Computer Science

Magnus Gustafson, Géran Skantz

IWarf - a Service Creation Environment

Bachelor’s Project
2001:14

IWarf - a Service Creation Environment

Magnus Gustafson, Goran Skantz

© 2001 Magnus Gustafson, Goran Skantz at Karlstad University

This report is submitted in partial fulfilment of the requirements for the
Bachelor’s degree in Computer Science. All material in this report which is
not our own work has been identified and no material is included for which

a degree has previously been conferred.

Magnus Gustafson, Goran Skantz

Approved, 2001-06-05

Advisor: Hannes Persson

Examiner: Stefan Lindskog

Abstract

This C-grade Bachelor’s project is written for the Department of Computer Science at
Karlstad University and for the Karlstad company Incomit, spring term 2001. The background
for this work is the need of a certain service creation environment for making development of
telecom and Internet services easier and the main goal is to create a prototype for this. Service
developers, who will create the telecom services of tomorrow, will use this service creation
environment. The environment is based on the modular open source IDE (Integrated
Development Environment) NetBeans. New features have been added to the environment to
make it easier to create telecom and Internet services. The development has been done mostly

in XML (eXtended Mark-up Language) and with the JavaBeans™ components architecture.

Acknowledgement

We would like to start by thanking our University supervisor, Hannes Persson, for helping us
writing this document and pushing us to really start in time. Special thanks goes to our
company supervisor, Péar Larsson, together with Marwan Semaan and Hakan Spjuth at

Incomit for giving us the support we needed and making this Bachelor’s project joyful.

vii

Contents

R 1 (o 18 o4 (] o TP 1
J = T Tox 7o (o] U1 o PRSPPI 3
0 O - USSR 3
2.2 ASIUICE. ettt bbb 4
2.3 SLEE . et b et re et e 4
2.4 PrODIBM .o 4
3 PUIP0SE and FEQUITEIMENTS.cvotiitiiteitiiie sttt bbbt 5
3Ll PUIPOSE .ttt nnes 5
3.2 REQUITEIMENTS ...ttt ettt e et b bbbttt 5

3.2.1 iWarf requirements
3.2.2 Other requirements

4 Preliminary investigation about choosing an IDE.............cccccovviiiiiiic e 7
5 Description of the SYStem deSign ... 9
5.1 Graphical User Interface deSign........cccceiveieiiieiieie e 9

5.1.1 Incomit menu

5.1.2 Palettes

5.1.3 Templates

5.1.4 Other graphical design parts

5.2 FUNCHIONAL AESIGN ..ot e sae e nnes 11
5.2.1 Incomit menu
5.2.2 Palettes

6 Implementation — NetBeans development..........ccooeveiiiiiiiininieeee s 13
6.1 NEIBEANS AICHITECTUIE ...ttt ettt e e e e e e et e e e e e e e e e e eeaeeeaans 13
0.2 MOAUIES ... 13

6.2.1 The manifest file
6.2.2 Layer file
6.2.3 Installation

6.3 TOMPIALES ... 16
6.3.1 Template files
6.3.2 Layer file — create the template
6.3.3 Resource files
6.3.4 Bundle file
6.3.5 Adding external libraries to NetBeans

6.4 Palette — create the drag ‘n’ drop fEALUIEcoveiveii i 20

viii

6.4.1 Layer file — create the palette

6.4.2 The manifest file — specifying the palette component
6.4.3 The component

6.4.4 Final installation

8.5 WIZAIUS ..ottt ettt e ettt e e e re e e reenaeenaenres 24
6.5.1 Wizard files
6.6 MENUS AN ACLIONS.......uieiiieiieeitie et re e sae e s ee e re e sraeesreeaneas 27
6.6.1 Actions
6.6.2 Menus
6.7 FileSyStem eXamPIe........coovoiiiiiiieie et 31
6.7.1 Simple example
LCTE S N O 1 1T USSR 33
6.8.1 Changing the start-up logotype
6.8.2 Changing the coordinates of the text in the start-up logotype
6.8.3 Changing the window title.
6.8.4 Add code to the parser database (code completion)
7 Use case — Create and deploy iSea SLEE Client..........ccccooiviviiiiiiiie i, 35
5 R = 0 \VZT (] 101 1=T o ST 35
A =1 111 0] LSRRI 35
7.3 PaAlBIES ..t 36
% S O Yo [oo USSR 36
7.5 DESCHPION WIZAIT ...t 38
7.6 JAR-PACKAGINGceiiiieieiieiiee sttt ra e ra e re e e e e e 39
7.7 DEPIOY 10 1SBA ...ttt bbb 40
8 Problems and XPEIIENCES.uiiiiiiie ittt 43
S T00 N o (0] o] =T 1 0 TSSOSO 43
8.1.1 NetBeans related problems
8.1.2 Implementation problems
8.1.3 Incomit related problems
ST b o 1=1 1< o0 USSR 44
e @0 [od 1115 o] S PSSP 45
Terminology and abbreVIatioNnscocviiiiiiieiie e 47
= =] T oL E OSSP 49
A Requirements SPeCITICAtION..........ccciiiiiiiiiie e 1
= T 0T [OSSP UROSPSRP 1
2 O R IS T- T (O [=T oL T Y7 SR 1
o L OF: 1| 1117 LSO 2
B.3 HelloOWOrIAPANEIL.JAVAccveiieiecie ettt 3
B.4 HelloOWOrIdPaNEI2.JAVAcueiiiieiiesieseee ettt 6

B.5 HEHOWOIIAJAVA.....c.eiiiiiiiee ettt 8
B.6 HelloWorldWizardACtION.JAVAccciveieiieiecie ettt 12
B.7 EXAMPIEJAVA. ..ot 13
B.8 FileEXamMPIEACHION.JAVA.......ccveiiiirieiieeie ettt 15
C DeSCriPLOr WIZATT STEPS.eueieeteitesieitesteeieeie ettt sttt bbbt enes 17

List of Figures

Figure 1: 1Sea and iSIUICE OVEIVIEWccouiiieiieeie et see et sre et sre e ans 3
Figure 2: NetBeans and FOrte roadmap........cccoeeeierinininisiseseeee e 8
Figure 3: NetBaNS GUIcoiiiiiiie ettt enes 9
Figure 4: iWarf — Menu and Palettecccooveieiieiiecie e 10
Figure 5: IWarf Splash SCrEENcvi i 11
Figure 6: Result from the layer file ... 15
Figure 7: Setting up MOdule dIreCIOMEScoouviieiieieee e 15
Figure 8: Setting up template dir€CtOries.cvcvvviieieeie e 16
Figure 9: Setting up COMPONENE AIrECLONIES.cveieeireeieieecie et 22
FIQUIE 10: EXPIOTEI VIBW ..ottt 22
Figure 11: BeanInfo @dITOrccooiiiiiiiiecie et 23
Figure 12: The complete step 1 in the Wizardcccoevveiiiiciicic e 24
Figure 13: Wizard dir€CTOMESccvveveiieircie sttt et e sne e ne e 25

Figure 14:

WWIZAA PANEE L.ttt ennnen 25

Figure 15: Complete step 2 in the WIZArd..........ccoieieiiiiiiiiseeeeee e 26
Figure 16: Menus and actions dir€CLOTIES.........ccvviveieeeiee e eie e 28
Figure 17: FileSyStem ir€COIESccuviveiieiieie ettt 32
Figure 18: Choosing the template...........cooiiiiiriiie e 35
FIQUIE 19: PrOJECE NAIME.cuiiiieiie sttt sttt ettt et sreenre e neenre e 35
Figure 20: ProjeCt PACKAQEccveveiiesieeie et ete st e e te e e te et te e sreete e steeaeaneenneans 36
Figure 21: IESPA PAIELIEeceeieiee ettt 36
Figure 22: COMPONENT INSPECION ...ttt 37
Figure 23: Code COMPIETIONc.oiiiiiiiiieee s 37
FIQUIE 24: FIle STIUCLUIEeveeie ettt re e e 38
FIQUIE 25: JAR CONTENESoviiiiciic ettt e nte e neenne e 39
Figure 26: Adding files and directories to the JAR contents file ... 39
Figure 27: JAR CONLENTS PIrOPEITIESeiuiiiieiieieie ettt 40
Figure 28: How iWarf and iSea are relatedcccovveveieene e 41

Xi

Xii

1 Introduction

In these days, telecom and Internet are really common things in everyone’s life. We use a lot
of services and take them for granted. The most common services available today are simply
WAP (Wireless Application Protocol), messaging and calling services but the possibilities of
tomorrow are far beyond these. What about setting up your own conference calls, receiving
information depending on where you are or choosing to call the nearest taxi by just clicking
the taxi button on your PDA (Personal Digital Assistant). What we really do not think of is
how these services are created. Today at the Karlstad company Incomit, services are created
from scratch with a common editor. What happens when Incomit will ship their products and
their customers need to create a service? Probably it will take hours to create even a simple
one and this is not really a good sell argument. Therefore it would be a lot easier with some
sort of service creation environment with certain Incomit features. This Bachelor’s project is

about creating a prototype for that environment.

Chapter two explains the background of this Bachelor’s project. In chapter three the
purposes of this Bachelor’s project and the requirements of the software are listed. This
Bachelor’s project includes a preliminary investigation about choosing an IDE, which can be
read in chapter four. The prototype design, described in chapter five, can be divided into
graphical and functional design. Chapter six brings up the implementation, which is the main
part of this Bachelor’s project. Here the reader will be given a thorough description of how to
modify the IDE. Furthermore, chapter seven contains a use case that shows the prototype
usage. Then in chapter eight, experiences and recommendations are discussed and then
finally in chapter nine conclusions are presented. After these chapters follows a section with

terminology and abbreviations and then a section with references.

2 Background

Incomit AB is a producing company with their main office in Karlstad, Sweden. Incomit is a
growing company with approximately 35 employees. Incomit’s business concept is to
integrate the mobile telephone network and the PSTN (Public Switched Telephone Network)
with the Internet. Their two flagship products are iSluice and iSea. iSluice is a server that runs
within the PSTN to give iSea servers access to the telecom network. iSea can be classified as
an application server that can execute different types of services, such as conference call or
positioning mobile phones, and in a safe way communicate with iSluice. As seen in Figure 1,
it is possible to communicate with iSea using WAP or HTTP (Hyper Text Transfer Protocol)

through a portal.

IP-NETWORK TELECOM

iSea : iSluice
o e

SECURE INTERFACE [PARLAY)

Figure 1: iSea and iSluice overview

2.1 iSea

iISea is a platform that enables service developers to quickly create advanced telecom-based
services and make them accessible in an Internet environment. iSea consists of many different
components, both hardware and software. Incomit develops some of the components and
some are bought and integrated into iSea. This way of working is possible thanks to products

built on open systems and commercial standardized interfaces.

2.2 iSluice

iSluice is the “sluice” an operator must have in the network to permit secure and reliable
routing of externally initiated iSea services (as from Internet portals). iSluice enables today’s
operators to increase the usage of their networks by attracting Internet portals and other
companies to develop services. iSluice allows iSea servers to access the telecom network in a

secure way.

2.3 SLEE

The SLEE (Service Logic Execution Environment) is an execution environment. Both iSea
and iSluice are based on a SLEE. The difference between iSea and iSluice is the services

running in the SLEE. For more information see the SLEE API specification [5].

2.4 Problem

Today all iSea services are developed in Java™. This works fine but it demands a lot of
competence, both in iSea API's and Java™. An important issue for making profit from iSea
and iSluice is to offer Incomit’s customers a tool that has features to simplify the making of
iSea services. How do one measure the simplicity of a tool? This is a problem, because it is
difficult to measure simplicity. An important factor is the time it takes for a developer to
make a service from scratch to have it running in iSea. Our assignment was to make a
prototype for such a tool. The prototype was based on an existing development tool, which

was changed to fulfil Incomit’s needs better.

