
Computer Science

Peter Nyberg

Ulf Larson

Jini Applications in Bluetooth Networks

Bachelor's Project

2001:22

Jini Applications in Bluetooth Networks

Peter Nyberg

Ulf Larson

c 2001 The author(s) and Karlstad University

This report is submitted in partial ful�llment of the requirements

for the Bachelor's degree in Computer Science. All material in

this report which is not our own work has been identi�ed and

no material is included for which a degree has previously been

conferred.

Peter Nyberg

Ulf Larson

Approved, 6 June 2001

Advisor: Stefan Alfredsson

Examiner: Stefan Lindskog

iii

Abstract

This report provides an introduction to the Jini, RMI and Bluetooth technologies and

describes the basic components and features of each technology. It describes how a Jini

application works in a Bluetooth network and states the bene�ts gained from having this

particular combination. It also describes the design, construction and startup procedures

of a complete Jini application.

The report is intended for readers wanting to widen their knowledge within some or all

of these technologies. Programmers wanting to learn how to design distributed applications

by using Jini and RMI may also �nd it useful.

v

Acknowledgements

We would like to thank Marcus Andersson at Fyrplus Mekatronik AB and Stefan Al-

fredsson at Karlstad University, Computer Science department for their supervision in our

bachelor project work. We would also like to thank our families Pauline and Therese.

Peter Nyberg Ulf Larson

<peter@jazzgame.com> <ulf_larson@home.se>

vi

Contents

1 Introduction 1

2 Prerequisites and demands 4

2.1 Prerequisites . 4

2.2 Demands . 5

2.3 Purpose . 6

3 Bluetooth 7

3.1 What is Bluetooth? . 7

3.2 Usage models . 9

3.3 Piconets, the master-slave role . 11

3.4 The technology in brief . 12

3.5 The protocols . 13

3.5.1 Bluetooth radio layer . 14

3.5.2 Bluetooth baseband . 15

3.5.3 LMP - Link Manager Protocol . 21

3.5.4 L2CAP - Logical Link Control and Adaption Protocol. 22

3.5.5 Host Control Interface . 24

3.5.6 RFCOMM . 26

3.5.7 SDP - Service Discovery Protocol 27

vii

3.5.8 IrOBEX . 29

3.5.9 TCS and AT-commands . 29

3.5.10 Audio . 30

3.5.11 WAP over PPP . 31

3.6 Conclusion of the Bluetooth technology . 31

4 RMI 33

4.1 What is RMI? . 34

4.2 Object serialization . 34

4.3 System goals and advantages . 35

4.3.1 System goals . 35

4.3.2 Advantages . 37

4.4 The RMI model . 38

4.4.1 RMI distributed application model 38

4.4.2 RMI architecture . 39

4.4.3 Exporting services and Naming . 42

4.5 Conclusion of the RMI technology . 43

5 Jini 45

5.1 What is Jini? . 46

5.2 The Jini design goals . 46

5.2.1 Simplicity . 47

5.2.2 Reliability . 47

5.2.3 Scalability . 48

5.2.4 Support for various devices . 48

5.3 Jini architecture . 49

5.3.1 Basic Architecture model . 49

5.3.2 Finding services . 50

viii

5.3.3 Environmental demands . 51

5.3.4 JVM dependencies . 52

5.3.5 Device architecture modeling . 52

5.4 The basic Jini concepts . 55

5.4.1 Discovery and joining . 56

5.4.2 Lookup . 56

5.4.3 Leasing . 57

5.4.4 Remote events . 58

5.4.5 Transactions . 58

5.5 Conclusion of the Jini technology . 58

6 Jini in Bluetooth networks 60

6.1 Combining the two concepts . 61

6.2 Con�guration of the Bluetooth (wireless) link 64

7 Application design 65

7.1 RemoteControl Interface . 67

7.2 Client design . 68

7.3 Server design . 69

7.4 Service design . 69

7.5 Class-generation using UML . 70

8 Application running 75

8.1 The client interface - the jukebox display 75

8.2 The Mp3JukeBox server - the service . 76

8.3 A startup example . 77

9 Conclusion and summary 80

ix

A Abbreviations 82

Bibliography 85

x

List of Figures

3.1.1 The Bluetooth logotype. 9

3.3.1 The piconets . 11

3.5.1 The Bluetooth stack. 13

3.5.2 A Baseband packet. 18

3.5.3 State machine in the L2CAP layer . 24

4.4.1 A distributed object application using the RMI registry 39

4.4.2 Common interface for RMI . 40

4.4.3 The layered architecture . 41

4.4.4 The connection between di�erent JRE's. 42

5.0.1 The Jini logotype . 45

5.3.1 The layered Jini model . 50

5.3.2 Registration of a new proxy object . 51

5.3.3 The lookup service answer . 52

5.3.4 The invoking of methods in Jini . 53

5.3.5 Communication over RMI between machines with resident JVM's 53

5.3.6 Devices physically sharing the same JVM 54

5.3.7 Devices sharing the same JVM over a network 55

6.1.1 A dumb remote control. 61

6.1.2 A remote control located in a network. 62

6.1.3 The remote control talking to the lookup service. 62

6.1.4 The remote control talking to some service in a \old fashion" way. 63

7.0.1 The process of communicating in the Jini network. 66

7.5.1 The client side of the application design. 72

7.5.2 The server side of the application design, part 1. 73

xi

7.5.3 The server side of the application design, part 2. 74

8.1.1 The client GUI. 76

xii

List of Tables

3.5.1 The ISM frequency band. 14

3.5.2 The power classes of the Bluetooth technology. 15

xiii

Chapter 1

Introduction

Communication is a keyword in todays society. People communicate of social and busi-

ness reasons and as technology evolves, the number of available communication channels

increases. In an extract from Websters Revised Unabridged Dictionary [19] we �nd the

de�nition of communication to be:

\Intercourse by words, letters, or messages; interchange of thoughts or opinions,

by conference or other means."

Today we use cellphones, mail, fax and chat to communicate. The basic concept is still the

same, but technology has largely extended our possibilities of communicating. Technology

has also made it possible, not only to easier communicate between people, but also to

communicate on a man-machine level. These days we need to communicate with our

machines in order to obtain status reports, update information, read news and play games.

Since the wireline system leaves a lot of cables all around and the mobility is limited

to the length of the cable, the wireless concept has lately gotten a lot of attention. One

relatively new technology that operates in the wireless area is Bluetooth. Bluetooth is

designed to connect devices in short distances1 and to be a cable replacement in networks.

Naturally, the wireless concept will make communication easier.

1Between 0.1 and 100 m.

1

Another way of making communication easier is the concept of dynamic service allo-

cation. Imagine that instead of having device drivers installed the traditional way, i.e.

oppy disks that mysteriously disappear, download sites that have expired and complex

manuals, the services2 introduce themselves via an interface when there is a need for it.

This means that a simple cellphone fairly easy could take the role of a universal remote

control and control all enabled devices in its surroundings without having a single driver

installed. This technology is also developing at this moment and one of the developers is

Sun,3 working on the Jini technology.

To utilize the existing technology to a maximum would be to construct an application

that used both wireless communication and dynamic service allocation. Such an application

would have the prerequisites to be very easy to use and at the same time very powerful.

Representative for this kind of application would be one that used both audial and

visual features in its appearance. Having a remote control manage the actions of a server

would let the user:

� use the remote to see what kind of device that is active and also how it can be used.

� hear that something happens when the interface is manipulated.

An appropriate application would let the user choose music from a list sent from the

server and the server would then play the choosen songs. This kind of application is called

a music jukebox.

This report treats the construction of a music jukebox server and a remote control client

using the Jini and Bluetooth technologies. The report is divided into eight chapters. The

rest of the report contains the following: Chapter 2 describes what conditions had to be

met before the project started, it also states the demands on the project. The next three

2TV-sets, stereodevices, computers.
3Sun microsystems, http://www.sun.com. Jini features are located at http://www.sun.com/jini.

2

chapters provides the necessary background information for the project. Chapter 3 in-

troduces the Bluetooth concept, explains what a piconet is, how the Bluetooth stack is

constructed and what types of protocols that are used. Chapter 4, RMI, treats serializa-

tion, distributed computing using the RMI model and the naming concept. Chapter 5

explains the Jini model, how it is used, what a service is, why the lookupservice is im-

portant and describes the basic Jini concepts. Chapter 6 describes the use of Jini in a

Bluetooth network. Chapter 7 treats the design phase. It describes the Java classes4 the

application consists of. The chapter is illustrated with detailed UML class diagrams of

client and serverside. Chapter 8 explains how to run the application and how to interpret

the commandlines. The chapter also shows a startup example from the development en-

vironment. Finally, conclusion and summary is presented in chapter 9. All �gures in the

Bluetooth, Jini and RMI chapters are taken from related documentation.5

4Building blocks in the Java language.
5Speci�cations, whitepapers, webpages and the reference literature.

3

Chapter 2

Prerequisites and demands

This chapter provides information regarding the prerequisites and demands made on the

system and the speci�c goals stated by the company. It begins with a description of what

conditions had to be met before the project started, i.e. it states the necessary hardware

and software components that had to be present. Then the demands on the expected result

of the project are stated together with the type of environment in which the application is

supposed to work.

2.1 Prerequisites

In order to initialize the project some important components were required to be present.

These components also needed to be operational or at least to be con�gurable and in

working order before the end of the project. Below is the list of prerequisites.

� Operational version of the Java Runtime Environment supporting at least the AWT

and RMI classes.

� Operational version of the Jini classes.

� Bluetooth cards providing a wireless connection between two entities.

4

� Manuals, books and speci�cations regarding the RMI, Jini and Bluetooth technology.

The Java Runtime Environment that is used is part of the JDK 1.31 distribution. This

version and the related documentation were present at project initialization time. The Jini

classes were downloaded2 during initialization time. The Bluetooth cards are democards

owned by Fyrplus AB. Most of the manuals and books were present at initialization time,

additional reading were downloaded.3

2.2 Demands

Demands made on the project included a working Jini-application consisting of a client

and a server program. The list of demands are stated below.

� Writing brief overviews of the RMI, Jini and Bluetooth technologies in order to

increase knowledge of these subjects.

� Designing and implementing an operational Jini-application consisting of client and

server programs.

� Evaluating the possibilities of con�guring the link using the provided Bluetooth hard-

ware.

� Con�guring a Bluetooth link to support the wireless communication between client

and server (assuming this is possible). The con�guration and usage of the Bluetooth

link depends on the result of the third item, if it is not possible to con�gure the

Bluetooth link then a WLAN link will be used for the connection.

� Demonstrating the working wireless Jini-application.

1The Java Developer Kit version 1.3 is a free software package that is downloadable from
www.java.sun.com/j2se.

2From www.sun.com/jini.
3See reference section for addresses.

5

2.3 Purpose

The goals of the project that Fyrplus AB intended to reach. Below are the goals stated:

A framework for Jini applications: To obtain a generic infrastructure for further de-

velopment of Jini applications.

Documentation of the RMI, Jini and Bluetooth technologies: To learn more about

RMI, Jini and Bluetooth in order to develop future applications by using these tech-

nologies. Also, by having brief introductions and examples there is no need to read

the full speci�cations to understand the technologies. I.e. basic development can

begin with relatively little reading.

A working application: Having a working application in order to demonstrate the func-

tionality of ad hoc applications.

Extended knowledge of the \ad hoc" concept: Obtaining proof of the advantages of

having ad hoc networks and services.

Evaluation of the Bluetooth hardware: Testing the Bluetooth hardware owned by

Fyrplus AB and evaluating the possibilities of con�guring a Bluetooth link.4

4See Section 6.2 for further reading on the result of the link con�guration.

6

Chapter 3

Bluetooth

This chapter provides a brief introduction to the Bluetooth technology and is divided into

�ve sections.

The �rst section, \What is Bluetooth?", is a short introduction to the technology.

Section two, \Usage models" states some of the di�erent usage models for Bluetooth, for

example; the cordless computer and the interactive conference.

Section three, \Piconets, the master-slave role", describe what a piconet is used for and

why it is an important concept. This section also describes the scatternet concept.

