

 Computer Science

Reza Mohammadi and Martin Jarl

Implementation analysis of openSSL over SCTP

Bachelor’s Project

June 2004:14

Implementation analysis of openSSL over SCTP

Reza Mohammadi and Martin Jarl

© 2004 The author(s) and Karlstad University

This report is submitted in partial fulfillment of the requirements for the

Bachelor’s degree in Computer Science. All material in this report which is

not our own work has been identified and no material is included for which

a degree has previously been conferred.

Reza Mohammadi and Martin Jarl

Approved, 2004-06-03

Advisor: Johan Garcia

Examiner: Stefan Lindskog

 iii

Abstract

TietoEnator in Karlstad develops a protocol stack based on SS7 (Signaling System Nr 7).

There is a desire to increase the security provided by SS7 when it is used in an IP network

(Internet Protocol network). A possible solution is to use TLS (Transport Layer Security).

There is an existing implementation of TLS called openSSL. TietoEnator has decided to use

openSSL in order to test how TLS functions with SS7. The openSSL code is designed to run

on top of the transport layer protocol TCP (Transmission Control Protocol). However, SS7

uses SCTP (Stream Control Transmission Protocol) at the transport layer. To use openSSL

with SS7 openSSL must be adapted to SCTP.

This document analyses parts of the existing SS7 environment, including SCTP, and the

openSSL code. The openSSL code analysis concentrates on the parts of openSSL that

communicate with TCP, because these are the parts that need to be adapted to SCTP. The

analysis shows that there are at least three different design approaches to the adaptation of

openSSL to SCTP. One approach involves translation of each TCP call into a SCTP call.

However, this is not possible because of the differences between TCP and SCTP. Another

approach involves creation of a translating software module between the TCP calls and SCTP.

This demands too much time for a test implementation but is suitable for the production

version. The last approach involves rewriting the parts of openSSL that communicate with

TCP. This requires a lot of openSSL modifications but is adequate for a test implementation.

An initial implementation according to the third approach is made as a part of this work.

 v

Contents

1 Introduction ... 1

2 Network security ... 3
2.1 Confidentiality – encryption .. 3

2.1.1 Secret-key encryption
2.1.2 Public-key encryption
2.1.3 Where to put encryption

2.2 Message integrity – MAC.. 6

2.3 Authentication – digital signing... 7

2.4 Where to put security... 7

2.5 Chapter summary... 8

3 Analysis of existing environment ... 10
3.1 Stream Control Transmission Protocol (SCTP) – general information................... 10

3.1.1 Concepts
3.1.2 Properties
3.1.3 Initialization, data transmission and shutdown

3.2 Common Parts (CP) and SCTP – in TietoEnator’s SS7 environment..................... 14
3.2.1 Common Parts
3.2.2 CP/SCTP API functions

3.3 Chapter summary... 19

4 Analysis of added environment.. 20
4.1 Transport Layer Security (TLS) – general information... 20

4.1.1 Architecture
4.1.2 TLS record protocol
4.1.3 TLS handshake protocol
4.1.4 TLS change cipher protocol
4.1.5 TLS alert protocol
4.1.6 Connection process

4.2 Socket API ... 26

4.3 openSSL – an existing implementation of TLS... 28
4.3.1 Interesting files and folders in openSSL
4.3.2 Socket call files
4.3.3 Socket call chains

4.4 Chapter summary... 36

 vi

5 Design of openSSL over CP/SCTP .. 38
5.1 Design considerations.. 38

5.1.1 Translation of each socket call into a CP/SCTP API function call
5.1.2 Create a translator between the socket calls and the CP/SCTP API
5.1.3 Rewriting the parts of openSSL that communicate with the socket API

5.2 Selected design .. 43
5.2.1 File and folder structure
5.2.2 Client and server initialization
5.2.3 Data transmission
5.2.4 Makefiles

5.3 Chapter summary... 48

6 Problems... 50

7 Conclusions .. 52

References ... 53

A Key term dictionary .. 55

B TLS ... 61
B.1 Session state... 61

B.2 Connection state... 61

B.3 TLS record protocol header ... 61

B.4 TLS handshake protocol messages.. 62

B.5 Alerts.. 63

C File and folder structure of openSSL .. 65

 vii

List of Figures

Figure 2.1: Encryption decryption process ... 4

Figure 2.2: Transport layer security stack, from [19] ... 8

Figure 2.3: Application layer security stack, from [19] .. 8

Figure 3.1: SCTP packet format, from [22] .. 11

Figure 3.2: SCTP initialization, from [22] .. 13

Figure 3.3: SCTP data transmission, from [22] .. 13

Figure 3.4: SCTP shutdown, from [22]... 14

Figure 3.5: Client and server CP/SCTP API usage... 18

Figure 4.1: TLS architecture, from [19].. 21

Figure 4.2: TLS record format, from [19]... 22

Figure 4.3: Handshake message format, from [19]... 23

Figure 4.4: Change cipher spec message format, from [19] ... 24

Figure 4.5: Alert message format, from [19] .. 24

Figure 4.6: TLS connection setup, from [1].. 25

Figure 4.7: Client and server Socket API usage, based on [3]... 28

Figure 4.8: Server initialization socket call chains ... 33

Figure 4.9: Client initialization socket call chains .. 33

Figure 4.10: Sending socket call chains .. 34

Figure 4.11: Receiving socket call chains... 34

Figure 4.12: ‘b_sock.c’ socket call chain.. 35

Figure 4.13: ‘bss_acpt.c’ socket call chains.. 35

Figure 4.14: ‘bss_conn.c’ socket call chains... 36

Figure 5.1: Translation of each socket call into a CP/SCTP API function call 40

Figure 5.2: Create a translator between the socket calls and the CP/SCTP API 41

Figure 5.3: Rewriting the parts of openSSL that communicate with the socket API 42

Figure 5.4: Server CP/SCTP initialization call chains .. 45

Figure 5.5: Client CP/SCTP initialization call chains... 46

 ix

Figure 5.6: CP/SCTP sending call chains ... 47

Figure 5.7: CP/SCTP receiving call chains... 48

 x

List of tables

Table 3.1: CP Functionality/Services, based on [4] .. 15

Table 3.2: CP/SCTP API functions, based on [4] and [16] .. 17

Table 4.1: Socket API functions, based on [1].. 27

Table 4.2: Socket call files .. 30

Table 4.3: Socket call locations .. 32

Table 5.1: Mapping between CP/SCTP functions and openSSL socket calls 38

 xi

1 Introduction

TietoEnator in Karlstad develops a protocol stack, based on SS7 (Signaling System Nr 7),

used in traditional telephony networks.

A telephony network consists of two separate nets. One net is used for transmission of

speech and data. The other net is used for signaling. The signaling net delivers control

information used to setup, supervise and terminate telecommunication connections in the

transmission net.

SS7 is divided into two functional parts. One part is responsible for packing and unpacking

signaling messages. The other part is responsible for the transfer of messages. More

information about SS7 can be found in [10] and [17].

In today’s telecommunication world attempts are made to integrate the TDM-based (Time

Division Multiplexing) SS7 with data communication networks. By using appropriate

protocols in the data communication network, the integration process can be made easier. It is

advantageous to use IP (Internet Protocol [12]) at the network layer, a specific transport layer

protocol called SCTP (Stream Control Transmission Protocol [21]) and a few adaptation

protocols. The idea is to send the SS7 signaling traffic over the data communication network.

TietoEnator strives to increase the security provided for data transmission in SS7 when

used in the data communication network environment. One possible way to improve security

is to use a protocol called TLS (Transport Layer Security). The problem with this protocol is

that it reduces performance. TietoEnator wishes to implement a test version of the TLS

protocol to see if the loss of performance is acceptable.

There is an existing implementation of TLS called openSSL [11]. Instead of implementing

TLS from scratch this implementation can be used. The problem with openSSL is that it is

designed to run on top of TCP (Transmission Control Protocol [13]). In SS7 the

correspondent of TCP is SCTP (Stream Control Transmission Protocol). The parts of

openSSL that communicates with TCP needs to be adapted to SCTP. This document describes

how the adaptation of openSSL to SCTP can be done.

The work described in this document is limited to the Unix openSSL implementation, even

though the openSSL code is designed to run on other platforms as well. The design and to

 1

some extent the analysis of openSSL, described in this document, are concentrated on the

initialization of a connection and on data transmission. The encryption functionality is not

described.

To understand how the adaptation of openSSL over SCTP can be done, a description of the

individual protocols TLS and SCTP must be given. A description of network security is

needed to understand TLS. Chapter 2 describes some security issues and some methods that

provide security. The environment to which openSSL is to be adapted is described in chapter

3. This environment consists not only of SCTP but also of CP (Common Parts). CP is a

software module used in TietoEnator’s SS7 environment to encapsulate platform

dependencies. Chapter 4 contains a presentation of the TLS protocol and an analysis of its

implementation, openSSL. Some conceivable design approaches and the design selected for

the work are described in chapter 5. Problems encountered during this work are described in

chapter 6. Finally, conclusions that the authors of this document have come to during this

work are described in chapter 7.

 2

2 Network security

This chapter is a short introduction to network security. The presentation here is based on [5],

[8] and [19], where further information can be found.

When sending messages over a communication link, several security issues arise. It is

common to deal with the following security aspects:

• Confidentiality: The sender wants to keep messages unreadable for everyone except

the intended receiver.

• Message Integrity: The receiver wants to be able to detect if a message has been

changed during transmission.

• Authentication: The sender and the receiver want to be able to verify each other’s

identity.

To achieve confidentiality the sender and the receiver must agree on some method (typically

secret-key encryption) to transform messages before and after sending. Confidentiality is

discussed in section 2.1. MAC (Message Authentication Code) calculations, commonly used

to provide message integrity, are described in section 2.2. Authentication can be provided

with a method called digital signing, described in section 2.3. The consequences of

implementing security in different layers in the protocol stack are investigated in section 2.4.

2.1 Confidentiality – encryption

Encryption is the process of substituting and/or rearranging elements in a message before

sending.

Substitution means replacing each element (i.e. bit or group of bits) of a message with

another different element. So, elements are mapped into new elements. Rearranging means

changing the order of elements in a message. The substitution and rearrangement must be

done in a manner so that the receiver can reverse it. The process of reversing the substitution

and rearrangement is called decryption.

To make decryption reversible the receiver must use the same algorithm for substitution

and rearrangement as the sender, but reversed. If someone else knows this algorithm he or she

can possibly decrypt the message. To prevent this, the sender needs to be able to make the

 3

algorithm produce different outputs depending on some input parameter. If this input

parameter is not known the message will be hard to decrypt. Therefore, only the sender and

the intended receiver should know this input parameter. The input parameter is called a key.

The origin message (i.e. the message before the encryption) is called plaintext. The

encrypted message is called ciphertext. When the message has been successfully decrypted it

is the same as the origin message and called plaintext again.

