

 Computer Science

Mattias Ahlberg and Fredrik Carlsson

Serial RP-Bus in workstation -
A bridge between simulated and real AXE-10 hardware

Bachelor’s Project

2001:25

Serial RP-Bus in workstation -
A bridge between simulated and real AXE-10 hardware

Mattias Ahlberg and Fredrik Carlsson

© 2001 Mattias Ahlberg and Fredrik Carlsson Karlstad University

ii

This report is submitted in partial fulfillment of the requirements for the

Bachelor’s degree in Computer Science. All material in this report which is

not our own work has been identified and no material is included for which

a degree has previously been conferred.

Mattias Ahlberg

Fredrik Carlsson

Approved, 6 June 2001

Advisor: Stefan Alfredsson

Examiner: Stefan Lindskog

iii

iv

Abstract

When writing software for large computer systems it is often easier, more secure, cheaper and

faster to test and debug software on a simulated platform before deploying it to the real

hardware. Ericsson Infotech, department of Test Support and Simulated Platforms (TSP)

develop such a simulator platform, called Simulator Environment Architecture (SEA). This

platform is mainly used for simulating the AXE 10 digital switching system, which is also

developed by Ericsson. The AXE 10 system is the heart of the telephone network in Sweden

and many other countries.

SEA is a very easy and practical tool for testing software for the AXE 10 switch, but

sometimes some of the software that is to be tested has to be run on real target hardware. To

be able to achieve this a bridge between the simulated environment and the real hardware is

needed, and this is the purpose of this project. The main goal is to investigate if it is possible

to connect a real serial Regional Processor (RP) to a Central Processor (CP) simulated in

SEA. Both the RP and the CP are parts of the hardware in a real AXE 10 switch. The

secondary goal is, if possible, to implement the communication between the real RP hardware

and the CP, simulated in SEA.

To accomplish these goals, the hardware for the two communication buses between the CP

and RP were first investigated. This hardware investigation revealed four possible solutions,

but only two of these solutions were considered suitable for this project. The first possible

solution was to use a Regional Processor Handler Magazine Interface (RPHMI) card in the

workstation running SEA, and then connect a Serial Regional Processor Bus Handler (RPBH-

S) to this card. Then it should be possible to connect real RPs to the RPBH-S. This solution

was however considered as being too complex and expensive. The second solution, which

was finally chosen, was to use the SERPENT RPB-S emulator. The SERPENT is a piece of

hardware that was made especially for connecting RPs to a workstation, and it was therefore

ideal for this project. Thus the primary goal with the project was accomplished. The

secondary goal was not entirely completed, but an early prototype was designed and partly

implemented.

v

vi

Acknowledgments

We would like to start with thanking our supervisors at Ericsson, Claes Giljegård and Per

Nordh, without them this project would have been hard to carry out. Our University

supervisor Stefan Alfredsson has also been of great help.

Second we would like to thank the Ericsson people at LMF in Finland who lent us the

SERPENT RPB-S emulator and for showing interest in this project. There are also a few guys

at UAB in Stockholm and EPA in Australia that has helped us with finding documents about

the hardware in the AXE switch.

vii

viii

Table of Contents

1 INTRODUCTION.. 1

1.1 INTRODUCTION TO SIMULATION .. 1

1.2 REPORT STRUCTURE.. 1

2 BACKGROUND... 3

2.1 PROBLEM .. 3

2.2 PURPOSE.. 3

2.3 METHOD.. 4

3 BRIEF OVERVIEW OF THE AXE-10 SYSTEM.. 5

3.1 WHAT IS THE AXE-10 DIGITAL SWITCHING SYSTEM ... 5

3.2 COMPONENTS IN THE AXE-10 SYSTEM... 5

3.2.1 APZ... 6

3.2.2 Regional Processor (RP).. 7

3.2.3 Serial Regional Processor Bus (RPB-S) .. 7

3.2.4 Serial Regional Processor Handler (RPH).. 10

3.2.5 Regional Processor Handler Bus (RPHB) ... 11

3.3 CHAPTER REVIEW.. 12

4 SIMULATOR ENVIRONMENT ARCHITECTURE (SEA) 13

4.1 SEA LAYERS ... 13

4.1.1 The osCore ... 14

4.1.2 The simCore ... 14

4.1.3 The appCore... 14

4.2 SEA COMPONENTS FOR THE AXE-10 SYSTEM .. 14

4.3 SEA CONFIGURATION AND USER INTERFACE... 15

4.4 CHAPTER REVIEW.. 18

5 HARDWARE INVESTIGATION.. 19

5.1 RPB-S ELECTRICAL INTERFACE IN THE RP... 19

ix

5.1.1 Driver/Receiver circuit... 19

5.1.2 Serial Bus Interface Circuit (SBIC) ... 20

5.1.3 The HDLC controller ... 21

5.1.4 Regional Processor Bus Serial Interface Circuit (RPBSIC)............................ 21

5.2 RPH .. 21

5.2.1 Power Unit (POU) ... 21

5.2.2 Regional Processor I/O board (RPIO)... 22

5.2.3 Serial Regional Processor Bus Interface board (SRPBI) 22

5.3 A CLOSER LOOK AT DIFFERENT HARDWARE BOARDS... 22

5.3.1 SIO PMC board.. 22

5.3.2 DSP board .. 23

5.3.3 SERPENT RPB-S Emulator ... 24

5.3.4 RPHM Interface board... 25

5.4 INVESTIGATION RESULTS AND CHAPTER REVIEW .. 25

6 SYSTEM DESIGN ... 27

6.1 OVERALL DESIGN .. 27

6.2 REQUIREMENTS... 29

6.2.1 Requirements for the RPBHS proxy software .. 29

6.2.2 Requirements for the RP Server software .. 30

6.3 DESIGN DESCRIPTION .. 31

6.3.1 Design description for the RPBHS proxy software.. 31

6.3.1.1 Component structure .. 31

6.3.1.2 IRphbClient interface ... 31

6.3.1.3 ISimulationThread interface... 32

6.3.1.4 IAxeMgrConnection interface.. 32

6.3.1.5 ICommandEval interface.. 33

6.3.1.6 IMessageReception interface ... 33

6.3.1.7 IMphRemoteResult interface ... 33

6.3.1.8 Iconfig interface ... 34

6.3.1.9 IClassFactory interface... 35

6.3.1.10 Internal functions in the RpbhsProxy class .. 35

x

6.3.1.11 Functions in the MSGQueue class ... 36

6.3.2 Design description for the RP Server software.. 36

6.3.2.1 Functions in the RP Server... 37

6.3.2.2 Functions in the Device driver ... 38

6.4 CHAPTER REVIEW.. 39

7 CONCLUSIONS... 41

7.1 EXPERIENCES .. 41

7.2 PROBLEMS... 41

7.3 RECOMMENDATIONS ... 42

8 REFERENCES... 43

A APPENDIX. ABBREVIATIONS.. 44

B APPENDIX. SIGNALS AND ORDERS... 46

C APPENDIX. SEA CONFIGURATION FILE 1 .. 48

D APPENDIX. SEA CONFIGURATION FILE 2 .. 50

E APPENDIX. THE THREADENTRY FUNCTION... 51

xi

List of Figures

Figure 3.1 - A part of the AXE-10 hardware platform... 6

Figure 3.2 - Overview of RPB-S and compatible components .. 7

Figure 3.3 - The three lowest layers in the OSI model .. 8

Figure 3.4 - Some sample NRZI-L data encoding ... 8

Figure 3.5 - Example of bit stuffing... 9

Figure 3.6 - Example of communication case.. 10

Figure 3.7 - Overview of the RPHB and RPB-S.. 11

Figure 4.1 - The SEA layers... 13

Figure 4.2 - Some AXE-10 interfaces in SEA ... 15

Figure 4.3 - SEA log window... 16

Figure 4.4 - The I/O device window in SEA.. 17

Figure 4.5 - Example of signal trace output in the log window... 18

Figure 5.1 - Electrical Interface Overview... 19

Figure 5.2 - RPH Magazine and connections... 21

Figure 5.3 - RPB-S solution ... 23

Figure 5.4 - SERPENT solution... 24

Figure 5.5 - RPHMI solution.. 25

Figure 6.1 – Simplified overview of the system design... 27

Figure 6.2 - Overview of the system design... 28

xii

List of Tables

Table 3.1 - Framing structure of the data link layer... 8

Table 3.2 - Framing structure of the network layer.. 9

Table 3.3 - Payload types in the network layer .. 10

Table 3.4 – General order format to RPBH-S.. 11

Table 3.5 - General message format from RPBH-S... 12

Table 6.1- Explanation of SEA configuration for the RPBHS Proxy...................................... 34

xiii

xiv

Serial RP-Bus in Workstation -
A bridge between simulated and real AXE-10 hardware

1 Introduction

The Department of Test, Support and Simulated Platforms (TSP, also called EIN/T) at

Ericsson Infotech AB in Karlstad develops, among other things, a simulator environment for

telecom systems. The simulator makes it possible to test software without access to target

hardware. It is also Ericsson Infotech that has initiated this project which purpose is to

determine if it is possible to connect real hardware to their simulated environment.

1.1 Introduction to simulation

Simulation is the process of designing a model of a real or imagined system and then using

the model to perform experiments. Models have been constructed for nearly every system

imaginable, such as flight dynamics, integrated circuits and embedded computer systems. In

each of these systems, a model has proven to be more cost efficient, less dangerous, faster and

more practical than experimenting with the real system.

The general purpose of a simulation is to allow an analysis of a systems capabilities and

behaviour without constructing of, or experimenting with the real system. It can also be used

for educational purposes and demonstrations.

