

 Computer Science

Bachelor’s Project

2002:20

Ante Engström, Rassol Raissi

Firewall Configuration System

 iii

This report is submitted in partial fulfillment of the requirements for the

Bachelor’s degree in Computer Science. All material in this report which is

not our own work has been identified and no material is included for which

a degree has previously been conferred.

Ante Engström

Rassol Raissi

Approved, June 5, 2002

Advisor: Stefan Alfredsson

Examiner: Stefan Alfredsson

 v

Abstract

This document describes our Bachelor’s Project. We have created an application to

improve configuration of certain firewalls for Internet Security Systems (ISS). The project

consists of an application and a database. The application is named Firewall Configuration

System (FCS).

Firewalls in general are introduced, to give an understanding of the background of our

work. The design and implementation for the GUI and the database are then described in

detail, which will give the reader an insight of how the application functions and how the

project is constructed.

The application is programmed using Microsoft Visual C++ and the database runs on a

Microsoft SQL Server.

 vi

 vii

Contents

1 Introduction ..1

2 Background...3

2.1 VPN & IPSec..3

2.2 Firewalls..4
2.2.1 Firewall Basics...4
2.2.2 General techniques...4
2.2.3 Why should an organisation employ firewalls?...5
2.2.4 Drawbacks of using firewalls... 5
2.2.5 Selecting firewalls..5

2.3 ISS – Firewall Outsourcing..6

2.4 Watchguard SOHO..8

2.5 NetScreen-5XP..9

2.6 ODBC...10

3 Project Specification... 11

4 Design..12

4.1 The Database...12
4.1.1 Multiple clients, MS SQL Server & ODBC...13
4.1.2 The Structure. Tables & Relations...13

4.2 Application types, Dialogs, SDI:s & MDI:s...17
4.2.1 Why is this project based on a SDI application?..18

4.3 The Graphical User Interface...18

4.4 Classes...25
4.4.1 CAboutDlg...25
4.4.2 CDBThread..25
4.4.3 CFCSApp...25
4.4.4 CFCSView...25
4.4.5 CFCSDoc...25
4.4.6 CLoginDlg ...25
4.4.7 CMainFrame..26
4.4.8 CMessageDlg...26
4.4.9 CSQLDirect & CSQLColumn..26
4.4.10 CAddEditPortalDlg..26
4.4.11 CAddEditVPNDlg..26
4.4.12 CArrayEx...26
4.4.13 CCreateFileDlg..26
4.4.14 CModCustDlg..26

 viii

4.4.15 CModPortalDlg..26
4.4.16 CNewCustNameDlg...27
4.4.17 CConfirmDlg..27
4.4.18 CSaveFileDlg...27

4.5 Class dependencies..28

5 Implementation...29

5.1 CDBThread – The thread that sends the SQL queries...29

5.2 CSQLDirect & CSQLColumn – The ODBC interface..32

5.3 CLoginDlg – The Login Dialog...33

5.4 CFCSApp – The main thread...34

5.5 CMainFrame – The main window frame..34

5.6 CFCSView – The main window view.. 34

5.7 CAddEditPortalDlg – The dialog for adding/editing a firewall.............................35

5.8 CCreateFileDlg – Where the configuration file is built up.................................... 37
5.8.1 Building configuration files based on the pattern... 38
5.8.2 Building modified configuration files..40

6 Test & Evaluation ...45

7 Summary & Conclusions..47

List of Abbreviations ...49

References..50

A Example of a Watchguard SOHO Config file..51

B Example of a NetScreen config file...53

C The Database Structure..54

D Fragments of Source Code...55

CFCSApp – InitInstance()...55

CFCSApp – ControlLogin()..56

CMainFrame – PreCreateWindow(…)..56

CMainFrame – OnGetMinMaxInfo(…)..56

E Small Office Managed Firewall Service... 57

 ix

List of Figures

Figure 2.1: Vpn connection between two networks...3

Figure 2.2: Watchguard SOHO...8

Figure 2.3: NetScreen... 9

Figure 4.1: Multiple clients connecting to server via ODBC..13

Figure 4.2: Customer table..13

Figure 4.3: Tables Customer, Firewall, FirewallType & VPN.......................................14

Figure 4.4: Tables User, Log & FireWall.. 15

Figure 4.5: Tables Parameter & Variable.. 15

Figure 4.6: Tables ModifiedVar, Parameter & Variable..16

Figure 4.7: Login Dialog...18

Figure 4.8: Main SDI Window..19

Figure 4.9: Modify Customers Dialog...19

Figure 4.10: Rename Customer Dialog...20

Figure 4.11: Confirm Dialog...20

Figure 4.12: Modify Sites Dialog..20

Figure 4.13: Add New Site Dialog..21

Figure 4.14: Add VPN Dialog...22

Figure 4.15: Remove Site Dialog..23

Figure 4.16: Create File Dialog...24

Figure 4.17: Class Diagram...28

Figure 5.1: Scenario when login is successful...33

Figure 5.2: Successful selection of getting all firewalls related to the selected customer35

Figure 5.3: The order in witch firewall data is fetched...36

Figure 5.4: 2D array used to store parameters and variables..40

Figure 5.5: Arrays A and B when a new variable is added...42

Figure 5.6: Arrays A and B when a variable is deleted..43

Figure 5.7: List box and combo box when a standard variable is deleted.......................43

 x

List of tables

Table 5.1: List of thread interaction messages...30

Table 5.2: Aliases used when defining standard configuration files...............................39

 1

1 Introduction

The Internet grows day by day and so does the threat of being mistreated when being

connected. Hazards like viruses or persons trying to gain access to ones computer cannot be

disregarded. To be connected to the Internet is essential for organizations of this modern age.

Fortunately there are ways to protect private information stored on their computers. The most

common way is to set up a firewall between the internal network and the Internet. This means

that all outgoing and incoming traffic will pass through the firewall so it can be controlled

before it is sent on. A firewall is a clever way of protecting their data but it needs

maintenance. Instead of having to educate people to maintain the firewall, the organizations’

turn to businesses like Internet Security Systems (ISS) who has qualified personnel to deal

with this.

When configuring a firewall, ISS does not send a person over to the organization to do this

because the firewall can be located abroad. To maintain the firewall they set up a virtual

private network (VPN, secure communication) between the firewall and themselves. Through

the VPN they can configure the firewall from their own office, by sending commands to the

firewall.

Here is where this project starts. At this moment configurations are set manually, which is

time consuming and mistakes can easily be made. The task given was to construct an

application with a purpose to make the procedure of writing these configuration files easier.

This application should support two small office firewalls, WatchGuard SOHO and

NetScreen-5XP. Two parts build up the application; one client containing a graphical user

interface (GUI) and a database running on a server. The database should be able to handle

several connections simultaneously and the GUI should run under Windows NT and interact

with the database through ODBC (see chapter 2.6).

The rest of the report is organized as follows:

Chapter 2. Gives an introduction to the project’s initiator, Internet Security Systems, what

firewalls are and how they work. Also a short overview of VPN, IPSec, Watchguard SOHO,

NetScreen-5XP and ODBC is given here.

Chapter 3. This is where the project specification, discussions and assumptions are. How

and why we approached problems in a certain way.

 2

Chapter 4. In this chapter the design of the application is discussed. First is the designing

of the database then the designing of the GUI described. Last are a short overview of the

classes that are used and a class diagram.

Chapter 5. Here is where the implementation is placed along with the problems and

solutions that occurred during the development.

Chapter 6. This is where the test and evaluation is given for this project.

Chapter 7. The summary and final conclusions are given here.

 3

2 Background

This chapter explains basic facts that are useful to know about when studying this project.

2.1 VPN & IPSec

The purpose of VPNs is to send data from one point to another inside a secure and efficient

tunnel (see Figure 2.1). It carefully guards both ends of the tunnel so that only authorized

users and their data can enter. The VPN encrypts data that is sent and decrypts receiving data.

Furthermore, a VPN has security features that can limit users' access to certain sections only.

VPN is put up between different networks so that it seems like they are all on one big

private network. This way people located on one of the networks can reach data on the other

in a secure way.

Figure 2.1: Vpn connection between two networks

Packets sent over the Internet should be protected if they contain private information. One

way of doing this is by using IPSec. IPSec uses two mechanisms for ensuring the safety of

packets. These two are the IPSec Authentication Header (AH) and the IPSec Encapsulating

Security Payload (ESP). The first one digitally signs the outbound packet, both data payload

and headers, with a hash value appended to the packet, verifying the identity of the source and

destination machines and the integrity of the payload.

The second mechanism guarantees the integrity and confidentiality of the data in the

original message by combining a secure hash and encryption of either the original payload by

itself, or the headers and payload of the original packet.

 4

2.2 Firewalls

With the increasing popularity of always-on connections, such as cable modems and DSL

lines, most organisations and even home users are connected to the Internet 24 hours a day.

This raises serious security concerns. Internet users need to be increasingly aware of security

issues, as network traffic coming into the computer can cause damage to files and programs.

There also exist intruders that want to break into computers or networks so that they can steal

or alter any information that they can get their hands on. For example, the loss of financial

records, e-mail, customer files and so on, can be devastating to an organisation or to an

individual.

Installing a firewall is a good way of protecting the computer of a home user or the

network of an organization.

2.2.1 Firewall Basics

A firewall is either only a software application (Personal firewall) or it is a combination

between hardware and software (Hardware firewall) that is placed between the Internet

connection and the computer or internal network. A firewall separates a computer or an

internal network from the Internet, inspecting packets of data as they arrive at either side of

the firewall (from the internal network or com puter, or from the Internet) to determine

whether it should be allowed to pass or be blocked. The firewall determines this by checking

a list that contains all the rules that it must follow. The firewall administrator establishes these

rules.

2.2.2 General techniques

Firewalls uses four general techniques to control access and enforce the site’s security

policy.

Service control, this technique is used to see which types of Internet services can be

accessed, inbound or outbound.

Direction control, this technique is used by the firewall to check which direction certain

service requests may be initiated and allowed to flow through the firewall.