2.1.1 Secret-key encryption

Secret-key encryption is a method used to prevent anyone but the sender and the intended

receiver from understanding the messages sent over a communication link.

Secret-key encryption is also called conventional encryption, symmetric encryption or

single-key encryption. In secret-key encryption the sender and receiver use the same key as

input to the encryption/decryption algorithm. If the key is kept secret it will be hard for

anyone else to decrypt the sent messages.

The encryption algorithm takes the plaintext and the secret key as input and produces a

ciphertext. The ciphertext is then transmitted over a data communication link. When the

ciphertext reaches the receiver it is decrypted using the receiver’s copy of the secret key. This

process is illustrated in Figure 2.1.

Figure 2.1: Encryption decryption process

Examples of well-known secret-key encryption algorithms are DES (Data Encryption

Standard [18]), AES (Advanced Encryption Standard [18]), RC2 (Rivest’s Cipher 2 [19]) and

RC4 (Rivest’s Cipher 4 [19]).

 4

2.1.2 Public-key encryption

Public-key encryption is often used when exchanging the secret keys, which are used in

secret-key encryption. Distribution of secret keys using public-key encryption is described in

section 2.1.2.2. Another use of public-key encryption, called digital signing, helps the

receiving end-point (i.e. computers connected to a network) to verify the identity of the

sender. Digital signing is described in section 2.3.

Public-key encryption is also called asymmetric encryption. Public-key encryption uses

two keys, one public and one private. A message encrypted with a certain public key can

(hopefully) only be decrypted with its matching private key. Consider two people, Alice and

Bob, who want to communicate. Both Alice and Bob generate their own public and private

keys. The private key is, as implied by the name, kept private. The public key is either

distributed to the other person or kept in a public register from which it can be fetched.

If Alice wants to send a message to Bob, she uses Bob’s public key to encrypt the message

and then sends it to Bob. When Bob receives the message he uses his private key to decrypt it.

2.1.2.1 Key management and certificates

There is one problem with public-key encryption. Consider Alice and Bob exchanging their

public keys. How can Alice be sure that the received public key belongs to Bob? Someone

else, let’s say Trudy, could pretend to be Bob and send Alice her public key. Later when Alice

wants to send a message to Bob she uses Trudy’s public key (believing it is Bob’s). Now,

Trudy can read this message.

The solution to this problem is called certificates, which is only briefly mentioned in this

document. Certificates consist of a public key and a user identification number. Instead of

exchanging public keys Alice and Bob exchange certificates. A trusted Certificate Authority

usually signs the certificate. More information about certificates can be found in [8].

2.1.2.2 Distribution of secret keys using public-key encryption

One problem with secret-key encryption is the distribution of the secret keys. How can Alice

and Bob select the same secret key? Alice could select the secret key and send it to Bob, but

how? She does not want to send it in plaintext and she cannot encrypt it as long as they have

not agreed on the secret key.

Public-key encryption can solve this problem. Alice can send the secret key to Bob using

public-key encryption. The following example explains how:

1. Alice encrypts the entire message using secret-key encryption and a secret key.

 5

2. Alice encrypts the secret key using Bob’s public key.

3. Alice attaches the encrypted secret key to the message and sends it to Bob.

4. Bob decrypts the secret key using his private key.

5. Bob decrypts the message using the secret key.

6. Alice and Bob can now communicate using secret-key encryption and the secret

key.

2.1.3 Where to put encryption

Encryption can be used in different protocol layers (i.e. link layer, network layer, transport

layer or application layer). The kind of security achieved depends on the choice of layers that

use encryption.

If encryption is incorporated in the link layer, it is referred to as link encryption. Link

encryption means that each node (e.g. router, switch) will encrypt frames (i.e. link layer

messages) before sending them to the next node. This provides high security, but demands a

lot of work, since each frame must be both decrypted and encrypted at each node.

The transport layer or the application layer can also handle the encryption of messages.

This placement of encryption is called end-to-end encryption. The problem with end-to-end

encryption is that a message header cannot be encrypted, because the header contains the

destination address. If the header was to be encrypted, the lower layers would not be able to

route the packet through the network. Since the header cannot be encrypted, end-to-end

encryption secures the message data, but not the traffic pattern.

When both link encryption and end-to-end encryption are used the security provided is

higher than with just one of them. End-to-end encryption secures the message data and link

encryption secures the traffic pattern. The packet will be secured during the entire trip, except

while it is in the memory of a switch or router where the header (traffic pattern) is not

secured.

2.2 Message integrity – MAC

MAC (Message Authentication Code) calculations is a common way to provide message

integrity. If Alice wants to send a message to Bob she calculates a MAC using the message

itself together with the secret key as input to a hashing function. She then sends the MAC

along with the message. When Bob receives the message he calculates his own MAC using

the message and his copy of the secret key. If the MAC he calculated matches the one Alice

 6

sent along with the message he assumes that the message has not been altered during

transmission.

If an intruder, let’s say Trudy, alters the message during transmission she would probably

not be able to create the correct MAC for the altered message, since she does not have the

secret key.

Examples of well-known MAC calculation algorithms are MD5 (Message Digest Algorithm 5

[9]) and SHA-1 (Secure Hash Algorithm [9]).

2.3 Authentication – digital signing

Digital signing uses public-key encryption to verify the identity of the sender. The sender,

let’s say Alice, encrypts the message using her own private key. The receiver, Bob, can then

verify that the message comes from Alice by decrypting it with Alice’s public key.

Digital signing does not provide the same kind of security as normal public-key encryption

or secret-key encryption. A signed message can be read by anyone who knows the sender’s

public key. Assuming that the origin of the public keys can be trusted, digital signing simply

lets the receiver verify the sender of the message.

2.4 Where to put security

Network security must be incorporated in a protocol. Some possible placements of this

protocol are in the application layer (e.g. Kerberos [24], S/MIME [14][15], PGP [6], SET [7]),

the transport layer (e.g. TLS [1]) and the network layer (e.g. IPSec [23]). In this section

transport layer security and application layer security will be discussed. Note the difference

between this section and section 2.1.3 (Where to put encryption). This section discusses the

entire security concept (i.e. confidentiality/encryption, message integrity and authentication)

whereas section 2.1.3 discusses encryption only.

Transport layer security means that security is incorporated in the transport layer protocol.
Security can also be placed in a new protocol (e.g. TLS) on top of the transport protocol as a

part of the transport protocol suite, as shown in Figure 2.2. Since the new protocol is a part of

the transport protocol suite, it is transparent to the application protocol. This means that the

application protocol does not need to make any adjustments to the new protocol.

 7

Figure 2.2: Transport layer security stack, from [19]

In application layer security, the security is incorporated in an application layer protocol, as

illustrated in Figure 2.3. The advantage with this solution is that the security can be adapted to

the needs of a specific application.

Figure 2.3: Application layer security stack, from [19]

The placement of security, interesting for this work, is the transport layer in a telephony

signaling network environment.

2.5 Chapter summary

This chapter describes secret-key encryption that is used to provide confidentiality. Public-

key encryption is a method used to distribute the secret keys used for secret-key encryption.

Encryption can be used at different layers in the protocol stack. To secure both data and

traffic pattern it is favorable to use encryption in more than one layer. Encryption at the

transport layer will secure the data while encryption at the network layer will secure the traffic

pattern.

MAC calculations are commonly used to provide message integrity. Digital signing, which

uses public-key encryption, lets the sender and the receiver authenticate each other.

 8

The methods described in this chapter (secret-key encryption, public-key encryption, MAC

calculations and digital signing) are used by the TLS protocol to provide basic network

security. TLS and openSSL (i.e. a TLS implementation) are described in chapter 4.

 9

3 Analysis of existing environment

This chapter describes the SS7 environment developed by TietoEnator into which openSSL is

to be incorporated.

TietoEnator uses a transport layer protocol called SCTP (Stream Control Transmission

Protocol). The general presentation of SCTP in section 3.1 is based on [22]. A more detailed

specification of SCTP can be found at [21].

In TietoEnator’s SS7 implementation, communication with SCTP cannot be done directly.

It must be done via another software module called CP (Common Parts). CP encapsulates

platform dependencies, which helps to provide platform independent user programs (e.g.

openSSL). An overview of the CP/SCTP implementation at TietoEnator, based on [4] and

[16], is given in section 3.2.

3.1 Stream Control Transmission Protocol (SCTP) – general information

SCTP is a transport layer protocol that is used in TietoEnator’s SS7 implementation.

SCTP is capable of delivering messages in strict order or with no respect to order (within

streams). Streams and other SCTP concepts are described in section 3.1.1.

SCTP allows the user to specify one or more destination addresses for the same end-point

(multi-homing). The different destination addresses may have different network paths leading

to them. If there is a failure on the path leading to one destination address, SCTP can redirect

messages to another destination address (path selection). Multi-homing, path-selection and

some other SCTP properties are described in section 3.1.2.

The SCTP initialization, data transmission and shutdown procedures are described in

section 3.1.3.

3.1.1 Concepts

The concepts association, stream and the SCTP packet format are explained in this section.

3.1.1.1 Association and stream

An association is a connection between two SCTP end-points. In one association there can be

many streams. A stream transfers the actual data and control messages between the end-

points.

 10

Within a specific stream messages are usually delivered in strict order. However, the SCTP

user can choose to bypass this service to provide a delivery where the order of messages is not

important. In this case SCTP will always deliver a message to the higher layer directly after it

is received, even if an earlier message (with lower sequence number) is yet not received.

Different streams, however, always operate independent of each other. So, message loss in

one stream does not affect any other streams.

3.1.1.2 SCTP packet format

The SCTP packet consists of a header and some chunks, as illustrated in Figure 3.1. The

chunks can be of different types. There are data chunks and control chunks. The data chunks

carry the messages from the upper layer, whereas the control chunks contain control

information used by SCTP.

Figure 3.1: SCTP packet format, from [22]

3.1.2 Properties

This section describes the SCTP properties multi-homing, path selection and congestion

control.

At the initialization the SCTP end-points exchange a list with IP destination addresses. Each

IP-address may represent an alternative path through the network. One of the IP-addresses

 11

represents the primary path that messages will take in the first place. The other IP-addresses

represent alternative paths that can be used if failure occurs at the primary path. Path selection

is only of interest if an end-point is multi-homed (i.e. can be reached via more than one IP-

address).

To test if there is failure on a path, an end-point occasionally sends a heartbeat chunk.

When the other end-point receives a heartbeat chunk it replies with a heartbeat

acknowledgement. If the first end-point does not receive a heartbeat acknowledgement within

a certain time, it assumes there is failure on the path.

Congestion control is managed for the entire association, which has a congestion window that

limits the number of bytes that may be sent without an acknowledgement.