1.2 Report structure

In some chapters of this report there are a lot of abbreviations, which can be unfamiliar for

most readers. The abbreviations are listed in appendix A .

Chapter two is an overview of the problem that this project is faced with and thereby it gives

the purpose for this project. When reading chapter three the reader will be given an

introduction to the AXE-10 digital switching system and some of its components. Among the

described components are the Serial Regional Processor and its communication bus. In

chapter four the reader will be given a brief description of the Simulator Environment

Architecture software (SEA), developed by the EIN/T department. Furthermore, chapter five

1

Serial RP-Bus in Workstation -
A bridge between simulated and real AXE-10 hardware

describes the communication hardware in the Regional Processor, Regional Processor

Handler and the Regional Processor Handler Bus interface in the Central Processor. It is also

an investigation of different products that could be used to communicate on the RPB-S.

Chapter six is a complete description of the system design. It gives a detailed description of

how the system will be implemented. The last part of this report, chapter seven, is a

conclusion of this work and it is also a personal reflection from the writers of this report.

Chapter three to six will end with a short review of the most important subjects described in

the chapter.

2

Serial RP-Bus in Workstation -
A bridge between simulated and real AXE-10 hardware

2 Background
This chapter gives an overview of the problem that this project faces and

thus, its purpose.

As mentioned in the introduction the department EIN/T develops a simulator for computer

systems and it is called Simulator Environment Architecture – SEA. It is mainly used to

simulate the AXE-10 system, which is the heart of the telephone network in Sweden and

many other countries. In section 2.1 and 2.2, a few components in the AXE-10 system are

mentioned. These components are described in chapter 3.

2.1 Problem

For testing purposes, SEA is a very easy and practical way of testing software but sometimes

the software that is to be tested has to be run on real target hardware. The Regional Processor

(RP) software is one of these but so far it has not been possible to do this in an uncomplicated

way.

2.2 Purpose

To make it possible to mix simulators and real hardware, such as the Regional Processor,

bridges between simulated and real hardware are needed.

The purpose with this project is to find out if it is possible to use a commercially available

communication card or some other device for a PC or a Sparc workstation to implement a

server for the Serial Regional Processor Bus (RPB-S). To do this it is necessary to investigate

the hardware in the RP and see if it is possible to find some communication hardware that

matches with its physical interface.

If it is possible to find a suitable card or device the purpose is also to implement the RPB-S

protocol stack on the selected hardware.

3

Serial RP-Bus in Workstation -
A bridge between simulated and real AXE-10 hardware

2.3 Method

Since this project is dealing with simulated environments the following chapter explain how

the real hardware works. After that it is explained how the simulator is constructed followed

by an investigation of different hardware solutions that could be used.

4

Serial RP-Bus in Workstation -
A bridge between simulated and real AXE-10 hardware

3 Brief overview of the AXE-10 system
This chapter introduces the AXE-10 digital switching system and some of its

components. Among the described components are the Serial Regional

Processor and its communication bus.

To increase the understanding for this project and the Simulator Environment Architecture

(SEA) platform it is important to have basic knowledge of the AXE-10 digital switching

system and its components.

3.1 What is the AXE-10 digital switching system

The AXE-10 is a digital switching system for telecommunication, which is designed and

developed by Ericsson. It handles among other things Public Switched Telephone Networks

(PSTN) that is used for stationary telephones, common in every home. It also handles

Integrated Services Digital Networks (ISDN) and Public Land Mobile Networks (PLMN)[5].

3.2 Components in the AXE-10 system

A part of the AXE-10 hardware platform can be seen in Figure 3.1. This figure gives a good

overview of some of the components in the AXE-10 digital switching system. The

components that increase the understanding of this report are also described below.

5

Serial RP-Bus in Workstation -
A bridge between simulated and real AXE-10 hardware

Figure 3.1 - A part of the AXE-10 hardware platform

As mentioned in chapter 2, this projects purpose is to communicate on RPB-S. In Figure 3.1 it

can be seen that this bus is located between the APZ and the RP4. In the figure there are also

some other devices connected to the RPB-S, but the function of these components are not

relevant to this report.

3.2.1 APZ

The APZ, also called Central Processor (CP), is the control system of the AXE-10 platform.

As shown in Figure 3.1 there are several models of the APZ but it is only APZ 212 20 and

higher that supports the Serial Regional Processor Bus (RPB-S). For higher safety the CP is

replicated in each APZ, one is called CP-A and the other CP-B, see Figure 3.2. Each of the

CPs has its own RPB-S that can be seen in Figure 3.2.

Furthermore each CP is divided into two parts, the Instruction Processing Unit (IPU) and the

Signal Processing Unit (SPU). It is the SPU that communicates with the Regional Processor

Handler (RPH), which controls the RPs. This communication is described in detail below.

6

Serial RP-Bus in Workstation -
A bridge between simulated and real AXE-10 hardware

3.2.2 Regional Processor (RP)

The Regional Processors performs processing-intensive protocol handling and protocol

conversions as well as routine repetitive processing tasks. Their main task is to relieve the CP

of these simple real-time demands as well as handling low-level protocols.

The are several models of RPs but only some of them have been modified to incorporate the

RPB-S interface [4]. Among these are the RP4, the RPV2 and the RPG2. Each one of these

handles different protocol conversions and in Figure 3.2 these RPs are shown.

Figure 3.2 - Overview of RPB-S and compatible components

3.2.3 Serial Regional Processor Bus (RPB-S)

In the AXE-10 system there are several components and they all communicate through

different Ericsson proprietary communication standards. One of the communication paths is

the serial RP-Bus that is used for communication between a CP and the RPs. This bus is

designed to replace the old parallel RP-Bus, but the two busses can also coexist. The RPs

provides the AXE-10 applications with a processor platform and the communication between

the CP, RPs and user applications in extension modules [4]. The extension modules and the

parallel RP-Bus will be given no further explanation because they are not relevant to this

report.

The protocol that is used for communication over the RPB-S is organized in three layers,

equivalent to the three lower layers in the OSI model [3] (see Figure 3.3). The two lowest

layers are the physical and data link layers which both are implemented in hardware.

7

Serial RP-Bus in Workstation -
A bridge between simulated and real AXE-10 hardware

Bits

DTDH Data

NH Data

Physical layer Physical layer

Data link layer Data link layer

Network layer Network layer

Figure 3.3 - The three lowest layers in the OSI model

The physical layer is based on Low Voltage Differential Signalling (LVDS, will be described

in detail below) and uses Non Return to Zero Inverted (NRZI-L, where L means invert on

zero) line coding. With this coding a logical one is coded as no change, and a zero is coded as

a level shift [12], see Figure 3.4.

Encoded data

NRZI-L

Real data

Figure 3.4 - Some sample NRZI-L data encoding

The data link layer is implemented according to the standard protocol High-level Data Link

Control - Normal Response Mode (HDLC-NRM). The framing structure can be seen in Table

3.1 [3].

Data link header Data Data link trailer

Opening flag Address field Control field Information field FCS Closing flag
8 bits 8 bits 8 bits n bytes 16 bits 8 bits

Table 3.1 - Framing structure of the data link layer

8

Serial RP-Bus in Workstation -
A bridge between simulated and real AXE-10 hardware

The purpose of the opening and closing flag is to delimit the frame, and for this to be possible

they must be unique. To accomplish this, the entire frame (except the opening and closing

flags) must be bit stuffed. This means that if a sequence of bits that consists of five or more

bits are detected, i.e. looks like the opening or closing flag, a zero is inserted after the fifth

one, this is to ensure that the starting and closing flags remain unique. An example of this can

be seen in Figure 3.5.

Closing flag

Closing flag

Bit stuffed data

Data

Starting flag

Starting flag

Figure 3.5 - Example of bit stuffing

The third and the highest layer is the network layer and its purpose is to send signals between

central and regional program blocks [2]. The framing structure of the network layer can be

viewed in Table 3.2.

Header Information
Payload type Data

8 bits n bytes
Table 3.2 - Framing structure of the network layer

The contents of the information field is different depending on what payload type the frame

has. At the moment the following payload types are defined [2], see Table 3.3.

9

Serial RP-Bus in Workstation -
A bridge between simulated and real AXE-10 hardware

Number Type
0 Unpacked RP signals

1 Packed RP signals

2 Unpacked EMRP signals

3 Packed EMRP signals
Table 3.3 - Payload types in the network layer

3.2.4 Serial Regional Processor Handler (RPH)

Each CP has a serial RPH and its main function is to send and receive signals on the RPB-S.

In other words it is an interface for the CP subsystem to the RP subsystem. Because there are

two RPB-S, the two RPHs must decide which bus that should be active [4]. It must also make

sure that both CPs get the signal from the active bus, see Figure 3.6. As with the APZ the

reason for replicated components is to get a higher fault tolerance.

Figure 3.6 - Example of communication case

Furthermore the RPH consists of up to 64 Serial Regional Processor Bus Handlers (RPBH-S)

but the CP software allows only 32 RPBH-S. The RPBH-S are placed in RPH Magazines

(RPHM) in groups of eight. Therefore it can be up to four RPHMs connected to one SPU.

Each of these RPBH-S handles up to 32 RPs that gives a maximum of 1024 RPs [1].

10

Serial RP-Bus in Workstation -
A bridge between simulated and real AXE-10 hardware

RPHB
RPBHRPBH-S2RPBH-S1

RP2

RPB-S
RP31 RP1 RP0

RPBH-S0

CP

Figure 3.7 - Overview of the RPHB and RPB-S

3.2.5 Regional Processor Handler Bus (RPHB)

As shown in Figure 3.7 the RPHB is located between the CP and the RPBH-

with the RPHB is to connect the RPBH-S with the CP. As in the case of RPs th

serial and a parallel version of RPBH-S and both can be connected to the sam

only dissimilarity is that they use different versions of the RPHB protocol.

