
Computer Science

Fredric Hellberg, Daniel Westerberg

Operating System for a MC68000 Based

Microcomputer

Bachelor’s Project

2004:21

Operating System for a MC68000 Based

Microcomputer

Fredric Hellberg, Daniel Westerberg

c© 2004 The authors and Karlstad University

This report is submitted in partial fulfillment of the requirements

for the Bachelor’s degree in Computer Science. All material in

this report which is not our own work has been identified and

no material is included for which a degree has previously been

conferred.

Daniel Westerberg

Fredric Hellberg

Approved, 2004-06-03

Advisor: Thijs Holleboom

Examiner: Stefan Alfredsson

iii

Abstract

This report describes the results after building a MC68000 based microcomputer and con-

structing an operating system for it. The function, implementation and usage of the various

parts in hardware and software are described. The hardware is not described in detail as

it was designed previously to this project. Focus is instead directed towards the operating

system written. Usage as well as design and implementation of the various parts of the OS

is covered.

v

Contents

1 Introduction 1

2 Background 1

3 Purpose and goal 2

4 The hardware 2

4.1 Overview . 3

4.2 CPU . 3

4.3 Address decoding . 4

4.4 Memory . 5

4.4.1 EPROM . 5

4.4.2 RAM . 7

4.5 Input and output ports . 7

4.5.1 Main board I/O-ports . 7

4.6 Expansion busses . 10

4.7 Interrupt handling . 10

5 Operating system overview 11

5.1 ExOS . 12

6 System calls 13

6.1 TRAP calls . 14

6.2 System list calls . 16

7 Kernel 21

7.1 Introduction . 21

7.2 Stacks . 21

vi

7.3 Multitasking . 22

7.4 Processes . 23

7.5 Functions . 24

7.6 Exceptions . 26

8 Memory management 27

8.1 How to store memory information . 27

8.2 Allocating memory . 28

8.3 Deallocating memory . 28

8.4 Fragmentation of memory . 29

8.5 Memory information . 29

8.6 Memory check . 30

8.7 Problems with memory management . 30

9 Timer device 30

9.1 Description . 31

9.2 Register a timer . 31

9.3 Unregister a timer . 31

9.4 Set a timer . 31

9.5 Reset a timer . 32

9.6 Start and stop a timer . 32

9.7 Read a timer . 32

9.8 Connect a timer . 32

10 Serial communication 33

10.1 How it works . 33

10.2 User functions . 34

11 Console 35

vii

11.1 The primitive console . 36

11.2 The advanced console . 36

12 Converting motorola hex format 37

12.1 Downloading and storing a program . 37

13 Problems 38

13.1 Hardware problems . 38

13.2 Software problems . 39

13.3 Other problems . 40

14 Testing and debugging 41

14.1 Hardware . 41

14.2 The DIP-switches and LEDs . 42

14.3 Software . 42

15 Conclusions 43

15.1 Future . 44

A Abbreviations 46

B Schematics 50

C Pinouts 52

D Structures used by the OS 54

D.1 Environment variables . 54

D.2 Timer . 56

D.3 Connect . 57

D.4 List of free memory . 58

D.5 Kernel . 59

viii

D.6 Process control block . 59

D.7 Taglist . 60

E System calls 62

E.1 AllocMem . 63

E.2 AllocSignal . 64

E.3 Block . 65

E.4 CompFreeList . 66

E.5 Connect . 67

E.6 Debug . 68

E.7 Delay . 68

E.8 Event . 69

E.9 FlushRx . 70

E.10 FlushTx . 70

E.11 FreeMem . 71

E.12 FreeSignal . 71

E.13 GetA . 72

E.14 GetEnvToA6 . 73

E.15 GetS . 73

E.16 GetSerInfo . 74

E.17 IncLed . 74

E.18 InitSerial . 75

E.19 Int2Dec . 76

E.20 Int2Hex . 76

E.21 MemCheck . 77

E.22 MemInfo . 78

E.23 PutS . 79

E.24 PutStr . 80

ix

E.25 ReadS . 80

E.26 ReSchedule . 81

E.27 Reset . 82

E.28 SendA . 82

E.29 SendS . 83

E.30 SetSerSpeed . 84

E.31 Signal . 85

E.32 SingleTask . 86

E.33 Stop . 87

E.34 StoreProg . 88

E.35 Str2Int . 89

E.36 StrCmp . 90

E.37 StrCmpNC . 92

E.38 StrCopy . 93

E.39 StrLen . 94

E.40 SuperVisor . 95

E.41 SwapRomRam . 96

E.42 Timer . 97

E.43 UserTrap . 97

F Source code 100

F.1 Definitions.s68 . 100

F.2 MemLayout.s68 . 104

F.3 Kernel.s68 . 114

F.4 Memhandling.s68 . 118

F.5 Timer.s68 . 122

F.6 Serial.s68 . 125

F.7 ProgInlasning.s68 . 132

x

F.8 S19convert.s68 . 133

F.9 Interrupts.s68 . 135

F.10 Stdlib.s68 . 141

F.11 Terminal.e . 144

xi

List of Figures

4.1 Overview of dBOX . 4

4.2 The address space in dBOX . 6

B.1 dBOX complete schematics . 51

C.1 I/O bus expansion connector . 52

C.2 CPU bus expansion connector . 53

xii

List of Tables

4.1 I/O-ports on the main board . 8

4.2 CPU speed values in MCR . 10

C.1 I/O bus expansion connector . 52

C.2 CPU bus expansion connector . 53

D.1 Envvars status bits . 56

D.2 Timer status bits . 57

E.1 Connect parameters iAddress and uAddress 68

E.2 GetSerInfo tags . 75

E.3 MemInfo tags . 79

E.4 Predefined serial transfer speeds . 85

E.5 Timer parameters . 98

xiii

1 Introduction

This report describes the construction of an operating system for a microcomputer based

on an MC68000 processor. In section 2 the background of the project is described and in

section 3 the purpose and goal of this work is covered. Section 4 describes the hardware

and its various parts. Section 5 gives an overview of the operating system, followed by a

more detailed view of the parts that makes up the OS in the following sections. Appendix

contains guiding information, such as structures, system calls and abbreviations, that is

referred to in various places in the report.

