Computer Science

Johan Engdahl

An Evaluation of 3D Sound APIs

Bachelor’s Project
2002:31






This report is submitted in partial fulfillment of the requirements for the
Bachelor’s degree in Computer Science. All material in this report which is
not my own work has been identified and no material is included for which

adegree has previously been conferred.

Johan Engdahl

Approved, 2002-02-15

Advisor: Mari Goransson

Examiner: Stefan Lindskog






Abstract

This thesis work has been performed for Saab Bofors Dynamics as a bachelor’s exam at the
University of Karlstad. The thesis contains documentation and a review of a number of
different sound Application Programming Interfaces (API:s). The API:s are graded according
to a number of criterions, each with a different level of importance. The API that passed the

criterions best has been chosen for the implementation.

A special thanks to Choong-Ho Yi, who has been tutoring this exam.



vi



Contents

1

gL o 11 Tox o o ISP 1
1.1 Visuaization and SIMUIGLTON ........cccueeiiiiiieie e 1
O O R VA 1= 0= 2= 1 o] ISP 1
00 s 31 = o S 1
1.2 Background and gOalS..........cccviiiiiiiiiie e e 2
1.3 REQUITEIMENLS ... .coiiiiieiiestesie ettt sttt b et e bt b et e e et e e e be e s 2
T = Y 0 BT 1 - 1 o IS 2
RS 7 =Y/ 0 = o1 1 - (o o 3
1.3.3 SEAIUS/ SEADIHTLY .eevveeeiiitiieietere bbbt bbb 3
1.3.4 License agreemMENt / COSt .......cooeiririeiririeeeiesieee sttt st sttt 3
L1.3.5  COMPIEXITY ..ottt bbbt b et b et b et b et 3
1.3.6  PlafOrM SUDPPOIT........eieiieiesteete ettt se et be bt b se e e et e sbesbeebe e st ese e e e beseesrennas 3
SOUNT PRENOMENEL......eoiiiiee ettt sre b 5
2.1 The Doppler EffECt ... e e 5
2.2 REVEID. ..o e e e s re e sreesare e 6
25 R © o 11 = o) o S 7
22272 © o 11 U Tox 1 o] o PSR 7
2.3 Head Related Transfer FUNCHION...........cviiiiiiieie e 8
24  ReverDeration DECAY.........cccciiiieiirieresie sttt 9
Evaluation Of the APL:S.. ...t 11
G R I 11 =0t o U o S 11
30 00 R o TE o] YOS 11
TNt A 1= 0 o T U= L 12
3.1.3  SUMMAY/CONCIUSIONS .....ecuveieiecieeeieeste et ete e ee s teeste e s e e sre e aeseesaeesse e beesteenteeseesseesreesreeseeesesnnes 14
G I = USSR 14
I R o [E o] YOS 14
A €= 0T - N o U= L 15
3.2.3  SUMMEArY/CONCIUSIONS ...ttt ettt bbbttt st 17
3.3 A3D (AUFEA 3D) ...uviiiee ettt 17
B.31 HISIONY oottt e et e e ee e ee et ee e e e er e eene 17
3.3.2  GENENEl IUEAS....c.eeieeieciee et bbb bbbt et e b aesaens 17
3.3.3  SUMMArY/CONCIUSIONS ...ttt bbb bbbttt 18
34 MileS SOUNT SYSIEM ..o e re e e r e re e 18
BAL HISIONY ..ot e e e e ee e ee e eeeee e e se e ee e et e er e reene 18
4.2 GENENEl IUEAS......eeieeeeeieee et b et e e bbbt e b e nrenns 18
3.4.3 SUMMANY/CONCIUSIONS ....cecuviiieecieeeteesteeteeeeae e st e steesreeaeseesaeesseesbeenteenbeeseesseesraesreesseensennnes 19

Vii



3.5 OPENAL . e r e b n e e 19

ST A o TE o] YOS T SO RTSTR P 19

3.5.2  GENENEl IUEBS.......cueeeueriirieertese e 20

3.5.3  SUMMArY/CONCIUSIONS .....ocuviiiiicieecteeste et etesae e st e s te e sae e ae e e e saeesre e be e teentesseessaesaeesreeseeesennnas 20

3.6 Comparison Of the APLIS......cooiiiee e e 20

4 Possibleintegration of the API into the existing code.........ccccooveiieicecve e, 23
S SUMIMAAIY ettt s bt e e ae e R e e e e s e e sb e e s e e ne e neennenan e 27
REFEI BNCES ... b et e s b e bt a e e s b e et e st e b et et e ae e 29
APPENiX SAMPIE COUE...... .ottt ss et re b e 31
DITECESOUNG......ceeieeeieeiee ittt sttt b et he et e et e s aeenbe et e saeeneesneens 31
Environmental Audio extensions (EAX) ....coooereiirerineere s 39
L0070 PSRRI 48

viii



List of Figures

Figure 2-1: An example of the Doppler effeCct [2] .....ccoovveiiiecice e 6
Figure 2-2: An example of the reverb effect ... 6
Figure 2-3: An example Of OCCIUSION.........c.oiiiiiriininireeee e 7
Figure 2-4 An example Of ODSLIUCLION .......ociviiiiiciie e 8
Figure 3-1: Anillustration in how sound coneSWOrK [5] .......cceveviieeiiniiienie e 13
Figure 3-2:An example hOw t0 USe SOUNA CONES.........cccevrierieriiniesiesiesieeieeee e 14
Figure 3-3: DirectSounds mark on the requiremMents............coevevenenenieieenese e 14
Figure 3-4: EAXS mark on the reqUIremMents..........cocuveieeieeiieesee e s 17
Figure 3-5: A3DS mark on the reqUIremMentsS..........ccuveieeiieciiee e 18
Figure 3-6: Miles’ mark on the reqUIreMENtS............cceceererenene s 19
Figure 3-7: OpenALS mark on the requiremMents. .........ccooererenenenesieeeeeesese s 20
Figure 4-1: Sample simulation class Nierarchy .........cccocceieeciie e 23
Figure 4-2: Integrating the [ISENEY .........ccuv e 23
Figure 4-3: Integrating @ SOUNG SOUICE.........c.couerierierierieeeee et see e s e e 24
Figure 4-4: Better way of integrating & SoUNd SOUICE...........ccererierienerereeeeseesee s sreseeenes 25



List of tables

Table 3-1: Windows and DirectX version shipped together ..........cccccvevieiceeveeccieesiee, 12
Table 3-2: Creative presets for different environments [7] ......ccocoeverenirieenenene s 16
Table 3-3: Comparison Of the APLIS ... 22



1 Introduction

This project has been performed for Saab Bofors Dynamics and involves 3D-sound for
training systems, simulations and visualizations of a number of different weapon systems.
Saab Bofors Dynamics wish to have an Application Programming Interface (API), which can
position the sound and add sound effects to the ssimulations and visualizations so that it
represents the natural outdoors environment where the weapon systems are used. The task
was to find an APl suitable for thistask. An API is a programming interface, which smplified
can be described as similar to the programming language Java. The similarity liesin that both
Java and the API contains predefined code to achieve any necessary call made by the user.

This givesan API ahigher level of abstraction than an ordinary programming language.

1.1 Visualization and ssmulation

Visualization and simulation are two concepts that will appear frequently throughout this
thesis. The following part is intended to clarify the difference between the two concepts and
when they are used.

111 Visualization

The concept isto visualize calculated data. That data can be generated either from real test
flights or from a track ssmulator where the objects’ (airplane, tank, missile etc) behavior is
calculated and logged in afile. To visualize the track simulator one simply reads from the file
and uses those coordinates to position the objects.

In a visualization, one never interacts with the course of events that a smulation alows.
The possible adjustments are to change the speed of the visualization or to change the view,
e.g. from the missile to the target.

112 Simulation
A simulation is a scenario where a person (Man in the loop, see below) or aweapon system

(hardware in the loop, see below) interacts with each other in a simulated environment.



Man in the loop

The smulation is a game played by the person using the simulator. A simulated
environment is used for training. The person faces a real scenario in a safe and inexpensive
environment. Another advantage compared to real man-to-man combat is that it is easy to
achieve data for evaluation (how the person handle a critical situation etc).

Hardwarein the loop

The hardware is tested towards a ssimulated environment, which simulates indata to the
hardware. The hardware (a weapon system remade for computer use) then generates its
response and affects the simulated environment. Hardware in the loop is used to test Weapon
system in a more ssimple and inexpensive way and is also a complement to the real test
shootings.

1.2 Background and goals

Saab Bofors Dynamics wants to present and demonstrate their different concepts through
simulations of their weapon systems. The simulations are used to test and improve weapon
systems under the construction phase, as well as to market and demonstrate the finished
product. The experience is enhanced when sound is added to a visualization. At the same
time, the demand of having sound effects in the visualizations has increased, leading to this
thesis work. It is the purpose of this project to examine what software API:s will be suitable

for use at Saab Bofors Dynamics.

1.3 Reguirements

This section presents the requirements deemed important for the API to fulfil. These
requirements are used to determine which API to use. The requirements are listed according
to the order of importance. The level of interaction is the most important requirement and is
therefore listed first.

131 Level of interaction
Describes how well the API will interact to the existing code, i.e. how hard it is to add the
code from the API into the existing code. Will it be unnecessary complicated to integrate an

API with existing routines and structures?



132 L evel of abstraction

The higher level of abstraction an APl has, the more control is moved from the
programmer to the API. As adeveloper not using any API, one would have to add support for
different hardware, e.g. sound cards. If an APl is used, it checks what kind of hardware the
computer uses and call the functions required in order to make the sound card work properly.
The developer never sees this since it is on a lower abstraction level. An API can aso have
integrated support for other API:sif it is on ahigher abstraction level.