The RPHB-S protocol is half duplex [8]. That means that data only can be tra

direction at a time, and the RPBH-S is only allowed to drive the bus when the C

Everything that the CP sends to the RPBH-S is an order, and each order cons

more 16-bit words. An order can either contain a signal that should be sent

RPs, or it can be a direct order to the RPBH-S. An order can also be directed

group of RPBH-S. The orders are then called Local, Global and Group res

general format of an order can be seen in Table 3.4.

15 14 13 12 11 10 9 8 7 6 5 4 3
Order code RPBH-S group number

Number of bytes to follow (N)
Data byte 2 Data byte 1
Data byte 4 Data byte 3

… …
Byte not valid if N is odd, or data byte N if N

is even
Data byte N if N is odd or N-1

Table 3.4 – General order format to RPBH-S

11
RPHM0
-S7

S. The purpose

ere exist both a

e RPHB. The

nsferred in one

P tells it to.

ists of one ore

to one or more

to one, all or a

pectively. The

2 1 0
RPBH No.

 if N is even.

Serial RP-Bus in Workstation -
A bridge between simulated and real AXE-10 hardware

The order code specifies the type of order. The different order codes recognized by RPBH-S

can be seen in Appendix B .

Every message that an RPBH-S sends towards the CP is either a search answer, an

acknowledgement or a normal data message [8]. The general message format can be seen in

Table 3.5.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
L Message code RPBH-S Address

Number of bytes to follow (N)
Data byte 2 Data byte 1
Data byte 4 Data byte 3

… …
Byte not valid if N is odd, or data byte N if N is

even
Data byte N if N is odd or N-1 if N is even.

Table 3.5 - General message format from RPBH-S

The L bit is used to indicate a long RP signal in message from RPBH-P and is always set to 0

in RPBH-S. The message code specifies the message type, and the different types allowed are

listed in Appendix B .

3.3 Chapter review

• The AXE-10 is a digital switching system for telecommunication, which is designed

and developed by Ericsson.

• The APZ, also called the Central Processor (CP) is the control system of the AXE-10

platform.

• Each CP has a Regional Processor Handler (RPH) that consists of up to 64 Serial

Regional Processor Bus Handlers (RPBH-S). Their main task is to send and receive

signal on the Serial Regional Processor Bus (RPB-S).

• Signals between the CP and the RPH are sent on the Regional Processor Handler Bus

(RPHB).

• A Regional Processor (RP) relives the CP of simple real time repetitive processing

tasks.

• Signals between the RPBH-S and the RP are sent on the RPB-S.

12

Serial RP-Bus in Workstation -
A bridge between simulated and real AXE-10 hardware

4 Simulator Environment Architecture (SEA)
This chapter briefly describes the Simulator Environment Architecture

software, developed by the EIN/T department.

As mentioned in chapter two, SEA is a simulator software that makes it possible to simulate

the AXE-10 digital switching system. When simulating the AXE-10 system it is possible to

run real AXE-10 software dumps (see section 4.3) in the simulated environment. This makes

it easier and cheaper to test, debug and evaluate new or existing software.

Currently SEA is running on Sun workstations with Solaris but it is being ported to Linux.

4.1 SEA layers

SEA is built up using a layer model and each layer is constructed of components. There are

three layers, each having its own component type. The defined layers are [16] (see Figure

4.1):

• osCore – This is the abstraction of the host operating system

• simCore – This layer contains generic simulation components of common interest to

the system.

• appCore - In this layer system specific components can be found.

simCore

osCore

appCore

Figure 4.1 - The SEA layers

13

Serial RP-Bus in Workstation -
A bridge between simulated and real AXE-10 hardware

4.1.1 The osCore

The initial layer is the osCore. Its purpose is to isolate operating system specific services and

thereby providing low-level virtual operating system functions. Some of the services provided

are memory management, process handling, signal handling, SEA component manager

services and socket handling.

4.1.2 The simCore

Above the osCore is the simCore (see Figure 4.1). It provides services needed to configure

and control simulation components. Some of these services are functions for message

handling, thread scheduler, event handling and real time management. This layer also

provides user interface functions, such as HTTP server and Tcl interpreter. The Tcl interpreter

evaluates commands sent to a specific component in SEA through the user interface, see

section 4.3.

4.1.3 The appCore

The last of these three layers is the appCore. This is where components for the specific

simulated computer system can be found. This makes it possible to simulate almost any

computer system, but it is now mostly used for AXE-10 system simulations.

4.2 SEA components for the AXE-10 system

SEA is based on the Microsoft Component Object Model (COM) and this makes it possible

to incorporate future standard products implementing COM. With this model arbitrary

computer simulation environments can be built up, using components [16]. Each of these

components have different interfaces, which are used for communication with other

components. When SEA is being initialised it asks every component what interfaces it has

and uses this information when it connects the current simulation components to each other.

A few of the components simulated in SEA are the CP, RPBH-S and the RP. All these

components are described in chapter 3. There are a lot more AXE-10 components for SEA,

14

Serial RP-Bus in Workstation -
A bridge between simulated and real AXE-10 hardware

but these are outside the scope of this report and will therefore be given no further

explanation.

The real hardware components communicate using two different buses, RPHB between CP

and RPBH-S, and RPB-S between RPBH-S and RP. In SEA this communication is

accomplished by a client/server model in the different components. For example the CP

component implements a server for the RPHB (IRphbServer), and the RPHB implements the

client part (IRphbClient) of the connection. The communication between the RPHB and the

RP works in the same way, see Figure 4.2. As mentioned above, components as the CP and

RPBH-S uses interfaces to connect and communicate with each other. IRphbServer and

IRphbClient are two examples of such interfaces.

P

Figure 4.2 - Some

4.3 SEA configuration and use

SEA is configured using a special conf

components that should be simulated, a

communication between them (see Figu

interfaces). SEA must also know which s

that contains all the software needed, and

switch. From this file SEA can auto gene

components as is in the real AXE 10 switc

in appendix C .
C

P
R
 AX

r i

igur

nd

re

oftw

 it

rate

h. A
IRphbServer
n

1

IRpbSServer
IRphbClient
IRphbSClient
RPBH-S
E-10 interfaces in SEA

terface

ation file. This file specifies which hardware

which interfaces that should be used in the

4.2 for some examples of components and

are dump to use. The software dump is a file

is the same file that is used on a real AXE 10

 a configuration file that will specify the same

n example of a configuration file could be seen

5

Serial RP-Bus in Workstation -
A bridge between simulated and real AXE-10 hardware

Both the software dump file and the configuration file names could be given to SEA as

arguments. Further arguments that could be given to the program are –RTS to enable Real

Time Simulation and –START to automatically start the system. If all these arguments are

specified, the log window in the user interface for SEA will look similar to Figure 4.3. The

configuration file used here is called config_rp.axe (can be seen in appendix C) and the

software dump is called apz11_rp.21230_emudump.gz. These files specify that SEA should

simulate an AXE 10 switch, which is equipped with a CP (model APZ 212 30), an RPBH-S

and five RPs.

Figure 4.3 - SEA log window

In the bottom of the log window there is also a command tool called SUI (Simple User

Interface). This can be used e.g. for component configuration.

Another useful window in the SEA user interface is the I/O-device window. This window has

the same function as the I/O terminal in the real AXE 10 switch, i.e. to send commands to the

CP and to view output from it. The command language used is called MML (Man Machine

Language). The I/O device window can be seen in Figure 4.4. This figure also shows the

usage of the MML command BLRPE, which will order the CP to try to deblock the specified

16

Serial RP-Bus in Workstation -
A bridge between simulated and real AXE-10 hardware

RP (RP number 10 in this case). If the command succeeds the RP will be in deblocked state

and therefore be able to send signals on the bus.

Figure 4.4 - The I/O device window in SEA

One of the most common tasks in SEA is to trace signals between different components. This

can be done in many ways, and between several components. Here follows an example of

how to trace the signals on the RPHB between the CP and the RPHB-S.

First the tracing must be activated. This is done in the SUI (described above) by sending a

command to the simulated RPBH-S component. The commands sent are sigtrace on rp2cp

for activating the trace in the RP to CP direction, and sigtrace on cp2rp for activating the

trace in the CP to RP direction. When this is done all signals going through that RPBH-S will

also be printed in the log window. An example of this can be seen in Figure 4.5. This figure

also shows some of the signals sent between the CP and the RPBH-S, when trying to deblock

an RP after issuing the BLRPE command described above.

17

Serial RP-Bus in Workstation -
A bridge between simulated and real AXE-10 hardware

Figure 4.5 - Example of signal trace output in the log window

4.4 Chapter review

• Simulator Environment Architecture (SEA) is a simulator software that makes it

possible to simulate the AXE-10 digital switching system.

• SEA is built up using a three-layered model. The layers are the osCore, simCore and

appCore.

• SEA uses the Microsoft Component Object Model (COM). With this model arbitrary

computer simulation environments can be built up, using components.

• In SEA it possible to simulate almost every component in the AXE-10 system such as

the RP and CP.

18

Serial RP-Bus in Workstation -
A bridge between simulated and real AXE-10 hardware

5 Hardware investigation
This chapter describes the communication hardware in the RP, RPH and

the RPHB interface in the CP. It is also an investigation of different

products that can be used to communicate on the RPB-S.

5.1 RPB-S Electrical Interface in the RP

The RPB-S has a balanced differential line interface, which makes it possible to have

multipoint party line communication on two shielded four wire twisted-pair cables. This

means that more than one RP can be connected to the same RPB-S.

In order to communicate on the RPB-S several components are needed. These components

can be viewed in Figure 5.1.