3 Purpose and requirements

Below follows the purpose of this Bachelor’s project and the requirements specific to the
prototype. The prototype will be the foundation of a commercial product that is to be

developed the summer of 2001.

3.1 Purpose

The main purpose of this Bachelor’s project is to create a service creation environment, called
iWarf, which makes it easier to develop telecom and Internet services. This means that it will
be possible to create services faster than without the environment, which might be the small
difference between coming in first or second place on the market because of the exaggerated
tempo. It also means that fundamental knowledge of the Java™ language will still be
necessary but not all about the underlying structure and this will simplify the developing.

3.2 Requirements

The requirements for this Bachelor’s project are gathered in the Requirements specification in

Appendix A. For more specific information, please read that Appendix.

3.2.1 iWarf requirements

Below follows the requirements specific to iWarf.

Create an Incomit service project

Create a specific Incomit servlet project

Create a specific Incomit client project

Investigate which development tool to use

Create an ESPA (Easy Service Provider API) palette.
Create an Utils palette.

Drag 'n' drop Incomit iSea Call Control service

Drag 'n 'drop Incomit iSea Messaging service

© O N o g b~ w0 DR

Drag 'n' drop Incomit iSea Positioning service
10. Drag 'n' drop Incomit iSea DB service

11. Drag 'n' drop Incomit iSea Log service

12. Drag 'n' drop Incomit iSea Trace service

13. Incomit menu

14. JAR (Java™ ARchive) Packager
15. Deploy to iSea

16. Help files

17. Create a service using iWarf

3.2.2 Other requirements
Some documents had to be written to accomplish this Bachelor’s project and these are:
» Requirements specification.
e Technical documentation. A SDS (System Design Specification) containing

information specific for the Incomit crew.

There were no delimitations of this Bachelor’s project other than the requirements specified

above or in the requirements specification.

4 Preliminary investigation about choosing an IDE

The recommendation from the company supervisor was that Sun’s Forte™ should be used as
underlying foundation when creating the service creation environment. We first built iWarf
upon Forte™. When problems occurred no useful information about Forte™ could be found
but since Forte™ is based on the NetBeans IDE, everything needed could be found at
NetBeans website [4]. When working further with Forte™ and NetBeans, reason came up to
question the choice of underlying IDE. Was Forte™ really the better of the two? To answer
this question, a comparison between the tools had to be done. The differences between
NetBeans and Forte™ are very small. Their GUI (Graphical User Interface) looks almost the
same, so the user will not know on which IDE iWarf would be based. An interesting question
was found at Forte’s FAQ website [1]:

"What's the difference between Forte for Java software and NetBeans software?"

"The NetBeans Tools Platform supports a large community of developers centered at
netbeans.org. NetBeans software is primarily a platform for developers (including the Sun
Forte Tools group), who want build to development tools. Each version of Forte for Java
software is Sun's tested, supported, commercial implementation of the open standard
NetBeans Tools Platform. The Forte for Java product also includes optional, ‘closed-source’

modules that are offered for a price."

The most interesting sentence from that answer is, NetBeans software is primarily a platform
for developers (including the Sun Forte Tools group), who want to build development tools
(grammatically corrected by author of this document). This is exactly what is to be done, so
NetBeans might be a better choice. To make this decision on stronger grounds, more facts had
to be found. When enough facts was found, they were listed as positive/negative attributes,
which can be seen below.

Forte
+ Tested by Sun.
+ Support by Sun

+ CE (Community Edition) version is free but other versions are very expensive.

- Current version 2.0 does not include layers (easy creating menus and palettes, using
XML) and wizards.

- Forte is based on NetBeans, and because of that, improvements will be made to
NetBeans before they are put into Forte.

NetBeans

+ A platform for developers, who want to build development tools.

+ Core is updated more frequently as seen in Figure 2 below.

+ Absolutely free.

Current version 3.1 includes layers and wizards

The idea with NetBeans is to modify it to fit your needs.
Mailing lists (frequently used).

No support.

This conclusion was made:

Building an Incomit service creation environment based directly on NetBeans seems like a
much better idea because the purpose with NetBeans is to modify the environment to fit the
user's needs. Forte is based on NetBeans and that means that iWarf indirectly will be based on

NetBeans anyway. Below is a figure of a roadmap that shows that new versions of NetBeans

are released more frequently than Forte™.

Forte For Java 1.0 FE.J 2.0 FET 3.0

MNetBeans 3.0 NB 3.2

NB 3.1 NB 3.3

1999 20000 2001

Figure 2: NetBeans and Forte roadmap

5 Description of the system design

The system design can be divided into graphical design and functional design. The graphical
design is what the end user will use as an interface to communicate with the functional
design. Another way of describing it: The graphical design is what is shown on screen.
Behind the surface is the functional design. The functional design describes what action
should be performed when a graphical object is activated.

5.1 Graphical User Interface design

The graphical user interface was built on the already existing IDE, NetBeans (version 3.2).
This is what NetBeans GUI looks like:

fYNetBeans IDE 3.2 {Build 38) [Project Default]

File Edt ¥iew Froject Buld Debug Wersioning Tools ¥iinclow

Help

=18l

‘poE®s | Xnemde

£ Selaction Mads

dery| rccerm|as

Swing

._ [Swing | Svang tver) [AWT | Beans | Layouts | Borders |
TR [e e sl

GUI Editing

e

L

Farm [ClockFrame]

© [colorpicker
@ O imegeviewer
© 3 testeditor

£ Welcome to NetBeans

O Flesystems New Time |uu noon H Sat New Time = ClockFrame [JFrame]
@ 3 clhetbeansinyuserfissisamplecic © 5 Monevisuel Componerts
] g— examples 55 BorderLayout
@ advanced ket jlalCurrentTime [JLabel]
9 C@:_ clock @[] jPaneit [UPanel]
g ;\Eu;m:me @[] jPanel2 [JPanel]

& Component Inspectar [ClockFrige [E] |

00:00:00

To get started, choose a task below:

@ Home on the Wigh
03 Mew

=1 Open File...

€9 Update Center

Welcome to NetBeans IDE 3.2

Tip of the day

@ Mext Tip

& Previous Tip

You can customize the main window's menus and toolbars

Choose Toole | Options to open the Options window. Within

the Menu and Toolbars nodes, you can cut, copy, and paste
" P

ﬁ

[Vl Show Welcome Screen on Startup

5 rienrer: [e Gl |

16 import java.util.Date;
17 import java.util.GregarianCalendar;
1& import java.util.Calendar:

19 import java.text.$impleDateFormat:
20 import javax.swing.JOptionPane;

Figure 3: NetBeans GUI

511 Incomit menu
In the top menu bar a menu with the label, “Incomit” will be inserted (see Figure 4). This
menu will include menu items in the following order:

o “Descriptor wizard”

o “Deploy to iSea”

» Aline that separates the menu items (separator)

* “Incomit web”

i 38) [Project Default]

Toaols I_nu:u:um'rt|'l.-'i.l1ndu:uw Help
@ |: W Dezcriptar Wizard e LA T e e e = e

@Q&pluytniSea j

j| 'ﬁ' Incomit wnek :
I In:u:um.inu:u:um'rt.espa.call.ECaII i

Figure 4: iWarf — Menu and palette

5.1.2 Palettes

Two palettes, “IESPA” and “iUtils” (see Figure 4), will be inserted beside the already existing
ones. These palettes consist of iSea services that can be dragged and dropped to the current
project. The services will be displayed as an icon and a tool tip text. The services will be
explained in chapter 5.2.2.

The iUtils will include the following services:

« “Db”
* “Log”
» “Trace”
The iIESPA will include:
« “ECall”

e “Positioning”

o “Messaging”

5.1.3 Templates
The specific Incomit templates will show up when creating a new project file by choosing
“File->New”. All templates will be placed in a sub directory called “Incomit”.
The following templates will be available:
» “iSea SLEE Client”

10

* “iSea SLEE Service”
* “iSea non-SLEE Client”

e “iSea non-SLEE Service”

514 Other graphical design parts
Below follows other graphical design parts.
» The text in the title bar of the IDE will be changed to “Incomit iWarf [version]”.

e The start up screen will be changed to the Incomit iWarf picture seen below.

ICOMIC iwarf

0.1 beta

Figure 5: iWarf splash screen

5.2 Functional design

Each graphical object represents an underlying functional task. Those functional tasks are

explained in this chapter.

521 Incomit menu
e “Descriptor wizard”
When creating an iSea service, a descriptor file is needed. This file, srv_depl . xn
contains attributes of the service and is needed by the SLEE. Since these are SLEE
specific attributes, and not directly part of the iWarf prototype, they will be briefly
described in Appendix C. A wizard is needed to make it easy for the user to write
this file. By filling out fields, the user will go through this wizard with four steps

(also see chapter 7.5).

11

5.2.2

“Deploy to iSea”

This will start up the Incomit Deployment tool that lets the user install a service (a
JAR-file) into iSea. A slightly adjustment will be made to the tool, so it will fit
better into iWarf.

“Incomit web”

When activated the Ice browser shows the Incomit website online. The Ice browser
is a web browser integrated in NetBeans.

Palettes

“Db”, ”Log”, "Trace”, “Messaging” and “Positioning”

These will not be fully implemented. The main reason for this is that they are very
similar to Ecal I (ESPA call control). So more effort will be put in making that
service well implemented and documented. Another reason is that the ESPA and
the Utils API’s, which are used by all ESPA and Utils services, are not yet
implemented.

ECall

The ECal | API is defined, and that is what will be used to write a dummy class.
The ECal | dummy class will only do printouts as seen in Appendix B.2. For
example the createCall (String nunber), will make the printout,
“createCall: [the nunber string]”. When an ECal | object is dropped

onto the form, two lines of code will be generated:
1. eCalll = new comincomt.espa.call.ECall();

2. private comincomt.espa.call.ECall eCall1l;

12

6 Implementation — NetBeans development

This chapter illustrates how a developer can add extra features to the NetBeans IDE. The
information below is based on NetBeans 3.2 and might change in later releases. Some of the
features from chapter 5 were too complicated to explain in this chapter, therefore some

features were replaced by more trivial examples.

6.1 NetBeans architecture

NetBeans is an open source, modular, standard-based IDE, totally written in Java™. It is
based on different modules and this makes it really easy to modify to suit your needs. To add
features to the IDE, creation of modules can be done (see chapter 6.2). To simplify the
modification of the IDE, it is based on a virtual file system, in which files can be added just

by writing some XML.

6.2 Modules

It is possible to create every feature directly within the NetBeans IDE, but this is not the right
way of working if the features would be distributed to someone else. To do the later, a module
that contains the features has to be created. There are no restrictions of how many features
that can be added to one module, so there is no need for more than one module when
customizing the IDE. The module will be packed into a JAR-file, called nynodul e. j ar, and

then inserted into NetBeans.

6.2.1 The manifest file

The first thing to do when creating a module is to write a manifest file. This simple text file
specifies the version and name of the module and the path to the layer file (see chapter 6.2.2).
There are no restrictions to the manifest filename but the manifest file will be named
Mani f est . nf and placed in the folder [JAR-fil e root]/meta-inf/ when packing the JAR

(see chapter 6.2.3). Below is an example of how a module manifest might look like.