3.1.3 Initialization, data transmission and shutdown

During the initialization some information used by the association is stored in a cookie. The

cookie is digitally signed with a MAC.

SCTP uses a four-way handshake illustrated in Figure 3.2. The handshake starts when the

client sends an INIT chunk, which the server acknowledges with an INIT ACK. The client

then sends a COOKIE ECHO, which is acknowledged with a COOKIE ACK. The four-way

handshake defends against denial of service attacks (i.e. attacks that prevent legitimate users

from using some sort of service). The cookie mechanism shields from blind attacks (i.e. an

attack where the attacker sends messages to an end-point but is not able to receive any

responses).

 12

Figure 3.2: SCTP initialization, from [22]

During transmission, data chunks and control chunks may be sent in the same packet. When

an end-point receives a data chunk it acknowledges the receipt with a SACK chunk, as shown

in Figure 3.3. The HEARTBEAT chunk is, as described in section 3.1.2, used to test if there

is any failure on the path.

Figure 3.3: SCTP data transmission, from [22]

 13

The termination is done with three messages, SHUTDOWN, SHUTDOWN ACK and

SHUTDOWN COMPLETE, as shown in Figure 3.4.

Figure 3.4: SCTP shutdown, from [22]

3.2 Common Parts (CP) and SCTP – in TietoEnator’s SS7 environment

This section describes TietoEnator’s SS7 environment to which openSSL is to be adapted.

This environment consists partly of TietoEnator’s version of SCTP. However, it is not

possible or desirable for openSSL to communicate directly with SCTP. All communication

must pass through CP (Common Parts). The reason is to achieve platform independency. So,

openSSL must communicate with SCTP via CP.

A short description of the functionality of Common Parts is given in section 3.2.1,

followed by a more detailed description of the CP/SCTP API functions in section 3.2.2. The

CP/SCTP API functions will be used by openSSL.

3.2.1 Common Parts

The main task of CP (Common Parts) is to enable SS7 to run on the different platforms used

at TietoEnator. CP isolates platform dependencies into one software module, by providing

timer handling, memory handling, communication facilities, log/trace possibilities, list

handling and interrupt handling.

Table 3.1 gives a short description of the functionality and services provided by CP.

 14

Functionality/Service Description

Common Data Types and Simple
Operations

Provides type definitions for various integer types
and some macros.

Timer Management Functionality for creating, changing and canceling
timers. CP notifies the requesting user when a timer
expires.

Extended Memory Handling Provides independent memory management.

Communication Provides platform independent communication
facilities.

System Log and Trace Provides a uniform way for logging errors and other
events.

Extended List Handling Provides functions for list operations (e.g. add an
element).

Interrupt Handling Lets users specify the actions taken at different
UNIX signals (only for the Unix platform).

Common Parts Configuration There is a configuration file that contains some CP
settings. This block reads the information in this file.

Common Parts Management This block manages the communication between the
CP user and the CP manager.

Internal Time This block manages internal time of the systems.

Table 3.1: CP Functionality/Services, based on [4]

3.2.2 CP/SCTP API functions

This section describes the CP and SCTP interface towards the upper layer (e.g. applications or

openSSL). API functions needed to set up a connection, to transfer data and to close a

connection are described briefly in Table 3.2. Other functions, not needed for this work, are

not described.

Function Description Used by

EINSS7CpRegisterMPOwner This function is used to register the message
port owner. The message port owner is simply
the ID of the CP user.

client,
server

 15

EINSS7CpRegisterRemoteCPMgmt This function sets the address of the process
that uses CP. This address consists of an IP
address and a port number. This function must
also be provided with the CP manager ID. The
CP manager handles the communication
between the CP user and CP.

client,
server

EINSS7CpMsgInitiate This function initializes communication
facilities and configures CP. It must be called
before any of the other Msg-functions.

client,
server

EINSS7CpMsgPortOpen This function is used to set the reusability of
message buffers. A message buffer is the
memory location where a message is stored
before sending. In a reusable message buffer it
is possible to read the content of a message
after the message has been sent. Most
important, when this function has been called
it is possible to set up a connection to another
user.

client,
server

EINSS7_00SctpRegFunc This function is used to specify the functions
that should be called at different events.

client,
server

EINSS7CpMsgConnInst This function sets up (or reestablishes) a
connection between two users. It enables these
users to start sending messages to each other.
Note that this is not the function used by a
client to connect to a server. For this purpose
‘EINSS7_00SctpAssociateReq’ is used.
However, both the server and the client need to
call this function.

client,
server

EINSS7_00SctpBindReq This function is used to register a new SCTP
user.

client,
server

MsgRecvEvent This function is used to receive messages and
other events like errors and alerts. Note that a
CP message contains a SCTP function call.
‘EINSS7_00SctpHandleInd’ should be used to
interpret the CP message.

client,
server

MsgSend This function is used to send messages. client,
server

EINSS7_00SctpHandleInd This function is called by the SCTP user to
interpret the messages received by
‘MsgRecvEvent’.

client,
server

 16

EINSS7_00SctpInitializeReq This function is used to register a set of IP-
addresses and a port for the local end-point.
The set of IP-addresses is used for the SCTP
multi-homing functionality (see section 3.1.2
for more details).

client,
server

EINSS7_00SctpAssociateReq This function is used by the SCTP client to
initiate an association to another end-point.
The other end-point is specified by an IP-
address and a port number.

client

EINSS7_00SctpSetPrimaryReq This function allows the SCTP user to specify
a primary destination IP-address (see section
3.1.2 for more details).

client,
server

EINSS7_UnbindReq This function deregisters an SCTP user. client,
server

EINSS7CpRelInst This function closes the connection set up by
‘EINSS7CpMsgConnInst’.

client,
server

MsgClose This function disables the communication
facilities for a specific CP user.

client,
server

MsgExit This function disables communication
facilities for all CP users.

client,
server

Table 3.2: CP/SCTP API functions, based on [4] and [16]

Figure 3.5 shows how client and server use the CP/SCTP API. The first six functions, called

by both client and server, initialize CP. Next both client and server register as SCTP users

with ‘EINSS7_00SctpBindReq’. ‘EINSS7_00SctpInitializeReq’ registers the IP-addresses

and port numbers for the local end-points. All request functions (ending with ‘Req’) are

followed by an ‘MsgRecvEvent’ and an ‘EINSS7_00SctpHandleInd’, which are used to

confirm that the request function succeeded. The client calls ‘EINSS7_00SctpAssociateReq’

to set up an association with the server. The server uses ‘MsgRecvEvent’ to listen for the

association initiated by the client. The ‘EINSS7_00SctpHandleInd’, called next, is used to

send an association confirmation to the client. The second pair of ‘MsgRecvEvent’ and

‘EINSS7_00SctpHandleInd’ that follows the ‘EINSS7_00SctpAssociateReq’, called by the

server, is used to receive the association confirmation from the server. At this stage, the client

and the server are able to exchange messages. ‘EINSS7_UnbindReq’, ‘EINSS7CpRelInst’,

‘MsgClose’ and ‘MsgExit’ are used to close connections and free resources.

 17

Figure 3.5: Client and server CP/SCTP API usage

 18

3.3 Chapter summary

This chapter starts with a general description of SCTP, which is the transport layer protocol

used in TietoEnator’s SS7 environment. SCTP provides multi-homing, which gives the user

an opportunity to select multiple destination IP-addresses that messages can be delivered to.

The user can prioritize these IP-addresses by arranging them in a specific order. SCTP will

deliver messages to the first IP-address in the first place, the second IP-address if there is

failure on the path to the first one and so on. This is called path selection. SCTP also provides

congestion control. SCTP uses a four-way handshake that together with a cookie mechanism

shields from denial of service attacks and blind attacks.

In TietoEnator’s SS7 implementation communication with SCTP cannot be done directly.

Communication with SCTP must pass through CP (Common Parts). The main task of CP is to

provide platform independency, which enables SCTP user applications to run on different

platforms. This chapter gives a short description of the CP/SCTP API functions that will be

used by openSSL.

Chapter 4 will describe the environment that is to be adapted to the existing environment

described in this chapter.

 19

4 Analysis of added environment

This chapter describes TLS and openSSL, a TLS implementation, which is to be adapted to

the TietoEnator SS7 environment.

TLS is an attempt to provide confidentiality, message integrity and to let end-points

authenticate each other. TLS uses the encryption, MAC calculations and message

authentication, discussed in chapter 2, to provide this security. A general description of the

TLS implementation is given in section 4.1. This description is based on [1] and [19].

Originally openSSL was designed to run on top of TCP. It communicates with TCP via the

socket API. Therefore a short description of the socket API, based on [1], will be given in

section 4.2. Thereafter an analysis of the openSSL code, based on [11], is given in section 4.3.

More information about the socket API can be found in [20].

4.1 Transport Layer Security (TLS) – general information

TLS is a protocol that provides confidentiality (i.e. only sender and receiver can read the

messages sent), message integrity (i.e. receiver can detect if a message has been altered) and

authentication (i.e. sender and receiver can verify identity of each other). TLS is used at the

transport layer, on top of some transport layer protocol (e.g. TCP or SCTP). TLS becomes a

part of the transport layer suite, which gives the application layer the freedom to ignore the

presence of TLS.

4.1.1 Architecture

TLS consists of a basic layer called the TLS record protocol and three higher layers. The

higher layers are the handshake protocol, the change cipher protocol and the alert protocol.

The TLS architecture is shown in Figure 4.1.

 20

Figure 4.1: TLS architecture, from [19]

There are two important TLS concepts, session- and connection state, which need describing

before presenting the different sub protocols of TLS.

A session is an association between a client and a server. The handshake protocol is used to

negotiate the parameters in the session state. The session state can be shared among many

connections.

The session state contains the end-points certificates. It specifies the compression method,

the cipher specification (i.e. algorithms for encryption and MAC calculations). The session

state also contains the master secret (i.e. a combination of symbols), which is used to generate

the encryption and MAC keys. A more detailed specification of the session state is given in

appendix B.1.

A connection is the working environment of the TLS record protocol. The connection state

contains the keys needed for MAC calculations and encryption of messages. These keys are

generated from the master secret in the session state. The connection state also maintains

sequence numbers for sent and received messages. More detailed information about the

parameters in the connection state can be found in appendix B.2.

Each end-point maintains one connection state for reading and one for writing messages.

For both reading and writing each end-point maintains a current and a pending state. The

current state is the one currently used whereas the pending state is the state that will be used

when the security parameters are renegotiated.

4.1.2 TLS record protocol

The TLS record protocol provides basic security (i.e. confidentiality and message integrity)

for the TLS handshake protocol and other higher layer protocols.

 21

A TLS message consists of a header, some application data and a MAC. The header specifies

the content type (i.e. the higher layer protocol), the TLS version and the length of the

message. A more detailed description of the TLS record protocol header can be found in

appendix B.3. The data and the MAC are encrypted, but the header is not. The TLS record

format is shown in Figure 4.2.