Figure 5.1 - Electrical Interface Overview

5.1.1 Driver/Receiver circuit

This circuit is designed for applications requiring high data rates and to accomplish this the

circuit uses low voltage differential signalling (LVDS). Advantages with this design are that

the circuit suffers very low power dissipation and has very low noise. With this design data

rates up to 400 Mbps can be accomplished [17][18].

19

Serial RP-Bus in Workstation -
A bridge between simulated and real AXE-10 hardware

The driver circuit translates low voltage TTL/CMOS (typical 3,3 V) input levels into low

voltage (typical 350mV) differential output levels. Analogous the receiver translates the low

voltage differential input to low voltage TTL/CMOS output levels.

To be able to support multiple stations on the same bus the driver/receiver circuits also

supports the TRI-STATE function, which disables the output.

The circuit is manufactured by Ericsson, but a comparable circuit is also commercially

available from National Semiconductors and it is called DS90LV031A [15].

5.1.2 Serial Bus Interface Circuit (SBIC)

As shown in Figure 5.1, the SBIC is connected to the serial RP through the driver/receiver

circuit. The main functions of the SBIC are [11]:

• Clock recovery (clock regeneration), i.e. to extract the clock from the incoming data.

This is needed because the incoming data might have a slightly different bit rate than

the normal 10 Mbit/s [12].

• Data encoding/decoding (NRZI-L / NRZ).

• Poll recognition, that detects if a poll frame has been received. In that case the RP is

allowed to transmit on the bus.

• RP status recognition. There are two RP status types, normal and separated. The status

is represented in a status bit in each frame that is compared with the status bit stored in

an internal RP register.

• Individual, group and global address recognition. Compares the address of the

incoming frame with the one stored in a local register in the RP.

• Enabling/disabling of RPB path A and path B.

• Frame preamble used for clock synchronization. Prior to a response frame(s) the SBIC

adds four level shifts so that the receiver can recover the clock.

• RTS and CTS function (Ready To Send and Clear To Send). Signals used between the

SBIC and the HDLC controller to synchronize data transfer.

20

Serial RP-Bus in Workstation -
A bridge between simulated and real AXE-10 hardware

5.1.3 The HDLC controller

Between the physical and network layers is the data link layer that is implemented in a single

circuit from SGS-Thompson microelectronics. The circuit has a 10 Mbit/s full duplex HDLC

channel. Of course two of the main tasks are to delimit frames with the 8 bit flag (01111110)

and to make sure that the flag is unique, accomplished by bit stuffing.

5.1.4 Regional Processor Bus Serial Interface Circuit (RPBSIC)

This circuit is not a part of Figure 5.1 because it is a newer design of the SBIC. The big

difference is that this circuit implements both the SBIC and the HDLC controller. Otherwise

the main functions of the RPBSIC are identical with the functions described above.

5.2 RPH

In section 3.2.4 a brief description of the RPH is given. In that part it is described that the

RPH consist of up to 4 RPHMs and that each RPHM can handle eight RPBH-S. To add some

confusion the RPBH-S is implemented on a board that is called Serial Regional Processor Bus

Interface (SRPBI). Each SRPBI can handle one RPB-S and it also has a cross connection to

the other CP side, this can be seen in Figure 3.6 and Figure 5.2.

 RPHB

RPB-S

P
O
U

R
P
I
O

S
R
P
B
I

Figure 5

5.2.1 Power Unit (POU)

The POU is a part of the RPHM

backplane (in the RPHM) with +5
To other CP side
RPB-SRPB-SRPB-S RPB-S

S
R
P
B
I

S
R
P
B
I

S
R
P
B
I

S
R
P
B
I

.2 - RPH Magazine and c

 and it consists of a D

V [7], see Figure 5.2.

21
To other CP side
RPB-S RPB-SRPB-S

S
R
P
B
I

S
R
P
B
I

S
R
P
B
I

onnections

C/DC converter which supplies the

Serial RP-Bus in Workstation -
A bridge between simulated and real AXE-10 hardware

5.2.2 Regional Processor I/O board (RPIO)

The RPIO board connects the RPHM backplane with the RPHMI (located in the CP) through

the RPHB (see Figure 5.2). To connect to the RPHB, the RPIO board contains differential

driver and receiver circuits [7].

5.2.3 Serial Regional Processor Bus Interface board (SRPBI)

The SRPBI is the board that physically connects the RPHM with RPB-S. The main functions

of the SRPBI board is buffering of signals towards RPs, frame generation, polling of RPs and

clock recovery. Furthermore it also handles buffering of signals from RPs and cross-

connection of the RPB-S to both CP sides. The cross-connection can be seen in Figure 3.6.

All of the functions above are implemented in a RAM based programmable logic device

(PLD) and it is loaded from EPROM (Electrically Programmable Read Only Memory) at

power-up [7].

5.3 A closer look at different hardware boards

The main part of the hardware investigation has been concentrated to find a PCI card or other

device that could communicate with the RPB-S. Below, three different solutions for

communicating with the RPB-S and one that communicate with RPHB are discussed. The

reason for the RPHB solution is only as a backup if the investigation would show that it is not

possible to use the solutions for RPB-S.

5.3.1 SIO PMC board

As a part of a project called SIO, at Ericsson Utvecklings AB (UAB), a PCI Mezzanine Card

(PMC, also called Compact PCI) was developed which incorporated two RPBSIC. The PMC

module is equipped with a compact PCI buss (this is actually what PMC means) that can be

connected to an ordinary PCI buss in a PC or Sparc workstation through an adapter [14][13].

A simple overview of this solution can be viewed in Figure 5.3.

22

Serial RP-Bus in Workstation -
A bridge between simulated and real AXE-10 hardware

Figure 5.3 - RPB-S solution

After a thorough investigation of the card, and especially the RPBSIC, it was obvious that this

card was not suitable. The reason is that the circuit has too many RP specific functions

implemented. Among these there are especially one function which makes it impossible to use

the card, the RPBSIC cannot send until it has received a poll frame (see poll recognition in

section 5.1.2). This makes it impossible to send a poll frame from that card to other RPs, and

therefore it cannot be used as an RPBH-S. The investigation has also shown that it is not

possible to alter this function in any way, to resolve the problem.

5.3.2 DSP board

Another solution to the problem would be to use a Digital Signal Processor board that would

be programmed to handle all the functionality for communicating on the RPB-S, i.e. NRZI-L

coding, clock recovery, framing etc. This solution would be very much alike the one with the

SIO PMC board, see Figure 5.3.

After the investigation of the driver/receiver circuit in part 3.1.1 it was found that the circuit

was commercially available. This makes it possible to use a DSP board if it uses this circuit.

Furthermore the board must fulfil some additional requirements, like being able to sample the

incoming bit stream with a rate of 50 M samples per second. This is required to ensure that

the clock is safely recovered.

23

Serial RP-Bus in Workstation -
A bridge between simulated and real AXE-10 hardware

After a thorough investigation of different DSP boards only one was found that used the

proper LVDS driver/receiver circuits [15], manufactured by Innovative Integration. This

board however could only sample the incoming bit stream with 28,5 M samples per second

which is not enough for clock recovery. Another disadvantage of this board is that it is very

expensive (112 000 SEK, including software development and debugging tools) [6]. In

addition to the very high price for the hardware this solution would also require a lot of man

hours for software development.

5.3.3 SERPENT RPB-S Emulator

This solution is slightly different from the two solutions above. It is a “box” that is connected

to a SCSI card placed in a PC or Sparc Workstation. This makes it possible to connect the

RPB-S to a portable computer if so is desired. An overview of this solution can be viewed in

Figure 5.4. The device is developed and manufactured by a section called LMF at Ericsson in

Finland.

Its main purpose is to act as a CP (SPU) from the RPs point of view and it is used mainly as a

testing and maintenance tool for different AXE-10 devices [17].

LMF has also developed software for both Linux and DOS and the Linux version also has a

graphical interface in which signals can be send and received. In their software package all

source code are included which is good because it can be reused when developing the bridge

between simulated and real environments.

Figure 5.4 - SERPENT solution

24

Serial RP-Bus in Workstation -
A bridge between simulated and real AXE-10 hardware

5.3.4 RPHM Interface board

The Regional Processor Handler Magazine Interface (RPHMI) board is normally used to give

an interface for the CP to the RPHB. Like the SIO PMC board this card also have a compact

PCI bus and can therefore be plugged into a PC or workstation using an adapter [9].

An advantage with this board is that UAB has used it in their development and therefore has

some software for it written for Solaris.

This solution requires more hardware because it cannot connect to the RPs directly, see

Figure 5.5. It requires an RPH that handles the RPB-S and this RPH is then connected to the

PC or Sparc workstation through the RPHMI board. This is the biggest disadvantage with this

solution because it leads to higher costs.

F

5.4 Investigation results a

This investigation has shown that th

emulator are the only possible o

modification (which is outside the s

RPHMI

igure 5.5 - RPHMI solution

nd Chapter review

e solutions with the RPHMI board and SERPENT RPB-S

nes that do not require any hardware construction or

cope of this project).

25

Serial RP-Bus in Workstation -
A bridge between simulated and real AXE-10 hardware

The outcome of this investigation is that the SERPENT solution is the one that fits best within

the project goals. Advantages with the SERPENT solution, compared with the other three

solutions are:

• It requires less hardware.

• It is developed for the purpose of being connected to a PC. The RPHMI board is not

because it is intended to be a part of the new APZ 212 40.

• The RPHMI board is still a prototype, while SERPENT is a released product.

• The SERPENT can be connected to a portable computer with SCSI, which broadens

the range of application.

• It includes a software package with source code written for Linux.