User control, the firewall uses this technique to check if a certain user has the right to

access a certain service. This technique is mostly applied on users sitting inside the internal

network but it may also be applied on users being outside the internal network. IPSec is used

to authenticate the user that is sending the incoming traffic so it can pass the firewall.

 5

Behaviour control, this technique is used for example, to reduce the information on a local

web server seen by external access, or to set the firewall to filter e-mail to eliminate spam.

2.2.3 Why should an organisation employ firewalls?

An organisation should use firewalls in means of keeping unauthorised persons off the

system. These intruders can cause a lot of damage to an organisation.

These persons may work for a competitor organisation that may want get information

about future coming products, trade secrets, marketing strategies, or financial analysis.

They might be persons wanting to delete or change information just for the fun of it. By

doing this they can change the appearance of an organisations web server, which may be seen

by thousands of people in a matter of minutes. Things like this can damage the organisations

reputation.

As we can see, it is in the organisations best interest to invest in a firewall protecting

system.

2.2.4 Drawbacks of using firewalls

Firewalls are remarkable when it comes to protecting data behind the firewall, but there are

some attacks that firewalls cannot handle, such as interception of mail and eavesdropping

(intentional interception of data along the Internet).

As we know firewalls provide a single point of security and audit. This means that if an

intruder gets through the firewall, he or she may have an opportunity to do anything they want

to the system including stealing and altering information.

Another situation to consider is that an unsatisfied employee with vast knowledge of the

organization can do the organization a great harm. Since the user is located on the inside of

the firewall, there are no ways of preventing this employee to alter or to give away any

information concerning the firm/organization.

2.2.5 Selecting firewalls

Home users usually choose the personal firewall because they only have one or a few

computers that are connected to the Internet. This is a low cost alternative for protecting

private information kept on their computers. There are some freeware/shareware personal

firewalls that can be downloaded from the Internet, but these are often just a reduced version

of the full ones. Of course one will have to pay for the full version personal firewalls. The full

version firewalls might have better support possibilities and configuration management.

 6

Organizations normally use hardware firewalls. They usually have a number of computers

connected to the Internet making them able to do their work. Instead of having to install and

administrate software firewalls on each and every one of these computers, they will probably

choose to install the hardware firewall. The hardware firewall is placed between the

organizations internal network and the Internet. By doing this, the administrator only has one

firewall to configure and maintain.

As we can se firewall applications vary in quality and cost. It is good then to consider the

following points when selecting a firewall:

• Ease of installation/configuration.

• Does the firewall run without user intervention?

• Are there parameters that have to be set, and is it easy to do?

• Is there online help or technical support available?

• Does the firewall provide audit reports identifying time, location and type of attack?

• Is the cost of the firewall appropriate to the size of your business/office?

• Are maintenance/monitoring requirements suitable for the size and type of business?

• Will the firewall have a significant impact on the operation of the system as a whole?

There are a number of firewall products available with varying feature capabilities and

prices. Home users who just have one computer connected to the Internet should consider the

personal firewall, which is cheaper and easier to install. Offices with a number of computers

connected to the Internet should choose to use hardware firewalls. These are slightly more

expensive but offer wider protection for the organization.

2.3 ISS – Firewall Outsourcing

Founded in 1994, Internet Security Systems is a pioneer and world leader in software and

services that protect corporate and personal information from an ever-changing spectrum of

online threats and misuse. As organizations increasingly move operations online, the number

and sophistication of threats to the networks, servers and desktops that empower these

initiatives also continue to escalate. Internet Security Systems' solutions dynamically detect,

prevent and respond to these threats.

Internet Security Systems' market includes any organization or individual with online

digital assets to protect. Internet Security Systems is the trusted security provider for over

9,000 corporate customers, including 49 of the Fortune 50, the 10 largest U.S. securities

 7

firms, 10 of the world's largest telecommunications companies and major agencies and

departments within U.S. local, state and federal governments.

Some examples of ISS Solutions and services are the RealSecure Protection System,

BlackICE intrusion protection software, Managed Security Services (MSS) and ISS X -

Force™.

The RealSecure Protection System software platform comprises integrated, centrally

managed security assessment, intrusion detection and response, and enterprise decision-

support functionality. The BlackICE intrusion protection comprises software solutions for

small offices, and home offices deliver easily administered protection for any online assets. A

managed Security Services (MSS) offering allows customers to focus on core business

initiatives while leveraging ISS expertise to assess, design, deploy, manage and educate. The

Internet Security Systems X-Force™ organization, an industry-leading security research and

development organization, ensures that Internet Security Systems proactively stays on top of

the latest security threats.

Internet Security Systems is headquartered in Atlanta, GA, with operations throughout the

Americas, Asia, Australia, Europe and the Middle East.

The part of ISS, MSS EMEA, with offices in Brussels, Helsingborg and Karlstad that this

project is involved in, provides the service MSS (Manage Security Services) for the EMEA

market: The service includes management of the customer’s security equipment. The

customer owns the equipment in most cases and ISS applies support and maintenance to the

infrastructure that is required to handle the customer’s equipment. Depending on agreement

they can also offer a “Customer portal” where the customer can fetch reports, read audits,

order changes and so on.

One service provided by ISS is called “Small Office VPN”. This service means that ISS

sets up VPNs and monitors them for the client. Here it is VPN service in first hand which

sales rather than firewall functionality. Furthermore some customers may wish to have a pure

firewall service. To meet the customer requirements, ISS supports products that contain both

fi rewall and VPN functionality. Two of these are Netscreen-5XP and Watchguard SOHO.

These are used particularly in smaller offices (approximately 10 workstations) with a VPN

connection to their head office. ISS handles the configuration by sending a configuration file

over VPN to the firewall.

.

 8

2.4 Watchguard SOHO

Figure 2.2: Watchguard SOHO

The Watchguard SOHO (Figure 2.2) is a security-dedicated hardware appliance that is

easily installed between a ADSL or ISDN router and the network. It supports all leading

operating systems. ISS uses the file transfer protocol (FTP) to configure this firewall by

sending the configuration file directly to the device via a VPN.

Selected Key Benefits

• Intern et Security. Protect all of your networked computers with dynamic stateful packet

filtering firewall technology. Create filter rules based on port and protocol for both

inbound and outbound traffic.

• Easy Installation. This plug-and-play security dedicated hardware device configures

easily using any standard browser or file ftp.

• Broadband Internet Sharing. Share a single cable, DSL or ISDN high-speed Internet

connection with up to 50 computers and save the cost of multiple connections.

• Network Computers. Network up to 50 computers to exchange e-mail and files, and to

share a broadband Internet connection, printers and other equipment.

• Branch Office VPN. Establish a private, encrypted VPN tunnel with another location

with the Firebox SOHO|tc. Branch office VPN is optional with the Firebox SOHO and

may be added at any time.

• Mobile User VPN Option. Establish DES or 3DES-encrypted VPN tunnel with travelling

users.

 9

2.5 NetScreen-5XP

Figure 2.3: NetScreen

The NetScreen-5XP (Figure 2.3) is an Internet security appliance integrating firewall,

virtual private networking (VPN) and traffic shaping functionality. With the VPN

functionality built in, all management can be encrypted for truly secure remote management.

It features wire -speed Ethernet performance for remote offices and telecommuters. The

NetScreen-5XP is offered in two versions, one that allows 10 users and one that allows an

unrestricted number of users.

ISS uses the command line interface (CLI) accessible in-band via SSH to configure this

firewall.

Ssh (Secure Shell) is a program to log into another computer over a network, to execute

commands in a remote machine, and to move files from one machine to another. It provides

strong authentication and secure communications over unsecure channels.

• Internet Security. The NetScreen-5XP is fully capable of securing a broadband

telecommuter or a small office. It has a fully integrated solution with security-optimized

hardware, operating system and firewall, which provides higher level of security than

patched-together software-based solutions.

• Easy Installation and Managing. Installing and managing appliances is easily

accomplished using a built-in WebUI, command line interface, or NetScreen’s central

management solutions.

• VPN. The NetScreen-5XP has a VPN solution supporting site-to-site and remote-access

VPN applications. It has 3DES, DES and AES encryption using digital certificates, IKE

auto-key, or manual key. SHA-1 and MD5 strong authentication

• Traffic management. Traffic management allows a network administrator to monitor,

analyze, and allocate bandwidth utilized by various types of network traffic in real time,

helping to ensure that web surfing or other non -critical applications do not impact

business-critical traffic.

 10

2.6 ODBC

Open DataBase Connectivity is a standard database access method developed by

Microsoft. The goal of ODBC is to make it possible to access any data from any application,

regardless of which database management system (DBMS) is handling the data. ODBC

manages this by inserting a middle layer, called a database driver, between an application and

the DBMS. The purpose of this layer is to translate the application's data queries into

commands that the DBMS understands. To make this functional, both the application and the

DBMS must be ODBC -compatible. Meaning the application must be capable of issuing

ODBC commands and the DBMS must be capable to respond.

 11

3 Project Specification

Some firewalls are configured by a text file consisting of several commands. This applies

for example to Netscreen-5XP and Watchguard SOHO. Handling this manually is time

consuming and allows human mistakes. It is also hard to get a good overview of changes to

the configuration.

To improve this configuration procedure an application is appropriate. This application

should handle parameter information for certain firewalls and then use the information to

generate a configuration file consisting of commands in plain ASCII text format.

The application should be based upon a database so that different clients can access and

configure simultaneously. Furthermore, the database should be constructed per customer to

make it easy to get an overview over all the equipments and configurations for each customer.

A copy of the actual configuration file need not be stored in the database.

Syntax may change on version updates so it should be easy to change the translation from

parameter information to configuration file. The configurations for each firewall are mostly

the same for each customer. The only thing that differs is firewall specific information like IP,

VPN and passwords. Some kind of parameter data pattern can be used. But in some cases

firewall configurations can break the pattern.

The assignment is limited to only concern Internet Security Systems Small Office service,

see service definition appendix E ” Small Office, Managed Firewall Service”. The equipment

that should be supported is Watchguard SOHO [5] and Netscreen-5XP [6].

The application must execute on Windows NT workstations and MS SQL Server should

serve as the database server. MS Visual C++ was found to be appropriate as the tool for

building the application.