Section four, \The technology in brief", describes how the message passing procedure

works, it also explains what frequency hopping spread spectrum is.

The last section, \The protocols", is an indepth explanation of the Bluetooth standard,

it describes the protocols de�ning the Bluetooth stack.

3.1 What is Bluetooth?

The Bluetooth standard is a new technology using short-range radiolinks intended to re-

place the cable connection(s) between nodes in a network. These links build an ad hoc

7

network1, called piconets. Piconets can constitute of up to eight units and each unit can

communicate with other piconets as well. The piconets are established dynamically and

automatically as Bluetooth devices enter and leave the radio proximity.

The Bluetooth idea �rst emerged at Ericsson who formed a Special Interest Group (SIG)

for Bluetooth with the task of making a standard for wireless radio communication with

as many of the big telecommunication companies as possible involved. The speci�cation is

free and open to all, making it easier for developers and programmers to learn and use the

technology an thus making it more available and probably make the market for Bluetooth

bigger. The logotype of Bluetooth is shown in Figure 3.1.1.

Key features that makes Bluetooth unique is its ability to operate on low power, rela-

tively cheap devices, low complexity and robustness. Another key design issue was reuse

of existing higher layer transport and application protocols already developed. The radio

links replace the cables in networks on the lower levels2 in the protocol stack and makes

the services unaware of the absence of cables. The network is well suited for mobile devices

which communicate over the ether, with minimal user e�ort. The technology o�ers wireless

access to LANs, the mobile phone network, the Internet and handheld devices. Bluetooth

uses spread spectrum3 for usage of the frequency band which is based upon frequency, time

and coding schemes.

Essentially Bluetooth is a standard describing a short-range frequency hopping radio

link between devices. Bluetooth is split into two parts, the Bluetooth Speci�cation and

the Bluetooth Pro�les.

1See Chapter 6 for further reading.
2The physical layers: Bluetooth radiolayer and Bluetooth baseband.
3See Section 3.4 for further reading.

8

Figure 3.1.1: The Bluetooth logotype.

3.2 Usage models

Some of the di�erent usage models are formally speci�ed and described in the pro�les

speci�cation4

The Cordless Computer: This is the main feature of Bluetooth, the cable replacement,

the foremost reason for developing the standard. Wireless networking can o�er more

freedom in placement and use of computer devices.

The Headset: The Bluetooth headset could be used as handsfree for the mobile phone or

the stationary phone. The headset could connect through the stationary phone. This

makes the user free to roam the area while still keeping the connection intact. The

headset can also be used for multiple devices. This makes the placement of devices

easy since devices can be placed wherever convenient.

The three-in-one phone: This feature enables the usage of the phone as cellular phone,

as a cordless home phone connected to the voice access point and as a walkie-talkie

for direct phone-to-phone communication when the devices are within proximity.

The maximum range of the walkie-talkie is 100 meters, see Table 3.5.2 for further

information on the ranges of Bluetooth devices.

The interactive conference: File transfer is one of the key features of computer net-

working. The interactive conference could use wireless network to exchange business

4The pro�les are not further discussed in this document but are fairly similar to the usage models. See
[6] for further reading.

9

cards and �les to the participants of the meeting. The Bluetooth link could also be

used for data exchange between two devices without the con�guration of the network.

The Internet bridge: The bridge could be a link between the portable computer and

a LAN using a data access point. The access point is a \wireless plug" to the

network. The link could also be a wireless data modem using a telephone. The

phone connection is essentially the same thing as dialing on to the web with your

dial-up modem without cables.

The automatic synchronizer: The PDA and the cellular phone might use the Bluetooth

link to automatically synchronize with all handheld devices as well as the stationary

computer and its calender, to-do list, address book and so on when the devices come

within proximity. This makes the change in one of the devices \transfer" the change

to all the other Bluetooth units.

The instant postcard: The idea is having a digital camera take a picture and transfer

the picture as an e-mail to some recipient as a digital \postcard". This is done

through wireless communication between the camera and some Internet connected

access point.

Ad hoc networking: Spontaneous networks between all kind of Bluetooth devices within

proximity.

Hidden computing: The automatic synchronization is one example of this idea. A note-

book computer \hidden" in a briefcase could peroidically receive and/or transfer e-

mail to a mobile phone. Or the other way around, a notebook computer wants to

connect to the internet and uses the mobile phone who is \hiding" in the briefcase.

10

3.3 Piconets, the master-slave role

All Bluetooth network consist of a number of piconets talking to each other. Two or more

units that communicate form a piconet. One unit act as master of the piconet and the

other act as slaves. There can be only one master in each piconet but this master can act

as a slave in another piconet. A piconet can only include up to seven active slaves and

many more parked slaves. Piconets that overlap form scatternets.

Figure 3.3.1: Piconets with a single slave(a), a multi-slave operation (b) and a scatternet
operation (c).

There are four modes for connected piconetworks (active, sni�, hold and parked) as

well as one standby mode.

� In active mode the slave listens for transmissions from the master.

� In sni� mode a slave becomes active periodically.

� In hold mode the slave may stop listening for packets entirely for a period of time.

� In parked mode the slave is not considered to be active any more.

The modes are further explained in Section 3.5.2 (Connection modes).

11

The master owns the master clock which all the units in each piconet use for the

frequency hopping spread spectrum (FHSS)5 synchronizated communication between the

units. The master role does not imply any special privileges or authority. Generally the

unit who initiates the session takes the master role. The hop sequence is unique for each

piconet. All units in a piconet is time- and hop-synchronized.

3.4 The technology in brief

The use of division spread spectrum splits messages into packets and sends the �rst packet

in one channel, the next packet is transmitted on a new channel. This spreads the message

over the available frequency band. The receiver on the other hand must know the hopping

pattern to be able to tune into the right channels and recieve each packet and reassemble

them into the original message. This process is called frequency hopping spread spectrum

FHSS.

The bene�ts of FHSS is:

� The interference caused by colliding transmission on the same frequency is less likely

than if each radio used one single channel for a long duration.

� If however a collision does occur, the e�ect is minimal, since only a single packet is

lost and can easily be retransmitted at a new frequency.

� FHSS can provide some degree of security in the communication since only the re-

ceiver who knows the hopping pattern can reassemble all the packets of a message.

Thus FHSS can be employed to hinder eavesdropping.

The Bluetooth protocol uses a combination of circuit and packet switching. Bluetooth

operates in the Industrial, Scienti�c and Medical (ISM) band at 2.4 GHz. A slotted channel

with nominal slot lenght of 625�s is used. For full-duplex communication the Time-Division

5FHSS is further explained in the next section.

12

Duplex (TDD)[7] scheme is used. Packets are transmitted on di�erent hop frequencies and

these packets nominally cover one time slot but can cover up to �ve slots. The Bluetooth

standard supports point-to-point and point-to-multipoint connection. Slots can be reserved

for the synchronous packets, such as audio packets, which garanties a certain bandwidth.

A minimum bandwidth for the asynchronous packets can be negotiated through the Link

Manager Protocol (LMP), described in Section 3.5.3.

3.5 The protocols

Further reading is a more indepth explanation of the standard and is only urged for people

specially interested in the technology.

Figure 3.5.1: The Bluetooth stack.

The protocols[8] have been segmented into almost independent layers that make a good

abstraction of the functionality of the Bluetooth model. The main principle in creating

13

2.4 GHz ISM band frequency channels (GHz) Low guard band High guard band
(GHz) k=0,1,...,m-1 (GHz) (GHz)
2.400-2.4835 2.402+k ; m=79 2.0 3.5

Table 3.5.1: The ISM frequency band.

the protocol stack has been to maximize the re-use of existing protocols for the higher

levels. Di�erent applications may run over di�erent protocol stacks, nevertheless each one

uses a common Bluetooth physical link (i.e. the Bluetooth radiolayer and the Bluetooth

baseband layer).

3.5.1 Bluetooth radio layer

The radio layer form the physical interface to other Bluetooth units. There are some

problems/restrictions on the ISM radio band:

� channel bandwidth is limited to 1 MHz

� multiple networks may exist and interfere

� microwave ovens use this band

Bluetooth solves the design obstacles using spectrum spreading by frequency hopping (FH)

with 79 hops displayed by 1 MHz around the ISM frequency 2.4 GHz. The nominal hop

rate is 1600 hops per second. Bluetooth utilizes the maximum number of channels availi-

ble, 79 in most countries and 23 in the rest (France at the moment). With this hopping

sequence the time slots is 625 �s per hop. See Table 3.5.1 for a more further information

on the ISM frequency band.

Modulation in the Bluetooth radio module uses Gaussian Frequency Shift Keying (GFSK)[14].

In GFSK a binary one is represented by a positive frequency deviation and a zero is rep-

resented by a negative frequency deviation. The error rate may be high, especially due

14

to strong interference from microwave ovens which operate at this frequency, therefore

Continous Variable Slope Delta Modulation (CVSD)[7] coding has been adopted for voice,

which can withstand high bit error rates. The packet headers are protected by a highly

redundant error correction scheme to make them robust to errors.

The radio speci�cation de�nes three power classes:

Power classes Range Output power
Power class 1 long range (100m) devices 20 dBm
Power class 2 ordinary range (10m) devices 4 dBm
Power class 3 short range (10cm) devices 0 dBm

Table 3.5.2: The power classes of the Bluetooth technology.

Each device can optionally vary its transmit power.

3.5.2 Bluetooth baseband

This is the physical layer in the network stack. The baseband protocol[7] is implemented as

a link controller, which works like the link manager carrying out link level routines such as

link connection and power control. The baseband provides the functionalities required for

devices to synchronize their clocks and establish connections between the Bluetooth units.

Inquiry procedures for discovering the addresses of devices in proximity are also provided.

The packet handling over the wireless link is the responsibility of Baseband. Baseband

also takes care of lower level encryption for secure links. All packets can be provided with

di�erent kinds of error correction and encryption. Audio is relatively simple to send to

and from a Bluetooth unit by just opening an audiolink. The frequency hop sequences are

provided by this layer.

Physical channel: The 2.4 GHz ISM band is used for transmission. 79 channels divided

on 1 MHz of bandwidth are used in most countries. The frequency hopping of the

channel is set up by the master of the piconet and its BD ADDR6 and clock. The

6The Bluetooth Device Address.

15

physical channel is divided into time slots where each slot represents a hop frequency.

The time slots are 625 �s in length, which makes about 1600 slots per second. The

TDD scheme is used for alternative transmission of the master and slaves. The

master starts its transmission in even-numbered slots only, the slaves can only start

its transmission in odd-numbered slots. The packet starts must be aligned with the

time slot start.

Physical link: There are two types of physical links de�ned. The SCO (Syncronous

Connection-Oriented) link and the ACL (Asyncronous Connection-Less) link. ACL

packets are used for data only, while the SCO can contain audio only or a combination

of audio and data. The SCO link is point-to-point between master and one slave in

a piconet. The master administers the SCO link in reserved slots at regular intervals

(circuit switched type). The SCO packets are mostly used for audio and does not use

any more protocol higher than baseband. ACL links are point-to-multipoint between

master and single/multiple slaves of a piconet. Slots not reserved for SCO packets

are used for ACL packets. Even slaves that already have a SCO link can establish a

new ACL link to the master. Retransmission is mostly used for ACL packets.

Logical channels: There are �ve di�erent kinds of channels used for di�erent types of

information:

� LC (Logical Control channel) contains low link level info. It is mapped onto the

packet header.

� LM (Link Manager channel) carries control info exchanged between link man-

agers of the master and slave(s), can be carried by SCO or ACL in the payload.

� UA (User Asynchronous data channel) carries Logical Link Control and Adap-

tion Protocol (L2CAP)7 transparent asynchronous user data. Normally an ACL

link.

7See Section 3.5.4 for further reading.

16

� UI (User Isosynchronous8 data channel) carries L2CAP transparent isosyn-

chronous user data. Normally an ACL link.

� US (User Synchronous data channel) carries L2CAP transparent synchronous

user data. Is carried in SCO links only.

The logical channels are sent as payload, except LC.

