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Abstract

Properties and behavior of cellular automata are considered. Cellular automata can simply

be described as lattices of cells, where the cells can be in a finite number of states. By

using simple rules the states of the cells are updated at discrete time steps. The evolution

of cellular automata can be used for computations. Some cellular automata display uni-

versality meaning that there is no limit to the sophistication of the computations they can

perform.
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1 Introduction

The purpose of this treatise is to give a short account of cellular automata. Cellular

automata are very simple constructions with their lattices of cells which can be in a finite

number of states. By using simple rules the states of the cells are updated in parallel at

discrete time steps. Despite their simplicity they do not seem to have appeared before

about the 1950s. In Section 2 a brief historical background and a formal definition of

cellular automata are given.

The writing of this treatise has been greatly inspired by Stephen Wolfram’s book ”A

New Kind of Science” [1], in which cellular automata play a vital role. Cellular automata

posess a large number of various kinds of properties. In Sections 2, 4, and 5 some of the

properties are discussed. The properties discussed in Section 4 are such that also appear

in the physical world, such as randomness, entropy, and conservation. Cellular automata

provide good examples which is illustrated in that section.

Cellular automata are sometimes referred to as simple programs and in Section 3 other

simple programs like Turing machines [2] are discussed. Cellular automata can be con-

sidered as constructions in the field of computer science and in Section 5 some properties

related to this field, like universality, are discussed.

Finally, in Section 6 a short summary of the present treatise will be given together with

implications for further studies in this field.

2 Cellular Automata

In this section the definition of cellular automata will be given together with a discussion

of some of their properties and a brief historical background.
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2.1 Historical background

Despite their simplicity, cellular automata are not old constructions. It seems that general

cellular automata have not appeared before about the 1950s. Of course, a variety of

precursers can be identified. Operations on sequences of digits in doing arithmetic has been

used since antiquity. Finite difference approximations to differential equations emerged in

the early 1900s. And Turing machines [2] invented in 1936 were based on operations on

sequences of discrete elements.

How cellular automata were introduced and how they got their name was through the

work by John von Neumann in trying to develop an abstract model of self-reproduction

in biology. He constructed a cellular automaton with a two-dimensional lattice, 29 states

for each cell, and complicated rules. To give a mathematical proof of the possibility of

self-reproduction, von Neumann outlined the construction of a 200 000 cell configuration

which would reproduce itself. Seeing the complexity of actual biological organisms, von

Neumann appears to have believed that a high level of complexity would be necessary

for a system to exhibit sophisticated capabilities such as self-reproduction. In the 1960s

constructions were found for simpler cellular automata capable of self-reproduction.

By the end of the 1950s it was realized that cellular automata could be viewed as

parallel computers [2] and in the 1960s a sequence of theorems were proved about their

formal computational capabilities (see further Section 5).

Without going into any details, it can be mentioned that cellular automata have en-

tered a vast number of areas dealing with, for example, electronic devices, special-purpose

computers, image processing, electronic miniaturization, cryptography (see Section 5.1),

and neural networks. Despite all these different directions, research on systems equivalent

to cellular automata had largely come to an end by the late 1970s. Ironically this happened

around the time when computers were first becoming widely available for exploratory work.

But the field of cellular automata got a revival in 1981 when Stephen Wolfram started his

work in it, by defining the field in a new way.
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2.2 Definition

Several informal definitions of cellular automata can be found and the following is one such

example [3] which gives a fair description of what a cellular automaton is. As the name

suggests a cellular automaton is a discrete model with interactions that are uniform in

structure. Cellular automata are characterized by the following fundamental properties:

• They consist of a regular discrete lattice of cells.

• The evolution takes place in discrete time steps.

• Each cell is characterized by a state taken from a finite set of states.

• Each cell evolves according to the same rule which depends only on the state of the

cell and a finite number of neighboring cells.

• The neighborhood of nearby cells is defined in the same way for each cell, i.e., the

neighborhood relation is local and uniform.

Along with this informal definition a formal definition [3] will be given:

Definition 2.1 Let

• L be a regular lattice (the elements of L are called cells),

• S be a finite set of states,

• N be a finite set (of size n = |N |) of neighborhood indices such that ∀c ∈ N , ∀r ∈ L:

r + c ∈ L,

• f : Sn → S be a transition function.

Then the 4-tuple (L,S,N,f) is called a cellular automaton.
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In practical applications the lattice is usually restricted to a finite size and then one has

to consider what the neighborhood indices should be close to the boundary of the lattice.

This will be exemplified in the next subsection. In the meantime the following sets will be

introduced:

• ∀r ∈ L, N(r) is a finite set (of size n = |N |) of neighborhood indices of r such that

∀c ∈ N(r): c ∈ L.

A configuration Ct : L → S is a function that associates a state with each cell of the

lattice. The effect of the transition function f is to change the configuration Ct into a new

configuration Ct+1 according to

Ct+1(r) = f(Ct(i1)× · · · × Ct(in)), (2.1)

where i1, . . . , in ∈ N(r). Observe that the order of ij in the expression above is of vital

importance for the outcome.

2.3 Elementary cellular automata

In this subsection a set of simple cellular automata, in the following called elementary cel-

lular automata, will be defined. The lattice L is a one-dimensional finite lattice illustrated

in the following way:

L :

The finite set of states S = {0, 1} = {white, black}. That is each cell in L can be in

either of two states, namely 0 or 1. In the pictures below white and black will be used for

denoting the states.

The finite set of neighborhood indices will be of size n = 3 and for most cells N =

{−1, 0, 1}. The boundary cells are special cases and here the last cell, the first cell, and

the second cell are considered neighborhood indices of the first cell. Similarly, the next
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last cell, the last cell, and the first cell are considered neighborhood indices of the last cell.

What the procedure above does is to connect the first and last cells of the lattice, so that

instead of a finite string of cells a circular lattice is obtained.

The final item to discuss is the transition function f . Since the size of the set of

neighborhood indices is n = 3 and the size of the set of states S is 2 then the size of the

definition set Sn is 23 = 8. The definition set of the transition function can be illustrated

in the following way:

Sn :

Since the value set of the transition function f is S, the size of the value set is 2 and therefore

the number of transition functions that can be defined for the given definition and value

sets is 28 = 256. So for the given L, S and N 256 elementary cellular automata can be

defined and the transition functions for each of these are denoted fi, where i = 0, . . . , 255.

The transition functions can be illustrated in the following way:

Sn :

f0 :
0 0 0 0 0 0 0 0 = 0

f1 :
0 0 0 0 0 0 0 1 = 1

f2 :
0 0 0 0 0 0 1 0 = 2

...

f90 :
0 1 0 1 1 0 1 0 = 90

...

f254 :
1 1 1 1 1 1 1 0 = 254

f255 :
1 1 1 1 1 1 1 1 = 255
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From the picture above it is hopefully clear how the 256 elementary cellular automata

are defined. The cellular automaton with transition function fi will in the following be

denoted i, i.e., the elementary cellular automaton with rule number i.

The workings of a cellular automaton is best illustrated by an example. Let L be a

lattice of size 2T +1, where T is an integer larger or equal to zero. For starting the evolution

of the cellular automaton an initial configuration C0 : L → S has to be chosen. Let us

make the middle cell black and all other cells white. Other choices will be demonstrated

in Section 2.4. Given the initial configuration the configurations Ct, t > 0, can be easily

calculated using Equation 2.1. Let us demonstrate the evolution for the elementary cellular

automaton with rule number 90. The transition function for this cellular automaton is given

in the picture above. In the pictures below the value T = 10 has been selected. The initial

configuration can be illustrated in the following way:

C0 :

For the next configuration C1 the transition function f90 has to be considered. Since most

cells are white, most cells will remain white according to this transition function. The

middle black cell has two white neighbors and according to the transition function the

middle cell will turn white. The cell to the left of the middle cell is white with a white

neighbor to the left and a black neighbor to the right. This cell will turn black according

to the transition function. Similarly, the cell to the right of the middle cell is white with a

black neighbor to the left and a white neighbor to the right. This cell will also turn black.

The result is demonstrated in the following picture:

C1 :

This process can be continued forever and below a few more configurations are given:

C2 :

C3 :
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The evolution (C0, C1, . . .) of an elementary cellular automaton can be summarized as in

Figure 2.1. Here the top row is the initial configuration.

Figure 2.1: Elementary cellular automaton with rule number 90.

The LATEX-code for the picture in Figure 2.1 was generated using the C++-code in

Appendix A. Here T + 1, i.e., the number of rows (configurations) that should be printed,

is given as input. The size of the lattice L is then calculated by the program as 2T + 1.

Further, the rule number of the cellular automaton is also given as input, as well as the

size (in tenths of millimeters) of the cells. In addition, one can choose whether a mesh

should be printed or not. In Appendix B all elementary cellular automata with T = 25

and initial configuration consisting of a single black cell in the middle are collected. In

Section 2.4 other initial configurations will be discussed.

The elementary cellular automata in Appendix B will now be discussed. After a brief

look in Appendix B it will be realized that the cellular automata can be divided into

three groups. These can be denoted uniform/repetitive, nested, and random. Most of the

elementary cellular automata fall into the first category, namely 219 out of 256. In the

simplest cases in this category all cells end up having the same color after just one step.

