguerading as the DCOM component, this proxy can be expanded to act as a proxy of
many, both local and remote components. This makes it easier to add more DCOM
components once you have added the first. Since DCOM and out-of-process components have
bad performance anyway, the added performance loss from using the components in
SQLWindows is negligible.

The test with ActiveX controls gave far more positive results. It's apparent that Centura
had ActiveX controls in mind when they designed the ActiveX support for version 1.5.1 of
Centura Team Developer. The controls feel completely integrated with its environment and
it's a the same time easy to get and set custom properties. It's almost as easy to use many
small controls with the graphical user interface as one big, and there is no big performance
losses compared with other tools, like Visual Basic. There are some areas in which
improvements can be made. Maintenance of controls is problematic since you need to make
changes in the SQLWindows application every time an interface of the controls is updated.
Splitting a big control into many smaller is not that easy. There isn’t much support for getting

different views of the controls.

35



36



References

[1]
[2]
[3]

[4]
[5]

Jeff Prosise. Programming Windows with MFC, Second Edition. Microsoft Press, 1-
57231-695-0, 1999.

Julian Templeman, Ivor Horton, George Reilly, Alex Stockton. The Idea of COM. Wrox
Press, http://www.comdevel oper.com/articles’ COM Idea.asp.

Kingsley Idehen. Open Database Connectivity Without Compromise. OpenLink
Softwar e, http://www.openlinksw.com/info/docs/odbcwhp/tabl eof .htm.

The Object Management Group, http://ww.omg.org.
The World of ATL. Wrox Press, http://www.worldofatl.com.

37