2 Background

This project started as a hobby project by Daniel in 1998. He got the interest to build a

computer after a course in micro computing at the swedish semi-equivalent to high school,

gymnasiet, where a Z80 based computer was constructed.

When we started to look for a bachelors project Fredric had a contact with an external

company. In the last minute, however, they realized they would not have enough time to

coach us through their project. At this time Daniel had the idea to maybe take up this

old hobby project as a reserve plan.

We started to evaluate and elaborate the idea to construct a microcomputer. As the

design of the actual computer was already made, the main part of this project was to

write the operating system for it. After evaluation we both felt that this could be a very

interesting project. We were also running out of time and needed to settle with a project

immediately. We were told that there are already a lot of this kind of microcomputers out

there and that we would save a lot of time and effort by buying one instead of building

one, but where is the fun in that?!

1

3 Purpose and goal

The goal is to build an expandable and easily debuggable MC68000 based microcomputer

with an RS232 serial interface. For this computer an operating system will be designed.

The goal is to have a small but usable OS with basic input and output functions through a

serial interface. It will also have a memory manager from which memory can be arbitrary

allocated and freed. The goal is however not strict and may be altered, extended or cut.

Time will decide.

The purpose is for us to learn through the experience what problems that may occur

and what their solutions might be. The construction of the operating system is the main

part of this project.

We intend to start by making the hardware. This will have to be made in less than

30% of the total time of the project to be able to call it a computer science project and not

an electric engineering project. When the hardware has been finalized the software will be

written starting with startup code and serial routines to be able to communicate with the

computer as quickly as possible. Later the other parts, such as a memory manager, will

be written.

4 The hardware

This section describes all significant parts of the computer which mostly consists of the

main board, often also called the mother board. The electronic schematic design of the

computer was made several years ago, which left only the layout, etching and soldering of

the circuit boards as part of this project. Because of this, no detailed description of the

electronic design process is made in this report.

2

4.1 Overview

The term ”microcomputer” is nowadays used for these kinds of, usually embedded, com-

puters which typically are quite small and have no, or only a small, graphical display. But

actually almost all computer used today are microcomputers. In the old days, the 1960’s

and 1970’s, there were also other types of computers, namely mainframes and minicomput-

ers. A mainframe usually occupied several rooms, or even floors, in a building. They were

used as central servers for storing and processing large (by that time) quantities of data.

Then there were minicomputers. These only filled one small room or was not bigger than

a refrigerator. They were mostly used as local central servers at companies. Later, the

computers shrunk and were available in sizes small enough to keep on a desk. These were

called microcomputers. PC’s is one typical example of such an original microcomputer.

This computer consists of a central processing unit, two kinds of memory; RAM and

ROM, address decoding logic, interrupt logic, timer logic, expansion connectors and a serial

circuit. Figure 4.1 shows an overview over the computer. The components in this figure

are placed approximately as they are placed on the actual computer. The computer was

named dBOX selfishly decided by Daniel, severaly years before the project, as the designer

of the actual microcomputer.

4.2 CPU

The core of the microcomputer is the CPU which is a Motorola MC68000. It is a so called

16/32-bit CPU because it has a 16-bit data bus but is fully 32-bit internally. The address

bus is 24 bits wide providing an address range with a total of 16MB. The choice to use

this CPU was quite simple as Daniel, the designer of the computer, already had a lot of

experience with this CPU from the Amiga range of computers. It was also a good choice

because it is easy to program with, as it has sixteen 32-bit general purpose registers, but

at the same time relatively simple to build as it only has a 16-bit data bus and a 24-bit

3

I/O address

decoding

RAM

8−bit MSB

RAM

8−bit LSB

ROM

16−bit
CPU

Main address

decoding DIP

CPU bus

expansion

I/O bus

Address bus

Data bus

Interrupt

logic

LED
TimerMCR

I/O select lines

Figure 4.1: Overview of dBOX (Connections without arrows are bidirectional)

address bus.

4.3 Address decoding

The CPU does not distinguish between RAM, ROM and I/O addresses. It has one unified

address space for everything. A few other CPUs distinguish between memory and I/O

adresses but this CPU does not. For the CPU to be able to address any such specific

addresses the main board must have external logic to be able to make this differentiation.

This logic is generally called address decoding logic.

The main address decoding is done by a 74HC138 IC which divides the lower 8MB of

the total address range into blocks of 1MB each. The reason to divide the memory into

one lower and one upper half of the memory space was thought to be a good idea because

then dBOX could have one large block of memory space, to be used by for example a

large memory module, and a few smaller blocks to be used by for example smaller memory

4

modules or other expansion devices. ROM must begin at address 0 and to keep the area

for ROM small the lower 8MB were chosen to be divided into the 1MB blocks previously

mentioned. The lowest megabyte is dedicated to ROM. The second is dedicated to RAM.

The third is dedicated to I/O. The rest is dedicated to expansion devices. See figure 4.2.

A size of 1MB per block was a reasonable size because the demultiplexers on the market

is either 3 to 8- or 4 to 16-ways1 and 8MB divided by 8 makes the size 1MB which seemed

like a nice even number. The upper 8MB of the total address range is considered as one

block of addresses dedicated to an expansion device, preferably a memory module.

4.4 Memory

There are two types of memory on the main board, a read-only memory of type EPROM

and a read/write memory of type SRAM. The main board features a function to logically

swap these areas of memory. The reason for this is that when the computer starts the

ROM needs to be at address 0 as the CPU will start to read at this address. Later however

a program might need to be able to change an interrupt vector, which are all located

between address 0 and 1023, then RAM needs to be there. In this case a copy of at least

the lowest 1024 bytes of data and the actual swap code in the ROM needs to be copied

into the equivalent addresses of the RAM before the swap.

4.4.1 EPROM

This is the read-only memory, ROM, in which the bootstrap program, console, memory

manager, interrupt handlers and serial routines reside. It consists of one 16-bit 128kB IC

exchangable to 256kB. It is located at address 0 when it is not swapped with the RAM,

see subsection 4.4.