Thus, for example, in cellular automata 0, 8, and 72 all cells become white, while in 159,

183, and 255 all cells become black. In other cases, as in 7, 23, and 127, all cells alternate

between black and white on successive steps. In this first category there are also some
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more advanced behavior when a pattern consisting of one or several cells persists, either

stationary as in 4, 29, and 91, or non-stationary as in 3, 6 and 103 where the pattern is

moving either left or right. In most cases the patterns remain of a fixed size, while in other

cases, like in 50 and 109, the patterns grow forever. Owing to the way the elementary

cellular automata are defined the maximum speed of moving patterns is one cell per step.

Likewise, the maximum growth of a pattern is one cell per step to the left and one cell per

step to the right. This is the reason why configurations, Ct, with t > T are not included

in Appendix B. The patterns will not pass the borders of the lattice or grow beyond the

borders.

In the second category, consisting of nested (fractal) structures, there are in all 24

elementary cellular automata. Since they are relatively few in number they will be listed

here: 18, 22, 26, 60, 82, 90, 102, 105, 126, 129, 146, 150, 153, 154, 161, 165, 167, 169, 181,

182, 195, 210, 218, and 225. Most of them are easily identified as nested, but 105, 169,

and 225 are somewhat more difficult to classify. By increasing the number of steps and the

size of the lattice, as in Figure 2.2, the nested structure will appear more clearly. Since

169 and 225 are mirror images of each other only 169 is shown in Figure 2.2.

Figure 2.2: Elementary cellular automata with rule numbers 105 and 169.

In the third and last category, consisting of random structures, there are in total 13

elementary cellular automata. Wolfram claims there should be 14, but after inspecting

Appendix B several times only 13 could be identified. Also in this category there are few

members and they will be listed here: 30, 45, 73, 75, 86, 89, 101, 110, 124, 135, 137, 149,

and 193. There are four basic forms and they are illustrated in Figures 2.3 and 2.4.
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Figure 2.3: Elementary cellular automata with rule numbers 30, 45, and 73.

Figure 2.4: Elementary cellular automaton with rule number 110.

The four basic forms in the third category appear because of two reasons. Firstly,

the initial configuration is symmetric, with respect to left and right, and therefore the

non-symmetric elementary cellular automata will appear in pairs, being the mirror images

of each other. By studying the definition of the transition functions for the elementary

cellular automata it is realized that by interchanging the 2nd and 5th and the 4th and 7th

components, respectively, in the binary representation of the rule numbers one will obtain a

mirror image of a cellular automaton. This applies to all 256 elementary cellular automata.

9



Table 2.1: The elementary cellular automata obtained by interchange of left and right (l/r)
and/or interchange of black and white (b/w) for the cellular automata in the random and
nested categories.

Category Rule number l/r b/w l/r, b/w
30 86 135 149

Random 45 101 75 89
73 73 109 109

110 124 137 193
18 18 183 183
22 22 151 151
26 82 167 181
60 102 195 153
90 90 165 165

105 105 105 105
Nested 126 126 129 129

146 146 182 182
150 150 150 150
154 210 166 180
161 161 122 122
169 225 106 120
218 218 164 164

For example, the binary form of 30 is 00011110. By interchanging the components as

described above one obtains 01010110, which in decimal notation is 86. As can be seen

in Appendix B the elementary cellular automata with rule numbers 30 and 86 indeed are

the mirror images of each other. Likewise, 45 and 101, and 110 and 124, respectively, are

the mirror images of each other. The cellular automaton with rule number 73 is already

symmetric. The mirror-image pairs of the random and nested elementary cellular automata

are collected in Table 2.1.

Secondly, by interchanging black and white it will also be possible, in certain cases,

to group the cellular automata in pairs. The reason it is not always possible is that the

initial configuration will remain the same, i.e., no interchange of black and white in this

configuration. By reading the binary representation of the rule number of a transition

function from right to left and by interchanging 0 and 1 will produce the desired result.

For example, the binary form of 30 is 00011110. The procedure described above will

give the result 10000111, which in decimal notation is 135. By inspecting Appendix B

the similarity between the elementary cellular automata with rule numbers 30 and 135
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can be confirmed. Likewise, 86 and 149, 45 and 75, 101 and 89, 110 and 137, and 124

and 193, respectively, are similar. 73 and 109 should also be similar, however, the given

initial configuration makes 109 repetitive instead. The black-white-interchange pairs of the

random and nested elementary cellular automata are collected in Table 2.1.

Another issue that has to be discussed is the division of the third, random, category into

two subcategories. Three of the four basic forms form one subcategory (see Figure 2.3)

and the remaining basic form makes up the other subcategory (see Figure 2.4). The

reason for this division can be seen by studying Figures 2.3 and 2.4. The elementary

cellular automata in Figure 2.3 contain parts that are regular and distinctive parts that

are random. The cellular automaton in Figure 2.4, on the other hand, contains localized

random structures on a regular background. The difference between the two subcategories

would have been more clear if more configurations had been printed in Figure 2.4. The

LATEX-code for producing this manuscript does not allow that, however, in Ref. [1] (pages

33–38) the elementary cellular automaton in Figure 2.4 with 3200 configurations is printed.

Figure 2.6, in the next subsection, also gives a clearer illustration of the behavior of this

cellular automaton.

2.4 Random initial conditions

The investigation of the elementary cellular automata will now continue by studying other

initial configurations than the simple one, consisting of a single black cell, that was dis-

cussed in the previous subsection. Here random initial configurations, in which every cell is

chosen to be black or white at random, will be investigated. The C++-code in Appendix A

is easily modified for dealing with random initial configurations. By changing the function

init array in Appendix A to

// Initializes an array A of size s with random values.

// Precondition: s > 0.

void init_array(bool * A, int s)

{
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int r;

srand(1);

for (int i = 0; i < s; i++) {

r = (int)((2.0 * rand()) / (RAND_MAX + 1.0));

A[i] = (bool)(r);

}

}

the modification is achieved. The library stdlib.h, which contains rand() and RAND MAX,

also has to be included. With random initial configurations the number of cells in the lattice

and the number of configurations printed are no longer related and this modification can

also easily be introduced into the program. In Appendix C all 256 elementary cellular

automata with the same random initial configuration are displayed.

With random initial configurations one might suspect that no order will occur. But

in fact, as is illustrated in Appendix C, many of the elementary cellular automata end up

producing behavior that is not at all random. In the most simple cases, like 0, 32, 168, and

251, the cellular automata quickly organize themselves to become either uniformly white

or uniformly black. 24 out of 256 elementary cellular automata display such a behavior.

These cellular automata will make up the first class (class 1) in Wolfram’s classification of

cellular automata.

A second class of structures consists of those cellular automata that end up in stable

states which involve a collection of definite structures that either remain fixed on successive

steps, as in 4, 72, 92, amd 219, or repeat periodically, as in 2, 23, 91, and 125. These

cellular automata belong to class 2 according to Wolfram’s terminology. Actually, almost

all elementary cellular automata not in class 1 and not included in Table 2.1 belong to

class 2. By inspecting Appendix C this can be confirmed easily, except in a couple of cases.

By using the fact that cellular automata with rules that are symmetric, with respect to

either left and right or black and white or both, belong to the same class, simplified the

confirmation in certain cases. For other cases, like 41 and 62, the periodicity appeared first
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after printing out some more configurations. Finally, only rule 54 and the related rule 147

(through interchange of black and white) remain as cases that neither seem to belong to

class 1 nor to class 2. In Figure 2.5 the elementary cellular automaton with rule number

54 is given with 150 cells, 300 configurations, and a random initial configuration.

Figure 2.5: Elementary cellular automaton with rule number 54.

The remaining elementary cellular automata to be discussed are those collected in

Table 2.1. Those on the same row are related and should show the same behavior. This is

indeed confirmed in Appendix C. First it is noticed that the cellular automata with rule

numbers 26, 154, and 218 and those related to them belong to class 2. The characteristics

of the remaining cellular automata in Table 2.1 are that they never seem to settle down.

This is quite clear in cases like 18, 30, 60, and 169. For them Wolfram introduces a new

class of uniformly random structures which he denotes class 3. The members of this class

display a behavior that appears in many respects completely random. But a certain degree

of organization is indicated by the triangles and other small structures that are dotted

around the pictures. Almost all cellular automata in Table 2.1, except those belonging

to class 2, belongs to class 3. However, there are some cellular automata that differ from

the rest. These are cases 73 and 110, and the cellular automata related to them. First

the cellular automaton with rule number 110 will be discussed. This cellular automaton
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is given in Figure 2.6 with a lattice of 150 cells, with 300 configurations, and with a

random initial configuration. This cellular automaton does not seem to belong to either

class 1, class 2, or class 3. The cellular automaton quickly organizes itself into a set of

definite localized structures on a uniform background. These structures do not remain

fixed but move around and interact with each other in complicated ways. For this cellular

automaton Wolfram introduces a new class, class 4, which contains structures that mix

order and randomness. In a sense the members of class 4 display the greatest complexity

since they neither stabilize completely nor exhibit uniform random behavior.