 12

4 Design

The work with designing the user interface felt as a good starting point to easier get an

overview of how the application would look like and function. This was more difficult to

accomplish without knowing how the database was to be structured, what data to be stored

and in which tables. Designing the database structure was obviously this projects first

challenge.

This chapter handles the database and the user interface along with the code construction.

4.1 The Database

The requirements concerning the database part of the project:

• Multiple clients are to be allowed access to the database at the same time.

• Microsoft SQL Server is to be used

• The database is to be structured per customer, which makes it easier to apply

equipment and configuration for each customer.

• Users should be logged when entering the application and when adding or

modifying a customer or firewall.

• The syntax used by the configuration file can be changed, so it should be easy to

change parameter information.

• Every firewall has a pattern for its config uration file. ISS gives the same

configuration to all customers. Every parameter has the same variables for each

customer of a certain type except customer specific variables, for example IP-

addresses. But there are exceptions when a firewall configuration does not follow

the pattern, when one or more variables differ. We have to take this into

consideration when programming and constructing the database. Parameters and

variables are explained later on in this section.

 13

4.1.1 Multiple clients, MS SQL Server & ODBC

Allowing multiple clients to access the database is no problem using ODBC and MS SQL

Server. The application only needs to connect to an ODBC source, which handles the

communication with the SQL Server database. An ODBC source must be defined for the

application to function properly. This can be done in the Windows control panel. When an

ODBC connection is defined it is directed to the server and given a name. This name is

important, for it is the name that the application uses to find the right ODBC source.

Figure 4.1: Multiple clients connecting to server via ODBC

4.1.2 The Structure. Tables & Relations

Since the database should be constructed with the customer as a base we started with

creating the Customer table (Figure 4.2). Since every customer name is unique,

CustomerName was chosen as the primary key.

Figure 4.2: Customer table

(Bold text shows the primary key). Every customer can use zero or more firewalls so a

table called Firewall was created (Figure 4.3). In this table all specific information concerning

the actual firewall is stored and what type of firewall it is. (WatchGuard SOHO, Netscreen-

5XP…). Observe that one customer can be registered to two different firewalls. VPN

information is also a necessary part of each firewall. This information consists of Remote

Network Network

CustomerName

DB
Client 1 ODBC Client n ODBC

 14

Network, Remote Net mask, Remote Gateway IP and Shared Secret. It is uncertain how many

different VPN configurations that are needed for each firewall, so a new table is added for the

VPN information.

Figure 4.3: Tables Customer, Firewall, FirewallType & VPN

Since our program also need to be able to show who has generated configuration files and

when this was done for each firewall, this also had to be structured in the database. To solve

this all users must pass through authentication to get access to the application so they can be

tracked. Two tables need to be created (Figure 4.4). A user table with user information, such

as the username and password, and a log table containing the tracked users. Information that

is needed in the log table is the user and firewall concerned, and the data along with the event

that was logged. There are five events, which need to be logged:

1

∞

∞

∞

1

1

FirewallId

Customer Name

FW Name

Default Gateway

IP Intern

Network Intern

Subnetmask Intern

IP Extern

Network Extern

Subnetmask Extern

DNS

Admin Name

Admin Password

FW Type

SNMP Community

SNMP Host

Use DHCP

DHCP Pool1

DHCP Pool2

CustomerName

FWType

Name

VPNId

FirewallId

Remote Network

Remote Netmask

Remote Gateway IP

Shared Secret

 15

• User logged in successfully.

• User adds a customer.

• User renames a customer.

• User adds a firewall to a customer.

• User edits a certain firewall.

The login routine is used to prevent users to access the application, not to prevent access to

the database. Anyone can access the database if a proper ODBC connection is set up. The

application also needs authentication to be able to log the user.

Figure 4.4: Tables User, Log & FireWall

The following parts of this section deal with how to store the information used to build up

the configuration fil es. The database should be constructed to be flexible to manage

configuration changes that might occur on version updates.

A command line in a configuration file consists of two parts. The line starts with a

parameter, which is similar to a data type. A parameter follows by one or more variables that

conclude the command line. A quick look at the configuration files (appendix A & B) for both

firewalls shows this. This was easily designed (see Figure 4.5).

Figure 4.5: Tables Parameter & Variable

∞

1
ParamId

Param

FW Type

1

1
∞

1
FirewallId

Customer Name

…

LogId

FirewallId

User

Date

Event

User

FirstName

LastName

Password

VarId

ParamId

Variable

 16

It is important that this solution suits the configuration syntax for both Watchguard and

NetScreen and also other firewalls such as Cisco PIX. The application should be as easy as

possible to upgrade to handle other firewalls as well. The syntax must always be, as described

above, a parameter followed by one or more variables separated by spaces.

For every firewall type, a typical relationship between parameters and variables should be

added by the database administrator using the two tables in Figure 4.5. The parameters,

variables and their relationship can be modified anytime. A modification affects the

configuration file. This solves the problem with versions updates.

The next problem involves the fact that not all firewalls follow the predefined parameter to

variables pattern. Some of the firewalls need variables that are not defined in this pattern. For

these firewalls we need to be able to replace the variables in the pattern with specific ones. To

sort this out we added a new table to the parameter-variable structure (Figure 4.6).

Figure 4.6: Tables ModifiedVar, Parameter & Variable

The new table, ModifiedVar, is similar to table Variable part from the attribute FirewallId.

This is needed to relate to a certain firewall. With this table it is possible to delete or add new

variables related to any parameter for a specific firewall. For example: a parameter called p1

has, according to the pattern, a variable v1. This command line in the configuration file would

look like “p1 v1”. If the concerned firewall, f1, needs variables v2 and v3 instead of v1, these

two variables are simply inserted into the ModifiedVar table along with the parameter id for

p1 and the firewall id for f1. Now, to build a configuration file for a firewall that does not

follow the pattern, all variables that exist in the ModifyVar table, for that firewall id, should

1

∞

∞

1

∞
ModVarId

ParamId

FirewallId

Variable

ParamId

Param

FWType

VarId

ParamId

Variable

FirewallId

FWType

…

 17

replace the variables in the Variable table where the parameter id attribute agrees with the

parameter id attribute in ModifiedVar. This is either done in the application or it is done in the

database using so-called Stored Procedure, which is an operation that is stored with the

database server. Stored procedures are mostly written in SQL.

 There exist both advantages and disadvantages with these two methods. When it is

handled within the application, it is more reliable than if the application is to depend on the

database server, with the stored procedure, to function properly. Using stored procedure it will

run faster because all information can be processed locally. It may also be easier to

implement. The question is if this quicker solution is really necessary. Most of the

configuration files follow the parameter-variable pattern, which means that this problem will

not often occur. Because of this, and that no external source should be able to cause the

application to generate non-valid configuration files, a decision was made to handle this

within the application.

The complete database structure is located in appendix C.

4.2 Application types, Dialogs, SDI:s & MDI:s

There are three types of applications in Windows. There are dialogs, single document

interfaces (SDI) and multiple document interfaces (MDI).

Dialogs are the simplest types of windows. These windows consist of only one class and

cannot contain any other frame window. The class name usually ends with the letters Dlg.

This makes it easier for the programmer to know that the class represents a dialog.

The Firewall Configuration System application is a SDI application. SDI:s allow one open

document frame window to be opened in the mainframe window. These types of applications

consists of three classes:

• The Frame class

• The Doc class

• The View Class

See section Classes 4.4 for more details.

MDI applications allow multiple document frame windows to be open in the same instance

of an application. An MDI application has a window within which multiple MDI child

windows, which are frame windows themselves, can be opened, each containing a separate

document.

 18

4.2.1 Why is this project based on a SDI application?

The FCS application might as well be dialog based. But since the whole user interface

consists of 11 windows, a SDI based main window felt appropriate as a base for the design

structure.

4.3 The Graphical User Interface

As the database structure was completed we could move on to the user interface. To be able to

log users, a login window must be the first to appear when the application is executed (see

Figure 4.7). On the login window there are fields for the user to apply his/hers username and

password. In case the user fails to login or connect to the database, the cancel button will exit

the application.

Figure 4.7: Login Dialog

When the user has logged in the main window (Figure 4.8) will appear and the login

window will terminate. Here there are two list boxes, one for Customers and one for the

customer’s Sites. A list box is a window with a fixed size that provides a list of items to

choose from. If the number of items exceeds the number that can be displayed, a scroll bar is

automatically added to the list box. The customers’ names are listed in the Customers-list box

as soon as the window is loaded. When selecting a customer its sites will be listed in the

Sites-list box. The Modify Customers and Modify Sites buttons are used when the user wants

to modify either a customer or a firewall. The Modify Sites button becomes enabled as soon

as a customer has been selected. The Generate File button will allow the user to generate a

 19

configuration file for the selected customer and site. As soon as a customer and a site have

been selected, they will appear above the Generate File button, which will become enabled.

Figure 4.8: Main SDI Window

When the Modify Customers button is pressed a new dialog appears with the main window

still in the back (Figure 4.9). To add a customer the user will apply the name of the customer

in the field next to the Add button. When this is done the Add button becomes enabled so the

user can press it to add the customer. When the user wants to rename a customer he/she

selects the customer and presses the Rename button, which is now enabled.

Figure 4.9: Modify Customers Dialog

 This will open the dialog in Figure 4.10 with the selected name is shown in a field. This is

done so the user is sure that he/she is renaming the right customer. The user deletes the name

 20

and writes in the new customer name and presses the OK button. The new name will be saved

and the window terminates. If the user does not want to rename the selected customer he/she

presses the Cancel button. The window will terminate without any changes taking place.

Figure 4.10: Rename Customer Dialog

If the user wants to remove a customer he/she selects the customer. This will enable the

Remove button. As the user presses the Remove button and a new window appears (Figure

4.11).

Figure 4.11: Confirm Dialog

Now back to the main window. If the Modify Sites button is pressed, a new window will

appear that is quite similar to the Mod ify Customers window (Figure 4.12). The only

difference is that the Rename button here is called Edit.

Figure 4.12: Modify Sites Dialog

 21

If the user wishes to add a firewall he/she simply applies the name in the field next to the

Add button. This button will then be enabled and by pressing it a new window will appear.

