
Computer Science

Stefan G M Sonesson

BISNet

Bachelor's Project

2000:24

BISNet

Stefan G M Sonesson

c 2000 The author(s) and Karlstad University

This report is submitted in partial ful�llment of the requirements

for the Bachelor's degree in Computer Science. All material in

this report which is not my own work has been identi�ed and

no material is included for which a degree has previously been

conferred.

Stefan G M Sonesson

Approved, Date of defense

Advisor: Dimitri M Ossipov

Examiner: Stefan Lindskog

iii

Acknowledgements

I am indebt to my family for having taken up a lot of familytime. My wife Eva has been

a great support at late hours in front of the catodetube.

Thank You Eva, Jennifer and Samuel.

My friend Antoine Haddad has meant much for me too. He is an excellent program-

mer and has object orientation written on the back of his palm. We have had quite a few

discussions on the issue.

Thank You Tony.

Without the help of my advisor Dimitri M. Ossipov I would have had a hard time. His

knowledge is an amazing resource which I greatly appreciate taking part of.

Thank You Dimitri.

v

Abstract

This document describes the BISNet system.

Chapter 1

Gives the reader a brief introduction to the project.

Chapter 2

Describes analysis of classes and their responsibilities. It also shows how the system

works from the users point of view.

Chapter 3

Explains the design of classes, scenarios from systems point of view, structure of

database tables, relationships aswell as queries.

Chapter 4

Reviews architecture, middleware and JDBC/ODBC-bridge.

Chapter 5

Brings up maintenance and system evolution.

Chapter 6

States a few assumptions.

Chapter 7

Conclusion, estimation of response time.

References

Books I have read and got material from.

Appendix

Code.

vi

Contents

1 Introduction 1

2 Analysis 3

2.1 Classes, responsibilities . 3

2.2 Scenarios . 4

3 Design 7

3.1 Classes . 7

3.1.1 BISnet . 10

3.1.2 MsgFinder . 11

3.1.3 MsgParser . 13

3.1.4 DBHandler . 14

3.1.5 ContractWatcher . 15

3.1.6 MsgSender . 19

3.2 Scenarios . 20

3.3 Database . 23

3.3.1 Tables . 24

3.3.2 Queries . 27

4 Architecture and Middleware 29

4.1 Overview . 29

4.2 Message protocol . 31

4.3 JDBC/ODBC bridge . 35

4.4 Transaction support . 36

4.5 Middleware between user & application server 37

4.5.1 Protocol Speci�cations for EMWAC Internet Mail Services 38

vii

5 Maintenance and system evolution 39

5.1 Future . 39

6 Assumptions 41

7 Conclusion 43

References 46

A Code 47

A.1 BISNet.java . 47

A.2 MsgFinder.java . 49

A.3 MsgParser.java . 52

A.4 DBManager.java . 54

A.5 ContractWatcher.java . 60

A.6 MsgSender.java . 70

viii

List of Figures

3.1 Class diagram from Rose model . 8

3.2 State-transition diagram showing negotiation. 22

3.3 Relations between tables from MS Access 23

4.1 System overview . 29

ix

List of Tables

2.1 Scenarios from users view . 4

3.1 Events . 20

3.2 Actions . 21

3.3 Customer . 24

3.4 Supplier . 24

3.5 Orders . 25

3.6 O�ers . 25

3.7 Match . 26

3.8 HistoryLog . 26

3.9 Machines . 27

4.1 Message types . 32

4.2 Message protocol . 32

x

1 Introduction

This document describes my Bachelor's project BISNet that is a system for optimization

of transports. The report is written in LaTeX.

Acke Kanderman at Bygginvest Scandinavia AB, had a proposition for a bachelor's project

that aims at increasing the pro�t for trailer contractor T (supplier) and machine contractor

M (customer).

Today return-transports are often empty due to the lack of information between T and

M. Our intention is to solve the problem by using a database to manage orders and o�ers.

The parties will probably access the database with mobile phones sending e-mail or SMS1.

The parties T and M have expressed a need to get in contact with each other in a fast

and eÆcient way. As of today the cooperation is said to occur through contacts or by phone.

The purpose of the service is to simplify the handling of the negotiation between M and

two or more T. One can think of an auction as a metaphor. Our service would be the

middleman.

The database service created will presumably lead to:

* an increase in T's reservations

* a decrease of M's transportation costs

Basically, the service will consist of an application that handles a database and the mes-

saging between database and users.

C and S communicates with the service through use of e-mail.

C can place orders where he speci�es that he wants a machine transported from one loca-

1Short Message Service, a way for mobile phones to send text messages

1

tion to another and that this can be done earliest from a speci�c date to another.

S can place o�ers where he states that he can transport machines between 2 speci�c dates.

Both C and S can respond to messages sent to them by the service. In chapter 4.1 the

message protocol2 is described.

2How the messages should look to be accepted by the system

2

2 Analysis

First we need to de�ne what classes we should have and then scenarios from users point

of view.

2.1 Classes, responsibilities

From the problem domain, we can see that there is a need of extracting data from mes-

sages, inserting to, and retrieving data from, a database aswell as sending messages to

the users of the service. The users should register with the service through an appli-

cation (paper form) to the DBA3. This is probably a good way to insure that there are

no fake applications, since they would have to legitimate themselves on site when applying.

There should be classes responsible for:

� Finding new messages.

� Parsing named messages.

� Inserting and retrieving data from database.

� Take care of users interaction with the service.

� Controlling the negotiation.

� Sending messages.

3Database Administrator

3

2.2 Scenarios

Customer and supplier can make a deal if C has placed an order, S has placed an o�er and

a match between the two have occurred. Then the negotiation starts where the service

�rst asks S if he can take the order that has matched his o�er. Upon S agreeing to this,

we ask C if he wants this o�er, or several o�ers if we have any. If C agrees on one o�er we

send C and S a deal, which when they agree to becomes a closed deal.

After the deal is closed C and S will have to use some kind of direct communication

with each other to cancel or change the deal. It could happen that they make this com-

munication earlier in the process, leaving our negotiation to time out.

In the future, customer may view the status of his ongoing negotiation through some online

service, where we could have, e.g. an applet that fetches data from our service and shows

this to the user. C and S is not going to be able to delete their registration other than

through the DBA because of the security problems it could inict. For this service to work

there exists several di�erent scenarios how the system should work from a users point of

view. These are described in brief in table 2.1.

Scenario Description

S01 Customer places order.
S02 Supplier places o�er.
S03 Supplier accepts negotiation o�er.
S04 Customer accepts negotiation o�er.
S05 Supplier accepts deal.
S06 Customer accepts deal.
S07 Supplier rejects deal.
S08 Customer rejects deal.
S09 Supplier removes previously placed o�er.
S10 Customer removes previously placed order.
S11 User do not reply in time.

Table 2.1: Scenarios from users view

4

S01.

A user (from now on called C) wants to have his machine transported somewhere.

C sends a message, with information about his order, to the service and receives a message

that his order has been placed.

S02

A user (from now on called S) wants to transport a machine.

S sends a message, with information about his o�er, to the service and receives a message

with acknowledge that his o�er has been placed.

S03.

S receives message with a negotiation o�er.

S sends a message back to the service telling it that he accepts this o�er.

S04.

C receives a message with a negotiation o�er.

C sends a message back to the service telling it that he accepts this o�er.

S05.

S receives message about a deal .

S sends a message back to the service telling it that he accepts this deal.

S receives message that deal is made.

S06.

C receives a message about a deal.

C sends a message back to the service telling it that he accepts this deal.

C receives message that deal is made.

5

S07.

S receives message about a deal.

S sends a message back to the service telling it that he rejects this deal.

S receives message that deal has been rejected.

S08.

C receives a message about a deal.

C sends a message back to the service telling it that he rejects this deal.

C receives message that deal has been rejected.

S09.

S sends a message to the service saying that he removes earlier placed o�er.

S receives message that the o�er has been removed.

S10.

C sends a message to the service saying that he removes earlier placed order.

C receives message that the o�er has been removed.

S11.

User fails/neglects to reply in time (speci�ed by system).

C receives message that he has timed out.

6

3 Design

3.1 Classes

From Analysis we derived the classes, BISNet, MsgFinder, MsgParser, DBManager, Con-

tractWatcher, DBHandler and MsgSender. BISNet is the main application and is responsi-

ble to start the service. MsgFinder checks a given directory to see if any new messages has

arrived. MsgFinder keeps all new messages in a �le. MsgParser does what it says, it parses

the message/s that it takes as argument. DBManager takes care of the placement of orders

and o�ers. It calls ContractWatcher on the negotiation scenarios 4.1. ContractWatcher

maintains the ongoing negotiation. This is where most of the business logic is. DBHandler

does the hard work for DBManager and ContractWatcher, i.e. inserting and retrieving, to

and from the database. MsgSender is responsible for sending messages to C and S. I use

Booch[1] notation for diagram 3.1.