1. Mani f est-Version: 1.0
2. Qpenl DE- Modul e: cominconit.iwarf.nodul es
3. Openl DE- Modul e- Nane: I ncomt iWarf nodul e

13

N o k&

Openl DE- Modul e- Speci fi cation-Version: 0.1

Qpenl DE- Modul e- | npl enent ati on- Versi on: (xmagu/ xgosk buil d 0001)
Openl DE- Modul e- Layer: confi ncomit/iwarf/nodul es/ Layer. xm
Created-By: Inconmit iWarf crew

1. Manifest-Version Should always be 1.0.
2. OpenIDE-Module Specifies the path (within the JAR-file) to the directory
that contains the layer file and all other files in the
module. Separate directories with dots.
3. OpenIDE-Module-Name | This is the name of the module and will appear in Tools-
>QOptions in NetBeans.
4. OpenlIDE-Module- The current specification version of the module.
Specification-Version

5. OpenlIDE-Module- The current implementation version of the module. Here
Implementation-Version | the current build of the module can be specified.

6. OpenIDE-Module-Layer | Path to the layer file. Separate directories with slashes.

7. Created-By User or company that has created this module.

6.2.2 Layer file

The layer file is the heart of the module. It contains a lot of information describing features

that will be inserted into the IDE.

With the layer file, a lot of code writing will not be

necessary, instead a few lines of XML will be enough. The layer filename is often set to

Layer. xm , but has actually no restrictions. Below is an example of a simple layer file that

creates a new empty menu and places it between the W ndow and Hel p menus in NetBeans, as

seen in Figure 6.

<fil esystenr
<f ol der nane="Menu">

</ f ol der >

</ fol der >

© N o o s DN E

</filesystenp

<attr name="W ndow MySubFol der" bool val ue="true"/>

<f ol der nane="M/SubFol der" >

<attr name="MSubFol der/ Hel p" bool val ue="true"/>

14

Line ‘ Description

1. The filesystem tag should always be put on the first line of the layer file.

2. Specifies the virtual folder changes are made to, in this case the Menu (the menu
bar).

3. Forces NetBeans to place the MySubFol der menu after the Window menu.

4. Creates a new menu named MySubFol der .

5. Ends the folder tag specified in line 4.

6. Forces NetBeans to place the MySubFol der menu before the Hel p menu.

7. Ends the folder tag specified in line 2.

8. Ends the filesystem tag specified in line 1. Always at the last line in the layer file.

File Edit “iew Project Build Debug Mersioning Toaols Wincow Help

Figure 6: Result from the layer file

6.2.3 Installation

First the directories, specified in the manifest file, has to be created. In this case something
like this (note that the Net beans directory in the figure below has nothing to do with the
NetBeans installation directory where the program files are stored):

-] Metheans
=] code
¢ B com
E|_| incarmit
E|_| itssarf
L] modules

Figure 7: Setting up module directories

Put the manifest file created in chapter 6.2.1 into the manifests directory and name it
modul e-nf . txt. Then save the layer file, from chapter 6.2.2, as Layer.xm into the
code\ com i ncomi t\ modul es directory. Now enter the code directory and type the following
to pack the JAR-file:

jar cvfmD nynodul e.jar ../ manifests/nodul e-nf.txt cominconit/iwarf/nodules

15

Then simply move the nynodule.jar file into the [NetBeans installation
directory]\nodul es directory and start NetBeans. The changes will now be applied
automatically. This makes it really easy to distribute the changes to someone else, by just
copying the file. In later chapters, nothing is said about recompiling the JAR-file, when a new

feature will be added. That is taken for granted.

6.3 Templates

This chapter describes how to create a template and then put it into the module created in the
previous chapter. Templates can be created with or without group files. When using a group
file one or more files can be added to the template, without a group file only one single file
can be added. Because it is a lot easier to add another file to a template based on a group file,
non-group file based templates will not be discussed here. The following example is the iSea
SLEE Client template described in chapter 7.2.

6.3.1 Template files

Start with creating some new directories to store the template files in (see figure below).

<71 Metbeans
=] code
=7 com
= incamit
= iwarf
277 modules
=] templatas

- resources

El{:l slee

L) iseaClient

-] manifests

Figure 8: Setting up template directories

These directories are not necessary but this is done for making it look nice and easy. Then

three files are needed in the i Seadl i ent directory to be able to create the template.

iSeaClient_java

This file includes the code that is going to be static when creating an iSea SLEE Client.
Macros can be used in this file to get the current date and time, the Microsoft Windows
username and the filename. The source can be found in Appendix B.1. Since this file is not
going to be compiled call it i SeacCl i ent _j ava (this will not mix it up with . j ava files). To

be able to compile the Java™ source file that is generated from this file in NetBeans,

16

installation of the com i nconi t. sl ee class library is required. How to install external class

libraries is explained in chapter 6.3.5.

iSeaClient_form
This file is used for getting a form in the NetBeans IDE that enables components to be added

by dragging ‘n’ dropping. This file will always have the appearance as described below:

<?xm version="1.0" encodi ng="UTF-8" ?>

<Form version="1.0"
type="org. net beans. nodul es. f orm f or m nf o. Fr aneFor m nf 0" >
4. </ For e

iSeaClient_group

The last file is the group file that contains the path to all files that are to be included in the
template. The path is the one found in the layer file as virtual folders (see chapter 6.3.2 for
further details). The files that will be included are the two files above. This is how the file
looks like:

1. Templ ates/ I ncom t/SLEE/ __NAME sleeCient__.java
2. Templ ates/ I ncom t/SLEE/ __NAME sleeCient__.form

6.3.2 Layer file — create the template
Now some text has to be inserted into the layer file to really create the template in NetBeans.

Put this in the Layer . xm below the <fi | esyst en> tag (see chapter 6.2.2):

<f ol der nane="Tenpl at es" >
<f ol der nane="Inconit">
<attr name="tenpl at eW zardURL" url val ue="nbresl oc:/comincomt/
i war f/ modul es/tenpl at es/ resources/incomt.htm"/>
<f ol der name="SLEE">
<attr nanme="tenpl at eW zardURL" url val ue="nbresl oc:/com
i ncom t/iwarf/nmodul es/tenpl at es/ resources/slee.htm "/ >
6. <file name="i Sead i ent. group"
url ="tenpl ates/ sl ee/i Sead i ent/i Sead i ent _group">

7. <attr name="tenpl ate" bool val ue="true" />

17

8. <attr name="Systentil eSystem | ocal i zi ngBundl e"
stringval ue="comincomt.iwarf.nodul es.tenpl ates. Bundl e" />
9. <attr name="tenpl at eW zardURL" url val ue="nbresl oc:/com
i ncom t/iwarf/modul es/tenpl ates/resources/i SC. htm"/>
10. <attr name="Systentil eSystemicon" urlval ue="nbresl oc:
/comlincom t/iwarf/nodul es/tenpl ates/resources/i SC.gif"/>
11. </[file>
12. <file name="__NAME sl eeClient__.java"
url ="tenpl ates/sl ee/i Seal ient/i Sead ient_java">
13. <attr name="tenpl ate" bool val ue="fal se" />
14. </file>
15. <file name="__NAME sleeCient_ .fornt
url ="tenpl ates/sl ee/i Seal ient/i Sead ient_forni>
16. <attr nanme="tenpl ate" bool val ue="fal se"/>
17. </[file>
18. </ f ol der >
19. </ f ol der >
20. </fol der>
Line ‘ Description ‘
1. Specifies the virtual folder in where to make the change, in this case Tenpl at es. This
is the first entry in the group file path (see the i Sead i ent _group file in chapter
6.3.1).
2. Creates a new folder named | nconi t. This is the second entry in the group file path
(see the i seacl i ent _group file in chapter 6.3.1).
3,5, | Sets the paths to the help files displayed when selecting the I ncomi t directory (3),
9. SLEE directory (5) or the iSeaClient template (9). See chapter 6.3.3.
4. Creates a new folder named SLEE. This is the third entry in the group file path (see
the i Sead i ent _gr oup file in chapter 6.3.1).
6-11. | Adds the group file to the template. Use dot instead of underscore in the name so that
NetBeans associates right. URL is relative to the layer file.
7. Tells NetBeans that this file is a template.
8. Path to the bundle file (Bundl e. properti es). See chapter 6.3.4.
10. The icon displayed in NetBeans. See chapter 6.3.3.
12- Adds the Java™ file to the template. Use dot instead of underscore in the name.
14.

18

13, Tells NetBeans that this file is NOT a template.

16.

15- Adds the form file to the template. Use dot instead of underscore in the name.
17.

6.3.3 Resource files

Resource files are html files and gif files that represent help files and icons that appear at
different places. Icons have the size of 16x16 pixels and can have transparent background.

The help files consist of common html code.

Create the help files i ncomit.htm, sl ee. htm, i SC. htm and the icon i SC. gi f and put

them into the r esour ce directory to get the template work properly.

6.3.4 Bundle file

Bundle files are very common in the NetBeans IDE. They provide an easy way of changing
names, paths or whatever that can be written in text. This makes it easier to change a path
without changing the code. Just change the text in the bundle, re-pack the JAR and the

changes are done.

The bundle has the filename Bundl e. properti es but the path to it, in the layer file, is in this
case com i ncomit.iwarf.nodul es. tenpl at es. Bundl e, without the . properti es. Create a

Bundl e. properties, putitinthetenpl at es directory and insert the following text:

1. Tenpl ates/ I ncom t/ SLEE/ i Sead i ent. group=i Sea SLEE d i ent

The path above is based on the virtual folders and file, created in the layer file (see chapter
6.3.2). iSea SLEE Client is the name that will appear in NetBeans, when selecting the

template.

6.3.5 Adding external libraries to NetBeans

If there exists an xwi ng. cl ass in the class library starwars.jar, and the xwing class is
needed by the Star Wars GUI you are currently working on, then the st arwars. j ar needs to
be added to the NetBeans class library. To achieve this, start by copying st arwars. j ar into

the [Net Beans installation directory]\lib\ext directory. After that add the code

19

below to the layer file. If the st arwars. j ar class library is not added to the NetBeans class

library, a class not found error would occur during compilation.

ok DN PR

10.
11.
12.

<f ol der name="Munt ">
<f ol der nane="j ava">
<file name="starwars.xm ">
<! [CDATA[
<! DOCTYPE Javali brary PUBLIC "-
/I Net Beans | DE// DTD Javali brary//EN"
"http://ww. net beans. org/ dtds/ JavaLi brary-1_0. dtd">

<Li brary>
<Ar chi ve
nane="lib/ext/starwars.jar"/>
</ Li brary>
11>
</file>
</ fol der >
</fol der>

Line ‘ Description

1. Specifies the virtual folder in where to make changes, in this case Mount .

2. The virtual folder for Java™ classes.

3. Here a virtual XML file that includes data about the library is created. Choose a
filename, but it is a good idea to have the same name on the XML as on the JAR.

4. Here is the start of the data in the virtual XML file.

5. Always begin the data with this line.

6-8. Here is the library added to the NetBeans class library. The archive path is relative to
the NetBeans installation directory.

9. Ends data.

6.4 Palette — create the drag ‘n’ drop feature

This chapter describes how to create a palette tab and put a JavaBean component, ECall, into

it that can be dragged “n’ dropped into a form window (see chapter 7.3).

20

6.4.1 Layer file — create the palette
To create the palette a few lines have to be added to the layer file in the module. Just add the

following lines after the <f i | esyst en> tag (see chapter 6.2.2).

1 <f ol der name="Pal ette">

2 <f ol der nanme="i ESPA" >

3. <file name="cominconit-espa-call-ECall.instance"/>
4 </ fol der >

5 </ f ol der >

Line ‘ Description ‘

1. Specifies the virtual folder in where to make changes, in this case Pal et t e.
2. Creates a new folder named i ESPA.
3. Creates an instance of the component class Ecall in the package

com incomt.espa.call. This is the component that can be dragged 'n' dropped

into the form. See chapter 6.4.3 for further details.