Figure 2.6: Elementary cellular automaton with rule number 110.

Wolfram originally discovered the four classes discussed previously in the early 1980’s by

looking at thousands of pictures similar to those on the last few pages and in Appendix C.

At first Wolfram based his classification purely on the general visual appearance of the

patterns he saw. But when studying more detailed properties of cellular automata he

found that most of these properties were closely correlated with the four classes.

But with almost any general classification scheme there are borderline cases which can

be assigned to different classes depending on the definition. And so it is with cellular

automata. In Figure 2.7 the elementary cellular automaton with rule number 73 is given

with a lattice of 150 cells, with 300 configurations, and with a random initial configuration.
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This cellular automaton displays a behavior that can either be classified as belonging to

class 2 (the stripes) or to class 3 (the random pattern between the stripes). Wolfram claims

that such rules are quite unusual, and that in most cases the behavior falls squarely into

one of the four classes previously described.

Figure 2.7: Elementary cellular automaton with rule number 73.

The analysis in this subsection is based on a visual investigation of the configurations

produced by the 256 elementary cellular automata using the same random initial condition.

Of course, no guarantees can be made that the analysis will remain the same using other

random initial conditions. In fact special initial conditions can make a cellular automaton

belonging to, for example, class 3 yield a typical class 2 behavior.

The discussion will now return to the elementary cellular automaton with rule number

54 (see Figure 2.5). This has not yet been classified and just by visually inspecting it it

appears to belong to class 4. In Section 2.3 a special initial condition (a single black cell)

was investigated and then the cellular automaton with rule number 54 displays a repetitive

behavior (see Appendix B) while the cellular automaton with rule number 110 displays a

class 4 behavior. See a further discussion of rule number 54 in the next subsection.
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2.5 Sensitivity to initial conditions

In the previous subsection four basic classes of elementary cellular automata were identified

by simply looking at the overall appearance of the patterns they produce. These four classes

have also other significant distinguishing features. Here the sensitivity to small changes in

the initial condition will be investigated.

In Figure 2.8 the effect of changing the state of a single cell in an initial random

configuration for typical cellular automata from each of the four classes is illustrated. The

LATEX-code for the pictures in Figure 2.8 are produced by a slight modification of the C++-

code in Appendix A. Two identical elementary cellular automata with identical random

initial configurations (except for the middle cell) are run in parallel. For each step the two

configurations generated are compared cell by cell. Cells with differing states in the two

configurations are made black and otherwise white.

rule 160 rule 108

rule 126 rule 110

Figure 2.8: The effect of changing the state of a single cell in the random initial conditions
for typical elementary cellular automata from each of the four classes. Black indicates all
the cells that change.

The results are rather different for each of the four classes. In class 1 changes die out.

The same final configuration is reached independent of the initial configuration. In class

2 changes may persist, but they remain localized in a small region of the lattice. In class

3, on the other hand, a change is typically spread at a uniform rate, and eventually it is
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affecting every part of the lattice. Finally, in class 4 changes also spread, but only in a

sporadic way. Figure 2.9 is a further illustration of this (with more cells and configurations

than in Figure 2.8).

Figure 2.9: Sensitivity of initial conditions for elementary cellular automaton with rule
number 110. The lattice consists of 300 cells and 300 configurations are printed.

What the pictures in Figures 2.8 and 2.9 reveal are basic differences in the way that

each class handles information. In class 1 information about initial conditions is rapidly

forgotten, while in class 2 some information about initial conditions is remained, but only in

localized parts of the lattice. In class 3 a long-range communication of information is shown

where a change made anywhere in the lattice usually will be communicated to all parts of

the lattice. In class 4, on the other hand, a long-range communication of information is

in principle possible but it will not always occur. Only if localized structures that move

across the lattice are affected by changes, the changes will be communicated to other parts

of the lattice.

The handling of information is something that seems to be a fundamental characteristic

of the elementary cellular automata in the various classes. In the previous subsection the

cellular automaton with rule number 73 was classified as being an intermediate of class 2

and 3. In Figure 2.10 its sensitivity to initial conditions is shown. The behavior is a typical
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class 2 behavior.

Figure 2.10: Sensitivity of initial conditions for the rule 73 elementary cellular automaton.
The lattice consists of 300 cells and 300 configurations are printed.

Another cellular automaton which was not properly classified in the previous subsection

was that with rule number 54. In Figure 2.11 its sensitivity to initial conditions is shown.

By comparing with Figure 2.9 it is clear that rule number 54 shows a typical class 4

behavior, at least concerning the sensitivity of initial conditions.

Figure 2.11: Sensitivity of initial conditions for the rule 54 elementary cellular automaton.
The lattice consists of 300 cells and 300 configurations are printed.
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2.6 Systems of limited size

So far the lattices considered have been of limited size. With a size of n cells there can be

only 2n different configurations if each cell can be in two possible states. This indicates

that all elementary cellular automata with all possible initial configurations eventually (at

most after 2n steps) will yield a configuration that has already appeared. After that the

steps will repeat. This makes all cellular automata with finite lattices repetitive.

The repetiveness is necessary to mention, but the practical consequences of it are neg-

ligible. This is due to the fact that, while the repetition period of cellular automata in

class 2 is roughly of O(n), the repetition period of cellular automata in class 3 is roughly

of O(2n). For n = 30 there are already around a billion of configurations. In the figures

in the previous subsections there have been even more cells and in those cases the num-

ber of configurations has greatly exceeded billions of configurations. So even though the

number of configurations is limited for a finite lattice, this number is so large that class

3 systems still can be considered random. The repetition period is so large that it is no

longer significant to talk about repetition.

2.7 Other cellular automata

In the previous subsections elementary cellular automata have been investigated in quite

some detail. These cellular automata are by most measures the simplest possible. But it

is possible also to look at rules that are more complicated, for example rules that involve

three states rather than two. The total number of possible rules of this kind turns out to

be immense—333
= 7.625.597.484.987 in all. Compare this number to 223

= 256 which is

the number of elementary cellular automata.

It is an impossible task to investigate all these cellular automata where each cell can

be in three possible states. Instead Wolfram has investigated the ”totalistic” cellular

automata where the number of states is the same but where the rule is set up so that the

19



new state of every cell is determined by the average of the previous states of the cell and its

immediate neighbors. There are in total 37 = 2187 possible totalistic cellular automata and

Wolfram has investigated them all. Although the rules of the totalistic cellular automata

are more complicated than the rules of the elementary cellular automata, the totalistic

cellular automata do not seem to have a fundamentally more complicated behavior. The

same basic themes, as repetition, nesting, uniform randomness, and localized structures,

occur. The conclusion seems to be that adding complexity to the underlying rules does not

ultimately lead to more complex overall behavior. So it seems, for all cellular automata,

that all the essential ingredients needed to produce even the most complex behavior already

exist in the rules of the elementary cellular automata.

Apart from increasing the number of states of each cell for producing more complicated

cellular automata one can increase the dimension of the lattice. Wolfram’s conclusion also

here is that the basic phenomenon of complexity does not seem to depend in any crucial

way on the dimensionality of the cellular automaton.

3 Simple Programs

Cellular automata represent a class of programs that are extremely simple (see Appendix A).

Yet they are able to produce a behavior that is diverse and often complex. In this section

other simple programs will be investigated and the question is, of course, if they also will

demonstrate a diverse and complex behavior. Or is this behavior something unique for

cellular automata.

3.1 Mobile automata

One basic feature of a cellular automaton is that the states of all cells in the lattice are

updated in parallel at every step in its evolution. To investigate the importance of this

feature in the overall behavior of a simple program another class of systems, which Wolfram
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denotes mobile automata, will be considered. Mobile automata are exactly like cellular

automata except that instead of updating all cells in each step, only one cell, called the

active cell, gets updated. In addition to the rules that apply to cellular automata, mobile

automata have rules for how the active cell should move from one step to the next.

Wolfram has investigated mobile automata with rules like the elementary cellular au-

tomata and where the active cell moves either left or right one cell at each step. The

behavior of these mobile automata is very simple and repetitive. By a slight modification

of the rules, allowing not only the state of the active cell to be updated at each step but

also the states of its immediate neighbors, also nested and random structures can be seen.

After studying generalized mobile automata, which allow more than one active cell

at a time, Wolfram came to the conclusion that complex behavior almost never occurs

except when a large number of cells is active at the same time. Thus, there seems to be

a direct correlation between overall activity and the likelihood of complex behavior. This

explains why complex behavior is so much more common in cellular automata than in

mobile automata.

3.2 Turing machines

Turing machines [2] are similar to mobile automata in that they also consist of a line

of cells, known as the ”tape”, and that they also have a single active cell, indicated by

the ”head”. But unlike mobile automata the head of a Turing machine can be in several

possible states. Another difference is that the rule for a Turing machine can not depend

on the states of any neighboring cells, but only on the state of the head and the state of

the active cell.