As mentioned in chapter two, the purpose with this project is to find out if it is possible to

connect a RP to SEA. The purpose is also, if suitable hardware are found, to implement the

RPB-S protocol stack and handle RP signals. Because SERPENT incorporates an RPH circuit

(i.e. RPBH-S circuit) the communication with SERPENT must be with the RPHB protocol,

over SCSI, instead of the RPB-S. This solution is rather an advantage than a drawback

because the RPH circuit in SERPENT handles all polling of RPs.

26

Serial RP-Bus in Workstation -
A bridge between simulated and real AXE-10 hardware

6 System design
This chapter is a description of the system design. It gives a detailed

description of how the system will be implemented.

6.1 Overall design

In the previous chapter it was decided that the SERPENT solution should be used. One of the

reasons for this choice was that it had software written for it, which could be reused. As

mentioned in chapter five, this software is written for the Linux platform, but SEA runs

mainly on the Solaris platform at the moment. Due to time limitation and the high cost for a

SCSI card for a Sparc Station, it was decided that the server should be implemented for the

Linux platform. This makes it necessary to have some kind of link between the computer

running SEA, and the computer that has the SERPENT connected to it. This link could easily

be accomplished with a SEA component called the Message Protocol Handler (MPH). This

solution also result in several advantages, like being able to connect any computer on the local

network to the RP Server with the real RP hardware, and that the RP Server software, that is

hardware dependent, never has to be rewritten if SEA is ported to another OS. A simplified

overview of the total design can be seen in Figure 6.1.

Figure 6.1 – Simplified overview of the system design

This solution will require two software components. The first component is the RP Server

software. This software should handle the hardware initialisation and the

27

Serial RP-Bus in Workstation -
A bridge between simulated and real AXE-10 hardware

connection/disconnection with the client. It also must handle polling of hardware and

forwarding of signals, both from the client to the hardware and from hardware to client. The

RP Server software could also include debugging tools, like logging and tracing of incoming

and outgoing signals.

The second software component is the software running in SEA. This software should be

implemented as a standard SEA component according to the COM model. The component

should act as an RPBH-S proxy, i.e. handle forwarding of signals both from the CP in SEA to

the RP Server, and from the RP Server to the CP. It should also handle buffering of signals,

debugging tools like signal trace and the connection/disconnection to/from the RP Server. A

complete overview of the system design can be seen in Figure 6.2

Computer running Server

MPH

RPB-S

RPRP RP

SCSI

SERPENT

TCP/IP

CP

Remote MPH

RPBHS Proxy

SEA

Network interface Network interface

 RP Server

SCSI card

Computer running SEA

Figure 6.2 - Overview of the system design

28

Serial RP-Bus in Workstation -
A bridge between simulated and real AXE-10 hardware

6.2 Requirements

This section will specify the requirements for each of the two software packages (the RP

Server and the RPBHS proxy). It will specify the different interfaces and functions that must

be implemented to make the software work properly.

6.2.1 Requirements for the RPBHS proxy software

For the component to comply with the COM model it must first of all implement three basic

functions. These are:

• QueryInterface(), which will tell other components which interfaces that this specific

component supports.

• AddRef(), called every time a new reference to the component is created.

• Release(), called when a reference to the component is released. When all references

are released the component could be removed from memory.

For the CP to be able to connect to the RPBHS proxy component, this component must also

implement the IRphbClient interface (see chapter 4).

Furthermore the component must implement the IMphRemoteResult and IMessageReception

interfaces. The IMphRemoteResult interface shall be used to handle the connection with the

MPH server and the connection errors. The IMessageReception interface should handle

incoming messages from RP Server.

Another very important interface that the RPBHS proxy must implement is the

ISimulationThread. This is necessary because the component needs to be executed and

scheduled by the scheduler in the SimCore (see chapter 4).

The two last interfaces that the component must implement are the IAxeMgrConnection and

ICommandEval. The IAxeMgrConnection should among other things handle the connection

29

Serial RP-Bus in Workstation -
A bridge between simulated and real AXE-10 hardware

and disconnection of the component to other components in the system, e.g. the connection

between the CP and the RPBHS proxy. The ICommandEval interface is used for handling of

commands sent to the component through the Simple User Interface (SUI) in SEA.

A graphical user interface for the component should also be implemented, where the user can

specify connection parameters.

Another requirement for the RPBHS proxy is that the Signals from the RP Server to the CP

should be buffered. This is because the signals should not be sent to the CP until the

component is scheduled. Signals from the CP to the RP Server do not need to be buffered, as

they are taken care of in the CP.

6.2.2 Requirements for the RP Server software

Because the RP Server software is a stand-alone Linux application, it does not need to

implement any interfaces, like the RPBHS proxy. However it must use the MPH functions in

the MPH library to make it possible for the RPBHS proxy to connect to it. Therefore the RP

Server must implement some callback functions used by the MPH library. These functions are

used e.g. for connection, disconnection, error handling and reception of messages.

The RP Server software also must initialise the SCSI device and make sure that the device is

not used by any other applications. The code for this functionality can be taken from the

original SERPENT software with some modification. Also the RPH circuit in SERPENT

must be initialised, and this code can also be taken from the original SERPENT software.

However care must be taken about what part of the initialisation the RP Server should

perform, and what part of the initialisation the CP does automatically when performing a

global system reset of the AXE-10 switch.

The RP Server software should use the existing device driver for the SCSI card that came

with the original SERPENT software. In this driver there also exist a TRANSMIT_DATA

function that should be used. This function sends RPH signals towards the hardware.

30

Serial RP-Bus in Workstation -
A bridge between simulated and real AXE-10 hardware

There should also be a logging functionality implemented in the RP Server. This function

should print the incoming and outgoing messages to screen or file for debugging purposes.

6.3 Design description

In the previous section there were a few requirements specified for the two components.

Described below, more exactly, is how the two components will be implemented.

6.3.1 Design description for the RPBHS proxy software

As mentioned, the RPBHS proxy component implements a few interfaces. As with the three

functions that are needed for the COM model, every interface might require that one or more

functions are being implemented in the component that uses it. In section 6.3.1.2 to 6.3.1.9,

there is a description of all interfaces that the RPBHS proxy component inherits and all the

functions that needs to be implemented in the component.

6.3.1.1 Component structure

The RPBHS proxy component consists of three classes:

• RpbhsProxy, this class inherits all classes with interfaces described in section 6.3.1.2

to 6.3.1.8.

• MsgQueue is used to buffer all messages, delivered by the MPH component, received

from the RP Server.

• RpbhsProxyFactory is used to create the RpbhsProxy instance. It inherits the

IClassFactory class with the interface described in 6.3.1.9.

6.3.1.2 IRphbClient interface

This interface requires three functions to be implemented:

• CpStateChange(CPSTATE), it is called by the CP component to notify the RPBHS

proxy that it has changed its state.

31

Serial RP-Bus in Workstation -
A bridge between simulated and real AXE-10 hardware

• SpuCloseDown(IUnknown *), it is called by the CP when it is closed down .The

RPBHS releases its pointer to the CP.

• PendingCpRpSignal(), it is called by the CP to increase a counter named

pendingCpRpSignal, by one, every time the CP has a signal to send towards a RP.

6.3.1.3 ISimulationThread interface

This interface requires only one function to be implemented, it is the ThreadEntry (ULONG ,

LONG *) function. This function is called by the scheduler in the simCore (discussed in

chapter 4.1.2) every time the RPBHS component is allowed to execute. In this function the

RPBHS proxy does two things. First it checks if the CP has any signals to send to the RP.

This is done by checking the variable, pendingCpRpSignal, set by the function

PendingCpRpSignal(). If it is greater than zero the RPBHS component fetches the signals one

by one and sends them to the RP Server. Second, it checks if there are any messages in the

queue from the RP that are to be sent up to the CP. If there are, it empties them and returns

control to the scheduler. This function can be viewed in appendix E .

6.3.1.4 IAxeMgrConnection interface

As discussed in part 6.2.1, the IAxeMgrConnection interface is responsible for connection and

disconnection of components in SEA. It requires that four functions are being implemented to

work properly.

• GetNoOfConnArgs(const struck GUID &, int *), this function is called by the AXE

manager before it starts the component to see how many connection arguments the

RPBHS Proxy components can receive.

• GetConnArgs(const struct GUID &, long int, char **), returns the connection arguments

that the RPBHS Proxy component can receive.

• ConnectComponent(const struct GUID &, struct IUnknown *, long int, char **), is called

by the AXE manager when the RPBHS proxy connects with the CP component. In this

function the RPBHS proxy gets a pointer to the CP component. This pointer is used to

call the ConnectRpbh() function in the CP. The ConnectComponent function also sets

up a connection to the MPH component so that it can connect to the RP Server, and

thereby send/receive messages to/from it.

32

Serial RP-Bus in Workstation -
A bridge between simulated and real AXE-10 hardware

• DisconnectComponent(const struct GUID &, struct IUnknown *), this function is called

by the AXE manager when the RPBHS proxy no longer needs to be connected to the

CP component.

6.3.1.5 ICommandEval interface

This interface requires only one function to be implemented, it is the CommandEval(char *,

IUnknown *) function. In part 6.2.1 it is mentioned how a user can send commands to the

RPBHS proxy component. When a command is sent it is this function that is called. The

command is delivered in the cmd and it can be used to change parameters in the component.

6.3.1.6 IMessageReception interface

This interface handles the connection to the MPH component. It is used to send and receive

messages from/to the RP Server It is also used to trace signals, i.e. send the signals to a

window that prints the signals on the screen. To accomplish this it needs three functions in the

RPBHS proxy and they are:

• NewChannel(char *, MPH_REFIID , MPH_PeerHandle peer, MPH_ClientData,

MPH_ClientData *), this function is called by the MPH when a new channel has been

created. A handle to the MPH channel that was created is passed on to this function in

the peer argument.