6.4.2 The manifest file — specifying the palette component

A new manifest file has to be written for the components. This is because of the need for a
new JAR-file to put the component(s) in. The component class file should not be included
into the module but instead as an external library (see chapter 6.3.5). Name it pal ette-

nf .t xt and put it in the mani f est s directory. It looks like this:

Mani f est-Version: 1.0

Created-By: Inconmit iWarf crew

Nane: coniincomnit/espal/call/ECall.class

ok N PRE

Java- Bean: True

6.4.3 The component

Now the component, that was mentioned in chapter 6.4.1, has to be created. The component
consists of a common JavaBean class and a bean info class. The bean info class consists of
information about the common class, like properties and methods but also the path to the icon
shown in the palette. The easiest way to do this is to use NetBeans to create the bean info

class, but first the common class.

21

JavaBean class
First the two new directories introduced in line 3 in chapter 6.4.1, have to be created. The
comincomi t already exists so only the espa and the cal | directories have to be created. A

resour ces directory can also be added, for help files and icons.

- MyFiles
El{:l Metbeans
EID code
=] cam
EI{:l incarmit

E|{:| E5pa
El{:l call
] resources
{:l ivarf

{7 manifests

Figure 9: Setting up component directories

Now the JavaBean class (ECal | . j ava) has to be created and put in the cal I directory. It is a

common class that only does printouts. The source can be found in Appendix B.2.

Bean info class

Now create the bean info class in NetBeans. Start by making a 16x16 pixels icon (gif-file) and
put it in the resour ce directory. This icon will later be seen in the palette. Then open the
ECal | . j ava file in NetBeans by selecting File->Open File... Browse to the Ecal | . j ava file
and hit the accept button. The file will now be mounted in the Explorer view. Expand all

directories if necessary until you can access Bean Patt er ns seen in Figure 10.

| Explorer [Filesystems]

B Filesystems
& 32 Conetheansmyuszerfiles\zamples
@ =2 ChyFilesiMetheansicode
@ & com
@ 3 incomit
@ 3 espa
@ 3 cal
@ " Ecal
@ @ classECal
@ § Fields
@ [Swing Forms
=M tethods
@ B Bean Pstterns
@ [iwari

Figure 10: Explorer view

22

Now right-click Bean Patt er ns and choose Beanl nf o Edi tor ... (See Figure 11).

E¥ BeanInfo Editor

f_} Beaninfo
@ B Bean !
'ﬂ} ECall Icon 1616 Colar nuII| |
? B Properties Icon 16216 Mono rudll
Mg participants
By Evert Sources lzon 3232 Color riudll
¢ B Methods lcon 3232 Mano Al
E® addlistener
Default Property Index -1
e addParticipant ks
He createcal Default Evert Index -
e endCal
e removeParticipant Properties

QK Cancel Help

Figure 11: BeanlInfo editor

Then click the Beanl nfo and browse for the 1 con 16x16 Col or. Select d asspath and
browse for the gif file. Hit ok a few times. Now the ECal | Beanl nf o source appears in

NetBeans. Save the file and exit NetBeans.

6.4.4 Final installation

Enter the code directory, compile the . j ava files and pack the JAR-file like this:

javac -deprecation -g conmfincomt/espalcall/*.java
jar cvfnD inconmitbeans.jar ../manifests/palette-nf.txt comlincomt/espa

Move the JAR-file into the [Net Beans installation directory]\lib\ext directory.
Now the library (JAR-file) has to be added into NetBeans, exactly as in chapter 6.3.5. Add the

following in the Mount / j ava folders in the layer file.

<file name="inconitbeans. xm ">
<! [CDATA[
<! DOCTYPE Javali brary PUBLIC "-// Net Beans | DE// DTD
Javali brary//EN' "http://ww. net beans. or g/ dt ds/ JavaLi brary-1_0. dtd">
<Li brary>
<Archi ve name="Ilib/ext/incom tbeans.jar"/>
</ Li brary>

N o k&

11>

23

8. </file>

Now the ECal I component can be dragged 'n' dropped into the form window.

6.5 Wizards

This chapter describes how to create a simple wizard in NetBeans. Wizards can be used for

making difficult tasks easier for the user. In NetBeans there exist some help classes for

building wizards that makes it a little easier. In this tutorial the two-step Hello World wizard

seen below, will be created.

B9 Hello World Wizard

Steps

1. Enter the first secret
password.
2. Reszuft

Ve
™~

Pl
/

| steps IHEFF'J_'}

Password step

Enter the zecret pazsword in the textfield to continue.

hello warld

Mext =

Cancel

Figure 12: The complete step 1 in the wizard

6.5.1 Wizard files

Start by creating a wi zar ds directory in the nodul es directory. In that directory create the

two directories hel | owor | d and r esour ces (see Figure 13).

24

A wizard consists of a main class and one panel class for each step, in this case two. Each
panel class extends JPanel on which swing components or common awt components can be
added. It also implements an interface to handle common wizard features. The main class

manages the panels and all communication is controlled from this class.

HelloWorldPanell.java
Figure 12 illustrates the first step that will appear to the user. HelloWorldPanell.java is the

panel seen in Figure 14. In this step the user has to enter a secret password in the text field.

] Metbeans
=] code
=] com
=7 incamit
-] espa
=] iwarf
=7 modules
-] templates
277 wizards
{7 helloworld

----- 7] resources

-] manifests

Figure 13: Wizard directories

When this is done, the next button (see Figure 12) will be enabled.

Enter the secret passward in the textfield to cortinue.

Create the first panel by saving the file Hel | owor | dPanel 1. j ava (see Appendix B.3) in the

hel | owor | d directory.

Figure 14: Wizard Panel 1

25

HelloWorldPanel2.java

This is the second step that will appear when the user has entered the correct password and hit

next in the first step. This panel contains a label with the text, “Congratulations!!! You have

entered the secret password!!!". In this step the user can either go back or click Finish to close

the wizard. This class is much simpler than the Hel | owor | dPanel 1 class. For example there

are no listener or event handlers. Put the source in the file Hel | oWor | dPanel 2. j ava (see

Appendix B.4) in the hel | owor | d directory.

B9 Hello World Wizard

Click finish to exit. Final step

Steps | Help

Congratulationzl Y ou have entered the secret passwardil

= Back

Finizh

Cancel

Figure 15: Complete step 2 in the wizard

HelloWworld.java

This is the main class where communication with the panels can be handled. For example,

buttons can be set enable or disable, texts in the wizard can be set and much more. The class

includes a W zar dDescr i pt or class that is a basic wizard GUI system. The panels will then

be added to the W zar dDescr i pt or . Simply put the source in the file Hel | owor | d. j ava (see

Appendix B.5) in the hel | owor | d directory.

26

helloworld_panell.html

This is the file specified in the help file URL in the Hel | owor | dPanel 1 class. Put it in the

resour ces directory.

ok w DN PR

<HTM.>
<BODY>
<CENTER>Try typing 'hello world" in the textfield.</CENTER>
</ BODY>
</ HTM_>

helloworld_panel2.html

This is the file specified in the help file URL in the Hel | oWor | dPanel 2 class. Put it in the

resour ces directory.

ok DN PRE

<HTM_>
<BODY>
<CENTER>Cl i ck finish to exit.</CENTER>
</ BODY>
</ HTML>

Now the Java™ files have to be compiled. Add all files to the JAR-file and it is done. To be

able to start this wizard from a menu, an action has to be created. This will be done in chapter

6.6.1.

6.6 Menus and actions

This chapter describes how to create menus and actions. Menus make it easy for the user to

reach specific tasks. An action is called when the user clicks on a menu item in a menu.

Create a nenus directory in nodul es and i nconit and resources in the menus directory

(see Figure 16).

27

{1 Metbeans
EI{:l code
=] com
EI{:l incamit
& espa
El{:l ivarf
El{:l modules
SR s
] incomit
] resources
-] templates
-] wizards

--{_7] manifests

Figure 16: Menus and actions directories

6.6.1 Actions
There are different types of actions where the Cal | abl eSyst emAct i on is the most suitable
for menu actions. To be able to start the wizard, created in chapter 6.5, from a menu item, an

action class is needed.

HelloWorldWizardAction.java

This is the action class for the wizard. Its three main purposes are:
» Fetch the menu name associated with the wizard.
» Fetch the icon associated with the wizard.
 Instanciate the HelloWorld class.

Put the Hel | ovor | dW zar dAct i on. j ava (See Appendix B.6) file in the i nconi t directory.

Bundle.properties
In the bundle file the name of the menu item can be specified. The & sign in row 2 below
means that the letter after it will be underscored in the menu. Hello World Wizard is the name

of the menu item. Save this file in the i nconi t directory.

1. # MenuActi ons
2. LBL Hel | owor| dW zar dActi on=&Hel l o Wrld W zard

6.6.2 Menus
To a menu, either action classes or URLSs can be added. To finally be able to start the wizard

from the menu a few things have to be done.

28

The layer file — create the menu
As was done in chapter 6.2.2, a few lines have to be added to the layer file to create a menu.

Add the lines below to the layer file. Put it after <f ol der name="Menu" > (see chapter 6.2.2).

<attr name="Tool s/Incomt" bool val ue="true"/>
<f ol der nane="Inconmt">
<attr name="Systentil eSystem | ocalizi ngBundl e"
stringval ue="comincomt.iwarf.nodul es. menus.inconit.Bundl e"/>
4. <file name="cominconit-iwarf-nodul es-nenus-incomt-
Hel | owor | dW zar dActi on. i nst ance"/ >
5. </fol der>

Line ‘ Description ‘

1. Puts the I nconi t directory after the Tool s menu.
2. Creates the | ncomi t menu.
3. Specifies the path to the bundle file, in this case used for specifying which letter to

underscore in the menu name.

4, Path to the action class created in chapter 6.6.1. Put . i nst ance at the end of the path

instead of . cl ass.

Bundle.properties
To specify which letter to underscore, a line has to be added into the bundle file. Add the
following lines to the bundle file in the i ncomi t directory where line 2 specifies that the |

letter will be underscored.

1. # Menu keys
2. Menu/ I nconi t =&l ncomi t

Creating an URL in a menu
Start by adding the following lines after the <file name="com i nconit-iwarf-nmodul es-

menus-i nconit - Hel | oWor | dW zar dAct i on. i nst ance"/ > attribute in the layer file.

1. <file name="incomt-web-link.url">
<I[CDATA[http://ww. i ncomt.conl]]>
<attr nanme="SystentFil eSystem | ocali zi ngBundl e"

stringval ue="comincomt.iwarf.nodul es. menus.inconit.Bundle"/>

29

4. <attr name="Systentil eSystemicon" urlval ue="nbresloc:/conf

i ncom t/iwarf/nmodul es/ menus/resources/weblink.gif"/>

5. </[file>
Line ‘ Description ‘
1. The filename of the virtual URL file.
2. Enter the URL inside the [].
3. Specifies the path to the bundle file, in this case used for specifying which letter to

underscore in the menu item name.

4. Path to the 16x16 icon that will appear in the menu.

Then add the following to the bundle file (Bundl e. properti es) intheinconit directory.

1. Menu/ I ncom t/incom t-web-1ink.url=lncomt &Web

This will make the W letter underscored.

Creating a separator in a menu
Just add the following line after <file nanme="comincomit-iwarf-nodul es-menus-

i ncom t-Hel | oWor | dW zar dActi on. i nstance"/ > in the layer file.

1. <file name="Sepl[javax-sw ng-JSeparator].instance"/>

If multiple separators are wanted in the same menu, name them Sep1l, Sep2, ...

Ordering menu items
If the following order is wanted of the menu items in the menu: wizard menu item, the
separator and last, the URL. Then add the following two lines to the layer file after the

separator tag above.

