
Computer Science

Per Sundberg, Karolina Åkerlund

Web Based Multimedia Communication with

Session Initiation Protocol (SIP)

Bachelor’s Project

2002:08

Web Based Multimedia Communication with

Session Initiation Protocol (SIP)

Per Sundberg, Karolina Åkerlund

c© 2002 The author(s) and Karlstad University

This report is submitted in partial fulfillment of the requirements

for the Bachelor’s degree in Computer Science. All material in

this report which is not our own work has been identified and

no material is included for which a degree has previously been

conferred.

Karolina Åkerlund

Per Sundberg

Approved, June 4, 2002

Advisor: Eivind Nordby

Examiner: Martin Blom

iii

Abstract

Session Initiation Protocol (SIP) is a signaling protocol, used, for example, in multimedia

conferences. SIP is expected to be the dominating solution for telecommunication solutions

over the Internet in a near future. This report describes a bachelor’s project at Ericsson

AB. The assignment was to investigate if a connection could be established between a web

site user and a SIP user. That is, we were supposed to build a web site, where a web user

could log on, and from there establish a connection with a SIP user. The major question

that we had to ask ourselves, and to investigate, was how to link the HTTP protocol with

the SIP protocol.

Even though we had some problems, we finally managed to establish a connection

between the web user and the SIP user in the end. We almost managed to carry out all of

the requirements that were set, but not quite since the signaling between the two parties

was not fully completed. We came to the conclusion that a connection between HTTP and

SIP is indeed possible.

v

Acknowledgements

We like to thank our advisor Robert Locke at Ericsson AB for his professional support and

advice. You really helped us approach the problems in a structured way. Thank you.

We also like to thank our advisor Eivind Nordby at Karlstad University for his support

with our report and way of analysing things. You made us think in a critical way that

helped us to proceed in our work in the right direction. Thank you.

vi

Contents

1 Introduction 1

1.1 The Purpose and Background of this Project 1

1.2 SIP Description . 2

1.3 The Goal of this Project . 5

1.4 How a Fully Completed System is Supposed to Work 6

1.5 The Scope of this Project . 6

1.6 The Chapter Structure of this Report . 7

2 Prerequisites and Requirements 8

2.1 Requirements on the Development Environment 8

2.2 Requirement Specification . 8

2.2.1 MUST be Fulfilled . 9

2.2.2 SHOULD be Fulfilled . 9

2.2.3 COULD be Fulfilled . 10

3 System Usage 10

3.1 Use Cases . 10

3.2 Scenarios . 12

3.2.1 Change User Profile . 12

3.2.2 Make a Call - Version 1 . 12

3.2.3 Make a Call - Version 2 . 13

3.2.4 Make a Call - Version 3 . 13

4 System Description 13

4.1 System Overview . 14

4.2 The Different Parts in the System and how they interact 15

4.2.1 The Web Site . 15

vii

4.2.2 The SIP Stack . 15

4.2.3 The Link Between the Web Site and the SIP Stack 15

4.2.4 The Interaction between the System Parts 16

5 Description of the Design of our application 17

5.1 The Design of the Web site . 18

5.1.1 Graphical Design of the Web Site 18

5.1.2 Design of the Web Site Engine . 20

5.2 Design of the User Agent for oSIP . 23

5.2.1 SIP Functionalities . 24

5.2.2 oSIP . 29

5.2.3 Our User Agent - Websip . 30

5.3 Design of the Link between the Web Site and Websip 32

5.3.1 Why We had to Link C and Perl 32

5.3.2 The Tool for the Task - SWIG . 33

5.3.3 Why We have chosen SWIG . 35

5.3.4 In Depth: SWIG . 36

6 Implementation and Testing 37

6.1 Implementation and Testing of the Web site 38

6.1.1 Implementation and Testing of the Graphical Part of the Web site . 38

6.1.2 Implementing the Web Site Engine 38

6.1.3 Testing the Web Site Engine . 41

6.2 Implementation and Testing the User Agent Using oSIP 41

6.2.1 Implementation of Websip . 42

6.2.2 Testing of Websip . 44

6.3 Implementation and Testing of the Link between the CGI-script and Websip 46

7 Possibilities for the Web User to Receive Incoming Calls 49

viii

8 Problems 53

8.1 Problems that have Occurred . 53

8.1.1 Problems with the Web Site . 53

8.1.2 Problems with Websip . 54

8.1.3 Problems with Linking C and Perl 54

8.2 What we could have done Differently . 55

9 Possible Future Developments 55

9.1 Development of the Web Site . 56

9.2 Development of the Whole System . 56

9.2.1 Improving the Interaction between the Web Site and the User . . . 57

9.2.2 Considerations when Expanding Websip 58

9.2.3 Other Alternatives to Our System 59

10 Conclusions 60

References 61

A List of Terms 63

B GNU Build System 65

B.1 Introduction . 65

B.1.1 Usage . 66

C Workflow and Time Schedules 67

C.1 Workflow . 67

C.2 Time Schedules . 68

D Other Options to SWIG 71

ix

List of Figures

1.1 Overview of concepts that are involved in SIP 3

1.2 Internet protocol stack with SIP included 4

1.3 How the web user communicates with a SIP user 5

3.1 Use cases included in our system . 11

4.1 System overview . 14

4.2 The Interaction between the parts in the system. 17

5.1 The web site part in the system . 18

5.2 The window where the user logs on . 19

5.3 This is Home, where the the user is taken when he is logged on 20

5.4 This is Make Call, where the user can make a call to a SIP user 21

5.5 This is Your Profile, where the user can look at/change his profile 22

5.6 This is Address Book, where the user can look in his address book 23

5.7 The SIP part in the system . 24

5.8 A SIP session through a SIP server . 25

5.9 The data flow between the two SIP users in the session 26

5.10 The interaction between Websip and oSIP 31

5.11 The part in the system for linking the web site with Websip 33

5.12 The procedure of creating a wrapped object in SWIG 35

5.13 The interaction between scripting languages and C/C++ through SWIG

generated wrapper code . 37

6.1 Example of a user database . 41

7.1 An example of a normal SIP session. The callee application and the SIP

functionalities is present on the same computer 50

7.2 Scenario where a normal SIP user tries to call a Websip user. The SIP

functionalities is present on the web site 51

7.3 Client being notified of an incoming call through Java 52

x

9.1 Multiple users accessing a SAP in the oSIP stack 59

C.1 Our time schedule in the beginning . 69

C.2 Our time schedule in the end . 70

xi

1 Introduction

This report describes a ten-credit bachelor’s project in computer communication. Session

Initiation Protocol(SIP) is an application layer protocol that is intended for establishing

a multimedia connection between two or more users. The task involved creating a web

application, that is, a web site where a user can log on to his own account and make an

outgoing call to a SIP user with that user’s SIP address. This report describes how we

managed to implement this application on the basis of the requirements that where set up.

This introduction chapter will start with a description of the purpose and background

of this project, which is followed by a SIP description. Next, the goal for this project and

how the system should work, is described. Further the areas, that were decided not to be

included in this project, are brought up. Finally, the structure of this report is explained.

1.1 The Purpose and Background of this Project

When this project started, Ericsson AB, former Ericsson Infotech(EIN), in Karlstad had

already used SIP for some time, but wanted to extend their knowledge. Since SIP is

expected to be the dominating solution for telecommunication over the Internet in a near

future, they wanted to examine in what different ways the protocol could be used, starting

with examining the possibilities of linking SIP with HTTP. Through our web application,

which we call a Websip application, Ericsson AB wanted to make it possible for a caller to

be independent of SIP and still have the option to call another SIP user. With our web

application, a user should, from any computer be able to establish a session with a SIP user

and communicate with him through, for instance Real-time Transport Protocol(RTP).

This project is just a start of developing such an application. We have prepared a

foundation of ideas and constructions for future development.

1

1.2 SIP Description

SIP is the protocol that we based our project on. According to Ericsson AB, SIP will

probably be the dominating telecommunication solution over the Internet in a near future.

SIP is an application-layer protocol for signaling, and can create, change or terminate

multimedia sessions between two or more participants. A SIP session consists of a number

of SIP connections. A SIP session is a SIP call from the beginning to the end involving two

or more SIP users. A SIP connection is a connection between two users made using the

SIP protocol. The protocol supports the setup of all kinds of media transfer, for example

text, sound, or image.

SIP also makes it possible to add new connections dynamically within an already es-

tablished session. For example, if two users have created a connection with sound as the

medium, but want to add video to their session, this is possible through the creation of a

new connection with video as the medium. This connection is then added to the already

existing session. It is also possible to add more users to a session, which would create

conferences.

When the SIP session is established, a multimedia protocol like RTP or any other Real-

Time Transport Protocol(RTCP)can be applied, which takes care of the actual transmis-

sion of data. During the data transfer, SIP is waiting in the background until a user wants

to end his call, add another medium/user etc. When this happens, SIP is reactivated to

manage the desired change through negotiations.

Concepts that are involved in SIP can be seen in Figure 1.1 and are described below.

• To establish a connection a client is connecting to a server, and when the connec-

tion is terminating the two parties are disconnecting.

• Regarding the actual transmission of voice, text, mail, payments, ftp etc, non SIP

based or SIP based programs may be used.

• The caller can have multimedia programs or non-multimedia programs on his

2

computer. SIP does not necessarily involve the use of multimedia.

• When communicating over the internet SIP addresses, alternatively operator nets

or Signal System 7(SS7) may be used.

Figure 1.1: Overview of concepts that are involved in SIP

SIP is used with several others protocols. User Datagram Protocol(UDP) or Transmis-

sion Control Protocol(TCP) and Internet Protocol(IP) is used to transport the packages.

To read more about these protocols we refer to computer communication books, for exam-

ple [21].

The Session Description Protocol(SDP) is also used with SIP. This protocol transmits

information about the media streams and other relevant information used in the SIP ses-

3

sions. This information is for instance what media type is used and the session time. For

more information on SDP, please refer to RFC2327, which is found at [11].