A higher level of abstraction rendersin easier programming and faster development of the
system. The higher level of abstraction aso requires much less effort and is much easier to
apprehend and use.

The disadvantages of a higher level of abstraction are that the control is encapsulated and
moved away from the programmer to the API. An API with a high level of abstraction
provides code you would have to write in alower level API. Though thisis a good thing, in
the meaning of effort, it also decreases the programmers control over the application. One
will not have full control over how the functions that the API provides work.

133 Status/ Stability
How long has the company who developed the APl been in the business? What is its

current state: isit growing or on its way back?

134 License agreement / Cost

Isit necessary to get alicense and in that case, how much it will cost?

135 Complexity
What Sound Phenomena can the APl handle? How difficult isthe APl to use?

1.3.6 Platform support
Saab Bofors Dynamics visualizations that will utilize these APl are running in the
Windows environment only. Since there are no signs of this changing, the platform

independendency is not important at all (in the meaning of choosing an API).

Therest of the thesisis structured as follows;
Chapter 2 is abrief introduction to a number of sound effects and how they work. Chapter
3 covers the evaluation of a number of API:s that were considered to be of interest to Saab

Bofors Dynamics. Each of the different API:s has been graded on all of the requirements.



These grades are presented in a table at the end of each section, and have the possible values
of: Poor, Adequate and Excellent. Chapter 4 gives an example on how the API can be
integrated with the existing code, presented in UML-notation. Finally the 5th chapter gives a
summary over the conclusions gained through this thesis.



2 Sound phenomena

Thisis ageneral introduction over a number of the sound phenomena in natural environments
and how they are approximated in virtual environments. There are a huge number of sound
effects in the natural environments that all affect the sound waves. The sound effects in this
chapter are supported by all of the evaluated API:s. Section 2.1 is intended to give the reader
an idea of the function of these sound phenomena and how they work in the virtua

environment.

2.1 TheDoppler effect

The equation of the Doppler effect isasfollows:
f=f(VxVp)(VxVs)

In the function above: f' is the Doppler effect frequency, f is the original frequency of the
sound wave, V is the speed of sound, Vp is the speed of the listener (detector) and Vs is the
speed of the sound source. The Doppler effect principle was stated in 1842 when the Austrian
Johann Doppler discovered the phenomenon. The Doppler effect concludes the way a sound
wave appears to vary in frequency as the source of the wave move towards or away from the
observer. The source itself never changes the frequency of the emitted wave. The reason why
the wave appears to change in pitch is due to distortion. Pitch is the rate (how often) waves
encounter the observer. As in Figure 2-1, one can see how the pitch increases as the source
moves towards the observer and decreases if the source move away from the observer. In the
computer world, all of the evaluated API:s calculate the Doppler effect automatically. The
programmer simply has to add the velocity and the position of the observer respectively the

sound source in the three dimensional space. [1]



Figure 2-1: An example of the Doppler effect [ 2]

2.2 Reverb

The only time you hear the original sound from a sound source is when no sound
reflections from the surrounding environment appear. In al other cases you will get a
combination of the original sound and the reflected sound (called reverb). The amount of
reverb depends on which environment the observer and sound source appear in (compare for
instance a narrow isle or corridor with an open field). The ratio between the original sound
and the reverbed is called the wet/dry ratio. In Figure 2-2 the wet/dry ratio is 2:1 (the amount
of reflected sounds is twice the amount of the direct sound). The Rolloff factor is the rate at
which reverbed sounds become attenuated with distance. To cause the sound to attenuate

faster with increasing distance one simply increase the Rolloff factor parameter.

2 .
Direct path

Reflected path

1.Soundsource 2. Observer

Figure 2-2: An example of the reverb effect



221 Occlusion

Occlusion is a form of reverb and occurs if there is a wall between the source and the
listener i.e. no open-air path for the sound to travel through. Depending on the material and
thickness of the wall, the attenuation of the sound varies (a thick wall attenuates the sound

much greater than athin).

Direct path

1 st order reflection
2nd order reflection
Wall

Listener

Sound source

w
ourLNE

Wall

Figure 2-3: An example of occlusion

222 Obstruction

Obstruction is also a form of reverb and occurs when there is no direct path between the

source and the listener. The only sound that the listener hearsis the reverbed one.



Direct path
1 st order reflection
2nd order reflection
Obstructor
Listener
Sound source

oOuhwNE

Figure 2-4 An example of obstruction

There are two ways to calculate the reverbed sound. One is described in Figure 2.4, where
the obstruction and occlusion effects are calculated to create arealistic feeling. A more exact
way to calculate the reflected sound is the one that Aureal uses. the wavetracing algorithm
(see Wavetracing in chapter 3.1.2 for adetailed description of how the algorithm works).

2.3 Head Rélated Transfer Function

Small headphones that are put directly into the middle ear causes loss of the outer ears
function. This will cause the illusion that the sound is coming from the inside of your head
and that is no good if you want to create an authentic hearing feeling. The Head Related
Transfer Functions (HRTF) was created in order to solve this problem. These Head Related
Transfer Functions is achieved by measuring how long it takes for a sound to “arrive” to the
left and right middle ear by placing a sound source in a number of different positions in the
room. The intensity of the sound is a'so measured. HRTF is then used to calculate how the
sound would appear in the ears and then it reaches the left respective the right one. Since
every human being has a unique head shape, the sound perception is also unique. To solve
this problem the API:s create an implementation to fit an average shaped head. The headshape
is “created” from a number of persons head measures to make the sound as good as possible
to as many people as possible. HRTF is used to calculate the direct path of the sound and does
NOT handle reflected sound (reverb).



24 Reverberation Decay

Reverberation Decay is the effect that causes the amplitude to decrease in case of
reflection.

“Reverberation decay is the result of acoustic energy absorption by aroom’s
surfaces and the propagation medium. Each time a sound wave bounces off a
surface, it decreases in amplitude until there is negligible reflected sound. If
room surfaces are acoustically “live,” they absorb very little acoustic energy,
reflected sounds diminish little each time they bounce, and the reverberation
(the combination of all reflected sound) takes a long time to decay. If room
surfaces are acoustically “dead,” reverberation decays very quickly as acoustic
energy is absorbed faster”[3].



10



3 Evaluation of theAPI:s

This chapter evaluates the API:s that were considered to be of interest for Saab Bofors
Dynamics. The API:s chosen for this evaluation are marketleading and were considered to be
the most interesting ones. Each of the sections in this chapter consists of a “History”,
“General ideas’ and a “ Summary/Conclusions’ part. The “History” section gives an idea of
how the API has evolved through the years and how its current state is today. “General ideas’
describes how the APl works. “Summary/Conclusions’ shows the advantages and
disadvantages with the APl and how well it lives up to Saab Bofors Dynamics” Reguirements.
These requirements will be graded according to the three levels discussed in the Introduction -
Requirements section. All of the API:s are evaluated against the requirements presented in
section 1.3. Sinceit is hard to find objective information about the different API:s, the grading

becomes rather subjective.

3.1 DirectSound

311 History

DirectSound3D is the part of DirectSound where one can position sound in three
dimensions. When DirectSound3D was announced, the soundcard manufactures and the audio
programmers were full of expectations. There would finally be a standard API to program 3D
sound with hardware support towards. But a few months before the release of DirectX 3,
including DirectSound3D, Microsoft announced that they would not allow any third party 3D-
algoritms to accelerate DirectSound and Microsoft would provide an agorithm for this
purpose. The sound card companies would not be able to create products based on their own
3D Audio technology which they, in most cases, spent years of work developing. Even
though Microsoft’s intentions were good, the solution was far from optimal. Since DirectX
did not support third party property sets, DirectX would need to have a 3D acceleration
engine of their own in order to allow hardware acceleration. The fact that it did not have one
led to a number of API:s who tried to work around this problem. Among these were Aurea
3D (A3D). A3D grew strong on the market despite the fact that DirectX added support for
third party property setsin their next release, DirectX 5 (DirectX 4 was skipped).

11



DirectSound is a component of the DirectX Software Development Kit (DX-SDK). Since
DirectX is a product developed by Microsoft and is needed to play sound, show graphics etc.
in Windows, it is integrated in the Operating System (OS). Which version of DirectX that

comes with Windows, depends on the version of Windows (seetable 3.1 for details).

OSversion DirectX version
Windows NT 3.1 |DirectX v.2.0
Windows NT 4 [DirectX v.2.0
Windows 95 DirectX v.5.0
Windows 98 DirectX v.6.0
Windows M e DirectX v.7.0
Windows 2000 [DirectX v.7.0

Table 3-1: Windows and DirectX version shipped together

All the versions of the OS supports the newest version (DirectX 8.0) except for the NT —
versions. They only support DirectX versions up to 3.0. The NT Operative System, for the
most part, was designed for office applications and server functions and therefore not in need
of DirectX-support. Due to combined demands, to have both stability (NT) and game support,
Windows 2000 have been developed. Windows 2000 is built on NT-technology but has full
support for the latest DirectX version.

3.1.2 General ideas

Here are the basic steps you will have to take in order to create sound using DirectSound.
The wave files tend to be quite big since there's compression and playing them directly from
disc wouldn't work very well. That's why there are sound buffers. As the name applies, the
buffer holds the wave file data ready to play at any time. The sound buffer can be replayed
and written to as it pleases you. When played, the buffer data is copied to the primary sound
buffer (managed by the DirectSound interface itself). From the primary buffer the sound then
finds the way to your speakers through your soundcard. DirectSound uses two different kinds
of buffers: the primary and the secondary buffer. The secondary buffers are generally used to
store one sound sample that will be mixed with other secondary buffers. If you want to mix a
number of secondary buffers (i.e. sounds) you place these in the primary buffer.