Device addressing: There are four di�erent kinds of addresses that a Bluetooth device

can be assigned:

� BD ADDR (Bluetooth Device Address) each tranceiver is allocated a unique

48-bit address. It is divided into a 24-bit Lower Address Portion (LAP) �eld, a

16-bit Non-signi�cant Address Portion (NAP) �eld and a 8-bit Upper Address

Portion (UAP) �eld. This address is electrically \engraved" on each device.

� AM ADDR (Active Member Address) a 3-bit number which is only active as

long as the slave is active in the piconet. This address is sometimes called the

Medium Access Control (MAC) address of a Bluetooth unit.

� PM ADDR (Parked Member Address) a 8-bit member address that separates

the parked slaves (i.e. there can be 256 parked slaves). This address is only

valid while the slave is parked.

� AR ADDR (Access Request Address) this address is used by the slave to deter-

mine the slave-to-master time slot, access window and where the slave is allowed

to send access request messages to the master. This address is not necessarily

unique.

BT clock: Each Bluetooth device has a 28-bit native clock running. This clock is never

adjusted or turned o�. The clock ticks every 312.5 �s this represents a clock rate

of 3.2 KHz. The slaves of piconets uses the master clock for communication and

8Synchronized packet with a time dependency.

17

synchronization. The BD ADDR and the master clock is used to get the o�set for

each device.

Packet format: The packets physical appearance and the meaning of the �elds can be

seen in Figure 3.5.2.

Figure 3.5.2: A Baseband packet.

� Access Code: used for timing synchronization, o�set compensation, paging

and inquiry. There are tree di�erent types: Channel Access Code (CAC), Device

Access Code (DAC) and Inquiry Access Code (IAC). CAC identi�es a unique

piconet while the DAC is used for paging and its responses.

� Header: contains information for packet acks, numbering of packets, ow con-

trol info, slave address and error check for header.

� Payload: can contain data or voice information or both. It will also contain a

payload header.

Packet types: All data of the piconet is conveyed in packets. There are 13 di�erent packet

types. All higher levels of the stack use these packet types to compose messages.

The packets are: ID, NULL, POLL, FHS, which are de�ned for both SCO and ACL

packets, DH1, AUX1, DM3, DM5, DH5 are de�ned for ACL packets only and �nally

HV1, HV2, HV3, DV are de�ned for SCO packets only.

A short description of the packet types:

� ID: 68-bit packet for paging, inquiry and response routines. Essentially the DAC

or the IAC.

18

� NULL: 126-bit packet containing the CAC and header. Used for returning link

information to the source.

� POLL: Like the NULL packet but it needs an ack from the destination. Upon

reception of a POLL packet the slave must respond with a packet.

� FHS: 144-bit packet that reveals the BD ADDR and the clock and the source

device. Has a 16-bit CRC code. Payload has a 2/3 rate FEC which brings the

payload to 240 bits. The packets cover one time slot.

� DH: Data-High Rate for ACL-links. The numbers 1, 3 and 5 represent the

number of slots the packet covers.

� DM: Data-Medium Rate for ACL-links. Carries data inforamtion only. A 16-

bit FEC and use a 2/3 FEC encoding. The numbers 1, 3 and 5 represent the

number of slots the packet covers.

� HV: High quality Voice. A SCO-link packet. Uses a 1/3 FEC for HV1, 2/3

FEC for HV2 and HV3 use no FEC. HV packets does not use CRC or payload

header.

� DV: Data Voice. A SCO-link data and voice packet. 80-bit voice �eld and

150-bit data �eld. The voice has no FEC, but the data �eld has a 2/3 FEC.

The two �elds are treated di�erenetly as the voice is never retransmitted, it is

always new. The data �eld is checked for error and might be retransmitted if

necessary.

� AUX1: An ACL-link packet for data. Ressembles a DH1 packet but has no

CRC code.

All operations in a Bluetooth network are related to two fundamental elements: the

Bluetooth device address and Bluetooth device clock.

Channel control: A connection between two devices can occur either by both the inquiry

19

and page procedure or if some details are known about a remote host then only the

paging procedure is needed. Paging is the process of inviting a device to join the

piconet. The inquiry procedure enables a device to discover which devices are in the

proximity and determine the address and clock of these devices.

Bluetooth operates essentially in two di�erent states: Standby and Connection.

Standby is the default state of any Bluetooth device. In this state only the clock

is running and there is no communication with other devices. In the Connection

state master and slaves can communicate over the Bluetooth link. There are seven

substates that Bluetooth use to administer the piconets. These are:

� page, the master explicitly invites a new device to the piconet. The device must

be in page scan mode to listen to and subsequently respond to a paging.

� page scan, the device is ready, listening for paging with its own DAC.

� inquiry, the device learns about its neighbouring devices. These devices must

be in inquiry scan mode to listen to and subsequently respond to an inquiry.

� inquiry scan, the device is ready, listening for inquiries.

� master response, �rst the master recieves a reply to the page message and

sends a FHS packet to the destination. Second the master has recieved a reply

to the FHS packet and knows that the identities in the piconet is set.

� slave response, the slave has received its DAC from the master and sends

a response. When the slave has received the FHS from the master it sends a

reply the DAC again in a ID packet. Finally the slave switches to the masters

channel.

� inquiry response, this is when the device has received inquiry packets and

responds with a inquiry response.

The Connection state starts with a POLL packet from the master to verify that the

slave has switched to the right clock o�set and channel frequency.

20

Connection modes: There are four baseband modes for connected networks (active,

sni�, hold and parked) as well as one standby mode.

� In active mode the slave essentially always listens for transmissions from the

master.

� In sni� mode a slave essentially just becomes active periodically. This is a

method of reducing power consumption. The master and slave agree to transmit

for a period of time. The slave only listens for packets in the beginning of each

interval.

� In hold mode the slave may stop listening to packets entirely for a while. The

master and slave agree on this time for which the communication link between

these two are down.

� In parked mode the slave maintains synchronized with the master, but is not

considered to be active any more.

� In standby mode the device is not a member of a piconet.

Flow control: The baseband protocol recommends the use of FIFO queues in ACL and

SCO links. The Link Manager �lls the queues and the link controller empties the

queues automatically. If the FIFO queue is full the link contoller of the receiver

inserts a stop indicator in the header of the return packet. The transmitter freezes

its FIFO queue when a stop is received. When the receiver is ready it sends a go

packet which resumes the normal ow again.

3.5.3 LMP - Link Manager Protocol

The link manager in communicating devices exchange messages to control the Bluetooth

link between these devices. It carries out setup, authentication and link con�guration. The

communication with other link managers is realized via the LMP[12]. The LMP essentially

21

consists of a number of Protocol Data Units (PDU), which are sent between devices. It

should be noted that PDUs are not executed in real-time like baseband operations. Device

authentication is a mandatory feature supported by all Bluetooth devices. Link encryption

is optional. Authentication depends on a shared secret. The encryption of a Bluetooth

wireless link is based on a 1-bit cipher stream, whose implementation is included in the

speci�cation. One of the features of the link setup is power management, occationally a

device might request a partner to adjust its transmission power depending on the quality

of the link, as measured by the strength of the incoming transmissions. There are three

low power link modes: sni�, hold and parked (explained in the previous section of this

chapter), all of these modes are optional. There is some form of quality of service that

the LMP can negotiate, for example; the minimum bandwidth assignment for ACL links

between two devices by setting the maximum polling interval for the link.

3.5.4 L2CAP - Logical Link Control and Adaption Protocol.

The L2CAP[13] o�ers peer-to-peer connection both connection-oriented and connectionless

data services to upper protocol layers. This layer shields the higher-layer protocols from

the details of the physical link. Thus the higher levels need not know of the frequency

hopping nor of the packet formats in the baseband and radiolayers. The L2CAP protocol

supports protocol multiplexing, allowing multiple protocols and applications to use the

same Bluetooth air-link. It also takes care of assembly/reassembly of higher level packets

into/from the smaller baseband-packets. The L2CAP permits transmit and receive data

packets up to 64 kB in length. The baseband supports both SCO9 and ACL links but

L2CAP is only speci�ed for ACL links. If no Host Control Interface (HCI)10 is present the

applications would interact with this protocol.

The basic L2CAP functions:

9The SCO and ACL packets are further explained in Section 3.5.2.
10Further explained in Section 3.5.5.

22

Multiplexing: The protocol must allow multiple applications to one link between two

devices simultaneously.

Segmentation and Reassembly: The protocol must resize the packets from the higher

layers to the size accepted by the Bluetooth baseband. The reassembling of the

segmented packets is also the protocols responsebility. L2CAP accepts packets of 64

kB but Baseband only supports 2745 bits (343 bytes).

Quality of Service: Certain parameters like peak bandwidth, latency and delay variation

can be negotiated. L2CAP checks if the link is capable of the requested service and

provides the service if possible.

Groups: The concept of grouping of addresses. This concept in Baseband is supported

through the piconets. L2CAP needs to make an abstraction of the piconets to the

higher protocols. The implementations of the higher protocols can map on to pi-

conets.

Figure 3.5.3 illustrates the events and actions performed by an implementation of the

L2CAP layer.

L2CAP is a packet based layer and follows a communication model based on channels.

A channel represents a data ow between two L2CAP entities on the peers. Channels can

be connectionless or connection-oriented. All the packet �elds over the communication

channel use Little Endian11 byte order. L2CAP does not enforce a reliable channel, i.e. no

retransmissions or checksum calculations are performed. Multiple channels can be bound

to the same protocol, but a channel can not be bound to multiple protocols. This means

that the protocol must allow multiple applications (which might use di�erent protocols) to

use a link between two devices.

11Bytes are sent from right to left, the \little" LSB bit is transmitted �rst, for example the Pentium is
little endian. See [23] for further reading regarding little endian.

23

Figure 3.5.3: The state machine used in L2CAP protocol layer.

There are some services o�ered by L2CAP in terms of service primitives and parameters.

These are listed below:

� Connection: setup, con�gure, disconnect

� Data: read, write

� Group: create, close, add member, remove member, get membership

� Information: ping, get info

� Connection-less traÆc: enable, disable

3.5.5 Host Control Interface

The HCI[10] allows higher levels of the stack (L2CAP and above, see Figure 3.5.1), in-

cluding applications, to access the baseband, link manager and other hardware registers

24

through a single interface. To permit L2CAP and higher protocol layers and applications

to transfer and receive control and application data from any Bluetooth unit the SIG has

developed a protocol to access the hosts in a uniform manner, the HCI protocol. The HCI

protocol exposes the internal operations of the lower transport protocols.

In many devices, the Bluetooth enabling module may be added as a separate card.

For example as a PCI card or a USB adapter. Hardware modules usually implement the

lower layer radio, baseband and LMP. The module attaches to some kind of host, enabling

that device with Bluetooth wireless communication. The data travels over a physical bus

like USB. A driver for this bus is required on the "host" and a HCI is required on the

hardware card to accept data over the physical bus. Thus, if the higher Bluetooth layers

(L2CAP and above) are in software and the lower ones in hardware, these layers are at

least required:

� HCI driver: the driver, residing in the host, the software entity, above the physical

bus, formats the data to be accepted by the HC on the hardware. Host means a

HCI-enabled software unit.

� HCI: resides in the hardware and accepts communication over the physical bus.

HCI uses three di�erent HC transport layers. These three transport layers should provide

the ability to transfer data transparently. The host should receive asynchronous noti�ca-

tions of HCI events independent of which transport layer is used. The layers are:

� RS232: the objective is to make it possible to use the Bluetooth HCI over one phys-

ical RS232 interface between the Bluetooth Host and the Bluetooth Host Controller.

Event and data packets ow through this layer, but the layer does not decode them.

� USB: the objective is to use a USB hardware interface for Bluetooth hardware. A

class code will be used that is speci�c to all USB Bluetooth devices (a generic driver).

This will allow the proper driver stack to load, regardless of which vendor built the

25

device. It also allows HCI commands to be di�erentiated from USB commands across

the control endpoint.

� UART: the objective is to make it possible to use Bluetooth HCI over a serial

interface between two UARTs on the same machine, i.e. connection to a serial port

without the need of a serial cable. The UART is a proper subset of the RS232 protcol.

Event and data packets ow through this layer, but the layer does not decode them.