Figure 4.2: TLS record format, from [19]

4.1.2.1 What to do before sending and after receiving a message

When an upper layer message is delivered to the TLS protocol there are a few operations that

TLS needs to do with the message before delivering it to the lower layer protocol (e.g. TCP or

SCTP).

1. Fragmentation: Upper layer messages are fragmented into blocks of 214 bytes or

less.

2. Compression: The blocks are optionally compressed. As default, compression is not

used in TLS. (The compression may not increase the content length with more than

210 (1024) bytes.)

3. Add MAC: The MAC is calculated using a hash function (e.g. MD5 or SHA-1),

the MAC secret and the message itself.

4. Encryption: The message is encrypted using the encryption algorithm (e.g. RC2,

DES, RC4) defined in the session state (cipher specification) and the secret key.

(Encryption may not increase the message content length with more than 210 (1024)

bytes. So, the total message content length may not exceed 214 + 2048 bytes.)

 22

5. Append TLS record header: Information about content type (i.e. higher layer

protocol), TLS version and the length of the compressed data is added to the

fragment.

When a lower layer message is delivered to TLS, TLS needs to do the following operations

on the message before delivering it to the upper layer:

1. Remove TLS record header.

2. Decrypt the message.

3. Verify message integrity (using the MAC).

4. Decompress the message (if compression is used).

5. Reassemble the message.

4.1.3 TLS handshake protocol

The handshake protocol is used to authenticate the client and the server and to negotiate the

encryption algorithms, the MAC algorithm and the encryption keys.

The encryption- and MAC algorithm and the encryption keys will be referred to as a set of

security parameters. The handshake protocol defines one set of security parameters called the

current state. These security parameters are used by the record layer. The handshake protocol

also defines one or more sets of security parameters called the pending state. The pending

state is simply a list of future security parameters.

A TLS handshake message consists of three parts, as illustrated in Figure 4.3. The first field

specifies the type of handshake message sent (e.g. client_hello, server_hello and so on). The

next field contains the length of the message content (i.e. the length of the content field). The

content field depends on the message type. A detailed description of the different message

types is given in appendix B.4.

Figure 4.3: Handshake message format, from [19]

 23

4.1.4 TLS change cipher protocol

The change cipher spec protocol is used to change the pending state into the current state. The

change of security parameters once in a while gives an intruder less time to discover

algorithms or keys.

A change cipher spec message always looks the same. It consists of a single byte with

value 1. The change cipher spec message format is shown in Figure 4.4.

Figure 4.4: Change cipher spec message format, from [19]

4.1.5 TLS alert protocol

The alert protocol is used to report errors and warnings. The alert message consists of two

fields, shown in Figure 4.5. The level field specifies the severity of the message. The alert can

be a warning or a fatality. If the alert is a warning the receiver may determinate weather to

terminate or continue the connection. If the alert is fatal the connection must be terminated.

Other connections in the session may continue when a fatal alert is received, but no new

connections may be initiated. The alert field is a description of the alert. The different alerts

are listed in appendix B.5.

Figure 4.5: Alert message format, from [19]

4.1.6 Connection process

The setup of a TLS connection can be divided into four phases. The setup is shown in Figure

4.6. Asterix (*) indicates that a message is optional.

 24

Figure 4.6: TLS connection setup, from [1]

Phase one establishes security capabilities. During the first phase the following messages are

sent:

1. Server sends a hello request message. When a connection is established for the first

time this message is not sent (since it is the client who initiates the connection).

Later, however, the server can send this message when it is time to renegotiate the

security parameters.

2. Client sends client hello message.

3. Server sends server hello message.

Phase two authenticates the server and exchanges keys. The following messages are sent

during this phase:

4. Server sends its certificate message (optional).

5. Server sends key exchange message (optional).

6. Server sends certificate request message (optional).

7. Server sends server hello done.

Phase three authenticates the client and exchanges keys. The following messages are sent:

8. Client sends its certificate message (optional).

 25

9. Client sends key exchange message.

10. Client sends certificate verify (optional).

Phase four finishes the negotiation of security parameters by sending these messages:

11. Client sends change cipher spec message.

12. Client sends a finished message.

13. Server sends change cipher spec message.

14. Server sends a finished message.

4.2 Socket API

This section will describe the important functions in the socket API. The socket API is used

by openSSL to communicate with TCP. The socket calls are of great interest when adapting

openSSL to SCTP. Table 4.1 gives a short description of the most important socket API

functions.

Socket call Description

socket ‘socket’ must be called by both client and server. ‘socket’ lets the user
specify the protocol (TCP, UDP or IP) to be used. The ‘socket’ call
returns a file descriptor, called a socket, which will be used in the other
socket calls.

bind ‘bind’ is used only by the server. ‘bind’ lets the server associate the socket
with a specific port on which it intends to listen.

listen ‘listen’ lets the server listen for incoming connections. When the server
calls ‘listen’, execution will pause until a client connects to the server.
When ‘listen’ returns control the server may accept the incoming
connection, if no errors occurred.

connect ‘connect’ is used by the client to connect to a server. The client must
specify the address of the server and the port to connect to. The server
must listen to this port.

accept The server uses ‘accept’ to accept the connection initiated by the client’s
call to ‘connect’. ‘accept’ should only be called when ‘listen’ has returned
control and no errors have occurred. ‘accept’ will return a new socket (file
descriptor) that will handle the new connection. The old socket is usually
used to continue listening to the original port. The new socket can be used
for sending and receiving data.

write ‘write’ is used by the client and the server to send messages to each other.

 26

read ‘read’ is used by the client and the server to receive messages from each
other.

close ‘close’ is used by the client and the server to disable a socket (file
descriptor) for the process that makes the call. ‘close’ disables the process
from sending or receiving data via this socket. An attempt to send queued
data will be made before the socket is disabled. If the socket is shared with
another process, the other process may still use the socket.

shutdown ‘shutdown’ is used by the client and the server to free all resources held by
the socket (file descriptor). ‘shutdown’ disables the socket for all
processes.

Table 4.1: Socket API functions, based on [1]

The client and the server use the socket API in different ways, as illustrated in Figure 4.7. The

server calls ‘socket’, ‘bind’, ‘listen’ to start listening for upcoming connections and ‘accept’

to accept them. The client calls ‘socket’ and ‘connect’ to connect to a server. Both client and

server then use ‘write’ and ‘read’ to send and receive messages. Later they both use close or

shutdown to terminate the connection.

 27

Figure 4.7: Client and server Socket API usage, based on [3]

4.3 openSSL – an existing implementation of TLS

This section describes the parts of openSSL that are of importance for this work. The

openSSL code is designed to run on top of TCP (Transmission Control Protocol). Since

TietoEnator’s SS7 implementation uses CP and SCTP instead of TCP this section will

concentrate on the parts of openSSL that communicate with TCP. These parts need to be

changed in order to get openSSL to run on top of CP and SCTP.

 28

Section 4.3.1 describes the file and folder structure in openSSL. An overview of the files

that handle TCP communication is given in section 4.3.2. Section 4.3.3 explains how these

files, and the functions in them, are used by openSSL client and server applications.

4.3.1 Interesting files and folders in openSSL

The openSSL code consists of numerous folders and files as shown in appendix C. Some of

these files and folders are more interesting than others. Files that need consideration or even

modification when adapting openSSL to CP and SCTP are considered very interesting.

Here is a summary of the interesting files and folders:

• openssl-0.9.7c (root folder)

o Makefile: This Makefile builds the openSSL library. There are several

Makefiles in the openSSL project, one for each subfolder that contains

source code files. An important task of the root Makefile is to start and

coordinate the work of the other Makefiles.

o e_os.h: contains a few macros for reading and writing to a socket.

• openssl-0.9.7c/apps

o s_socket.c: handles the TCP initialization for both client and server. This

file contains a lot of socket calls.

o s_server.c: used a lot when openSSL acts as a server.

o s_client.c: used a lot when openSSL acts as a client.

o app_rand.c: uses other files that make socket calls.

• openssl-0.9.7c/crypto/bio: Since this folder is under crypto (cryptography) it should

(and probably does) have some connection to cryptographic computations. Since

BIO stands for basic input output, the folder, ‘bio’, should contain the input and

output functionality, like socket calls, needed for encryption. It should be noted that

the openSSL code analysis concerning this folder is incomplete.

o b_sock.c: contains a lot of TCP initialization functionality.

o bss_acpt.c: contains a few socket calls.

o bss_conn.c: contains a few socket calls.

o bss_sock.c: contains functionality for reading and writing to sockets.

• openssl-0.9.7c/crypto/rand

o rand_egd.c: contains some socket calls.

o rand_unix.c: uses other files that make socket calls.

 29

• openssl-0.9.7c/crypto/threads

o mttest.c: uses other files that make socket calls.

• openssl-0.9.7c/crypto/x509

o x509_lu.c: contains some socket calls.

• openssl-0.9.7c/ssl: This folder contains files that constitute the openSSL interface

to user applications (at the application layer).

o bio_ssl.c: uses other files that make socket calls.

o ssl_lib.c: contains important library functions.

o ssl_algs.c: contains the function used to initiate the library.

• openssl-0.9.7c/test

o ssltest.c: uses other files to make socket calls.

4.3.2 Socket call files

This section lists the files that contain communication with TCP. Unfortunately there are

several files spread out in the openSSL folder structure. The ideal situation would have been

if all TCP communication were located to one folder with one or a few files.

Table 4.2 lists the files that contain socket calls (i.e. communicates with TCP). Socket calls

in parenthesis are defined as macros in ‘e_os.h’ (e.g. closesocket is replaced with close by the

preprocessor). In the source code the names within parenthesis will be found. Table 4.2 is not

complete. Some files with socket calls have been left out because they are demos, test

applications or because they are made for other platforms than Unix.

File Socket calls

./e_os.h (macros for) recv, send, shutdown, socket, close

./apps/s_socket.c accept, bind, connect, listen, setsocketopt, socket

./crypto/bio/b_sock.c accept, bind, connect, getsockopt, listen, setsockopt,
socket, close (closesocket)

./crypto/bio/bss_acpt.c shutdown, socket, close (closesocket), ioctl (ioctlsocket)

./crypto/bio/bss_conn.c connect, setsockopt, socket, read (readsocket), write
(writesocket), close (closesocket)

./crypto/bio/bss_sock.c read (readsocket), write (writesocket)

./crypto/rand/rand_egd.c connect, socket

./crypto/x509/x509_lu.c shutdown

Table 4.2: Socket call files

 30

Table 4.3 lists the location (i.e. file and function that makes the call) for each socket call. The

numbers within parenthesis represent the order in which the socket calls are made for a

specific location (function).