1A 3- or 4-bit binary number decides which one of 8 or 16 pins should go active.

5

$000000−$0FFFFF

$100000−$1FFFFF

CPU−slot 1: 1MB $300000−$3FFFFF

$800000−$FFFFFFCPU−slot 6: 8MB

CPU−slot 3: 1MB

CPU−slot 5: 1MB

CPU−slot 2: 1MB $400000−$4FFFFF

$500000−$5FFFFF

$600000−$6FFFFF

$700000−$7FFFFF

Serial circuit: $500000−$50000F

CPU−slot 4: 1MB

I/O memory space: 1MB

RAM memory space: 1MB

ROM memory space: 1MB
Swappable

Actual ROM: $000000−$01FFFF (128kB)

Actual RAM: $100000−$13FFFF (256kB)

Extra RAM by piggybacking: $140000−$17FFFF (256kB)

Actual I/O: $200000−$20001F (32Bytes)

16 megabyte

24−bit address space

$200000−$2FFFFF

Figure 4.2: The address space in dBOX
6

4.4.2 RAM

This is the read/write memory, RWM or RAM. It is empty when the power is turned on

but keeps its memory during a reset of dBOX. It consists of two 8-bit 128kB ICs which each

handles one half of the 16-bit data bus, even and odd addresses, making a total of 256kB.

It is easy expandable to 512kB by piggybacking2 two equal ICs on top of the existing ones.

See figure 4.2. This is done by connecting one chip-select pin of the new memory ICs to

the X-Ram pin on the main board.

In case 512kB of memory would not be enough, another 13MB of memory can be

connected via the expansion busses.

4.5 Input and output ports

The main board decodes 32 bytes for use by simple I/O-ports. Four bytes are allocated

on the main board for a low frequency interrupt timer, a master control register, an 8-bit

DIP-switch for input and 8 LEDs for output. The remaining 28 I/O bytes are unused on

the main board. 24 of the remaining 28 I/O-ports are dedicated to the I/O bus expansion.

The I/O bus expansion is a 34-pin ribbon cable connector, typically a standard non-twisted

floppy cable. It has all 16 bits of the data bus and 12 select bits able to address one word

each. It also has one interrupt line connected to it. For detailed pinout of this connector,

see appendix C.

4.5.1 Main board I/O-ports

Following is a description of the bits in the four I/O-ports on the main board. I/O-ports are

not an entirely correct description for some of these ports as they do not all communicate

with the surrounding world, which is the usual concept of I/O-ports. Control registers

might be a more suitable word but as they are in the same address range as the other

2A way of connecting a device directly on top of another.

7

I/O-port addresses they are still generally referred to as such. The three output ports have

latches to keep their value after writing to them. They keep their value until written to

again or power is turned off. Table 4.1 contains a brief description of the ports.

I/O-port / Register Address Description
Low-frequency clock (LFC) $20001C Interrupt timer settable between 0.15-38Hz
Master Control Register (MCR) $20001D Swap, Interrupt inhibit, CPU clock
Input DIP-switch (DIP) $20001E 8-bit user input switch
The 8 LEDs (LED) $20001F 8-bit user output LED indicator

Table 4.1: I/O-ports on the main board

LFC This register cannot be read. A copy of its value should therefore always be present

in the environment variables. See appendix D. If read, an undefined value is returned

but the register stays intact.

Bit 7 in this register inhibits the LF-clock. The other seven bits are used to set the

speed of the clock. Setting the register to 0 places the clock in a constant timeout

situation and IRQ 3 will always be set causing the computer to hang unless handled

by the interrupt routine. Values from 1 to 127 give time intervals in seconds according

to the following formula:

ti =
1

5000000
218

∗ value− 1
5000000

217

where value is the value written to the LF-clock and ti is the time interval in seconds.

Simply put:

mti = value ∗ 52.6− 26.3

where mti is the time interval in milliseconds and value is the value written to the

LF-clock. The highest frequency is therefore ≈38Hz. The counter was first intended

to be run at 20MHz but during construction it was revealed that it could not run

8

faster than about 5MHz. This is why the highest frequency that can come out of it

is not more than about 38Hz.

MCR This register cannot be read. A copy of its value should therefore always be present

in the environment variables. See appendix D. If read, an undefined value is returned

but the register stays intact.

Bit 0 controls the RAM<–>ROM swap. Setting bit 0 to 1 instantly causes RAM to

be placed at address $0 and ROM at address $100000. Clearing bit 0 to 0 instantly

causes RAM to be placed at address $100000 and ROM at address $0.

Bit 1 is interrupt inhibit. Setting this bit to 1 blocks all interrupts to the CPU,

including the non-maskable IRQ 7. Clearing this bit enables interrupts. Interrupts

that occured during the inhibit and that were latched will immediately be signalled

to the CPU.

Bit 2 is LF-clock interrupt inhibit. Setting this bit to 1 blocks the interrupts from

the LF-clock to the CPU. The clock will not stop counting. Clearing this bit enables

LF-clock interrupts to the CPU providing that bit 1 is not set.

Bit 3 and 4 are unused.

Bit 5-7 are used to set the CPU clock speed. Table 4.2 shows the speed with different

values. If using an external CPU clock source it must not run slower than about 20-

50kHz as the CPU gets unstable at lower clock frequencies. If debugging requires a

lower speed it is recommended to set the CPU clock to 1.25MHz and gate off the

data acknowledge (DTACK) signal from the address decoding logic instead to make

the CPU work slower. A device was designed for this purpose when debugging the

hardware and software. See section 14 on page 41 for more information.

DIP This is a physical 8-bit switch on the main board that can be used to input user

data. If the switch is removed, an external signal source may be fitted to supply

input. This input port cannot be written to. If written to, nothing will happen.

9

Bit 7,6,5 (dec) Speed
000 (0) 1.25 MHz
001 (1) 2.5 MHz
010 (2) 5.0 MHz
011 (3) 10 MHz
100 (4) 1.25 MHz
101 (5) External
110 (6) 20 MHz
111 (7) 1.25 MHz

Table 4.2: CPU speed values in MCR

LED This is an output port connected to 8 LEDs to form a simple data output to the

user. This output port cannot be read. An undefined value is returned if read, but

the port’s value stays intact.