7

Figure 3.1: Class diagram from Rose model

8

From the diagram 3.1 we can see the relationships between classes. BISNet has three

objects by value, these are mf, a MsgFinder object responsible to �nd messages. There are

mp, a MsgParser object that parses data from a message and dbm that is a DBManager

object responsible to place new orders and o�ers. DBManager has two objects by value,

dbh that is used to insert newly placed orders/o�ers. There is also cw a ContractWatcher

object that handles the negotiation process. ContractWatcher also have two objects by

value, dbh used to insert and retrieve data from the database, and ms a MsgSender object

that sends messages necessary to uphold the negotiation.

User sends messages to the service through any kind of media, but at current time it

is done by email. E-mail server (see 4.5) retrieves and puts message as �les in appropriate

directories. BISNet (BIS) starts the whole service by calling MsgFinder (MF). MF searches

directories for new messages that do not exist in the processed.dat �le, i.e. they are new.

Upon �nding a message �le it returns a list that contains new messages to BIS. BIS then

calls MsgParser (MP) with a Vector containing the messages to parse. MP starts parsing

the �les for data, which it puts in String arrays. These are in turn put in a Vector, to be

returned to BIS, which then calls the DBManager (DBM) that is responsible for inserting

the data to the Database, depending on what type of message it was. If it was COR or

SOF (see 4.1) DBM inserts the new order/o�er and replies to the user. If it was any of the

other message types (see 4.1) DBM calls ContractWatcher (CW) that takes the appropri-

ate action depending on the message received. CW handles most of the systems business

logic. CW queries DB to �nd matches, i.e. suppliers and customers who can make a deal.

These matches are inserted to a Match-table where status about the ongoing negotiations

are held. CW and

9

3.1.1 BISnet

This is the main class of the project. It is responsible to start the service and keep it

running.

Constructor detail

No constructors.

Method detail:

public static void main(java.lang.String[] args) throws java.lang.Exception

BISNet creates �ve objects mf, mp, dbm, cw and ms. A while-loop runs forever to check

for incoming messages and deal with them accordingly. Call is made to the beginSearch()

method of MsgFinder class. If it returns a value greater than zero, it means that there has

arrived new messages. In that case we assign ret list of MsgFinder to the Vector tmp.

Now we call the parseMsg() method of MsgParser class. If it returns a value greater than

zero, the value is held in the parameter posts as the number of posts to process. The

Vector tmp is cleared and posts of MsgParser is assigned to tmp.

Parameters: args, takes the mailbox directory as argument. In case we do not have the

mailbox directory at a �x position, or simply want to place it elsewhere

Returns: void.

Throws: -

Continue with BISNet after �nished with class...

10

3.1.2 MsgFinder

public class MsgFinder extends java.lang.Object

Searches given directory for new messages.

Field detail

private java.lang.String directory

Holds the name of the mailbox directory used by EMWAC4.5

private java.util.Vector processed

A Vector containing names of already processed messages.

public java.util.Vector ret list

Holds the names, as Strings, of the new �les that MsgFinder found.

private java.lang.String save file

Holds the name of the �le we are using to have persistance in case of a crash.

Constructor detail

There are two constructors.

public MsgFinder(java.lang.String file name)

Constructs a MsgFinder object.

Assigns the file name to the variable save file and loads the �le list.

Parameters: file name - keeps the names of the processed messages.

public MsgFinder(java.lang.String arg, java.lang.String file name)

Constructs a MsgFinder object.

Takes the arg as directory where to start looking for new �les. That directory should

not contain any �les only folders. Assigns the file name to the variable save file

and loads the �le list.

11

Parameters: arg - The directory to be searched.

file name - keeps the names of the processed messages

Method detail

private void loadFileList()

Has a while loop where lines are read from a save file processed.dat.

These lines are �lenames that we add to a Vector processed.

Returns: void.

private void appendFileList()

Cycles through a for loop, where it gets elements from ret list and assigns them to

str. str plus a newline, to get each �le on separate lines, is appended to the save file

processed.dat.

Returns: void.

public int beginSearch()

This method searches directories for newly arrived messages. It starts of by checking

that directory exists and that it can be read from. Then it checks if directory is a

directory and not a �le in the given directory, because we have said earlier that we do

not want any �les in the mailbox directory. Now we assign an array of strings naming

the �les and directories in the directory denoted by the abstract pathname to dir list.

We loop the length of dir list to put the �lenames with their paths in a File array

file list. This is done to retrieve the whole pathname of the messages encountered

as new �les. After that we loop length of file list to check if the item at every

position is a directory i.e. users mailbox. If it is so we list the contents of that directory

in to a String array dir list2. This secondary directory list is looped through to

see if the Vector processed does not contain the item at this position, then it is a new

12

message which we add to the Vector ret list. When this is done we check if ret list

is greater than 1, a new message has arrived, in that case we call the appendFileList()

method.

Returns: Size of ret list

3.1.3 MsgParser

This class parses messages for information.

Field detail

public java.util.Vector posts

Holds Vectors of tokens.

public java.util.Vector insert this

Holds tokens that we want to insert to DB.

private java.util.Vector msg to check

Holds the �lenames of the messages to parse.

private java.io.BufferedReader in

Read text from a character input stream, bu�ering characters so as to

provide for the eÆcient reading of characters, arrays, and lines.

Constructor detail

MsgParser

public MsgParser()

Default constructor

Method detail

public int parseMsg(java.util.Vector tmp)

13

Assigns taken Vector tmp to msg to check. Loops through msg to check. Clears temp

and msg to check. Takes every element (�lename, message) from msg to check and

assigns them as Strings to msg. Assigns a new Bu�eredReader with a new FileReader

with the argument msg. Now we read lines from the given message and adds them to

temp. After this we make a new StringTokenizer with the arguments the element

at position 5 (meaning line 6 in the message) and our special delimiter character #

and assigns this to st. Loops while st has more tokens, assigning each element

to value. Each value is added as a new String element to insert this and

every insert this is added to posts as a new Vector element. The size of posts is

returned.

3.1.4 DBHandler

Field detail:

public java.util.Vector result

Holds the result from a query to the DB.

Constructor detail

public DBHandler()

Default constructor

Method detail:

public java.lang.String getResult(int pos)

Returns an element from a given position in result.

public java.util.Vector getResult()

Returns a new Vector with result as an argument.

public int insert(java.util.Vector command)

14

Inserts data from a Vector to the DB, this is done as a batchjob.

public int retrieve(java.lang.String command)

Queries the DB for information given as a SQL query in the form of a String.

Parameters: command - String with the SQL command to run.

Returns: The size of result.

3.1.5 ContractWatcher

Field detail:

private java.lang.String cstate

Holds the customer state from the match table.

private java.lang.String sstate

Holds the supplier state from the match table.

private java.lang.String command

Holds SQL commands we want to execute towards the DB.

private java.lang.String query

Holds the queries we want to ask the DB.

public java.util.Vector result

Holds the results given from DB when asking a query.

static java.lang.String ACK

A string with acknowledgement to the user.

static java.lang.String NACK

A string with negative acknowledgement to the user.

static java.lang.String SYSMAIL

A string with the email address to the system.

static DBHandler dbh

15

A DBHandler object.

static MsgSender ms

A MsgSender object.

Constructor detail

public ContractWatcher()

Default constructor.

Method detail:

public void findMatch()

Finds matches4 and inserts them to the match table.

Parameters: tilf - Vector with the information to process.

Returns: void.

public void supplierAcceptsOffer(java.util.Vector tilf)

Retrieves the e-mail address of the user sending the current message. If we fail getting

email address, we send a message to ourselves with information of the command that

we could not execute. Once we have the address we try to insert information to

database, if ok, we send an acknowledgement to the supplier.

Parameters: tilf - Vector with the information to process.

Returns: void.

public void customerAcceptsOffer(java.util.Vector tilf)

Retrieves e-mail addresses of the customer sending the current message and the supplier

who corresponds to the same o�er. If we fail getting email address, we send a message

4Orders, o�ers that share some prede�ned criteria.

16

to ourselves with information of the command that we could not execute. Once we

have the addresses we update cstate to cresp in database, if ok, we send a message

about a deal to customer and supplier.

Parameters: tilf - Vector with the information to process.

Returns: void.

public void supplierAcceptsDeal(java.util.Vector tilf)

Updates sstate to SAD, checks cstate for CAD, if cstate is CAD update historylog,

remove negotiation from database, send message to supplier and customer, if not CAD

send timeout message to ourselves.

Parameters: tilf - Vector with the information to process.

Returns: void.

public boolean customerAcceptsDeal(java.util.Vector tilf)

Updates cstate to CAD, checks sstate for SAD, if sstate is SAD update historylog,

remove negotiation from database, send message about deal to customer and supplier,

if not CAD send timeout message to ourselves.