File Socket call Location (defined in function)

./e_os.h recv

send

shutdown

socket

(defined as a macro)

(defined as a macro)

(defined as a macro)

(defined as a macro)

./apps/s_socket.c accept

bind

connect

listen

setsockopt

setsockopt

socket

socket

do_accept

init_server_long

init_client_ip

init_server_long

init_client_ip

init_server_long

init_client_ip

init_client_long

./crypto/bio/b_sock.c accept

bind (3)

connect (5)

getsockopt

listen (6)

setsockopt (2)

setsockopt

socket (1), (4)

shutdown (closesocket)

ioctl (ioctlsocket)

BIO_accept

BIO_get_accept_socket

BIO_get_accept_socket

BIO_sock_error

BIO_get_accept_socket

BIO_get_accept_socket

BIO_set_tcp_ndelay

BIO_get_accept_socket

acpt_close_socket

BIO_ioctl_socket

./crypto/bio/bss_acpt.c shutdown (closesocket) acpt_close_socket

 31

./crypto/bio/bss_conn.c connect (3)

setsockopt (2)

socket (1)

read (readsocket)

write (writesocket)

shutdown (closesocket)

conn_state

conn_state

conn_state

conn_read

conn_write

conn_close_socket

./crypto/bio/bss_sock.c read (readsocket)

write (writesocket)

sock_read

sock_write

./crypto/rand/rand_egd.c connect (2)

socket (1)

RAND_query_egd_bytes

RAND_query_egd_bytes

./crypto/x509/x509_lu.c shutdown X509_LOOKUP_shutdown

Table 4.3: Socket call locations

4.3.3 Socket call chains

This section describes the different function call sequences that end with socket calls. The

idea is to give a better understanding of how the communication with TCP is done and which

socket call locations that are of importance.

4.3.3.1 Server socket call chains

Figure 4.8 displays the socket calls initiated by the server in the ‘apps’ folder. The server

application calls ‘do_server’ to set up a TCP connection. ‘do_server’ uses ‘init_server’ to

create a socket, set some connection properties, bind the socket to a port and start listening for

upcoming connections. The socket calls ‘socket’, ‘bind’ and ‘listen’ are used for this purpose.

Next ‘do_server’ calls ‘do_accept’ to accept an upcoming connection. In the end this is done

with the socket call ‘accept’.

 32

Figure 4.8: Server initialization socket call chains

4.3.3.2 Client socket call chains

Figure 4.9 illustrates the socket call chains initiated by the client in the ‘apps’ folder. The

client creates a socket, sets some connection properties and connects to the server, by calling

‘socket’, ‘setsockopt’ and ‘connect’ respectively.

Figure 4.9: Client initialization socket call chains

4.3.3.3 Send and receive socket call chains

Figure 4.10 below illustrates the socket call chains used when sending messages. Examples of

applications and functions that send messages are the server and the client in the ‘apps’ folder

and the openSSL library function ‘ssl_write’ in ‘bio_ssl.c’. The actual sending is done with

the function ‘write’.

 33

Figure 4.10: Sending socket call chains

Figure 4.11 shows the socket call chains used when receiving messages. The receiving is done

pretty much by the same files that send messages. The client and server in the ‘apps’ folder

receive messages and so does the openSSL library function ‘ssl_read’. The actual receiving is

done with the function ‘read’.

Figure 4.11: Receiving socket call chains

 34

4.3.3.4 Cryptographic socket call chains

This section describes the socket call chains, (probably) used by cryptographic functionality.

The code analysis done for these call chains is not complete and does not give much

understanding of how these call chains work or when they are used. However, a brief

description of them is included anyway.

Figure 4.12 shows the socket call in the file ‘b_sock.c’.

Figure 4.12: ‘b_sock.c’ socket call chain

Figure 4.13 illustrates the socket calls initiated by the file ‘bss_acpt.c’.

Figure 4.13: ‘bss_acpt.c’ socket call chains

Figure 4.14 displays the socket calls initiated by the file ‘bss_conn.c’.

 35

Figure 4.14: ‘bss_conn.c’ socket call chains

4.4 Chapter summary

This chapter describes TLS, which is a security protocol placed above the transport layer

protocol. TLS becomes a part of the transport layer so that the application layer does not

notice the presence of TLS. TLS consists of four sub protocols. The record layer protocol

provides the basic security for the other three protocols and for the data transmission. The

security parameters used by the record layer protocol are negotiated using the handshake

protocol. The change cipher spec protocol is used to signal that it is time to change these

security parameters. Error conditions are reported using the alert protocol.

TLS strives to guaranty confidentiality, message integrity and authentication between

client and server.

The TLS implementation, openSSL, used for this work communicates with TCP via the

platforms socket API. This chapter gives a short description of the socket API.

The end of this chapter analyzes openSSL. The interesting parts of openSSL are the ones

communicating with TCP (i.e. the socket API). These parts need to be modified in order to

adapt openSSL to CP/SCTP at TietoEnator. The openSSL connection is set up from the files

‘s_server.c’, ‘s_client.c’ and ‘s_socket.c’. Data transmission is handled in ‘ssl_lib.c’.

 36

The knowledge about openSSL, given in this chapter, together with the knowledge about

TietoEnator’s SS7 environment, given in chapter 3, lead to the openSSL over CP/SCTP

design, described in chapter 5.

 37

5 Design of openSSL over CP/SCTP

This chapter describes how openSSL can be adapted to TietoEnator’s SS7 environment. Since

openSSL was originally implemented to run on top of TCP, the adaptation of openSSL to

CP/SCTP is the process of translating the TCP socket calls to CP/SCTP API functions.

Section 5.1 discusses some different approaches to the adaptation of openSSL to CP/SCTP.

The approach selected for this work is described in section 5.2.

5.1 Design considerations

This section describes different design approaches, which possibly can be used to adapt

openSSL to TietoEnator’s SS7 implementation. Independent of the design approach selected

for this work, an understanding of how socket calls map to CP/SCTP calls is needed. An

attempt to carry out this mapping is shown in Table 5.1. Remember the CP/SCTP API

functions from section 3.2.2.

CP/SCTP function Socket call

EINSS7CpRegisterMPOwner socket

EINSS7CpRegisterRemoteCPMgmt

EINSS7CpMsgInitInitiate

EINSS7CpMsgPortOpen

EINSS7_00SctpRegFunc listen, accept

EINSS7CpMsgConnInst

EINSS7_00SctpBindReq bind

MsgRecvEvent listen, accept, recv

MsgSend send

EINSS7_00SctpHandleInd

EINSS7_00SctpInitializeReq

EINSS7_00SctpAssociateReq connect

EINSS7_00SctpSetPrimaryReq

Table 5.1: Mapping between CP/SCTP functions and openSSL socket calls

 38

There are a few problems with this mapping:

1. Some CP/SCTP API functions have no corresponding socket calls. This is not

necessarily a problem, but it still needs to be considered.

2. ‘EINSS7_00SctpBindReq’ maps to ‘bind’. In CP/SCTP both the client and the server

need to do an ‘EINSS7_00SctpBindReq’ whereas with the socket API only the server

should do a ‘bind’.

3. ‘EINSS7_00SctpRegFunc’ and ‘MsgRecvEvent’ map to ‘listen’ and ‘accept’. In the

socket API the server calls ‘listen’ in order to listen for an upcoming connection.

When the client connects to the server, the server calls ‘accept’ to accept the

connection. In CP/SCTP this is handled differently. CP/SCTP has an event handling

system. The function ‘EINSS7_00SctpRegFunc’ is used to specify the functions that

should be called when different events occur. So, the server must implement a

function that handles the accepting of a connection and register this function with

‘EINSS7_00SctpRegFunc’. Then ‘MsgRecvEvent’ is called to listen for upcoming

connections. When the client connects to the server, CP will call the function specified

with ‘EINSS7_00SctpRegFunc’.

5.1.1 Translation of each socket call into a CP/SCTP API function call

This design approach involves replacing each socket call (e.g. socket, bind, listen, connect

and accept) with its corresponding CP/SCTP call. This approach is illustrated in Figure 5.1.

The words ‘socket’, ‘bind’, ‘listen’ and so on represents calls to the socket API. Ellipses mark

code locations that need modifications. The question marks represent the new CP/SCTP

function calls.

 39

Figure 5.1: Translation of each socket call into a CP/SCTP API function call

One advantage with this design approach is the ease with which new openSSL versions can

be adapted to CP/SCTP. At the arrival of a new openSSL version, all that needs doing is

replacing each socket call with its corresponding CP/SCTP function. Another advantage with

this approach is that it is easy to implement, since it does not require much understanding of

the openSSL code. Most important is that this approach saves time and money.

The disadvantage with this approach is that it does not work, because of the problems

described in section 5.1. Problem 1 could be solved without too much modification. However,

problem 2 results in only the openSSL server calling ‘EINSS7_00SctpBindReq’ even though

the openSSL client also needs to make this call. The ‘bind’ and ‘accept’ calls in openSSL

need to be handled differently with CP/SCTP, because of problem 3.

5.1.2 Create a translator between the socket calls and the CP/SCTP API

This design approach involves creating new implementations of all socket calls, where each

socket call implementation translates the original socket call functionality into the

corresponding CP/SCTP API function or functions. The result of implementing this design is

 40

a socket-CP/SCTP translating software module. Figure 5.2 is an illustration of this design

approach.

Figure 5.2: Create a translator between the socket calls and the CP/SCTP API

The following aspects need to be considered for this design approach:

1. The openSSL code contains a lot of includes to the h-file ‘socket.h’, which gives

access to the socket library. These includes need to be replaced by a new h-file

containing the definitions of the socket CP/SCTP translating functions.

2. Problem 2 in section 5.1 concerning the ‘EINSS7_00SctpBindReq’ to ‘bind’

mapping needs special treatment. Since both the SCTP client and server need to

call ‘EINSS7_00SctpBindReq’ it should probably not be done in the translation of

‘bind’ since ‘bind’ is only called by the openSSL server.

 41

3. Problem 3 in section 5.1 concerning the mapping between the socket functions

‘listen’ and ‘accept’ and the CP/SCTP functions ‘EINSS7_00SctpRegFunc’ and

‘MsgRecvEvent’ also needs a special solution. Clearly the translator needs to be

fairly intelligent. A state (i.e. memory) is probably a good start.

One advantage with this design approach is that it requires only small modifications of a new

openSSL version. However, this approach demands much understanding the socket API and

the CP/SCTP API. The implementation of this design will be difficult and requires much time

and money, but needs to be done only once.

5.1.3 Rewriting the parts of openSSL that communicate with the socket API

This design approach involves modifying the parts of openSSL that communicates with the

socket API. For example, the initialization of the openSSL server illustrated in Figure 4.8

needs a complete rewriting of the function ‘do_server’. This design approach is illustrated in

Figure 5.3.