As mentioned earlier, SIP is also used with a multimedia protocol to transmit the traffic

between the participants. The protocol for this purpose is usually RTP or RTCP. Refer to

[20] for more information about these protocols.

Figure 1.2: Internet protocol stack with SIP included

Figure 1.2 shows where SIP and its surrounding protocols are located in the Internet

Protocol stack. The application layer is divided in two parts, where the left hand side

protocols take care of the media applications, and the right hand side protocols take care

of the signaling applications. It is on the right hand side, above SIP, that we have built

our application. TCP and UDP take care of the transportation of the packages, and in the

Internet layer, below them, the IP protocol is present.

4

1.3 The Goal of this Project

Our main goal was to implement a solution to be able to communicate between HTTP

and SIP, and to examine different approaches to communicate from SIP to HTTP. The

sub goals was to construct a web site, where a user could log on to a personal account with

stored information about him, and from there establish an outgoing call to a SIP user with

that user’s SIP address. Further, we had to examine different solutions for the web user

to receive an incoming call from a SIP user, through the web site.

Figure 1.3: How the web user communicates with a SIP user

5

1.4 How a Fully Completed System is Supposed to Work

This section describes how the system, when it is fully completed, is supposed to work. So

everything that this description includes is not implemented in our project. Please refer

to Figure 1.3 when reading further.

A web user logs on to our web/SIP server, which is present at a web server. When the web

user chooses to make an outgoing call to a SIP user, the web/SIP server establishes the SIP

connection to a SIP user. The arrows 1 to 3 illustrate this. When the signaling between

the two parties is done the web user and the SIP user can talk to each other directly.

This is shown by arrow 4. This communication does not go via the web/SIP server. The

reason is, that they are using some other protocol, like RTP, for the media transfer and

SIP is not involved in that part of the session. If the web user application ends the data

transfer or if the web user wishes to change the session, the SIP session is also supposed

to be changed, The Web/SIP server has to be notified. This is done by the application

notifying the Web/SIP server as seen in arrow 5 version 2(5v2) and the user clicking the

desired options in the browser shown in arrow 5 version 1(5v1), respectively. As seen on

the dashed markings, the web/SIP server is located on the internet, but the person whom

to call can be located on any other net that can be reached through a SIP address.

1.5 The Scope of this Project

We have not put in much effort into constructing a good-looking web site with many

functions, therefore only the most necessary functions are included. Further, we have not

taken security into consideration when constructing our system. We have also limited the

number of participants in a session to two.

6

1.6 The Chapter Structure of this Report

The document is intended to be understandable by a reader whom has at least two years

of studies in the field of computer science. To give the reader a better insight in what

we were supposed to accomplish with this project, we will discuss the preconditions and

requirements put on this project in Chapter 2. In Chapter 3 we give an overall description

on how to use our application so that the reader and possible user of the application gets

an overview on how it works. This overall description serves as a background for Chapter

4 where we describe our whole system, and how the different parts in the system interacts

with each other. Then Chapter 5 gives a more complete description of the different parts of

the system and how we have designed them. In Chapter 6, we describe how we implemented

and tested these different parts and how we made the whole system work. We examine

the possibilities to receive incoming SIP calls from SIP users on the web site in Chapter

7 and in Chapter 8 problems that occurred during our work with the project is discussed.

Chapter 9 discusses future development possibilities and finally we discuss our conclusions

regarding the work as a whole in Chapter 9.

A clarification to words written that are written in italic during the report can be

found in appendix A. Appendix B describes a tool called the GNU build system that was

used developing parts of our application. Appendix C contains our first and our last time

schedule, showing what we, when the project commenced, thought we would have time

to accomplish, and what we really did have time to accomplish in the end. Finally, in

appendix D we describe alternative tools that could have been used in this project, but

never were.

To make this bachelor’s project easier to read we have sometimes chosen to refer to the

user of our application, with he, him or his.

7

2 Prerequisites and Requirements

In this chapter we discuss the prerequisite requirements concerning our development envi-

ronment, which are especially important for the reader who has the intention to develop

our application. Then we describe the requirements that were put on this project, to give

the reader a greater knowledge about what exactly we were required to do by Ericsson AB.

In this chapter there are references to Chapter 4.

2.1 Requirements on the Development Environment

These are the requirements that were put on our development environment:

• To have access to two UNIX/Solaris computers, with the possibility to log on into a

Windows Terminal Server. We almost exclusively used UNIX when developing our

application though.

• The graphical parts of the web site have to be constructed with HTML aimed at a

Netscape Communicator environment.

• To Use CGI scripts to develop the engine of the web site.

• To use open source SIP(oSIP) as our SIP stack. oSIP is a help library to make

an implementation of a SIP application easier. Please refer to Section 5.2 for more

information about oSIP.

2.2 Requirement Specification

This is where we have documented the requirements that where put on our project. They

are subdivided in requirements we must fulfil, should fulfil, and could fulfil.

8

2.2.1 MUST be Fulfilled

These are the requirements that had to be fulfilled to make our work meaningful.

• A web site must be constructed, where a user who is independent of SIP, is able to

log on.

• Each user must have his own account, where his personal information and SIP ad-

dresses are stored.

• From the web site the user must be able to make an outgoing call to a SIP user by

stating a SIP address, either manually or by selecting one from his address book.

• The web/SIP server(see Figure 4.1) must establish a SIP connection between these

two users.

• After calling the SIP user, a simple data transfer from the SIP user to the web user

must be carried out, and a confirmation message of this data transfer must be shown

to the web user.

• The different possibilities, on how a web user can receive an incoming call from a SIP

user must be examined.

2.2.2 SHOULD be Fulfilled

The following should be fulfilled, but it is not a disaster if we fail due to lack of time etc.

• One of our solutions, allowing a web user to receive an incoming call from a SIP user,

should be implemented.

• After the SIP connection is established between the calling SIP user and the web

user, a simple data transfer from the SIP user to the web user should be carried out,

and a confirmation message of this data transfer should be shown to the web user.

9

2.2.3 COULD be Fulfilled

The following points could be implemented if time allows.

• A transmission of text/voice/images between the two parties could be implemented.

• A function to create new accounts on the web site could be implemented.

• A function to add new contacts to an already existing web user account could be

implemented.

• A function to add/delete connections or users to an existing session

How we managed to carry out these requirements, can be read about in the report and

especially in Chapter 8.

3 System Usage

This chapter presents the different use cases in the system, which we have implemented.

A number of scenarios will also be described intended to give further insight and under-

standing to users of this system. A fully description of the system is given in Chapter 4

and 5.

3.1 Use Cases

In this section the use cases included in our web application are described. We will only

describe the most important ones though, that is, the use cases we have implemented in

our system. Figure 3.1 shows the different use cases.

These are the use cases for the web user:

• Log on to the web site: The web user can log on to the web site, either with a

username and password of his own, or as guest if he does not have his own account.

10

• Look at/Change user profile: When logged on to the web site, the user can look

at and/or change his personal profile.

• Look in address book: The user can look at the SIP contacts in his address book,

and also choose a SIP address to establish a connection to.

• Call SIP user: When logged on to the web site, the user can call a SIP user, with

the SIP users SIP address.

These are the use cases for the SIP user:

• Receive call : A SIP user can receive a call from a web user.

Note: The extend-arrow in Figure 3.1 means static dependency and is Unified Modelling

Language(UML) standard.

Figure 3.1: Use cases included in our system

11

3.2 Scenarios

A number of scenarios that can arise when using the web site will be described below.

All scenarios shown, describe successful cases of its use case. References are made to user

screens in Chapter 5.

3.2.1 Change User Profile

This scenario shows how the web user is to proceed to change his personal profile on the

web site.

• Fill in user name and password and log on.

• Click and proceed to Your Profile. (Figure 5.5)

• Change the profile if necessary.

• Click Ok to confirm and to return to Home. (Figure 5.3)

• Log out.

3.2.2 Make a Call - Version 1

This scenario describes how the web user is to proceed to make a call to a SIP user. Assume

that the user is already logged on.

• Click and proceed to Make Call. (Figure 5.4)

• Write the SIP address to the callee in the shown text field.

• Send request of connection.

12

3.2.3 Make a Call - Version 2

This scenario describes an alternative on how the web user can make a call to a SIP user,

that is, through the address book. In this particular case the address book is opened via

Home. The user is presumed to already be logged on.

• Click and proceed to Address Book. (Figure 5.6)

• Choose which SIP address to use, by clicking on Use next to the address. This takes

the user automatically to Make Call with the chosen address written in the text

field.

• Send request of connection.

3.2.4 Make a Call - Version 3

This scenario is similar to the previous one except that the address book is opened through

Make Call instead of Home. The user is presumed to already be logged on.

• Click and proceed to Make Call.

• Click on Address Book-button in the Make Call-window to proceed to Address

Book.

• Choose which SIP address to use, by clicking on Use next to the address. This takes

you automatically to Make Call with the chosen address written in the text field.

• Send request to call

4 System Description

To give a better view on how the system is supposed to work we will describe how the

system looks as a whole prior to explaining how our system is designed. We will also

13

describe the different parts in the system, which they are and how they interact with each

other.

4.1 System Overview

Users are able to log on to a web site, which is located on a web server. We call the web

server that is attached to a SIP server web/SIP server since they interact and ultimately

function as one. When the web user wants to call a SIP user with a SIP address, the

web/SIP-server establishes a connection to the correct SIP server, which is used by the

correct SIP user. Please refer to Figure 4.1 for better understanding.

Figure 4.1: System overview

14

4.2 The Different Parts in the System and how they interact

Our system consists of three vital parts namely the web site, the SIP stack (oSIP) and

the link between these two. Now follows a description of each part, and then we will also

explain how the parts interact with each other to make the whole system work.

4.2.1 The Web Site

The web site is of course one of the main parts in our system, and this is where a user can

log in and call a SIP user with the SIP users SIP address. The web site is just a normal

web site implemented in HTML, and the functionalities is implemented with CGI-script

written in Perl. Read more about the design and implementation in Section 5.1 and 6.1

respectively.