Parameters: tilf - Vector with the information to process.

Returns: void.

public boolean supplierRejectsOffer(java.util.Vector tilf)

Updates log, removes record from match, get e-mail address to supplier, sends

acknowledgement message to supplier.

17

Parameters: tilf - Vector with the information to process.

Returns: void.

public boolean customerRejectsOffer(java.util.Vector tilf)

Updates log, removes record from match, get e-mail addresses to customer and supplier,

send message that negotiation is aborted to supplier and customer.

Parameters: tilf - Vector with the information to process.

Returns: void.

public boolean supplierRemovesOffer(java.util.Vector tilf)

Updates log, checks if o�d exists in match table, gets e-mail address to supplier and

customer, removes record from O�ers, send message to supplier and customer that this

negotiation is o�.

Parameters: tilf - Vector with the information to process.

Returns: void.

public boolean customerRemovesOrder(java.util.Vector tilf)

Updates log, checks if oid exists in match table, gets e-mail address to customer and

supplier, removes record from Orders, send message to customer and supplier that this

negotiation is o�.

Parameters: tilf - Vector with the information to process.

Returns: void.

18

3.1.6 MsgSender

The methods of this class is taken from [4] p165.

Field detail:

private java.io.BufferedReader in

Read text from a character-input stream, bu�ering characters so as to provide for the

eÆcient reading of characters, arrays, and lines.

private java.io.PrintWriter out

Print formatted representations of objects to a text-output stream.

Constructor detail

public MsgSender()

Default constructor.

Method detail:

public void sendMail(java.util.Vector message)

Opens a socket to our mailserver smtpds on port 25. Calls send with every element of

the message Vector.

Parameters: message - Vector with the information to send.

Returns: void.

public void send(java.lang.String s)

Parameters: s - String with the information to send to print stream.

Returns: void.

Throws: java.io.IOException

19

3.2 Scenarios

From the systems point of view, all actions performed by the user in the scenarios from

Table 2.1, will act as events for us to do some action upon noticing. These can be extracted

as a state-event matrix. Abbreviations in Event description column are explained in Table

4.1. Table 3.1 shows what type of event the scenarios from table 2.1 entail. Table 3.2

presents the actions and their descriptions.

Scenario Event Event description

S01 E01 COR received
S02 E02 SOF received
S03 E03 SAC received
S04 E04 CAC received
S05 E05 SAD received
S06 E06 CAD received
S07 E07 SRJ received
S08 E08 CRJ received
S09 E09 SRM received
S10 E10 CRM received
S11 E11 TUT received

Table 3.1: Events

20

Action Description

A01 Insert order to DB, send ack to customer, �nd match,
send negotiation o�er to supplier.

A02 Insert o�er to DB, send ack to supplier, �nd match,
send negotiation o�er to supplier.

A03 Update sstate in match table to sresp, send negotiation o�er to customer,
send message with timeout date to ourselves.

A04 Update cstate in match table to cresp, send deal to customer and supplier,
send message with timeout date to ourselves.

A05 Update sstate in match table to SAD, check cstate for CAD,
send timeout date to ourselves.

A06 Update cstate in match table to CAD, check sstate for SAD,
send timeout date to ourselves.

A07 Update historylog table, remove negotiation from DB,
send message to customer and supplier.

A08 Update historylog table, remove match in DB,
send message to supplier.

A09 Update historylog table, remove match in DB, send message to customer
and supplier that negotiation is o�.

A10 Update historylog table, remove match in DB, send message to customer
and supplier.

Table 3.2: Actions

Figure 3.2 presents state-transition diagram to show negotiation that is performed by

system service. Negotiation starts after event E01 see table 3.1 has occurred and A1 see

table 3.2 is performed, or after E02 followed by A02. This takes us to state SRESP see

3.2, where we are waiting for E03 that triggers A03 and takes us to state CRESP. We can

also get E07 or E11 both followed by A08, in that case we are taken to state END and the

negotiation is over. From state CRESP, E08 or E11, can lead to A09 being performed and

take us to state END which is the end of negotiation. E04 gives that we should perform

A04 and move to state WDEAL. WDEAL is the state where we wait for customer and

Supplier to accept a proposed deal. In WDEAL state, E05 followed by A05 takes us back

to same state. E06 makes A06 happen and also takes us back to same state as we were

21

in. If we have E11 trigger A10 we go to state END. By �nding that both customer and

supplier have accepted deal, SAD&CAD, A07 leads to state DEAL. In state DEAL we

send customer and supplier con�rmation telling that the deal is made and after that we

will update historylog see table 3.8 and remove record from match aswell as appropriate

records in, order table, see 3.5, o�er table, see 3.6, and the negotiation is over.

Start

SRESP

CRESP

WDEAL

DEAL

��
��
��
��

END

��
END

�
�
�
�

END

E11/A08
E07/A08

�
�
�
�

END E08/A09
E11/A09

E05/A05

E01/A01
E03/A03

E04/A04

E11/A10

SAD&CAD/A07

E06/A06

Figure 3.2: State-transition diagram showing negotiation.

22

3.3 Database

The database needs to hold information about customers, suppliers, orders, o�ers, matches,

machines, history of negotiation and possibly more when extended in the future.

All data is persistent since it is stored by the database. Due to the fact that no authenti-

cation other than sending an ID exists, all operations on the Customer and Supplier tables

should be done by an administrator. This is to prevent users from deleting the wrong

record.

The relational database has proven itself to be very popular. We choose to use it since it

is well known and there exists many products and standards that support it.

Figure 3.3: Relations between tables from MS Access

In �g 3.3 we see relations between tables in database. CID from Customer is a foreign key

in Orders. MachineID is also a foreign key in Orders and has a one-to-many relationship,

because machine can be involved into many orders, with it. OID from Orders is a foreign

key in Match and has a one-to-many relation, because one order can have many matches.

SID from Supplier is a foreign key in O�ers. OFID is a foreign key in Match and has a

one-to-many relation, because one o�er can have match many o�ers. The primary key in

each table is a counter.

23

3.3.1 Tables

Following presents the column properties of the database tables.

Customer

Primary key : CID

Name Type Size Description

CID Long Increment Number identifying the customer
CustomerName Text 50 Name of the customer
Phone Text 50 Phonenumber
Address Text 50 Address

Table 3.3: Customer

The customer table holds information about the user named customer.

Supplier

Primary key : SID

Name Type Size Description

SID Long Increment Number identifying the Supplier
SupplierName Text 50 Name of the supplier
Phone Text 50 Phonenumber
Address Text 50 Address

Table 3.4: Supplier

The supplier table holds information about the user named supplier.

24

Orders

Primary key : OID

Foreign key : CID

Name Type Size Description

OID Long Increment Number identifying the order
CID Long - Number identifying the customer
SLOC Text 50 Source location of machine
ALOC Text 50 Target location of machine
SDATE Short Date - Startdate of transportation
ADATE Short Date - Deadline for transport
MachineID Long - Number identifying the machine

Table 3.5: Orders

The order table holds information about an order that the customer has placed.

O�ers

Primary key : OFID

Foreign key : SID

Name Type Size Description

OFID Long Increment Number identifying the o�er
SID Long - Number identifying the supplier
SDATE Short Date - Available from this date
ADATE Short Date - Available to this date

Table 3.6: O�ers

The o�er table holds information about the o�er a supplier has placed.

Match

Primary key : MID

Foreign key : OID, OFID

25

Name Type Size Description

MID Long Increment Number identifying the match
OID Long - Number identifying the order
OFID Long - Number identifying the o�er
SSTATE Text 5 Supplier state of match
CSTATE Text 5 Customer state of match
REJECTED Int - Yes or No

Table 3.7: Match

The match table holds information about matches. Matches are orders and o�ers we think

the customer and supplier wants to negotiate, because they �t in time, type or other

criteria.

HistoryLog

Primary key : MID

Foreign key : OID, OFID

Name Type Size Description

HID Long Increment Number identifying the match
MID Long - Number identifying the order
OFID Long - Number identifying the o�er
SSTATE Text 5 Supplier state of match
CSTATE Text 5 Customer state of match
REJECTED Int - Yes or No

Table 3.8: HistoryLog

The historylog keeps track of every transaction made to a negotiation.

Machines

Primary key : MachineID

26

Name Type Size Description

MachineID Long - Number identifying the machine
MachineName Text 50 Name of the machine
Weight Text 6 Weight of the machine (kg)
Width Text 3 Width of the machine
Height Text 3 Height of the machine (m)
Length Text 3 Length of the machine (m)

Table 3.9: Machines

3.3.2 Queries

Q01 Used when customer places an order. Inserts an order into Orders table.