The primary buffer is an object that mixes and plays the final audio output. Thisiswhat the
primary buffer generaly is used for (to mix sound from secondary buffers), but it can also be
accessed directly for custom mixing or to perform other specialized activities.

12



All sound objects in DirectSound uses sound cones, but the angle of the cone is set to 360°
on those objects that has the same volumein all directions.
“At any angle within the inner cone, the volume of the sound is just what it
would be if there were no cone, after taking into account the basic volume of
the buffer, the distance from the listener, the listener's orientation, and so on.
At any angle outside the outer cone, the normal volume is attenuated by a
factor set by the application.” [4]

Sound
sOurce

; Irside volume
Distance

Transitional volume

; @9 —— Volume = inside volume +
B’D@ specified outside volume
4

g

\ Outside cone

Inside cone

Figure 3-1: Anillustration in how sound cones work [ 5]

DirectSound uses cones to give the sound a direction. One can use it to give a redlistic
sound propagation of a trumpet. Or you can use it to give a person an impression that the
sound increases in volume as he/she approaches a door, by setting the inside cone at the same
width as the door and the outer cone inaudible. See Figure 3-2 for an illustration of this effect.

13



Wall y Door ¢

Outer cone
(inaudible)

Sound source

Figure 3-2: An example how to use sound cones

A sample code of an implementation using DirectSound is shown in the Appendix.

3.13 Summary/Conclusions

DirectSound is a complete APl which has been on the market for a long time. Its founder,
Microsoft, is the world leading OS manufacture. This makes the future look rather good for
DirectSound. The fact that it is totally free and that there are tons of code examples on the
Internet also gives it a benefit towards Figure 3-3. This is the API, which most likely is the

one that will be used in Saab Bofors Dynamics simulations.

Level of interaction Excellent
Level of abstraction Adeguate
Status / Stability Excellent
License agreement / Cost Excellent
Complexity Excellent
Platform support Poor

Figure 3-3: DirectSounds mark on the requirements

3.2 EAX

3.2.1 History

The Environmental Audio eXtensions (EAX) became a part of DirectX in version 5.0
when Microsoft allowed Creative to add EAX as athird part property set to the DirectX API.
This was a great milestone in EAX:s history since DirectX isincluded on every PC with the
Windows platform ( Table 3.1)

The 21% of September, in the year 2000, Creative bought Aureal.

14



322 General ideas

The EAX unified interface enables a PC without any hardware support (Creatives
soundcard-circuit emulOkl) or the latest drivers installed to use the EAX. The EAX unified
interface trandates the EAX-calls to the most compatible interface on the existing PC-
platform, preserving as much of the EA extension effects as possible. EAX includes two
different property sets. the Listener property set and the Sound Source property set. The
listener is applied to the primary buffer (also called the listener) and is used to describe the
listeners surrounding environment.

The sound source property set is applied to every individual secondary buffer (the sound
sources) and they describe how every source sounds in its own surrounding environment.
Here follows a simplyfied description in how the hardware support work:

"Once alistener isin aroom with sound sources, the program does not need to
do any more work—the EAX engine performs all the necessary calculations
for moving sources and listener.”[6]

This alows the CPU to do other computations since the emulOkl1 circuit processes all
these EAX-specific calls.

EAX has an excellent reference manual that makes it easy to understand how EAX works
and also how it interacts with DirectSound.

To make it easy for developers Creative have created 26 presets (Table 3-2). The presets

are anumber of pre-defined values. The presets each represent a specific environment.

15



Preset Base Volume Decay Time
Environment Damping
GENERIC 0.5F 1.493F 0.5F
PADDEDCELL 0.25F 0.1F 0.0F
ROOM 0.417F 0.4F 0.666F
BATHROOM 0.653F 1.499F 0.166F
LIVINGROOM 0.208F 0.478F 0.0F
STONEROOM 0.5F 2.309F 0.888F
AUDITORIUM 0.403F 4.279F 0.5F
CONCERTHALL 0.5F 3.961F 0.5F
CAVE 0.5F 2.886F 1.304F
ARENA 0.361F 7.284F 0.332F
HANGAR 0.5F 10.0F 0.3F
CARPETEDHALLWAY 0.153F 0.259F 2.0F
HALLWAY 0.361F 1.493F 0.0F
STONECORRIDOR 0.444F 2.697F 0.638F
ALLEY 0.25F 1.752F 0.776F
FOREST 0.111F 3.145F 0.472F
CITY 0.111F 2.767F 0.224F
MOUNTAINS 0.194F 7.841F 0.472F
QUARRY 1.0F 1.499F 0.5F
PLAIN 0.097F 2.767F 0.224F
PARKINGLOT 0.208F 1.652F 1.5F
SEWERPIPE 0.652F 2.886F 0.25F
UNDERWATER 1.0F 1.499F 0.0F
DRUGGED 0.875F 8.392F 1.388F
Dizzy 0.139F 17.234F 0.666F
PSYCHOTIC 0.486F 7.563F 0.806F

Table 3-2: Creative presets for different environments|[7]

The developer can then tweak the reverb by changing the amount of reverb applied, the
decay time and the damping. The last two basicaly alows the developers to simulate
different material of wallg/environments at a level of a whole room. At this time, the
developer cannot change other settings like the size of the room, a sewer pipe €etc.

A sample code of an implementation using Environmental Audio extensions (EAX) is

shown in Appendix.

16



3.2.3 Summary/Conclusions

Since DirectSound has integrated support for EAX, there is no real reason to use it. If one
want an EAX-specific effect, it is easy to make that call through DirectSound. Otherwise is
this API is a great one with an excellent SDK reference manual which makes it easy to learn

how EAX works and how to implement its effects.

Level of interaction Excellent
Level of abstraction Adeguate
Status/ Stability Excellent
License agreement / Cost Excellent
Complexity Excellent
Platform support Poor

Figure 3-4: EAXS mark on the requirements

3.3 A3D (Aureal 3D)

3.3.1 History

Aureal 3D was developed in 1996. Aureal’s APl became very popular, since there were not
any APl present at that time who were able to hardware accelerate sound effects (see History
—DirectX in chapter 3.1.1 for details).

3.3.2 General ideas

In A3D 1.0 there is only support for rendering rates up to 22kHz. A3D 2.0 supports up to
48 kHz, which approves the positioning accuracy as well as the overall quality. The biggest
difference between A3D and the other sound API:sisthat A3D uses wavetracing.

Wavetracing

The wavetracing algorithm in A3D 2.0 performs calculations on the sound and the
surroundings in real-time. It calculates how the sound changes in wavelength and loudness as
it reflects a walls, occludes through doors etc. The wavetracing technology is very

complicated and Aureal spent several yearsto develop it.

17



3.3.3 Summary/Conclusions

Though DirectX today has integrated support for A3D, the future looks grim for A3D.
Creative bought the whole company and there will probably not be any more versions of the
API.

Level of interaction Excellent
Level of abstraction Adeguate
Status/ Stability Poor

License agreement / Cost Excellent
Complexity Adequate
Platform support Adequate

Figure 3-5: A3Ds mark on the requirements

3.4 Miles Sound System

3.4.1 History
Miles first version of its APl was released as early as 1991. In the computer industry, this
is avery long time and this has helped make them an established and well-respected name in

the sound programming industry.

34.2 General ideas

Miles uses DirectSounds' driver layer to gain low-level access to the sound card hardware.
Miles are very pleased with the driver layer of DirectSound, but they think that the other
component that DirectSound provides the DirectSound API itself “is just plain horrible’[8].
This is based on the fact that even to accomplish simplest application, you have to write an
considerable amount of code. The DirectSound 8, which Miles not supports, however is much
more user friendly than the previous version.

The Miles API supports a large number of sound formats, which gives it a wide range of
applications. It has a high level of abstraction (higher than DirectSound, for instance).
Simplified, this means that you will not have to write as much code as lower-level API:s to
achieve the same result. But a higher level of abstraction also means that you are not able to
control exactly what happens with the sound (unless you learn what the automatic function
calls does). Miles supports DirectSound3D software, DirectSound3D hardware, DirectSound
7 software, Creative's EAX 1 and 2, Auread's A3D 1 and 2, fast Miles 2D, Dolby Surround,

18



QSound and their own RSX. And with the Miles API, you can even switch between any of
these technologies at run-time. This feature allows you to take advantage of a specific API:s
advantages, e.g. first you use the DS3D API for positioning, but when you switch to EAX to
get the effect of being in anarrow hallway.

3.4.3 Summary/Conclusions

Miles is an excellent API with a high level of abstraction and integrated support for the
most common API:s. However Miles has not added support for DirectSound 8, which was
released in November 9 the year 2000. The other big disadvantage is that the license fee so
high (from 4000$ and up) that the advantages of the APl dose not compensate it. Thisis the
main reason why the Miles API is not of any interest for Saab Bofors Dynamics.

Level of interaction Excellent
Level of abstraction Excellent
Status / Stability Excellent
License agreement / Cost Poor

Complexity Excellent
Platform support Adeguate

Figure 3-6: Miles' mark on the requirements

3.5 OpenAL

351 History

OpenAL is a multi-platform APl supporting Windows, the Macintosh OS, Linux,
FreeBSD, OS/2 and BeOS. OpenAL is open source and can be used, free of charge, without
any form of license agreement from the developers. But if you later want to sell a product
with OpenAL (or any open source product) you will have to pay asmall fee.

The fact that OpenAL is an open source project means that anyone is free to get involved
in the project and contribute in any way possible.

There are currently two companies involved in the project: Loki and Crestive.