We will call this window for “Add/Edit firewall dialog” since it is used both for adding and

editing a firewall. The only difference is that the window title and the name of the button

located down in the left corner will change depending on if the Add or Edit button was

pressed.

When editing a firewall, the user selects the firewall that he/she wishes to edit. This will

enable the Edit button, which when pressed opens the Add/Edit firewall dialog (Figure 4.13).

Figure 4.13: Add New Site Dialog

 22

When adding a new firewall this window will only contain the selected customer and the

firewall name that was entered before pressing the Add button. In this window the user

applies information that is specific for this firewall. So first of all the user determines what

kind of firewall this information is for by selecting one of the radio buttons. If the user selects

Watchguard the fields next to SNMP Community and SNMP Host will be disabled because

this type of firewall does not need the above information. If the user selects either one of the

NetScreen firewalls the SNMP Community and SNMP Host will be enabled because both

firewall types use this information.

Then why have two different NetScreen types? Well, this is for later use when generating

the configuration file.

At first only two types of firewalls where cons idered required, which means only two

different parameter to variable patterns. Then it came to our knowledge that NetScreen-5XP

can have two different types of configurations depending on if it where to serve as a NAT or a

Route firewall. NAT (Network Address Translation) enables the internal network to use one

set of IP addresses for internal traffic and a second set of addresses for external traffic. [7]

The easiest solution was to consider the NetScreen-5XP as two different firewalls with two

different patterns. Then by allowing the user to select firewall type the application knows

which parameter to variable pattern to use when generating the configuration file.

The check box Use DHCP is optional for all the firewall types. If checked, the two IP

address fields to the right of DHCP Pool will be enabled so the user can apply data. For the

VPN information there is a list box with four columns. The columns are Remote Network,

Remote Net mask, Remote gw IP and Shared Secret. When the Add or the Edit button is

pressed a new dialog appears (Figure 4.14). This window is called Add/Edit VPN. This

window is the same for them both but the content in the data fields will differ. When Add is

pressed and the list box is empty the Add/Edit VPN window will not contain any data.

Figure 4.14: Add VPN Dialog

 23

The window has three IP address fields, one for remote network, one for remote net mask

and one for remote gateway IP. There is also a field for shared secret. When the OK button is

pressed the window will terminate and the VPN information will be inserted into the list box

in the VPN section of the Add/Edit firewall window. If data already exists in the list box of

the VPN section and the user presses the Add button, the data from remote gateway IP and

shared secret columns will be placed in the respective data fields in the Add/Edit VPN

window. This is done because different Remote Network and Remote Net mask addresses use

the same Remote gw IP and Shared Secret information. If the user wants to change these

he/she just need to apply the new data into the two fields.

When editing the user selects a line in the VPN listbox that he/she wants to change and

presses the Edit button. The Add/Edit VPN window will appear with and the data will be

inserted into all of the fields. Overwrite the old data and apply the new and press the OK

button. The window will terminate and the new data will overwrite the old in VPN section of

the Add/Edit firewall window.

To remove VPN information the user selects the Remote Network address and presses the

Remove button.

When the user is done applying data in the Add/Edit firewall window he/she presses the

Add Site button to close the window and store the new firewall.

Now if the user presses the Edit button the Add/Edit firewall window will appear with all

of the data that exists for the selected firewall inserted into the right data fields in this

window. The user makes the changes that he/she desires and presses the Apply Changes

button to terminate the window and save the changes.

When the user wants to remove a firewall he/she selects the firewall, which will enable the

Remove button. When pressed a new window is opened (Figure 4.15) that asks the user if

he/she is sure that the selected firewall should be removed. If the user presses the OK button

the window will terminate and the firewall will be removed. If the Cancel button is pressed

the window terminates and no changes will take place.

Figure 4.15: Remove Site Dialog

 24

Now back to the main window and the Generate File button. Pressing this button will show

the dialog in Figure 4.16. This is the window that generates the configuration file. The name

of the selected customer and site is shown so that the user knows what configuration file

he/she is creating. It is also shown if the configuration is following the standard pattern for a

configuration file or if there has been any modifications. The configuration file is placed in a

list box as soon as the window appears. The user can make changes to it by selecting a certain

command line from the list box. The parameter name of the selection will appear above the

combo box that is now filled with the variables for that parameter. The user can now either

add a new variable or delete an old one. To add a new variable the user applies the name in

the field and presses the Add button. To remove a variable the user selects one from the

combo box and presses the Delete button. If the user presses the OK button the window will

terminate and the changes will be saved in the database for later use. On Cancel the window

will terminate and no changes will take place. If the user is satisfied with the configuration

file he/she presses the Save File button. This will save the changes to the database and a new

window will appear. In this window the user applies the name of the file and where to save it.

Figure 4.16: Create File Dialog

 25

4.4 Classes

This section is a brief description of all classes and their roles in the project.

All class names start with the letter ‘C’ to indicate their data type.

4.4.1 CAboutDlg

The GUI of the about box.

4.4.2 CDBThread

This thread handles all the database work. It is needed to prevent the main thread from

waiting when connecting to the database etc, which causes the application to not respond.

4.4.3 CFCSApp

CFCSApp is the main thread of the application, which defines the class behaviors for the

application. It creates and connects all components in the program including the main window

user interface, which consists of CFCSMainFrame and CFCSView. This class receives all the

event messages and passes them through to CFCSView.

4.4.4 CFCSView

Represents the area within the main window frame, the window that comes up when the

user has logged in. The list boxes, buttons and other components that are within the main

window are connected to this class. To interact with the database an instance of CDBThread

is used.

4.4.5 CFCSDoc

The term document is referring to the data that is to be worked on in the program. This

class is closely linked to the CFCSView class. It receives indata from the view class to

process, the result is then sent back to the view-class for user display.

4.4.6 CLoginDlg

The GUI of the login dialog, which is shown before the main window appears.

Uses an instance of CDBThread to handle the login information.

 26

4.4.7 CMainFrame

As the class name implies this class represents the window frame of the main window. The

frame contains the menus, scrollbars and other visible objects that are connected to the

window.

4.4.8 CMessageDlg

When the application wants to give the user a message, a box containing the massage

appears to alert the user. This message box appears mostly to give error messages, for

example when the database is down or when the login failed.

4.4.9 CSQLDirect & CSQLColumn

The direct interface to the ODBC database connection. These classes provide the functions

needed to interact with the database.

4.4.10 CAddEditPortalDlg

If the user wants to add or change information for a selected firewall an object of this class

is used.

4.4.11 CAddEditVPNDlg

This class handles the GUI of the add or edit VPN dialog. This dialog is shown when one

of the two buttons, Add and Edit, are pressed in the CAddEditPortalDlg dialog.

4.4.12 CArrayEx

The CArrayEx is needed to create a 2-dimensional array. These arrays are used when

fetching parameters and their related variables.

4.4.13 CCreateFileDlg

An object of this class is used to show the dialog where the creating of the configuration

file is done.

4.4.14 CModCustDlg

For adding, removing or renaming a customer an object of this class is used to show the

window where this is done.

4.4.15 CModPortalDlg

For adding, editing or removing a firewall an object of this class is used to show the

window where this is done.

 27

4.4.16 CNewCustNameDlg

When the Rename button is used from CModCustDlg an object of CNewCustNameDlg is

used to show the window where the user can rename the selected customer.

4.4.17 CConfirmDlg

An object of this class is used to show the little dialog that allows the user confirm that

he/she really wants to delete an item.

4.4.18 CSaveFileDlg

When the user wants to save a configuration file an object of this class is used to show the

window where the user can choose name and which folder to save to.

 28

4.5 Class dependencies

Figure 4.17: Class Diagram

 29

5 Implementation

This chapter goes through the implementation along with the problems and solutions that

we had to deal with during the development.

5.1 CDBThread – The thread that sends the SQL queries

This class is derived from CWinThread, which represents a thread of execution within an

application. As you know by now, CDBThread handles all database interactions. This class

was needed because if the main thread (the CFSCApp instance) calls the database by trying to

connect or fetch data, this thread will get occupied while waiting. This prevents the

application to inform the user about the situation. The window also stops to respond to user

actions such as moving the window. The user might assume that the application has stopped

running. With the help of this extra thread this problem is fixed.

For this to work, the main thread must know when the database thread is done with its task.

Furthermore the database thread must know when to do what. To solve this messages are sent

between the two threads, see Table 5.1.

 30

Main thread = MT

Database thread = DBT

Messages Description Sender

WM_CONNECT Request to connect to the database MT

WM_ONCONNECT Connection established DBT

WM_ONCONNECTFAILED Connection failed DBT

WM_CLOSECONN Request to close connection MT

WM_ONCONNCLOSED Connection closed DBT

WM_CHECKLOGIN Request to verify login information MT

WM_LOGINOK Login was successful DBT

WM_LOGINFAILED Login not approved DBT

WM_SQLFAILED SQL query failed DBT

WM_GETCUSTOMERS Request to retrieve all customers MT

WM_FILLCUSTOMERLIST All customers are collected DBT

WM_GETPORTALS Request to fetch all firewalls registered to a certain

customer

MT

WM_FILLPORTALLIST All firewalls for a certain customer are collected DBT

WM_ADDCUSTOMER Request to add customer MT

WM_CUSTOMERADDED Customer has been added DBT

WM_RENAMECUSTOMER Request to rename customer MT

WM_CUSTOMERRENAMED Customer has been renamed DBT

WM_REMOVECUSTOMER Request to remove customer MT

WM_CUSTOMERREMOVED Customer has been removed DBT

WM_ADDEDITPORTAL Request to add/edit a firewall MT

WM_PORTAL_ADDED_EDITED Firewall has been added/edited DBT

WM_REMOVEPORTAL Request to remove firewall MT

WM_PORTALREMOVED Firewall has been removed DBT

WM_GETPORTALDATA Request to receive firewall data MT

WM_ONPORTALDATA Firewall data has been received DBT

WM_GETPARAMVAR Request to receive parameters and their variables MT

WM_ONPARAMVAR Parameters and their variables are retrieved DBT

WM_SAVEPARAMDATA Request to store variables MT

WM_ONSAVEPARAMDATA Variables have been stored DBT

WM_GETMODVARS Request to receive modified variables MT

WM_ONGETMODVARS Modified variables have been received DBT

Table 5.1: List of thread interaction messages

 31

The application connects to the database server during authentication and then stays

connected until the application terminates. That means that the CLoginDlg object must send

the WM_CONNECT message to the CDBThread object. A problem that occurred at this point

was that since the connection should last through the whole execution, the object of

CDBThread could not be destroyed. If it is destroyed the connection is lost. So if the object is

created in CLoginDlg it will be destroyed as soon as the user has logged in and the login

dialog closes. Since the main window is not created until login ha s been granted the

CDBThread object cannot be created in CFCSView either. To solve this a programming

technique called singleton was used. Below is a simple way to implement this technique.