4.6 Expansion busses

The main board decodes six blocks of addresses which can be used by six different expansion

devices. Expansion devices are connected to the main board through the expansion slot

which is a 50-pin ribbon cable, typically a standard SCSI cable. It has all 16 bits of the

data bus, 19 bits of the address bus capable of addressing 512k-word which is equal to

1MB, 3 interrupt lines and full control bus to make it possible for expansion devices to

master the bus for DMA purposes. To see detailed pinout of this connector, see appendix

C. In this project we have only one expansion connected to this bus and that is the serial

port. To be able to address the complete 8MB block, the address lines A20-A22 can be

added separately by an additional connector.

4.7 Interrupt handling

To be able to keep programs running in parallel to external hardware such as the serial

port and the timer without the need to poll these devices, some kind of interrupt system

10

must be used.

The CPU has seven levels of prioritized interrupts where interrupt request 7 (IRQ 7)

has the highest priority and IRQ 1 has the lowest priority. An interrupt value of 0 indicates

that there is no pending interrupt request to the CPU. The CPU has three lines to represent

one of the seven levels. To convert the seven lines into 3 lines a small card, that is connected

to the main board, was designed to do this job. This card also has SR flip-flops on it to

latch short interrupts long enough for the CPU to catch them. When the CPU responds

to an interrupt request, logic on the interrupt card resets the corresponding SR flip-flop.

The seven interrupt lines are hard-wired to various things on the main board. IRQ 1

and 7 are connected to two switches directly on the main board which are used together

with the DIP-switch to give simple command to the microcomputer during debug when no

other I/O unit, like the serial circuit, is connected to dBOX. IRQ 2, 4 and 6 are connected

to the expansion bus for use by external devices. IRQ 3 is connected to the low frequency

timer. IRQ 5 is connected to the I/O bus.

5 Operating system overview

A computer is never useful without software to execute on it. In order to be able to

execute software on a computer there must be a way of getting it into the computer. In

the simplest case a single program is put into a ROM. This program starts to execute

as soon as the computer is powered on. Digital watches, microwave owens and pocket

calculators are made this way. If the usage of a computer is not completely specified

when it is constructed it is required that it can change program after it is constructed and

while it is running. To make this possible a general piece of software needs to be in the

computer from the beginning that can be used to load other programs into it to execute.

The simplest case is a plain bootloader that can do nothing except load a program into

memory and execute this program. However; to be able to have more than one program

11

in memory at the same time, to be able to execute more than one program at the same

time and to provide a layer of abstraction from the actual hardware that the programs can

benefit from, an operating system is needed.

This OS was decided to be named ExOS which derives from the swedish short term for

Bachelors Project: ”Exjobb”.

5.1 ExOS

dBOX features an operating system called ExOS. ExOS is a fully 32-bit operating system

written mostly in the assembly language. It can maintain up to 4GB of memory, although

the CPU currently used in dBOX can not. All pointers and addresses maintained are

32-bit. The OS has the ability to maintain any number of programs running at the same

time. It has hardware abstraction for the memory, serial circuit and the timer. Most of

the OS was written using assembly language.

As the OS is located in a read-only memory it would be difficult for the various parts

of the OS to store variables needed to maintain the state of the parts as they all would

need to keep their own static memory address for these variables. This violates the concept

of a dynamic unified managed memory. Therefore ExOS has one unified place in RAM

where all different parts can store and get information about the state of the OS. This

place is called the environment variables, also known as envvars. A function is used to

retrieve a pointer to envvars. Envvars contains, among other things, base pointers to the

timer device, program manager, kernel and memory manager. It also has snap-in function

pointers that can be used to connect a user function to any interrupt without the need to

swap ROM and RAM and change the actual interrupt vectors. See appendix D for more

information about the environment variables.

When power is turned on, ExOS will: Initiate the environment variables by copying

them to RAM, initiate the serial circuit and set it to 9600bps 8N1, initiate the memory

manager and initiate the kernel to allow the concept of processes to exist. When this has

12

been done a welcome message is printed to the serial and the primitive console starts.

6 System calls

ExOS features two types of system calls. The first type uses the TRAP instruction of the

CPU. A TRAP instruction causes an exception, also known as a software interrupt. There

are 16 TRAP instructions of which a few have been assigned to critical OS functions such

as the memory manager, the timer and rescheduling functions. Functions that need to

inhibit interrupts or perform other priviledged instructions must be called using a TRAP

instruction as this is the only way a user program can execute priviledged code.

The second type uses plain subroutine calls. They are used for non-critical OS calls

and support functions such as the built-in memory checker, serial functions and support

string handling functions. The number of non-critical OS calls is only limited by storage

in the micro computer system, unlike the TRAP kind of call which there are only 16 of.

The idea to use one universal TRAP call for all functions where one of the CPU registers

decides what function should actually be called was disregarded for three reasons: First; one

register must always be kept clean to be usable for selecting the proper system function

in case of a call which might not be desirable. Secondly; there will be an unnecessary

overhead before each call to place the correct function selector in the register, plus the

overhead for the universal TRAP to select the proper subroutine to be called. Thirdly; it

is not such a good idea to execute in supervisor mode more than necessary as rescheduling

can not occur. See section 7 on page 21 for more information about rescheduling.

The naming of the two types of system calls differ to be able to distinguish between

them. TRAP calls are all in lower case. The second kind have the first letter in every word

in the name capitalized (e.g. StrCopy).

In the report, however, when refering to a system call of any kind, both types of calls

have the first letter capitalized to make it obvious that a function call of some kind is

13

referred to.

Registers are used to pass arguments to system functions. The stack is not involved in

parameter passing or for return values. Every function defines the registers that it use for

input parameters, if there are any. Input parameters signifying values or data generally

uses data registers. Input parameters signifying an address or a pointer generally uses

address registers. The first data parameter generally uses D0, the second uses D1, etc.

The first address or pointer parameter generally uses A0, the second uses A1, etc. There

may be exceptions though.