Turing machines are widely used in theoretical computer science, where examples with

a large number of possible states for both the head and the cells are constructed. But in

fact also ”simple” Turing machines, with just two possible states for both the head and the

cells, can be non-trivial. Both repetitive and nested behavior is seen to occur, but nothing
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more complicated. Increasing the number of states of the head to three does not change

the situation—at least not if all cells are in the same state initially. With four states of

the head, however, more complicated behavior is seen as patterns with seemingly random

features. By increasing the number of states of the head further does not introduce new

changes in the behavior, although apparent randomness becomes slightly more common.

Just as for mobile automata, it seems that there is a threshold for complex behavior for

a Turing machine (reached with four states of the head). And just as in cellular automata,

a further addition of comlexity to the rules does not yield more complex behavior.

3.3 Substitution systems

One common feature of cellular automata, mobile automata, and Turing machines is that

they, at the lowest level, consist of a fixed array of cells. Substitution systems, on the other

hand, are set up so that the number of cells can change. In Figure 3.1 an example of a

substitution system is given, illustrated in to ways. In the picture to the left of Figure 3.1

all cells have the same size while in the picture to the right, the total length of all cells at

each step has the same size.
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XXXXX

XXXXX
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Figure 3.1: Example of a substitution system, with two possible states of the cells (black
and white), illustrated in two ways.

In the picture to the right of Figure 3.1 the regularity of the pattern produced is

obvious. The pattern just consists of a collection of identical nested pieces. To get a more

complicated behavior the rule must depend not only of the state of a single cell, but also
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on the state of at least one of its neighbors.

Another feature of the substitution system in Figure 3.1 is that the total number of

cells never decreases from one step to the next. It is, however, also possible to construct

substitution systems where cells can disappear. If the rate of such disappearance is too

large, then almost any pattern will quickly die out. If there are too few disappearances,

on the other hand, then most patterns will grow very rapidly. In a small fraction of

rules the creation and destruction of elements are almost perfectly balanced. It turns out

that substitution systems with the same type of rules as discussed above, all those which

yield slow growth also seem to produce simple repetitive patterns. But as with mobile

automata and with Turing machines, allowing three or four states rather than two makes

more complicated behavior possible.

A substitution system works in parallel on all cells by replacing each cell by a new

sequence of cells. It is also possible to consider sequential substitution systems where the

array of cells is scanned from left to right, looking for a sequence of cells in a certain

arrangement of states and then to perform a replacement for the first such sequence that

is found. This setup is directly analogous to the search-and-replace function of a typical

text editor. Also sequential substitution systems produce behavior of great complexity.

3.4 Register machines

The various kinds of systems discussed so far can be implemented on practical computers.

However, none of them act like typical computers. Register machines are specifically

designed to be simple idealizations of present-day computers. Most practical computers

have a number of registers and support a number of instructions. As a simple idealization

of a computer one can consider register machines with just two registers—each storing

a number of any size—and just two instructions—increments and decrement-jumps. The

increment instruction increases the number in a particular register by one. The decrement-

jump instruction does two things. First, it decreases the number in a particular register
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by one and then jumps to some specified other instruction in the sequence of instructions

making up the rule or program for the given register machine.

Since it is assumed that the numbers in the registers can not be negative, a register

that is already zero can not be decremented. A decrement-jump instruction performed on

such a register will do nothing. The register will be left unchanged and the next instruction

in the program will be executed. This feature of the decrement-jump instruction makes

it possible for the register machine to take different paths depending on the values in the

registers.

The overall behavior of register machines with four or fewer instructions in the pro-

gram is essentially repetitive. With five instructions slightly more complicated behavior,

like regular nested structures, becomes possible. With up to seven instructions no more

complicated behavior is seen. But with eight instructions more complicated behavior shows

up that is complex and seemingly quite random.

To make the register machines more complicated, by increasing the number of registers

and/or by increasing the number of underlying instructions, for example by introducing

instructions that refer to two registers at a time, does not seem to have much effect on

either the form of complex behavior that can occur or how common it is.

Register machines can provide fairly accurate idealizations of the low-level operations

of real computers. And as a result, programs for register machines are often very much

like programs written in actual low-level computer languages. With this correspondence,

the general results on register machines can also be expected to apply to programs written

in low-level computer languages.

4 Fundamental Issues

In the past sections the main purpose has been to address the question of how simple

programs behave. In this section the purpose is to discuss some fundamental issues that
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are relevant in the study of actual phenomena in nature.

4.1 Randomness

After the investigation of many simple programs, Wolfram has come to the conclusion

that three basic mechanisms for randomness can be identified. These are illustrated in

Figure 4.1.
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Mechanism 1: Random environment Mechanism 2: Initial randomness Mechanism 3: Intrinsic randomness

Figure 4.1: Three possible mechanisms responsible for randomness. The vertical arrows
represent external input. In the first case, random input from the environment is present
at every step. In the second case, there is random input only in the initial conditions. In
the third case there is hardly any random input at all. Despite their differences, all three
mechanisms lead to randomness in the left-most column.

In the first mechanism (see Figure 4.1) randomness is explicitely introduced into the

underlying rules for the system, so that in effect a random state is chosen for every cell at

each step. This mechanism for randomness is the one most commonly considered in the

traditional sciences. Essentially it corresponds to letting a random external environment

continually affecting the system under consideration and continually injecting randomness

into it. The real origin of such randomness is that there are innumerable details about the

environment that it is very difficult to know about.

In the second mechanism (see Figure 4.1) there is no such interaction with the environ-

ment. Randomness is introduced into the system by the randomly chosen initial conditions.

The subsequent evolution of the system, however, is supposed to follow definite rules that
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involve no randomness. In the example shown in Figure 4.1 the rules are simply set up

to shift the state of a cell one position to the left at each step. This makes the sequence

of states taken on by a particular cell depend on the states of cells progressively further

and further to the right in the initial conditions. Since the initial conditions are chosen

randomly, the sequence of states of any particular cell will be correspondingly random.

The basic idea in the second mechanism is therefore that the randomness seen is some

kind of transcription of the randomness present in the initial conditions.

The two mechanisms for randomness discussed so far, both assume that randomness in

any particular system comes from outside of that system. What the previous sections have

shown is that simple programs, like cellular automata, can produce apparently random be-

havior even when they are given no random input whatsoever. This is the third mechanism

in Figure 4.1. Practically every kind of simple program that can be constructed is capable

of generating such randomness. Therefore, as Wolfram claims, it is quite reasonable to

expect that this same mechanism should also occur in many systems in nature. Wolfram

goes even further and says that he believes that this third mechanism is in fact ultimately

responsible for a large fraction, if not essentially all, of the randomness seen in the natural

world.

The rule 30 elementary cellular automaton in Figure 4.2 is the cellular automaton in

which Wolfram first identified the third mechanism for randomness. Despite simple rules

and simple initial conditions this cellular automaton yields a behavior that in many respects

seems random.

Although there are some regularities, like the pattern to the left, the overall pattern

seems random. By specifically picking out the state of the center cell on successive steps,

one gets a seemingly random sequence. What one usually means with random in practice,

is that one can not see any regularities in it. For detecting regularities methods in, for

example, mathematics and statistics, can be used. And none of these methods seem to

reveal any real regularities in the rule 30 cellular automaton center sequence.

26



Figure 4.2: The rule 30 elementary cellular automaton. Despite no random input to the
system, its behavior seems in many respects random.

Most computer systems and languages have facilities for generating random numbers. In

Mathematica (Wolfram’s creation) this has been done using the rule 30 cellular automaton.

Every time the random number generator function is called, another step in the cellular

automaton evolution is performed, and the state of the center cell is returned. For practical

reasons the pattern is not allowed to grow wider and wider forever. Instead, it is wrapped

around in a lattice that is a few hundred cells wide. As was discussed in Section 2.6,

one consequence of this is that the sequence will finally repeat. But this has no practical

relevance since the actual period of repetition will typically be more than a billion billion

times the age of the universe.

In Mathematica, the initial conditions of the rule 30 cellular automaton are not ex-

plicitely specified. Instead various features of the computer system at the time of the first

call of the random number generator function are used as an initial condition.

4.2 Discrete versus continuous

The different kinds of programs discussed in the previous sections have at least one thing

in common. They all have cells that can take on only a discrete set of possible states,

typically black and white. This fact, of course, arises the question whether the complexity

seen in these systems depends on the discreteness of the systems.

First the problem of discrete sets of possible states will be addressed. By investigating

a generalization of cellular automata, in which each cell is not just black or white, but
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instead can have any of a contiuous range of possible levels of gray, Wolfram came to the

conclusion that in these continuous cellular automata it takes only extremely simple rules

to generate behavior of great complexity. And in fact, it is also possible to find cases that

exhibit localized structures.

Although the discreteness in the states was removed in the continuous cellular automata

described above there is still much discreteness that remains. A continuous cellular au-

tomaton is still made up of discrete cells whose states are updated at discrete time steps.

By introducing partial differential equations this last source of discreteness can be removed.

After, what it seems, some trial end error, Wolfram has found examples of partial differ-

ential equations with highly complex behavior. And indeed, even though the underlying

equations are continuous, the patterns they produce seem to involve patches with a discrete

structure.