Q02 Used when supplier places an o�er. Inserts an o�er into O�ers table.

Q03 Used when supplier accepts negotiation o�er. Retrieves e-mail address of supplier.

Q04 Used when supplier accepts a negotiation o�er. Updates SSTATE in MATCH table

to CRESP.

Q05 Used when customer accepts a negotiation o�er. Retrieves e-mail for supplier with

same MID as customer.

Q06 Used when customer accepts a negotiation o�er. Retrieves e-mail address of cus-

tomer.

Q07 Updates CSTATE in MATCH table to CRESP

Q08 eee

Q09 �f

Q10 ggg

Q11 ggg

27

Q12 ggg

Q13 ggg

Q14 ggg

Q15 ggg

Q16 ggg

28

4 Architecture and Middleware

4.1 Overview

As the world is moving away from client/server toward a "three tier model" (see [4] p208),

or even "n tier models", it seems logical to build our system as a "three tier system".

The system could easily adopt to a n-tier.

With the three tier model there is the advantage of separating visual presentation (on

the client) from the business logic (in the middle tier) and the raw data (in the database).

This makes it possible to access the same data and the same business logic from multiple

clients, such as a Java application (in our case), or applet or web form.

user

Mail
App Server JDBC

WAPHTTP

Web Server

user user

CGI

Figure 4.1: System overview

Figure 4.1 shows system architecture and middleware between tiers.E-mail, WAP or

29

HTTP can be used to exchange messages between actors and system. Messages are stored

in a persistent queue, which is used by application server to retrieve messages and send

appropriate responses. The system is using e-mail service as Message-Oriented Middleware

(MOM) that supports the Queued-Message-Processing (QMP) paradigm.

Basic idea of QMP.

The client message is stored in a queue and the server works on it when free. The server

stores the response in another queue, and the client actively retrieves the responses from

this queue. This model, used in many transaction-processing systems, allows the clients

to asynchronously send requests to the server. Once a request is queued, the request is

processed, even if the sender is disconnected.

Analysis of QMP:

Asynchronous ("nonblocked") paradigm. The clients can put a message on the queue

and then continue processing. Another segment of client code can continue to monitor the

output queue for any responses and process the outputs received. Asynchronous processing

has the following advantages:

� It is suitable when you do not want to have a constant session with the host.

� Failure of application server do not a�ect the clients to stop processing.

� Clients can be more eÆcient, not having to wait for server to respond. This is good

for SMS.

� Clients and servers can use "deferred-message" or callback features if a response is

not available.

Queue considerations.

The message queues can be persistent (stored on disk) or nonpersistent (stored in mem-

ory). We store them on disk for failure recovery. The queues can be at client machines,

30

at server machines, in a middle machine, or replicated on client and server machines. If

queries generate large tables with millions of rows as responses to be stored in queues, then

very large queue sizes need to be allocated. Queue overows can be quite dangerous to the

health of QMP-based client/server environments.

Bene�ts/risks.

The main strength of message-oriented middleware (MOM) is asynchronous processing,

i.e.,the clients and servers are not blocked while waiting for responses from each other.

Another strength of MOM is recoverability from failures, ,because the message queues on

disk can be used to recover the system after failures.

The main limitation of MOM is that the overhead of writing/reading from disk queues

can slow down a client/server application. In addition, queueing of unpredictably large

responses can result in disk overows. A major limitation of MOM is that it introduces

some unique end-to-end security exposures because many security packages at present as-

sume a direct connection between the communication parties("no middle man").

In balance, MOM provides a very powerful approach for providing reliable and asyn-

chronous communication between very heterogenous applications.

4.2 Message protocol

Messagetypes that users should send to perform action are shown in table 4.1.

Following table explains the �elds used in describing message protocol.

E-mail service is used to carry messages between user and system. These messages must

follow this syntax:

31

Name Description

COR Customer places order.
SOF Supplier places o�er.
SAC Supplier accepts negotiation o�er.
CAC Customer accepts negotiation o�er.
SAD Supplier accepts deal.
CAD Customer accepts deal.
SRJ Supplier rejects deal.
CRJ Customer rejects deal.
SRM Supplier removes previous placed o�er.
CRM Customer removes previous placed order.

Table 4.1: Message types

Name Description

cid Unique number that identi�es the customer.
sid Unique number that identi�es the supplier.
systemid Unique number that identi�es the system.
msgtype Prede�ned combination of letters see 4.1.
date1 For customer, the earliest date to start transportation.

For supplier, the earliest date he can start taking orders.
date2 For customer, the date when the machine must be at location2.

For supplier, after that date he can not take any orders.
location1 The place where customers machine is.
location2 The place customers machine is going to be transported to.
machinetype Speci�es what kind of machine should be transported.

Table 4.2: Message protocol

32

Between <, > sign is a value.

: marks a delimiter. Hard brackets [,] contain values that are optional.

Customer places order:

<cid>:<msgtype>:<location1>:<location2>:<date1>:<date2>:<machinetype>

Example 12345#COR#Karlstad#Hagfors#2000-05-23#2000-05-25#1

Supplier places offer:

<sid>:<msgtype>:<date1>:<date2>[:<machinetype>]

Example 12345#SOF#2000-05-23#2000-05-25

Supplier accepts offer:

<sid>:<msgtype>:<offerid>

Example 12345#SAC#47

Customer accepts offer:

<cid>:<msgtype>:<offerid>

Example 12345#CAC#42

Supplier rejects negotiation offer:

<sid>:<msgtype>:<offerid>

Example 12345#SRJ#47

Customer rejects negotiation offer:

<cid>:<msgtype>:<offerid>

Example 12345#CRJ#42

Supplier removes a previously placed offer:

<sid>:<msgtype>:<offerid>

Example 12345#SRM#47

33

Customer removes a previously placed order:

<cid>:<msgtype>:<orderid>

Example 12345#CRM#42

System sends timeout message:

<mid>:<msgtype>:<date>

Example 99999#TUT#2047-05-10

34

4.3 JDBC/ODBC bridge

JDK 1.2.2 has been used to implement this service. The JDBC/ODBC bridge [6] ch5,

gives access to any ODBC data source for free!

However, you need to be aware of a few limitations. For each system that is going to use

the Bridge, software needs to be installed and con�gured. This can be a timeconsuming

task as it is not accomplished automatically. Depending on what operating system is being

used, it could be hard or expensive to �nd ODBC drivers.

There will be limitations of the ODBC driver that you will be using. If the ODBC driver

can not do it, neither can the Bridge. The Bridge is not going to add any value to the

ODBC driver that you are using other than allowing you to use it via JDBC. In order for

the Bridge to properly use an ODBC driver, it must be ODBC version 2.0 or higher. Also, if

there are bugs in the ODBC driver, they will surely be present when you use it from JDBC.

We must not forget Java security considerations. From the JDBC API speci�cation, all

JDBC drivers must follow the standard security model, most importantly:

- JDBC should not allow untrusted applets access to local database data.

- An untrusted applet will normally only be allowed to open a database connection back

to the server from which it was downloaded.

Trusted applets and any type of application, can use the Bridge to connect to a data source

of any type. Untrusted applets on the other hand can only access databases on the server

from which they were downloaded. Normally, the Java Security Manager will prohibit a

TCP connection from being made to an unauthorized hostname; i.e. if the TCP connection

is being made from within the Java Virtual Machine (JVM). In the case of the Bridge, this

connection would be made from within the ODBC driver, outside the control of the JVM.

If the Bridge could determine the hostname that it will be connected to, a call to the Java

35

Security Manager could easily check to ensure that a connection is allowed. Unfortunately,

it is not always possible to determine the hostname for a given ODBC data source name.

For this reason, the Bridge always assumes the worst. An untrusted applet is not allowed

to access any ODBC data source. This means that if you cannot convince the Internet

browser in use that an applet is trusted, you cannot use the Bridge from that applet.

4.4 Transaction support

The Java 2 SDK v1.2.2, includes the JDBC 2.0 core API and the JDBC/ODBC bridge.

Support for distributed transactions has been added as an extension to the JDBC 2.0 API.

This feature allows a JDBC driver to support the standard 2-phase commit protocol used

by the Java Transaction Service (JTS).

A transaction consists of one or more statements that have been executed, completed, and

then either committed or rolled back. When the method commit or rollback is called,

the current transaction ends and another one begins. A new connection is in auto-commit

mode by default, meaning that when a statement is completed, the method commit will

be called on that statement automatically. In this case, since each statement is committed

individually, a transaction consists of only one statement. If auto-commit mode has been

disabled, a transaction will not terminate until the method commit or rollback is called

explicitly, so it will include all the statements that have been executed since the last in-

vocation of the commit or rollback method. In this second case, all the statements in the

transaction are committed or rolled back as a group. The method commit makes permanent

any changes an SQL statement makes to a database, and it also releases any locks held by

the transaction. The method rollback will discard those changes. Sometimes a user does

not want one change to take e�ect unless another one does also. This can be accomplished

by disabling auto-commit and grouping both updates into one transaction. If both up-

dates are successful, then the commit method is called, making the e�ects of both updates

36

permanent; if one fails or both fail, then the rollback method is called, restoring the values

that existed before the updates were executed. Most JDBC drivers will support transac-

tions. In fact, a JDBC-compliant driver must support transactions. DatabaseMetaData

supplies information describing the level of transaction support a DBMS provides.