4.2.2 The SIP Stack

The other main part in our system is SIP. For a web user to be able to call a SIP user,

two criterions have to be fulfilled. The first is that the web server, were the web site is

located, has to use a SIP server, and the other criteria is that the SIP user also has to

use a SIP server. The latter criterion is something we will not consider in our solution,

but which is up to the user of our system to ensure. The former criterion though, has to

be implemented in our system for it to work. For this purpose we used oSIP, which is an

implementation of a SIP stack, and on this stack we built our own simple User Agent to

be able to use it. Read more about our design of this User Agent in Section 5.2 and about

our implementation of the same in Section 6.2.

4.2.3 The Link Between the Web Site and the SIP Stack

As mentioned in Section 1.3, our major goal was to make it possible for a web user to

contact a SIP user. So the third major part in our system should be a link from the web

site to the SIP stack. This part is maybe the most important part, since our system would

15

not work at all without it. In Figure 4.1 the web site and oSIP together is what makes

the web/SIP server, and it was the link between the web site and oSIP that had to be

designed.

To design the link we used a software named Simplified Wrapper and Interface Gen-

erator(SWIG). Read about SWIG and why we used it, the design of the link and our

implementation of the same in Section 5.3 and 6.3 respectively.

4.2.4 The Interaction between the System Parts

Figure 4.2 shows how the different parts interact with each other. Each block represents

a system component and the arrows represent in which way these components interact

with each other. Each block will be explained further in Chapter 5 and 6, excluding the

Transport layer component, since the reader of this report is assumed to be familiar with

basic data communication.

The meaning of each block:

• HTML is the graphical part of our web site.

• CGI is our web site engine, which takes care of the functionalities of the web site.

• SWIG is the glue that connects our CGI script to our User Agent for oSIP.

• oSIP is an open source SIP implementation. It acts as a SIP library and parser in

the behalf of our User Agent.

• Websip is our User Agent for oSIP.

• Transport layer is the layer that were used to send the packages.

The blocks HTML and CGI together give us the web site part of our system. oSIP,

Websip and Transport layer is the SIP part and SWIG is the link between the web site

and SIP.

16

Figure 4.2: The Interaction between the parts in the system.

5 Description of the Design of our application

Before we describe how we implemented each part in the system, in the next chapter, we

will describe how we designed them. For every part we will describe how we came to choose

our way to design it and what tools we used for the purpose.

The chapter starts with a description of the design of the first main part, the web site.

Next the second main part will be described in terms of how oSIP works and how we

designed our User Agent for oSIP. The last section will describe the most important part

in our system, namely the connection between the web site and the SIP stack. This section

will explain why we needed to link C and Perl and how we proceeded to do this.

17

5.1 The Design of the Web site

This section explains the design of the web site part in our system, which are the shadowed

blocks in Figure 5.1. At first, the section explains why we have chosen the particular layout

of the web site. Secondly the design of the web site engine is examined, and this is where

we, for example, will discuss why it involves certain functionalities.

Figure 5.1: The web site part in the system

5.1.1 Graphical Design of the Web Site

Before we will go further into details regarding the design of the web site, we want to

explain why we have chosen to pick our particular layout. Since we have focused on the

functionalities of the web site, its appearance is not that extraordinary.

Figure 5.2 shows the first page of our web site where the user logs on. The reason

why it looks as it does with name and login frame, is because its layout follows normal

18

Figure 5.2: The window where the user logs on

standards seen on the Internet. It felt like the most natural way to design it.

Figure 5.3. shows the screen after logging in. A number of click-able buttons with

underlying functionalities can be found here.

We have chosen to divide our web site into frames because of two reasons. Firstly

most of the similar web sites on the internet makes use of frames e.g. web based email

like Yahoo! Mail or Hotmail, and we did not want to change this concept since frames

probably contribute to easier facilitation for the user. Secondly it also simplifies the usage

of the web site since all the functions are constantly visible in one frame.

Figure 5.4. shows the screen where the user can make a call to a SIP user. The SIP

address is written in the text field, the scrollbar shows the different kinds of alternatives of

media that can be transmitted between the participants, and a button to transfer the user

to the address book. The scrollbar for media is there because it is an important part in

the SIP protocol. This function is not implemented though. This page is simple, intending

not to make things difficult for the user.

19

Figure 5.3: This is Home, where the the user is taken when he is logged on

The window Your Profile (please refer to Figure 5.5.) shows the user his profile

where he also can change it with ease. The page includes the user profile in a numerous

text fields and two fields intended for changing the password. The reason for including the

functionalities look at profile and change profile in the same screen is for the sake of

simplicity.

The users SIP-contacts together with their SIP addresses, is shown in the window found

in Figure 5.6. We have chosen to include name and addresses in a table with use buttons

on the side according to typical web based mail style.

5.1.2 Design of the Web Site Engine

In this subsection functionalities of the web site is addressed. One could imagine creating

a web site where the user only could write a SIP address and request a call. That is, a web

site that only consists of a page with this functionality and nothing else, since the main

part of the work was to investigate the possibilities of establishing a connection between

20

Figure 5.4: This is Make Call, where the user can make a call to a SIP user

HTTP and SIP. The following describes the functionalities that was required (except make

a call to SIP user).

• The user can log on to the web site with a personal account consisting of different

personal information. The information includes given names, surname, country, SIP

addresses, username, and password. A non-registered user can log on as guest.

• After logging on the user can view and change his personal information.

• The user has a personal address book where his SIP contacts are stored.

Please refer to Section 9.1 to get further insight on more functionalities that could be

implemented.

For implementation of the functionalities we used several CGI-scripts written in Perl.

Below follows a short introduction to CGI.

21

Figure 5.5: This is Your Profile, where the user can look at/change his profile

CGI-scripts CGI or Common Gateway Interface is a tool to construct web sites. A web

site that only is based on HTML is static, meaning that it only has one state (e.g. compare

to a text file). A CGI-script is executable and can send information dynamically. When a

functional CGI-script is present at a web server it can accomplish two things:

• It can receive information from a web browser and process it in a desired way.

• It can process information and send information to a user that made a request.

Examples of this include reading information from a database and printing selected

tuples on a web site, or receiving information filled in by a user from a web site form.

CGI-script can be written in many different languages including Perl, TCL, Applescript

and Visual Basic. It can also be written in C/C++ but it will make it more complicated.

Further reading about CGI-scripts can be found in [22].

22

Figure 5.6: This is Address Book, where the user can look in his address book

Why we have chosen Perl as Scripting Language The reason for choosing Perl as

scripting language was partly because we where recommended to do so, but also because

Perl was the most familiar scripting language for us at that time. According to us, Perl is

also one of the easier scripting languages, and it is well known to be used in CGI-scripts.

Section 6.1 gives more details about how the web site was implemented.

Now we have designed our web site, and the next step is to design the other main part of

the system, namely the SIP part.

5.2 Design of the User Agent for oSIP

This section describes the design of our User Agent to oSIP, which contains the shadowed

blocks of our system, shown in Figure 5.7. At first we will describe SIP a little more in

detail and how a SIP connection is made, then we will explain oSIP and why we came to

choose this particularly implementation of SIP. Finally we will describe how we used oSIP

to design our User Agent.

23

Figure 5.7: The SIP part in the system

5.2.1 SIP Functionalities

Before we describe oSIP and our User Agent, we will briefly explain some SIP functionali-

ties.

A SIP session involves three parts, namely the connection between the parties, the

data transfer and the termination of the session. Consider the following scenario, which

is a session between two parties, to understand what a session looks like. No changes are

made during the session, like adding another party or medium. See Figure 5.8 for better

understanding.

SIP user A sends an INVITE message to SIP user B:s SIP address, for instance joe@ericssonSIP.com).

The SIP server sends a TRYING signal to A, telling A that it is trying to locate the owner

of the SIP address. Then the server sends an INVITE to all the devices such as SIP mo-

biles or hand held computers, that B has registered on the server, under this SIP address.

24

Further, B:s devices sends RINGING to the server which in turn sends RINGING to A.

When the SIP user B has answered, a third message OK is sent to the server or to A

directly. When A receives an OK message it sends an ACK to B, through the server or to

B directly, and when the ACK is received at B, A and B have a connection. Now the two

parties can start to transmit information between each other, in the chosen media type.

The media type is actually negotiated about between the two parties, after being suggested

by A, but this is not shown in the picture.

Figure 5.8: A SIP session through a SIP server

SIP does not take care of the transmission of data. Rather, a multimedia protocol like

RTP or RTCP would do this. The data transfer does not go via the SIP server but directly

between the two SIP users as shown in Figure 5.9. When one of the parties decides that

25

he wants to end the session, he sends a BYE to the other party, whom responses with OK.

The BYE message does not need to be sent by the caller, that is SIP user A in this case,

but by either one of the parties that wants to end the session.

Figure 5.9: The data flow between the two SIP users in the session

A SIP message is either a request (e.g. INVITE) or a response (e.g. RINGING, OK).

A request is sent from a client to a server, and a response is sent from a server to a client.

Both types of messages has a start line, at least one header field, an empty line which

indicates the end of the header fields, and an optional message body.

Request Messages The start line in a request message contains the following:

• Method name: This defines the method that the client is sending e.g. INVITE or

26

BYE

• Request-URI: This indicates the user to which the request is being addressed, that

is the SIP address.

• SIP-version: The version of SIP that is being used, almost always ”SIP/2.0”.

These are the header fields that has to be included in a request message:

• Request-URI: Same as for the start line.

• To: Specifies the recipient of the request.

• From: Specifies the identity of the initiator of the request, that is, the client.

• Call-ID: A unique identifier to group together a series of messages. Each message

within a session has the same Call-ID.

• CSeq: Consists of a sequence number and a method, and it identifies and orders

transactions. The method is the same as for the request.

• Max-Forwards: Serves to limit the number of hops a request can pass by on the

way to the destination.

• Via: Indicates the transport used for the transaction, and identifies where the re-

sponse should be sent.

There is also one header field that must be included in an INVITE message and that is

Contact. This field contains a SIP address at which the User Agent would like to receive

the requests, and subsequent request, which are used to change a session.

Response Messages The start line in a response message contains the following:

• SIP-version: Same as for request messages.