3.5.6 RFCOMM

The RFCOMM[15] is an emulation of a serialport. Serial communication is an important

feature in the cable replacement idea. RFCOMM presents a virtual serial port to appli-

cations. The migration to wireless communication for applications is now a simple task

since the use of the serialport is commonly known. RFCOMM resides directly on top

of the L2CAP layer see Figure 3.5.1 for illustration. Requirements for Bluetooth serial

communication:

Multiplexed serial communication: Many simultaneous clients of the serial interface

in the stack.

RS232 compatibility: RS232 is a widely used serial interface for wired networks, which

Bluetooth aims to replace. Many applications are used to the RS232 control signals

such as: Request/Clear to Send (RTS/CTS), Data Terminal/Set Ready (DTR/DSR)

and the RS232 break signals. Emulation of these signals allows RFCOMM to supply

the clients with a serial port that is virtually the same as that of the cable.

Remote status and con�guration: The con�guration of the peer-to-peer connection

needs to be negotiated so the peers are compatible. The Service Discovery Protocol

(SDP), discussed in the next section, can be used for some basic information the

serial channel needs.

26

Internal and external serial ports: To support serial communication the RFCOMM

needs the emulation of an internal serial port, i.e. only locally, as well as an external

serial port where parameters and status are transmitted across the RF link.

RFCOMM uses a L2CAP connection to instatiate a logical serial link between two

devices. Only a single RFCOMM connection is allowed between two devices at a given

time, but the channel may be multiplexed so that there can be multiple logical serial links

between the devices. Each multiplexed link is identi�ed by a number called the Data

Link Connection Identi�er, or DLCI. The speci�cation allows up to 60 multiplexed links.

Consider the network access point that allows multiple Bluetooth devices to access a larger

network12 this kind of usage model might have many clients connected to the access point.

It is important that each logical channel with its own set of data and control signals be

multiplexed to a single channel so that no mixup between logical channels are made.

3.5.7 SDP - Service Discovery Protocol

The classical static con�guration of printer, mouse, etc is not a good idea for ad hoc

networking like Bluetooth. The Bluetooth community need a more dynamic way of locating

the available services in a network, this is called service discovery. The SDP[16] addresses

a way of telling the network what services each unit owns and also to learn what services

other units own, dynamic location of services. This is a key feature in making value of the

network to the end-user. Since service discovery is fundamental to all Bluetooth pro�les,

most applications will use the SDP layer, see Figure 3.5.1 for reference. This layer helps

the devices to self-con�gure, i.e. discover each other and negotiate what they need to do

and which devices needs to collaborate and this is done without any human intervention.

Some key design features of the SDP:

Simplicity: Since service discovery is a part of nearly every Bluetooth usage case, it is

desirable that the discovery process is as simple as possible to execute.

12This issue is dealt with in the LAN Access pro�le of the Bluetooth speci�cation.

27

Compactness: Service discovery is a typical operation performed soon after a link is

established. The SDP air-interface traÆc should be minimal so that service discovery

does not unnecessarily prolong the initialisation process.

Flexibility: There are many usage models that use and will come to use the Bluetooth

technology. Since not all pro�les and usage models can be foreseen, it is important

for SDP to easily be extended to accommodate the new services that will deploy in

the Bluetooth enviroment.

Service Class and Attributes: In a dynamic network it is important for clients to

quickly locate a speci�c service when they know what they want. The scenario

of looking for a "printer" class in the network should be straightforward as well as a

"printer" with the "Epson" attribute or some kind of physical location attribute.

Service browsing: It can also be of interest for the client to know what services are

available in the Bluetooth environment at the moment. This is a di�erent process

than searching for a speci�c service it is looking in the "general"13 class.

SDP includes the notation of a client (entity looking for services) and a server (registry

entity, service provider). Any device might take the role as server or client, compare

with the master-slave role in piconets. The registry is a list of service records. A service

record is a description of the service in a standard fashion as described in the speci�cation.

Discovering a service in Bluetooth wireless communication reduces to a simple operation:

the client asks the server for the speci�c services it is interested in and the server responds

with the available services that match the question. One of the design goals of SDP was

to ensure that other popular discovery protocols, such as Salutation[25] or JINI, could

be used in conjunction with it. One of the things that can be discovered using SDP is

that the service supports more discovery protocols. Thus SDP might be used to locate

13I.e. looking for all available services and keeping some kind of track of the immediate environment,
this can be compared with the lookup-service in the Jini technology.

28

a service; further SDP transaction might be used to discover that the device supports

JINI14 for example; once this has been discovered the new protocol (JINI) can be used

for further interaction with the service. The SIG is working towards formalizing these

discovery protocols into pro�les.

3.5.8 IrOBEX

OBEX[11] as it is briey called, is an adopted session protocol developed by the IrDA to

exchange data in a simple and spontaneous manner. The purpose of including IrDA[11]

protocols in the stack is to promote the interoperatability with IrDA applications. The

interoperability is at the application layer. The Bluetooth devices can not directly com-

muncate with other IrDA devices, instead it promotes the devolopment of applications

that can use either Bluetooth radio or IrDA infrared transport. Wireless communication

can now be supported over both Bluetooth and IrDA links. All OBEX transactions must

use a separate RFCOMM channel and thus the protocol multiplexing in the RFCOMM

is an important feature. At the moment only support for the RFCOMM layer as trans-

port protocol is supported, but in the future TCP/IP is likely15 to be implemented as a

transport.

3.5.9 TCS and AT-commands

The Telephony Control Speci�cation (TCS) is designed to support telephony functions,

including call control and group management. TCS is a binary (sometimes called TCS-

BIN) encoding for packet-based telephony control and resides above the L2CAP layer in

the stack, see Figure 3.5.1. In voice calls these functions set up the connection and then a

Bluetooth audio channel is used for the contents of the voice call. TCS can also be used

14The JINI technology is explained more in depth in the Jini chapter of the report.
15OBEX operation over TCP/IP links is already enabled in the OBEX standard. Because TCP/IP is

such an important protocol it is likely that TCP/IP over Bluetooth (wihtout PPP) will probably soon be
solved.

29

to set up a data channel which later uses L2CAP to transfer the actual data packets. the

key features of TCS are:

Call control: Serves to set up calls that subsequently will carry voice or data traÆc.

Multiple instances of TCS can be executed at the same time to handle multiple calls

(recall that the L2CAP can have up to three voice channels simultaneously).

Group management: This feature is useful in telephony applications to be able set up

the rules for what functions the application shall have, such as call forwarding and

group calls.

Connectionless TCS: This makes it possible for devices to negotiate signaling info with-

out actually making a call. This information call can be audio control: speaker/microphone

gain or company information, which is the way devices can exchange non standard-

ized info.

A second kind of call control is AT-commands16 as seen in Figure 3.5.1. This is not a named

protocol in the Bluetooth standard but is a standard way for accomplishing call control

and is further used by many pro�les. AT applications are con�gured to communicate with

a modem over a serial port. This communication is accomplished through the RFCOMM

layer with the same AT commands as in other environments.

3.5.10 Audio

Audio[9] is treated uniquely in Bluetooth. This is because audio traÆc is isochronous

meaning it has a time element associated with it. The importance of time in audio trans-

mission is much greater than that of correctness and traÆc is routed directly from the

baseband layer, as can be seen in Figure 3.5.1. Special audio packets (SCO-packets) are

used for the audio traÆc. There can be up to three audio channels at once, with some

16AT commands are modem control commands.

30

bandwidth left for data traÆc. Audio traÆc takes place at a rate of 64 kbps using one

of two data encoding schemes: the 8-bit logarithmic Pulse Code Modulation PCM[23] or

Continuous Variable Slope Delta CVSD[7].

3.5.11 WAP over PPP

In Bluetooth point-to-point is accomplished through the use of the adopted PPP protocol.

PPP runs over the virtual serial port (RFCOMM) and makes the abstraction of a regular

network connection to the WAP protocol. Access to the TCP/IP[21] stack is operating sys-

tem independant and is mostly realized through the socket programming interface model.

TCP/IP/PPP is used for all the Internet bridge scenarios and for OBEX in the future.

UDP/IP/PPP is available as transport for WAP.

3.6 Conclusion of the Bluetooth technology

This section concludes the Bluetooth introduction with a short listing of the most important

features previously explained.

� Bluetooth is a wireless technology for cable replacement.

� Bluetooth SIG is a forum for developing the technology, main participants of the SIG

are for example Ericsson, Nokia, Intel and IBM.

� The Bluetooth chip is a small, cheap radio chip to be plugged into computers, printers,

mobile phones, etc.

� Bluetooth RF is in the ISM frequency band (2,4GHz) and uses FHSS.

� There are a lot of interesting usage models; the headset, the cordless computer, tree-

in-one phone, the instant postcard, etc.

31

� The protocols are in ascending order (from the radiolayer and upward): Radio layer,

Baseband layer, LMP, L2CAP, RFCOMM.

� The HCI can communicate with the lower layer using primitives.

� There are many higher protocols de�ned: OBEX, SDP, TCS, WAP, etc.

� Audio can be sent directly over a Bluetooth link without any higher protocols.

32

Chapter 4

RMI

This chapter provides a brief introduction to the RMI concept; including what RMI is,

how it works and for what reasons it was created. It also contains an overview of object

serialization.

This chapter is divided into four sections: What is RMI, Object serialization, System

goals and advantages and the RMI model. The \What is RMI" section describes the

RMI process at the highest abstraction level excluding almost all details. This section

also attempts to provide a clear de�nition of the RMI concept. \Object serialization"

describes what serialization means and why it is used. Section three, \System goals and

advantages" states the primary design goals (the reason) of RMI. It also describes some of

the advantages emerging from the design. The last section, \The RMI model", describes

the RMI distributed application model, the layered architecture and the Naming concept.

In addition, the di�erence between de�nition and implementation (which turn out to be

one of the cornerstones in RMI) is explained.

33

4.1 What is RMI?

RMI is the short form of Remote Method Invocation. As the name suggests, RMI is con-

cerned with doing method invocation remote. So, how should this be interpreted? Two

statements will help explaining the concept: First, invoking a method means that a Java

object makes a call to an arbitrary written Java method belonging to a Java .class �le.1

Second, remote, in this context means \located in a di�erent Java Virtual Machine (JVM)."

With the aid of these statements a de�nition of RMI can be stated as follows:

"Remote Method Invocation provides a model for distributed computation using Java ob-

jects"[5].

There is no physical limit on the distance between communicating JVM's. They may

be located just a few memory cells away as well as on the other side of the planet. The

only requirement for successful communication is the presence of a TCP/IP network, and

a JVM version supporting the RMI classes.

The highest abstraction level of the RMI concept is the one treating two entities (

known as the client and the server) communicating with the aid of RMI. In this scenario

the client entity invokes a method on a server entity object and receives the answer, leaving

the delivery details to RMI.

4.2 Object serialization

Java input and output is based on the use of streams. A stream is a sequence of bytes

that travel from a source to a destination over a communication path. The path depends

on the kind of input/output (I/O) being performed and can be a �le system, a network or

1For details about the Java language, please refer to the Java Language Speci�cation at
http://java.sun.com/docs/books/jls/second edition/html/j.title.doc.html.

34

another form of I/O. When an object is written to a stream, information about its class

must be stored along with the object. This class information is used to reconstruct the

object once it has been sent across the communication path.

When using RMI, object serialization is used to send arguments of a method invocation

from the client object to the remote object, and to send return values from the server

object back to the client object. When using RMI, all classes that are to be serialized must

implement the Serializable interface.2 RMI also hides the details of the serialization from

the client and server objects by letting the skeletons and stubs, the remote reference layer

and the transport layer, Section 4.4.2, handle the matter[18].

4.3 System goals and advantages

This section describes the design goals of the RMI model. It states the items which were

of most importance during the design phase[22] including callback support and remote

invocation.

This section also describes some of the advantages (mobile behavior, object orientation),

that emerged from the design.

4.3.1 System goals

The underlying design goal was to create distributed object model support for the Java

language. That is, a model for using the Java language between JVM's and not just being

limited to a single JVM.

The speci�cation stated that Java object semantics were to be preserved and the safe

environment maintained. In addition to this, there was also a wish to extend the language

by introducing callback support.