1. A static pointer to a CDBThread is created in CDBThread.

static C DBThread* _instance = NULL;

2. A static function that returns a pointer to CDBThread should be in the public section.

static CDBThread* CDBThread::Instance()

{

 if (_instance == NULL)

 _instance =

 (CDBThread*)AfxBeginThread(RUNTIME_CLASS(CDBThread), NULL);

 return _instance;

}

An object of CDBThread is created the first time this function is called. The pointer to the

object in 1) is then returned. Since the function is static it can be called before the object is

created. The following occasions the function is called the pointer to the same object is

returned, so only one object is created.

3. Now any object that wants to interact with the database should call the function 2) to

retrieve a pointer. For example in CLoginDlg:

In the class definition:

private:

CDBThread* dbThread;

In the constructor:

 32

//Get the static instance of CDBThread

dbThread = CDBThread::Instance();

To send messages to the CDBThread object the pointer returned from

CDBThread::Instance() is used to address the message. Regarding the opposite direction, that

is, messages from the db thread to the main thread, a pointer to the executing object must be

sent to the db thread before any interaction has begun. For this purpose two functions where

added to CDBThread; SetParentDlg and SetParentView. Which of these functions that should

be called depends on the type of object that uses the thread. SetParentView must be called

before the main SDI window starts to request data from the database. All the other windows

are dialogs so they will call SetParentDlg. The address of the calling object is sent as a

parameter to the function. For example in CLoginDlg:

In the constructor:

//Get the static instance of CDBThread

dbThread = CDBThread::Instance();

//Send this to the thread so it can send messages here,

//do not send messages to dbthread before this call

dbThread - >SetParentDlg(this);

When the dialog is destroyed

//Let the dbthread know that this dialog is not using it

dbThread - >SetParentDlg(NULL);

The goal was to make this class as general as possible so that all classes that wish to fetch

or store data in the database may use an instance of it. That is why both SetParentDlg and

SetParentView are needed so that both types of classes can use CDBThread.

CDBThread uses the CSQLDirect class to access the database.

5.2 CSQLDirect & CSQLColumn – The ODBC interface

CSQLDirect provides the functions for interacting with a database via ODBC.

CSQLColumn is a support class for CSQLDirect. These two classes were downloaded from

the Codeguru website [4].

 33

5.3 CLoginDlg – The Login Dialog

This class represents the login dialog window which is the first window that is shown

when the application starts. When the application receives the username and password from

the user these are sent forth to the database for verification. The login information is stored in

an array of strings, which is sent as a parameter with the message WM_CHECKLOGIN. If

the verification was successful CDBThread notifies this by sending WM_LOGINOK. If the

verification fails the message WM_LOGINFAILED is sent. The message sequence when a

user has logged in successfully is shown in Figure 5.1.

Figure 5.1: Scenario when login is successful

If the user successfully passes the authentication, the username is stored in the CDBThread

instance for later logging. Every time a user adds or modifies a customer/firewall the thread

logs the event. Even now, as the user is authenticated, this event is stored in the Log table.

To show the login dialog a derived function named DoModal() must be called. This

function return either IDCANCEL or IDOK depending on the button pressed to close the

dialog. If the user fails to login IDOK will not be returned, even though the OK button was

pressed to confirm the authorization. When login fails the dialog should not be closed, only

the cancel button will close the dialog if the login information is not approved. This means

that any object that wants to show the login dialog knows if the user has logged in correctly or

cancelled by checking the return value of DoModal(). Normally, this function is only used

once, which is described in the following section.

tim
e

DB

WM_LOGINOK

WM_CHECKLOGIN

WM_CONNECT

CLoginDlg CDBThread

WM_ONCONNECT

 34

5.4 CFCSApp – The main thread

This is the starting point of the execution. When the global variable, theApp, which is an

instance of CFCSApp, is created, the main thread of the application is born.

It is in the function InitInstance() (see appendix D) that the main SDI window is built up

and shown. Keep in mind that the login dialog needs to be showed before the SDI to grant

users access to the application, so this also has to be done in InitInstance().

5.5 CMainFrame – The main window frame

CMainFrame is derived from the CFrameWnd class that encapsulates the functionality of a

Windows single document interface (SDI) frame window. A frame window is a window that

frames an application. If something needs to be changed concerning the frames behavior or

how it looks this is implemented in CMainFrame.

In the function PreCreateWindow(…) (see appendix D) the maximize button is inactivated

and the frames size in width and height is initialized. The frames smallest and largest height is

set to the initiated height so the user cannot change this when the application is running. The

same is done for the width. This is done in the function OnGetMinMaxInfo(…) (see appendix

D).

5.6 CFCSView – The main window view

As this class represents the graphic area within the main SDI frame, the two list boxes (see

chapter 4.3) there are components of this class. One of them is filled with all customers

registered in the database and the other shows all firewalls related to the selected customer.

When the main window appears the customer list is automatically filled, which is done by

sending the WM_GETCUSTOMERS message to the CDBThread object. All customers are

stored in a dynamic array that holds CString objects, which are dynamic strings. This array is

created in the CFCSView class definition and only the reference to this array is sent to the

CDBThread object. This means that both threads work with the same array. The database

interacted thread fills the array with all registered customers and sends a message back to the

main thread when all customers are fetched. On this message the main thread fills the

customer list box using the array. This method, which is used to fetch multiple data from the

database, is applied through the whole application. So a similar method is used when the user

 35

selects one customer from the list box and the application needs the fetch all related firewalls.

Figure 5.2 servers as a demonstration.

Figure 5.2: Successful selection of getting all firewalls related to the selected customer

This is pretty much what this class does except being the application base by providing

buttons that open the dialogs that build up the application.

5.7 CAddEditPortalDlg – The dialog for adding/editing a firewall

The big dialog window showed in Figure 4.13 on page 21, is an instance of this class. It is

used when a new firewall is registered and also when an existing firewall is edited. Depending

on which, the properties, such as the window title, of the dialog changes. There is a private

member variable in this class that is named ’addPortal’. It is of type boolean and is used as a

reminder, telling the object if the user pressed the add button or the edit button to launch

dialog. This information is useful because if the user pressed edit in the Modify Sites dialog

(Figure 4.12), all information stored associated with the selected firewall should be fetched

from the database and displayed in the dialog that opens. An array to store firewall

information is defined in the class declaration. This array is first filled with the customer

name and the firewall name before the WM_GETPORTALDATA message is sent together

with the array. This is information that the database thread must know in order to fetch the

WM_FILLPORTALLIST

WM_GETPORTALS

Selects a customer

tim
e

WM_GETCUSTOMERS

CFCSView CDBThread

WM_FILLCUSTOMERLIST

User

 36

right data associated with the firewall. As described in section 5.6, a copy of this array is not

used in CDBThread, only the reference.

For the application to properly extract data from the array, the order in which the database

thread adds the data must be defined. The flow chart in Figure 5.3 clarifies this order.

Figure 5.3: The order in witch firewall data is fetched

The array is cleaned in the database thread after that the customer name and firewall name

are stored. Then the address of the default gateway is added to the array followed by the

extern IP address according to the figure. Since firewalls of type Watchguard SOHO do not

use the SNMP attributes, these are not added to the array if the selected firewall is a

Watchguard. The progress is similar concerning DHCP. If the checkbox for DHCP (see

Figure 4.13) is checked, the two DHCP attributes are added to the array. VPN information is

grouped into four attributes. If one of them exists, all four must be fetched. As described in

section 4.1.2, one firewall is not limited to just one VPN group. The database thread adds

every group it can find related to the firewall to the array.

At this time the array is filled with all information needed. When the application reads the

array the principle of Figure 5.3 is known.

If the add button in the Modify Sites dialog is pressed, a new firewall will be created. In

this case no data should be fetched. All fields in the AddEdit dialog should be empty for the

user to fill.

If VPN

Remote Network

If firewall type not Watchguard

Default Gateway

Extern IP

Extern Network

Extern Subnet

Intern IP

Intern Network

Intern Subnet

DNS

Firewall Type

SNMP Community

SNMP Host

Use DHCP

DHCP Pool1

DHCP Pool2

If DHCP is used

Remote Netmask

If VPN

Remote Gateway

Shared Secret

 37

There is not a big difference between the add and edit dialogs regarding the procedure that

handles the new written data to be saved. The only difference is the data that the application

puts into the array before sending it to the database thread. In this case the variable addPortal

is added to the array, which will tell the database thread to create a new row in the firewall

table or just update an existing row. The customer name and firewall name are, as when

fetching data, also added to the array. This firewall name is the name chosen before pressing

the add/edit button (see Figure 4.12). One more thing is added before sending a message to

the database, which is the text value in the site field. This value changing means that the

firewall is renamed. When the database thread updates a firewall that has changed name, the

thread first uses the customer name together with the old firewall name (unique) to find the

right firewall id. Thereafter the old firewall name in the database is updated with the new. In

the case of adding a new firewall the old firewall name is not used.

The remaining fields in the add/edit dialog are added to the array using the principle in

Figure 5.3. When the array is filled, WM_ADDEDITPORTAL is sent to the database thread

along with the reference to the array.

When the user has added or edited a firewall this must be logged. Since the instance of

CDBThread was given the username during the authorisation, the current user is stored in the

log table along with the firewall id, date and event, which is either add a firewall or edit a

firewall.