The conclusion from the discussion above is that complex behavior is in no way re-

stricted to systems based on discrete elements. The same kind of behavior can also occur

in completely continuous systems such as partial differential equations, although discrete

systems are far easier to study.

In nature there is a plentitude of discrete systems that at a macroscopic level seem

smooth and continuous. For example, air and water seem like continuous fluids, even

though they in fact are made up of discrete molecules. Another example concerns sand

which flows like a continuous fluid, even though it is actually made up of discrete grains.

So what is the basic mechanism that allows systems with discrete components to behave

smooth and continuous? The answer seems to be randomization. When randomness is

present microscopic details are averaged out, leaving no trace of discreteness. Instead the

results appear smooth and continuous. A classic example of this phenomenon is the so

called random walk. A discrete particle is moving randomly and at each step it is either

moving one step to the left or one step to the right. At any particular time the particle

will be at a definite discrete position. In Figure 4.3 random walks for one, two, and ten
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particles are shown. Instead of looking at the position of each individual particle, one can

look at the overall distribution of positions of all particles. As is illustrated in Figure 4.4,

a large number of particles makes the distribution take on a smooth and continuous form.

The randomness has in a sense washed out the traces of the underlying discreteness of the

system.

Figure 4.3: Random walks for one, two, and ten particles, respectively. At each step a
particle can go either one step to the left or one step to the right with equal probability.

10 particles 100 particles 1000 particles

10.000 particles 100.000 particles 1.000.000 particles

Figure 4.4: Distribution of positions of 10, 100, 1000, 10000, 100000, and 1000000 particles
performing random walks (175 steps).
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In the random-walk example, randomness is inserted from outside at each step in the

evolution of the system. In Figure 4.5 a system where randomness comes from the mecha-

nism of intrinsic randomness is given. The detailed pattern of black and white cells changes

at every step. But the large domains of black and white that form have boundaries which

move only rather slowly. At an overall level these boundaries behave in a smooth and

continuous way.

step 1 step 2 step 3 step 4 step 5

step 10 step 20 step 30 step 40 step 50

step 100 step 200 step 300 step 400 step 500

Figure 4.5: 2-dimensional cellular automaton with a random initial configuration. The rule
is as follows: If the number of black cells in the 9-cell neighborhood of a cell (which includes
the cell itself and the 8 cells adjacent to it) is less than 4 or equal to 5 then the cell becomes
white at the next step, otherwise it becomes black. Each picture is 80 cells across and is
wrapped around to avoid boundaries.

Just as discrete models can yield continuous behavior, continuous models can yield

behavior that appears discrete. The boiling of water provides a classic example. When

heating water, nothing much happens at first. But when the temperature reaches 100 ◦C,

a discrete transition occurs, and all the water evaporates into steam. Another example is

the motion of a ball in a double well. The motion is governed by mathematical equations

of a continuous form, but still a discrete transition occurs depending on whether the ball

starts to the left or right of the center line.

30



In nature there are in fact many kinds of systems where continuous changes lead to

discrete transitions. Also in elementary cellular automata it is possible to find such phe-

nomena. In Figure 4.6 the rule 184 cellular automaton is shown where the density of

black cells in the initial configuration is continuously changed (which actually only can be

achieved with infinite lattices). Maybe one would expect that continuous changes would

result in effects that are correspondingly continuous. However, what the pictures in Fig-

ure 4.6 show is that if the initial density of black cells has any value less than 50%, only

white stripes survive. But when the initial density increases above 50%, a discrete tran-

sition occurs and only black stripes survive. One can also argue whether this is actually

a true discrete transition since with exactly 50% black cells in the initial configuration

no stripes survive, neither black nor white. Looking at Figure 4.6 it seems that the den-

sity of white stripes is smoothly approaching zero when the initial density of black cells

is approaching 50%. The same is true for the density of black stripes which is smoothly

approaching zero when the initial density of black cells is decreasing towards 50%.

45% black 49% black

51% black 55% black

Figure 4.6: The rule 184 elementary cellular automaton with different densities of black
cells in the initial configuration. When the initial density is less than 50% only white stripes
survive, and when the density is more than 50% only black stripes survive.

It turns out that discrete transitions are fairly rare among one-dimensional cellular

automata. In two or more dimensions they become increasingly common. In Figure 4.7

the same two-dimensional cellular automaton as in Figure 4.5 is shown, illustrating a

discrete transition. In regions dominated by black cells, an increasingly large fraction of
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cells become black, and vice versa. As long as the boundaries of the regions do not get

stuck—as happens in many one-dimensional cellular automata—the result is that the color

that initially was more common will eventually take over the whole system.

45% black
step 1 step 2 step 5 step 10 step 100 step 1000

55% black
step 1 step 2 step 5 step 10 step 100 step 1000

Figure 4.7: The same two-dimensional cellular automaton as in Figure 4.5. A discrete
transition occurs when the density of black cells is continuously varied.

4.3 Reversability

The rules of a cellular automaton tell how to proceed from one step to the next. But what

about going backwards? Is it possible to deduce from the arrangement of states of the

cells at a particular step what the arrangement was at previous steps? In Figure 4.8 two

elementary cellular automata are given. In one of them it is straightforward to do this.

The state of a cell is changing in every step independent of going forwards or backwards.

This cellular automaton is reversible. The other cellular automaton works differently. Here

it is not possible to go backwards since all cells end up being in the same state after a

couple of steps. This cellular automaton preserves no information about the arrangement

of states of the cells on earlier steps, it is therefore irreversible.

There are more elementary cellular than the one shown in Figure 4.8 that are reversible.

In Figure 4.9 all six of the 256 elementary cellular automata that are reversible are dis-

played. They all exhibit fairly trivial behavior.

It is not always the case that reversible cellular automata exhibit simple behavior.
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rule 51 rule 32

Figure 4.8: Examples of elementary cellular automata that are reversible (rule 51) and
irreversible (rule 32).

rule 15 rule 51 rule 85

rule 170 rule 204 rule 240

Figure 4.9: The six reversible elementary cellular automata.

Out of the 7.625.597.484.987 cellular automata with three states and nearest-neighbor

rules 1800 are reversible, and of these most exhibit simple behavior, but some do exhibit

complex behavior.

In order to understand the range of behavior that can occur in reversible systems it is

convenient to consider classes of cellular automata with rules that are constructed to be

reversible. One such class is given in Figure 4.10.

The class of cellular automata in Figure 4.10 is constructed by taking the elementary

cellular automata and then add dependence on states two steps back. Therefore two

preceding steps are needed for the construction of the next step of evolution of such cellular

automata. The resulting rules can run both forwards and backwards, and can be used to

determine the configuration of cells on either future or past steps.

The class of reversible cellular automata in Figure 4.10 will be denoted elementary

reversible cellular automata, and similar to the ordinary elementary cellular automata

they will be numbered from 0R to 255R, where R stands for reversible. In Figures 4.11
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Figure 4.10: A reversible cellular automaton determined from the rule 214 elementary
cellular automaton with the addition of the specification that the new color of a cell should
be inverted whenever the cell was black two steps back.

and 4.12 examples of the behavior of such cellular automata with random and simple

initial configurations, respectively, are given.

rule 13R rule 30R rule 67R

rule 73R rule 90R rule 142R

rule 173R rule 190R rule 197R

Figure 4.11: Examples of elementary reversible cellular automata starting from random
initial configurations. Every cell is chosen to be black or white with equal probability on the
two successive first steps.

As is illustrated in Figure 4.12 the behavior of some elementary reversible cellular

automata is fairly simple, and the patterns produced have simple repetitive or nested

structures. But in many cases, especially with random initial configurations, but even

with simple initial configurations, the patterns produced are highly complex, and seem in
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many respects random. In Figure 4.13 it is demonstrated that localized structures also can

occur in reversible systems. Thus the conclusion of this subsection is that, even though

reversible systems are quite rare among possible systems they can still exhibit behavior

just as complex as other systems.

rule 13R rule 30R rule 67R

rule 73R rule 90R rule 142R

rule 173R rule 190R rule 197R

Figure 4.12: Examples of elementary reversible cellular automata starting from simple
initial configurations. Only the center cell is black on the two successive first steps.

Figure 4.13: An example of an elementary reversible cellular automaton where localized
structures occur (rule 37R). The initial configurations (the first two steps) were prepared
to contain just about 5% black cells, randomly chosen.
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4.4 Entropy

Although the underlying laws of physics are reversible, at least suggested by current re-

search, there are many examples of systems of nature which seem irreversible. A system

might start in a fairly regular or organized state and then progressively become more

and more random and disorganized. This phenomenon can also be seen in many simple

programs. Figure 4.14 shows an example based on an elementary reversible cellular au-

tomaton. At the beginning the black cells are placed at the center of the lattice, with

identical configurations in the first two steps. But over the course of time the distribution

of black and white cells becomes progressively more random.

Figure 4.14: A reversible cellular automaton (rule 122R) that exhibits seemingly random be-
havior. Initially all black cells lie at the center of the lattice, in the first two configurations,
but progressively this distribution becomes more and more random.