• ChannelClosed(MPH_PeerHandle, MPH_ClientData), this function is called by the

MPH when the remote side has closed its connection.

• HandleMessage(MPH_PeerHandle , MPH_ClientData , int length, unsigned char

*message), when the MPH receives a message from the RP Server it (the MPH

component) calls this function. The message is passed on to the Proxy component in

the message variable and the message length in the length variable.

6.3.1.7 IMphRemoteResult interface

This interface is only used to connect to the MPH server in the RP Server, it is not used for

sending or receiving any messages.

33

Serial RP-Bus in Workstation -
A bridge between simulated and real AXE-10 hardware

• ConnectionClosed(unsigned int peerHandle, unsigned int clientData), is called by the

MPH when the RP Server has closed its connection.

• ConnectResult(unsigned int peerHandle, unsigned int clientData, MPH_RemoteResult

resultCode), the variable peerHandle contains a socket and it is past on as an

argument to the function SendMessage when sending messages to the RP Server.

6.3.1.8 Iconfig interface

To be able to configure the RPBHS Proxy component, so it connects to the RP server, it needs

some way of letting the user alter the component settings. This is easily done with the Iconfig

interface. It is mentioned in chapter 4.3 that SEA uses a configuration file when it sets up the

simulation. In this file it is possible to add information that is received and evaluated by the

Iconfig component and then sent to the correct component, in this case the RPBHS Proxy

component. The configuration as of today for the Proxy component can be viewed below and

the whole configuration file can be viewed in appendix D For an explanation of the

configuration below, see table Table 6.1.
1. config RPBH_0 {
2. connect-serpent -host viking -port 1331
3. sigtrace on rp2cp
4. sigtrace on cp2rp
5. }

Line no. Meaning

1 Tells the IConfig component to send the information to the RPHB_0 component.
This is in fact the RPBHS Proxy and in the beginning of appendix D it is shown
how the RPBH_0 is created and that it is of type RPBHSPROXY.

2 Tells the Proxy to set the connection variables so that it can connect to the RP
Server. The –host argument is followed by the hostname to the computer
running the RP Server, in this case the computer is named viking. The last
argument tells the Proxy which port the RP Server is listening on.

3 This command enables tracing of signal coming from the RP and passed on to
the CP. In Figure 4.3 it is shown how the tracing of signals can be viewed in a
window in SEA.

4 This command does the same thing as the one on line three with one exception.
It enables logging of signals from the CP to the RP instead of vice versa.

5 End of configuration of the RPBH_0 component.
Table 6.1- Explanation of SEA configuration for the RPBHS Proxy

34

Serial RP-Bus in Workstation -
A bridge between simulated and real AXE-10 hardware

6.3.1.9 IClassFactory interface

The RpbhsProxyFactory class uses the IClassFactory interface when it creates an instance of

the RpbhsProxy component when the proxy is created.

6.3.1.10 Internal functions in the RpbhsProxy class

These functions, which are described below, are internal functions in the RPBHS Proxy class.

• ConnectToRemoteServer(), is called when the Proxy component establishes a

connection to the RP Server.

• InitTcl(), is called when the Proxy component is created. In this function it is possible

to add more commands to the Tcl interpreter. This is done by adding the following

code, where ticInterp is a pointer to the interpreter
ticInterp->CreateCommand("sigtrace",

 (TIC_CmdProc*)SigTraceCmd,
 (TIC_ClientData)this,
 (TIC_CmdDeleteProc*)0);

If the command sigtrace is written into the Simple User Interface (SUI, mentioned in

chapter 4.3) in SEA the Tcl interpreter will call the SigTraceCmd function.

• SendRphbSignal(RPHBSIGNAL *), is used to send RPHB signals to the CP when they

are received from the RP Server.

• HandleRphbSignalTrace(RPHBSIGNAL *, int), this function is used to print the RPHB

signal, in the SEA log window, in a way that is easy to view and understand.

• HandleRpSignalTrace(int , CPRPSIGNAL *, int), is used to print CPRP signals in the

SEA log window. A CPRP signal is a signal that is used on the RPB-S, it is

encapsulated in the RPHB signal.

• HandleRpSignalTrace_MPH(int , CPRPSIGNAL *, int), in SEA there is also a special

window, not shown in chapter 4.3, that is used to look at signals from/to one or more

RPs. This function sends a CPRPSIGNAL to that window via the MPH.

• RPHBSIGNAL* ConvertCpRpSignalToRphbSignal(CPRPSIGNAL *, int), this function

adds the appropriate RPBH header to the CPRP signal.

• CPRPSIGNAL* ConvertRphbSignalToCpRpSignal(RPHBSIGNAL *), as mentioned

above, the CPRP signal is encapsulated in the RPHB signal. This function is used to

remove the RPHB header.

35

Serial RP-Bus in Workstation -
A bridge between simulated and real AXE-10 hardware

All functions below are Tcl functions and they are used to evaluate commands that are sent

from SEA through the SUI. All these functions take the same arguments and they are:

(ClientData , Tcl_Interp *interp, int argc, char *argv[]). The variable interp is a pointer to the

Tcl interpreter that is used to evaluate the command. Depending on what command is sent the

proper function is called. In variable argc the function gets the number of arguments passed to

it in the argv[] variable.

• friend int ListCmd, is used to list all commands supported by the RPBHS Proxy

component.

• friend int SigTraceCmdchar, is used to enable/disable the tracing of RPHB signals.

• friend int RpSigTraceCmd, this function enables/disables the tracing of CPRP signals.

• friend int ConnectSerpent, receives the connection parameters specified in the

configuration file and then it calls the ConnectRemote function in the Proxy class.

6.3.1.11 Functions in the MSGQueue class

The MSGQueue class is used for buffering of signals received from the RP Server. The

following functions are implemented in this class.

• BOOL insertElement(RPHBSIGNAL *), is used to insert a signal to the queue. It is

important to delete the signal after insertion to avoid memory leakage.

• RPHBSIGNAL *getElement(), returns the first signal in the queue. It is not necessary to

allocate any memory before calling this function. It simply removes the signal from

the queue and returns a pointer to it.

• int numberOfElements(), this function is used to see how many signals that the queue

containes.

• BOOL killEmAll(), is used to remove all signals from the queue.

6.3.2 Design description for the RP Server software

This section will in detail describe the functions needed in the RP server. The device driver

functions that followes the SERPENT software will also be given a brief description. The

server software is split into two files, RPBHSD.c and RPBHSD.h. The device driver is also

36

Serial RP-Bus in Workstation -
A bridge between simulated and real AXE-10 hardware

split into two files, dd.c and dd.h. The server software is then compiled into two .o files, dd.o

and RPHSD.o, and these files are then linked together to the final program. Here follows the

description of the most important functions in the server and device driver parts.

6.3.2.1 Functions in the RP Server

• int RPHInit(), this function initialises the RPH circuit in the SERPENT hardware. It will

reset some registers in the circuit, and set some other registers to normal start up

values. The function will also check the RPH circuit version. It must be four or higher,

otherwise the software will not support it. The return value will be zero on success or

error code on failure.

• void PollRPH(), this function will send a groupsearch order (see Appendix B) to check

if there are any messages available from any RP. If it is, the function will fetch the

messages and forward them on the MPH connection.

• int Init_scsi (unsigned char *device), the Init_scsi function is used for initialising the

SCSI device, and make sure no other program is using it. This is done through the use

of a lock file. The device argument is the device that should be used, e.g. /dev/sga for

the first generic SCSI device. The function will return zero on success and –1 on

failure.

• int DeleteLock(unsigned char *device), if the lock file already exists, the program will

try to delete it. This function is then used to delete the lock file. Returns zero on

success, negative value on failure.

• void Exit_ih(int sig), the purpose for this function is to catch the system signals

SIGINT, SIGTERM, SIGQUIT and SIGPIPE. If any of these signals are caught, the

function will be called and clean up before the program terminates.

• void openCallback(CONNECTION *conn, int ch, void *clientData), this is a callback

function for the MPH. It will be called when a new MPH channel has been opened.

The connection information that comes in the argument should then be saved for later

use e.g. when sending messages.

• void messageCallback(CONNECTION *conn, int ch, int length, unsigned char *message,

void *clientData), called each time a message arrives from the MPH channel. This

37

Serial RP-Bus in Workstation -
A bridge between simulated and real AXE-10 hardware

function should then forward the message on RPB-S, and maybe also log the signal to

file or screen depending on if logging is activated or not.

• void closeCallback(CONNECTION *conn, int ch, void *clientData), called when the

channel has been closed.

• void newConnectionCallback(int fd), this function is called each time there is a

connection on the server socket. However it does not mean that a communication

channel has been set up. Messages cannot be sent until a channel between the server

and the client has been set up.

• void errorCallback(CONNECTION *conn, char *name, char *errorMessage, void

*clientData), called when an error occur with the connection. This function must then

clean up the mess and make sure that a connection can be re-established.

• void printSignal(RPHBSIGNAL rphbSignal,int length), prints an RPBHS signal in a

formatted way on the screen and to file. Used for logging of incoming and outgoing

signals.

• int setupMph(), this function sets up the MPH connection. It will first create a listening

server socket, and then register a listener in the MPH. This is needed to only allow a

specific component to be able to connect to the server. It will also register the callback

functions in the MPH. Returns –1 on error, zero otherwise.

• int setupSerpent(), will only call Init_Scsi and RPHInit functions described above and

make sure everything went well. Returns –1 on error, zero otherwise.

• int main(int argc,char **argv), main function in the program. Calls all the initialising

functions and parses the program arguments. Thereafter the server waits for incoming

connections.