4.5 Middleware between user & application server

The EMWAC Internet Mail Services for Windows NT (known as "IMS") are a suite of

server programs, which allow you to use Windows NT as a mail server for Internet mail.

The main reason why I choose this is that it stores the messages as �les in each users mailbox

directory. This makes it much easier to retrieve, parse and check for new messages. An

other reason is that it is free, keeping costs low. The components of IMS are:

SMTP Receiver Listens for incoming mail, and stores it for processing by the SMTP

Delivery Agent.

SMTP Delivery Agent This is the core of IMS. It delivers mail addressed to local users

into their "incoming" mailbox, and sends other mail out onto the Internet. It uses

MX records5 (see [8] p625) in the DNS for routing mail. It also supports aliases and

mailing lists.

POP3 Server This component gives local users the ability to download mail from their

incoming mailbox on Windows NT to their own computer, using POP3 mail clients

such as Netscape Navigator Version 2.0, Pegasus, or Eudora.

IMAP Server With IMAP, mail is stored permanently on the Windows NT machine,

and an IMAP client such as Pine is used to access it. The user can organize her mail

into hierarchical folders. Not yet available.

5speci�es the name of the host prepared to accept email for the speci�ed domain

37

EMWAC IMS Control Panel Applet This applet allows you to con�gure the EMWAC

Internet Mail Services.

4.5.1 Protocol Speci�cations for EMWAC Internet Mail Services

This describes some of the technical speci�cations of the SMTP and POP3 implementa-

tions. The SMTP Receiver is a server implementation of the SMTP protocol de�ned in

RFC 8216 and RFC 1123. The following SMTP commands are supported by this version:

HELO, QUIT, MAIL, RCPT, DATA, RSET, NOOP, VRFY

The POP3 Server implements the POP3 protocol de�ned in RFC 1725. The following

POP3 commands are supported by this version:

USER name, PASS string, STAT, LIST [msg], RETR msg,

DELE msg, NOOP, RSET, TOP msg n, QUIT, UIDL [msg]

The following optional POP3 commands are not supported in this version:

APOP name digest

6Request For Comments, technical reports that speci�es standards. [8] p.71

38

5 Maintenance and system evolution

5.1 Future

Trailer could have a builtin GPS-system, that can be connected to the DB for updating

the current position and keep track of speed to get approximate times of arrival.

Trailer has builtin computer to receive orders during driving, similar to the

"Hector weighing system", sold by BIS. (see brochures from BIS).

The features above could be handled using mobile phone (WAP), SMS, email or voice.

Applets can be built, so that users can view negotiation progress on the Internet. The

whole service could also be made available on the Internet on some site with a login sys-

tem using a challenge-response system, see [7] p263.

Should there raise a need to spread the service on more servers, this is no problem due to

the fact that we use a 3-tier system see �gure 4.1 and accompanying explanations.

39

40

6 Assumptions

The user of the system has to be prede�ned, i.e. should be an existing user in NT with

a mailbox in EMWAC. Users will have to apply to the service and someone (sysadm) will

thereafter process their request.

41

42

7 Conclusion

The performance of a client/server application must take into account the network perfor-

mance, the volume of computational processing, and the volume of database operations.

To estimate the performance of a client/server application we need to compute the Re-

sponse Time (RT). Without queuing, RT, the response time, is given by

RT =
X

i

N(i)S(i) (7.1)

Where S(i) = time needed for completion of service i, N(i) = number of times service i

is needed, and service i represents any activity needed to complete an application (e.g.,

transmission of the messages between clients and servers over networks, processing of the

message to produce the results, and transmission of the results back to the user).

However we must to take regard to queueing. Queues are formed due to two reasons: The

device providing the service may be busy or it may be locked by another activity. The

�rst condition is an indication of workload (too many services requested) and the second

condition is a result of resources being reserved (i.e., a �le being updated) by one activity.

We focus on queueing due to workload.

We introduce the parameter, A(i), to handle queueing, A(i) = arrival rate of messages for

service i.

For one e-mail queue

Let us assume that system will receive 500 messages per hour.

A(i) =
500

60min � 60sec
� 0:139 (7.2)

43

The following formula shows utilization U(i) of a server i :

U(i) = server i utilization = A(i) * S(i) (7.3)

A rule of thumb in queueing calculations is that U(i) should be kept below 0.7 to avoid

queueing. The theoretical foundation for this rule of thumb is the following well-known

M/M/1 (Markovian arrival, Markovian service time, 1 server) formula see [5]:

Queue length at server i = Q(i) =
U(i)

1� U(i)
(7.4)

where Q(i) shows the number of customers in the system, including the one being served.

Thus Q(i) = 1 if U(i) = 0.5; Q(i) reaches in�nity if U(i) = 1. The basic assumptions of

the M/M/1 queueing formula are:

� Arrivals at the server are independent of each other

� Service times are independent of each other

From equation 7.3:

S(i) =
U(i)

A(i)
=

0:5

0:139
� 3:6sec (7.5)

With this estimation we get a service time of 3.6 seconds. That means that if the system

performs processing of single message in time that is less than 3.6 seconds, we should not

have a problem with overqueueing.

44

However the arrival rate of messages can increase leading to an increase of A (arrival

rate of messages). In that case, to handle the queue, the system must be re�ned to handle

this as follows:

Separation

Database server and application server could be separated. This way we free resources

and allow the operations on database and �lesystem to be asynchronous

Computability

Servers that have higher computational performance could be acquired. This will im-

prove overall system performance, which will decrease response time.

Parallelism

Since every state change in the system is updated in the database upon every trans-

action, it would be possible to have multiple number of servers to process messages in

parallell.

The three statements above will prevent overqueueing from an increase in the arrival rate

of messages.

Bear in mind the chosen solution, with asynchronous operation on a 3-tier middleware

system. It is clear that it would be easily managed to handle messages from di�erent

queues, which belong to di�erent messaging services between users and system.

The system now works on Windows NT 3.51, NT 4.0, Windows 2000 with e-mail server

EMWAC 0.86 and could be extended with di�erent messaging protocols.

45

References

[1] Booch, Grady. Object-oriented Analysis And Design 2nd ed.

Addison Wesley 1994.

[2] Date, C.J. An Introduction To Database Systems.

Addison Wesley 1994.

[3] Foreby, Per. Att skriva rapporter med LATEX.

PH:s kopieringsmaskin, 1994.

[4] Horstmann, Cay S. and Cornell, Gary. Core JAVA2 Advanced Features vol II.

Prentice Hall 2000.

[5] Kleinrock, L. Queueing Systems, Vol. 2.

John Wiley 1976.

[6] Patel, Pratik Java Database Programming with JDBC

The Coriolis Group 1996.

[7] Peeger, Charles P. Security in Computing 2nd ed.

Prentice Hall 1997.

[8] Tanenbaum, Andrew S. Computer Networks.

Prentice Hall 1996 3rd ed.

[9] Umar, Amjad. Application (Re)Engineering.

Prentice Hall 1997.

[10] Umar, Amjad. Object-oriented client/server Internet environments.

Prentice Hall 1997.

46

A Code

A.1 BISNet.java

/**

* @author Stefan Sonesson

* This is the main class of BISNet

*/

import java.util.*;

import MsgFinder;

import MsgParser;

import DBManager;

//import ContractWatcher;

/**

* BISNet is the control application.

*

*/

public class BISNet

{ static MsgFinder mf;

static MsgParser mp;

static DBManager dbm;

//static ContractWatcher cw;

static Vector tmp = new Vector();

/**

* Main method of the BISNet class.

*
Creates four objects mf, mp, mm and ms.
A while-loop runs

* forever to check for incoming messages and deal with them accordingly.

* @param String[] args, can take the directory of the mailboxes

* e.g. c:\\mailbox\\user1.

* @return void.

* @exception Exception description.

*/

public static void main(String[] args) throws Exception

{ try

{ System.out.println("Started.");

//"d:\\stefan\\final\\processed.txt"

mf = new MsgFinder(args[0], "processed.dat");

47

mp = new MsgParser();

dbm = new DBManager();

//mm = new MatchMaker();

boolean test = true;

String retlist;

while(test)

{ System.out.println("i while");

if(mf.beginSearch() >= 1) // Ret_list contains 1 or more elements.