27

• Status-Code: A 3-digit integer which indicates if the request was understood and

satisfied.

• Reason-Phrase: Gives a short description of the Status-Code.

These are the header field that has to be included in a response message:

• From Contains exactly the same as the From header field in the request.

• Call-ID Contains exactly the same as the Call-ID header field in the request.

• CSeq Contains exactly the same as the CSeq header field in the request.

• Via Contains exactly the same as the Via header field in the request.

• To Contains exactly the same as the To header field in the request.

A request message could, except INVITE, BYE and ACK, also be CANCEL or REG-

ISTER. A CANCEL request is used to cancel the previous request sent by the client. A

REGISTER request is used to register locations for destinations, so SIP can find the host

at which the destination user is located.

To register a SIP device, the client sends a REGISTER request to a special server called

a Registrar, which acts as a domain’s location service, and reads and writes mappings for

the contents of the REGISTER requests.

SIP can also use two other servers, called proxy servers and redirect servers. A proxy

server routes SIP requests to servers and SIP responses to clients. A redirect server sends

a response back to the client, which include a new SIP address, to which the client should

send the request to instead. The client is redirected.

SIP also has a state in the header, which tells the server or the client what kind of

message that has been received. The different kinds of messages or transactions are ICT,

IST, NICT and textitNIST. The state machine is set to ICT, when the client sends an

INVITE request, and to IST when the server sends a response to an INVITE request. The

28

state machine is set to NICT when the clients send a request that is NOT an INVITE,

and to NIST when the server sends a response to a request that is NOT an INVITE.

For more reading about SIP in general, and other SIP functionalities, please refer to

RFC2543 and the newest RFC Internet-Draft, which are both found at [11].

5.2.2 oSIP

This subsection describes oSIP in general, an open source SIP implementation written in

C. oSIP can be read about and downloaded at [1].

OSIP can be used for implementing a range of things including:

• A variety of SIP servers and proxy servers (conferencing servers etc).

• SIP registrar servers used to keep track of SIP clients locations.

• SIP User Agents to be used in phones, desktop computers etc.

oSIP is a library and provides an up-to-date implementation of the latest RFC draft

2543 found at [11]. The main responsibility of oSIP is to:

• Provide a parser for the SDP

• Provide a parser for the SIP

• Provide a library to handle SIP transactions.

oSIP advantages:

• It is a small and foreseeable library

• It is fast (one of the reasons is that it is written in C)

• OSIP is small and provides only functions needed to fulfil the RFC standard that in

turn makes oSIP extensible to a variety of SIP usage areas.

29

• it is portable, that is, the code and the makefiles contain conditions aimed at several

different OS platforms.

oSIP disadvantages:

• oSIP on its own is not usable, writing an extension is needed.

• As of this writing there is not any up-to-date documentation of oSIP other than the

code itself that makes oSIP very hard to understand, thus also making it a lot more

time consuming to implement an extension of oSIP.

• There are very few comments in the actual code, making it even harder to understand

the oSIP stack.

• The security implemented in oSIP is low.

5.2.3 Our User Agent - Websip

In the beginning of our work with oSIP we used the oSIP edition 0.7.8, which had an

example included. This example was not a real User Agent but it could send requests and

receive responses from a server though. So we took the simple way and tried to use this

example in our system, instead of writing our own User Agent. This was a mistake though,

since this example included a lot more than we needed, and it was too big, so it gave us lot

of problems with the linking with SWIG (see Section 5.3 and 8.2). So we reconsidered and

started to build our own small User Agent, which could only send an INVITE and receive

responses for the INVITE. Since oSIP is undocumented we opted to examine Jacks Open

Source User Agent(JOSUA), which is a beginning of a User Agent, based on oSIP edition

0.8.3, to be able to understand the workflow of a typical User Agent. We extracted certain

parts of the code which we then implemented in our own User Agent prototype. Our User

Agent involved sending an INVITE and receiving responses for this INVITE (RINGING

30

and OK). We considered this to be enough to examine the possibilities of a web based User

Agent. Other possibilities where also considered and can be read about in Section 9.1.

oSIP supports multiple threads, which in turn makes it possible to run several users on

the same stack. Websip is at current not able to have several users, and supports only one

user for test purposes.

The interaction between the User Agent Websip and the oSIP stack can be seen in

Figure 5.10

Figure 5.10: The interaction between Websip and oSIP

Calling callbacks Calls the registered functions when a specific event occurs in oSIP.

Websip functionalities:

31

Set callbacks Define which functions to send SIP messages, or be called when an event

occurs etc. this way oSIP is independent of which transport layer to use, it only

demands that the callback function has a specific form, for instance *cb(porttosend).

Parse received message Call the build in parser in oSIP with the message received from

the transport layer. This will lead to the calling of a callback function specific for

that message.

Send packet The callback function registered to send SIP messages sends messages to

the transport layer (in our case UDP).

Listen to port A Websip function that listens for incoming messages.

Send message Send a message. It is up to the user of oSIP to decide when to send a

message. The messages can be stored in a queue if it is a multithreaded environment

and the oSIP user have a thread listening to the queue sending the messages as soon

as they arrive.

Initiate oSIP Initiate and start up the oSIP stack.

5.3 Design of the Link between the Web Site and Websip

Now we have designed our web site and our User Agent for SIP, so now it is the link

between them left, which is the shadowed part in Figure 5.11. This section describes the

general solution for linking our web site with our User Agent Websip. We will discuss

different possible solutions that we had in mind, which one we have chosen, why we picked

it, and how it works.

5.3.1 Why We had to Link C and Perl

As explained earlier our web site’s CGI-scripts is written in Perl and oSIP and our User

Agent is written in C. Therefore, to be able to establish a link between the web site and

32

Figure 5.11: The part in the system for linking the web site with Websip

our User Agent, we have to call C-functions from the CGI-script. When we had concluded

that we start digging in the Internet for different solutions, and Subsection 5.3.2 describes

the ones we found.

5.3.2 The Tool for the Task - SWIG

We used the tool SWIG to wrap C code into Perl. Please refer to appendix E for other

optional tools that we found, but did not use.

SWIG SWIG stands for Simplified Wrapper and Interface Generator and can be read

about and downloaded at [8]. It is a tool for integrating Java, and script languages like

Perl, TCL, python etc. with C/C++ in a seamless manner. With SWIG you have the

ability to write powerful C/C++ modules and create interfaces easily.

The program itself is constructed based on XS (see appendix E), when wrapping Perl. It

33

takes care of the tedious task of construction wrapper code, which has to be done manually

in XS. All that needs to be done is to define the C-functions which to be used by Perl in

an interface file, for instance filename.i, which corresponds to the C file of the same name,

filename.c. SWIG then generates wrapper code to this interface.

The wrapper code is stored in filename wrap.c and contains all the functions that where

specified in the interface file, and all the functions to convert types to and from the target

language. After compiling, the wrapper file object is linked with the compiled C/C++

objects that contain the functions specified in the wrapper object and any other objects

that needs to be linked. This file is a shared object that can be loaded from Perl. Please

refer to Figure 5.12 for better understanding.

Subsection 5.3.4 describes an example on how to write Perl wrapper code for an c-program

example.c.

Advantages:

• Platform independent.

• Powerful (Little has to be written to achieve something)

• Relatively easy to learn (We thought so).

• Interface files specifies clearly the functionalities, which can be used in the target

scripting language.

• The interface file templates makes SWIG work on a higher more abstract level, which

is easier to write and understand.

• SWIG supports wrapping C/C++ to other languages than Perl like TCL Python,

Java , Guile , Mzscheme or Ruby.

Disadvantages:

34

Figure 5.12: The procedure of creating a wrapped object in SWIG

• Takes some time to learn.

• Is not too flexible.

5.3.3 Why We have chosen SWIG

We have chosen SWIG because of the large amount of code that we had to wrap. SWIG

also supports other scripting languages, which in turn can be integrated with each other.

This results in more flexibility, when wanting to change the implementation of the Websip

application. For example, if the developer was to choose Java instead of Perl, he would

35

only had to change a flag, -java instead of -perl5, perhaps the interface files and of course

the web site code.

5.3.4 In Depth: SWIG

As mentioned SWIG demands the specification of an interface file that might look like:

%module example

%{
#include <example.h>

%}
void init();

char* getMyString();

%module tells SWIG what the name of the module and the C file for the intended

wrapping is. In the above case the module/c-filename is ’example’ and the wrapper code

that will be generated by SWIG will be outputted as example wrap.c. Also, in our case,

a Perl module example.pm, will be generated. This is used to access and load the module

in the Perl script.

All the code which is included inside %{ %} will be directly inputted into the modul-

name wrap.c file. Everything else is a specification on what functionalities the interface

between the C/C++ program should include. The developer could include a whole header

file if desired by stating %include nameoffile.h

The functionality of this example include two functions void init(); and char* getMyS-

tring();. These two functions can be called directly from the target language. In the Perl

module that will be created in this specific example can be accessed firstly by declaring

use example; in the beginning of the Perl script and then accessing any in the interface

file declared function or variable by typing example::function/variable, for instance exam-

ple::init();

36

Figure 5.13 explains how the scripting language interacts with C/C++.

Figure 5.13: The interaction between scripting languages and C/C++ through SWIG
generated wrapper code

The generated wrapper code takes care of all type conversions and function calling.

With SWIG we where able to connect our CGI script to our Websip User Agent.

6 Implementation and Testing

This chapter describes the implementation of our system. We will explain the test phase,

which tests was made and how they where made. Firstly we will explain the testing

37

and implementation of our web site, secondly our User Agent, and thirdly the connection

between our User Agent and the web site.

6.1 Implementation and Testing of the Web site

We have used HTML for layout and CGI-scripts to implement the functionalities of the

web site. Now we will explain how we implemented the layout and then the engine of the

web site. Implementing the web site was not really any problem, but the problems that

arose can still be read about in Section 7.1.