The API is hardware independent, that is: it takes advantage of any soundcard-hardware
available though you of course get amore realized on multi channel audio output cards

19



3.5.2 General ideas

Since it is platform independent, once you have implemented a functional version of your
game or program, al you have to do is port your application to the desired OS. This instead of
using an other API that the new OS supports which would demand the same amount of effort
that it took to create the first application. In the equivalence in the graphics world, OpenGL,
you have to add the operative system specific bindings (for instance: all the window handling)
for the new OS, because OpenGL dose not handle those itself (due to the platform
independendency). OpenAL include both the APl core and the operative system specific
bindings so al you have to do to get the sound working on another platform is the porting. An
open source project has a tendency to get delayed since there often are a lot of
people/companies jumping on the “circus’ and after a while leaving with the code they
accomplished during their stay. This delay the project cause the parts provided need to be re-
programmed.

A sample code of an implementation using Environmental Audio extensions (EAX) is
shown in the Appendix.

3.5.3 Summary/Conclusions

Since the importance of platform independency is not significant (see Platform support in
chapter 1.3.6) OpenAL looses its greatest benefit. OpenAL is great if one want to integrate it
with OpenGL, but otherwise it has no advantages compared to the other API:s.

Level of interaction Excellent
Level of abstraction Adeguate
Status/ Stability Adeguate
License agreement / Cost Adeguate
Complexity Excellent
Platform support Excellent

Figure 3-7: OpenALs mark on the requirements

3.6 Comparison of theAPI:s

Since there is very difficult to find objective information of the API:s, the decision which
API to use becomes quite hard. The decision is based on feeling, rather than on facts. The
API chosen for further implementation for Saab Bofors Dynamics is Direct Sound 3D, which

were considered to be the best, based on its excellent level of interaction and Microsoft’s

20



strong position on the market. Below is a comparison table of the API:s. All the criterions
have been given a different weight according to their level of importance. The grades
(Excellent, Adequate and Poor) are trandlated into numeric grades in order to achieve a
numeric total score. As shown in the tables below, both EAX and Direct Sound 3D gathers 82
points. EAX isintegrated in Direct Sound (ssmplified: Direct Sound is both Direct Sound and
EAX) and therefore Direct Sound wins the battle. Miles is not far behind, but the their high
level of abstraction is not all positive (see section 1.3.2). This makes the total score of Miles
somewhat misleading.

Open AL
Weight |Criterion Grade Grade value Sum
10 Level of interaction Excellent 3 30
8 Level of abstraction Adequate 2 16
6 Status / Stability Adequate 2 12
4 License agreement / Cost |Adequate 2 8
2 Complexity Excellent 3 6
1 Platform support Excellent 3 3
Total Score | 75
Miles
Weight |Criterion Grade |Gradevalue Sum
10 Level of interaction Excellent 3 30
8 Level of abstraction Excellent 3 24
6 Status / Stability Excellent 3 18
4 License agreement / Cost |Poor 0 0
2 Complexity Excellent 3 6
1 Platform support Adequate 2 2
Total Score | 80
A3D
Weight |Criterion Grade Grade value Sum
10 Level of interaction Excellent 3 30
8 Level of abstraction Adequate 2 16
6 Status / Stability Poor 0 0
4 License agreement / Cost |Excellent 3 12
2 Complexity Adequate 2 4
1 Platform support Adequate 2 2
Total Score | 64

21



EAX

Weight |Criterion Grade Grade value Sum
10 Level of interaction Excellent 3 30
8 Level of abstraction Adequate 2 16
6 Status / Stability Excellent 3 18
4 License agreement / Cost |Excellent 3 12
2 Complexity Excellent 3 6
1 Platform support Poor 0 0
Total Score | 82
Direct Sound 3D
Weight [Criterion Grade |Grade value Sum
10 Level of interaction Excellent 3 30
8 Level of abstraction Adequate 2 16
6 Status / Stability Excellent 3 18
4 License agreement / Cost |Excellent 3 12
2 Complexity Excellent 3 6
1 Platform support Poor 0 0
Total Score | 82

Table 3-3: Comparison of the API:s

22




4 Possibleintegration of the API into the existing code

This chapter gives an idea of how the visualizations and simulations are structured. It also
shows how the evaluated sound APIs can be integrated in that structure.
The object hierarchy currently in use at Saab Bofors Dynamics looks approximately like

Figure4-1.

CWindow CEntity

Q}position
“'updaI e()
CCamera
EHposition CPlane

E8diecton

*update()

Figure 4-1: Sample simulation class hierarchy

Each window that is used in a simulation has one or more cameras (CCamera), which can
be thought of as the eye through which the user sees the world. CEntity is the super class from
which all actors (objects) in a simulation inherits, such as for example planes (CPlane). When
trying to figure out where the implementation of sound fits in al this, it is quite easy to see
that the class CCamera is a suitable candidate to also be a listener. The necessary attributes of
a listener are a position and a direction in which the listener travels. The CCamera class
already provides the position, but needs to be extended with a direction in order for sounds to

work properly. A possible solution to thisisillustrated in Figure 4-2

| CListener |

position
direction

I ‘u;idate( )

CCamera

CWindow

‘update()

Figure 4-2: Integrating the listener

23



As can be seen in the figure, the position attribute is moved upwards in the hierarchy since
it is not necessary to have two different variables storing the same attribute. Now the
CCamera class acts as a listener and provides the user with both visual and audio parts of the

visualization.

Considering the sounds sources, the first thing one might think is that each entity should be
associated with a sound. This, however, is not completely correct since it is not necessary for
all entities to produce sounds. Consider the example of a class CAirport, which inherits from
CEntity. Certainly objects that are on the airport (such as planes) will produce sounds, but the
airport itself will be silent. Thus it is better to let each suitable subclass of CEntity have their

own sound, asillustrated in Figure 4-3.

CEntity

ﬂ}position

"update()

CSound

CPlane position
Bfldirection > Bidirection

I 'qu pdate()

Figure 4-3: Integrating a sound source

This certainly solves the problem, but it is not the optimal solution. One very important
aspect when programming real-time simulations is efficiency. Each object in the 3D world
needs to be updated at least 30 times a second for the ssmulation to be smooth, hence we need
to optimise the code. In this example we need to call the update() method on the CSound
class each time update() is called on the CPlane, i.e. we get double method calls. This might
seem like a very small overhead, but consider the case when we have 1000 entities with
sounds in a simulation (which not is an unlikely situation). Then instead of 1000 update()
calls each program loop we have 2000, which might affect the smoothness of the simulation.
The same argument can be applied on the fact that both CPlane and CSound consists of the
same attributes; position and direction. In anormal simulation each of these would be a vector
consisting of three floats (x, y and z). This means that we have a small overhead of 24 bytes

(if afloat has a size of 4 bytes, which is normal for the Win32 platform) for each sound. This

24



certainly is avery small overhead, but in some cases it might make a difference. The scheme

shown in Figure 4.4 provides a better solution.

CEntity CSoundSource
E&position EXldirection

®update() ®update()

b\

CPlane

Figure 4-4: Better way of integrating a sound source

In this hierarchy we have eliminated the unnecessary method call, since both the sound and
the entity parts of the plane is updated in the same call. There also are no unnecessary

variables since everything is encapsulated in one single class.

25



26



S5 Summary

In order to objectively decide which API is the best aternative for Saab Bofors Dynamics,
one would have to work with all of the different sound API:s for an equally long time. To
work with an API is the only way to see al its advantages and disadvantages. A typica
developer has been working with only one API and learned how that works. Since thisAPI is
the only one known this API is used for all of the implementations. Even if the developer has
experience of several API:s, he or she has most likely been working with one APl more than
the others. If thisisthe case, there is no objective way to choose which API isthe best one.

It is amost exclusively the creators of the API:s themselves who describe what their own
API can do. If an effect is supported in a competitors' API, but not in their own, they may not
admit this. In case the API-developer uses this to advertise their own API, its competitors
would usually respond that the effect is useless and that there is no need to implement support
for it. Considering this, it may not be possible to obtain valuable information by reading the
API-creators specification. Since there are not any totally objective persons reviewing the
API:sthereis only one way to get a good apprehension over which API is the best, i.e. what
effects they can do, how (effective) they solve these effects, the amount of CPU-power it
takes to process the effects and so on. The only solution left is to work with the al the
separate API:s for the given amount of time it takes to know how the API works, including all
its advantages/disadvantages compared to each other.

The second best thing may be to evaluate the API:s theoretically and then weigh the
advantages and disadvantages of the different API:s towards each other. This has been done
in this thesis and the API that lived up to the requirements best was DirectSound. See the
summary of the evaluated API:sin chapter 3.6 for more details.

27



28



References

[1]
[2]
[3]
[4]
[5]

[6]
[7]

[8]

Sven Roepke, The Doppler effect,
http://www.mohawk.net/~viking/physi cs/doppler.nhtml, 2001-02-13

Cherie Bibo Lehman, Doppler effect,
http://www.ccm.ecn.purdue.edu/~html/cblehman/, 2001-02-13

Microsoft, DirectX Documentation (Visual C++) — Sound Cones,
http://www.microsoft.com/directX

Microsoft, DirectX Documentation (Visual C++) — Sound Cones,
http://www.microsoft.com/directX

Microsoft, DirectX Documentation (Visual C++) — Sound Cones,
http://www.microsoft.com/directX

Creative, The EAX 2.0 reference manual, Creative, 2001-02-27

Mikael Hagén, A Gamer's Guide to EAX,
http://www.3dsoundsurge.com/features/articles’EA X .html, 2001-03-05

Rad Gametools, The Miles Sound System!, http://www.radgametools.com/miles.htm,
2001-03-01

29



30



Appendix Sample code

DirectSound

All the methods and variables presented in this example that are not commented in Swedish
are specific to graphics. These are not important in the meaning of understanding in creating

sound using DirectSound3D and can be ignored.