{ tmp = mf.ret_list;

}

System.out.println("Going to parse...");

int posts = 0;

if((posts = mp.parseMsg(tmp)) > 0)

{ System.out.println("OK, parsed, POSTS = " + posts);

tmp.clear();

tmp = mp.posts;

}

if(dbm.process(tmp) > 0)

{ System.out.println("OK, inserted");

tmp.clear();

}

/*if(cw.findMatch() > 0)

{ System.out.println("Match found");

//tmp = mm.matches;

//mid = mm.mid;

}*/

if(tmp.size() == -700)

test = false;

}

System.out.println("Finished.");

}

catch(Exception e)

{ System.out.println("System error: " + e);

}

finally

{

}

}

}

}

48

A.2 MsgFinder.java

/**

* @author Stefan Sonesson

*

* @return No returnvalue

*/

import java.io.*;

import java.util.*;

import MsgParser;

/**

* Searches given directory for new messages.

* Additional verbose description.

* @return Size of <tt>ret_list</tt>, if the size is greater than 0

* it means that a new message has arrived.

*/

public class MsgFinder

{ private String save_file;

private String directory = "c:\\mailbox";

private Vector processed = new Vector();

public Vector ret_list = new Vector();

/**

* Constructs a MsgFinder object.

* Assigns the file_name to the variable save_file and loads the file list.

* @param file_name keeps the names of the processed messages.

* @return description.

*/

public MsgFinder(String file_name)

{ //System.out.println("Constructed a MsgFinder1-object");

save_file = file_name; //new File(file_name);

loadFileList();

}

/**

* Constructs a MsgFinder object.

* Takes the arg as directory where to start looking for new files.

* That directory should not contain any files only folders.

49

* Assigns the file_name to the variable save_file and loads the file list.

* @param arg The directory to be searched.

* @param file_name keeps the names of the processed messages.

*/

public MsgFinder(String arg, String file_name)

{ //System.out.println("Constructed a MsgFinder2-object");

directory = arg;

save_file = file_name; //new File(file_name);

loadFileList();

}

/**

* Loads the processed files.

* Reads a list of already processed files.

* @return void.

*/

private void loadFileList()

{ try

{ FileReader fr = new FileReader(save_file);

BufferedReader in = new BufferedReader(fr);

String line;

//System.out.println("loadFileList()");

while((line = in.readLine()) != null)

{ processed.add(line);

}

}

catch(IOException e)

{// System.out.println("File disappeared");

}

}

/**

* Adds to the file of processed messages.

* Appends the filename of a processed file to the processed.dat file.

* @return void.

*/

private void appendFileList()

{ try

{ String str;

int offset, str_length;

FileWriter fw = new FileWriter(save_file, true);

50

BufferedWriter bw = new BufferedWriter(fw);

for(int x = 0; x < ret_list.size(); x++)

{ str = (String)ret_list.get(x);

//offset = 0;//(int)save_file.length();

//str_length = str.length();

bw.write(str);

bw.newLine();

}

bw.close();

}

catch(IOException ie)

{ System.out.println("Can't save to file: " + save_file);

}

}

/**

* This method searches directories for newly arrived messages

* @return Size of the Vector ret_list

*/

public int beginSearch()

{ String retlist;

ret_list.clear();

File file = new File(directory);

if(!file.exists() || !file.canRead())

{ System.out.println("Directory '" + file + "' doesn't exist or" +

" you don't have access to it!");

return -1;

}

if(file.isDirectory())

{ String[] dir_list = file.list();

File[] file_list = new File[dir_list.length];

for(int x= 0; x < dir_list.length; x++)

file_list[x] = new File(directory + "\\" + dir_list[x]);

for(int i = 0; i < file_list.length; i++)

{ // It is a directory!

if(file_list[i].isDirectory())

51

{ String[] dir_list2 = file_list[i].list();

for(int ii = 0; ii < dir_list2.length; ii++)

{ if(!processed.contains(file_list[i] + "\\" + dir_list2[ii]))

{ processed.add(file_list[i] + "\\" + dir_list2[ii]);

ret_list.add(file_list[i] + "\\" + dir_list2[ii]);

}

}

}

else

{ // It is a file in the "c:\mailbox" directory.

// No files are allowed in the mailbox dir, only dirs

// If needed to check for files there, uncomment below.

/*if(!processed.contains(file_list[i]))

{ processed.add(file_list[i]);

ret_list.add(file_list[i]);

}*/

}

}

/*for(int s = 0; s < processed.size(); s++)

System.out.println(processed.get(s)); */

}

if(ret_list.size() >= 1)

appendFileList();

// Fr att kolla att listan r rtt

/*for(int pos=0; pos < ret_list.size(); pos++)

{ retlist = (String)ret_list.elementAt(pos);

System.out.println("retlist= " + retlist);

}*/

// Listans storlek

// System.out.println("retlistsize= " + ret_list.size());

return ret_list.size();

}

}

A.3 MsgParser.java

/**

52

* @author Stefan Sonesson

* This class parses email messages and stores info in a Vector

*

*/

import java.util.*;

import java.io.*;

public class MsgParser

{ private Vector msg_to_check = new Vector();

public Vector posts = new Vector();

public Vector insert_this = new Vector();

private BufferedReader in;

public MsgParser()

{

}

/**

* @args Takes a Vector tmp

* @return Size of Vector posts

*/

public int parseMsg(Vector tmp)

{ try

{ String msg, s, value;

String[] strArray;

msg_to_check = tmp;

Vector temp = new Vector();

for(int pos = 0; pos < msg_to_check.size(); pos++)

{ //Extract messages to be parsed

temp.clear(); // Clear the temp Vector to insert new stuff

insert_this.clear();

msg = (String)msg_to_check.elementAt(pos);

System.out.println("MsgParser - " + msg);

in = new BufferedReader(new FileReader(msg));

//Get lines from the message

//Line 1 - Tells where msg came from

//Line 2 - Line 1 cont.

//Line 3 - Line 1 cont.

//Line 4 - Tells the date

53

//Line 5 - Tells what MESSAGE-ID the message has

//Line 6 - The DATA sent (what we use for our service)

//Observe, Line 1 = Vector.elementAt(0)

while((s = in.readLine()) != null)

{ temp.addElement(new String(s));

}

try

{ in.close();

}

catch(IOException e)

{ System.out.println("error in close");

e.printStackTrace();

}

//Pick out the line with data, maybe not always Vector[5]...

StringTokenizer st=new StringTokenizer((String)temp.elementAt(5),#");

while(st.hasMoreTokens())

{ value = st.nextToken();

insert_this.addElement(new String(value));

System.out.println("value=" + value);

}

posts.addElement(new Vector(insert_this));

}

}

catch(Exception e)

{ System.out.println("caught");

e.printStackTrace();

}

System.out.println(posts.size());

return posts.size();

}

}

A.4 DBManager.java

/*

54

// header - edit "Data/yourJavaHeader" to customize

// contents - edit "EventHandlers/Java file/onCreate" to customize

//

*/

import java.util.*;

import java.sql.*;

public class DBManager

{ private Vector to_insert = new Vector();

private Vector tilf = new Vector();

private Vector result = new Vector();

private String command;

private String query;

private String field;

private static String lim = "','";

static DBHandler dbh;

static ContractWatcher cw;

/**

* @args String str showing type of message

* @return Integer depending on type of message

* 1 - Customer places a request

* 2 - Supplier places an offer

* 3 - Supplier accepts offer

* 4 - Customer accepts offer

* 5 - Supplier accepts deal

* 6 - Customer accepts deal

* 7 - Supplier rejects deal

* 8 - Customer rejects deal

* 9 - Supplier removes a placed offer

* 10 - Customer removes a placed order

*/

public int getInt(String str)

{ int value = 0;

//System.out.println("str=" + str);

if(str.compareTo("COR") == 0)

value = 1;

else if(str.compareTo("SOF") == 0)

value = 2;

else if(str.compareTo("SAC") == 0)

55

value = 3;

else if(str.compareTo("CAC") == 0)

value = 4;

else if(str.compareTo("SAD") == 0)

value = 5;

else if(str.compareTo("CAD") == 0)

value = 6;

else if(str.compareTo("SRJ") == 0)

value = 7;

else if(str.compareTo("CRJ") == 0)

value = 8;

else if(str.compareTo("SRM") == 0)

value = 9;

else if(str.compareTo("CRM") == 0)

value = 10;

return value;

}

/**

* If the message was of the type <tt>COR</tt>, this method

* constructs appropriate <tt>String</tt> named <tt>command</tt>.