Although it is, by now, not surprising that a system with simple initial conditions

can generate randomness, it may seem odd that a reversible system can generate, what

seems like, an irreversible increase in randomness. This apparent conflict can be resolved

quite straightforward. As is demonstrated in Figure 4.15 a carefully constructed initial

configuration can through the evolution of the system produce a simple distribution of

black cells.

The systematic decrease in randomness seen in Figure 4.15 yet seems contradictory to

everyday experiences. The resolution of this paradox is that it is not possible to set up such

precise initial conditions in practice. Practical experiments involve only initial conditions
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Figure 4.15: An extended version of Figure 4.14 in which the initial configurations are
carefully constructed so that a simple arrangement of black cells will be produced.

that are fairly simple to describe and to construct. And in these cases systems, like the

one in Figure 4.14, always tend to exhibit increasing randomness. Wolfram argues that

no reasonable experiment can ever involve setting up the kind of initial conditions that

will lead to a decrease in randomness. According to Wolfram this is the basic argument

that explains the observed validity of the Second Law of Thermodynamics, which says that

entropy increases with time.

The randomness produced by various cellular automata seems in many respects to be

independent of the details of the initial conditions. This is demonstrated by the rule 122R

elementary reversible cellular automaton in Figure 4.16. If a system generates sufficient

randomness, it is possible to think of it as evolving towards a unique equilibrium whose

properties are independent of its initial conditions.

Figure 4.16: The rule 122R reversible cellular automaton approaching equilibrium using
various initial conditions. Apart from exceptional cases the behavior is quite indistinguish-
able in its overall properties.
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The fact that systems evolve towards a unique equilibrium is implicit in many everyday

applications of physics. It is this fact that makes it possible to characterize a physical

system just by specifying a few parameters such as temperature and chemical composition.

The existense of a unique equilibrium that a system evolves to is a common statement of

the second law of thermodynamics. But how general is the second law? In Figure 4.17

examples of various reversible cellular automata are shown. Some systems clearly exhibit

the behavior implied by the second law, and others do not. Examples from the last category

are rules 0R and 90R, with their repetitive forms. Existing mathematical studies have

identified these simple exceptions to the second law. But what about rule 37R? This

system does not seem to settle down. Sometimes it becomes less orderly and sometimes

more so. For practical purposes it has to be concluded that rule 37R does not obey the

second law.

Rule: 0R 26R 37R 73R 90R 122R 173R 214R 222R

Figure 4.17: Examples of elementary reversible cellular automata. Some quickly randomize,
as suggested by the second law of thermodynamics, while others do not.

Just as in the world of simple programs there might be many systems in nature that

do not obey the second law of thermodynamics. The second law is an important and quite

general principle, but it is not universally valid. To conclude this subsection it can be

stated that simple programs are useful not only in understanding why the second law is

often true, but also in seeing some of its limitations.
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4.5 Conservation

Another general feature in the basic laws of physics is the conservation of various quan-

tities. Cellular automata do not usually exhibit such conservation laws. But just as with

reversability there are some elementary cellular automata with conservation properties. In

Figure 4.18 the cellular automata that conserve the number of black cells that appears on

each step are given.

Rule 170: 25% black 50% black 75% black

Rule 184: 25% black 50% black 75% black

Rule 204: 25% black 50% black 75% black

Figure 4.18: Elementary cellular automata whose evolution conserves the total number of
black cells.

5 Computer Science

In this section some issues related to computer science are discussed.

5.1 Cryptography

Cryptography has been used since ancient times to hide the contents of messages by en-

crypting them so as to make them unrecognizable. An example of a scheme for encryption

of a message, represented by a sequence of black and white cells, is shown in Figure 5.1.
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The basic idea is to have an encrypting sequence, and from the original message the en-

crypted version of the message is obtain by reversing the color of every cell for which the

corresponding cell in the encrypting sequence is black.

· · · · · ·· · · · · ·· · · · · ·· · · · · ·· · · · · ·· · · · · ·· · · · · ·· · · · · ·· · · · · ·· · · · · ·· · · · · ·· · · · · ·· · · · · ·· · · · · ·· · · · · ·· · · · · ·

· · · · · ·· · · · · ·· · · · · ·· · · · · ·· · · · · ·· · · · · ·· · · · · ·· · · · · ·· · · · · ·· · · · · ·· · · · · ·· · · · · ·· · · · · ·· · · · · ·· · · · · ·· · · · · ·
original encrypting encrypted
message sequence message

Figure 5.1: Example of a scheme for encryption. An encrypted message is generated be
reversing the color of each cell for which the corresponding cell in the encrypting sequence
is black.

So if one receives an encrypted message, then the original message can be easily re-

covered if the encrypting sequence is known. But in most situations it is not feasible to

transmit the whole encrypting sequence in a secure way. Instead only a short key, from

which the whole encrypting sequence is generated, can be transmitted in a secure way.

There are several approaches of how to get an encrypting sequence from a key. A simple

approach that was widely used until less than a century ago is shown in Figure 5.2. The

encrypting sequence is formed by repeatedly cycling through the elements of the key.

It is fairly easy to decrypt messages encoded with such a simple encryption system as in

Figure 5.2. If a sufficiently long segment in the encrypting sequence can be found out then

this immediately gives the key. So what about more complicated rules for generating an

encrypting sequence from a key? In Figure 5.3 an additive elementary cellular automaton

in a lattice of limited size is used to generate an encrypting sequence. The key is the

initial configuration and the evolution of a particular cell gives the encrypting sequence.

This procedure was widely used in the early years of electronic cryptography, and it is still
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key key
↘ ↘. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .

. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .

. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .

. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .
↑ ↑

original encrypting encrypted original encrypting encrypted
message sequence message message sequence message

Figure 5.2: A simple example of an encryption system in which the encrypting sequence is
formed by repeatedly cycling through the elements of the key. Encryption with two different
keys is shown.

sometimes used today.

key key key
↘ ↘ ↘. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .

. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .

. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .

. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .

. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .

. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .
↑ ↑ ↑

original encrypting encrypted original encrypting encrypted original encrypting encrypted
message sequence message message sequence message message sequence message

Figure 5.3: Encryption using the rule 60 elementary cellular automaton. This rule is
additive, meaning that the new state of a cell is obtained by adding the states of the cells
in the neighborhood modulo 2 with weights between 0 and 1.

Messages encoded with the encryption system in Figure 5.3 are, however, fairly easy to
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decrypt. Even though the encrypting sequence does not include every single cell in a partic-

ular column, the additive nature of the underlying rule still makes cryptanalysis possible.

The question now is whether there are elementary cellular automata that can be used for

cryptography. The rule 30 cellular automaton, see Figure 5.4, was suggested by Wolfram in

1985. Unlike the additive cellular automaton in Figure 5.3 with its nested structure, most

sequences that are generated with rule 30—even with simple initial configurations—appear

completely random. By trying every possible initial configuration it will in principle be

possible to decrypt a message, but as the width of the cellular automaton increases, the

total number of possible keys will rapidly become astronomical. To test all these keys

would be completely infeasible. However, by studying the rule of the cellular automaton

it is possible to do some cryptanalysis and to find candidate keys. But it is rather easy to

destroy this possibility to cryptanalysis on the rule 30 cellular automaton by not including

every single cell in a given column when forming the encrypting sequence. Direct attempts

to find easy ways to deduce the key in rule 30 have failed and it appears that there are no

easy ways to deduce the key for rule 30 from any suitable chosen encrypting sequence.

key key key
↘ ↘ ↘. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .

. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .

. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .

. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .

. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .

. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .
↑ ↑ ↑

original encrypting encrypted original encrypting encrypted original encrypting encrypted
message sequence message message sequence message message sequence message

Figure 5.4: Encryption using the rule 30 elementary cellular automaton.

42



5.2 Computation

Systems such as cellular automata have previously been referred to as simple computer

programs. One can think of these systems in terms of the computations they can per-

form. The initial configuration can be viewed as the input to a computation, while the

configuration after some number of steps can be viewed as the output.

What kinds of computations are cellular automata able to do? In Figure 5.5 an ele-

mentary cellular automaton performing a simple computation is shown. Starting with an

even number of consecutive black cells, no black cells survive after a few steps of evolution.

Starting with an odd number of consecutive black cells, on the other hand, a single black

cell survives forever. So this cellular automaton can be viewed as computing whether a

given number is even or odd.

Input: 1 2 3 4 5 6 7 8 9 10

Output: 1 0 1 0 1 0 1 0 1 0

Figure 5.5: The rule 132 elementary cellular automaton, which effectively computes the
remainder after division of a number, represented by the number of consecutive black cells
in the initial configuration, by 2.

It is also possible to construct cellular automata that can do more complicated things.

For example, a cellular automaton with eight possible states for each cell can be constructed

to compute the square of any number. A cellular automaton that computes the successive

prime numbers: 2, 3, 5, 7, 11, 13, 17, etc. can also be constructed. This, however, requires

complicated rules and a total of 16 states for each cell.