/*************************************tgVApp RF ARk ok k ok ok ok Rk ok k ok ok ok Rk kk ok ok kR Kk ok ok kK [

ifndef TGV APP H
#define __TG V_APP_H

#i ncl ude "tgApplication.h"

#i nclude <gl\gl.h>

#i ncl ude <gl\glu. h>
#i ncl ude <gl\ gl aux. h>
#incl ude "dsutil.h"

#define TG POS_X 0
#define TG PCS_Y 0
#define TG W DTH 1024
#define TG HEI GHT 768

class tgVApp : public tgApplication

{

public:

pr ot ect ed:
HDC t n_hDC;
HGLRC tn_hRC,
DEVMODE tn_screenSettings;
BOOL keys[ 256] ;
CSoundManager *manager ;
DS3DBUFFER buf fy;
D3DVECTOR pos;

private:

31



publi c:

vi rtual

#pragma aut o_i nline(on)

int
int

int

int

int

LPARAM | KeyDat a) ;

LPARAM | KeyDat a) ;

xPos, WORD yPos);

int

xPos, WORD yPos);

f wKeys,

int
WORD xPos, WORD yPos) ;

#pragma auto_inline(off)

pr ot ect ed:

publi c:

private:

b

#endi f

t gVApp( Hl NSTANCE, \WWNDPROC) ;

~tgVApp();

init();
execute();
rel ease();

onCr eat e( HWAD, LPCREATESTRUCT) ;
onC ose( HAND) ;

onDest r oy ( HAND) ;
onKeyDown( HWAND hWhd, int nVirtKey,

onKeyUp(HWND hWhd, int nVirtKey,

onLBut t onDown( WPARAM f wKeys, WORD

onMuseMyve( WPARAM  f wKeys, WORD

onRBut t onDown( HWAD  hwhd, WPARAM

/*************************************tgvApp C*******************************/

#i ncl ude "stdaf x. h"
#i ncl ude "t gVApp. h"
#i ncl ude <msystem h>
#i ncl ude " CPosSound. h"

t gVApp: : t gVApp( HI NSTANCE hl nst ance,

Lyyyyd!!.", hlnstance, WhdProc)

{

nmenset (& n_screenSettings, O,
// O ear Room To Store Settings
tn_screenSettings. dnfize

/1 Size O The Devnode Structure

WNDPROC WhdPr oc)

si zeof (DEVMODE) ) ;

t gAppl i cati on(" SAAB Bof ors Dynami cs:

= si zeof ( DEVMODE) ;

tn_screenSettings.dnPel sWdth = TG W DTH,;

// Screen Wdth
tn_screenSettings. dnmPel sHei ght
/] Screen Hei ght

= TG_HEl GHT;

32



tn_screenSettings. dnFi el ds = DM PELSW DTH | DM PELSHEI GHT;
Pi xel Mbde

for (int i=0; i<256; i++) keys[i] = FALSE;

t gVApp: : ~t gVApp()
{
}

int tgVApp::init()
{

if (tgApplication::init())

{
FEETEEEEETE 177 7TobQ CREATE STUFRF
/1tn_hwid

manager = new CSoundManager () ;
manager->lnitialize(tn_hwWwd, DSSCL_PRI ORI TY, 2, 22050, 16);// 44100

/*
HRESULT Querylnterface

(
REFIID riid,
LPVO D* ppvOhj

)
11D id;

LPVO D* ptr;
| Di rect Sound3DBuf fer8:: Queryl nterface(id, ptr); //resultat

DS3DBUFFER buf f er;
/1 Get Al | Par anet ers(&uffer);
*/

/1 Ytterligare initiering omndédvandigt!

/1 Ytterligare init..... bl ah bl ah bl ah

LHEEEEEEEEEEr i r i rrri 7/ Tobo: END

return TRUE;

return FALSE;

int tgVApp::execute()

33

/1



MSG nsg;
[ RAAE R KAk Rk Ak Rk kA kR kKK KAk Rk Ak kk
i nt NUMBER = 0;
CPosSound *sound;
CPosSound *sound2;
/| Skapar en 3dLi st ener
LPDI RECTSOUND3DLI STENER | i st ener;
/ / LPDI RECTSOUND | j ud;

manager - >Get 3DLi st ener I nterface(& i stener);

|'i st ener->Set Rol | of f Fact or (1, DS3D_| MVEDI ATE ) ; / / DEFERRRED
|'i st ener->Set Doppl er Factor (1, DS3D_| MVEDI ATE ) ;

/I skapar ett sound-object nmed nmanagern

manager - >Cr eat e( ( CSound**) &sound, "E:\\ Engdahl \\ Lyd\\ | ugna\\ di ng. wav",
DSBCAPS_CTRL3D, DS3DALG NO VI RTUALI ZATI ON) ;
manager - >Cr eat e( ( CSound* *) &ound2, "E:\\ Engdahl \\ Lyd\\ | ugna\\ Ut opi a - Fel . wav",

DSBCAPS_CTRL3D, DS3DALG NO VI RTUALI ZATI ON) ;

whil e(1)
{
whi |l e (PeekMessage( &rsg, NULL, O, O, PM NOREMOVE)) // Process Al Messages
{
if (GetMessage(&rsg, NULL, 0, 0))
{
Transl at eMessage( &18Q) ;
Di spat chMessage( &nsQ) ;
}
el se
{
return nmsg. wPar am
}
}

FEEEEEEEEEE i/ 7Tobo: UPDATE STUFRF

i f ( NUVBER<=20)
{
sound- >Pl ay(0, 0); //<----0 == satter inga flaggor (ingen |oop etc)

/I Flyttar lyssnaren bort fran Ijudkallan

/11istener->SetPosition((NUVMBER * 0. 2f), NUMBER* 0. f , NUMBER* 0. f ,
DS3D_DEFERRED ) ;

/1 Satter hastigheten p& |yssnaren

/11istener->Set Vel oci t y( NUMBER* 10. f, NUMBER* 0. f , NUMBER* 0. f ,
DS3D_DEFERRED ) ;



sound2- >set Position(0.4f * NUMBER O0.f, O0.f); //anropa netod
positionen pd "ljudobjektet"

sound- >set Posi tion(-0.4f * NUMBER, O0.f, 0.f);

sound2- >set Vel ocity(8, 0.f, 0.f);

Sl eep(500);

sound2- >Pl ay(0, 0);

++NUMBER,;

PEEEETEEEE 777/ Tobo END
}// END while(l)-1oop

int tgVApp::rel ease()

{
PHELLTEEEEEL i1 7/ Tobo DELETE STUFRF
LEELLTEEEEE i1/ Tobo END DELETE STUFRF
return tgApplication::rel ease();

}

inline int tgVApp::onCreate( HAND hWwd, LPCREATESTRUCT | pcs)

{
static Pl XELFORVMATDESCRI PTOR pf d=

si zeof ( Pl XELFORVATDESCRI PTOR) ,
/1 Size O This Pixel Format Descriptor
1,
/1 Version Nurmber (?)
PFD_DRAW TO W NDOW |
/'l Format Must Support W ndow
PFD_SUPPORT_OPENGL |
// Format Must Support OpenGL
PFD_DOUBLEBUFFER,
/1 Must Support Doubl e Buffering
PFD_TYPE_RGBA,
/1 Request An RGBA For mat
16,
/] Select A 16Bit Col or Depth
o, 0, 0,0 0, O, O,
// Color Bits Ignored (?)

0,
/1 No Al pha Buffer
0,
/1 sShift Bit Ignored (?)
0,
/1 No Accunul ation Buffer
0, 0, 0, O,

/1 Accumul ation Bits Ignored (?)

35

for



16,
/1 16Bit Z-Buffer (Depth Buffer)
0,
/1 No Stencil Buffer
0,
/1 No Auxiliary Buffer (?)
PFD_NMAI N_PLANE,
/1 Main Drawi ng Layer

0,
/'l Reserved (?)
0, 0, 0
/'l Layer Masks Ignored (?)
}

GLui nt pi xel For mat ;
tn_hDC = Cet DC( hWhd) ;
pi xel Format = ChoosePi xel Format (t n_hDC, &pfd);
if (!pixel Format)
{

MessageBox(0, "Failed to find a suitable pixelformat”, "Init error", MB_OK |

MB_| CONERROR) ;

Post Qui t Message(0) ;

return O;
}
if (!SetPixel Format (tn_hDC, pixel Format, &pfd))
{

MessageBox(0, "Failed to set pixelformat", "Init error", MB_OK | MB_| CONERROR);

Post Qui t Message(0) ;

return O;
}
tn_hRC = wgl Creat eCont ext (t n_hDC) ;
if(!'tn_hRC
{

MessageBox(0, "Failed to create an OpenGL rendering context", "Init error",

MB_OK | MB_I CONERROR) ;

Post Qui t Message(0);

return O;
}
if (!wgl MakeCurrent (tn_hDC, tn_hRC))
{

MessageBox(0, "Failed to activate the OpenGL rendering context", "lnit error",

MB_OK | MB_I CONERROR) ;
Post Qui t Message(0) ;
return O;

return O;

36



int tgVApp::onC ose( HAND)

{
ChangeDi spl aySetti ngs(NULL, 0);
wgl MakeCurrent (t n_hDC, NULL);
wgl Del et eCont ext (t n_hRQ) ;
Rel easeDC(t n_hWhd, tn_hDC);
Post Qui t Message(0) ;

return O;

inline int tgVApp::onDestroy( HAWND hWhd)
{

ChangeDi spl aySetti ngs(NULL, 0);

wgl MakeCurrent (t n_hDC, NULL);

wgl Del et eCont ext (t n_hRQ) ;