If a function returns a value, a register is used also here. The data register D0 is used

for functions returning values or data. Address register A0 is used when an address or

pointer is returned. Functions may return more than one value. Each function defines

which registers that are used. All system functions preserve all registers. The caller of

a system function can always be sure that no register has been altered after a call to a

system function, except for registers carrying possible return values. If a return value is

specified to return a word smaller than the size of the register, which is 32 bits, only the

specified size of the register will be valid. Example: D0.B specifies that only the eight least

significant bits are valid as data. However, the rest of the register may have been altered

and not restored by the function and must be considered undefined. If some part of the

OS is set to call a user function, the user must preserve all registers used unless otherwise

clearly noted.

6.1 TRAP calls

This subsection summarizes all system calls that uses the TRAP instruction. Only a brief

description is given. Refer to the corresponding section mentioned, if any, for a more

detailed description of how a particular function is implemented. See appendix E for the

complete usage with parameters and return values.

allocmem This function is used to allocate memory for use by a user program or some

14

other part of the OS. Any size may be requested but may be rejected if the amount

of free memory is not available. See section 8 on page 27 for more information.

freemem This function is used to free memory allocated by AllocMem. See section 8 on

page 27 for more information.

timer This function is used for all calls to the timer device. A parameter is used to define

what timer function should be called. See section 9 on page 30 for more information.

reschedule This is a private OS function that may not be called by user programs. It is

used by Block and Signal to do the actual rescheduling of processes. It is required

that the stack is pure when called. See section 7 on page 21 for more information.

stop This call executes the STOP instruction which halts the CPU and makes it cease

instruction execution and wait for an interrupt. User programs should use the syslist

call Block if they have nothing to do to let other processes execute while waiting for

an interrupt. It is however safe for user programs to call this function. It is mainly

used by Block if the kernel has not been initiated.

supervisor This function is used to check if the calling code is executing in supervisor

mode or not. Mainly used by the OS to determain if a rescheduling can be done or

not.

swapromram This function sets up everything necessary to be able to safely swap the

logical addresses of RAM and ROM in the computer which is necessary to be able

to change the interrupt vectors in the low address range from address 0 to 1023.

debug This function can be used while debugging. It simply prints the current program

counter position, the current status register, user- and supervisor stack pointer to

the serial port.

15

usertrap This function takes a function pointer as an address that it immediately jumps

to. As TRAPs execute in supervisor mode, a user program can through this function

make a piece of its own code execute in supervisor mode. Regular programs may

have little use for this but maintenance software may need this functionality.

reset This function emulates a reset on the computer. As the CPU has no instruction

to perform a real reset on itself, this function provides an emulation of a real reset.

It reads the reset vector from the memory and jumps to the start address just as

the CPU does after a hardware reset. The startup code will not know the difference

between an emulated or real reset. The RESET instruction is executed to reset

external hardware that may use the reset pin on the CPU.

6.2 System list calls

This subsection summarizes all system calls that uses the system list functions, also known

as the syslist. Only a brief description is given for each function. Refer to the corresponding

section, if there is any, for a more detailed description of how a particular function is

implemented. See appendix E for the complete usage with parameters and return values.

Unlike the TRAP calls, syslist functions do not have a given location where they can

be called. They can be placed virtually anywhere in the system memory. To make it as

simple as possible, a decision was made to use the same address as the startup code which

pointer is always located at address $4 in the memory space. To not collide with the actual

startup code the syslist is located at decreasing addresses from the startup address while

the startup code is located at increasing addresses. To save one line of dereferencing, a

jump table is used instead of a plain array of function pointers. This way a calling program

can simply jump directly into the table which in turn jumps to the correct location, instead

of first getting the address to an operation from the array and then perform the jump to

that address. The idea for this was borrowed from the Amiga Operating System which

16

uses this very technique for all kinds of operating system and third party library function

calls.

If the RAM and ROM has been swapped, the pointer to the jump table, and possibly

even the table itself, would be located in RAM. In this case it would be very easy to

update a particular function simply by altering a specific location in the jump table, or

constructing a completely new jump table for the system to use.

Block This function is called by user programs that do not have anything to do for the

moment. Block returns when the calling process gets a signal matching one of the

signals sent in to Block to wait for. See section 7 on page 21 for more information.

Signal This function is used to send a signal to a process. If the other process is currently

waiting for this signal in a call to Block, it immediately starts executing. See section

7 on page 21 for more information.

Connect This is used to connect a device, for example the timer device, to an event

handler. See section 7 on page 21 for more information.

Event This function is used to signal that an event has occurred. An event can either call

a connected handler or send a signal to the process requesting knowledge about the

event. See section 7 on page 21 for more information.

AllocSignal Allocate a signal for use by a user program to associate with a system event,

such as a timer so that the user program can go to sleep when it has nothing to do and

then get woken up by this signal when an event occurs. There are 24 signals available

for allocation for each process. See section 7 on page 21 for more information.

FreeSignal Return a signal previously allocated. See section7 on page 21 for more infor-

mation.

SingleTask With this function user programs can request to not be scheduled out of ex-

ecution. If a user program is manipulating sensitive shared memory or is executing

17

time sensitive code for a short period of time this function ensures that no other pro-

cess will execute until multitasking is turned on again. Interrupts however, continues

to arrive. If a call to Block is made with multitasking prohibited it will immediately

be enabled again.

Delay This function is used for making delays without using a hardware timer. It checks

the current speed of the CPU and adapts a busy loop to take the requested amount

of time. It takes two parameters, seconds and microseconds. The delay is not accu-

rate down to micro seconds and should mainly be used for debugging purposes. If

multitasking is enabled the delay is never shorter than the given time but may be

significantly longer.

InitSerial This function is used mainly by the startup code to initiate the serial circuit.

See section 10 on page 33 for more information.

SendS This function is used to send data synchronously to the serial port. See section 10

on page 33 for more information.

SendA This function is used to send data asynchronously to the serial port. See section

10 on page 33 for more information.

GetS This function is used to get one byte of data synchronously from the serial port.

See section 10 on page 33 for more information.

GetA This function is used to get one byte of data asynchronously from the serial port.