Figure 5.3: Rewriting the parts of openSSL that communicate with the socket API

 42

There is no real advantage with this design approach except that it is viable. It is just a

question of how extensive the rewriting will be. One disadvantage is that it requires a lot of

understanding of the openSSL code, which implies that the implementation will be difficult.

Another big problem appears at the arrival of a new openSSL version. Even though the new

openSSL code might be similar to the one used and the understanding of the code comes easy,

the entire implementation work needs to be redone. Both the initial design and the

maintenance of the code (at new openSSL releases) require lot of time and money.

5.2 Selected design

Section 5.1 describes some different design approaches to the adaptation of openSSL to

TietoEnator’s SS7 implementation. The first approach, ‘Translation of each socket call into a

CP/SCTP API function call’, described in section 5.1.1 is preferable for a test version of this

work, because of its fast implementation. The second approach, ‘Create a translator between

the socket calls and the CP/SCTP API’, described in section 5.1.2 is preferable for the final

production version of this work, because of its simple maintenance. Since the first approach is

impossible to implement the second approach or the third one, ‘Rewriting the parts of

openSSL that communicate with the socket API’ presented in section 5.1.3, must be selected

for this work. In the initial stages the third approach requires less work than the second

approach does. Therefore the third approach is more desirable for a test version. Consequently

design approach three, ‘Rewriting the parts of openSSL that communicate with the socket

API’, is selected for this work.

The selected design is described in this section. Note that the description is limited to the

initialization parts and the data transmission, since this is what the openSSL analysis in

section 4.3 covered.

Modifications to the openSSL files and folders are described in section 5.2.1. The

initialization of the openSSL client and server are described in section 5.2.2. Section 5.2.3

describes data transmission. Note that initialization and data transmission is mainly described

by figures. The text describing the figures should be seen as a complement to them and not

vice versa. Section 5.2.4 gives an overview of the openSSL Makefiles modifications.

 43

5.2.1 File and folder structure

This section concentrates on pointing out the locations in the openSSL file and folder

structure that need altering when adapting openSSL to CP/SCTP. The entire openSSL file and

folder structure (including these modifications) can be found in appendix C.

Most important is that the folder ‘TLSoverSCTP’ should be added. The idea is that all

CP/SCTP communication should pass through files in this folder. The folder should contain

two important files. ‘TLSoverSCTP.c’ should contain function implementations for the

initialization of CP/SCTP and for data transmission via CP/SCTP. ‘TLSoverSCTP.h’ should

contain declarations for the functions in ‘TLSoverSCTP.c’.

The openSSL file that handles the TCP initialization is ‘s_socket.c’ in the ‘apps’ folder.

The initialization functionality in this file must be rewritten. It must handle the initialization

of CP/SCTP. This is done via calls to ‘TLSoverSCTP.c’.

The openSSL send and receive functionality was originally handled by the openSSL

library functions in ‘ssl_lib.c’ in the ‘ssl’ folder. This file needs to call the CP/SCTP send and

receive functions instead of the data transmission functions in the socket API. This is also

done via ‘TLSoverSCTP.c’.

5.2.2 Client and server initialization

The initialization of the openSSL server originally involves the socket API calls ‘socket’,

‘setsockopt’, ‘bind’, ‘listen’ and ‘accept’, as illustrated in Figure 4.8. A complete rewriting of

the function ‘do_server’ is needed, because of the mapping problem (3) with ‘listen’ and

‘accept’, described in section 5.1. ‘do_server’ branches off into two different functions. One

of these functions calls ‘listen’ whereas the other one calls ‘accept’. CP/SCTP handles

listening and accepting differently with the functions ‘EINSS7_00SctpRegFunc’ and

‘MsgRecvEvent’.

Instead of calling ‘init_server’ and ‘do_accept’, ‘do_server’ must call

‘TLSoverSCTP_startServer’ in ‘TLSoverSCTP.c’. This function handles the CP/SCTP

initialization, as shown in Figure 5.4. Remember the CP/SCTP API functions described in

section 3.2.2. ‘EINSS7_00SctpRegFunc’ is called to specify the functions that should handle

different events like, the receipt of a message or an upcoming connection.

‘EINSS7CpRegisterMPOwner’ is used to register the CP user.

‘EINSS7CpRegisterRemoteCPMgmt’ is used to register the CP manager, who handles the

communication between the CP user and CP. This function is also used to specify the CP

user’s process (i.e. IP-address and port number). ‘EINSS7CpMsgInitiate’ is used to initialize

 44

and configure CP. ‘EINSS7CpMsgPortOpen’ specifies how message buffers shall be used and

enables the CP user to setup a connection to another CP user. Next ‘EINSS7CpMsgConnInst’

sets up the connection to another CP user. Note that this is not the corresponding function to

the socket API’s ‘connect’ and it’s meaning is unclear to the authors of this document.

‘EINSS7CpMsgConnInst’ is still a function that the server and the client need to call. More

information about this function can be found in [4]. Next the server calls

‘EINSS7_00SctpBindReq’ to register the server as a SCTP user. ‘MsgRecvEvent’ is called to

listen for upcoming connections and other events. ‘EINSS7_00SctpHandleInd’ interprets

messages received with ‘MsgRecvEvent’. ‘EINSS7_00SctpInitializeReq’ is used to set the IP-

addresses used for the SCTP multi-homing service, described in section 3.1.2.

‘EINSS7_00SctpSetPrimaryReq’ sets the primary destination IP-address (path) used for

multi-homing.

Figure 5.4: Server CP/SCTP initialization call chains

The openSSL client initialization was originally done with the socket calls ‘socket’,

‘setsockopt’ and ‘connect’ as shown in Figure 4.9. This call chain could be rewritten from

 45

‘init_client’ or ‘init_client_ip’. To make the code structure more like the one used for the

server initialization, rewriting is done from the ‘init_client’ function.

Instead of calling ‘init_client_ip’, as done in Figure 4.9, ‘init_client’ shall call

‘TLSoverSCTP_startClient’ in ‘TLSoverSCTP.c’, as shown in Figure 5.5.

‘TLSoverSCTP_startClient’ calls the same CP/SCTP functions, as does

‘TLSoverSCTP_startServer’ in Figure 5.4. However, the client initialization requires an extra

call to ‘EINSS7_00SctpAssociateReq’, described in section 3.2.2.

‘EINSS7_00SctpAssociateReq’ sets up the association to the server.

Figure 5.5: Client CP/SCTP initialization call chains

5.2.3 Data transmission

Data sending was originally done with the ‘send’ socket call, as displayed in Figure 4.10. This

call chain may be modified so that the library function ‘SSL_write’ (via ‘sock_write’) calls

‘TLSoverSCTP_send’ in ‘TLSoverSCTP.c’, as illustrated in Figure 5.6.

‘TLSoverSCTP_send’ makes the call to the CP/SCTP API function ‘MsgSend’.

 46

Figure 5.6: CP/SCTP sending call chains

The ‘recv’ socket call originally handled the receipt of data, as shown in Figure 4.11. The

receiving call chain should be modified so that the ‘SSL_read’ function (via ‘sock_read’)

calls ‘TLSoverSCTP_recv’. ‘TLSoverSCTP_recv’ should then call the CP/SCTP API

function ‘MsgRecvEvent’. This is displayed in Figure 5.7.

 47

Figure 5.7: CP/SCTP receiving call chains

5.2.4 Makefiles

The Makefiles in openSSL handle code compilation and linking. The selected design,

‘Rewriting the parts of openSSL that communicate with the socket API’, requires some

changes in a few existing Makefiles and the adding of a new Makefile, in the ‘TLSoverSCTP’

folder.

The Makefile in the ‘TLSoverSCTP’ folder should handle the compilation of

‘TLSoverSCTP.c’. The Makefile must give this code access to the CP and SCTP libraries.

The Makefiles that need altering are the ones in the ‘apps’ folder and the ‘ssl’ folder. The

Makefiles in the ‘apps’ and ‘ssl’ folder must provide access to the header-file and the object-

files in the ‘TLSoverSCTP’ folder, since the initialization in the ‘apps’ folder and the data

transmission in the ‘ssl’ folder call functions in ‘TLSoverSCTP.c’.

5.3 Chapter summary

This chapter describes three design approaches for the adaptation of openSSL to CP/SCTP.

The first design approach, ‘Translation of each socket call into a CP/SCTP API function call’,

turns out to be impossible to implement. The second design approach, ‘Create a translator

 48

between the socket calls and the CP/SCTP API’, is suitable for the final production version of

this work. Design approach three, ‘Rewriting the parts of openSSL that communicate with the

socket API’, is the design selected for this work.

Rewriting the parts of openSSL that communicate with the socket API requires the

creation of a new folder, ‘TLSoverSCTP’, containing files functioning as a port through

which all openSSL-CP/SCTP communication must pass. Also the files ‘s_socket.c’, which

handles initialization, and ‘ssl_lib.c’, handling data transmission, must be modified. The

cryptographic functionality is not considered in this design.

 49

6 Problems

This chapter describes the problems encountered during this work.

One problem concerns the Makefiles in the openSSL code. The authors of this document have

little or almost no experience of Makefiles, especially not as complicated ones as those in

openSSL. The fact that openSSL contains multiple Makefiles, almost one in each folder, does

not make this problem any less significant. The Makefile modifications needed involves

providing some parts of the openSSL code with access to the CP and SCTP libraries. This is a

complex process that requires a lot more time than first expected.

The Makefile problem was solved with help from staff at TietoEnator. However, the way

this problem was solved is typical for a test implementation. There is probably a better and

more understandable solution. The structure in the Makefiles is not satisfactory. Since the

authors of this document have little Makefile experience and little time to get such an

experience they can’t refine this Makefile structure within the time frame of this work.

Another problem, related to openSSL, is the documentation of the code, or more correctly the

lack of documentation. Documentation within the openSSL code files, explaining difficult

code sections, is almost nonexistent. Documentation explaining the task and purpose of each

function is only found in some cases. Unfortunately, such documentation could not be found

where it was needed for this work. An overview of the functionality collected in each

openSSL folder would also have been helpful, if it had existed. The documentation problem

caused the openSSL code analysis to require much more time than expected. Because of the

lack of documentation, there is also a risk that the openSSL analysis is misleading.

The documentation problem was solved by an extensive analysis of the openSSL code.

While reading the openSSL code, the authors of this document encountered a number of

programming styles. The openSSL code is written by at least ten programmers, so there are

numerous programming styles reflected in the code. The openSSL code analysis was slowed

down, because of the frequent switching between different programming styles.

The openSSL code is written for more than one platform. The possibility to compile

openSSL on different platforms is achieved by preprocessor directives controlling what parts

 50

of the code to compile on a specific platform. The preprocessor directives make the code hard

to read, since the reader frequently must check if a specific part of the code is used or not. The

checking may involve switching to other files, which takes time and perhaps causes the

readers attention to focus on something less important than the code.

These problems where never solved. However, the analysis of the openSSL code revealed

some of the hidden openSSL code structure.