Rel easeDC(t n_hWhd, tn_hDC);

Post Qui t Message(0) ;

return O;

inline int tgVApp::onKeyDown( HAWND hwid, int nVirtKey, LPARAM | KeyDat a)
{

static bool full Screen = true;

if (27 == nVirtKey)

{
onDest r oy( hwd) ;
Post Qui t Message(0) ;
}
else if ('"F == nVirtKey)
{
}
else if ("N == nVirtKey)
{
}
else if ("M == nVirtKey)
{
}
else if ('O == nVirtKey)
{
if (full Screen)
ChangeDi spl aySet ti ngs(& n_screenSettings, CDS FULLSCREEN);
el se
ChangeDi spl aySetti ngs(NULL, 0);
full Screen = !'full Screen;
}
else if (' ' == nVirtKey)

37



else if (VK_SUBTRACT == nVirt Key)

else if ("1 == nVirtKey)

else if ('2' == nVirtKey)

else if ('3 == nVirtKey)

keys[nVirt Key] = TRUE;
return O;

inline int tgVApp::onKeyUp(HWND hWhd, int nVirtKey, LPARAM | KeyDat a)

{
keys[nVirtKey] = FALSE;
return O;

inline int tgVApp:: onMuseMve( WPARAM f wKeys, WORD xPos, WORD yPos)

{
if (fwKeys & MK_LBUTTON)

{
//TODO | F USER I NPUT BY MOUSE, DO SOVETHI NG
/I xpos = xPos;
//ypos = yPos;

}

return O;

inline int tgVApp::onLButtonDown( WPARAM f wKeys, WORD xPos, WORD yPos)

{
//TODO | F USER | NPUT BY MOUSE, DO SOMVETHI NG

/1 xpos = xPos;
I ypos = yPos;
return O;

inline int tgVApp::onRButtonDown( HAND hWwhd, WPARAM fwKeys, WORD xPos,

{
//TODO | F USER | NPUT BY MOUSE, DO SOMVETHI NG

38

WORD yPos)



/1 Xpos
/1 ypos
return O;

xPos;
yPos;

Environmental Audio extensions (EAX)

An example in how EAX works.

[ RE KKk Kk Rk ok ok ok ok ok Rk ok ok ok ok kK kk

#i f ndef __EAXPANELH
#defi ne __ EAXPANELH

#define STRICT

#i ncl ude <stdio. h>

#i ncl ude <wi ndows. h>

#i ncl ude <comttrl. h>

#i ncl ude "eax. h"

#i ncl ude "resource. h"

cl ass Audio

{
privat e:
LPDI RECTSOUND

LPDI RECTSOUNDBUFFER

LPDI RECTSOUND3DLI STENER

LPDI RECTSOUNDBUFFER
LPDI RECTSOUND3DBUFFER

LPKSPROPERTYSET
DWORD

publi c:
Audi o();
~Audi o() ;

BOOL | nit (HWND hwnd, GUID* pCuid, BOOL

EAXPanel . h

m | pds;
m | pPri mary;

m | pLi st ener;

m | pdsb;

m_| pds3Db;

m | pksps;
m_dwSupport ;

BOOL CreatePrimary(BOOL bUsi ng3D);
BOOL Set For mat (\WAVEFORMATEX* pW ex) ;
BOOL Quer ySupport (ULONG ul Query);
BOOL Creat ePropertySet (void);
BOOL Cr eat eEAX(voi d);
BOOL CreateBufferFronFil e(LPSTR szFile, LPD RECTSOUNDBUFFER*
FALSE, LPDI RECTSOUND3DBUFFER* | pl pds3Db = NULL, LPKSPROPERTYSET* | pl pksps =
voi d Rel easeAll (void);

KKK K KKk Kk Kk ok ok ok ok ok Kk ok ok ok ok ok [

bUsi ng3D = FALSE);

BOOL Set Al | (LPEAXLI STENERPROPERTI ES | pDat a) ;
BOOL Set Roon{ LONG | Val ue) ;
BOOL Set RoonHF( LONG | Val ue) ;

39

| pl pdsb,

BOOL bUsi ng3D
NULL) ;



BOOL Set RoonRol | of f (fl oat fVal ue);

BOOL Set DecayTi ne(fl oat fValue);

BOOL Set DecayHFRati o(fl oat fVal ue);

BOOL Set Refl ecti ons(LONG | Val ue);

BOOL Set Refl ectionsDel ay(fl oat fVal ue);
BOOL Set Rever b(LONG | Val ue) ;

BOOL Set Rever bDel ay(fl oat fVal ue);

BOOL Set Envi r onnment ( DWORD dwVal ue) ;

BOOL Set Envi ronnent Si ze(fl oat fVal ue);

BOOL Set Envi ronnent Di ffusi on(fl oat fVal ue);
BOOL Set Ai r Absorption(float fValue);

BOOL Set Scal eDecayTi ne( BOOL bVal ue);

BOOL Set O i pDecayHF(BOOL bVal ue);

BOOL Set Scal eRefl ecti ons(BOOL bVal ue);

BOOL Set Scal eRefl ecti onsDel ay(BOOL bVal ue);
BOOL Set Scal eRever b(BOOL bVal ue);

BOOL Set Scal eRever bDel ay( BOOL bVal ue);

BOOL Set FI ags( DWORD dwval ue) ;

BOOL Get Al | ( LPEAXLI STENERPROPERTI ES | pDat a) ;
BOOL Get DecayTi ne(fl oat* pfVal ue);

BOOL Get Refl ections(long* pl Val ue);

BOOL Get Refl ecti onsDel ay(fl oat* pfVal ue);
BOOL Get Rever b(1 ong* pl Val ue);

BOOL Get Rever bDel ay(fl oat* pfVal ue);

BOOL Set Li stenerRol | of f(float fValue);
b

cl ass Sound

{
private:
LPDI RECTSOUNDBUFFER m | pdsb;
LPDI RECTSOUND3DBUFFER ~ m | pds3Db;
LPKSPROPERTYSET m | pksps;
BOCL m bPI ayi ng;
publi c:
Sound();

~Sound() ;

voi d Rel easeAll (void);

BOOL Toggl ePl ay(voi d);

BOOL Pl ayLooped(void);

BOOL St op(void);

BOOL | sPl ayi ng(void) {return mbPl aying;}

LPDI RECTSOUNDBUFFER* Get Buf f er Address(void) {return &m| pdsb;}

LPDI RECTSOUND3DBUFFER* Get 3DBuf f er Addr ess(void) {return &m | pds3Db;}
LPKSPROPERTYSET* Get PropertySet Address(void) {return &m| pksps;}

BOOL Set Sour ceAl | ( LPEAXBUFFERPROPERTI ES | pDat a) ;

40



BOOL Set Sour ceDirect (LONG | Val ue) ;

BOOL Set Sour ceDi rect HF(LONG | Val ue) ;

BOOL Set Sour ceRoonm{ LONG | Val ue);

BOOL Set Sour ceRoonHF( LONG | Val ue) ;

BOOL Set Sour ceRol | of f (fl oat fVal ue);

BOOL Set Sour ceCut si de( LONG | Val ue) ;

BOOL Set Sour ceAbsor ption(float fVal ue);
BOOL Set Sour ceCbstructi on(LONG | Val ue);
BOOL Set Sour ceCbstructi onLF(fl oat fVal ue);
BOOL Set Sour ceCccl usi on( LONG | Val ue) ;

BOOL Set Sour ceCccl usi onLF(fl oat fVal ue);
BOOL Set Sour ceCccl usi onRoon{ fl oat fVal ue);
BOOL Set Sour ceAf fect Di rect HF(BOOL bVal ue) ;
BOOL Set Sour ceAf f ect Roon{ BOOL bVal ue);
BOOL Set Sour ceAf f ect RoonHF( BOOL bVal ue) ;
BOOL Set Sour ceFl ags( DWORD dwval ue) ;

BOOL Set PositionX(float fValue);

BOOL Set PositionY(float fValue);

BOOL Set Positionz(float fValue);

BOOL Set ConeOri entationX(float fValue);
BOOL Set ConeOrientationY(float fValue);
BOOL Set ConeOri entationZ(float fValue);
BOOL Set Conel nsi deAngl e( DWORD dwVal ue) ;
BOOL Set ConeQut si deAngl e( DWORD dwVal ue) ;
BOOL Set ConeCut si deVol une( DWORD dwVal ue) ;
BOOL Set M nDi st ance(fl oat fVal ue);

BOOL Set MaxDi st ance(fl oat fVal ue);

/1 Functions found in Rendering.lib (or the debug version DeRendering.lib).

BOOL | nitRenderi ng(HWND hwnd, int i MaxWdth, int i MaxHeight);

voi d Rel easeRenderi ng(void);

voi d Render Refl ecti onsGraph(HWND hwnd, int iWdth, int iHeight, LPEAXLI STENERPROPERTI ES
| peax! p);

void RenderReverbG aph(HWD hwnd, int iWdth, int iHeight, LPEAXLI STENERPROPERTI ES
| peax! p);

#endi f

/************************ SOUnd Cpp ***********************/

#i ncl ude "EAXPanel . h"

/*

*/

Sound: : Sound()

{

m | pdsb = NULL;
m | pds3Db = NULL;

41



m | pksps = NULL;
m bPI ayi ng = FALSE;
}

/*
*/
Sound: : ~Sound()

{
Rel easeAl | ();

}

/*

Routine to rel ease any aquired interfaces for this object.