6.1.1 Implementation and Testing of the Graphical Part of the Web site

The implementation of our web site was carried out without any problems at all. We used

the web tutorial [4] and [5], which gave us all the information we needed. There is not

much to say about the test phase other than that we opened our html files in Netscape to

make sure the had the correct layout, if not, we merely changed our code until the web

pages were satisfying.

6.1.2 Implementing the Web Site Engine

An engine, which is present on the web site to provide functionality, is needed. A few

examples of these functionalities include scenarios like logging on to the web site or ac-

cessing personal information of a user. The functionality of each scenario was provided

through CGI-scripts written in Perl. Read about CGI-scripts and why we have chosen Perl

in Subsection 5.1.2.

What every CGI script does is generally to perform certain tasks based on information

received either from the user, a file, information stored locally etc. and then generate a

web page which the user can view as a result. To make the web site functionalities work

we needed six CGI scripts and these are described below.

38

Log On to the Web site The user needs a password and a username to be able to log

on to the web site. The web server contains a database (a text file) holding information

about registered users. Each row in the database is equal to one user and has the format:

username:password:first name:surname:country:SIP-contacts. When a user has typed his

username and password in the text fields and clicks Login, the CGI script is started. The

first thing that happens is that the script checks whether the username and password the

user has stated, match against any of the rows in the database. If a match is found, Home,

which is a new web page, is opened. At the same time the user’s information is stored in

a new text file. If no match is found then a user is given a page with an error message.

Look at User Profile When the user clicks the Your Profile-button a script is executing

which in turn examines the file where the logged on user’s information is stored. The infor-

mation in the file is parsed and a new web page is generated containing that information

in editable text fields.

Change User Profile When the user is present in the Your Profile-window and clicks

the ok button a CGI-script is executed intending to change the user profile. First a check is

made to see if something has changed in each field compared to the old information stored

in the user file. If nothing has changed nothing is made and the home page is sent to the

user. Otherwise the following is carried out:

• The script check if something is written in the change password field. If so, the script

checks whether the same thing is written in Rewrite password.

• A new row that will be saved in the database is made, that is, the new profile. Each

field in the profile on the page is a string. These strings are appended to each other

into a long one.

• The database is opened into an array.

39

• The database is truncated and opened again in append mode.

• One row at a time is now read from the array and compared to the old profile. If a

row mismatch with the old profile the row is written to the database.

• Now the file where the information about the user logged on is stored will be opened

in write able mode, which in turn mean that the file will be truncated. The new

profile is written to this file.

• The new profile is also written to the database.

• The home page is generated and sent to the user. The profile for the user has changed.

View the Address Book When the user click on the contact button a script is executed

that opens the file where the user is stored. The information in the file is read and parsed

to separate the SIP addresses stored. The name on the person who owns the address is

contained in front of each SIP address. When the parsing process is complete, an array is

created where each position in the array contains a name and the correspondent address.

Finally a page is generated containing a table where each contact and address is listed.

Use SIP Address through the Address Book When the user is present at the

address book page and clicks on one of the use buttons, a CGI script will be executed.

The address next to the use button will be sent as a parameter to the script, which in turn

generates the page Make Call with the sent address already filled in.

Send INVITE to the SIP User This script is executed when the user clicks send

INVITE on the Make Call page. The field on that page (with the address) is sent as a

parameter to the script. The sent parameter is parsed by the script and used to send

an INVITE. How the actual implementation works can be read about in Section 6.2 and

Section 6.3.

40

Figure 6.1: Example of a user database

6.1.3 Testing the Web Site Engine

To be able to test this web site in full, we created a database with made up users. This

database can be seen in Figure 6.1. When we tested the procedure of logging in, we tried

both right and wrong passwords to make sure everything was in order. There is not much

more to say about the testing, other then, when testing the functionalities, we controlled if

the correct actions where taken for each script, and if it were not, we located the problem

and tried again.

6.2 Implementation and Testing the User Agent Using oSIP

This Section describes how we implemented and tested our User Agent Websip for oSIP.

The implementation did not give us too much trouble since we, as said in Section 5.2, used

41

the User Agent JOSUA to see how an INVITE is supposed to be created and send.

6.2.1 Implementation of Websip

We started out by following the JOSUA code for creating and sending an INVITE. Then

we started to create our own User Agent for sending an INVITE and it was done in the

following steps:

Create and load configure file A configure file is created where useful information like

username (for client), local IP and local port, is saved. The first thing that happens

in Websip is that this configure file is opened and the posts is added to linked list.

This part is something that we did not do ourselves, but copied directly from JOSUA,

since we wanted the exact same code for this purpose.

Start the SIP stack, initiate oSIP and start the UDP layer The stack is started

by calling the function oSIP global init(), oSIP is initiated by calling the func-

tion oSIP init() and the UDP layer is initiated and started by calling the function

udp transport layer init(). The first two functions can be found in oSIP, and the

UDP function is found in the udp layer. The UDP layer consists of two files which

both we have copied from JOSUA. This because we wanted the exact same files.

Create a message for an INVITE First a new messages is created and initiated. The

message has the form of a struct with members that forms the message header. Then

the start line of the message is set: Method is set to INVITE, SIP-Version is set

to SIP/2.0, and Request-URI is set to the SIP address at where the destination

user is located. Status-Code and Reason-Phrase are both set to NULL, since you

just need those in the response message. Then the header fields are initiated in the

following way: Request-URI is set to the same as in the start line, To is set to the

SIP address which was specified by the user, that is the same as Request-URI, from

is set to the address from where the user is calling, Call-ID is set to local IP, CSeq is

42

set to INVITE, Max-Forwards is set to 70 and Via is set to a string that includes

SIP version, transport protocol (in our case UDP), local IP and local port. When

the startline and header fields are all set, the message is ready to be sent.

Send INVITE The next step is to send the INVITE, which starts with initiating a new

transaction, then a new SIP event is created and a transaction id is set. Also the

user decides what kind of transaction it should be. In this case it is a ICT. Now

transaction execute() is called, which is a function in oSIP, and it finds the right

send method to call. When the method has been found it is called with the right

callbacks for an INVITE. When this is done the INVITE message has been sent.

Create server The only thing a server needs to do from the beginning, is listen for new

message. We found a small implementation of this in JOSUA that listens to the UDP

layer. The implementation also includes parsing the message and distributing it to a

correct transaction. With this implementation, all is set for receiving the INVITE.

Receive INVITE When the server detects an incoming message, the message is first

parsed, and then analysed to see what kind of message it is. Further an event is

created by oSIP, in this case an INVITE received. The event and the incoming old

transactions are stored in a list in oSIP for future use. Now an IST transaction

is created, since the message is an INVITE, and by calling ist execute the event is

carried out. In this case it calls the callback used when receiving an INVITE. Now

the server prepares for sending a response to the client.

Create response to INVITE A response is created when the callback method for re-

ceiving an INVITE is called. Setting up all the necessary headers creates the message,

and the most important one is the status code and the reason phrase that is to be

set to 200 and OK respectively.

Sending the response By executing ist snd 2xx(), instead of transaction execute() as

43

when sending the INVITE, the message is sent by calling the callback function reg-

istered for this purpose.

Receiving response to INVITE (200 OK) When this message arrives, the osip distribute event

does not actually create a new event, but it is up to the user of oSIP to manage the

message and call the right functions. What should be done is that an acknowledge-

ment of this 200 OK message should be sent. But we considered this to be enough

since we now had sent SIP messages both from Websip to SIP and from SIP to Web-

sip (SIP in this case refers to the simple SIP server that we implemented). What is

done instead is that we check weather the message is an 200 OK response and then

we make a call to the Perl stack to inform the Web user about the incoming response.

Note: We have chosen to implement both the server and our User Agent in the same

binary. It is up to the user by giving input arguments to either start as a client or to act as

a server. We have also chosen to just send one response to client from the server and that

is OK. This because the purpose was just to see if we could create and send an response

to an INVITE, because we did not have the time to do more than that.

6.2.2 Testing of Websip

For testing purposes we parted our User Agent into several parts, which are the same parts

that we described in Subsection 6.2.1. We implemented and tested one part, and when

it worked we started the implementation of the next part. For each part the testing was

done the following way:

• The first step was to initiate and start the oSIP stack. Testing was barely needed,

since we just had to call two functions in oSIP.

• Now we needed to create the message for an INVITE, and this part we tested by

printing out several messages in all the functions, which were called. This way we

could see which functions our program went trough and which it did not.

44

• When the INVITE message was created, the next step was to send the INVITE. This

step included minimal testing and it was not any trouble since it was about calling

one or two functions with the right, initiated parameters.

• The next step was register callbacks and start the UDP layer. Since we copied these

from JOSUA the only thing that we needed to test was to check that the right send

function was called for our INVITE and that the UDP layer had started. This we

also tested by printing out messages in the functions that were supposed to be called.

• So now we could send a message for an INVITE but we had nowhere to send it to.

Obviously some kind of server was needed, and this job was not hard at all since we

found an implementation in JOSUA filling this purpose.

• The next thing we had to test was to see if we could send our INVITE from one

computer and have our server receive it on another. This was actually a simple job

cause with the right IP addresses in our configure file it worked right away.

• Further we had to make sure that our server called the right callback functions for

sending a response to our client (the INVITE sender). At first, we had some problems

with this, but we printed out messages in the functions which was called, and we could

finally locate and take care of the problem.

• Sending the response was easy since we already knew how to set up a message.

We simply created a new message, transaction and SIP event and used the built in

function ist snd 2xx(..) to send the response.

• Receiving the response was easy also. At first it was a bit confusing since the same

transaction layer listener, which had parsed our incoming messages and distributed

the events in the oSIP stack, did not do so with this message. The good thing was

that we could still use the message parser to create an event and check weather it

was an incoming response with EVT IS RCV STATUS 2XX(..).

45

When we got this far the time did not allow us to move any further. So what our Websip

can do right now is creating and sending an INVITE, the server receives the INVITE, and

by printing a messages to standard out, we can see that the INVITE is received. Then the

server creates a response and sends it back to the sender (it checks the From field) whom

in turn parses and notifies the user of Websip.

Note: Websip has to be used from Perl since it includes calls to the Perl stack. Further

the Perl program (CGI script etc) has to include the functions that Websip calls.