5.8 CCreateFileDlg – Where the configuration file is built up

When the user clicks on the “Generate File” button located on the main window a dialog is

shown which is an instance of CCreateFileDlg. Here the user preliminary can examine the

configuration file associated with the currently selected firewall. Modifications that break the

parameter - variable pattern can also be made here. When this dialog window is initiated a list

box is automatically filled with all parameters and related variables associated with the

firewall concerned. With the help of this list box, the user has a chance to check the

configuration file before it is written to a file.

There are two ways to fill this list box depending on if the pattern is followed or not.

 38

5.8.1 Building configuration files based on the pattern

There are three tables to consider here:

• The Firewall table (Figure 4.3),

• The parameter table (Figure 4.5) and

• The variable table (Figure 4.5).

To begin with, all information regarding the firewall must be fetched. This is specific

information, used only with the selected firewall, which will appear as variables in the

configuration file.

For example; DefGateway 121.121.121.121.

The variable value associated with the DefGateway: parameter varies depending on what

was written in the AddEdit dialog (see 4.3. GUI). When the database administrator defines a

pattern for a firewall type, like Watchguard SOHO, aliases are used in the variable table to

make the configuration file depending on the firewall. An example: The variable for

parameter P should be the Administrator Name of the firewall. Writing ”AdminName” in the

table Variable on the same row as the parameter id for P does this. When the application

notices the text “AdminName” it is replaced in the configuration file with the real

administrator name linked to the selected firewall.

The table below shows all aliases available when constructing patterns.

 39

Alias

AdminName

AdminPassw

DefaultGateway

DHCP

DHCPPool1

DHCPPool2

ExtIp

ExtNetwork

ExtSubnet

IntIp

IntNetwork

IntSubnet

SNMPC

SNMPH

Table 5.2: Aliases used when defining standard configuration files

There is a minor problem regarding the alias solution. This occurs if for example the text

“AdminName” is intended to be a variable and not a real administrator name. This matter is

not regarded since it is most unlikely to occur.

To fetch the information stored for a certain firewall the same method as in

CAddEditPortalDlg is used.

When all firewall specific data is received the parameters and related variables are still

needed to construct the configuration file. The database thread will examine the tables

Parameter and Variable to find the right pattern. It is possible now since the firewall type was

fetched earlier. To fetch all parameters and related variables a dynamic array holding dynamic

arrays is used. The parameters and variables are added to this array as Figure 5.4 shows.

 40

Figure 5.4: 2D array used to store parameters and variables

Items beginning with ‘p’ are parameters and whereas ‘v’ items are variables. To build the

first command line, the array at index 0 is extracted. This array contains the first parameter

along with its related variables. The contents are then added to the first line in the list box

separated by spaces. The remaining command lines are filled to the list box using the same

procedure. When the entire array is extracted the whole configuration file is available to

review in the list box.

When the configuration file is stored, the whole list box content is written to the file.

5.8.2 Building modified configuration files

In order to deal with configuration files that do not follow any pattern, the solution

described above must be slightly extended. There is one more table to be aware of in addition

to the three tables used before. The ModifiedVar table was intended to be the answer to

special firewall configurations.

As already explained, some firewalls may not use the predefined pattern for its type. New

variables can be used and old ones can be deleted, but the parameters are always the same for

each type. If the parameters change, a new firewall type, with a new pattern, has to be

introduced. This is what has been done with NetScreen -5XP. This firewall has been

considered as two different types, Nat and Route (see chapter 4.3).

The ModifiedVar table contains three important attributes:

• Variable

Here the variable is stored.

• ParameterId

Used to attach the variables to the right parameter.

• FirewallId

Used to know witch firewall is using these extra variables.

index 0 index 1 index 2 index 3

p1

v0

v1

v2

p0

v0

v1

p2

v0

p3

v0

 41

Apart from the ModifiedVar table, two more arrays are needed. To simplify explanation,

let us name the three arrays. Since the array described in 5.8.1 is still usable, this will be

referred to as A. One of the new arrays has the exact same structure and types as A, refer to

this one as B. The third array is a dynamic array of integers, C.

Let us consider scenario when the user opens the CreateFile dialog (Figure 4.16). The

selected firewall is currently using the standard parameter pattern for its type. When the

dialog opens array A is filled as described in 5.8.1, but not written to the list box. Instead it is

copied to array B, from which data is extracted to fill the list box. This will soon make sense.

When the user selects a line in the list box, all variables there will be loaded into the

combo box. By knowing which line that is selected the related variables are fetched from

array A and B by using the line number as an index. The command at line N in the list box

can always be fetched from array B at index N. As described above, this array at index N will

contain the parameter at the first position, followed by all variables. Only the variables are

loaded into the combo box since they are the only ones allowed to edit.

Let us say the user selects a line in the list box and adds a new variable by writing a new

name in the combo box and pressing the Add button. The new variable is added to the array in

array B at the same index as the line selected. Array A is not modified, the standard pattern is

still stored there. That is the intention of A: s existence, to always hold the standard pattern

for the firewall configured. If the modified command line now consists of parameter p0

followed by variables v0, v1 and v2, where v2 is the newly defined variable, arrays A and B

would look like described in Figure 5.5.

 42

Figure 5.5: Arrays A and B when a new variable is added

Now the list box updates by using the array at index 0 from B. Next time the user selects

this line from the list box, the combo box will also contain the new variable v2. To fill the

combo box the variables are not simply extracted from array B at index 0 as when the list box

is updated. Both arrays are used to fill the combo box. First all variables found in A at pos 0

are added. Then all variables in B at pos 0 that are not in A at pos 0 are added. This means

that v0 and v1 are extracted from A and v2 from B.

The following will explain why A always contain the standard pattern and why the combo

box is filled using both A and B:

After v2 is added and the selected line is still the top line, the user selects v1 from the

combo box and clicks on Delete. This will delete v1 from array B and A is still unchanged

(Figure 5.6).

index 0 index 1 index 2

index 0 index 1 index 2

p0

v0

v1

v2

p0

v0

v1

p1

v0

p2

v0

p1

v0

p2

v0

A

B

 43

Figure 5.6: Arrays A and B when a variable is deleted

By using the same methods as described above, the list box and combo box will be filled as

shown in Figure 5.7.

Figure 5.7: List box and combo box when a standard variable is deleted

The variables that were defined in the pattern for this firewall type will always appear in

the list box regardless if the user includes them or not. This is needed so that the user does not

loose these variables that belong to the pattern.

The array C is used to keep track of all positions in B that do not follow the pattern. Every

position in B that is not identical with the same position in A is added to C. In the example

showed in Figure 5.6, the digit 0 will be added to C. Every time the user adds or deletes a

variable, the resemblance between A and B is examined. If they are not identical for the

position modified, the position is added to C, if it is not already there. A digit showing the

position in C is removed only if A and B are identical at that position.

index 0 index 1 index 2

index 2 index 1 index 0

p0

v0

v2

p0

v0

v1

p1

v0

p2

v0

p1

v0

p2

v0

A

B

List box,

containing

the conf file

p0 v0 v2

p1 v0

p2 v0

v0

v1

v2

Combo box,

when top line

is selected

 44

This means that if the user modifies lines 0 (top line), 2 and 4, C will contain these digits.

If the command on line 4 is changed back to the pattern, ‘4’ will be deleted from C.

As the user clicks on the OK button to save the modified configuration file, only the

indexes found in C of array B will be saved to the ModifiedVar table. If C is empty, meaning

that the firewall follows the parameter pattern, all rows in ModifiedVar with the matching

firewall Id will be erased.

To open an already modified firewall configuration the arrays are built up to follow the

method using arrays A, B and C:

1. A is filled with the parameter to variable pattern for the concerning firewall type.

2. All va riables found in ModifiedVar related to the firewall id are fetched from the

database together with the correct parameters and stored in a temporary array D.

3. A is copied to B.

4. For parameters in B, which also exists in D, the whole array at that position is

overwritten with the array in D. In other words, if variables for a certain parameter id

exist in ModifiedVar, they are used instead of the pattern variables in table Variables.

5. Every time an array at a certain position in B is overwritten, that position is added to C.

By doing this every time the CreateFile dialog is initiated, the arrays are built up the

correct way. A holds the standard configuration, B holds the real configuration and C

remembers which variables related to a parameter that makes B differ from A. Keep in mind

that if C is empty, A and B are identical, which means that the actual firewall is using the

standard configuration.

 45

6 Test & Evaluation

The purpose of this project was to facilitate the making of configuration files. This means

that the application should be as easy as possible to set up and handle. If the application

causes a lot of trouble it might as well be better to write the configuration files by hand.

The user should easily be able to understand how the application functions. Everything

should be as smooth as possible.

• Special IP fields are used to inform the user that an IP address is intended. These fields

only allow digits and the highest possible value is 255.255.255.255. This is good since

the application should prevent human mistakes.

• When adding VPN information, Remote Gateway IP and Shared Secret are

automatically filled when adding the second and continuous VPN data groups. Remote

gateway IP and shared secret are usually the same for every network and net mask (see

Figure 4.14).

• To modify a configuration file is easy to achieve since the list box is showing the

current file and the combo box contains variables to add or delete.

• It is not allowed to have two customers using the same name. Different firewalls are

allowed the same name but not if they are registered to the same customer.

It is considered important to prevent users from irritation. Whether it is the colours, the

location of controls or the way that the application is used. For example, the user should

always be aware of what is happening. If the database server is very distant, the time interval

needed to fetch data will increase. This will annoy the user if he/she is not informed about

why there is a delay. Most messages directed to the user will appear in the window title apart

from error messages, which will popup in a modal dialog.

During interaction with the database most controls are disabled. The user must not press

any button while the application is saving, removing or updating the database. There is no

way for the user to interrupt these procedures. This means that if the database can cause the

application to wait for data an undetermined time interval, which is uncertain, the application

must be destroyed through a task manager. However, if the database will stop responding

during for example a saving progress, there is no problem. The application will stop waiting

 46

and probably inform the user that something was wrong when trying to execute an SQL

query.