*/
voi d Sound: : Rel easeAl | (voi d)
{

if ( mlpksps !'= NULL )

{

m | pksps- >Rel ease();
m | pksps = NULL;
}

if ( mlpds3Db !'= NULL )
{
m_| pds3Db- >Rel ease() ;
m | pds3Db = NULL;
}
if ( mlpdsb !'= NULL )
{
m_| pdsb- >Rel ease();
m | pdsb = NULL;
}
}

/*

Routine to play the current buffer in | oop node.

*/

42



BOOL Sound: : Pl ayLooped( voi d)

{
if ( mlpdsb !'= NULL && !m bPlaying )
{
if ( mlpdsb->Play(0, 0, DSBPLAY_LOOPING == DS K )
m bPl ayi ng = TRUE;
}

return mbPl ayi ng;

}

/*

Routine to stop the playing buffer.

*/
BOOL Sound: : St op(voi d)
{
if ( mlpdsb !'= NULL && m bPl aying )
{
if ( mlpdsbhb->Stop() == DS K )
{
m | pdsb- >Set Curr ent Posi ti on(0);
m bPl ayi ng = FALSE;
}
}

return mbPl ayi ng;

}

/*

Routine used to toggle the current playing state of the buffer.
*/
BOOL Sound: : Toggl ePl ay(voi d)

{
if ( IsPlaying() )
{
Stop();
return mbPl ayi ng;
}
el se
{

Pl ayLooped();
return mbPl ayi ng;



}

/*
Al of the following routines are sinple wappers to either setting or getting EAX buffer
properties.

*/

BOOL Sound: : Set Sour ceAl | ( LPEAXBUFFERPROPERTI ES | pDat a)

{
return SUCCEEDED( m | pksps- >Set ( DSPROPSETI D_EAX_ Buf f er Properti es,
DSPROPERTY_EAXBUFFER_ALLPARANVETERS, NULL, 0, |pData, sizeof ( EAXBUFFERPROPERTIES)));

}

BOOL Sound: : Set Sour ceDi rect (LONG | Val ue)

{
return SUCCEEDED( m | pksps- >Set ( DSPROPSETI D_EAX Buf f er Properti es,
DSPROPERTY_EAXBUFFER DI RECT, NULL, 0, &l Value, sizeof (LONG)));
}

BOOL Sound: : Set Sour ceDi rect HF( LONG | Val ue)

{
return SUCCEEDED( m | pksps- >Set ( DSPROPSETI D_EAX_Buf f er Properti es,
DSPROPERTY_EAXBUFFER DI RECTHF, NULL, 0, &l Val ue, sizeof (LONG)));
}

BOOL Sound: : Set Sour ceRoon{ LONG | Val ue)

{
return SUCCEEDED( m | pksps- >Set ( DSPROPSETI D_EAX Buf f er Properti es,
DSPROPERTY_EAXBUFFER_ROOM NULL, 0, &l Val ue, sizeof (LONG)));
}

BOOL Sound: : Set Sour ceRoonmHF( LONG | Val ue)

{
return SUCCEEDED( m | pksps- >Set ( DSPROPSETI D_EAX Buf f er Properti es,
DSPROPERTY_EAXBUFFER ROOVHF, NULL, 0, &l Val ue, sizeof (LONG)));
}

BOOL Sound: : Set Sour ceRol | of f (fl oat f Val ue)
{



return SUCCEEDED( m | pksps- >Set ( DSPROPSETI D_EAX Buf f er Properti es,
DSPROPERTY_EAXBUFFER_ROOVROLLOFFFACTOR, NULL, 0, &fValue, sizeof(float)));

}

BOOL Sound: : Set Sour ceQut si de( LONG | Val ue)

{
return SUCCEEDED( m | pksps- >Set ( DSPROPSETI D_EAX_ Buf f er Properti es,
DSPROPERTY_EAXBUFFER_QUTSI DEVOLUMEHF, NULL, 0, &l Val ue, sizeof (LONG)));
}

BOOL Sound: : Set Sour ceAbsor ption(float fVal ue)
{

return SUCCEEDED( m | pksps- >Set ( DSPROPSETI D_EAX Buf f er Properti es,
DSPROPERTY_EAXBUFFER Al RABSORPTI ONFACTOR, NULL, 0, &fValue, sizeof(float)));

}

BOOL Sound: : Set Sour ceFl ags( DWORD dwVal ue)

{
return SUCCEEDED( m | pksps- >Set ( DSPROPSETI D_EAX_ Buf f er Properti es,
DSPROPERTY_EAXBUFFER_FLAGS, NULL, 0, &dwval ue, sizeof (DWORD)));
}

BOOL Sound: : Set Sour ceQostructi on(LONG | Val ue)

{
return SUCCEEDED( m | pksps- >Set ( DSPROPSETI D_EAX Buf f er Properti es,
DSPROPERTY_EAXBUFFER_OBSTRUCTI ON, NULL, 0, &l Val ue, sizeof (LONG)));
}

BOOL Sound: : Set Sour ceCbstructi onLF(fl oat fVal ue)
{

return SUCCEEDED( m | pksps- >Set ( DSPROPSETI D_EAX_ Buf f er Properti es,
DSPROPERTY_EAXBUFFER_OBSTRUCTI ONLFRATI O, NULL, 0, &fVal ue, sizeof(float)));

}

BOOL Sound: : Set Sour ceQccl usi on( LONG | Val ue)

{
return SUCCEEDED( m | pksps- >Set ( DSPROPSETI D_EAX Buf f er Properti es,
DSPROPERTY_EAXBUFFER_OCCLUSI ON, NULL, 0, &l Value, sizeof (LONG));
}

BOOL Sound: : Set Sour ceCccl usi onLF(fl oat fVal ue)
{

return SUCCEEDED( m | pksps- >Set ( DSPROPSETI D_EAX_Buf f er Properti es,
DSPROPERTY_EAXBUFFER _OCCLUSI ONLFRATI O, NULL, 0, &fVal ue, sizeof(float)));

45



BOOL Sound: : Set Sour ceCccl usi onRoon{fl oat fVal ue)
{
return SUCCEEDED( m | pksps- >Set ( DSPROPSETI D_EAX_Buf f er Properti es,
DSPROPERTY_EAXBUFFER_OCCLUSI ONROOVRATI O, NULL, 0, &fVal ue, sizeof(float)));
}

BOOL Sound: : Set Posi ti onX(float fVal ue)
{

D3DVECTCR vec;

if ( m.l| pds3Db->Get Position(&ec) !'= DS OK ) return FALSE;

return SUCCEEDED( m | pds3Db- >Set Posi ti on(fVal ue, vec.y, vec.z, DS3D | MVEDI ATE)) ;
}

BOOL Sound: : Set Posi tionY(float fValue)
{

D3DVECTCR vec;

if ( m.l| pds3Db->Get Position(&ec) != DS OK ) return FALSE;

return SUCCEEDED( m | pds3Db- >Set Posi ti on(vec. x, fValue, vec.z, DS3D_| MVEDI ATE));
}

BOOL Sound: : Set Posi tionZ(float fVal ue)
{

D3DVECTCR vec;

if ( ml| pds3Db->CGet Position(&ec) != DS OK ) return FALSE;

return SUCCEEDED( m | pds3Db- >Set Posi ti on(vec. x, vec.y, fValue, DS3D_| MVEDI ATE));
}

BOOL Sound: : Set ConeOri entationX(float fValue)
{
D3DVECTOR vec;
if ( mlpds3Db->Cet ConeOrientation(&ec) !'= DS OK) return FALSE;
return SUCCEEDED( m | pds3Db- >Set ConeOri ent ati on(f Val ue, vec.y, vec.z, DS3D_| MVEDI ATE));

}

BOOL Sound: : Set ConeOri entationY(float fValue)
{
D3DVECTOR vec;
if ( mlpds3Db->Cet ConeOrientation(&ec) !'= DS OK) return FALSE;
return SUCCEEDED( m | pds3Db- >Set ConeOri ent ati on(vec. x, fValue, vec.z, DS3D_| MVEDI ATE)) ;

46



BOOL Sound: : Set ConeOri entationZ(float fVal ue)
{

D3DVECTCR vec;

if ( ml| pds3Db->Get ConeOrientation(&ec) !'= DS OK ) return FALSE;

return SUCCEEDED( m | pds3Db- >Set ConeOri ent ation(vec.x, vec.y, fValue, DS3D | MVEDI ATE));
}

BOOL Sound: : Set Conel nsi deAngl e( DAWORD dwVal ue)
{
DWORD dwi n, dwCut ;
if ( m.l| pds3Db->Get ConeAngl es(&Iwi n, &wQut) != DS OK ) return FALSE;
return SUCCEEDED( m | pds3Db- >Set ConeAngl es(dwval ue, dwQut, DS3D_| MVEDI ATE)) ;
}

BOOL Sound: : Set ConeCut si deAngl e( DWORD dwval ue)
{
DWORD dwi n, dwCut ;
if ( m.l| pds3Db->Get ConeAngl es(&Iwi n, &wQut) != DS OK ) return FALSE;
return SUCCEEDED( m | pds3Db- >Set ConeAngl es(dwi n, dwVal ue, DS3D_| MVEDI ATE) ) ;
}

BOOL Sound: : Set ConeQut si deVol une( DWORD dwVal ue)
{

return SUCCEEDED( m | pds3Db- >Set ConeCQut si deVol ume( dwval ue, DS3D_| MVEDI ATE) ) ;
}