*
<tt>command</tt> is an SQL expression with the following

* syntax:<p>

* <tt>INSERT INTO Orders(CID, SLOC, ALOC, SDATE, ADATE)

* VALUES('cid','sloc','aloc','sdate','adate');</tt></p>

*/

public Vector customerPlacesOrder(String cid)

{ String command;

Vector tmp = new Vector();

String sloc = (String)tilf.elementAt(2); // Source destination

String aloc = (String)tilf.elementAt(3); // Target destination

String sdate = (String)tilf.elementAt(4); // Earliest time of departure

String adate = (String)tilf.elementAt(5); // Deadline of arrival

String type = (String)tilf.elementAt(6); // Machinetype

command = "INSERT INTO Orders(CID,SLOC,ALOC,SDATE,ADATE,MACHINEID) " +

"VALUES('"+cid +lim +sloc +lim +aloc +lim +sdate +lim +

adate + lim + type + "');";

tmp.add(command);

56

return tmp;

}

/**

* If the message was of the type <tt>SOF</tt>, this method

* constructs appropriate <tt>String</tt> named <tt>command</tt>.

*
<tt>command</tt> is an SQL expression with the following

* syntax:<p>

* <tt>INSERT INTO Orders(SID, SDATE, ADATE)

* VALUES('sid','sdate','adate');</tt></p>

*/

public Vector supplierPlacesOffer(String sid)

{ String command;

Vector tmp = new Vector();

//Can take orders from this date

String sdate = (String)tilf.elementAt(2);

//Can take orders until this date

String adate = (String)tilf.elementAt(3);

command = "INSERT INTO Offers(SID, SDATE, ADATE)" +

"VALUES('"+ sid + lim + sdate + lim + adate +"');";

tmp.add(command);

return tmp;

}

/**

* Checks to see if state is correct.

* Queries the DB for the states belonging to a specific MID.

* @param query A <tt>String</tt> holding state.

* @param mid A String telling which record in the Match table.

* @return void.

*/

public boolean checkState(String mid, String state)

{ query = "SELECT CSTATE, SSTATE FROM MATCH " +

"WHERE MATCH.MID ='" + mid + "';";

String stat;

// Get the current states from MATCH table

57

dbh.retrieve(query);

stat = (String)dbh.result.elementAt(0);

if(stat.compareTo(state) == 0)

return true; // Right state

else

return false;//Wrong state

}

/**

* This method takes a <tt>Vector</tt> and extracts the data from it.

* Each part of the <tt>Vector</tt> is itself a <tt>Vector</tt> that

* contains the fields to insert to the DB.

*/

public int process(Vector tmp)

{ to_insert = tmp;

Vector bat = new Vector();

// Extract Vectors with fields from the Vector with posts

for(int i = 0; i < to_insert.size(); i++) // Loop the posts

{ tilf = (Vector)to_insert.elementAt(i);

//These do not change

String uid = (String)tilf.elementAt(0);

String msg = (String)tilf.elementAt(1);

int val = getInt(msg); // Convert the message to predefined int

switch(val)

{ // [Exx] means Event number xx, see the state-event matrix.

case 1: // [E01] Customer places order

bat = customerPlacesOrder(uid);

dbh.insert(bat);

cw.findMatch();

break;

case 2: // [E02] Supplier places offer

bat = supplierPlacesOffer(uid);

dbh.insert(bat);

cw.findMatch();

break;

58

case 3: // [E03] Supplier accepts offer

if(checkState((String)tilf.elementAt(2), "SRESP"))

{ cw.supplierAcceptsOffer(tilf);

}

break;

case 4: // [E04] Customer accepts offer

if(checkState((String)tilf.elementAt(2), "CRESP"))

{ cw.customerAcceptsOffer(tilf);

}

break;

case 5: // [E05] Supplier accepts deal

if(checkState((String)tilf.elementAt(2), "WDEAL"))

{ cw.supplierAcceptsDeal(tilf);

}

break;

case 6: // [E06] Customer accepts deal

if(checkState((String)tilf.elementAt(2), "WDEAL"))

{ cw.customerAcceptsDeal(tilf);

}

break;

case 7: // [E07] Supplier rejects negotiation offer

if(checkState((String)tilf.elementAt(2), "SRESP"))

{ cw.supplierRejectsOffer(tilf);

}

break;

case 8: // [E08] Customer rejects negotiation offer

if(checkState((String)tilf.elementAt(2), "CRESP"))

{ cw.customerRejectsOffer(tilf);

}

break;

case 9: // [E09] Supplier removes previously placed offer

cw.supplierRemovesOffer(tilf); //No need check state

break; //Can remove offer anytime

59

case 10: // [E10] Customer removes previously placed order

cw.customerRemovesOrder(tilf); //No need check state

break; //Can remove offer anytime

case 11: // [E11] Timeout

cw.timeout(tilf);

break;

default :

System.out.println("val= " + val);

System.out.println("Message incomplete, send err msg to C or S");

return 0;

}

tilf.clear();

bat.clear();

}

return 1;

}

}

A.5 ContractWatcher.java

/*

* @author Stefan Sonesson

* This class examines the DB to find matches order/offer.

*

*/

import java.io.*;

import java.sql.*;

import java.util.Vector;

import DBHandler;

import MsgSender;

public class ContractWatcher

{ private String cstate;

private String sstate;

private String command;

private String query;

60

private String field;

public Vector matches;

static String ACK = "Your acceptance has been received.";

static String NACK = "Failed to process your request";

static String SYSMAIL = "system@bisnet.se";

static DBHandler dbh;

static MsgSender ms;

public void ContractWatcher()

{

}

/**

* Find matching orders/offers.

* Inserts matches to the MATCH table and updates the state of these.

* @return void.

*/

public void findMatch()

{ command = "INSERT INTO MATCH(OID, OFID) " +

"SELECT Orders.OID, Offers.OFID " +

"FROM Orders, Offers " +

"WHERE Orders.SDATE BETWEEN Offers.SDATE " +

"AND Offers.ADATE;";

query = "";

dbh.insert(tmp);

//updateDB();

}

/**

* If the message was of the type <tt>SAC</tt>, this method

* constructs appropriate <tt>String</tt> named <tt>command</tt>.

*
<tt>command</tt> is an SQL expression with the following

* syntax:<p>

* <tt>UPDATE MATCH SET SSTATE = 'CRESP'

* WHERE MID = 'mid'</tt></p>

* <tt>mid</tt> is the identifier of the specific MATCH.

* @param tilf

*/

public void supplierAcceptsOffer(Vector tilf)

{ String command;

61

String query = "SELECT EMAIL"+

"FROM SUPPLIERS"+

"WHERE SID = '" + tilf.elementAt(0) + "';";

Vector tmp = new Vector();

Vector tosend = new Vector();

String email = "";

String mid = (String)tilf.elementAt(2);

command = "UPDATE MATCH SET SSTATE = 'CRESP' " +

"WHERE MID = '" + mid + "';";

tmp.add(command);

// Get address to reply to

if(dbh.retrieve(query) > 0)

{ email = (String)dbh.result.elementAt(0);

}

else // Retrieving email failed, nobody to reply to...

{ // send message to ourself

tosend.clear();

tosend.add(SYSMAIL);

tosend.add(command);

ms.sendMail(tosend);

}

if(dbh.insert(tmp) > 0) // Insertion OK

{ tosend.clear();

tosend.add(email);

tosend.add(ACK);

ms.sendMail(tosend);

}

else // Insertion failed

{

}

// send msg to customer

// update CSTATE to CRESP

}

62

/**

* If the message was of the type <tt>CAC</tt>, this method

* constructs appropriate <tt>String</tt> named <tt>command</tt>.

*
<tt>command</tt> is an SQL expression with the following

* syntax:<p>

* <tt>UPDATE MATCH SET CSTATE = 'WDEAL'

* WHERE MID = 'mid'</tt></p>

* <tt>mid</tt> is the identifier of the specific MATCH.

* Retrieved message looks like this:<p>

* #user_id#messagetype#match_id

* @param tilf

*/

public void customerAcceptsOffer(Vector tilf)

{ String command;

String state = "CRESP";

Vector tmp = new Vector();

Vector tosend = new Vector();

String mid = (String)tilf.elementAt(2);

command = "UPDATE MATCH SET CSTATE = 'WDEAL' " +

"WHERE MID = '" + mid + "'";

tmp.add(command);

if(dbh.insert(tmp) > 0)

{ tosend.add(ACK);

ms.sendMail(tosend);

}

else

{ tosend.add(NACK);

ms.sendMail(tosend);

}

}

/**

* If the message was of the type <tt>SAD</tt>, this method

* constructs appropriate <tt>String</tt> named <tt>command</tt>.

*
<tt>command</tt> is an SQL expression with the following

* syntax:<p>

* <tt>UPDATE MATCH SET SSTATE = 'WDEAL'

63

* WHERE MID = 'mid'</tt></p>

* <tt>mid</tt> is the identifier of the specific MATCH.