The possibilities to develop Websip can be read about in Section 8.2.

6.3 Implementation and Testing of the Link between the CGI-

script and Websip

So far we have a web site and a User Agent for oSIP implemented, but for a web user to be

able to send an INVITE from the web site to Websip, a link between Perl and C is needed

as explained in Section 5.3. In this Section we will explain how we implemented the linking

between the two languages with help from SWIG, and how we tested the same. Further

we will describe how we connected the three parts and finally could send an INVITE from

the web site on one computer, and receive the INVITE on another computer via a SIP

server.

Please make sure you have read Section 5.3 before continuing.

Wrapping our User Agent was not hard at all. The wrapping was made according to

Figure 5.12, shown and explained in Chapter 5.3.2. The following SWIG interface file was

designed:

%module websip

%{
#include <websip.h>

%}
int init(char* SorC);

46

void call printUID();

%typemap(perl5, in) SV *

{
$target=$source;

}

%module websip tells us about the name of the module. A file called websip.pm will

be created when SWIG executes the wrapper generator for the interface file. This .pm

file is actually a Perl module that loads the wrapped C/C++ code. The Perl module can

then be included within, and loaded from a Perl script, which in turn can access our User

Agent through the functions defined in the interface file. One string parameter can be sent

to the function int init(char* SorC); defined in the interface, and in the User Agent. By

sending the string server, a server is started. If any other string is sent an INVITE is sent

to the specified address given in that string, and after the INVITE is sent the User Agent

is listening for any incoming SIP messages.

The call printUID() is a function that we want to call when receiving an INVITE. In

this function we call a Perl function that exists in our CGI script that in turn notifies

the web user through server push combined with a print statement (this will be discussed

later). Unfortunately we have to call the Perl function through Perlcall, which is a way of

calling Perl functions from C. This is only a temporary solution and should be replaced

by wrapping functions to register callbacks from the target language. Sadly, since SWIG

does not know how to wrap function pointers, this also means that you cannot send a Perl

function as an argument. There are ways to work around this, but since we had to be

experts on SWIG we have chosen not to. We could have chosen to ignore the problem of

calling a function in Perl from C, since writing a simple printf-function in the C stack will

give the same result in the CGI script as a print statement in Perl does. The purpose for

not doing so is that we want our User Agent to be separated as much as possible from the

web site implementation. We think that our User Agent should work as an object, which

47

offer services without the involvement of other languages. Unfortunately coding a Perlcall

into the User Agent is necessary since wrapping callbacks is not yet supported by SWIG.

If this was possible, and it is most likely to be in the near future, due to the demands,

put on this functionality, that we have seen on the SWIG mailing lists ([9]), then the User

Agent could work as a completely isolated object.

The reason why, we want to register callbacks from our target language that we use

in our web site, is that if the developer of the web site wish to change the language to

Java, TCL, Python etc, instead of Perl, and/or change the CGI script to JavaScript,

implement Java applets etc, he would only have to change the language itself and would

not have to worry about rewriting the User Agent. This gives the developer of the web

site more freedom of choice developing his site, and ultimately this leads to better layout

and functionality on the web site.

The %typemap function is a bit hard to explain but it takes care of type-conversion

when calling a Perl function from C/C++. It is needed when calling Perl functions from

C/C++.

Now we were able to call the stack from a CGI script to access our User Agent functions.

To get feedback regarding the SIP session we have chosen to use server side push technique

in our CGI script. This means that the connection between the page on which the CGI

script is active and the user is kept open. The servers choose when to send information

update to the user. The user of the web page is constantly listening for any web pages

that might be sent to him. Obvious disadvantages with this technique is that the constant

open connection between the Websip server and the user consumes a lot of bandwidth

between the two, and it also puts a load on the Websip server and the Websip user since

the connection has to be ”kept alive”. Other techniques that might be used instead of this

one are discussed in Chapter 8 - future development.

The technique for server side update (or server side push) is simple. By writing a special

delimiter (written: –anyspecialstring) in your script you tell the server when to send the

48

next page to the user. E.g. you could have a loop that sends a page every second. In this

loop this delimiter would be written together with the page you want to send (and any

other extra functionalities like a sleep-for-one-second function etc). In this way the user

can be kept informed on how the SIP session is proceeding because each event in the SIP

stack has a callback attached to it. Those callbacks can in turn call a Perl function in the

CGI script, which then tells the server to send a page to the user. For example: an ok

response to an INVITE is received at the web page intended for the user. The callback

function for this INVITE is called which in turn tells the CGI script to send an update to

the user.

Since our server can receive and respond to an INVITE, we where able to conduct a

test on a full-scale scenario. The procedure of our test was to:

• Log on to the web site

• Go to address book

• Choose address to send to

• Click use

• Click send

• response is received from the SIP server and seen on the web site.

This leads us to conclude that there is, at least, one satisfactory technique to use SIP

through html. Thereby, another part of our main goal with this project was achieved.

7 Possibilities for the Web User to Receive Incoming

Calls

In our requirements specification the last thing we MUST do was to investigate the possi-

bilities for a web user to receive incoming calls from SIP users. This chapter describes two

49

results of our investigation. Non of the solutions we have suggested have been implemented.

The problem was that a web site, written in HTML, is static, and needs to be reloaded

for the web site user to get new information from the server. So a function to inform the

web site user about incoming calls was needed. An example of a normal call scenario is

shown in Figure 7.1, and our case, when calling the web site, is shown in Figure 7.2.

Figure 7.1: An example of a normal SIP session. The callee application and the SIP
functionalities is present on the same computer

Through new techniques that have been developed throughout the years like Java, CGI,

Dynamic HTML, .NET, XML, and other programming languages or scripts, the Internet

has been taken to a new level. There are many ideas to consider, and below follows two of

them:

• As shown in Figure 7.3, a small Java applet could be loaded when the user logs on

50

Figure 7.2: Scenario where a normal SIP user tries to call a Websip user. The SIP func-
tionalities is present on the web site

to Websip. This applet could in turn be used to inform the user of incoming calls.

The applet would accept incoming messages from the server and should not have to

have a constant open connection. In turn it could also inform about or redirect the

user to an ”incoming call” web site where he can handle the incoming calls. Applets

are able to handle these situations. To support the fact that applets could work in

this way please refer to [14] that shows a simple example of a client-server model in

Java (which applets are written in). Refer to the standard Java Messaging Service

(JMS) [17] if you want to know more. Please also refer to Section 8.2.1, which discuss

pushlet techniques.

• A window that the server pushes information into could be used to inform the user

about incoming calls. This window could also be used to redirect the user. We know

51

this idea could be implemented since we have successfully used server push technique

through our CGI script to inform the user about incoming SIP messages. One could

simply write a link to the site that the user should be redirected to (although he has

to click on it himself). As of this writing, the technique we used only works with

Netscape browsers, and requires a constant open connection between the server and

the client, and is therefore, not recommended.

Figure 7.3: Client being notified of an incoming call through Java

Note that the server would take care of all the incoming SIP calls and distributes them

to the users.

52

8 Problems

This chapter will summarise problems involved in this project. The end of this chapter

discusses what we could have done differently.

8.1 Problems that have Occurred

In this Section we will talk about the bigger problems we had when developing our appli-

cation, so readers that are interested in further developing, can see what also may be a

problem in the future.

8.1.1 Problems with the Web Site

As said earlier, the design and implementation of the web site, did not give us much trouble.

With the graphical part, we hardly did have any problems at all. With the web site engine

we had some minor problems and one big. The big one has to do with how many users

that can be logged on at the same time to the web site. At present only one user can be

logged on at the time (see why in Subsection 6.1.2), and this is of course a big problem,

cause it is not how a web site should work. We have not been able to solve this problem

during our working period though and leave it to future developers.

There is also one problem that has to do with the graphical part of our web site, but is

caused by the CGI-scripts. As mentioned in Section 5.1, we parted our web site in frames,

and when the user is clicking a button in the left frame the correct side should open in

the right frame. The problem occurs after a button that is connected to a CGI-script is

clicked. When the user clicks a button the next time the new side is opened in a whole

new window, and the frames are all gone. This is a problem we have not been able to

figure out, all we know is that it has to do with the CGI-scripts, cause the problem does

not occur without them. So this to we leave to future developers to solve.

53

8.1.2 Problems with Websip

When implementing our User Agent Websip, we did not have to many problems, since

as mentioned, we used JOSUA for help. The smaller problems we did had were solved

quickly, and does not seem relevant to bring up in this report.

8.1.3 Problems with Linking C and Perl

It was this part that gave us the big problems, and made our time schedule to crash. The

problem was not the program SWIG itself, cause it worked fine for smaller examples, but

the size of oSIP. As mentioned earlier, oSIP is not big, but it is not small either, and it

includes many files. So the problems occurred mainly when we tried to link all of these

files with the SWIG specific files. And if the linking went through, the next problem was

to manage to call a function in Websip from a Perl program, and then it could not find all

the files in oSIP. So obviously there was still a problem in the linking.

Short about types of linking: Static: Libraries are copied into each target of the project

that has a dependency on them. This often results in huge executables and much memory

consumption, since the whole executable is loaded into the memory.

Dynamic: Each object is linked to its particular dependencies. The good thing about

dynamic linking is that objects are loaded into memory as they are needed, and they do

not need to be copied. The bad thing might be that linking faults can go undetected since

the libraries are loaded at runtime (with ld.so.1 in Solaris).

Several weeks where lost digging around after the correct way to link our CGI-script

with the oSIP library using SWIG. We tried different methods like static linking (which

should only be used when dynamic linking is not available though), and dynamic linking

with shared objects. We discovered that there were undefined references to functions when

linking the objects together (static linking), and that there were undefined references at

runtime when using dynamic linking. We tried to find all the necessary libraries for static

linking but we only ended up needing more and more libraries (you add one, and then

54

you find that that you need other libraries and so on). The dynamic linking seemed good

at link-time. But at run-time we realised that we lacked just as many dependencies as in

static linking.