See section 10 on page 33 for more information.

PutS This function is used to send one byte of data synchronously to the serial port. See

section 10 on page 33 for more information.

ReadS This function is used to read data synchronously from the serial port. See section

10 on page 33 for more information.

18

FlushTx This function waits until the transmit FIFO in both RAM and the serial circuit

has been emptied. See section 10 on page 33 for more information.

FlushRx This function resets the FIFO in both RAM and the serial circuit. See section

10 on page 33 for more information.

PutStr Send a null-terminated string over the serial port. See section 10 on page 33 for

more information.

SetSerSpeed This function is used to set the speed of the serial circuit. See section 10

on page 33 for more information.

GetSerInfo This function is used to get information about the serial status. See section

10 on page 33 for more information.

StrCmp This function compares two null-terminated strings. It works like the strcmp()

function in C. This function can thus be used in sort functions.

StrCmpNC This function compares two null-terminated strings case insensitive and re-

turn -1 (true) if they are the same and 0 (false) if they are not.

StrLen This function returns the length in bytes of a null-terminated string. The null-

character at the end is not included. It works like strlen() in C.

StrCopy This function copies one null-terminated string into a buffer and put a null-

character at the end. It works like strcpy() in C.

Str2Int This function takes a pointer to a buffer containing a number that is to be con-

verted into a long value. Preceding white spaces are ignored. Numbers can be either

decimal, hexadecimal if preceded by a $-sign or in binary if preceded by a %-sign.

Int2Dec This function takes a long value and converts it into a string of up to ten decimal

numbers. If a buffer is passed in, the characters are written to this buffer with a

19

trailing null-character. The buffer must be able to store up to 12 bytes unless the

caller is sure less digits will be written. No preceding zeroes are written. If the buffer

is a null-pointer the characters are sent directly to the serial port to ease debugging

of software.

Int2Hex This function takes a long value and converts it into a string of eight hexadecimal

numbers. If a buffer is passed in, the 8 hex-characters are written to this buffer

without a trailing null-character. The buffer must be able to store 8 bytes. If the

value does not fill out 8 characters, preceding zeroes are padded. If the buffer is a

null-pointer, the characters are sent directly to the serial port to ease debugging of

software.

CompFreeList This function is used to reduce the number of adjacent free blocks in the

memory list. Compressing the free list speeds up further memory allocations and

deallocations. See section 8 on page 27 for more information.

MemInfo This function is used to retrieve information about the state of the memory

manager. See section 8 on page 27 for more information.

MemCheck This function checks memory for faults. It makes a read-write-read-write

access to every byte in a specified memory area. See section 8 on page 27 for more

information.

StoreProg This function is used to decode and store a downloaded program from the S19

format into binary in memory. See section 12 on page 37 for more information.

GetEnvToA6 This function is used to obtain a pointer to the global environment vari-

ables, envvars, ExOS uses to store various information. This function checks to

see if the memory has been swapped and always returns the correct address to the

environment variables. See appendix D for more information.

20

IncLed This function is useful when debugging. Every call to IncLed increases the value

of the 8 LEDs on the main board and outputs the new value to the LEDs.

7 Kernel

This section describes the inner most core of the operating system which is how to handle

processes. Memory management and devices, such as the timer device, can be considered

core material but these things are quite comprehensive and covered in their own sections.

7.1 Introduction

To be able to make ExOS useful, making a console with a number of serial functions and

a memory manager was not enough. dBOX has relatively much memory for one single

program to use. This lead to the decision to introduce the concept of multitasking into

ExOS. The type of multitasking is a non-prioritized, pre-emptive multitasking using the

Round-Robin algorithm.

7.2 Stacks

As stacks play an important role in the design of a multitasking kernel this subsection tries

to clarify which stacks that exists and what they are used for. But first a short introduction

to stacks in general.

Whenever a subroutine is called, the return address to the calling code is put on the

current stack. If the subroutine intend to use any registers, which is usual, it must first

store also these registers on the stack before using them so that they can be retrieved

and restored when the subroutine has finished. In ExOS all registers (except the return

register of course) must be preserved in all functions or subroutines. When a subroutine

is entered that causes the CPU to enter the supervisor mode, whether it already was in

supervisor mode or not, also the status register is put on the stack along with the return

21

address. TRAP calls, exceptions and interrupts causes the CPU to enter supervisor mode.

The return from these routines uses a slightly different instruction, which also reads the

stored status register from the stack and puts it in the CPU, causing it to go back to the

previous mode before the call. Often back to user mode.

The CPU has two stack pointers; one user stack pointer and one supervisor stack

pointer. These two stacks are used when the CPU is in the two modes, user mode or su-

pervisor mode respectively. All user programs execute using a user stack which is local to

each process. It is local because ExOS scheduler swaps also the stacks when a reschedul-

ing is made. This has to be done to keep different processes from trashing each others

stacks which may contain local variables and such. Interrupts, exceptions and TRAPs

execute in supervisor mode and thus use the supervisor stack. ExOS maintains only one

supervisor stack. This way it is easy to swap between user programs – processes – but

makes rescheduling impossible if a user program would execute in supervisor mode, like for

example while allocating memory. Maintaining multiple supervisor stacks would be very

hard as interrupts can occur at any time, can be nested and are not executing as part of

any process but asynchronously to everything else.

7.3 Multitasking

The idea of how to switch between processes is fairly simple. A low frequency timer causes

an interrupt, which stops the currently running user program and stores the processor

status on the stack. The CPU enters supervisor mode, which allows manipulation of all

of the status registers of the CPU. A list of processes is searched for the occurrence of

another process that has been interrupted before but still wants to run. If such a process is

found, the scheduler stores all CPU registers and the processor status for the current user

program. The processor status for the new process is placed on the stack and the registers

are loaded. The interrupt routine returns and the new process continues its execution.

If no other process wants to run, the scheduler does nothing but let the current program

22

continue for another time quantum.