Before the actual openSSL to CP/SCTP adaptation began, a lot of studying was required.

Actually the chapters 2, 3 and 4 simply provide the knowledge needed to understand how the

design in chapter 5 could be made. The studying done for this work involved general

information about network security, the SCTP protocol and the CP/SCTP API functions, the

TLS protocol and its implementation (openSSL), the Unix socket API and finally information

about how Makefiles work.

 51

7 Conclusions

The authors of this document have come to a few conclusions concerning a possible final

production version of this work. As described in chapter 5, there are three possible design

approaches to the adaptation of openSSL to CP/SCTP. The first approach, ‘Translation of

each socket call into a CP/SCTP API function call’, is shown impossible to implement by the

openSSL code analysis in section 4.3. The second one, ‘Create a translator between the socket

calls and the CP/SCTP API’, is considered suitable for the final production version even

though it requires a lot of work in the initial stages. The third approach, ‘Rewriting the parts

of openSSL that communicate with the socket API’, is not suitable for the final production

version because it requires much work at the arrival of a new openSSL version. However, this

approach is acceptable for the test version described in this work.

During the analysis of the openSSL code the authors of this document realized that the best

way to incorporate security in the SS7 protocol stack is not necessarily to use openSSL. The

lack of documentation and the difficulty to read the openSSL code, explained in chapter 6,

may overshadow the advantages with using openSSL. However, the proposed design

approach for the final production version, ‘Create a translator between the socket calls and the

CP/SCTP API’, does not require much understanding of the openSSL code and may therefore

be used. The choice between implementing the TLS protocol from scratch and using openSSL

is not obvious.

 52

References

[1] S. Blake-Wilson, M. Nystrom, D. Hopwood, J. Mikkelsen and T. Wright, Request for
Comments: 3546 Transport Layer Security (TLS) Extensions, June 2003.

[2] Breej’s Guide to Network Programming,
http://www.ecst.csuchico.edu/~beej/guide/net/html, 2001 10 08 (2004 04 16).

[3] OH-material from the course C & Unix (DAVC18) at Karlstad University,
http://www.cs.kau.se/~ljh/CaU/course/davc18/oh/8_ipc.pdf, 2004 06 03.

[4] Common Parts Functional Specification, Ericsson, 15517-CAA 201 29 Uen AH, 2004
02 20.

[5] Cyclopedia Cryptologia, http://www.disappearing-inc.com, 2004 03 05.

[6] M. Elkins, Request for Comments: 2015 MIME Security with Pretty Good Privacy
(PGP), October 1996.

[7] Y. Kawatsura, Request for Comments: 3538 Secure Electronic Transaction (SET)
Supplement for the v1.0 Internet Open Trading Protocol (IOTP), June 2003.

[8] James F. Kurose and Keith W. Ross, Computer Networking: A Top-Down Approach
Featuring the Internet (Second Edition), Addison Wesley, 2002.

[9] Peter Loshin, Big Book of IPsec RFCs: Internet Security Architecture, Morgan
Kaufmann, February 2000.

[10] K. Morneault, R. Dantu, G. Sidebottom, B. Bidulock, J. Heitz, Request for Comments:
3331 Signaling System 7 (SS7) Message Transfer Part 2 (MTP2) – User Adaptation
Layer, September 2002.

[11] OpenSSL project, openssl-0.9.7.c.tar.gz at www.openssl.org/source, 2003 09 30.

[12] J. Postel, Request for Comments: 0791 Internet Protocol, 1981 10 01.

[13] J. Postel, Request for Comments: 0793 Transmission Control Protocol, 1981 10 01.

[14] B. Ramsdell, Ed., Request for Comments: 2632 S/MIME Version 3 Certificate
Handling, June 1999.

[15] B. Ramsdell, Ed., Request for Comments: 2633 S/MIME Version 3 Message
Specification, June 1999.

[16] SCTP IETF IETF RFC 2960 Functional Specification – API, Ericsson 155 19-CAA 901
548 Uen, 2003 06 25.

[17] G. Sidebottom, Ed., K. Morneault, Ed., J. Pastor-Balbas, Ed, Request for Comments:
3332 Signaling System 7 (SS7) Message Transfer Part 3 (MTP3) – User Adaptation
Layer (M3UA), September 2002.

[18] Gustavus J. Simmons, Contemporary Cryptology: The Science of Information Integrity,
Wiley-IEEE Computer Society Pr; 1999 01 27.

[19] William Stallings, Network Security Essentials: Applications and Standards, Source,
2000.

[20] W. Richard Stevens, Unix Network Programming, volume one, second edition, 1998.

 53

http://www.ecst.csuchico.edu/~beej/guide/net/html
http://www.disappearing-inc.com/
http://www.openssl.org/source

[21] R. Stewart, Q. Xie, K. Morneault, C. Sharp, H. Schwarzbauer, T. Taylor, I. Rytina, M.
Kalla, L. Zhang, V. Paxson, Request for Comments: 2960 Stream Control Transmission
Protocol, October 2000.

[22] Stream Control Transmission Protocol (SCTP), International Engineering Consortium
2003, http://www.iec.org/online/tutorials/sctp/index.html, 2004 02 18.

[23] R. Thayer, N. Doraswamy, R. Glenn, Request for Comments: 2411 IP Security
Document Roadmap, November 1998.

[24] T. Ts’o, Request for Comments: 2942 Telnet Authentication: Kerberos Version 5,
September 2000.

 54

http://www.iec.org/online/tutorials/sctp/index.html

A Key term dictionary

This directory explains some of the words used in this document. The words are explained

based on their meaning in this specific document. The explanations may not always be

applicable in other contexts.

API Application Programming Interface.

association A connection between two SCTP end-points. In one association

there may be many SCTP streams.

authentication Authentication enables the sender and the receiver to verify each

other’s identity.

blind attack An attack on an end-point. The attacker sends forged messages

(with faked source address) to the attacked endpoint. The attack is

blind if the attacker is not able to receive any responses from the

attacked end-point. The attacker must guess what kind of

messages to send to the attacked end-point.

block cipher A block cipher is an encryption algorithm that takes a block of

plaintext elements at a time and produces a block of ciphertext. A

block cipher allows rearrangement of elements within the block.

call chain A sequence of function calls where the first call starts the second

call and so on.

certificate A certificate consists of a public key and a user identification

number. A certificate enables an end-point to verify the source of a

public key.

certificate authority A company that publishes certificates.

chunk A piece of SCTP data or control information.

 55

ciphertext An encrypted message.

client The end-point that initiates the communication between itself and

another end-point.

compression Reducing the size of a message (or any other data) in a way that is

reversible.

confidentiality Confidentiality is achieved when messages are kept unreadable for

every one but the intended receiver.

congestion control Congestion control is used by SCTP to control the speed at which

messages are sent. If the network is congested (carries too much

traffic) the sending speed is reduced.

connection state The working environment of the TLS record protocol. The

connection state contains the encryption keys etc.

cookie A file containing information about an SCTP end-point.

CP Common Parts. A software module developed by TietoEnator. The

most important task of CP is to hide platform dependencies. CP

gives programmers a good base to make platform independent

network programs for TietoEnator’s SS7 environment.

decryption The reverse of encryption.

denial of service attack The goal of this attack is to prevent legitimate users from using

some service provided. This is usually done by attacking the

machine(s) providing this service. A common approach is to

consume all resources in the machine or simply to make the

machine crash.

digital signing A method used to verify the source of a message.

encryption The process of replacing and rearranging elements in a message.

 56

end-point A computer connected to a network. Sometimes the word end-

point is used in the sense of a process or a certain protocol on that

computer.

fragmentation The process of dividing a message into smaller parts before

sending it.

frame The messages at the link layer are called frames.

header A piece of a message that among other things contains the

destination address and the source address.

IP Internet Protocol. The most common protocol used in the network

layer.

IP-address An address to a network layer node.

key An input parameter to an encryption algorithm.

MAC Message Authentication Code. MAC calculations are used to

discover if a message has been altered during its transmission.

Makefile A file that manages the compilation and linking of a program.

master secret A combination of symbols used to derive encryption keys.

message integrity Message Integrity is achieved when the receiver of a message is

able to detect if the message has been changed during

transmission.

multi-homing Multi-homing is a SCTP property that allows the SCTP user to

specify and prioritize multiple destination IP-addresses for the

same end-point. If there is failure on the path to the first IP-address

messages will be delivered to the second one (see path selection).

node E.g. a switch, a router or an end-point.

 57

openSSL A software that implements the TLS protocol. The code is

available for anyone to use and modify.

path A specific combination of links and nodes in a network.

path selection SCTP path selection handles the choosing of an appropriate

destination IP-address (path) among those addresses specified by

the SCTP user (see multi-homing). The selection of another IP-

address is made if failure occurs on the path to the currently used

address.

peer See end-point

pending state E.g. encryption keys that will be used when the TLS security

parameters are renegotiated.

plaintext A message that has not yet been encrypted or a message that has

been encrypted and decrypted back to the original message.

protocol A set of rules for data communication between two end-points.

protocol stack A number of protocols used together.

public-key encryption A method commonly used to distribute the secret keys used for

secret-key encryption.

receiver window SCTP uses a receiver window to keep track of how much memory

space there is available for incoming messages.

SCTP Stream Control Transmission Protocol. A transport layer protocol

that provides multi-homing, path selection, independent data

transmission in different streams etc.

secret-key encryption A method used to provide confidentiality.

sequence number A number identifying a message or the order in which a message

should be delivered.

 58

server The end-point that does not initiate the communication between

itself and another end-point.

session An association (not in the SCTP sense) between two TLS end-

points. See also session state.

session state A session state is the compression method, the algorithms with

belonging keys used for encryption and MAC calculations,

certificates and a few other things needed to exchange data

between two SCTP end-points.

socket A file descriptor used to send and receive messages over a network

using the socket API.

socket API Standard network functions available to C/C++ programmers in

Unix. The most important functions are ‘socket’, ‘bind’, ‘listen’,

‘connect’, ‘accept’, ‘read’, ‘write’, ‘close’ and ‘shutdown’

socket call A call to one of the functions in the socket API.

SS7 Signaling System Nr 7. A protocol stack used in telephony

networks.

SSL Secure Socket Layer. SSL is an older version of TLS.

stack See protocol stack.

stream A stream is transferring the data between two SCTP end-points.

There can be many streams in one SCTP association.

stream cipher A stream cipher is an encryption algorithm that takes one plaintext

element at a time and produces a ciphertext element. A stream

cipher does not allow rearrangement of elements.

 59

suite The term suite has two meanings in this document.

A protocol suite or a layer suite is simply the interface of the

protocol or layer. A protocol or layer has two interfaces, one to the

layer above and one to the layer below.

A cipher suite is a set of security algorithms.

TCP Transmission Control Protocol. A protocol at the transport layer.