2For a detailed description of the semantics of an interface please refer to:
http://java.sun.com/docs/books/tutorial/java/interpack/interfaces.html.

35

Some of the important design goals are stated and described below, starting with the

callback support item.

� Callback support, server-to-applet.

The Java language allows downloading and execution of code (so called applets),

these applets however do not interact with the server once they are downloaded to

the client. RMI provides the necessary extentions to support this, letting the client

make calls to the server and the server replying the request.

� Natural integration of the distributed object model into the Java language.

The latest versions of the Java language includes RMI as an integrated component.

This means that except for a few lines of additional coding nothing di�ers between

writing RMI and non-RMI enabled programs. As all other packages RMI has its own

classes, interfaces and methods.3

� Preserving the Java object semantics.

The RMI package is as class- and object oriented as the rest of the Java language.

Creating a remote object is no di�erent from creating a local one, and there is no

di�erence in using the objects.

� Maintaining the safe environment of the Java platform.

The Java Virtual Machine is protecting its surroundings by using the Java security

managers in combination with di�erent policies. A policy grants permissions to

programs and a security manager makes sure that the policies are followed.

In RMI, safety is of most urge since objects are passed and downloaded between

di�erent JVM's. Since downloaded code actually can execute,4 it must be limited to

the current policy. This is accomplished using the RMI security managers.

3Refer to the API for details of your version of the Java language. http://www.java.sun.com.
4By being interpreted by the Host VM.

36

� Support remote invocation on objects in di�erent JVM's.

RMI provides the necessary classes for using methods located remote.

4.3.2 Advantages

Several advantages emerge from the design goals[22]. Object orientation is one, mobile

behavior is another. This section states some of the \bonus" features emerging from the

speci�cation. Four of these items are stated below:

Object orientation: Java is based on object orientation. This object approach is main-

tained in RMI. RMI is (unlike RPC5 which passes parameters but does not work well

with program-level objects) able to pass entire objects as arguments. These objects

are serialized and transported as bytestreams between the programs.

Mobile behavior: In RMI, the server program is responsible for implementing the service

interfaces (see Section 4.4.2, for details). When the implementation changes (classes

are changed and recompiled) the client that invokes one of the known methods au-

tomatically is answered with an updated object reecting the changes. The client

program does not have to be changed at all. All changes are made in the implemen-

tation class and the clients are implicitly updated. However, and this is important,

as long as the implementation class does not add, remove or change arguments or

types of its methods the client are una�ected of the changes. But, if one or more of

these things happen the interface no longer matches the implementation and both

the interface and the client must be changed and recompiled.

Security: Security in the system is provided by the existing Java security-manager which

grant only the permissions explicitly stated by di�erent policies. This makes an RMI

application as safe as any other Java application.

5Remote Procedure Calls can be studied in depth on http://www.cs.cf.ac.uk/Dave/C/node33.html.

37

Simplicity: The additional lines of code needed to make use of the RMI technology are

few. For example; to adapt a server to support RMI, only about three rows of

additional code[27] need to be added to the existing server code. Furthermore all

remote interfaces needed are ordinary Java interfaces extending the java.rmi.Remote

interface. This makes the e�ort of writing RMI using programs fairly small.

4.4 The RMI model

This section describes, as mentioned earlier, how the process of transporting a method

call between JVM's is carried out in RMI. This section is divided into three subsections

treating the distributed application model, the architecture and the Naming service.

4.4.1 RMI distributed application model

A typical RMI application consists of a client and a server program. The server program

creates 1::n remote objects and makes references to these objects visible (registering them).

It then waits for connections. The client uses these references to invoke methods on the

remote objects to achive the desired results. Remember that no additional code need to

be installed on the client in order to adapt to changes in the server application.

The bytecodes (messages) are sent from client to server and from server to client by

using any available URL protocol supported by Java, for example HTTP, FTP and �le.6

Since the bytecodes are transported through the network there has to be a web server (a

so called classloader) up and running to take care of the raw bytestream shipping between

the clients and servers. Figure 4.4.1 shows a typical situation where a client and a server

communicates using the RMI registry (Section 4.4.3) for service lookup and web servers

for byte shipping.

6The �le protocol can only be used if both client and server have access to the same �lesystem.

38

Figure 4.4.1: A distributed object application using the RMI registry

4.4.2 RMI architecture

The RMI architecture is based on the principle that de�nition and implementation of

behavior are separate concepts[5]. The de�nition is coded in an interface �le and the

implementation is coded in a class �le. The class �le implementing the behavior is located

on the server and only on the server. The de�nition �le (the interface) however must be

present to both the client and the server.

\Interfaces de�ne behavior and classes de�ne implementation"[5].

The least that is needed in order to run an RMI application are three �les. One

interface �le and two class �les which both implements the interface. One of these �les

resides permanently on the server side and the other (known as the proxy object, or stub)

is during run-time sent to the client before the method call is done.

The interface de�nes 1::n methods that can be remotly invoked. Each of these method

de�nitions de�nes exactly one service. The interface �le is used by both the client and the

server program and must be located at both the client side and the server side. This is

39

necessary because in order to get the RMI communication to work, both the proxy object

class and the implementation class must have access to the method de�nitions located in

the interface �le.

As seen in Figure 4.4.2 the client uses the proxy object to make method calls to methods

that the server implements. The communication is based on the common interface.

Figure 4.4.2: A common interface which is implemented by both the client side and the
server side

Architecture layers

The above section provides an overview of the RMI architecture. This section describes the

more detailed layered approach. RMI architecture contains three layers[27]. The Stub and

Skeleton layer, the Remote Reference Layer (RRL) and the transport layer. Figure 4.4.3

shows the layered architecture of the RMI system.

Stub and Skeleton layer: The stub and skeleton classes are both generated from the

implementation class with the rmic command.7

When the client program makes the call to the server, the stub class is serialized and

sent to the client. The stub then intercepts the method call made by the client and

7The rmic is the RMI Compiler program. It creates skeleton and stub classes. Further information
about rmic can be found on http://java.sun.com/j2se/1.3/docs/tooldocs/solaris/rmic.html.

40

Figure 4.4.3: The layered architecture

redirects it to the remote RMI service where the skeleton class, which knows how to

communicate with the stub over the RMI link, receives the call and forwards it to

the server program.

So, what actually happens when a client makes a remote method invocation is that

the method call goes from the client program to the stub, from the stub over the

RMI link to the skeleton that forwards it to the server program. The server answers

the call by serializing an instance of the implementation class and sending it to the

client.

Remote Reference Layer: The RRL de�nes and supports the semantics of the RMI

connection. This layer provides a representation of the link between the client and

the server.

Transport layer: The transport layer is responsible for the connections between Java

Runtime Environments (JRE's), it is also designed to make connections in the case

network problems arise (which makes the connection reliable).

Figure 4.4.4 shows the connection between JRE's. The transport layer is in the

bottom of the JRE block, just above the Host OS layer. All RMI connections are

stream-based TCP/IP[23] connections and this requires an operational TCP/IP stack

on the machines that run the RMI protocol.

41

On top of the TCP/IP stack Java Remote Method Protocol resides. This is a stream

based protocol.

Figure 4.4.4: The connection between di�erent JRE's.

4.4.3 Exporting services and Naming

When a service is started in the network it is exported to a remote registry server. By

doing so the service provider (the server on which the service resides) grants the clients

access to the service. The remote registry server can be thought of as a database containing

mappings between names and remote objects. The heart of the remote registry server is

the object registry which performs the mapping.

An arbitrary registry object can be placed in two speci�c locations:

� In the same JVM as other server classes.

� As a standalone registry server on a separate JVM.

After a service is registered by the server, the clients must �rst obtain a reference (also

known as a stub) to the remote object in order to use it.

Both the referencing and the registering process are handled by using the naming

service.

42

The naming service depends on the java.rmi.naming class8 that provides methods for

storing and obtaining references to remote objects in a remote object registry. Two methods

of the class are important for the referencing and registring, namely:

bind: is used when a server want to bind a name of a service to a speci�c object and

register the reference.

lookup: is used when a client wants to obtain a reference (downloading a stub).

Both these methods take an argument that is a URL on the form:

rmi://host:port/name

where rmi is the rmi protocol, host is the host on which the registry is located, the port is

the port used (default 1099) and the name is the name of the service.

4.5 Conclusion of the RMI technology

With a brief repetition this section concludes the RMI introduction. Important to remem-

ber is the following:

� RMI is short for Remote Method Invocation.

� RMI is a model for distributed computing using Java objects.

� RMI is naturally integrated in the Java language.

� RMI is used for communication between JVM's.

� RMI has a three level layered architecture.

� The server provides the services by implementing the service interface and registering

services with the registry.

8Refer to the API for details.

43

� The client requests the services by looking them up at the registry.

� The naming service is used to bind services to speci�c names and to look them up.

44

Chapter 5

Jini

This chapter is focused on providing a short introduction to the Jini technology.

The �rst section, \What is Jini?", de�nes the concept, explains what a service is and

what environments Jini is particularly well suited for. Section two, \The Jini design goals",

goes in-depth with the goals of the Jini design. It covers simplicity, reliability, scalability

and support for various devices.

Section three, \Jini architecture", describes the layered Jini architecture model, the

lookup service and the environmental demands. It also gives examples on di�erent device

architecture models.

The last section, \The basic Jini concepts", describes the �ve Jini concepts that the

whole technology relies on, the heart of Jini.

Figure 5.0.1: The Jini logotype

45

5.1 What is Jini?

Jini technology is an infrastructure designed to provide services in a network and to cre-

ate spontaneous interactions between applications using these services. A service can be

thought of as the capability of printing a document, scanning in a picture, changing channel

on your television set, using the play button on the stereo or turn on the kitchen lights.

Services can join and depart the network in a robust fashion. This means that joining

and departing are safe operations that can be controlled to avoid making the system

unstable. The clients in the network can rely on that all services visible to them are

available or at least that the reason why a service is not available (failure) is clear and that

it does not endanger the clients operations.

A Jini community adapts automatically when services come and go. In addition, no

device drivers need to be explicitly installed on the clients in the network in order to use

the di�erent services (no human administration is needed). Interaction between clients and

services are accomplished by the use of Java objects provided by the services. These objects

are loaded into the clients application and are used as an interface1 for the communication

between the client and the service. Note that the client easily can use the service without

having seen it before, ever.

This is the Jini technology in a nutshell. These special features makes Jini suitable for

environments where mobile computing devices and software based services come and go

dynamically. Figure 5.0.1 shows the Jini logotype.

5.2 The Jini design goals

The basic design concept behind the development of the Jini technology is to allow for

services to be available to any client that can reach them. This should also be done in

a type-safe and robust way. That is, a Jini enabled device is able to use services from

1Not to be confused with the Java language interface concept.

46

all providers in the network as if the device was directly attached to them. The four key

concepts[4], i.e. the areas that the designers felt were the most important, of Jini are listed

below:

� Simplicity

� Reliability

� Scalability

� Support for various devices

5.2.1 Simplicity

Fundamental Java technology2 is the basis of all Jini building. In addition to Java, Jini

adds only a thin layer allowing network devices and services to easier work together. That

is, knowing Jini is not very di�erent from knowing Java. The programmer does not actually

need to learn anything new except the Jini API.3 Basically, Jini is designed to handle how

services connect, not what kind of services they are, not how they work and not what

they do. An arbitrary Jini service does actually not even have to be written in Java. The

only thing required is that somewhere in the network there exists some Java code that can

be used to handle the client-service lookup and connection (see Section 5.3.2 for details

on the lookup service). From the Jini perspective everything connected to the network is

cathegorized as services. A printer or a scanner can thus be treated as services.

5.2.2 Reliability

An arbitrary Jini community is virtually free of administration. Almost no human inter-

action is needed for a community to maintain a stable state. This is the result of the

2This is described in great detail in the Java Language Speci�cation. Refer to
http://java.sun.com/docs/books/jls/second edition/html/j.title.doc.html.

3The Jini API is part of the downloadable Jini1.1 beta 2 package from
http://developer.java.sun.com/developer/products/jini/EAproduct.o�erings.html.