6.3.2.2 Functions in the Device driver

This functions was included in the SERPENT software package and they are not altered in

any way.

• unsigned char *INIT_SCSI_DD(const unsigned char *scsi_device), the purpose of this

function is to initialise the SCSI device. Used by the Init_scsi function described

38

Serial RP-Bus in Workstation -
A bridge between simulated and real AXE-10 hardware

above. Takes the SCSI device as argument and returns a string with a status message,

e.g. “In use!” if the SCSI device is used by another application.

• unsigned char *Inquiry (void), this function is used to request vendor, brand and model

from the SCSI device. If the SERPENT hardware is set up correctly this function

should return:

Vendor: LMF

Brand: Serpent

Model: 1

• int TRANSMIT_DATA(unsigned short *data, char nu_bytes), transmits an RPBH-S

signal towards the hardware. This function is used to forward the signals from the

MPH channel to the SERPENT hardware, so that they eventually reach the RPH or RP

(depending on order type). Returns zero on success.

• int RECEIVE_DATA(unsigned char *data, char *nu_bytes), this function retrieves data

from the SERPENT. It is used to fetch signals from the hardware and forward them on

the MPH channel. Returns Zero on success and the pointers in the argument points to

the data buffer (char *data), and number of bytes in data buffer (char *nu_bytes).

6.4 Chapter review

• Due to time limitation and the high cost for at SCSI card for a Sparc Station, it was

decided that the server should be implemented on the Linux platform.

• The MPH component in SEA will be used for the communication between the RP

server and SEA

• Besides the RP server software, an RPBH-S proxy component for SEA was also

designed.

• The RPBH-S proxy component should forward signals between the CP and the RP

server. It also handles buffering of signals.

• The RP server handles forwarding of signals between the RPBH-S proxy and the

serpent hardware.

39

Serial RP-Bus in Workstation -
A bridge between simulated and real AXE-10 hardware

40

Serial RP-Bus in Workstation -
A bridge between simulated and real AXE-10 hardware

7 Conclusions
The purpose of this project was to find out if it was possible to use a commercially available

communication card or some other device for a PC or a Sparc workstation to implement a

server for the Serial Regional Processor Bus (RPB-S).

Our conclusion is that there exists at least two ways of doing this. One is the SERPENT RPB-

S emulator developed by Ericsson LMF in Finland, and this solution was considered as the

most suitable for this application. The second possible solution is the RPHMI PMC but we

regarded this alternative to be more complex than the SERPENT solution. It would also, most

likely, been more expensive.

The purpose of our project was also, if suitable hardware was found, to implement the

software required for communicating between a simulated CP and a real RP. This is not

finalized but the design for the software is. We do not consider this to be a failure as the main

goal was to find suitable hardware and this was accomplished.

7.1 Experiences

When writing this report we discovered that the pre study is very important and it took a large

part of the total project time. Since the hardware investigation took such a long time we

therefore did not have time to finish the implementation.

7.2 Problems

In our search for information about hardware, we experienced that it was hard to find

documents and get in contact with the right persons. The main reason for this is that Ericsson

is such a huge company and many hardware components were therefore designed in other

countries. For example the SERPENT is designed and manufactured by Ericsson in Finland,

but we heard about it, by chance, from a person at Ericsson in Spain.

41

Serial RP-Bus in Workstation -
A bridge between simulated and real AXE-10 hardware

7.3 Recommendations

We recommend that this solution should be fully implemented, because we belive it would

broaden the range of application for SEA.

42

Serial RP-Bus in Workstation -
A bridge between simulated and real AXE-10 hardware

8 References

[1] Bengt Ossfeldt, RPB-S Conceptual description, 35/0062-15/FCP1050001 Uen, 1997

[2] Christer Gillen, Network layer protocol on the serial RP-bus, 2/155 19-APZ 211 11 Uen, 1999

[3] Christer Gillen, The physical and data link layers on the serial RP-bus, 1/155 19-APZ 211 11 Uen, 1998

[4] Elizabeth Mossberg, RP-Bus Serial Interface with connected terminals, UAB/B/X-97:146 Uen, 1997

[5] Ericsson Telecom AB, AXE-10 APT, EN/LZT 101 1274 R1A, 1992

[6] Innovative Integration, Product catalog 2000, http://www.innovative-dsp.com, 2000

[7] Jeff Triplet, Regional Processor Handler, 10262-CNZ 211 264, 1996

[8] Jeff Triplet, RPH bus for RPB-S in APZ 212 2X, 2/15519-CRZ 211 03 Uen, 1998

[9] Jeff Triplet, RPHM Inteface in APZ 212 40, 1/15941-3/FCP 101 0508/F Uen, 1999

[10] Kåre Särs, RPB-S Emulator, 19817-LPAH 101 102 Uen, 2000

[11] Lars Forsberg, Description of CAR 101 02 SBIC, 1551-CAR 101 02 Uen, 1997

[12] Laurie Duffy, Bit synchronization block in RPBHS, 13/102 62-CDA 101 01 Uen, 1997

[13] Leif Carlsson, Design specification for SIO PMC board, 102 62-ROY 119 2044/1 Uen, 1999

[14] Leif Carlsson, Design specification: SIO PMC GLUE CIRCUIT, 102 62-RON 109 625 Uen, 1999

[15] National semiconductors Corp., 3V LVDS Quad CMOS DLD, http://www.national.com, 1999

[16] Peter R. Torpman, SEA system description, 1551-CRL 119 007, 2000

[17] Sven-Ola Komstadius, 3V LVDS differential line driver, 1301-RYT 109 126/4C Uen, 1997

[18] Sven-Ola Komstadius, 3V LVDS quad differential line receiver, 1301-RYT 109 127/4C Uen, 1997

43

Serial RP-Bus in Workstation -
A bridge between simulated and real AXE-10 hardware

A Appendix. Abbreviations

APZ Not an abbreviation, internal Ericsson code.

AXE Not an abbreviation, internal Ericsson code.

CP Central Processor

DSP Digital Signal Processor

EIN Ericsson Infotech

EMRP Extension Module RP

EPROM Electrically Programmable Read Only Memory

FCS Frame Check Sequence

HDLC High-level Data Link Control

IP Internet Protocol

IPU Instruction Processing Unit

ISDN Integrated Services Digital Networks

LVDS Low Voltage Differential Signalling

MML Man Machine Language

MPH Message Protocol Handler

NRM Normal Response Mode

NRZI-L Non Return to Zero Inverted (L means invert on zero)

PC Personal Computer

PCI Peripherical Component Interconnect

PLD Programmable Logical Device

PLMN Public Land Mobile Networks

POU Power Unit

PSTN Public Switched Telephone Networks

RAM Random Access Memory

RP Regional Processor

RP4 Serial version of RP (called RP in the report)

RPB-S Serial RP Bus

RPBH RP Bus Handler

44

Serial RP-Bus in Workstation -
A bridge between simulated and real AXE-10 hardware

RPBSIC RP Bus Serial Interface Circuit

RPH RP Handler

RPHB RP Handler Bus

RPHM RPH Magazine

RPHMI RPHM Interface

RPIO RP Input Output board

SBIC Serial Bus Interface Circuit

SEA Simulator Environment Architecture

SPU Signal Processing Unit

SRPBI Serial RP Bus Interface

SUI Simple User Interface

TCP Transmission Control Protocol

UAB Ericsson Utvecklings AB

45

Serial RP-Bus in Workstation -
A bridge between simulated and real AXE-10 hardware

B Appendix. Signals and Orders

Message name Description

00 cccc 0000 to 3C00 Data
Signal from RP
cccc=Code from RP

01 0001 4400 No_Answer
No answer received
to single poll of one
RP

01 0010 4800 Poll_Answer Signal from RP after
single poll

01 0100 5000 Register Contents of one
register in RPBH-S

01 0101 5400 Block Response

01 0110 5800 Idle_Buffer
1 or 2 output buffers
in RPBH-S have
become idle

01 0111 5C00 Internal_Error Errror in RPBH-S
01 1000 6000 External_Error Error on RPB-S
01 1001 6400 Discarded_Signal
01 1010 6800 RP_Ack

01 1011 6C00 RP_Ack
Retransmitt=1

01 1100 7000 Deblock_Response

01 111x Reserved for internal
use in SPU

Signal to an RP have
been acknowledged

Signals from RPBH-S to the CP
Message Code
(binary)

Message Header
RPBH=0

From RPBH-S

46

Serial RP-Bus in Workstation -
A bridge between simulated and real AXE-10 hardware

Order Code (bin) Header (RPBH=0) Functions for RPBH-S L Gr Gl

00 0tbs 0000 to 1C00

Send Signal
s=Simulate SB/SE state
b=Broadcast to all RPs
t=Transparent

X

00 100x 2000 or 2400 Send signal with resend
x=Retransmission Ack. X

00 101x 2800 or 2C00 Echo Test x=Transparent X

00 110e 3000 or 3400 Set Bus side e=Executive X

00 1110 3800 Reserved X
01 0000 4000 Reset Link Protocol X
01 0001 4400 Start polling X
01 0010 4800 Stop polling X
01 0011 4C00 Stop fetching X
01 0100 5000 Single poll of one RP X
01 1001 6400 Clear outbuffers X

01 101s 6800 or 6C00 Block an RP s=simulate
SB/SE state X

01 1100 7000 Deblock an RP X
01 1101 7400 Read register X
01 1110 7800 Write register X
01 1111 7C00 RPH test X
10 1100 B000 Reset RPBH X
10 1101 B400 Reload configuration X
10 1110 B800 Write register X
11 0000 C000 Reset Link Protocol X
11 0001 C400 Start polling X
11 0010 C800 Stop polling X
11 0011 CC00 Stop fetching X
11 1001 E400 Clear outbuffers X
11 1100 F000 Reset RPBH X
11 1101 F400 Reload configuration X
11 1110 F800 Group search X
11 1111 FC00 Signal fetch X