The most important features of TCP are that it provides reliable

data transfer and congestion control.

TDM Time Division Multiplexing. A method used to let multiple users

share a data communication link. Each user gets a time slot during

which it may send data.

TLS Transport Layer Security. A protocol between the transport layer

and the application layer. This protocol provides confidentiality,

message integrity and authentication between client and server.

Unix An operating system (platform).

 60

B TLS

B.1 Session state

The session state contains the following parameters:

• Session ID: arbitrary byte sequence that identifies the session.

• Peer certificate.

• Compression method: The algorithm used to compress data.

• Cipher specification: One algorithm used to encrypt data and another one used for

calculation of the MAC (used for checking the integrity of a message).

• Master secret: A secret (i.e. a combination of symbols) shared by client and server.

This secret is used to generate keys for encryption and MAC calculations.

• Is resumable: A flag indicating weather a new connection can be established under the

same session.

B.2 Connection state

The connection state defines the following parameters:

• Compression state: Information needed for the compression algorithm.

• Cipher state: The secret key used for encryption. It is generated from the master secret

in the session state.

• MAC secret: The secret used for MAC calculations. It is also generated from the

master secret in the session state.

• Sequence number: Each end-point maintains sequence numbers for sent and received

messages. When the cipher spec is changed these sequence numbers must be set to

zero.

B.3 TLS record protocol header

The TLS record protocol header consists of the following fields:

• Content type: This field specifies the higher-layer protocol. The enclosed fragment

(i.e. the data) is delivered to this higher protocol.

 61

• Version: The TLS protocol version.

• Compressed length: The length of the fragment (including the MAC).

B.4 TLS handshake protocol messages

The following messages are used by the handshake protocol to negotiate the security

parameters:

• Hello request: The server sends a hello request message to notify the client that it

should start the negotiation. The server may send this message at any time. If the

client is currently negotiating a session this message will be ignored. If the

negotiation is completed the client may respond with a client hello or ignore the

hello request. If the client ignores the hello request the server will close the

connection.

• Client hello: The client sends this message in order to start the negotiation. The

client hello contains:

o Client version: The highest TLS version supported by the client.

o Random: A client generated random structure that is used when deriving the

master secret.

o Session ID: The ID of the session, which the client wants to use for this

connection. If the client wants to establish a new session this field must be

empty.

o Cipher suite: A list of the cryptographic algorithms supported by the client.

Each element in this list contains a MAC algorithm and a secret key

encryption algorithm.

o Compression method: A list of compression methods supported by the

client.

• Server hello: The server sends this message as a response to a client hello. By

sending this message the server accepts a set of algorithms suggested by the client.

o Server version: The highest TLS version supported by the server.

o Random: A server generated random structure.

o Session ID: The session ID or a new session ID if the client left this field

empty.

o Cipher suite: The MAC- and secret key encryption algorithm selected by

the server (among those suggested in the client cipher suite).

 62

o Compression method: The compression method selected by the server

(among those suggested by the client).

• Server certificate: This message always follows the server hello message if the key

exchange method requires a certificate.

• Server key exchange message: This message contains information used for public

key encryption (secret key distribution). This message will be sent after the server

certificate message or after server hello message if the sender is anonymous (i.e. if

certificates are not used). If this message is sent or not depends on the key

exchange method. With some methods, the server certificate message contains

enough information and this message does not need to be sent.

• Certificate request: If the client is anonymous to the server, the server will send this

message in order to certificate the client. If it is sent it follows the server key

exchange message.

• Server hello done: This message is sent to indicate that the server is done sending

its hello-associated messages.

• Client certificate: This message will be sent if the server requests a certificate from

the client. This message can only be sent after the server hello done message.

• Client key exchange message: This message is used to change the keys used for

encryption and MAC calculations. The message causes the pre master secret (i.e.

the master secret in the pending state) to become the new master secret (in the

current state).

• Certificate verify: The client sends this message only if the client has sent its

certificate message earlier. The server can verify the source of the earlier messages

using the certificate verify message.

• Finished: This message is sent to indicate that the key exchange and authentication

succeeded. The client will send the finished message immediately after a change

cipher spec message. The server will then sends its finished message. The finished

message is encrypted using the new security parameters set by the change cipher

spec message.

B.5 Alerts

Fatal alerts are:

• unexpected_message

 63

• bad_record_mac

• decryption_failed

• record_overflow

• decompression_failure

• handshake_failure

• illegal_parameter

• unknown_ca

• access_denied

• decode_error

• export_restriction

• protocol_version

• insufficient_security

• internal_error.

Other alerts are:

• no_certificate_RESERVED

• bad_certificate

• unsupported_certificate

• certificate_revoked

• certificate_expired

• certificate_unknown

• decrypt_error

• user_cancelled (generally a warning)

• no_re_negotiation (always a warning)

 64

C File and folder structure of openSSL

This is the openSSL file and folder structure. It includes the changes needed for the adaptation

of openSSL to CP/SCTP. The superscripted numbers before each file or folder name marks

the depth of the file or folder relative to the root folder (‘openssl-0.9.7c’). The following color

codes are used:

• Added files

• Files with changed functionality (things that have changed are written in

parenthesis)

• Very interesting files

• Interesting files (interesting functions are written in parenthesis)

• Directories

0

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

 openssl-0.9.7c
 config
 configure
 e_os.h (macros for recv, send, shutdown, socket)
 e_os2.h
 INSTALL.com
 INSTALL.DJGPP
 INSTALL.MacOS
 INSTALL.OS2
 INSTALL.VMS
 INSTALL.W32
 INSTALL.WCE
 Makefile (added TLSoverSCTP library)
 Makefile.org
 Makefile.ssl
 Makefile.ssl.bak
 makevms.com
 openssl.doxy
 openssl.spec
 README
 README.ASN1
 README.ENGINE
 apps

 s_socket.c (socket calls: accept, bind, connect, listen, setsockopt, socket)
 s_server.c
 s_client.c
 app_rand.c
 Makefile
 Makefile.ssl

 65

2 demoCA
3

2

1

1

1

2

1

2

2

2

3

2

3

3

3

3

3

3

2

3

4

4

4

2

2

3

2

2

2

3

3

3

2

2

2

2

2

3

2

2

2

2

2

2

2

2

2

3

 private
 set

 bin
 bugs
 certs

 expired
 crypto

 aes
 asn1
 bf

 asm
 bio

 b_sock.c (socket calls: accept, bind, connect, getsockopt, listen,
setsockopt, socket)

 bss_acpt.c (socket calls: shutdown, socket)
 bss_conn.c (socket calls: connect, setsockopt, socket)
 bss_sock.c (socket calls: read (readsocket), write (writesocket))
 Makefile
 Makefile.ssl

 bn
 asm

 alpha
 alpha.works
 x86

 buffer
 cast

 asm
 comp
 conf
 des

 asm
 t
 times

 dh
 dsa
 dso
 ec
 engine

 vendor_defns
 err
 evp
 hmac
 idea
 krb5
 lhash
 md2
 md4
 md5

 asm

 66

2 mdc2
2

2

2

2

2

2

3

3

2

3

3

3

3

2

2

3

2

2

3

2

3

2

2

3

2

2

3

2

2

2

3

3

3

2

1

2

2

2

2

2

3

3

3

3

2

2

2

2

2

 objects
 ocsp
 pem
 perlasm
 pkcs12
 pkcs7

 p7
 t

 rand
 rand_egd.c (socket calls: connect, socket)
 rand_unix.c
 Makefile
 Makefile.ssl

 rc2
 rc4

 asm
 rc5
 rc5

 asm
 ripemd

 asm
 rsa
 sha

 asm
 stack
 threads

 mttest.c
 txt_db
 ui
 x509

 x509_lu.c (socket calls: shutdown)
 Makefile
 Makefile.ssl

 x509v3
 demos

 asn1
 bio
 easy_tls
 eay
 engines

 cluster_labs
 ibmca
 rsaref
 zencod

 maurice
 pkcs12
 prime
 sign
 ssl

 67

2 state_machine
2

2

1

2

2

2

2

1

2

1

2

1

1

1

1

1

2

2

2

2

2

1

2

2

2

1

2

2

2

1

1

2

1

1

2

2

2

2

1

1

2

1

1

1

1

1

1

1

 tunala
 x509

 doc
 apps
 crypto
 HOWTO
 ssl

 include
 openssl

 MacOS
 GetHTTPS.src

 mx
 os2
 perl
 shlib
 ssl

 bio_ssl.c
 ssl_lib.c (SSL_new, SSL_accept, SSL_connect, SLL_read, SSL_write,
SSL_set_bio, SSL_set_fd)

 ssl_algs.c (SSL_library_init)
 Makefile
 Makefile.ssl

 test
 ssltest.c
 Makefile
 Makefile.ssl

 times
 090
 091
 x86

 tools
 util

 pl
 VMS
 man

 man1
 man3
 man5
 man7

 bin
 lib

 pkgconfig
 misc
 private
 TLSoverSCTP
 demos
 doc
 include
 lib

 68

 69

1

1

1

1

1

1

1

1

1

1

1

1

2

2

2

2

 macOS
 man
 misc
 ms
 os2
 perl
 private
 shlibs
 ssl
 test
 times
 TLSoverSCTP

 TLSoverSCTP.h
 TLSoverSCTP.c
 Makefile
 Makefile.ssl

	Introduction
	Network security
	Confidentiality – encryption
	Secret-key encryption
	Public-key encryption
	Key management and certificates
	Distribution of secret keys using public-key encryption

	Where to put encryption

	Message integrity – MAC
	Authentication – digital signing
	Where to put security
	Chapter summary

	Analysis of existing environment
	Stream Control Transmission Protocol \(SCTP\)  
	Concepts
	Association and stream
	SCTP packet format

	Properties
	Initialization, data transmission and shutdown

	Common Parts \(CP\) and SCTP – in TietoEnator’�
	Common Parts
	CP/SCTP API functions

	Chapter summary

	Analysis of added environment
	Transport Layer Security \(TLS\) – general inf�
	Architecture
	TLS record protocol
	What to do before sending and after receiving a message

	TLS handshake protocol
	TLS change cipher protocol
	TLS alert protocol
	Connection process

	Socket API
	openSSL – an existing implementation of TLS
	Interesting files and folders in openSSL
	Socket call files
	Socket call chains
	Server socket call chains
	Client socket call chains
	Send and receive socket call chains
	Cryptographic socket call chains

	Chapter summary

	Design of openSSL over CP/SCTP
	Design considerations
	Translation of each socket call into a CP/SCTP API function call
	Create a translator between the socket calls and the CP/SCTP API
	Rewriting the parts of openSSL that communicate with the socket API

	Selected design
	File and folder structure
	Client and server initialization
	Data transmission
	Makefiles

	Chapter summary

	Problems
	Conclusions
	References