47

spontaneous networking and self healing abilities of Jini. Below is a brief explanation of

the terms spontaneous networking and self healing.

Spontaneous networking: Spontaneous networking is the ability for services close to

each other to automatically form communities without external aid. Whenever a

service is connected to the system it is immediately ready to use. No con�guration

of the system (editing con�g �les or con�guring gateways) need to be done and the

result is that the set of services can dynamically be changed during execution of the

system. The set of available services grows and shrinks with time and interested

participants are automatically noti�ed whenever there is a change in the set.

Self healing: Jini is constructed on the basis that all systems have a certain probability

of failure. Because of this, a Jini system will in time repair damage inicted on itself.

The concept of leasing allows the system to exclude a non working member of the

network automatically. If the device crashes, its leases expires and the system does

not need to take further notice of the device (leases are covered in Section 5.4.3).

5.2.3 Scalability

Scalability is achieved by letting Jini communities join together to form federations. A

Jini community is a limited set of services that are all aware of each other. A federation is

a set of communities that have knowledge of each other via the participating communities

lookup services. This feature makes a large system easy to handle since each participating

community is only a limited set of services even though the system as a whole may be

large.

5.2.4 Support for various devices

Jini is designed to support many di�erent entities participating in a community. An entity

is a piece of hardware, software or a combination of both. It is not of any importance

48

for a client to know what type of entity holds the requested service. It is enough just to

understand the interface it presents. In case the entity is a hardware component, Jini is

very exible about the amount of computing power this entity is capable of. A hardware

entity can be a full edged stationary workstation with a full version JVM4 as well as a

simple oÆce lamp containing virtually no computing power. The latter case does however

require some sort of computational device connected to the network by a Jini interface and

connected to the lamp by a speci�c lamp interface. This device is commonly called a proxy.

An additional feature is that a service or device does not actually have to be written in

Java, as long as a proxy between the network and the device is capable of understanding

both languages.

5.3 Jini architecture

Jini is a distributed computing framework[26]. Each participant in a Jini community either

o�ers services, uses them or both. Traditionally a server provides services and a client is

using them. In Jini, however, there is a slight di�erence. Every participant in a Jini

community can act as both client and server. This section describes the basic architecture

model, it explains how the lookup service works and the environmental demands which

have to be satis�ed by a Jini community. At the end of the section there are examples on

di�erent device architecture modeling (ways to set a Jini-network up).

5.3.1 Basic Architecture model

As seen in Figure 5.3.1, the client and service applications are on top of the hierarchy.

Below is the Jini layer which provides the classes necessary for the communication (leasing,

discovery, lookup). The Java layer includes the RMI-classes5 necessary for the remote

4The JVM speci�cation is available from http://java.sun.com/docs/books/vmspec/html/VMSpecTOC.doc.html.
5RMI is treated separately in this document.

49

interaction as well as all socket-handling classes, and everything else. The Java VM in

which all Jini and Java classes resides, lies on top of the host OS which in turn uses the

transport layer to ship the data across the network (usually using the TCP/IP protocol[24]).

Figure 5.3.1: This picture shows the layered Jini model. The application takes advantage
of Jini which in turn depends on Java.

5.3.2 Finding services

Jini is built around the lookup service[4]. The lookup service is what makes the clients �nd

the requested services (note that the lookup itself is a service, just like any other service

in the network). Every Jini community contains one or more lookup services (the more

there are, the safer the system gets). Every time a service is booted on the network the

discovery process is invoked. This process is used by the service to �nd the local lookup

service (Section 5.4.2). Next, the service registers its proxy object (Figure 5.3.2) which

is a Java object including the interfaces the service implements. The interface concept is

crucial to Jini because it is through the interfaces the communication takes place.

Whenever a client whishes to use a service it asks the lookup service for it. As described

later, this question can be asked in multiple ways, depending on the information the client

50

Figure 5.3.2: The newly connected service registers its proxy with the lookup service. The
proxy object's interface is used to de�ne the service.

has. The lookup service then returns the proxy object to the client and the client downloads

the code for the object. Refer to Figure 5.3.3 for details.

Once the proxy object is downloaded the client can use the service simply by invoking

methods on the proxy object which in turn communicates with the service to execute the

requests. This is shown in Figure 5.3.4.

5.3.3 Environmental demands

There are certain requirements that have to be ful�lled in order to get the Jini technology

working. The most important prerequisite is that there has to be a network. Also, the

network must support multicasting (today through TCP/IP[23]). The network must con-

tain Java with included RMI support6 since the services must be run on a JVM or having

a JVM as a proxy. The clients and services must be able to publish/retrieve proxy objects

at the lookup service. The clients must know what type of service they are looking for, at

least at a minimal level of detail.

6It is possible but not recommended to write a substitute for RMI to avoid using the RMI classes.

51

Figure 5.3.3: The clients request is answered by the lookup service by sending the requested
services proxy object back to the client.

5.3.4 JVM dependencies

The Jini architecture rely on certain abilities of the Java VM to run properly. These abilities

includes the following: Ensurance that the code behave the same everywhere, serialization

of Java objects for transportation, virus protection and safety during the transport.

5.3.5 Device architecture modeling

Jini services can be implemented in serveral types of hardware[26]. Listed below are four

of these types as well as their advantages and disadvantages:

Resident Java VM devices

A device including computational power, memory and secondary storage enough to host a

full JVM and Jini infrastructure support (typically a PC). Having a full JVM locally gives

services the advantage of using RMI to communicate between the client and the service

host once the service proxy has been downloaded into the client. In addition virtually all

52

Figure 5.3.4: The client request a service by invoking methods on the proxy, which in turn
communicates with the service.

downloaded code will run. This approach is simple and exible but it is also expensive

because the need for a local processor, memory and permanent storage.

A resident Java VM architecture example can be seen in Figure 5.3.5.

Figure 5.3.5: Communication over RMI between machines with resident JVM's

Specialized VM devices

A device which has not a full JVM installed can still participate in a Jini community, but

can not use all the Jini exibility. A specialized VM must at least support the Discovery

protocol and the Lookup service. These features must be implemented in the device by

53

whomever manufactures the device. An advantage is that a reduced JVM results in less

memory needed, which makes the implementation suitable for devices with little computing

power and memory resources. Unfortunately it also reduces exibility and the device

becomes tied to the particular implementation of the Lookup service that the specialized

VM supports.

Clustering devices with shared VM (physical option)

This approach lets several devices use the same JVM. This distributes the cost7 over the

devices. The Java device bay can be thought of as a provider of power, network connection

and a processor. The interface between the di�erent devices and the JVM is arbitrary.

Figure 5.3.6 shows an example of the model. This approach is positive because it is

cheaper to only have one device containing the JVM, but it also brings redundancy to

the system because a protocol between the devices and the device bay must be de�ned in

advance.

Figure 5.3.6: Devices physically sharing the same JVM

Clustering devices with shared VM(network option)

This approach is basically the same as the physical option above. But the location of the

devices di�er. Here, the devices are connected somewhere in the network using the JVM

7The cost for the processor and memory.

54

entity as a proxy. In this way the devices do not need physical contact with the proxy.

The devices use some private protocol when talking to the proxy, who in turn uses the Jini

protocols when talking to clients. This is pictured in Figure 5.3.7. Advantages includes

the following: no physical constraints limits the number of devices that can be connected

to each proxy and each device does not need its own computing power. Disadvantages

includes: extra hardware (power supply, network connection) is needed for each device and

extra protocols are needed for device identi�cation at the proxy.

Figure 5.3.7: Devices sharing the same JVM over a network

5.4 The basic Jini concepts

There are �ve basic concepts that constitutes the Jini services ability to self-heal and to

support spontaneously created communities[4]. In fact, these concepts are all a user need

to know and understand to use Jini. These concepts describe discovery and joining, lookup,

leasing, remote event handling and transactions. This section will briey explain each of

these concepts.

55

5.4.1 Discovery and joining

The procedure to �nd a Jini community is known as discovery. During this procedure all

available lookup services are found. There are three di�erent discovery protocols depending

on the situation and the need:

The Multicast Request Protocol: The Multicast Request Protocol is used by a newly

booted service that wishes to �nd all available lookup services in the area.

The Multicast Announcement Protocol: The Multicast Announcement Protocol is

used by lookup services when they want to tell the community that they are up and

running.

The Unicast Discovery Protocol: The Unicast Discovery Protocol is used when the

exact location of a lookup service is known and a client wishes to talk directly to it.

It is also used when static links between lookup services need to be created, as when

two or more lookup services are to be federated together.

In addition to the discovery protocols which are used to �nd the lookup services there is

also a protocol called the join protocol. This protocol is used when an entity gets to be a

part of the community after discovery is done. When an entity has joined the community

it can use the lookup service to publish its service items (full description of the service)

and to take advantage of the services o�ered by the community.

5.4.2 Lookup

Lookup is the process of using the available lookup services, i.e. asking for services. An

entity requesting a service can do this in one of the following ways:

Proxy-type searching: The client searches for the type of the proxy object in the service

item.

56

ServiceID searching: Every service is assigned a (UUID), a Universally Unique IDenti-

�er (128 bit value). If the client explicitly knows this number the search can be done

this way.

Attribute search: The client can search the attribute list included in every service item.

Below is a skeleton for a ServiceItem class. All members of the class (serviceID, service

and attributeSets) can be used as search parameters.

public class ServiceItem implements Serializable{

public ServiceItem(ServiceID serviceID, Object service,Entry[]

attributeSets){

...

}

public ServiceID serviceID;

public Object service;

public Entry[] attributeSets;

}

5.4.3 Leasing

Leasing is the concept of granting the Jini community stablilty as well as self-healing

abilities in the case of a system crash or a network failure. Leasing means that the resource

(service) is leased to an requesting entity for a pre-determined period of time. Some

properties of the leasing concept are stated below:

� Leases may be denied

� Leases can be renewed

� Leases expire after a pre-determined period of time

57

The advantage of having resources leased is that after some time all unused resources are

freed because the lease time expires. This means that virtually no system administration

is needed.

5.4.4 Remote events

The remote event handling system of Jini is used for asynchronous noti�cation. An entity

that depends on the state of another entity in the network is most likely interested in

being informed when the state changes. This is accomplished through the remote event

mechanism.

5.4.5 Transactions

Transactions in Jini is carried out using a modi�ed version of the two-phase-commit pro-

tocol. The participants in a transaction implement the TransactionParticipant interface

and the Jini transaction manager run the 2PC[2] protocol for them.

5.5 Conclusion of the Jini technology

This section concludes the Jini introduction with a short listing of the most important

features previously explained.

� Jini technology is an infrastructure designed to create spontaneous interactions be-

tween applications in a network.

� Jini design goals are: simplicity, reliability, scalability and support for various devices.

� Jini is designed to handle how services connect.

� A Jini community is a set of Jini services.

� The lookupservice is the heart of Jini, keeping track of all services available.

58

� Four ways of modeling the device architecture are: resident Java VM devices, special-

ized VM devices, clustering device with shared VM (physical option) and clustering

device with shared VM (network option).

� Discovery and joining, lookup, leasing, remote events, and transactions are the �ve

basic Jini concepts.

59

Chapter 6

Jini in Bluetooth networks

This chapter treats the basic concept of the combination of the Jini and Bluetooth tech-

nologies with a simple example (much like the application developed and described in the

next chapter). In addition, the con�guration of the existing Bluetooth link as well as the

result of the con�guration is presented in this chapter.

The Jini technology implicitly installs the device drivers necessary and the Bluetooth

technology makes cables between devices unnecessary. These two concepts makes a very

interesting usage model when combined. There are two key features in this usage model:

Ad hoc networking: The ability to make spontaneous networks with Bluetooth devices

is a key feature within wireless networking. Devices equipped with Bluetooth inter-

faces connect to other devices in the proximity1 and form ad hoc networks. These

units can simultaneously communicate with up to seven other units and form pi-

conets. The Piconets can easily connect to a LAN or some other kind of network.

The Bluetooth technology replaces cables in networks and the units can use the net-

work as any kind of network. The focus in this work is on TCP/IP networks and the

possibilities with Jini in Bluetooth networks.