After asking a few people directly, and through mail, we finally solved the problem

through a mailing list. The ones, who helped, told us that we should use the flags -W1 and

-G. -G is used to create shared objects, and -W1 is used for error handling. The -G option

is used in SOLARIS and -shared is used in LINUX. We thought we could use -shared for

SOLARIS too but we were wrong. After using the -G option we could finally link.

8.2 What we could have done Differently

If we were given the possibility to do this project all over again, there are some things we

would do differently. One thing is that we would start to build our own User Agent for

oSIP right away, instead of take the simple way, and use the example already included in

oSIP. This example was obviously too big for SWIG. We would also try to ask around a

lot more for help with the linking problems we had with SWIG (and other problems). We

did ask a lot of people, but the help came from a Ericsson AB employee when we finally

solved the linking problem, although it was through a mailing list.

9 Possible Future Developments

In this chapter we will suggest different kinds of developments that are possible for our

application. For some of our suggestions we discuss possible solutions, and for some we

do not. We will start with functions that could be added to the web site. Then we will

discuss how the whole system can be developed, and for some of our suggestions, we will

also discuss different solutions.

55

9.1 Development of the Web Site

Since our goal on this bachelor’s project was to examine if it was possible to set up a

connection between the two protocols HTTP and SIP, our web site has far from all the

functions it could have. Below there is a list of different functions that could be added.

We will not suggest any solutions though.

• A better login system where new users can register.

• Make it possible for a user to add new SIP contacts to its address book.

• A button which the user can click on to answer incoming calls at the Make Call-

window.(see also Section 8.2).

• Information at the Make Call-window about missed calls, answered calls etc.

• More information about the user in the user profile, like phone number, birth date

etc.

• A SIP address for every user like usernamewebsip.com.

• A local search engine where a user can search for other users.

• A square at the Your Profile-window which the user can mark if he wants his profile

to be visible for other users.

• Some kind of support like a FAQ.

9.2 Development of the Whole System

There are still several problems to consider. According to Figure 1.2, information should

be sent to the Websip server about the desired changes to the session. The user can merely

select his options on the web site. For example if he wants to add or remove another

user, or add or change the service (e.g. add a video display). Possible help programs

56

(for running video conferences etc) that could be downloaded from Websip would inform

Websip about how the session is to proceed (through built in functionalities). If the user

closes his help application a message could be sent to Websip, or perhaps the application

could send frequent messages to the Websip server informing Websip about its presence (a

”keep-alive” connection). The problem arises if the user has an application independent of

Websip using that to transfer session-data to and from the other SIP user. If the Websip

user closes his application the session ends without Websip being notified (resulting in an

incorrect SIP session). Of course the other user will notice and his SIP User Agent will

take the correct action (in the case where the SIP user is not a Websip user).

Possible ideas about solutions to this problem:

• Perhaps the user programs could be started inside of another window like an ActiveX

window. When this window closes it would inform Websip about the change.

• Description files (like real media files) could be dynamically sent to the user from

Websip when a data-transfer (media, ftp, etc) session commence. The user would

click on those files, and another window would pop up with his own program running

inside of it. When this window closes it would in turn inform Websip about the

change.

9.2.1 Improving the Interaction between the Web Site and the User

At current state a constant open connection between the web site and the user through

CGI-html server-side push technique is used. This technique results in a lot of open

connections and the hogging of recourses if Websip where to be used by many people.

Suggestions to improve server to client communication follows:

• A more sophisticated and elegant technique (which unfortunately we could not test

due to lack of recourses) can be used pushing the information to the user from the

server without having to have an open connection ,although this demands the use

57

of a light weight applet. This technique called Pushlets [15] demands that the client

can run DHTML (Dynamic HTML), and JavaScript (which is a built in function in

many browsers today). Java (which is commonly installed on most computers [13])

is also required.

• Server-side callbacks. The server can call back a Java-applet client using either

CORBA (Common Object Request Broker Architecture) [19] or RMI [18] (Remote

Broker Architecture). This solution can be read about further in [18]

• Messaging following the JMS. Could be used within applets to create a dialog between

the client and the Websip. Again the client would have to have Java installed on his

computer.

9.2.2 Considerations when Expanding Websip

At present state, our User Agent is just a test prototype, and needs to be extended to suit

future web site services.

Problems that needs to be solved:

• As seen in Figure 9.1, the oSIP stack needs to have a SAP (Service Access Point)

where users can retrieve their own User Agent service. At the moment the send CGI

script initiates the stack and can access its services. But what if the stack is already

running? Indeed, it should be since it should act as a server. How does the CGI

script / script get access to the SIP server (oSIP server) if it does not initiate its own

copy?

• Management of users in the system needs to be built in. oSIP is reentrant, and

supports multiple users, which is good.

• One port should be used for any incoming calls, so that users have constant port

numbers in their addresses. The User Agent should, when receiving a call, check

58

weather the user is logged on or not and take the appropriate action.

Figure 9.1: Multiple users accessing a SAP in the oSIP stack

9.2.3 Other Alternatives to Our System

Ericsson AB wanted to examine the possibilities to communicate between SIP and HTTP.

That is, a client should be independent of SIP. One obvious option to this system is to

put the SIP functionalities on the client instead by letting the web user download and run

a SIP application from the web site. This would relieve the server from a lot of traffic

and developers would have fewer problems when developing the system. The application

could be an applet that is loaded when the user logs on to the web site. The web site

would perhaps still offer services, like answering machines for each user, mail services, etc.

A web site that uses this idea, although it does not include SIP is [16]. On this site an

59

applet is loaded onto the users computer, which includes all the needed functionalities.

One advantage of our system could be that the clients could use existing software on

their computer to manage the data-transfer. It is really a question on how to divide

the functionalities and workloads between the web service and the web user, and which

techniques that are available to do so. Java and .Net are both interesting when investigating

this.

10 Conclusions

The work conducted doing this project has resulted in new ideas about extension possi-

bilities developing a future web site intended for multimedia conferencing with SIP. Also

it has been shown that it actually is possible to develop such a web site. Or at least that

using SIP from HTTP is possible. Our conclusions can be seen in the list below.

• We can, with the completion of this project conclude that create a link from HTTP to

SIP is possible in at least one way for outgoing calls. Although we did not complete

all the signaling, we managed to transfer messages between the user of Websip and

a SIP server.

• We have also discussed several possible solutions for a web user to receive an incoming

call from a SIP user and concluded that this should also be possible.

• Selecting an appropriate scripting language or usual language for the web site includ-

ing Perl, Mzscheme, Python, TCL, Guile, Ruby, and Java is made possible through

SWIG. This is very useful since the developer can use the User Agent from such a

variety of languages. It gives the developer a lot of flexibility when developing Web-

sip or any similar systems that makes use of oSIP or a SIP stack written in C/C++

further.

60

• The MUST part of our requirements was not totally fulfilled, since we have not

sent all of the messages for a SIP connection. Also, we did not manage to transmit a

confirmation message from SIP user to web user when the connection was established.

The reason why we did not manage to do this is because we ran out of time because of

problems that occurred. These problems are described in Chapter 8 and in appendix

C the workflow is described. A web user is though, able to make an outgoing call to

a SIP user from the web page, and there is a connection established between them.

References

[1] Aymeric Moizard The GNU oSIP library

http://osip.atosc.org Read: 020124 Updated: 020517

[2] Mark Overmeer Perl/Tk saves your favourite tools

http://perl.overmeer.net/yapc2001/index.html Read: 020510

[3] Philippe Chiasson Pathologically Polluting Perl with C, Java, and other Rubbish using

Inline

http://www.extropia.com/press/2001/philippe lugs.html Read: 020510

[4] Dave Kristula HTML - An Interactive Tutorial For Beginners

http://www.davesite.com/webstation/html Read: 020228 Updated: 020605

[5] Dave Raggett Getting started with HTML

http://www.w3.org/MarkUp/Guide Read: 020229

[6] Dean Roehrich perlxs - XS language reference manual

http://www.cs.technion.ac.il/Manuals/perl/perlxs.html#NAME Read: 020321

[7] Mark Overmeer Perl/Tk saves your favourite tools

http://mark.overmeer.net/yapc2001/48-0/index.html Read: 020321

61

[8] David Beazley SWIG official homepage

http://www.swig.org Read: 020315

[9] David Beazley SWIG mailing list

http://www.swig.org/mail.html Read: 020315

[10] Mattias Ranbro CGI/Perl

http://www.it-mattias.com/cgi perl.html Read: 020308

[11] IETF IETF - The Internet Engineering Task Force

http://www.ietf.org Read: 020124

[12] AAdvantage Systems Questions and answers about Windows Terminal Server

http://www.aadvantage.net/citrix/faq.htm Read: 020503

[13] Computer Solutions Kauai How to Enable and Update JavaScript in Netscape and

Internet Explorer

http://www.computersteve.com/javasetup.html Read: 020506

[14] Java Sun A Simple Network Client Applet

http://java.sun.com/docs/books/tutorial/applet/practical/clientExample.html

Read: 020507

[15] Just van den Broecke Pushlets: Send events from servlets to DHTML client browsers

http://www.javaworld.com/javaworld/jw-03-2000/jw-03-pushlet p.html

Read: 020510

[16] ICQ inc. Web based ICQ

http://lite.icq.com

Read: 020510

62

[17] Java Sun JAVA MESSAGE SERVICE API

http://java.sun.com/products/jms/

Read: 020510

[18] Java Q&A Experts An in-depth look at RMI callbacks

http://www.javaworld.com/javaworld/javaqa/1999-04/05-rmicallback.html Read :

020510

[19] Object Management Group, Inc. CORBA BASICS

http://www.omg.org/gettingstarted/corbafaq.htm Read: 020513

[20] Fred Halsall, 2001 Multimedia communications (Applications, Networks, Protocols and

Standards Addison Wesley Longman, Inc.

[21] James F. Kurose Keith W. Ross, 2001 Computer Networking (A top-down approach

featuring the Internet) Addison Wesley Longman, Inc.