There are however certain problems that can occur. If the CPU is in supervisor mode

already, for example because a TRAP call was made by the user program or a lower

priority interrupt has occurred but not yet finished when a scheduling interrupt occurs, it

is not possible to switch processes as both the currently running process and the interrupt

routine are using the same stack, the supervisor stack. The question that arises is how to

handle this situation. One solution would be to simply not reschedule processes but instead

wait for the next schedule interrupt to occur and hope that the current program is not in

supervisor mode at this time. If the current program however makes heavy use of TRAP

calls or a lower priority interrupt is used a lot, chances are that many scheduling interrupts

may occur before it interrupts the user program in user mode and can reschedule. The end

user would experience the computer as less responsive or slow in such a case. The other

way to solve this problem, and also the way used in ExOS, is to manipulate the bottom

of the supervisor stack to intercept the last return to user mode so that the rescheduler is

called instead when all supervisor calls are finished. This is called delayed rescheduling.

7.4 Processes

A linked list of all processes is managed by the program manager which is the terminal.

Every process has a process control block, PCB, attached to it containing information and

state for each process. Infact, not only processes have a PCB but everything loaded into

RAM using the terminal gets a PCB. This means that every program, script or data block

has a PCB. There are three types of PCBs: Code, data and script. PCBs of type code

are used for programs which can be executed and are then turned into processes. Envvars

maintains a pointer to the list of PCBs. Processes can have seven different states: New,

ready, running, waiting, suspended, finished or crashed. The ready, running and waiting

states are the active states. The scheduler does not care about processes in any other

state. It is very important that only PCBs of type code are in the state ready, running or

23

waiting. Following is a short description of the seven states:

New A process in state new has not yet been executed or has been restored to its original

state after execution. The terminal can restore a crashed, finished or suspended

process into the new state again.

Ready A process in the ready state wants to run but has been scheduled not to run at

this particular moment.

Running This process is currently running on the CPU. There can only be one running

process at a time unless the computer has more than one CPU. dBOX has only one

CPU and ExOS can not handle more than one CPU.

Waiting This process has nothing to do for the moment and has called the function Block

to wait for signals and to let other processes use the CPU in the meantime. It will

be set to running once it receives a signal from either the OS or another process.

Suspended This process has been stopped by the user. A suspended process can be set

to ready to make it continue execution.

Finished This process has finished executing and has exited. A finished process can be

run again after resetting its program counter and by setting it to ready.

Crashed This process has executed an illegal instruction or accessed an illegal address

and caused an exception. It is similar to the suspended state, but not caused by user

intervention. An error code is also attached to this state.

See appendix D.6 for detailed information about the data stored for each process.

7.5 Functions

To make the CPU utilization and power consumption optimal, ExOS has four key functions

that processes can use when they either have nothing to do or want to notify another process

24

about an event of some kind. These functions are Block, Signal, Event and Connect.

Block should be called by a process whenever it has finished its current task and awaits

more data to work on from e.g. another process or the serial port. A timer can also be

set to signal a process when it times out. Block is then used to wait for this signal. Block

takes a 32-bit mask of signal bits as a parameter that Block is instructed to listen for. If

any of these signals have already arrived to the process before the call to Block was made,

Block immediately returns with these signals as a return value. If none of the bits Block

was instructed to wait for has arrived, Block puts the calling process in the waiting state

and schedule another process that is ready to run. If no other process are in the ready

state, Block executes the STOP instruction which halts the CPU until an interrupt occurs.

Stopping the CPU causes all bus activity to cease, which means that all memory will enter

the low power standby mode. This will reduce the power consumption of the computer

and minimize the electronic noise around it. Block may only be called by user programs in

user mode. It may be called if the kernel has not yet been initiated. The STOP instruction

is in this case called immediately. If Block is called without any bits to wait for it will not

recognize any signals and will wait forever. Block is the only function able to detect and

receive signals.

Signal can be used by both user programs and ExOS to wake up a specific process

from the waiting state and put it in the running state. A mask of signals is then sent to

the specified process. If this process is currently in a Block call waiting for any of these

specific signals it is immediately scheduled to run. Otherwise, if the signalled process is

not in a call to Block or in a call to Block but not waiting for any of these specific signals,

the bits are set in the process control block of the process that is being signalled and the

process calling Signal continues to run.

Event is used to signal to a, for the caller, unknown destination that an event of some

kind has occurred. To use Event, a call to Connect has to be made first to install an event

handler that Event can use. The timer device uses Event to signal to processes that a

25

timer has timed out. What distinguishes Event from Signal mostly is that Event can not

only send a signal but can also call a handler asynchronously from the process point of

view. A handler is basically a function somewhere, usually belonging to the process that

installed the handler using Connect. This method is usually more efficient than to switch

processes, which happens when a signal is sent, if something less complex has to be done

that does not need the other process ”awareness” of the event. An example would be high

speed data sampling.

Connect is used to connect events to devices, e.g. a timer that is registered by a user

program. In the call to Connect the user must specify what type of device to connect and

to which unit number. The unit number can be the same as another as long as there is

a difference between the type of the two devices. When e.g. a timer times out the user

program may be aware of the event in two ways, via a signal or via a call to a handler.

When a call to Connect is made, the user program must specify which one of the two that

is to be used. If a signal is to be used, a signal number and a process control block must

be specified. The signal number is the number in the 32-bit mask of signal bits that was

mentioned above. The process control block is used by ExOS to know what process to

send the signal to. If a handler is to be used instead, an address to that handler must be

specified and an address to a place in memory where user data is stored. This user data

can be used by the user program for various things. The code executing in the handler

must preserve all registers it uses and restore them before returning. A handler executes in

supervisor mode and is thus priviledged but also limited in some ways. Memory functions

for example are forbidden to be used in supervisor mode.

7.6 Exceptions

Whenever a user program executes an instruction that causes an exception of some kind,

e.g. a division by zero, a word or long memory access at an odd address or an illegal

instruction, its state is set to crashed and rescheduling occurs. This can however be

26

prevented if a subroutine has been connected to the exception handler. See appendix D.

In this case this routine, or function, is called instead which gives a process a chance to

catch exceptions. This is for example necessary if tracing is to be used as ExOS would

otherwise crash the process requesting tracing if it doesn’t catch the trace exception itself.