1See Table 3.5.2 for further reference to the di�erent power classes.

60

Automatic con�guration: Dynamic service allocation is a relatively new idea in net-

works. Devices that are plugged into network self-con�gure, devices can be a printer,

a mouse, a remote control, etc. With the use of TCP/IP and the use of Jini applica-

tions, the networks will become operating system independent[1]. There are lots of

di�erent technologies of making self-con�guring networks, the focus in this work is

on the Jini technology.

All of the Bluetooth and Jini speci�c features are explained in their respective chapters

in this document.

6.1 Combining the two concepts

Jini is especially well suited for ad hoc networking because of the ability to register/unregister

services in a spontaneous way, much like how Bluetooth works with devices that appear

and disappear in the network. Leasing in Jini controls the services in the network and

always keeps the lookup service up to date. The combined concept of Jini and Bluetooth

is simplest described with an example. Take for instance a remote control (the application

model used in this work) that is \dumb", not knowing anything of what it is supposed to

control. This remote control is in need of a device driver to whatever it is to control.

Figure 6.1.1: A dumb remote control.

Figure 6.1.1 illustrates a remote control not knowing anything about its surroundings

and what it is to control. This can be called a dumb remote control. The remote control

is ready and listening for new interface to services that is remote controlable. We have a

generic remote control.

61

Figure 6.1.2: A remote control located in a network.

Figure 6.1.2 illustrates a Bluetooth enabled remote control just being introduced to a

network. This network is also Bluetooth enabled and has TCP/IP support. These features

makes communication between the device and the network easy. The network contains a

database with the available services, the lookup service, in the network. The remote control

is introduced to the Bluetooth network through paging/inquiry2 when the device is within

proximity of the network. In the Bluetooth speci�cation the SDP protocol3 will have some

features for discovering devices and enable the use of some kind of ad hoc protocol such as

Jini in the future.

Figure 6.1.3: The remote control talking to the lookup service.

Figure 6.1.3 illustrates the remote control as a member of the Bluetooth network talking

Jini to the lookup service and asking for the available services in the network. The lookup

service keeps a dynamic list of all the services that are running on the network. A service

can be a printer, a television set, a CD-player, etc. All of these services send their respective

drivers to the service user (in this case the remote control) when asked for.4 When the

2See Section 3.5.2 (channel control) for further information on paging/inquiry.
3See Section 3.5.7 for further reading.
4Only the services that match the remote control in this case, see the Jini chapter for more information

on this topic.

62

services is no longer available the network is being alerted by the expiration of the lease,

this is a Jini speci�c feature. This way of communicating and keeping services up to date is

truely ad hoc management of the network services. These features makes Jini in Bluetooth

networks a very good combination.

Figure 6.1.4: The remote control talking to some service in a \old fashion" way.

Figure 6.1.4 illustrates the remote control talking to a real application, in this example

a television set. The TV and the remote control communicate wireless using Bluetooth and

its radio link in the ISM frequency band, this is the physical aspect of the communication.

On the application level the remote control and the TV talk some kind of language the

TV provides the remote control with. The language may contain primitives for changing

channel, volume in the remote-to-television communication way and information about the

time and channel from the television to the remote control. This duplex communication

between the remote control and television set is enabled through the Bluetooth link between

the devices not like the simplex communication of the old fashion infra-red remote control.

The language is a part of the driver the TV sends to the remote control, the graphical

interface is another part of the driver. Now the \dumb" remote control has become a

television set remote control that knows all the necessary information about the TV and

its features and is also able to receive information from the TV. This same remote control

can also control the CD-player or the Video for instance, it is all about the interface the

service provides to the remote control.

63

6.2 Con�guration of the Bluetooth (wireless) link

The hardware consisted of two Digianswer developers kit[3]. These consisted of one demo-

card (PC-card), one RS232-adapter (serialcard) some testapplications, drivers and man-

uals. The democard supplied the computer with a regular Ethernet connection. The

RS232-adapter supplied the computer with a virtual serialport. The basic con�guration

of the two cards was di�erent and this resulted in some problems further described below.

The developers kit for the RS232-adapter was not the latest version of the hardware and

this implied the following problems:

Di�erent versions of the drivers for the democard and the RS232-adapter: This

forced us to downgrade the driver of the democard since no later version of the RS232-

adapter was available. This was a problem since not all of the testapplications were

present in the old version.

Only the democard supported direct PPP-over-Bluetooth: This was what we needed

for the project. The ability to access the TCP/IP network is essential in this work.5

Time consuming con�guration: The con�guration of the link was too time consuming

and complex for the project. This lead to the use of existing 802.11b (WLAN)[20]

wireless equipment owned by Fyrplus AB.

These problems could probably be corrected by upgrading the hardware to the lastest

version of the developers kit and by using two PC-card kits. The upgrading of the hard-

ware was not worth its price since the availability of Bluetooth access points to a more

reasonable. The result of this con�guration lead to the use of a WLAN connection for

the Jini application. The application will run in exactly the same way with this kind of

network as with a Bluetooth network.

5See the Jini chapter for further reading.

64

Chapter 7

Application design

The ideas behind the use case and the design of the application are further explained

in this chapter. Concepts from the Jini and RMI section are used without any further

explanation.

The running application, as seen in Figure 7.0.1, is made up by a serverside program

(the jukebox) with the ability to play music (Mp3-�les1), a number of client programs

(remote controls) which will control the server program and a lookup service providing

support for the Jini service. The network in which the application will be running is a

TCP/IP network.

A more thorough description of how the communication works, with references to the

Figure 7.0.1 is given here:

1. The jukebox publishes a proxy object of the service it owns, i.e. the ability to play

mp3-�les in a FIFO order (just like the jukebox in a restaurant), to the network and

all its available lookupservices. Sun's lookup service Reggie is used.

2. The client program, UniversalRemoteControl, asks the lookup service what relevant2

services the network can o�er.

1Mp3 is a popular music �le format.
2In this case only services of type RemoteControl.class are considered relevant.

65

3. The lookup service answers the clients program with copies of the proxy objects that

match the question.

4. All requests by the clients go to the same service, i.e. the jukebox. This means that

a change in the song queue by display one for example will a�ect the jukebox and

all the client programs, i.e. the di�erent displays. The request goes through the Jini

network (4) to the jukebox server (5), this server updates all the connected proxy

objects through their respective \link" (4) and all changes in the jukebox will be

updated in a uniform way to all the displays.

5. A change in the play list occurs when the queue of playing songs change, for instance

when the �rst song in the queue is �nished playing. Updating through (5) and (4)

are done like in the previous point.

Figure 7.0.1: The process of communicating in the Jini network.

The design phase can be decomposed into �ve steps: The RemoteControl Interface, The

66

client design, the server design, the service design and the class-generation using UML.

7.1 RemoteControl Interface

The RemoteControl interface consists of the following code and methods:

import net.jini.core.lease.*;

public interface RemoteControl {

public String getName();

public java.awt.Component getDisplay();

public Lease lease(long time)

throws

java.rmi.RemoteException,

LeaseDeniedException,

UnknownLeaseException;

}

There are some things that are important to know about a remote control and these

are methods in the interface. The following methods are used:

getName(): The UniversalRemoteControl needs to know the name of the service to be

able to show the right name of the service in the choice box of the graphical interface

of the UniversalRemoteControl as can be seen in Figure 8.1.1.

getDisplay(): The UniversalRemoteControl also needs a graphical interface to be able

67

to control the di�erent services which already have been discovered. In this use case

the control of the Mp3JukeBox.

lease(long time): The UniversalRemoteControl �nally needs to know for how long it is

permitted to use the service (how long the lease time is).

7.2 Client design

The user of services, the client, should only be able to do a limited set of operations thus

letting the server do all the work. Since a client using few resources can be run on devices

with slow processors and little memory it is suitable for handheld devices such as the PDA

or a cellular phone. There are however some operations that the client must support in

order to participate. These are:

� The ability of discovering services already registered on the network, i.e. asking the

lookup service about the available services.

� The ability to be informed when a service is made available on the network, i.e.

receiving proxy objects from the lookup service after making the request.

� The ability of leasing the servers resources for an arbitrary time (not forever). This

is accomplished through the lease manager implemented in the client.

� The ability of receiving proxy objects and displaying these to the user via an interface.

In this case as a Java Panel in the UniversalRemoteControl.

The interface of the client should show the di�erent services that the network o�ers.

The client program, UniversalRemoteControl, receives RemoteControl interfaces from the

lookup service and these should be chosable and showable in the display. The queue of

the songs in the current \playing list", which the jukebox owns, should be dynamically

updated in the display. The list of all the songs which the user can choose between should

68

be visible and, �nally, some way of submitting the chosen songs to the jukebox should be

implemented.

7.3 Server design

Since the client does not have much functionality some additional features must be added

to the servers responsibility. Because of this, the server must contain much more features.

The server must support at least these operations:

� Providing a service, i.e. the proxy object.

� Discover the lookup service and publishing proxy objects on the network.

� Write serviceID (a unique id for every proxy) objects to �le.

� Read serviceID objects from �le.

� Grant leases to clients wanting to use the service using a landlord.3

� Renew leases.

� Disconnect clients whose lease have expired.

The above stated items are the core in the application. These items constitutes the

basic communication features needed to build a Jini-application. The server should be able

to load directories and �nd all the mp3-�les in these. The server is the physical jukebox

and should have some kind of hardware for playing mp3-audio�les.

7.4 Service design

In addition to this mandatory features the server needs to have a service for the client to

download (i.e. a proxy object). The goal of making a use case is to produce a simple and

3The entity owning the service proxy and also administers it.

69

clear demonstration of the Jini and Bluetooth technologies. One way of realising this is to

include both visual and audible features. An appropriate choice was an jukebox using the

mp3 format, a mp3-jukebox. The necessary features supported by the service are listed

below:

� Displaying an interactive interface at the clientside.

� Playing songs chosen by the client.

� Dynamically update all clients when the state of the player changes, i.e. when songs

are added and removed.

7.5 Class-generation using UML

Both the client and the server side contains a main method and a runnable thread pre-

venting them from terminating while executing. The Player capabilities are all residing

on the server program since the server supplies the service. The �nal version of client side

UML[17] design can be viewed in Figure 7.5.1 and the �nal version of the server side can

be viewed in Figures 7.5.2 and 7.5.3.

This is a brief description of the classes used in the applications. The Java classes

provided by the development environment are not described here. Relationships are shown

in the UML diagrams and are not described here. The client side contains the following

classes:

� The main class on the client side is theUniversalRemoteControl class. It contains

three listener classes.

� The Listener class listens for new lookupservices on the network at client startup

time.

70

� The ServiceEventListener class listens for lookupservices available on the network

after the client has started.

� The LeaseList class listens for events regarding the service lease.

� The RemoteControlFrame class creates the client application GUI4 and also �lls it

with the matching discovered services. It contains awt5 components for the building.

The server side contains the following classes:

� The server side main class is the Mp3Jukebox class. It contains a listener.

� The IDListener class obtains the unique serviceid the service gets the �rst time it

registers its proxy.

� The Mp3Player class is responsible for playing the songs.

� The Mp3Display is responsible for the appearance of the service in the client ap-

plications interface. It also contains three listener classes.

� The DirListener class listens on new additions to the songlist.

� The SongListener class listens to mouseclicks on the SongList and changes the label

to a text�eld.

� The Mp3DisplayListener class listens to changes to the play- and songlists.

� The SongList class �nds all mp3�les in the input directory.

� The ServerLandlord class keeps track on all leases clients have on the service. It

also renews the leases.

� The Mp3RemoteControl class is the proxy object class.

4Graphical User Interface.
5Abstract Window Toolkit.

71

Figure 7.5.1: The client side of the application design.

72

Figure 7.5.2: The server side of the application design, part 1.

73

Figure 7.5.3: The server side of the application design, part 2.

74

Chapter 8

Application running

This chapter describes how the application is run. It also explains how to interpret the

command lines needed to launch the server and the client. The last section shows a startup

example from the development environment.