* Retrieved message looks like this:<p>

* #number#user_id#match_id

* @param tilf

*/

public void supplierAcceptsDeal(Vector tilf)

{ String command;

Vector tmp = new Vector();

Vector tosend = new Vector();

String mid = (String)tilf.elementAt(2);

command = "UPDATE MATCH SET SSTATE = 'WDEAL' " +

"WHERE MID = '" + mid + "'";

tmp.add(command);

if(dbh.insert(tmp) > 0)

{ tosend.add(ACK);

ms.sendMail(tosend);

}

else

{ tosend.add(NACK);

ms.sendMail(tosend);

}

}

/**

* If the message was of the type <tt>CAD</tt>, this method

* constructs appropriate <tt>String</tt> named <tt>command</tt>.

*
<tt>command</tt> is an SQL expression with the following

* syntax:<p>

* <tt>UPDATE MATCH SET CSTATE = 'WDEAL'

* WHERE MID = 'mid'</tt></p>

* <tt>mid</tt> is the identifier of the specific MATCH.

* @param tilf

*/

public boolean customerAcceptsDeal(Vector tilf)

{ String command;

Vector tmp = new Vector();

Vector tosend = new Vector();

64

String mid = (String)tilf.elementAt(2);

//Change state to WDEAL

command = "UPDATE MATCH SET CSTATE = 'WDEAL' " +

"WHERE MID = '" + mid + "'";

tmp.add(command);

if(dbh.insert(tmp) >0)

return true;

else

return false;

}

/**

* If the message was of the type <tt>SRJ</tt>, this method

* constructs three appropriate <tt>String</tt>'s named

* <tt>command</tt>.
The first <tt>command</tt> is an SQL

* expression with the following syntax:<p>

* <tt>UPDATE MATCH SET SSTATE = 'END'

* WHERE MID = 'mid'</tt></p>

* The second <tt>command</tt> is an SQL expression with the

* following syntax:<p>

* <tt>INSERT INTO REJECTS(OFID,OID)

* SELECT OFID, OID

* FROM MATCH

* WHERE MID = 'mid'</tt></p>

* The third <tt>command</tt> is an SQL expression with the

* following syntax:<p>

* <tt>DELETE

* FROM MATCH

* WHERE MID = 'mid'</tt></p>

* <tt>insert()</tt> is called between the first two command

* strings.

* <tt>mid</tt> is the identifier of the specific MATCH.

* @param tilf

*/

public boolean supplierRejectsOffer(Vector tilf)

{ String command1, command2, command3;

Vector tmp = new Vector();

Vector tosend = new Vector();

String mid = (String)tilf.elementAt(2);

65

//Change state to END

command1 = "UPDATE MATCH SET SSTATE = 'END' " +

"WHERE MID = '" + mid + "'";

tmp.add(command1);

//insert();

//Update REJECTS, do not match those again

command2 = "INSERT INTO REJECTS(OFID,OID) " +

"SELECT OFID, OID " +

"FROM MATCH " +

"WHERE MID = '" + mid + "'";

tmp.add(command2);

//insert();

//Delete the post from MATCH

command3 = "DELETE " +

"FROM MATCH " +

"WHERE MID = '" + mid + "'";

tmp.add(command3);

if(dbh.insert(tmp) > 0)

{ return true;

}

else

return false;

//if(insert(tmp) == 0)

//System.out.println("Print to errorlog");

//Write error message to a file, the database is probably broken...

}

/**

* If the message was of the type <tt>CRJ</tt>, this method

* constructs two appropriate <tt>String</tt>'s named

* <tt>command</tt>.

* The first <tt>command</tt> is an SQL expression with the

* following syntax:<p>

* <tt>INSERT INTO REJECTS(OFID,OID)

* SELECT OFID, OID

66

* FROM MATCH

* WHERE MID = 'mid'</tt></p>

* The second
<tt>command</tt> is an SQL expression with

* the following syntax:<p>

* <tt>DELETE

* FROM MATCH

* WHERE MID = 'mid'</tt></p>

* <tt>insert()</tt> is called between the first two command

* strings.

* <tt>mid</tt> is the identifier of the specific MATCH.

* @param tilf

*/

public boolean customerRejectsOffer(Vector tilf)

{ String command1, command2;

Vector tmp = new Vector();

Vector tosend = new Vector();

String mid = (String)tilf.elementAt(2);

//Update REJECTS, do not match those again

command1 = "INSERT INTO REJECTS(OFID,OID) " +

"SELECT OFID, OID " +

"FROM MATCH " +

"WHERE MID = '" + mid + "'";

tmp.add(command1);

//insert();

//Delete the post from MATCH

command2 = "DELETE " +

"FROM MATCH " +

"WHERE MID = '" + mid + "'";

tmp.add(command2);

if(dbh.insert(tmp) >0)

return true;

else

return false;

//if(dbw.insert(tmp) == 0)

//System.out.println("Print to errorlog");

//Write error message to a file, the database is probably broken

67

}

/**

* If the message was of the type <tt>SRM</tt>, this method

* constructs an appropriate <tt>String</tt> named <tt>command</tt>.

* The first <tt>command</tt> is an SQL expression with the

* following syntax:<p>

* <tt>UPDATE MATCH SET SSTATE = 'END'

* WHERE MID = 'mid'</tt></p>

* The second
<tt>command</tt> is an SQL expression with the

* following syntax:<p>

* <tt>DELETE

* FROM OFFERS

* WHERE OFID = 'ofid'</tt></p>

* <tt>insert()</tt> is called between the first two command

* strings.

* <tt>mid</tt> is the identifier of the specific MATCH.

*/

public boolean supplierRemovesOffer(Vector tilf)

{ String command;

Vector tmp = new Vector();

Vector tosend = new Vector();

//The meaning is to let the supplier remove an offer made by him

String ofid = (String)tilf.elementAt(2);

// Tar ACCESS bort poster som innehller OFID i andra tabeller???

// Lade till referensintegritet i DB relationer. Det borde betyda

// att om jag tar bort frn OFFERS s tar DB bort frn MATCH...

//Change state to END

//command = "UPDATE MATCH SET SSTATE = 'END' " +

// "WHERE MID = '" + mid + "'";

//insert();

//Delete the post from MATCH

command = "DELETE " +

"FROM OFFERS " +

"WHERE OFID = '" + ofid + "'";

tmp.add(command);

68

if(dbh.insert(tmp) >0)

return true;

else

return false;

}

/**

* If the message was of the type <tt>CRM</tt>, this method

* constructs an appropriate <tt>String</tt> named <tt>command</tt>.

* The first tt>command</tt> is an SQL expression with the

* following syntax:<p>

* <tt>UPDATE MATCH SET CSTATE = 'END'

* WHERE MID = 'mid'</tt></p>

* The second
<tt>command</tt> is an SQL expression with the

* following syntax:<p>

* <tt>DELETE

* FROM ORDERS

* WHERE OID = 'oid'</tt></p>

* <tt>insert()</tt> is called between the first two command

* strings.

* <tt>mid</tt> is the identifier of the specific MATCH.

*/

public boolean customerRemovesOrder(Vector tilf)

{ String command;

Vector tmp = new Vector();

Vector tosend = new Vector();

String oid = (String)tilf.elementAt(2);

// Tar ACCESS bort poster som innehller OFID i andra tabeller???

// Lade till referensintegritet i DB relationer. Det borde betyda

// att om jag tar bort frn OFFERS s tar DB bort frn MATCH...

//Change state to END

//command = "UPDATE MATCH SET CSTATE = 'END' " +

// "WHERE MID = '" + mid + "'";

//insert();

//Delete the post from MATCH

command = "DELETE " +

69

"FROM ORDERS " +

"WHERE OID = '" + oid + "'";

tmp.add(command);

if(dbh.insert(tmp) >0)

return true;

else

return false;

}

}

A.6 MsgSender.java

/**

*

* MsgSender.java

*

*/

import java.awt.event.*;

import java.util.*;

import java.net.*;

import java.io.*;

import javax.swing.*;

public class MsgSender

{ private BufferedReader in;

private PrintWriter out;

public void sendMail(Vector message)

{ try

{ Socket s = new Socket("smtpds", 25);

out = new PrintWriter(s.getOutputStream());

in = new BufferedReader(new InputStreamReader(s.getInputStream()));

String hostName = InetAddress.getLocalHost().getHostName();

send(null);

send("HELO " + hostName);

send("MAIL FROM: system@bisnet.se");

70

send("RCPT TO: " + (String)message.elementAt(0));

send("DATA");

out.println((String)message.elementAt(1));

send(".");

s.close();

}

catch (IOException exception)

{ System.out.println("Error: " + exception);

}

}

public void send(String s) throws IOException

{ if(s != null)

{ //response.append(s + "\n");

out.println(s);

out.flush();

}

//String line;

//if((line = in.readLine()) != null)

//response.append(line + "\n");

}

}

71