1. <attr nanme="cominconit-iwarf-nodul es-nenus-incomt-
Hel | owbr | dW zar dActi on. i nst ance/ Sepl[j avax- swi ng-
JSeparator].instance" bool val ue="true"/>

2. <attr name="Sepl[]javax-sw ng-JSeparator].instance/incomt-web-

link.url " bool val ue="true"/>

30

Line ‘ Description

1. This attribute makes NetBeans put the wizard menu item before the separator. Put

this line between the wizard virtual file and separator virtual file in the layer file.

2. This attribute makes NetBeans put the separator before the URL. Put this line

between the separator virtual file and the URL virtual file in the layer file.

6.7 Filesystem example

Instead of accessing files through pure Java™ API’s, NetBeans offers the package
org. openide. fil esystens, Where the FileSystem and the Repository classes can be
accessed. The Repository is a singleton class that corresponds to the Explorer window in
NetBeans. The Repository consists of all mounted filesystems. The NetBeans crew describes
the Filesystems API as follows [2]:

“The FileSystems API permits module authors to access files in a uniform manner: e.g. you
may be unaware of whether a file you are using is stored on local disk in the user's
repository, or stored in an auxiliary directory, or stored in a JAR archive. Alternately, you
may have reason to implement a custom file system--e.g. a vendor tool being integrated into
the IDE may have its own local or remote storage of files in a special fashion; using this API,

the rest of the IDE will be able to seamlessly view your files.”

6.7.1 Simple example

Consider the following. A local file, c:\ nmyfol der\nyfile.txt, should be mounted so it
will be accessible in the Explorer window in the NetBeans IDE. This is a quite simple task to
perform. If the folder, c: \ nyf ol der does not exist, it will be created. If the file, nyfile. t xt

does not exist, it will be created. First the following directory structure has to be created:

31

http://www.netbeans.org/download/apis/org/openide/filesystems/doc-files/#basic-usage
http://www.netbeans.org/download/apis/org/openide/filesystems/doc-files/#custom

{1 Metbeans
L—‘_Il:l code
=] com
El{:l incarmit
-] espa
El{:l iwarf
El{:l modules
-] Fileapiezxample
=] menus
L2 incomit
L] resources
#-] templates
-] wizards

-] manifests
Figure 17: Filesystem directories

Layer.xml
The Layer. xm file is used to add the menu item into the Incomit folder.

Add the following line, to the virtual folder Menu -> Incomit in the layer file.

1. <file nanme="comi nconit-nodul es- nenus-i ncom t -

Fi | eExanpl eActi on. i nst ance"/ >

Bundle.properties
The bundle file is called from the Fi | eExanpl eActi on class. It is used to name the menu

item “File Example”. Add this line to the bundle file in the f i | esyst emdirectory:

1. LBL_Fil eExanmpl eActi on=&Fi |l e Exanpl e

Example.java
This class mounts c:\nyfolder\nyfile.txt to the NetBeans Explorer window. Put

Example.java (see source in Appendix B.7) in the directory fi | eapi exanpl e.

FileExampleAction.java

This file extends Cal | abl eSyst emAct i on and its main purpose is to start the Exanpl e class.
It also holds a function to fetch its name from the bundle file. This is the name that will be
visible for the user in the Incomit menu. Put the file (see source in Appendix B.8) in the
directory i nconi t . Create the 16x16 pixels icon, Fi | eExanpl eActi on. gi f, and put it in the

resour ce directory.

32

Compile the files using:

javac -deprecation -g
c:/ netbeans/|ib/openi de. org; c:/netbeans/|i b/ openi de-
util.org;c:/netbeans/lib/openide-fs.org
conmi ncom t/iwarf/nodul es/fil eapi exanpl e/ *.java
confi ncom t/iwarf/nodul es/ menus/inconit/*.java

6.8 Other

This chapter will explain how to change the start-up logotype and the window title, and how
to enable code completion.

6.8.1 Changing the start-up logotype

To change the start-up logotype, create a c:\core\jar temp directory and unpack the
[Net Beans installation directory]\lib\core.jar (easiest with WinZip) into that
directory. Copy the \ net a-i nf\ Mani f est. nf to the core directory. Open, edit and save the
logotype file c:\core\jar\ org\ net beans\ core\resources\spl ash. gi f. Then pack the
JAR by entering the jar directory and enter the command jar cfnD core.jar
../ Manifest.nf *. Move the new core.jar file into the c:\ net beans\ i b and overwrite

the existing file.

6.8.2 Changing the coordinates of the text in the start-up logotype

To alter the loading text coordinates in the splash screen, assuming that the core.jar is
unpacked as in chapter 6.8.1, open the bundle property file
c:\core\jar\org\net beans\ core\ Bundl e. properti es and change the
SplashRunningTextBounds attribute. The numbers are x-coordinate, y-coordinate, width and
height separated by comma. Save the file and pack the JAR-file like in chapter 6.8.1.

6.8.3 Changing the window title.

To set the NetBeans window title, edit the very same Bundle.properties as in chapter 6.8.2.
Change the currentVersion attribute to whatever is preferred. The bundle property file
c:\core\jar\org\net beans\ core\ wi ndows\ Bundl e. properties also has to be edited.
Here change the CTL_MainWindow_Title and CTL_MainWindow_Title_Project to whatever
is preferred. Save the files and pack the JAR as in chapter 6.8.1.

33

6.8.4 Add code to the parser database (code completion)

To enable code completion for objects, install the JAR file containing the objects into
NetBeans as was done in chapter 6.3.5. Then start NetBeans and choose File->Mount
Filesystem and choose to add the JAR file. Hit Ok to mount it. Right-click the mounted JAR
file in the Explorer window and choose Tools->Update Parser Database... Choose a name
and select which classes/fields/methods to include in the database and hit Ok. Two new files
will be created in the c:\ net beans\ syst eml Parser DB or the [Net Beans installation
directory]\ nyuserfil es\system Parser DB with the filename decided and the extensions
.jcband.jcs. These files can be moved between different installations of NetBeans if put in

the [Net Beans installation directory]\system Parser DB directory.

34

7 Use case — Create and deploy iSea SLEE Client

Not much testing has been done in this Bachelor’s project, partly because iWarf is a
prototype, but also because there are no good ways of testing it. Instead a use case will be
described in this chapter. When going through this case, all features added to NetBeans will

be used. This chapter describes how to create a simple iSea client with the iWarf tool.

7.1 Environment

For this prototype, only an iSea SLEE Client can be created. The example client will create a
conference call with three participants using the ESPA ECall. At this point the ESPA ECall
exists only as an API, so a dummy class was made, that only does printouts. The creation of
an iSea SLEE Client starts with choosing a template. Thereafter items from the palette can be
dropped to the project. Then the user must write some trivial code. When the client is
complete the user will create a descriptor XML file, needed by the SLEE. The client files will
be packed in a JAR-file, using the NetBeans JAR packager. Finally the JAR-file will be

deployed into iSea using the integrated Incomit deployment tool.

7.2 Templates

First choose to create a new project file (ctrl + n). Browse to the iSea SLEE Client template

(see Figure 18) and then continue by clicking next.

o [0 Sadek Fonid
@ 3 ncomd
& 00 HonSLEFE
§ 8 o
C [Sen SLEF Chenl
S San ZLEE Sar-ice
&3 M
& 0O &SP

Figure 18: Choosing the template

The next step is to name the project and to determine which package it will belong to. For this
example choose to name the project MTestCdient and place it in the package

comincomt.testing (see Figure 19 and Figure 20).

ol T C il
Figure 19: Project name

35

« poimUnecioed besting
Figure 20: Project package

When done choosing the template, press finish to complete this wizard. This will make
NetBeans think for a few seconds, so just stand by for a while. Now the two windows, Form
[MyTestClient] and Source Editor [MyTestClient] will pop up. The Source editor now

contains prewritten code that matches the selected template, in this case the iSea SLEE Client.

7.3 Palettes

The form window is needed to drop palette components into. Choose to drop an ESPA ECall
to the project. Do this by clicking once on the palette component (see Figure 21) and then

click anywhere in the form window.

Swing | Swing (OFmr] AWT Beand Layouts | Borders | Fors iR |

OE

o e ol ispa coll 5Ol

Figure 21: IESPA palette

Two lines of code will be generated in MyTestCient.java, a declaration line and an
initialisation line. The name of the object will be [classname] followed by an incrementing

number, in this case, eCal | 1.

7.4 Coding

The created object can be seen in the component inspector (see Figure 22). With the
component inspector many nice features can be accessed, such as renaming the object and

setting properties of the object.

36

I;?EMHnmdrqruwmwnnﬂpHgf i
W5 s Chind [Frasi]
§ &1 Monevisusl Components
dh olan [ECH]
B porderLayos

k1 08 -0
f= Brpred s

;lPIMIHH:

Figure 22: Component inspector

Now it is time to create the conference call. To make it easier for the user, the ECall class

library has been added to NetBeans parser database (see chapter 6.8.4). This enables code

completion as seen in the figure below.

[Sourcs Ecor JyTestCient 7

ECENR

33

=4

L3

i L -

T

2

<)

40

4l puhlic woid activated(] throws SerwicsleplopmentExceptioml
4E =Calll.a

a43 a

=4 1 T wobl moldl bl e Shrineg ecl)

A ol okl modFaricpan Snng sodress)

4 -

a7 * Will ke callad by SLEX whan 8 Sarvios Ras beap
&5

&2 pubilic woid atarbed|) theewm ZeepviceDaployesnrErceprion)
LTi} elalll. createCall ("0T0LIFA56T)

EZ 1

Figure 23: Code completion

To create the call, write the following code:

1

2
3.
4

eCal | 1.
eCal | 1.
eCal | 1.
eCal | 1.

createCal | ("0701234567");
addParti ci pant ("0707894561");
addParti ci pant ("0701223344");
endCal | ();

37

In this example put line 1 in the method st art ed(), line 2 and 3 in the method act i vat ed()

and line 4 in the method deact i vat ed() . Save and compile the file by hitting F9.

7.5

Descriptor Wizard

To be able to deploy this client to iSea, the descriptor file, srv_depl . xni , is needed. This file

contains information about the client, and is needed by the SLEE. If this file is missing or is

incorrect the client will not be accepted by the SLEE. In the Incomit menu, there is a

Descriptor wizard that can be used to create the descriptor file in four easy steps (see
Appendix C):

Basic service definition

In the first step the only required field to fill in is Name. This is the name the client
will have in the SLEE. Set the name to “MyClient”. The other fields are optional, and
can be left out without change.

Service classes definition

In this step there is one required field, Deployable. Since there is only one file in the
project, MyTest d i ent . j ava, and this file implements the Deployable interface, fill in
the deployable field like this: com i ncomit.testing. MyTest d i ent. The remaining
fields cannot be filled in, since there are no classes implementing any of the
mentioned interfaces.

Choose descriptor path

Now that all required fields are filled out, specify where to save the descriptor file.
Select the directory, either writing it by hand or browse for the directory of your
desire. Later on the descriptor file will be placed into the root of a JAR-file as well as
the client package, so it might be a good idea to save it with this structure at this stage

already (see Figure 24).

AT

S incomld

- | testing

B ™ by T i

g gl

L -B= |
)

o]

Figure 24: File structure

Manual edit

38

This step gives the opportunity to quickly view and change the content of the
descriptor file. If it looks ok, press finish to create the srv_depl . xm . Shortly after,

the srv_depl . xm will appear in the Explorer window, as shown in the figure above.

7.6 JAR-packaging

NetBeans has a built-in JAR-packager. The usage of this packager needs to be discussed a bit,
because it might be a bit confusion of how it works. Create a JAR contents object from a

template (see Figure 25).

B Sl e Parksger
E o Contenia

Figure 25: JAR contents

In the next step enter a name for the JAR contents, and where to place it. Name the JAR
contents nyj ar cont ent s. This object is not a JAR-file, but merely an object that describes the
JAR-file. To create the JAR-file, specify which files that should be included in the JAR-file
(see Figure 26) and then compile the JAR contents. The output of this compilation is the JAR-

file. Press next to add files to the JAR contents.