Orders to RPBH-S from the CP

47

Serial RP-Bus in Workstation -
A bridge between simulated and real AXE-10 hardware

C Appendix. SEA configuration file 1

/proj/emudumps/21230/apz11.0/apz11.0/config_rp.axe
--
This is a configuration file for SEA.
It describes which components that should be created and how they should
be connected inbetween themselves to simulate an AXE-10
To run SEA on this configuration file give the following command:
sea -config /proj/emudumps/21230/apz11.0/apz11.0/config_rp.axe
--
This file has been automatically generated by SEA Configuration Wizard R2E
Executed by einperd@ksba8e Fri May 4 10:06:55 MET DST 2001
--

Creating the CP...
#==
create CP21230.CP21230.1 CP

Creating RPBHs...
#==
create RPBH.RPBHS.1 RPBH_0

Creating RPs...
#==
create RPSIM.RPV2.1 RP_1
create RPSIM.RPV2.1 RP_4
create RPSIM.RPG2A.1 RP_7
create RPSIM.RP4S1A.1 RP_10
create RPSIM.RP4S1A.1 RP_19

Creating RP software components...
#==
create RPCMSIM.RPFDR.1 RP_7_31
create RPCMSIM.RPMBHR.1 RP_10_28
create RPCMSIM.RPMMR.1 RP_10_29
create RPCMSIM.RPFDR.1 RP_10_31
create RPCMSIM.RPMBHR.1 RP_19_28
create RPCMSIM.RPMMR.1 RP_19_29
create RPCMSIM.RPFDR.1 RP_19_31

Connecting RPBHs to the CP...
#==
connect RPBH_0 CP IRphbServer 0

Connecting RPs to their RPBHs...
#==
connect RP_1 RPBH_0 IRpbSServer 1
connect RP_4 RPBH_0 IRpbSServer 4
connect RP_7 RPBH_0 IRpbSServer 7
connect RP_10 RPBH_0 IRpbSServer 10
connect RP_19 RPBH_0 IRpbSServer 19

48

Serial RP-Bus in Workstation -
A bridge between simulated and real AXE-10 hardware

Connecting RP software components to their RP...
#==
connect RP_7_31 RP_7 IRpCmServer 31
connect RP_10_28 RP_10 IRpCmServer 28
connect RP_10_29 RP_10 IRpCmServer 29
connect RP_10_31 RP_10 IRpCmServer 31
connect RP_19_28 RP_19 IRpCmServer 28
connect RP_19_29 RP_19 IRpCmServer 29
connect RP_19_31 RP_19 IRpCmServer 31

Configuring the CP...
#==
config CP {
 set-processor-configuration -model 21230 -frequency 1
 set-memory-configuration -dsdevice 3 -dsboards 8 -prsrange 1
 load-dump /home/einperd/exjobb/apz11_rp.21230_emudump.gz
}

49

Serial RP-Bus in Workstation -
A bridge between simulated and real AXE-10 hardware

D Appendix. SEA configuration file 2

/home/qinxfca/sea/rpbhsproxyconfig.axe
--
This is a configuration file for SEA.
It describes which components that should be created and how they should
be connected inbetween themselves to simulate an AXE-10
To run SEA on this configuration file give the following command:
sea -config /home/qinxfca/sea/config.axe
--
This file has been automatically generated by SEA Configuration Wizard R3A
Executed by qinxfca@vanguard Thu Apr 19 10:26:28 MET DST 2001
--

Creating the CP...
#==
create CP21230.CP21230.1 CP

Creating RPBHs...
#==
create RPBHSPROXY.RPBHSPROXY.1 RPBH_0

Creating RP software components...
#==
create RPCMSIM.RPFDR.1 RP_7_31
create RPCMSIM.RPMBHR.1 RP_10_28
create RPCMSIM.RPMMR.1 RP_10_29
create RPCMSIM.RPFDR.1 RP_10_31
create RPCMSIM.RPMBHR.1 RP_19_28
create RPCMSIM.RPMMR.1 RP_19_29
create RPCMSIM.RPFDR.1 RP_19_31

Connecting RPBHs to the CP...
#==
connect RPBH_0 CP IRphbServer 0

Configuring the RPH...
#==
config RPBH_0 {
 connect-serpent -host viking -port 1331
 sigtrace on rp2cp
 sigtrace on cp2rp
}

Configuring the CP...
#==
config CP {
 set-processor-configuration -model 21230 -frequency 1
 set-memory-configuration -dsdevice 3 -dsboards 8 -prsrange 1
 load-dump /home/einperd/exjobb/apz11_rp.21230_emudump.gz
}

50

Serial RP-Bus in Workstation -
A bridge between simulated and real AXE-10 hardware

E Appendix. The ThreadEntry function

/* Logging and sending of signals is only allowed from/to RPs 7, 10 and 19 due to testing */

STDMETHODIMP RpbhsProxy::ThreadEntry (ULONG exeTime, LONG *resTime)
{
 CPRPSIGNAL *cprpSignal;
 RPHBSIGNAL *cp2rpSignal;
 RPHBSIGNAL *rp2cpSignal;
 int rpNumber = 0;
 HRESULT hr;
 int bitField;
 unsigned char *tmpString;

 (void) exeTime; /* Avoid warnings */

 /* First check if there are any signal from the CP component */

 while ((pendingCpRpSignal > 0) && (waitForIdle == FALSE))
 {
 hr = cpPointer->FetchCpRpSignal(rpbhNumber,&cp2rpSignal);

 if(cp2rpSignal == NULL || FAILED(hr))
 {
 REP_TRACE(TRACE_AXE_MISC,("RPBHS_Proxy: Fetched a NULL pointer as a signal from
CP\n"));
 pendingCpRpSignal = 0;
 break;
 }

 rpNumber = GET_INTERNAL_RPNUMBER(cp2rpSignal);
 bitField = GET_ORDER_CODE(cp2rpSignal);
 if(rpNumber == 10)
 {
 if((bitField == XXBLOCK) || (bitField == XXDEBLOCK))
 {
 waitForIdle = TRUE; /*This is done because when the CP has sent an XXBLOCK or
 XXDEBLOCK it is not allowed to send any signals until it has
 received a blockresponse or deblockresponse from the RP */
 }
 }

 /*Logging of signals*/
 if (cprpTrace && ((rpNumber == 7) | (rpNumber == 10) | (rpNumber == 19)))
 HandleRphbSignalTrace(cp2rpSignal, 1);

 cprpSignal = ConvertRphbSignalToCpRpSignal(cp2rpSignal);
 /*
 if(tracePeer) {
 HandleRpSignalTrace_MPH(rpNumber, cprpSignal, 1);
 }

51

Serial RP-Bus in Workstation -
A bridge between simulated and real AXE-10 hardware

 if((rpSignalTrace[rpNumber] || cprpTrace) && ((rpNumber == 7) | (rpNumber == 10) | (rpNumber
== 19))) {
 HandleRpSignalTrace(rpNumber, cprpSignal, 1);
 }
 */
 MEM_free(cprpSignal);
 /*End logging of signals*/

 if(serverConnection) /*Check if there is a connection to the RP server*/
 {
 tmpString = (unsigned char*)cp2rpSignal->data;

 if((rpNumber == 7) | (rpNumber == 10) | (rpNumber == 19))
 {
 mphPointer->SendMessage(remotePeer, cp2rpSignal->length * 2, tmpString);
 }
 }

 /* Free allocated memory */
 MEM_free(cp2rpSignal);
 pendingCpRpSignal--;
 }

 /* Second check if any RP-CP signals is ready */

 while(inBuffer.numberOfElements() > 0) /*Check if there is any signals in the queue*/
 {
 rp2cpSignal = inBuffer.getElement(); /*Get first signal in queue*/

 /*Logging of signals*/
 cprpSignal = ConvertRphbSignalToCpRpSignal(rp2cpSignal); /*Convert RPHB signal to CPRP
 for logging purpose*/
 rpNumber = GET_INTERNAL_RPNUMBER(rp2cpSignal);

/*
 if(tracePeer) {
 HandleRpSignalTrace_MPH(rpNumber, cprpSignal, 0);
 }

 if((rpSignalTrace[rpNumber] || rpcpTrace) &&((rpNumber == 7) | (rpNumber == 10) | (rpNumber ==
19))) {
 HandleRpSignalTrace(rpNumber, cprpSignal, 0);
 }

 if (rpcpTrace) {
 HandleRphbSignalTrace(rp2cpSignal, 0); /*This function prints the tracing of signals in the SEA
 log window */
}
*/
 MEM_free(cprpSignal);
 /*End logging of signals*/

 if(rp2cpSignal != NULL)
 {
 if(GET_ANSWER_CODE(rp2cpSignal) == RphAdmin_IdleBuffer_Serial ||

52

Serial RP-Bus in Workstation -
A bridge between simulated and real AXE-10 hardware

 GET_ANSWER_CODE(rp2cpSignal) == RphAdmin_BlockResponse ||
 GET_ANSWER_CODE(rp2cpSignal) == RphAdmin_RpbhState_DeblockResponse)
 {
 waitForIdle = FALSE; /* If the Proxy has received an idlebuffer, blockresponse or deblock-
 signal from the RP it is ok for the CP to send signals towards
 the RPs again. */
 }

 SendRphbSignal(rp2cpSignal); /* Send signal to CP */
 }
 else
 {
 REP_PRINTF(("RPBHS Proxy: Fetched a NULL pointer as signal from inBuffer\n"));
 }
 }

 *resTime = 0;
 return S_OK;
}

53