[22] Rafe Colburn, 1998 Lär dig CGI-programmering p̊a 1 vecka (Swedish edition, trans-

lated by Björn Mattsson) Pagina Förlags AB

[23] Niklas Frykholm, 1997 CGI-programmering Pagina Förlags AB

[24] Eleftherios Gkioulekas Introducing the GNU tools

Web page: ftp://ftp.ugcs.caltech.edu/pub/elef/autotools/node64.html

read 020510

A List of Terms

callbacks A callback function is a function in your program, the address of which you

pass to another code context. This context calls back your function when it wants

to.

63

HTTP HyperText Transfer Protocol, an application protocol for requesting web pages.

ICT Invite Client Transaction, an INVITE message sent from a SIP client.

IP Internet Protocol, a protocol that provides for transmitting blocks of data called data-

grams from sources to destinations.

IST Invite Server Transaction, a response from a SIP server for an INVITE message.

JOSUA Jack’s Open Source User Agent, a User Agent for oSIP implemented by Aymeric

Moizard. See more at [?, oSIP]

NICT Non-Invite Client Transaction. A Non-INVITE message sent by a SIP client.

NIST Non-Invite Server Transaction, a response from a SIP server for a non-INVITE

message.

oSIP open source SIP, a help library for making implementations of SIP applications

easier.

RTCP Real-Time Control Protocol, an application protocol for multimedia transactions.

RTP Real-Time Transport Protocol, an application protocol for multimedia transactions.

SDP Session Description Protocol, an application protocol that transmits information

about the media streams in a SIP session.

SIP Session Initiation Protocol - An application layer protocol which initiates a multime-

dia session between two or more parties.

SIP address The address where a certain SIP user is located. It is formed like an email

address e.g. mewebsip.com

SIP connection A connection between two users made using the SIP protocol.

64

SIP session A call from the beginning to the end involving two or more SIP users.

session time The time for a SIP session.

signaling Establish, supervise and end a session between two specific users.

SS7 Signal System 7, a signaling system.

SWIG Simplified Wrapper and Interface Generator - A software which can link certain

script languages with C and C++.

TCP Transmission Control Protocol, a transport protocol for transporting packages.

UDP User Datagram Protocol, a transport protocol for transporting packages.

UML Unified Modeling Language, is used to design software application before coding.

User Agent A program that performs what the user of the program tells it to do.

Windows Terminal Server Windows Terminal Server is a product that adds UNIX-

like multi-user capabilities and support for thin-client Windows-based Terminals, to

Windows NT Server 4.0 operating system. See [12]

B GNU Build System

This appendix introduces a tool that helped us during the implementation of our User

Agent Websip.

B.1 Introduction

The GNU build system is a comprehensive toolkit that manages the configuration, makefile

generation, structuring of source code, version handling, testing, installation, and packaging

of software systems. Although the GNU build system is intended for the distribution of free

65

software, we have chosen to use it since oSIP was made with it and thereby it is also easier

to include oSIP into our software packages if needed. Another reason is that it seemed to

be the best tool around for managing makefiles and configuration scripts on a high, easy

to understand and maintain level.

B.1.1 Usage

Instead of writing for example Makefiles at a normal level the user of the GNU build

system writes templates that then is processed by automake (a tool in the GNU build

system).The user simply defines which files to include in the project, which to make libraries

of, what files that are going to make up the executables in the software etc. There are also

several configuration tools that analyses the system and helps to customise the makefiles

of the project even further. The configuration files can also be used to check weather the

software is compatible to be installed on the system (e.g. if all necessary libraries that are

not included in the package itself exists). The GNU build system refers to four different

packages:

1. Autoconf produces a configuration shell script named configure from a template

named configure.in . This script probes the current platform for portability informa-

tion used when creating makefiles configuration header files, and other files related

to the application. When this is done it continues to generate these files with help

from templates written by the user and the information collected during the probe.

2. Automake produces makefile templates Makefile.in used by autoconf from higher

templates Makefile.am written by the user. One advantage of generating makefiles

is that it keeps the same structure, making the makefile more readable to everyone

familiar with the automake tool.

3. Libtool is used to build shared libraries and compile position independent code. It

can be used by automake, automating the process of building libraries even further.

66

4. Autotools Generates boilerplate files which can be used developing software.

This build system helped us a lot, and saved a lot of time since we did not have to write

huge makefiles and since configuration and installation was more automated. It saved us

the repetitive task of writing Makefiles, and gave us a nice system to handle our software.

If you want to dig deeper into the GNU build system (recommended), please refer to

[24].

C Workflow and Time Schedules

This appendix describes our workflow in this project, and shows our first and our last

time schedule. We think this could be interesting for future developers to read and see, so

maybe they will not make the same mistakes as we did.

C.1 Workflow

In the beginning of this project the work went pretty smoothly. One little problem we did

have though, was that the kick-off meeting was not held until the fourth week, for several

reasons. After the meeting, we could work more efficient though, since it was more clear

exactly what we were supposed to accomplish.

The first four weeks we were making clear what we were supposed to do and based on

that we worked out a requirements specification and a time schedule. We also took this

time to read and learn about SIP and oSIP. We downloaded oSIP, compiled it and tested

the example that were included. In working week five we started to design and implement

our web site. The graphical part did not give us any problem, but in the implementation

of the CGI-scripts we had some problems. These problems are documented in Section 8.2.

Even though, we managed to finish the web site implementation in time according to our

time schedule and requirements specification. Still there were though some problems left

to solve, and these we worked on now and then, a couple of weeks longer.

67

About the same time we started on our web site, we also started to examine which

different possibilities we had to link C and Perl. We found SWIG, tested it and manage

to make a simple example work. Big problems occurred though, when we tried to use

SWIG with the included example in oSIP (see which problems in Subsection 8.1.3). We

struggled with this for several weeks, and we could no longer follow our time schedule. For

a while we also tried to write the Send-script on the web site in C, so that SWIG would

not be needed, but in the end it just gave us the same problems as SWIG did. Finally,

after a meeting with our advisor, we decided to skip the included example in oSIP, which

is very big and includes more than we needed, and write our own User Agent. This User

Agent should only be very simple, with creating and sending an INVITE, and creating and

sending a response to the INVITE, since we as for now did not have time for more.

The building of the User Agent went pretty smoothly, since we had the help from the

recently developed JOSUA, and as soon as we had a contact between two computers, we

started the linking with SWIG again, and there were all the problems again, but after

some work we finally made it work. The next thing we had to do was connecting our

three system parts, that is send the INVITE from our web site, receive it on another

computer and then sending a response from a server to that INVITE. Then we could

see the connection between our web site and a SIP user on another computer. Our time

had now run out, so we did not manage to fulfil all of the MUST requirements in our

requirement specification, but at least we manage to connect a web user to a SIP user,

and in the end we also found the time to examine different possibilities for the web user to

receive an incoming call from a SIP user.

C.2 Time Schedules

This section shows our first and last time schedule. We thought it would be interesting to

see the differences between what we thought we would have time for in the beginning, and

what we really did had time for in the end.

68

Figure C.1: Our time schedule in the beginning

Figure C.1 shows our first time schedule. As can be seen we planned in our whole

requirement specification.

Figure C.2, which is our last time schedule, shows that we fulfilled all necessary require-

ments as specified in the MUST part of the requirements specification. However, all the

requirements included in number 6 where not fulfilled. Refer to the numbered list below

when looking at Figure C.1 and C.2.

1. Read about SIP and oSIP.

2. Finish requirements specification and delimitations.

3. Design web site.

69

Figure C.2: Our time schedule in the end

4. Design link between Perl and C.

5. Implement web site.

6. Build User Agent and connect web user to SIP user.

7. Testing

8. Consider solutions for a SIP user to connect to a web user via the web site.

9. Implement one of these solutions.

10. Testing

70

11. Implement a media transfer.

12. Testing

From these time schedules, we have learnt, not to be as optimistic when scheduling a

project. The next time we will try to specify a more realistic time schedule.

D Other Options to SWIG

This appendix describes the options that could be used instead of SWIG.

XS The following quote is taken from [6].

XS is a language used to create an extension interface between Perl and

some C library that one wishes to use with Perl. The XS interface is combined

with the library to create a new library, which can be linked to Perl. An XSUB

is a function in the XS language and is the core component of the Perl appli-

cation interface. The XS compiler is called xsubpp. This compiler will embed

the constructs necessary to let an XSUB, which is really a C function in dis-

guise, manipulate Perl values and creates the glue necessary to let Perl access

the XSUB. The compiler uses typemaps to determine how to map C function

parameters and variables to Perl values. The default typemap handles many

common C types. A supplement typemap must be created to handle special

structures and types for the library being linked.

Advantages:

• Platform independent.

• C code is separate from the script code that is good for large projects.

Disadvantages:

71

• This toolkit demands a whole lot of job to learn since it is a whole big language of

its own.

• The program is difficult to understand (We think so).

• It is a low-level language compared to inline and SWIG (see below).

Inline C The following quote is taken from [7].

Inline is a recent module, which simplifies the creation of C-libraries in

conjunction with your Perl-program. The difference with XS is that where h2xs

starts with setting-up a compilation environment which you then modify to your

needs, Inline only creates that setup on the moment that you know what you

have.

and

Usually just write the function as you would do in C, and leave-out the

#includes and it works! Inline compiles the code when it is seen first. Then it

is slow, but the next time the same code is detected, it is not recompiled, but a

cached version is used.

Note: h2xs is a toolkit that generates XS templates used for wrapping your software.

So the C-code is actually written straight into the Perl code. Inline seems easy to learn

but limited in its functionality.

Advantages:

• Works on both UNIX and Windows.

• Easy to learn.

• Little work needed to get going.

72

• Support for more than Perl.

Disadvantages:

• The code is compiled when first seen and then cached, which makes it slower, com-

pared to XS and SWIG that runs compiled code straight away.

• It is Inline. The code is mixed up with your target language, for example Perl, which

can make less clear.

[2] includes a comparison of Perl and TCL, a description of how to connect a C program

with inline, and a comparison of XS and SWIG.

[3] Puts Inline in focus. It also has a comparison of SWIG and XS.

Refer to the above mentioned to get a more in depth information.

73