IT-? S From Termplate Wizard il
i Chidiee conileils Fod WS Tike.
1. Tenplele Choooer > - ~TThonar = ol Bt
L Chotes lagel - :]
L AR Coments " |8 Dirsciony Pref -
4. M Locsbon J [T Prr— - I- = = — _|
L MR Mares P & CenpiesTcodng 2 T =
= O Wk :.;.1.-
L
&= 3 com
B0 docx Add |
AT :S i Akl ssiectesd Rerns 1roen the Source' 1o e 'Chogen Content pane.
ff B T raviuisr i
1 T Lol
I",f [W | —— |
’ 4 B= [dedd
‘\-H__‘\“ / B 3 uuiss
] E g1y _dépl
x|

[pwn |[e][o [coee || o

Figure 26: Adding files and directories to the JAR contents file

39

Press next to choose the JAR-file location. The final step is to write the manifest file, which is
optional. Press finish to complete the wizard.

Locate nyj ar cont ent s in the Explorer window and right-click on it. If additional properties
need to be set, choose properties in the popup menu (see Figure 27). When satisfied press

compile in the popup menu to create a JAR-file from nyj ar cont ent s.

B O ypdae
[rmogercontents
B mre_okepl

Ciompls
Exsrxdn

Copy

D
[]

Sase A Terngte .
Toaoks L]

Figure 27: JAR contents properties

7.7 Deploy to iSea

Access to iSea is needed to complete this step. To deploy the created JAR-file, choose Depl oy
to i Sea inthe I nconit menu. The window that pops up is the standard Incomit deployment
tool, just slightly adjusted to fit into iWarf. How the deployment tool, iSea and iWarf
communicate is illustrated in Figure 28. Since the deployment tool is under development and
the authors of this document is not engaged with that project, details about its usage will not
be given. The ECall class will do printouts on the iSea machine.

When starting it, creat eCal | : 0701234567 is printed on the screen.

When activated, addParti ci pant: 0707894651 [new i ne] addParti ci pant :
0701223344 is printed.

When deactivated, endCal | is printed.

An iSea service has step by step successfully been created using the extra features added to
NetBeans.

40

Deploym.

tool

Fandora
Call

Service

]

iWarf

ESFPA

prototype

1Sea

Figure 28: How iWarf and iSea are related

41

42

8 Problems and experiences

Since this Bachelor’s project was about making a prototype, focus was intentionally on
finding a way to achieve as many goals as possible, without adding features not included in
the requirements specification. Even though code completion was not listed as a requirement,

it was a simple, but powerful feature to include.

8.1 Problems

Along the way some problems of different character were encountered. The problems can be

divided into NetBeans related, implementation and Incomit related problems.

8.1.1 NetBeans related problems

NetBeans is an IDE in change. At first NetBeans 3.1 was used as foundation. When writing
the descriptor wizard, problems occurred. The wizard GUI did not work properly. After some
research on the NetBeans website, we came to the conclusion that the fault was embedded in
NetBeans. The only solution to this problem was to update NetBeans. An early 3.2 beta
release was installed. When trying to install the iWarf module to this version of NetBeans, a
lot of exceptions were thrown when starting up the IDE. For some reason (probably a good
one) the NetBeans class library files had been split into several smaller files. There were also
changes made to the form editor, so adjustments to the code had to be done. The JAR
packager was changed too. In NetBeans 3.1 it was located in the tools menu, but was now a
template! Upgrading to the 3.2 beta required several days of work. When the wizard was
completed, we discovered that the JAR packager in this release was not working properly.
This forced another upgrade. This upgrade went smoother, but some changes had been made
to the form editor again! They probably were not happy with the last changes. For every new
upgrade, changes in the iWarf module had to be done to fit in NetBeans.

8.1.2 Implementation problems

The making of the descriptor wizard was not easy. The first problem, described above, was
caused by an old version of NetBeans. The wizard implements the
or g. openi de. W zar dDescri ptor. | terator interface, which was not easy to understand.

There were also some problems concerning creating templates groups, in other words a

43

template containing more than one file. Through mailing lists and examples on NetBeans

website, we finally got it to work.

8.1.3 Incomit related problems

As mentioned before in this document, the ESPA and Utils classes were not implemented.
The solution to this problem has been to write a dummy class, ECall that was used for testing.
Another problem that made it hard to test services, created in iWarf, is that Incomit

temporarily lost the connection to the PSTN.

8.2 Experiences

Before we started designing iWarf we wrote a requirement specification document that was
approved by Par, our company supervisor. We tried to follow it from the start to the end, but
some requirements where not achieved. The requirements R1 to R17 can be found in
Appendix A. R1 and R2 are not functionally implemented due to lack of experience in
CORBA (Common Object Request Broker Architecture). R3 actually has lower priority then
R1 and R2, but R3 was easier to achieve. R8 — R12 is not fully implemented (see 8.1.3). R14
was split into two issues, creating XML descriptor file and packing the JAR file. The

requirements R3-R7 and R13-R17 were fully implemented.

New experience was gained in XML, Java™ and GUI design but also in the design of telecom
systems of tomorrow and what kind of telecom services that will be present in a near future.
Since NetBeans was used as foundation of iWarf, we have learned the architecture of
NetBeans and how to modify and use the IDE. Through mailing lists we have participated in
discussions concerning development of the NetBeans IDE. Beside this we have learned how

the modern IT company Incomit develops their products.
We wrote diaries every day, which was of great help when looking back to see what was done

earlier. It also helped us to see working hours each day. When problems were solved, we

wrote howto’s describing the problems, and how they were solved.

44

9 Conclusions

The purpose with this Bachelor’s project was to create a service creation environment that

makes it easier to develop telecom and Internet services.

Our conclusion is that service creating has never been easier. The required programming
skills for making iSea services using iWarf are far less than writing them in a common editor.
To set up a call between two persons, only three lines of code need to be written manually.
Actually, that is not completely true, because the code completion helps the user writing those
three lines. This means that we have succeeded creating a user-friendly IDE for fast

development of telecom and Internet services.

In the preliminary investigation a comparison between Forte™ and NetBeans was made. The
choice of using NetBeans was obvious, but it is hard to tell what the result would have been
with another IDE. NetBeans is quite easy to modify because it is based on open APIs and the
help from the mailing lists is really good. The NetBeans IDE is really easy to use, but even on

today's high-end computers NetBeans is a bit slow.

Incomit will develop the commercial version of iWarf this summer. It will be based upon
knowledge received from our work with the prototype. What can be done to achieve a
commercial product? The main thing to be done is to change all texts and picture to be more
Incomit specific, so the customers will not see the NetBeans logo and texts. Then the Incomit
specific features can be added, like the requirements R1-R3 and R5-R16. More wizards might
be used to make difficult tasks simplified for the users. iWarf is a very modular IDE with

open API's so there is no end to the possibilities.

45

46

Terminology and abbreviations

CORBA
ESPA
Forte™
GUI
HTTP
IDE
Incomit
ISCE
ISea
iSluice
JAIN

JAR
JavaBeans™
NetBeans
PDA

PSTN

SDS

servlet
SLEE

SPA

Sun

Utils
WAP
XML

Common Object Request Broker Architecture.

Incomit Easy SPA.

IDE based on NetBeans, developed by Sun.

Graphical User Interface.

Hyper Text Transfer Protocol (protocol for transferring files for the web).
Integrated Development Environment.

An Internet- and telecom-company in Karlstad.

Incomit Service Creation Environment.

Application server connected to Internet and iSluice.

Connected to the telecom network and to one or several iSea servers.

The JAIN program is organized by a number of Expert Groups for Java™
telecom APIs.

Java™ ARchive file format.

Java™ object that complies with the JavaBeans™ component architecture.
Open-source, modular IDE founded by Sun.

Personal Digital Assistant (a handheld computer).

Public Switched Telephone Network.

System Design Specification.

Web server side Java™ application.

Service Logic Execution Environment.

JAIN Service Provider API.

A worldwide company that among other things is the founder of the Java™
language.

Log, trace and database services implemented in iSea.

Wireless Application Protocol.

eXtended Markup Language.

47

48

References

[1]
[2]
[3]

[4]
[5]

Forte FAQ - http://www.sun.com/forte/ffj/fag/general.html [2001-05-17]

NetBeans FileSystem API -
http://www.netbeans.org/download/apis/org/openide/filesystems/doc-files/api.html

[2001-05-17]

NetBeans HelpContext -
http://www.netbeans.org/download/apis/org/openide/util/HelpCtx.html [2001-05-17]

NetBeans web - http://www.netbeans.org [2001-05-17]

SLEE API specification -
http://java.sun.com/aboutJava/communityprocess/jsr/jsr_022_jslee.html [2001-05-29]

49

http://www.sun.com/forte/ffj/faq/general.html
http://www.netbeans.org/download/apis/org/openide/filesystems/doc-files/api.html
http://www.netbeans.org/download/apis/org/openide/util/HelpCtx.html
http://www.netbeans.org/

50

A Requirements specification

Revision History

Rev. Date Editor ‘ Comments ‘
PAl 2001-02-09 | MaGu, GoSk | First version.

PA2 2001-03-09 | MaGu Some updates

A 2001-05-04 | MaGu, GoSk | Final

Abstract

This document contains the requirements for the Bachelor's project, which will be done at the
company, Incomit. The Bachelor's project can be divided to following parts; investigation,

service creation environment, iSea service, documentation and presentation.

Scope
The investigation will include:

* Investigate which development tool to use

The service creation environment will be modified to support these extra features:
* Incomit templates - easy way to create Incomit services
e Incomit palettes - easy way to add Incomit components by drag ‘n’ drop
e Incomit menus - for accessing special options, such as deploy
e Incomit GUI - an Incomit look-a-like environment

* Incomit Depl. tools - deploy service to iSea or file.

The iSea service:

» Create a service of our choice using the service creation environment

The presentation:

» Present the work for the Incomit crew

System creation environment advantages:

» Simple ness - easy way to create and deploy Incomit services

e Flexible - easy to modify

The main goal is to find an easy way to create Incomit services and report the result.

Functional requirements for the service creation environment

Warf-R1.

Prio:

Warf-R2.

Prio:

Warf-R3.

Prio:

Warf-R4.

Prio:

Warf-R5.

Prio:

Create an Incomit service project

Done by choosing a specific Incomit service template when a new project is
created.

1

Create a specific Incomit servlet project

Done by choosing a specific Incomit servlet template when a new project is
created.

2

Create a specific Incomit client project

Done by choosing a specific Incomit client template when a new project is
created.

3

Investigate which development tool to use
Compare different development tools to see which suits Incomit best.
1

Create an ESPA palette

Create a palette that holds Incomit ESPA services, like Call Control, Messaging
and Positioning.

1

Warf-R6.

Prio:

Warf-R7.

Prio:

Warf-R8.

Prio:

Warf-R9.

Prio:

Warf-R10.

Prio:

Warf-R11.

Prio:

Warf-R12.

Prio:

Create an Utils palette
Create a palette that holds Incomit utilities services, like DB, Log, Trace.
1

Drag 'n’ drop Incomit iSea Call Control service

Be able to drag 'n' drop Incomit iSea Call Control service from the Incomit
ESPA palette to the current project.

1

Drag 'n’ drop Incomit iSea Messaging service

Be able to drag 'n' drop Incomit iSea Messaging service from the Incomit ESPA
palette to the current project.

1

Drag 'n* drop Incomit iSea Positioning service

Be able to drag 'n' drop Incomit iSea Positioning service from the Incomit ESPA
palette to the current project.