8.1 The client interface - the jukebox display

The client program is started by a command on the form:

java -Djava.rmi.server.codebase=http://{IP-address}:{portnumber}/

-Djava.security.policy={path to current policyfile}

{name of application}

The codebase1 speci�es where the class �les are located on the client. The policy �le states

the rights of the program. The application name is UniversalRemoteControl. By executing

this commandline the application starts and waits for the discovery process to �nd some

suitable services and download these proxies. The client GUI is displayed in Figure 8.1.1.

1What codebase means and what it is used for can be read at
http://java.sun.com/j2se/docs/guide/rmi/codebase.html.

75

The UniversalRemoteControl is able to show di�erent kinds of proxy objects. These objects

must be of type RemoteControl.

Figure 8.1.1: The client GUI.

8.2 The Mp3JukeBox server - the service

The server is run with the following parameters:

java -Djava.rmi.server.codebase=http://{IP-address}:{port number}/

-Djava.security.policy={path to policy file}

76

{name of application} -f {serviceidfilename} -d {1 to n mp3directories}

The codebase speci�es where the class �les are located on the server. The policy �le states

the rights of the application, this is important for security in the system. Here the name

of the application is Mp3Jukebox. The rest of the commandline contains parameters to

the program. The -f is for the serviceID �le. The serviceid is a unique number assigned

to the service when it is booted on the network. This �le stores the number the �rst time

the service is booted and is read the following times. If the �le is nonexistent it is created.

Otherwise it is read. Having the same serviceid every time the service is booted can be

useful if the clients search for a speci�c service and use the attribute serviceID. The -d ag

gives the application a list of directories to look for mp3-�les in. The �les found in these

directories will make up the song list of the jukebox.

The network needs some kind of lookup service that is up and running. The lookup

service keeps a registry of all the available services on the network. Sun's implementation

of this service, Reggie, is suÆcient for the purposes of this work and will be the lookup

service of choice. Both the server and the client need a http-server that is responsible for

loading the code.2

8.3 A startup example

A typical startup sequence using the existing tools is shown below.3 Note that all directories

are local to the development environment and that all output are expanded scripts.

1. Start the http server used to load classes for the lookup service:

java -jar h:\jini\jini1_1\lib\tools.jar -port 8080

-dir h:\jini\jini1_1\lib -verbose

2Classes that are Serialized and sent as bytecode.
3The startup order of the server and client does not matter.

77

2. Start the RMI daemon (rmid). The rmid is needed by the lookup service since this

is an activatable4 service.

rmid -J-Djava.security.policy=h:\jini\jini1_1\policy\policy.all

-log h:\log

3. Start the lookup service

set JINI_HOME=h:\jini\jini1_1

set HOSTNAME=172.16.1.77

set POLICYFILE=%JINI_HOME%\java.policy.all

set JARFILE=%JINI_HOME%\lib\reggie.jar

set CODEBASE=http://%HOSTNAME%:8080/reggie-dl.jar

set LOOKUP_POLICYFILE=%JINI_HOME%\example\lookup\policy\policy.all

set LOG_DIR=h:\temp\reggie_log

set GROUP=public

java -Djava.security.policy=%LOOKUP_POLICYFILE%

-jar %JARFILE% %CODEBASE% %LOOKUP_POLICYFILE% %LOG_DIR% %GROUP%

4. Start the httpserver pointing to the server program.

java -jar h:\jini\jini1_1\lib\tools.jar -port 8085

-dir h:\remote -verbose

5. Start the server program with all necessary arguments, note that the portnumber on

the httpserver pointing to the server code must be the same as the portnumber for

the codebase of the server.

4Activatable means that the service is only active when it is called. Rmid is responsible for the
activation.

78

java -Djava.rmi.server.codebase=http://fyrpc177:8085/

-Djava.security.policy=h:\jini\jini1_1\java.policy.all

se.fyrplus.mp3jukebox.Mp3JukeBox -f h:\serviceidfile -d h:\mp3

6. Start the http server for the client.5

java -jar h:\jini\jini1_1\lib\tools.jar -port 8086 -dir h:\remote

-verbose

7. Start the client program

java -Djava.rmi.server.codebase=http://172.16.1.77:8086/

-Djava.security.policy=h:\jini\jini1_1\java.policy.all

se.fyrplus.universalremote.UniversalRemoteControl

5If the client and the server are colocated there is no need for two httpservers, they can share.

79

Chapter 9

Conclusion and summary

An application containing both Jini and Bluetooth technologies will have certain advan-

tages in a communicating environment. First, the need for cables disappears. Second,

explicit installations of device drivers is no longer needed. Third, one device can be used

to control all other devices. These features will ease the communication and administration.

There are however some things that are worth noticing. Bluetooth is a relatively new

technology and costs for education, development and manufacturing are still fairly high.

The components are also still expensive.

Jini is free of charge and downloadable from Sun microsystems. It has an easy to

understand application programming interface and it does make distributed computing

easier. However, Jini does not work alone. In order to make Jini work properly a Java VM

that supports at least some basic features (including RMI) need to be present. In addition

a TCP/IP stack must be operational in the environment.

A product using the Jini-Bluetooth technology would be able to control all, for the

user allowed, enabled devices in its close surroundings. There should no longer be a need

to explicit load drivers into the device. This combination would enhance, for example,

a mobile phone with the ablility of becoming a universal remote control containing only

the drivers needed for the very moment. But, as seen above, Bluetooth components are

80

still too expensive and Jini, i.e. Java, demands a lot of resources of its environment. This

mobile remote control would need to contain a Java VM with appropriate functionality, Jini

classes, a TCP/IP stack and a Bluetooth stack. All these necessities demands a powerful,

and probably expensive, device.

As a conclusion, the combination of these two technologies is not going to have any

larger impact today, but when Bluetooth components, processor power and memory are

cheap enough it probably will. At least there is potential.

The music jukebox application is an example of a distributed application. It contains a

music server with an mp3 player and a remote control that controls the player by allowing

the user of the control to choose songs that the player will play. The application uses

the Jini and RMI technologies to transport data and discover services. The application

is written in the Java language and is running over a TCP/IP network connection. The

client and server class diagrams are modeled using the Uni�ed Modeling Language (UML).

Running this kind of distributed application requires at least one web server, a lookup

service, the rmi daemon and the application programs.

It is not a trivial task to set up the environment. And there is a lot of con�guration to

do before the application is functional. But when it does work, it works well.

81

Appendix A

Abbreviations

abbreviation meaning

ACL Asyncronous Connection-Less

AM ADDR Active Member Address

API Application Programming Interface

AR ADDR Access Request Address

AWT Abstract Window Toolkit

BD ADDR Bluetooth Device Address

BT Bluetooth

CAC Channel Access Code

Community Set of services with connection

CRC Cyclic Redundancy Check

CTS Clear to Send

CVSD Continuous Variable Slope Delta

DAC Device Access Code

DH Data High rate

DLCI Data Link Connection Identi�er

DM Data Medium rate

82

DSR Data Set Ready

DTR Data Terminal Ready

DV Data Voice

FEC Forward Error Correction

FH Frequency Hopping

FHS Frequency Hopping Synchronization

FHSS Frequncy Hopping Spread Spectrum

FIFO First In First Out

GFSK Gaussian Frequency Shift Keying

GUI Graphical User Interface

HCI Host Control Interface

HV High quality Voice

HW HardWare

IAC Inquiry Access Code

I/O Input/Output

IrDA Infrared Data Association

JINI Jini is not initials

JRE Java Runtime Environment

JVM Java Virtual Machine

L2CAP Logical Link Control and Adaption Protocol

LAN Local Area Network

LAP Lower Address Portion

LC Link Control channel

LM Link Manager

LMP Link Manager Protocol

LSB Least Signi�cant Bit

MAC Medium Access Control sublayer

83

NAP Non-signi�cant Address Portion

PCM Pulse Code Modulation

PDA Personal Digital Assistant

PDU Protocol Data Units

PM ADDR Parked Member Address

PPP Point to Point Protocol

QoS Quality of Service

RF Radio Frequency

RMI Remote Method Invocation

RS232 a serial communication interface

RTS Request To Send

SCO Syncronous Connection-Oriented

SDP Service Discovery Protocol

SIG (Bluetooth) Special Interest Group

TCS Telephony Control Speci�cation

TDD Time Division Duplex

TCP Transport Control Protocol

UA User Asynchronous data channel

UAP Upper Address Portion

UART Universal Asynchronous Receiver Transmitter

UDP User Datagram Protocol

UI User Isosynchronous data channel

UML Uni�ed Modelling Language

US User Synchronous data channel

USB Universal Serial Bus

UUID Universally Unique IDenti�er

WAP Wireless Application Protocol

84

Bibliography

[1] Peter Galvin Abraham Silberschatz. Operating System Concepts, 5th Edition. John
Wiley and Sons, 1998.

[2] C.J Date. An Introduction to Database Systems. Addison-Wesley, Reading, Mas-
sachusetts, 1999.

[3] Digianswer A/S. Digianswer
www.digianswer.com.

[4] W. Keith Edwards. Core Jini. Prentice Hall, Upper Saddle River, NJ, 1999.

[5] Govind Seshadri. Java developer connection, the rmi tutorial.

[6] Bluetooth Special Interest Group. The Pro�les Speci�cation. Bluetooth SIG, World-
wide open speci�cation, 1999.

[7] Bluetooth Special Interest Group. Baseband speci�cation, core part b. Technical
report, Bluetooth SIG, Feb 2001.

[8] Bluetooth Special Interest Group. Bluetooth protocol architecture, white paper. Tech-
nical report, Bluetooth SIG, Feb 2001.

[9] Bluetooth Special Interest Group. Blutooth audio, core appendix v. Technical report,
Bluetooth SIG, Feb 2001.

[10] Bluetooth Special Interest Group. Host controller interface functional speci�cation,
core part h:1. Technical report, Bluetooth SIG, Feb 2001.

[11] Bluetooth Special Interest Group. IrDA interoperability, core part f:2. Technical
report, Bluetooth SIG, Feb 2001.

[12] Bluetooth Special Interest Group. Link manager protocol , core part c. Technical
report, Bluetooth SIG, Feb 2001.

[13] Bluetooth Special Interest Group. Logical link and adaption protocol speci�cation,
core part d. Technical report, Bluetooth SIG, Feb 2001.

85

[14] Bluetooth Special Interest Group. Radio speci�cation, core part a. Technical report,
Bluetooth SIG, Feb 2001.

[15] Bluetooth Special Interest Group. Rfcomm with ts 07.10 peci�cation, core part f:1.
Technical report, Bluetooth SIG, Feb 2001.

[16] Bluetooth Special Interest Group. Service discovery protocol, core part e. Technical
report, Bluetooth SIG, Feb 2001.

[17] James Rumbaugh Ivar Jacobson, Grady Booch. The Uni�ed Software Development
Process. Addison Wesley, One Jacob Way, Reading Massachusetts, 1999.

[18] Jamie Jaworski. Java 2 Platform Unleashed. Sams, 1999.

[19] Merriam Webster. Websters revised unabridged dictionary
ftp://ftp.uga.edu/pub/misc/webster/.

[20] Bob O'Hara and Al Petrick. IEEE 802.11 Handbook,A designers companion. Stan-
dards Information Network, IEEE press, http://standards.ieee.org, 1999.

[21] W. Richard Stevens. TCP/IP Illustrated, Volym 1, The protocols. Addison-Wesley
publishibg Company, One Jacob Way, Massachusetts, 1994.

[22] Sun Microsystems. Rmi speci�cation.
http://java.sun.com/j2se/1.3/docs/guide/rmi/spec/rmitoc.html.

[23] Andrew S. Tanenbaum. Computer Networking,third edition. Prentice Hall, Inc, Upper
Saddle River, New Jersey, 1996.

[24] The Jini Community. What is jini network technology.
http://www.jini.org/whatisjini.html.

[25] The Salutation Consortium. Salutation
www.salutation.org.

[26] Ken Arnold Bryan O'Sullivan Robert W. Scheier Jim Waldo Ann Wollrath. The Jini
Speci�cation. Addison-Wesley, Reading, Massachusetts, 1999.

[27] Scott Oaks Henry Wong. Jini in a nutshell. O'Reilly, Sebastopol, CA, 2000.

86