BOOL Sound: : Set Sour ceAf f ect Di r ect HF(BOOL bVal ue)
{
DWORD dwRecei ved, dwFl ags;
if ( FAILED(m| pksps->Get (DSPROPSETI D_EAX BufferProperties, DSPROPERTY_EAXBUFFER FLAGS,
NULL, 0, &dwFl ags, sizeof (DWORD), &dwReceived)))
return FALSE;

dwFl ags &= (OxFFFFFFFF ~ EAXBUFFERFLAGS_DI RECTHFAUTO) ;
if ( bvalue ) dwFl ags | = EAXBUFFERFLAGS DI RECTHFAUTO,

return SUCCEEDED( m | pksps- >Set ( DSPROPSETI D_EAX_Buf f er Properti es,
DSPROPERTY_EAXBUFFER_FLAGS, NULL, 0, &dwFl ags, sizeof (DWORD)));

}

BOOL Sound: : Set Sour ceAf f ect Roon{ BOOL bVal ue)

{
DWORD dwRecei ved, dwFl ags;

47



if ( FAILED(m| pksps->Get (DSPROPSETI D_EAX BufferProperties, DSPROPERTY_EAXBUFFER FLAGS,
NULL, O, &dwFl ags, sizeof (DWORD), &dwReceived)))
return FALSE;

dwFl ags &= (OXFFFFFFFF A EAXBUFFERFLAGS_ROOMAUTO) ;
if ( bvalue ) dwFlags | = EAXBUFFERFLAGS ROOVAUTO,

return SUCCEEDED( m | pksps- >Set ( DSPROPSETI D_EAX_ Buf f er Properti es,
DSPROPERTY_EAXBUFFER_FLAGS, NULL, 0, &dwFl ags, sizeof (DWORD)));
}

BOOL Sound: : Set Sour ceAf f ect RoonHF( BOOL bVal ue)

{
DWORD dwRecei ved, dwFl ags;
if ( FAILED(m| pksps->Get ( DSPROPSETI D _EAX Buf ferProperties, DSPROPERTY_EAXBUFFER FLAGS,
NULL, O, &dwFl ags, sizeof (DWORD), &dwReceived)))
return FALSE;

dwFl ags &= (OXFFFFFFFF A EAXBUFFERFLAGS_ROOVHFAUTO) ;
if ( bValue ) dwFl ags | = EAXBUFFERFLAGS ROONVHFAUTO,

return SUCCEEDED( m | pksps- >Set ( DSPROPSETI D_EAX Buf f er Properti es,
DSPROPERTY_EAXBUFFER FLAGS, NULL, 0, &dwFl ags, sizeof (DWORD)));
}

BOOL Sound: : Set M nDi st ance(fl oat fVal ue)

{
return SUCCEEDED( m | pds3Db- >Set M nDi st ance(f Val ue, DS3D_| MVEDI ATE) ) ;

}

BOOL Sound: : Set MaxDi st ance(fl oat fVal ue)

{
return SUCCEEDED( m | pds3Db- >Set MaxDi st ance(f Val ue, DS3D_| MVEDI ATE) ) ;

}

OpenAL

All the function calls that start with ‘gl’ is OpenGL calls. The glut...() calls are for the
platform independent window handling as mentioned earlier. Through this example one can

see how similar OpenGL and OpenAL is.

static void display( void );
static void keyboard( unsigned char key, int x, int y);

static void reshape( int w, int h);



static void init( void );

static ALuint left_sid = 0;

c ALuint right_sid = 0;

static ALfloat left_pos[3] ={ -4.0, 0.0, 4.0 };
¢ ALfloat right_pos[3] ={ 4.0, 0.0, 4.0 };

stati

stati

static void display( void )
{
static time_t then = 0;
static ALbool ean | eft = AL_FALSE;

time_t now

gl Oear( GL_COLOR BUFFER BIT | G._DEPTH BUFFER BIT );
gl Matri xMode( G._MODELVI EW) ;
gl Loadl dentity( );

gl uLookAt ( 0.0, 4.0, 16.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0 );

/* Inverse, because we invert below */
if( left == AL_FALSE ) {

gl Color3f( 1.0, 0.0, 0.0 );
} else {

gl Color3f( 1.0, 1.0, 1.0 );

/* Draw radiation cones. */

gl PushMatrix( );

gl Transl atef ( |l eft_pos[0], left_pos[1l], left_pos[2] );
gl Rotatef( 180, 0.0, 1.0, 0.0 );

glutWreCone( 1.0, 2.0, 20, 20 );

gl PopMatrix( );

if( left == AL_FALSE ) {

gl Color3f( 1.0, 1.0, 1.0 );
} else {

gl Color3f( 1.0, 0.0, 0.0 );

gl PushMatrix( );

gl Transl atef ( right_pos[0], right_pos[1], right_pos[2] );
gl Rotatef( 180, 0.0, 1.0, 0.0 );

glutWreCone( 1.0, 2.0, 20, 20 );

gl PopMatrix( );

/* Let's draw sonme text. */

gl Matri xMode( GL_PRQIECTION );

gl PushMatrix( );

gl Loadl dentity( );

glOtho( O, 640, 0, 480, -1.0, 1.0 );

49



gl Matri xMode( GL_MODELVI EW) ;

gl Loadl dentity( );

gl Transl atef ( 10.0, 10.0, 0.0 );
gl Scalef( 0.2, 0.2, 0.2);

gl Color3f( 1.0, 0.0, 0.0 );

gl ut St rokeCharacter( GLUT_STROKE_ROVAN, 'R );
gl ut St rokeCharacter( GLUT_STROKE_ROMAN, 'e' );
gl ut St rokeCharacter( GLUT_STROKE_ROVAN, 'd' );
gl Color3f( 1.0, 1.0, 1.0 );

gl ut St rokeChar act er (  GLUT_STROKE_ROVAN,

gl ut St rokeCharacter ( GLUT_STROKE_ROMAN, ‘i’
gl ut St rokeCharacter ( GLUT_STROKE_ROMAN, 's'
gl ut St rokeCharacter ( GLUT_STROKE_ROMAN, ‘' '
gl ut St rokeChar act er (  GLUT_STROKE_ROMAN, ' A'
gl ut St rokeCharacter ( GLUT_STROKE_ROMAN, ' c'
gl ut St rokeCharacter ( GLUT_STROKE_ROMVAN, 't
gl ut St rokeCharacter ( GLUT_STROKE_ROMAN, ‘i’
gl ut St rokeCharacter ( GLUT_STROKE_ROMAN, ' V'
gl ut St r okeChar act er (  GLUT_STROKE_ROMAN, ‘e’

gl Matri xMode( G._PRQIECTI ON );
gl PopMatrix( );

now = tinme( NULL );

/* Switch between |left and right boomevery two seconds. */
if( now- then > 1) {

then = now,

if( left == AL_TRUE ) {
al SourcePlay( left_sid);
left = AL_FALSE;

} else {
al SourcePl ay( right_sid );
left = AL_TRUE;

gl ut SwapBuffers( );
gl ut Post Redi spl ay( );

static void keyboard( unsigned char key, int x, int y)

{

switch( key ) {
case 27:

exit( 0);

br eak;
defaul t:

50



br eak;

static void reshape( int w, int h)

{

gl Viewport( 0, 0, w, h);

gl Matri xMode( G._PRQIECTION );

gl Loadl dentity( );

gl uPerspective( 60.0f, (float) w/ (float) h, 0.1f, 1024.0f );
}

static void init( void)
{
ALfl oat zeroes[] = { 0.0f, 0.0f, 0.0f };
ALfloat front[] = { 0.0f, 0.0f, -1.0f, 0.0f, 1.0f, 0.0f };
ALfl oat back[] = { O0.0f, 0.0f, 1.0f, 0.0f, 1.0f, 0.0f };
ALui nt sources[2];
ALui nt boom
voi d* wave;
ALsi zei si ze;
ALsi zei bits;
ALsi zei freq;
ALsi zei fornat;

glCearColor( 0.0, 0.0, 0.0, 0.0);
gl ShadeModel ( GL_SMOOTH ) ;

al Li stenerfv( AL_PCSI TI ON, zeroes );
al Li stenerfv( AL_VELOCITY, zeroes );
al Li stenerfv( AL_ORI ENTATION, front );

al GetError();

al GenBuffers( 1, &bvoom);

if(alGetError() !'= AL_NO ERROR) {

fprintf( stderr, "aldeno: couldn't generate sanples\n" );
exit( 1);

}

al ut LoadWAV( "boom wav", &wave, &format, &size, &its, &req );
al Buf ferData( boom format, wave, size, freq );

al GetError();

al GenSour ces( 2, sources );

if(alGetError() !'= AL_NO ERROR) {

fprintf( stderr, "aldeno: couldn't generate sources\n" );
exit( 1);

}

Y



left_sid = sources[0];
right_sid = sources[1];

al Sourcefv( left_sid, AL_PCSITION, left_pos );
al Sourcefv( left_sid, AL_VELOCITY, zeroes );
al Sourcefv( left_sid, AL_ORIENTATIQN, back );
al Sourcei ( left_sid, AL_BUFFER, boom);

al Sourcefv( right_sid, AL_PCSITION, right_pos );
al Sourcefv( right_sid, AL_VELOCITY, zeroes );

al Sourcefv( right_sid, AL_ORI ENTATION, back );
al Sourcei ( right_sid, AL_BUFFER, boom);

int main( int argc, char* argv[] )

/* Initialize GUT. */
glutlnit( &urgc, argv );

glutlnitD spl ayMbde( GLUT_DOUBLE | GLUT_RGB | GLUT_DEPTH );
glutlnitWndowSi ze( 640, 480 );

gl utlnitWndowPosition( 0, 0 );

gl ut Creat eW ndow( argv[O0] );

gl ut ReshapeFunc( reshape );

gl ut D spl ayFunc( display );

gl ut Keyboar dFunc( keyboard );

/* Initialize ALUT. */
alutlnit( &irgc, argv );

init();

gl ut Mai nLoop( );

return O;

52