1

Drag 'n* drop Incomit iSea DB service

Be able to drag 'n' drop Incomit iSea DB service from the Incomit Utils palette
to the current project.

1

Drag 'n* drop Incomit iSea Log service
Be able to drag 'n' drop Incomit iSea Log service from the Incomit Utils palette
to the current project.

1

Drag 'n 'drop Incomit iSea Trace service

Be able to drag 'n' drop Incomit iSea Trace service from the Incomit Utils palette
to the current project.

1

Warf-R13.

Prio:

Warf-R14.

Prio:

Warf-R15.

Prio:

Warf-R16.

Prio:

Incomit menu
Create an Incomit menu containing deploy submenus.

1

JAR Packager
Be able to create an XML descriptor (not necessary automatically) and pack the

created service into a JAR-file.
1

Deploy to iSea

Be able to deploy the created service directly to iSea using Incomit deployment
tool.

1

Help files
Built in help files for the user. Be able to get help about the Incomit tools.

3

The iSea Service

Warf-R17. Create a service using iWarf
Create a simple service that establishes a phone call, by using the service
creation environment.

Prio: 1

Installation

Installation will be done with a simple batch file.

Platforms and compatibility
Environment:

Windows 2000 platform. For using iSea deployment tool, a connection to iSea is required.

Hardware:

Installation requires 50 MB of hard disk space.

Minimum configuration: 350MHz Pentium II, 128 MB RAM, and 128 MB paging file size.
Recommended configuration: 450MHz Pentium 111, 256 MB RAM, and 256 paging file size.

Software:
Development tool and Java™ (TM) 2 SDK, Standard Edition, v. 1.3 (JDK 1.3) for Windows.

Human Engineering
Uniform look, that is to say buttons and fonts are similar in the program. Incomit style and

colours wherever is possible.

Documentation

Bachelor's project specification
Timetable

Requirements specification
Bachelor's project documentation
Technical documentation (SDS)
Weekly reports

Diaries

B Code

B.1 iSeaClient_java

import comincomt.slee. *;

1

2

3. /*

4 * NAME__.java

5. *

6 * Created on __ DATE _, _ TIME
7

8

9

* @uthor _ USER

*/
10.
11. public class _ NAME sleeCient__ inplenents ServiceDepl oyabl e {
12. public _ NAME sleeCient_ () {
13. i ni t Components();
14. }
15.
16. private void initConmponents () {//GEN BEG N:i nit Conponents
17.
18. }// GEN- END: i ni t Conponent s
19.
20. public void activated() throws ServiceDepl oynent Excepti on{
21. }
22.
23. public void started() throws ServiceDepl oynent Excepti on{
24. }
25.
26. public synchronized void deactivated() throws
Ser vi ceDepl oynment Except i on{
27. }
28.
29. public void stopped() throws ServiceDepl oynment Excepti on{
30. }
31.
32. public void setServi ceContext (ServiceContext serviceContext) {
33. m servi ceCont ext = servi ceCont ext;

34. }

35.
36. /1 Conponents variables declaration - do not nodify //CGEN
BEG N: vari abl es

37. /1 End of components variables declaration //GEN END: vari abl es

38.

39. private ServiceContext m serviceContext = null;

40. }
Line J Description J

4. __NAI\/E__ will be replaced with the chosen class name when using the template in
NetBeans.
6. __DATE__ and __TI Me__ will be replaced with the current date and time respectively
when using the template in NetBeans.

8. __User __ will be replaced with your username when using the template in NetBeans.
11- __NAME sl eedient__ will be replaced with the same as _ NAME__. The extra
12. _sleeClient is there to separate this class file from other template class files.
16- When dragging ’n’ dropping a component from the Palette, the initialisation of the
18. component takes place here because of the / / GEN- BEG Nand / / GEN- END.
36- When dragging ‘n’ dropping a component from the palette, the variable declaration
37. of the component ends up here.
B.2 ECall.java

1 package cominconit. espa.call;

2

3 public class ECall {

4 public ECall() {

5. }

6

7 public void addLi stener(String ecl) {

8 System out. println("addLi stener: " + ecl);

9 }

10.

11. public void addParticipant(String address) {

12. Systemout.println("addParticipant: " + address);

13. }

14.

15.
16.
17.
18.
19.
20.
21.
22.
23.
24,
25.
26.
27.
28.
29.
30.
31.
32.
33.

public void createCall (String address) {

Systemout.println("createCall: " + address);

public void endCall () {

Systemout.println("endCall");

public String[] getParticipants(){

return mparticipants;

public void renoveParticipant(String address)({

Systemout.println("renoveParticipant: " + address);

private java.lang. String m address;

private String[] mparticipants = new String[] {"1","2"};

B.3 HelloWorldPanell.java

© ©® N o 0k DN PRE

R e o o =
N o g s~ w e o

[
©

package cominconit.iwarf.nodul es.w zards. hel | owor| d;

i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport

j ava. awt . Conmponent ;

j avax. swi ng. JLabel ;

j avax. swi ng. JPanel ;

j avax. swi ng. JText Fi el d;

j ava. awt . event . KeyAdapt er;

j ava. awmt . event . KeyEvent ;

j avax. swi ng. event . ChangeEvent ;

j avax. swi ng. event . Changeli st ener;
j avax. swi ng. event . Event Li st ener Li st ;
j ava. net . URL;

j ava. net . Mal f or mredURLExcept i on;
org. openide. util. Hel pCtx;

or g. openi de. W zar dDescr i pt or;

public class Hell owrl dPanel 1 extends JPanel inplenents

W zar dDescri ptor. Panel {

19.
20.
21.
22.

23.
24,
25.
26.
27.
28.
29.

30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44,
45.
46.

47.
48.
49,
50.
51.
52.
53.
54,
55.
56.

public Hel |l oWorl dPanel 1() {
URL url = null;
try {
url = new

URL("nbresloc:/comincomt/iwarf/

nmodul es/ wi zar ds/ resour ces/ hel | oworl d_panel 1. htm ") ;

}
catch (Mal f or mredURLException e) {

}

put C i ent Property("W zardPanel _hel pURL", url);

put O i ent Property("W zar dPanel _cont ent Sel ect edl ndex",

new I nteger(0));

set Layout (nul 1) ;

addComponent s() ;

addActions();

private void addActions() {

jtf_hell o. addKeylLi st ener (new KeyAdapter () {

public void keyRel eased(KeyEvent evt) {

fireChangeEvent ();

1)

private void addConponents() {

JLabel toplnfo = new JLabel ("Enter the secret

password in the textfield to continue.");
jtf _hello = new JTextField("");

add(topl nfo);
t opl nf 0. set Bounds(0, 0, 388, 20);

add(jtf _hello);
jtf_hell o. set Bounds(0, 44, 388, 20);

public void addChangelLi st ener (ChangelLi st ener

) A

57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.

70.
71.
72.
73.
74.
75.
76.
7.
78.
79.
80.
81.
82.
83.
84.
85.
86.
87.
88.
89.
90.
91.
92.

93.

94.

listenerlList.add (Changeli stener. cl ass,
}
publ i ¢ Component get Conponent () {
return this;
}
public Hel pCtx getHel p() {
return Hel pC x. DEFAULT _HELP
}
public boolean isValid() {
if
(jtf_hello.getText().toLowerCase().equal s(MYSTRING) {
return true;
}
el se {
return fal se;
}
}
public void readSetti ngs(Cbject settings) {
}
public void renoveChangeli st ener (ChangelLi stener 1) {
}
public void storeSettings(Object settings) {
}
private void fireChangeEvent() {
ChangeEvent e = null;
hject[] listeners = |listenerlList.getListenerList
for (int i = listeners.length-2; i>=0;

if (e == null)

e = new ChangeEvent

(this);

((ChangelLi stener)listeners[i+1]). stateChanged (e);

}

1)

i-=2) {

if (listeners[i]==ChangelListener.class) {

95. }

96. }

97.

98. private JTextField jtf_hello;

99. private EventListenerList |istenerList = new

Event Li st ener Li st ();

100.

101. final static String MYSTRING = "hello worl d";

102. }
Line J Description J
17. | The panel will extend the JPanel and implement the NetBeans interface

W zar dDescri pt or. Panel .

20- Specifies the path to the help file URL that appears in the step 1 of the wizard.
26.
28. Adds the URL to the wizard using put Property.

29. Sets this panel's position in the wizard. In this case it is the first panel and it means

that it is at position 0. (Position 1 for step 2, position 2 for step 3, ...).

31. Sets the layout to null.

38- Adds a listener to the text field that listens for a key release. It will call the method
42. fireChangeEvent if a key is pressed and released.
57. Adds a listener for changes to the listener list. This is for telling the main class that

the password has been entered.

65. Return default help context because we do not need any help for this. We already

have the html help file.

68- Returns true if the correct password is entered in the text field.

75.

77- These methods implemented from the W zar dDescr i pt or . Panel are not used here.
84.

86- Fires a change event to tell all listeners that something has happened.

96.

101. | The secret password.

B.4 HelloWorldPanel2.java

1. package cominconit.iwarf.nodul es.w zards. hel | owor| d;

© © N o ok D

e =
A

13.
14.
15.
16.
17.

18.
19.
20.
21.
22.

23.
24,
25.
26.
27.
28.
29.
30.

31.
32.
33.
34.
35.
36.
37.

i mport java. awt. Conponent;

i mport javax.sw ng. JLabel ;

i mport javax.sw ng. JPanel ;

i mport j avax.swi ng. event. Changeli st ener;
i mport java. net. URL;

i mport java. net. Mal f or mredURLExcepti on;

i mport org.openide.util.Hel pCx;

i mport org.openide. WzardDescri pt or

public class Hell owrl dPanel 2 extends JPanel inplements

W zar dDescri pt or. Panel {

public Hell oWorl dPanel 2(){
URL url = null;
try {
url = new
URL("nbresl oc:/comincomt/iwarf/
nmodul es/ wi zar ds/ resour ces/ hel | oworl d_panel 2. htm ") ;

}
catch (Mal f or mredURLException e) {

}
put O i ent Property("W zar dPanel _hel pURL", url);

put C i ent Property("W zardPanel _cont ent Sel ect edl ndex",
new I nteger(1));

set Layout (nul) ;

addConponent s();

private void addConponents() ({

JLabel toplnfo = new JLabel ("Congratul ations!!! You

have entered the secret password!!!");

add(topl nfo);

t opl nf 0. set Bounds(0, 0, 388, 20);

public void addChangeli st ener (ChangelLi stener 1) {
}

38.

39. publ i ¢ Component get Conponent () {

40. return this;

41. }

42,

43. public Hel pCtx getHel p() {

44, return Hel pC x. DEFAULT_HELP;

45, }

46.

47. public boolean isValid() {

48. return true;

49, }

50.

51. public void readSetti ngs(Object settings) {
52. }

53.

54. public void renoveChangeli st ener (ChangeLi stener 1) {
55. }

56.

57. public void storeSettings(Object settings) {
58. }

59. }

B.5 HelloWorld.java

1. package comincomnit.iwarf.nodul es.w zards. hel | owor| d;
2.

3. i mport javax.swi ng. event. Changeli st ener;

4, i mport | ava. beans. PropertyChangeli st ener;

5. i mport j ava. beans. PropertyChangeEvent;

6. i mport java.text.MessageFor nmat;

7. i mport org.openide. Di al ogDescri ptor;

8. i mport org.openide. NotifyDescriptor;

9. i mport org.openi de. TopManager ;

10. import org.openi de. WzardDescri ptor;

11.

12. public class Hellowrld inplenents WzardDescriptor.lterator {
13. public HelloWwsrld(){

14. panel 1 = new Hel | oWwor| dPanel 1();

15. panel 2 = new Hel | oWor| dPanel 2();

16. panel 1. set Name(PANEL_NAMES[0]) ;

17.
18.