As far as the database is concerned, it has to be accessed manually at some occasions:

1. When defining the standard configuration file for each type of firewall.

2. When the Log table is examined.

The first matter that has to be considered before the application will function is to prepare

the database. All tables must be defined and then all parameter patterns must be written.

When writing these patterns, the order in witch parameters and variables are stored in the

tables are important. It is the same order that they will appear in the configuration file. The

same applies for variables. For example: If the pattern says p0 v0 v1, and this line is modified

in the application to p0 v1 v0, this command line is not following the pattern.

Secondly, an ODBC connection must be set up. This is needed for the application to be

able to connect to the database. Here it is important that the defined ODBC name is known by

the application, or else connection cannot be established. (This name is set in the file

Messages.h before compilation)

No dynamic link libraries (DLL) were used. All classes built into the executable file. DLLs

are needed to put classes in, which does not need to be loaded at start up. This speeds up the

loading when the application starts. Since this application is not that extensive and loads fast,

DLLs were not needed.

 47

7 Summary & Conclusions

Internet Security Systems (ISS) gave this assignment to us and we are very glad to have

accepted. It has been an interesting time for us to work on this application.

This project was started by discussing with ISS of how they wanted the application to work

and what it would consist of. This gave us a good starting ground for the programming and

setting up of the database. We wanted to start the design of the graphical user interface (GUI)

but we soon realized that the best way to start was by constructing the database.

The database runs on MS SQL server to allow multiple clients to be able to access it

simultaneously. It is structured per customer. This makes it easier to apply equipment and

configuration for each customer.

The GUI is based on an SDI main window with ten dialog windows. The main window

allows the user to modify customers/firewalls and to generate a configuration file for a

specific firewall. During the actual coding of the project every window and its functions were

constructed separately. This made it easy to test the application as it progressed.

The application communicates with the SQL Server database by connecting to an ODBC

source, which means that an ODBC source must be defined for the application to function

properly.

For the implementation we use two threads; a main thread and a database thread. If only

one thread was to be used the application would not respond while working with the database.

No information can be given to the user during this time. By using two threads this will not

occur. Messages are sent between the two threads so they know when to react.

We are very satisfied with our work of building the application. There is a goo d code

structure and not very complicated functions. There should not be any problems to search the

code for errors. All text constants used in the GUI are easily changed in the file GUIConst.h,

this can be desired to do for example when changing the language. But of course the project

must be recompiled and rebuilt before any changes will take effect.

Regarding the CSQLDirect class some problems were encountered that we managed to

bypass by coding in a different way. SQL queries that involved fetching data from multiple

columns fails by returning data only from one column. This means that if data from three

columns is needed, three different SQL queries have to be sent to the database, which will

slow down the operation a bit. Here we are not satisfied wit h our solution. CSQLDirect

should be repaired or replaced with another class that handles direct connection to the ODBC.

 48

The application is still in lack of a few functions that will conclude the configuration files

that are generated. No solution has yet been found regarding the VPN information that is

entered for every individual firewall (Figure 4.14). Although this information is saved to the

database, it is not a part of the configuration file. Since it is uncertain how many different

VPN configurations that are needed for each firewall, a special method must be used to be

able to include this information in the file. The solution must contain aliases in some way

(Table 5.2). A similar problem that is not implemented is the inbound and outbound traffic

rules. These are very important since they tell the firewall what data to let through. At this

time these commands will have to be applied to the generated configuration file manually.

 49

List of Abbreviations

FCS – Firewall Configuration System

ISS – Internet Security Systems

VPN – Virtual Private Network

GUI – Graphical User Interface

ODBC – Open DataBase Connectivity

IPSec – Internet Protocol Security

AH – Authentication Header

ESP – Encapsulating Security Payload

DSL – Digital Subscriber Lines

MSS – Manage Security Services

ISDN – Integrated Services Digital Network

FTP – File Transfer Protocol

DES – Data Encryption Standard

CLI – Command Line Interface

SSH – Secure Shell

AES – Advanced Encryption Standard

DBMS – Database Management System

SQL – Structured Query Language

DNS – Domain Name System

SNMP – Simple Network Management Protocol

DHCP – Dynamic Host Configuration Protocol

SDI – Single Document Interfaces

MDI – Multiple Document Interfaces

NAT – Network Address Translation

DLL – Dynamic Link Library

 50

References

[1] William Stallings. Network Security Essentials. Prentice Hall, 2000

[2] http://vpn.shmoo.com/

[3] MSDN Library (Visual C++ help), also on the net: http://msdn.microsoft.com/

[4] http://www.codeguru.com/mfc_database/direct_sql_with_odbc.shtml

[5] http://www.watchguard.com/products/wgls.asp

[6] http://www.netscreen.com/products/index.html

[7] http://www.webopedia.com

 51

A Example of a Watchguard SOHO Config file

FDATE: Mar 22 2001

FTIME: 17:17:32

FVER: 2.3.16

config.platform: windows

config.version: 0.1

config.watchguard.dvcp.enable: 0

config.watchguard.id:

config.watchguard.modules: boot root ipsec proxy

config.watchguard.release: hum ptulips

config.watchguard.vendor: WGTI

config.watchguard.version: 4.00.B444

networking.bridge.external: 111.111.111.94

networking.dhcp_client.enable: 0

networking.dhcp_client.identifier: name

networking.dhcpd.default.default_lease_time: 86400

networking.dh cpd.default.default_rebind_time: 64800

networking.dhcpd.default.default_renew_time: 43200

networking.dhcpd.enable: 0

networking.dhcpd.firstip: 111.111.112.1

networking.ethernet.00: eth0 111.111.111.82 111.111.111.80 255.255.255.240 111.111.111.94

networkin g.ethernet.01: eth1 111.111.112.245 111.111.112.0 255.255.255.0 111.111.112.245

networking.ipsec.autostart: 1

networking.ipsec.enable: 1

networking.ipsec.policy.inbound.000.disposition: secure

networking.ipsec.policy.inbound.000.dst_ip: trusted

networking. ipsec.policy.inbound.000.src_ip: 111.111.112.0/24

networking.ipsec.policy.inbound.000.tunnelname: 000

networking.ipsec.policy.outbound.000.disposition: secure

networking.ipsec.policy.outbound.000.dst_ip: 111.111.112.0/24

networking.ipsec.policy.outbound.00 0.src_ip: trusted

networking.ipsec.policy.outbound.000.tunnelname: 000

networking.ipsec.remote_gw.SOHOGlobalGateway.id:

networking.ipsec.remote_gw.SOHOGlobalGateway.ip: 222.222.222.162

networking.ipsec.remote_gw.SOHOGlobalGateway.sharedkey: uElppGrLaTpNiD lter

networking.ipsec.remote_gw.SOHOGlobalGateway.type: isakmp

networking.ipsec.telecommuter.local_ip: 0.0.0.0

networking.ipsec.telecommuter.remote_ip: 0.0.0.0

networking.ipsec.tunnel.000.remote_gw: SOHOGlobalGateway

networking.ipsec.tunnel.000.sap.00.esp. alg: 1

networking.ipsec.tunnel.000.sap.00.esp.authalg: 1

networking.ipsec.tunnel.000.sap.00.life.kbytes: 0

networking.ipsec.tunnel.000.sap.00.life.seconds: 29030400

networking.ipsec.tunnel.000.sap.00.type: ESP

networking.ipsec.vpntype: SOHO

networking.name service.dhcpd.dns.0: 111.111.111.17

networking.nameservice.dhcpd.dns.1: 111.111.111.100

networking.nameservice.dhcpd.domain_suffix: somedomain.com

networking.nameservice.remote.dns.0: 0.0.0.0

networking.nameservice.remote.domain_suffix:

networking.nameser vice.remote.wins.0: 0.0.0.0

networking.pppoe.enable: 0

networking.pppoe.idletimeout: 0

 52

networking.pppoe.pass:

networking.pppoe.user:

options.admin.enable: 1

options.admin.name: sohogb

options.admin.pass: bsro13

options.controld.log_host: 212.212.212.254= 34ff230bff401ffd0ffc1ff770ff5d04

options.controld.log_host.enable: 1

options.cskt.disable: 0

options.soho.feature_key: 54297BDD10648620

options.urltrack.enable: 0

 53

B Example of a NetScreen config file

set clock ntp

set clock dst - off

set admin name " root "

se t admin password nEHWJTrsXx6gcTlM4SCMrnPt5IMdGn

set admin manager - ip 222.222.222.0 255.255.255.0

set admin manager - ip 222.222.225.0 255.255.255.0

set admin sys - ip 0.0.0.0

set admin port 1212

set interface trust ip 0.0.0.0 255.255.0.0

set interface untrust ip 0.0.0.0 255.255.0.0

set interface untrust gateway 0.0.0.0

unset interface trust manage

set interface trust ping

set interface untrust manage ping

unset interface untrust manage telnet

set interface untrust manage scs

set interface untrust manage snmp

se t interface untrust manage global

unset interface untrust manage global - pro

set interface untrust manage web

unset interface untrust ident - reset

unset interface untrust manage ssl

unset policy 0
set flow tcp - mss
set hostname firewall - name
set ntp server 19 2.5.41.40
set ntp interval 120

 54

C The Database Structure

 55

D Fragments of Source Code

CFCSApp – InitInstance()

BOOL CFCSApp::InitInstance()

{

 . . .

 //Show Login window

 if(!ControlLogin())

 return FALSE;

 //SDI construction

 CSingleDocTe mplate* pDocTemplate;

 pDocTemplate = new CSingleDocTemplate(

 IDR_MAINFRAME,

 RUNTIME_CLASS(CFCSDoc),

 RUNTIME_CLASS(CMainFrame),

 RUNTIME_CLASS(CFCSView));

 AddDocTemplate(pDocTemplate);

 . . .