To return to the elementary cellular automata, what kinds of computations can they

actually perform? The computations of some of the elementary cellular automata can easily

be described in terms of traditional mathematical notions, but others can not. Thus, for

example, as shown in Figure 5.6, rules 94, 62 (to the left), and 190 can be described as

enumerating numbers that are multiples of 2, 3, and 4, respectively. And if looking down
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the center column of the pattern produced by rule 129, it can be thought of as enumerating

numbers that are powers of 2. For the cellular automata in Figure 2.3, on the other hand,

there is no simple description. Traditional mathematics is of no much help.

rule 94 rule 62 rule 190 rule 129

Figure 5.6: Examples of elementary cellular automata whose computations can easily be
described in traditional mathematical terms. The white cells at the bottom row of rules
94, 62 (to the left), and 190 correspond to numbers that are multiples of 2, 3, and 4,
respectively, and in the center column of rule 129 to powers of 2.

5.3 Universality

In the previous subsection the fact that cellular automata can be constructed to perform

quite sophisticated computations was discussed. However, for each computation a new

cellular automaton with specific rules had to be set up. Is this really necessary or is it

possible to construct a universal cellular automaton in analogy with the universal Turing

machine [4] in theoretical computer science on which present-day computers are based on?

A single computer is not constructed to perform just one task instead it is made universal,

programmable to perform various kinds of tasks determined by the program, which can be

considered as the input to the computer.

The rules for a possible universal cellular automaton should always be the same. But

the fact that it is universal means that, by given appropriate initial conditions, it should be

able to emulate any possible cellular automaton, with any set of rules. In Ref. [1] the design

and workings of such a universal cellular automaton is discussed. This universal cellular

automaton is far from trivial, involving 19 possible states for each cell and rules depending

on next-nearest neighbors as well as on nearest neighbors. This cellular automaton was

set up to make its operation as easy to follow as possible. But even so and despite a
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large number of illustrations it is not easy to understand the workings of it. However, the

basic idea, for emulating the elementary cellular automata, for example, is that a block

of 20 cells in the universal cellular automaton is used to represent each single cell in the

elementary cellular automaton that is being emulated. Within this block of 20 cells both a

specification of the current state of the cell that is being represented and the rule by which

the state of that cell is to be updated are encoded.

The universal cellular automaton discussed above is in no way restricted to emulate

cellular automata with rules involving only nearest neighbors. In Ref. [1] the emulation of

a cellular automaton involving also next-nearest neighbors is shown. Instead of blocks of

20 cells, that were required in emulating the elementary cellular automata, blocks of 70

cells are now needed. Similarly, increasing the size of a block of cells even further, will

make it possible to emulate cellular automata with rules with even more neighbors.

The question whether the universal cellular automaton given above will be able to emu-

late a cellular automaton with rules involving more than two states will now be addressed.

It turns out that it is possible to emulate such rules by using rules with just two states of

the cells but with a larger number of neighbors. The conclusion then is that also cellular

automata with any number of states of the cells can be emulated by the universal cellular

automaton. Therefore any cellular automaton can be emulated regardless of how many

states and how many neighbors it involves. This means that the universal cellular automa-

ton is able to emulate cellular automata with more complicated rules than its own. So as

a matter of fact nothing fundamental can be gained by setting up a cellular automaton

whose rules are more complicated than those for the universal cellular automaton since

more complicated rules can always be emulated by the universal cellular automaton just

by setting up appropriate initial conditions.

After demonstrating the existence of a universal cellular automaton Wolfram [1] pro-

ceeds by showing that systems like mobile automata, Turing machines, substitution sys-

tems, and register machines can be emulated by cellular automata. and then in particular
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by a universal cellular automaton. Since cellular automata are also able to emulate other

important aspects of practical computers, like logic expressions and data retrievel, Wolfram

draws the conclusion that a universal celllular automaton is able to emulate a practical

computer in its entirety.

Just as cellular automata are able to emulate other systems, other systems are able to

emulate cellular automata. For example, by emulating the universal cellular automaton, it

is possible to construct a universal Turing machine. This was in fact done already in 1936

using different methods. According to Wolfram this was historically the very first clear

example of universality shown in any system.

An implication of the discussion above is that from a computational point of view var-

ious kinds of systems are fundamentally equivalent. However, this does not mean that

systems of a particular type—say cellular automata—are able to support the same kinds

of computations. This was clearly demonstrated in the previous subsection. Some cellular

automata can perform only very simple computations. But when studying cellular au-

tomata with progressively greater computational capabilities, the threshold of universality

will eventually be passed. And once passed, the set of computations that can be performed

will always be exactly the same.

How complicated do the underlaying rules for a system need to be in order to achieve

universality? As a matter of fact they do not have to be as complicated as the ones of the

universal cellular automaton discussed in the beginning of this subsection. In the early

1970s it was known that cellular automata with 18 states and nearest-neighbor rules could

be universal. And in the late 1980s examples of universal cellular automata with 7 states

and nearest-neighbor rules were constructed. In the mid-1980s Wolfram began to suspect

that universality actually also could be found among the elementary cellular automata.

The leading candidate would be the rule 110 elementary cellular automaton displayed once

again in Figure 5.7.

Despite its simple underlying rules, rule 110 supports a whole variety of localized struc-
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Figure 5.7: The rule 110 elementary cellular automaton, an example of a universal cellular
automaton.

tures that move around and interact in many complicated ways. Perhaps these localized

structures can be arranged to perform meaningful computations. And indeed by building

up components from combinations of localized structures a large number of components

can be obtained without having to increase the complexity of the underlying rules. It took

several years of research to develop the necessary ideas and tools for showing that rule

110 in fact is universal. In Ref. [1] some of these are discussed in quite some detail. The

significance of universality in rule 110 is that it sugggests that universality is a far more

common phenomenon than one might have expected.

As was discussed in Section 2.4 rule 110 is in class 4. Wolfram strongly suspects that

all cellular automata which show overall class 4 behavior will turn out to be universal.

So expect from rule 110—and the related rules 124, 137, and 193—among the elementary

cellular automata rule 54 might be in class 4, and if so it should be possible to show that

it too exhibits the phenomenon of universality.

Previoulsy the threshold of universality was mentioned, and after making the connection

between class 4 behavior and universality one might wonder what is ultimately needed for

an elementary cellular automaton to be able to achieve universality. Systems displaying

typical class 1 or class 2 behavior can be excluded to exhibit universality. Among class

3 systems quite a few systems might be presumptive candidates for universality, meaning

that the threshold for universality ought to be in this class.
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6 Summary

The topic of this treatise is cellular automata. These simple constructions, with their

lattices of cells being in a finite number of states governed by simple rules, display a

richness in properties and behavior. Even the property of universality, well known from

the universal Turing machine [4], has been found in certain of these constructions and

actually even among the simpler ones. This means that there are cellular automata that

can perform computations that are as sophisticated as those that we can ever imagine and

certainly as sophisticated as those that can be performed by computers.

What is the reason for studying cellular automata, apart from getting insights in aspects

of computations? A hint is given in Section 4 where certain fundamental issues concerning

the physical world are discussed. Wolfram has formulated a principle which he calls the

Principle of Computational Equivalence, which states that ”all processes, whether they are

produced by human effort or occur spontaneously in nature, can be viewed as computa-

tions”. So what this principle says is that, for instance, universal cellular automata can be

used in describing all natural processes, even such things that normally are considered as

fundamentally continuous, like positions in space and values of quantum mechanical prob-

ability amplitudes. To investigate the role of cellular automata in the modelling process in

science will be the subject of a forthcoming treatise.
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A C++-code for generating LATEX-code for elementary

cellular automata

#include <stdio.h>

#define MAX_FILE_NAME 20

// size_i: the integer part of the size of a square (in mm).

// size_d: the decimal part of the size of a square (in mm).

int size_i, size_d;

// Calculates i to the power of j.

// Precondition: j >= 0.

int exp(int i, int j)

{

if (j == 0)

return 1;

else

return i * exp(i, j - 1);

}

// Transforms an integer (I) to a binary number (B)

// Precondition: 0 <= I <= 255.

// Postcondition: B[7] B[6] B[5] B[4] B[3] B[2] B[1] B[0]: I

// F F F F F F F F : 0

// F F F F F F F T : 1

// F F F F F F T F : 2

// ......

//

// T T T T T T T T : 255

void int_binary(int I, bool * B)

{

int rest = I;

for (int i = 7; i >= 0; i--)

if (rest >= exp(2,i)) {

B[i] = true;

rest = rest - exp(2,i);

}

else
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B[i] = false;

}

// Initializes an array A of size s.

// Precondition: s > 0.

void init_array(bool * A, int s)

{

for (int i = 0; i < s; i++)

A[i] = false;

A[s/2] = true;

}

// Returns update of array element at position p of array A of size s.

// Update is determined by array B (rule number in binary of elementary

// cellular automaton).

// Precondition: 0 <= p < s, s > 0.

bool update_el(int p, bool * A, int s, bool * B)

{

int l = p - 1;

int r = p + 1;

if (l < 0) l = s - 1;

if (r > s - 1) r = 0;

if (A[l] && A[p] && A[r]) return B[7];

else if (A[l] && A[p] && !A[r]) return B[6];

else if (A[l] && !A[p] && A[r]) return B[5];

else if (A[l] && !A[p] && !A[r]) return B[4];

else if (!A[l] && A[p] && A[r]) return B[3];

else if (!A[l] && A[p] && !A[r]) return B[2];

else if (!A[l] && !A[p] && A[r]) return B[1];

else if (!A[l] && !A[p] && !A[r]) return B[0];

}

// Updates an array A of size s according to array B (which stores an

// elementary cellular automaton rule in binary).