19.

20.

21.

22.

23.

24,

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.
43.

panel 2. set Name(PANEL_NAMES[1]) ;
panel s = new W zardDescri ptor. Panel[] {panel 1,

panel 2};

wd = new W zardDescriptor(this);

wd. put Property("W zardPanel _aut oW zardStyl e", new
Bool ean(true));

wd. put Property("W zardPanel content D spl ayed", new
Bool ean(true));

wd. put Property("W zardPanel _hel pDi spl ayed", new
Bool ean(true));

wd. put Property("W zar dPanel _cont ent Nunber ed", new
Bool ean(true));

wd. put Property("W zardPanel _contentData", new
String[]{"Enter the first secret password."”, "Result"});

wd. set Ti t | eFor mat (new MessageFormat ("{0}"));

wd. setTitle("Hello Wrld Wzard");

PropertyChangeli stener |istener = new
Pr opertyChangelLi stener () {
public void
propertyChange(PropertyChangeEvent event) {
i f (event.getPropertyNane().

equal s(Di al ogDescri ptor. PROP_VALUE)) {

hj ect option =
event . get Newval ue() ;

if (option ==
W zar dDescri ptor. FI Nl SH_OPTI ON) {

}s

wd. addPr opert yChangelLi stener (| i stener);
wd. set Opti ons (new Object[] {

W zar dDescri pt or. PREVI QUS_OPTI QON, W zar dDescri pt or. NEXT_OPTI ON

W zar dDescri ptor. FI Nl SH OPTI ON, Noti fyDescri ptor. CANCEL_OPTI ON});
TopManager . get Defaul t (). creat eDi al og(wd) .

set Vi si bl e(true);

}

44,
45.
46.
47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
75.
76.
77.
78.
79.
80.
81.
82.
83.
84.

public W zardDescriptor.Panel current() {

return panel s[current _panel];

public bool ean hasNext () {

if (current_panel == 0) {

el se {

return panel l.isValid();

return fal se;

publ i c bool ean hasPrevious() {

}
public
}
public
}
public
}
public
}
public
}
static

if (current_panel > 0) {

el se {

return true;

return fal se;

String nane() {
return PANEL_NAMES[current panel];

voi d next Panel () {

current _panel ++;

voi d previ ousPanel () {

current _panel --;

voi d addChangelLi st ener (ChangelLi st ener

voi d renmoveChangeli st ener (Changeli st ener

final

i nt

NR_COF_PANELS = 2;

10

1)

{

1)

{

85. static final String[] PANEL_NAMES = {"Password step", "Final

step”};
86.
87. private W zardDescriptor.Panel[] panels;
88. private W zardDescri ptor wd;
89. private Hell oWwrl dPanel 1 panel 1;
90. private Hell oWrl dPanel 2 panel 2;
91.
92. private int current_panel = 0;
93. }

Line ‘ Description ‘

12. The main class will extend the W zar dDescri ptor. | terator interface that includes

some useful methods for making this class a wizard.

14- Creates the two panels.

15.

16- Set the names of the panels.

17.

18. Adds the panels to an array of W zardDescri ptor. Panels. This is useful when

having a lot of panels.

20. Creates the W zar dDescr i pt or .

21. Turns on subtitle creation (the text above the panel).

22. Turns on the displaying of the steps pane.

23. Turns on the displaying of the help pane.

24. Turns on the numbering of steps.

25. Sets the steps name, which will be displayed, in the content pane.
26. Sets the subtitle format. {0} is the name of the panel.
217. Sets the title of the dialog.

29- Adds a listener for the buttons. In this case we listen for the FI NI SH button as an
39. example of how you can do.

40. Sets the buttons that will appear in the wizard.

41. Shows the wizard dialog.

45. Returns current panel.

48- Return true here if the next button should be enabled.

11

55.

57- Return true here if the previous button should be enabled.
64.
67. Returns the name of the current panel.

70. When the next button has been hit this method will be called.

75. When the previous button has been hit this method will be called.

B.6 HelloWorldWizardAction.java

package comincomnit.iwarf.nodul es. menus.incomt;

i mport org.openide.util.Hel pCtx;
i mport org.openide.util.NoBundl e;

import cominconmit.iwarf.nodul es.w zards. hel |l oworl d. Hel | oWor | d;

1
2
3
4
5. i mport org.openide.util.actions.Callabl eSystemActi on;
6
7
8 public class Hell oWrl| dW zar dActi on extends Call abl eSystemActi on {
9 public String getName () {
10. return
NbBundl e. get Bundl e(Hel | oWwor | dW zar dAct i on. cl ass).

get String("LBL_Hel | owor| dW zar dAction");

11. }

12.

13. public Hel pCtx getHel pCx () {

14. return Hel pCt x. DEFAULT_HELP;

15. }

16.

17. protected String i conResource () {

18. return "/comincomt/iwarf/nodul es/ nenus/resources/
Hel | oWor | dW zar dActi on. gi f";

19. }

20.

21. public void perfornmiction () {

22. Hel l oWorl d wi zard = new Hel | oWorl d();

23. }

24. }

12

8. Extends the Cal | abl eSyst emActi on class.

10. Returns the name taken from LBL_Hel | oWor | dW zar dAct i on property in the bundle

file (Bundl e. properties)intheinconit directory.

14, Returns the help context. If you do not have any help to return, use the

Hel pCt x. DEFAULT_HELP.

18. Here is the path to the icon that is shown in the menu. It is a 16x16 gif icon.
21. This method is called when the user clicks on the menu item.
22. Create and show a new HelloWorld wizard.

B.7 Example.java

1. package cominconit.iwarf.nodul es.fil eapi exanpl e;
2. i mport org.openide.fil esystens. Fil eCbject;
3. i mport org.openide.fil esystens. Repository;
4. i mport org.openi de. TopManager ;
5. i mport java. net. URL;
6. i mport java. |l ang. Excepti on;
7. import java.io.File;
8. i mport org.openide.fil esystens. Local Fil eSystem
9. i mport org.openide.filesystens. Fil eLock;
10. i mport org.openide.fil esystens. Fil eAl readylLockedExcepti on;
11. i mport org.openide.filesystens. Fil eLock;
12. i mport java.io. Qutput Stream
13. i mport java.io.| OException;
14. i mport j ava. beans. PropertyVet oExcepti on;
15. public class Exanple {
16. public Exanpl e(){
17. this.filebir = fileDir;
18. if ((newFile(fileDir)).isDirectory() == fal se)
19. (new File(fileDir)).nkdirs();
20. try {
21. fs.setRootDirectory(new File(fileDir));
22. } catch (PropertyVet oException e) {
23. System out . printl n("Vetoed by someone
el se");
24. e.printStackTrace();
25. } catch (1 CException e) {

13

26. Systemout. println("Could not set Root
Directory to fs");

27. e.printStackTrace();

28. }

29. file=fs.findResource(fileNane);

30. if (file == null) {

31. try {

32. file=fs.getRoot().createData(
fi | eNaneNoExt ensi on, extension);

33. } catch (1 Cexception e) {

34. System out. println("Could not
create file");

35. e.printStackTrace();

36. }

37. }

38. if (repo.findFileSysten(fs.getSystemNane()) == null)
{

39. repo. addFi | eSystem(fs);

40. }

41. }

42. /] Vari abl es

43. private FileCbject file;

44. private Qutput Stream out Fil e;

45. private Repository repo =
TopManager . get Def aul t (). get Repository();

46. private Local Fil eSystem fs=new Local Fil eSystemn();

47. private String fil eURL;

48. private String extension = new String("txt");

49. private String fil eNaneNoExtension = new String("nyfile");

50. private String fileNane = new String("nmyfile.txt");

51. private String fileDir = new String("c:\\nyfolder\\");

52. }

17. SetsthefileDir toc:\nyfol der

18. Check if fi | eDir is avalid folder (if it exist).

19. Create fi | eDi r if not exist. (the method nkdi rs() can create folders recursively, for
example, if you want to create the subfolder c:\ nyf ol der\ sub, and none of these

exists, they will both be created)

14

21. We set the f s root directory to c: \ nmyf ol der.

29. Search for the file, nyfile.txt infs. On success, store the returned Fi | etbj ect to

file,elsefilewill benull.

30- If fileisnull, create nyfile.txt infs rootdirectory (c:\nyfol der).
37.

38- Check if fs is mounted in the repository, if not add fs to the repository. This will

40. make the filesystem, f s, visible in the NetBeans Explorer window.

B.8 FileExampleAction.java

1 package cominconit.iwarf.nodul es. nenus.incomt;
2
3 i mport java. awt . Border Layout ;
4 i mport java. awt. Di nensi on;
5. i mport java.awt . Col or;
6 i mport javax.sw ng. JFrane;
7 i mport java.aw . Font;
8 i mport j avax.sw ng. JLabel ;
9 i mport j avax.swi ng. Swi ngConst ant s;
10. i mport org.openide.util.Hel pC x;
11. i mport org.openide.util.NoBundl e;
12. i mport org.openide.util.actions.Callabl eSystemActi on;
13. i mport org. openi de. wi ndows. TopConponent ;
14.

15. public class Fil eExanpl eAction extends Call abl eSystemAction {
16.

17. public String getNanme () {
18. return NbBundl e. get Bundl e
(Fi |l eExanmpl eAction.class).getString ("LBL_Fil eExanpl eAction");
19. }
20.
21. public Hel pCtx getHel pCtx () {
22. return Hel pCt x. DEFAULT_HELP;
23. }
24.
25. protected String i conResource () {
26. return "/comincom t/ nodul es/ menus/

27. resour ces/ Fi | eExanpl eAction. gif";
28. }

15

29.

30. public void perfornmAction () {

31. Exanpl e i Exanpl e = new Exanpl e();

32. }

33. }

Line J Description J
' 17- | Gets the name (LBL_Fi | eExanpl eAct i on) from the bundle file.

19.

21- About the class Hel pCt x, taken quoted from reference [3]:

23.

"Provides help for any wi ndow or other feature in the system It is
designed to be JavaHel p-conpatible and to use the sane tactics when

assigning help to JConponent instances.”

Look it up on the web if you need to have one. If you do not have a Hel pCt x to

return, just return the DEFAULT_HELP, as in this code.

25- Gets the URL to the icon used in the menu. This could actually also be fetched from
27. the bundle file, as we did with the name. In this example both alternatives are shown.

16

http://java.sun.com/j2se/1.3/docs/api/javax/swing/JComponent.html

C Descriptor wizard steps

This appendix explains the four steps for creating a descriptor file, using the descriptor

wizard.

1. Basic service definition

The user will fill out all, or some of these fields.

Name (required)

The name the service will have in the SLEE.

Version

The service version number.

Company

The company that developed the service.

Parent C.L.S.

Parent Class Loader Service. Sets the parent class loader of this service.
Max alarms

Max number of alarms before the service will be shutdown.
Trace

Turns logging to file on/off.

2. Service classes definition

The user will fill out all, or some of these fields:

Deployable (required)

Class that implements the deployable interface, needed for installation into
iSea.

Accessible

Class that implements the accessible interface, needed for outside access from
a web page or servlet.

Manageable

Class that implements the manageable interface, needed if the service should
be managed from another application.

Manageable_idl

Class that implements the manageable_idl interface. Describes the interface for

the manageable object.

17

Choose descriptor path

The user will browse to, or type in the path where the descriptor file will be stored. An
exception will be thrown if the file is read-only, or locked by another program. The
user will not get pass this step, until a legal path is entered.

Manual edit

The generated descriptor file is shown for the user in a text-field. The user can edit the
generated text, or choose finish to create the descriptor file. When the descriptor file is
created, it will be added to the NetBeans Explorer window, so it can be accessed from
the NetBeans IDE.

18