// The one and only window has been initialized, so show and update

it.

 m_pMainWnd- >CenterWindow();

 m_pMainWnd- >UpdateWindow();

 m_pMainWnd- >SetWindowText(MAIN_WND_TITLE);

 m_pMainWnd- >ShowWindow(SW_SHOW);

delete loginDlg;

 loginDlg = NULL;

 return TRUE;

}

 56

CFCSApp – ControlLogin()

BOOL CFCSApp::ControlLogin ()

{

 int iResponse = loginDlg - >DoModal();

 if(iResponse == IDCANCEL)

 return FALSE;

 else if(iResponse == IDOK)

 return TRUE;

}

CMainFrame – PreCreateWindow(…)

BOOL CMainFrame::PreCreateWindow(CREATESTRUCT& cs)

{

. . .

// TODO: Modify the Window cla ss or styles here by modifying

// the CREATESTRUCT cs

 cs.style &= ~WS_MAXIMIZEBOX;

 cs.cx = FRAMEWIDTH;

 cs.cy = FRAMEHEIGHT;

 return TRUE;

}

CMainFrame – OnGetMinMaxInfo(…)

void CMainFrame::OnGetMinMaxInfo(MINMAXINFO FAR* lpMMI)

{

lpMMI - >ptMinTrackSi ze.x = FRAMEWIDTH;

 lpMMI - >ptMaxTrackSize.x = FRAMEWIDTH;

 lpMMI - >ptMinTrackSize.y = FRAMEHEIGHT;

 lpMMI - >ptMaxTrackSize.y = FRAMEHEIGHT;

 CFrameWnd::OnGetMinMaxInfo(lpMMI);

}

 57

E Small Office Managed Firewall Service

Service Overview
Internet Security Systems’ (ISS) Small Office Managed Firewall Service is a customized

solution specifically designed to meet the needs of the small business who, while having

limited network access points on the Internet, still must concern themselves with ensuring

they have ta ken the appropriate measures to minimize security exposures and limit

unauthorized access, both inside and outside their enterprise.

This low cost service allows our customers to leverage Internet Security Systems’ security

engineers for the configuration and ongoing support for their firewall, allowing their staff to

focus on mission critical business priorities and projects. Through our Managed Firewall

Service, Internet Security Systems, a renowned leader in the Internet security arena, becomes

an extension to our customers’ staff.

Because the majority of firewall breaches are caused by the mis-configuration of firewall

rules and properties, one key component of the Managed Firewall Service is the initial

firewall setup process. Using ISS’ extensive experience and knowledge of security best

practices, ISS’ security engineers have designed firewall configurations that will support our

customers need for Internet access to maximize protection.

Service Detail
Platform Overview, Setup and Deployment

As a part of the service, the customer receives a certified firewall platform from ISS. The

firewall platform is staged and pre -configured at ISS’ certified deployment center by a

certified deployment engineer.

The Small Office (S0) Managed Firewall Platform and customer setup includes:

! One Certified Firewall Platform (including hardware, hardened OS, and software)

! Expert configuration of the firewall hardware

! * Selection and implementation of the most appropriate SO firewall configuration. The SO

templates are:

1. Outbound-only Access Template: Allows all outbound Internet Access and VPN (if selected)

traffic only. All inbound connection attempts to the customer network will be dropped.

2. Two-way Access Template: Allows all outbound Internet Access, allows VPN (if selected)

traffic and allows inbound services to designated IP addresses. HTTP, HTTPS, FTP, SMTP, POP3,

SSH, DNS, Telnet and/or one custom TCP or UDP port. All other connection attempts to the customer

network will be dropped.

 58

* This serv ice is limited to supporting no more then 6 Internet accessible
Servers/IP addresses per customer. Furthermore, depending on the chosen CPE,
this service is limited to supporting one IP address per service.
! Remote management setup

The customer receives the firewall and follows a fully documented installation process,

which primarily directs the customer through the process of connecting the firewall to their

existing network. Partner/ISS phone support is available to the customer for assistance

through this process. Because the firewall has been pre-configured, once it is installed ISS can

immediately begin remote management of the firewall from our Security Operations Center.

An encrypted Internet connection provides ISS’ security engineers access to the firewall for

remote maintenance of the firewall, including troubleshooting and problem resolution.

Ongoing Management

Once the firewall is remotely accessible by ISS, round -the-clock management of the

platform commences.

If required, the customer has the opportunity to change their firewall configuration. A

change can be defined as either: 1) a change from one SO firewall template to the alternate,

Outbound-only to Two -way / Two -way to Outbound -only; or 2) within the Two -way

Template the addition or change of up to three of the IP addresses or services included in the

template. The customer can process up to four (4) Security Policy changes per year **.

Customer change requests must be submitted to ISS via electronic submission method

provided to the Partner. Internet Security Systems’ security engineers will review and validate

all customer security policy changes. Change validation and recommendations based on either

technical issues or possible security compromises will be communicated back to the partner to

initiate communication with the end customer.

The Small Office Managed Firewall Service includes:
! 24x7 monitoring and firewall management
! Ability to change firewall template, to meet customer needs, up to 4 times yearly**
! Timely platform upgrades, as deemed necessary by ISS for proper functioning

** The above stated rule-base constraints go into effect after the customers first 30 days of

managed service. Customers exceeding 4 firewall rule-base changes per year will incur a $25

charge per additional rule-base change request. These charges will be billed annually on the

customers contract anniversary date. Proactive rule-base changes made by ISS in the event of

a security breach do not apply.

 59

Service Level Agreements
Each new Customer is assigned a Deployment Engineer, (DE), who is responsible for the

timely and successful implementation of the products and services purchased. During the

turn-up process, the DE is Customer’s single point of contact regarding all issues.

The Service Levels are effective once all of the following have occurred:

(1) All outstanding issues have been resolved to DE’s satisfaction, including the successful

installation and testing of, where applicable the required out of band access solution, and

permanent software licenses on all managed security platforms.

(2) Once the implementation has been completed such that no outstanding issues exist, the

support of Customer’s account is transitioned from the assigned DE to our Security

Operations Center, which is available to assist with all questions or issues.

Rule-base Change Request Validation Guarantee (SLA 2)
Internet Security Systems’ Rule-base Change Request Validation Guarantee is to have a

Internet Security Systems Security Engineer analyze each Rule-base Change Request that the

Customer submits, and notify the Customer should any security risks be foreseen or additional

information be required to allow for accurate implementation of the request. Validation is

done to ensure that the change being requested is in the Customer’s best security interest, and

follows best security practices. This validation will occur within four (4) hours of the receipt

of the change request. If the Security Engineer determines the change request may cause a

security risk or is lacking required information, the request will be placed in a “hold” status

and the Customer’s validation communication from Internet Security Systems will state this

status. Change Requests removed from “hold” status will be considered new change requests

and treated accordingly. At Customer’s request, Internet Security Systems will determine the

total number of Customer’s Rule-base Change Requests for a given calendar month that were

not validated within the specified time frame. This guarantee is only available for rule-base

change requests submitted by a valid Customer Security Contact in accordance with the

Internet Security Systems Rule-base Change Request Submission Procedure. Customer is

solely responsible for providing Internet Security Systems accurate and current contact

information for Customer’s designated points

ISS Service Definition – VQ32001.4 Page 3 Service Definition
of contact. Internet Security Systems will be relieved of its obligations under this guarantee

if Internet Security Systems’ security contact information for Customer is out of date or

inaccurate due to Customer’s action or omission. If Internet Security Systems fails to meet

this guarantee the Customer’s account shall be credited the pro-rated charges for one day’s

 60

Monthly Service Fee of the Customer’s specific managed service, and if applicable specific

managed security platform, related to the change submitted for which the rule-base change

request validation guarantee has not been met. Under this SLA, Customer may obtain no more

than one credit per contracted service per day. (VQ32001.9)

Rule-base Change Request Implementation Guarantee (SLA 3)
Internet Security Systems’ Rule-base Change Request Implementation Guarantee is to

implement Customer rule-base change requests within twelve (12) hours of ISS’ receipt,

unless the request has been placed in a “hold” status in the Validation process. This guarantee

is based on actual time of implementation, and not on the time that Customer was notified that

the request was completed. As set forth below, Internet Security Systems will credit

Customer’s account if Internet Security Systems fails to meet this guarantee during any given

calendar month. At Customer’s request, Internet Security Systems will determine the total

number of Customer’s Rule -base Change Implementation Requests for a given calendar

month that were not implemented within twelve (12) hours. This guarantee is only available

for rule-base change requests submitted by a valid Customer Security Contact in accordance

with the Internet Security Systems Rule-base Change Request Submission Procedure. Internet

Security Systems will promptly notify Customer upon implementation of a request by a

method elected by Internet Security Systems (telephone, email, fax, pager, or electronic

response via the MSS customer portal). Customer is solely responsible for providing Internet

Security Systems accurate and current contact information for Customer’s designated points

of contact. Internet Security Systems will be relieved of its obligations under this guarantee if

Internet Security Systems’ security contact information for Customer is out of date or

inaccurate due to Customer’s action or omission. If Internet Security Systems fails to meet

this guarantee the Customer’s account shall be credited the pro-rated charges for one day’s

Monthly Service Fee of the Customer’s specific managed service, and if applicable specific

managed security platform, related to the change submitted for which the rule-base change

request implementation guarantee has not been met. Under this SLA, Customer may obtain no

more than one credit per contracted service per day.

Small Office Managed Firewall - Customer Deployment Guarantee (SLA 9)
Internet Security Systems will make commercially reasonable ef forts to ensure that

Customer has a fully functioning managed firewall service available/deployed within three (3)

business days of notification that all of the following have been completed:

 61

1) ISS has received all of the information required from the customer on the customer

enrollment form

2) Customer has a valid usable static IP address for the firewall, and this information has

been provided to ISS

3) Customer confirms it has successful Internet access

4) Customer has taken receipt of the firewall and completed successful implementation of

the device, fully following the provided self-installation kit

5) Customer has contacted required MSS personnel to begin activation

As set forth below, Internet Security Systems will credit Customer’s account if Internet

Security Systems fails to meet this guarantee. Customer is solely responsible for providing

Internet Security Systems accurate and current contact information for Customer’s designated

points of contact as well as valid IP network addressing information. If Internet Security

Systems fails to meet this guarantee the Customer’s account shall be credited one (1) month

Monthly Service Fee of the Customer’s Small Office Managed Firewall Service. The

Customer may obtain no more than one credit per contracted service.