// Precondition: s > 0.

void update_arr(bool * A, int s, bool * B)

{

bool * Ac = new bool[s];
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for (int i = 0; i < s; i++)

Ac[i] = A[i];

for (int i = 0; i < s; i++)

A[i] = update_el(i, Ac, s, B);

delete [] Ac;

}

// Prints instructions in LATEX for a frame of height h and width w to a file.

// Precondition: h, w > 0.

void print_frame(FILE * fd, int h, int w)

{

fprintf(fd, "%s%i%s%i%s\n", "\\put(0,", 0, "){\\line(1,0){", w, "}}");

fprintf(fd, "%s%i%s%i%s\n", "\\put(0,", h, "){\\line(1,0){", w, "}}");

fprintf(fd, "%s%i%s%i%s\n", "\\put(", 0, ",0){\\line(0,1){", h, "}}");

fprintf(fd, "%s%i%s%i%s\n", "\\put(", w, ",0){\\line(0,1){", h, "}}");

}

// Prints instructions in LATEX for a mesh to a file.

// The mesh should fit in a frame with height h and width w and the

// size of a square is 1 x 1.

// Precondition: h, w > 0.

void print_mesh(FILE * fd, int h, int w)

{

for (int i = 1; i < h; i++)

fprintf(fd, "%s%i%s%i%s\n", "\\put(0,", i, "){\\line(1,0){", w, "}}");

for (int i = 1; i < w; i++)

fprintf(fd, "%s%i%s%i%s\n", "\\put(", i, ",0){\\line(0,1){", h, "}}");

}

// Prints instructions in LATEX for filling a row of l squares starting with

// square with coordinates x and y of the lower left corner to a file.

void fill_squares(FILE * fd, int x, int y, int l)

{

fprintf(fd, "%s%i.%i%s\n", "{\\linethickness{", size_i, size_d, "mm}");

fprintf(fd, "%s%i,%i%s%i%s\n", "\\put(", x, y, ".5){\\line(1,0){",l,"}}}");

}

// Prints instructions in LATEX for an elementary cellular automaton to a file.
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// The rule number (in binary) is stored in B, the number of steps is given by step,

// the result of a step is stored in array A with size s.

// Precondition: Arrays A and B initialized, s > 0.

void print_cell_aut(FILE * fd, bool * A, int s, int step, bool * B)

{

int l = 0;

int x0;

bool pblack = false;

for (int y = step - 1; y >= 0; y--) {

for (int x = 0; x < s; x++) {

if (A[x]) {

if (l == 0) {

x0 = x;

pblack = true;

}

l++;

}

else {

if (pblack) {

fill_squares(fd, x0, y, l);

l = 0;

pblack = false;

}

}

}

if (pblack) {

fill_squares(fd, x0, y, l);

l = 0;

pblack = false;

}

update_arr(A, s, B);

}

}

// Prints instructions in LATEX for an elementary cellular automaton to a file.

// The name of the file is given by fn, the rule number of the elementary

// cellular automaton is given by rule, the number of steps is given by height,

// the size of a square is given by size (in tenths of mm), mesh indicates whether

// a mesh should be printed or not.

// Precondition: 0 <= rule <= 255, height > 0, 0 < size < (about) 100.

52



void cell_aut(char * fn, int rule, int height, int size, bool mesh)

{

FILE * fd = fopen(fn, "w+");

int width = 2 * height - 1;

bool B[8];

bool * A = new bool[width];

size_i = size / 10;

size_d = size % 10;

// convert the rule number to a binary number

int_binary(rule, B);

// initialize the cellular automaton

init_array(A, width);

if (fd == NULL)

printf("error in opening file %s\n", fn);

else

{

fprintf(fd, "%s%i.%i%s\n", "\\setlength{\\unitlength}{", size_i, size_d, "mm}");

fprintf(fd, "%s%i,%i%s\n", "\\begin{picture}(", width, height, ")(0,0)");

// print frame

print_frame(fd, height, width);

// print mesh

if (mesh) print_mesh(fd, height, width);

// print cellular automaton

print_cell_aut(fd, A, width, height, B);

fprintf(fd, "%s\n", "\\end{picture}");

}

fclose(fd);

delete [] A;

}

void main()

{

char fn[MAX_FILE_NAME];

int rule, height, size;

char cmesh;

bool mesh = false;

53



printf("write a file name: ");

scanf("%s", fn);

printf("write a rule number (0, 1, ..., 255): ");

scanf("%d", &rule);

printf("write a step number (> 0): ");

scanf("%d", &height);

printf("write a size number (1, 2, ..., 100): ");

scanf("%d", &size);

printf("mesh? (y/n): ");

scanf("\n%c", &cmesh);

if (cmesh == ’y’) mesh = true;

if (rule >= 0 && rule <= 255 && height > 0 && size >= 1 && size <= 100)

cell_aut(fn, rule, height, size, mesh);

else

printf("something wrong with input data\n");

}
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B Elementary cellular automata

0: 1: 2: 3:

4: 5: 6: 7:

8: 9: 10: 11:

12: 13: 14: 15:

16: 17: 18: 19:

20: 21: 22: 23:

24: 25: 26: 27:

28: 29: 30: 31:
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32: 33: 34: 35:

36: 37: 38: 39:

40: 41: 42: 43:

44: 45: 46: 47:

48: 49: 50: 51:

52: 53: 54: 55:

56: 57: 58: 59:

60: 61: 62: 63:
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64: 65: 66: 67:

68: 69: 70: 71:

72: 73: 74: 75:

76: 77: 78: 79:

80: 81: 82: 83:

84: 85: 86: 87:

88: 89: 90: 91:

92: 93: 94: 95:
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96: 97: 98: 99:

100: 101: 102: 103:

104: 105: 106: 107:

108: 109: 110: 111:

112: 113: 114: 115:

116: 117: 118: 119:

120: 121: 122: 123:

124: 125: 126: 127:
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128: 129: 130: 131:

132: 133: 134: 135:

136: 137: 138: 139:

140: 141: 142: 143:

144: 145: 146: 147:

148: 149: 150: 151:

152: 153: 154: 155:

156: 157: 158: 159:
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160: 161: 162: 163:

164: 165: 166: 167:

168: 169: 170: 171:

172: 173: 174: 175:

176: 177: 178: 179:

180: 181: 182: 183:

184: 185: 186: 187:

188: 189: 190: 191:
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192: 193: 194: 195:

196: 197: 198: 199:

200: 201: 202: 203:

204: 205: 206: 207:

208: 209: 210: 211:

212: 213: 214: 215:

216: 217: 218: 219:

220: 221: 222: 223:
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224: 225: 226: 227:

228: 229: 230: 231:

232: 233: 234: 235:

236: 237: 238: 239:

240: 241: 242: 243:

244: 245: 246: 247:

248: 249: 250: 251:

252: 253: 254: 255:

62



C Elementary cellular automata with random initial

configurations

0: 1: 2: 3:

4: 5: 6: 7:

8: 9: 10: 11:

12: 13: 14: 15:

16: 17: 18: 19:

20: 21: 22: 23:

24: 25: 26: 27:

28: 29: 30: 31:
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32: 33: 34: 35:

36: 37: 38: 39:

40: 41: 42: 43:

44: 45: 46: 47:

48: 49: 50: 51:

52: 53: 54: 55:

56: 57: 58: 59:

60: 61: 62: 63:
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64: 65: 66: 67:

68: 69: 70: 71:

72: 73: 74: 75:

76: 77: 78: 79:

80: 81: 82: 83:

84: 85: 86: 87:

88: 89: 90: 91:

92: 93: 94: 95:
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96: 97: 98: 99:

100: 101: 102: 103:

104: 105: 106: 107:

108: 109: 110: 111:

112: 113: 114: 115:

116: 117: 118: 119:

120: 121: 122: 123:

124: 125: 126: 127:
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128: 129: 130: 131:

132: 133: 134: 135:

136: 137: 138: 139:

140: 141: 142: 143:

144: 145: 146: 147:

148: 149: 150: 151:

152: 153: 154: 155:

156: 157: 158: 159:
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160: 161: 162: 163:

164: 165: 166: 167:

168: 169: 170: 171:

172: 173: 174: 175:

176: 177: 178: 179:

180: 181: 182: 183:

184: 185: 186: 187:

188: 189: 190: 191:
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192: 193: 194: 195:

196: 197: 198: 199:

200: 201: 202: 203:

204: 205: 206: 207:

208: 209: 210: 211:

212: 213: 214: 215:

216: 217: 218: 219:

220: 221: 222: 223:
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224: 225: 226: 227:

228: 229: 230: 231:

232: 233: 234: 235:

236: 237: 238: 239:

240: 241: 242: 243:

244: 245: 246: 247:

248: 249: 250: 251:

252: 253: 254: 255:
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