8 Memory management

In this section the memory management in ExOS is discussed. Memory management

includes allocation, deallocation and compression of memory. Further, memory check and

information about free memory is discussed. The memory management section in ExOS is

separated from the rest of the OS. There are no other functions involved in the management

of memory.

8.1 How to store memory information

One question that arised when the planning of the memory management started was ”How

can the OS know which segments of memory are free and which are occupied?” First we

thought about using two linked lists, one for free memory and one for occupied memory.

Then a decision to use one single array instead was made. With an array all memory

information could be kept in one place. The reason to use one singel array was that if

there were two places to keep information, and one contained corrupted information it

would be difficult to know which one that contained the corrupted information and which

contained the correct information. To keep the memory information in an array separated

from the actual allocated memory segments, it is more unlikely that a faulty program would

accidently overwrite it. This compared with having the information in a linked list where

each node would be a part of the memory segment making it vulnerably to overflows in

the allocated memory segment. Why corruption can occur in the first place is because the

CPU has no memory management unit (MMU) and thus can not protect memory. This

27

in effect means that the hardware allows all programs to read and write everywhere in

memory, include overwriting themselves and other programs.

The array that ExOS uses is called the free list and contains blocks. Each block keeps

information about one memory segment which has a start address, an end address and a

size. Right after a hardware reset the free list contains one block that represents that the

whole memory is free. For more specific information see appendix D.

8.2 Allocating memory

When a call is made to the AllocMem system function, the OS searches its free list for

a segment where the requested size of memory will fit. When it finds one, it splits that

segment into two segments. The first segment is set to be occupied and the second segment

is set to be free. To set a segment to be occupied means to set that segment’s size to zero.

By this the operating system knows how to determine which segment that is free and which

one that is occupied. Before doing the split the OS has to move the blocks that lies after

the chosen one downwards. So after this the free list contains one more block. Memory is

always allocated from the first segment in which the requested memory size fits.

8.3 Deallocating memory

When an allocated memory segment is to be returned by a call to the FreeMem system

function, the OS searches its free list for the start address to that memory segment. When

the address is found, the size field in that block is set to the difference between the end

and start address of that memory segment. By this the block that was occupied before is

now free for allocation. If an address was given to the deallocator that was not present in

any allocation block, i.e. a faulty pointer, nothing is done.

28

8.4 Fragmentation of memory

When memory is first allocated and then deallocated the free list becomes fragmentated

and may consist of many adjacent free segments in memory and also many blocks marked

as free in the free list. AllocMem can not allocate a large segment in memory that is

represented by more than one free block in the free list. This is why a fragmented free list

is a problem. The reason why this is not done while deallocating is because of efficiency.

The function CompFreeList, which defragments and compresses the free list, works in a

way that makes it a lot more efficient when compressing the whole free list than FreeMem

would do.

Whenever AllocMem failes to allocate memory, it compresses the free list to make all

small, adjacent free segments into one large segment. AllocMem then attempts to allocate

the requested amount of memory again. The compression is done from the end of the list

to the beginning. Since the elements in the list gets fewer for every merge there is, the

workload may decrease and the process speeds up as a result of the fewer blocks there is to

move upwards in the free list array. If all memory is deallocated, the free list only contains

one block after a compress is done.

8.5 Memory information

There is a possibility to aqcuire information about the memory usage in dBOX. The func-

tion MemInfo makes it possible to retrieve information about the amount of free and

occupied memory segments in the RAM. It is also possible to retrieve information about

the largest free segment size and total amount of free memory. The function MemInfo may

be called with one parameter that tells it which information it should return. For more

information see appendix E.

29

8.6 Memory check

The function MemCheck checks the memory for faults. It may be called with the start

address to the memory that should be checked. If the start address is even, the function

checks all even addresses and if it is odd then odd addresses is checked. The amount of

checked bytes is also a parameter to the function. The return value indicates if the memory

has faults or not, but not where in the memory the faults resides.

8.7 Problems with memory management

Problems may occur when an interrupt arrives and the memory manager is busy if the

interrupt also decides to allocate or deallocate memory. If the interrupt happens to be

the scheduler, problems also occurs if a process gets interrupted when it executes in the

middle of the memory manager code, i.e. is allocating or deallocating memory. To solve

this latter issue, AllocMem and FreeMem are TRAP calls which makes them execute in

supervisor mode and the scheduler is forbidden to reschedule when the CPU was executing

in supervisor mode. This solves the scheduling issue. However, allocating and deallocting

memory in supervisor mode is otherwise forbidden.

The function CompFreeList is also sensitive but it is a syslist call and as such can be

interrupted at any time. To prevent this, CompFreeList is also forbidden to call from su-

pervisor mode and also must be surrounded by a SingleTask(TRUE) / SingleTask(FALSE)

pair.

9 Timer device

ExOS offers the opportunity for a user program to have a timer. A timer can be used in

many different ways. It can be used to measure elapsed time between two states or as a

software interrupt. In this section the timer device that resides in ExOS is explained.

30

9.1 Description

ExOS’ timer device has an amount of 128 timers and a resolution of 26ms. Each timer can

be registered, unregistered, set to a start value, reset to the start value, started, stopped,

read and connected to cause an event. One TRAP call is used for all functions of the timer

device and one of the in-parameters specifies which timer function that should be called.

9.2 Register a timer

When a user program needs a timer it has to register a timer. The probability is very small

that there is no one free, but if there is no one free they will have to wait until there is

one timer free. When a timer is registered it can not be used by someone else. When the

registering of a timer is done the user gets a reference number that must always be used

to refer to the timer.

9.3 Unregister a timer

When a user program does not need a timer anymore, it can be unregistered and put back

into the list of free timers.

9.4 Set a timer

The timer can be set to a start value. The direction, up or down, of the timer can also

be set as well as if the timer should be repetitive or a ”one-shot” timer. The start value

is set in milliseconds. When setting the timer the user program should set the value in

multiples of the resolution for the timer to be as correct as possible as the timer does not

actually count in milliseconds. If the user does not do this, the stored value gets truncated.

The timer will still work, but the result may not be as expected from the user’s point of

view. If a value less than the resolution is set, e.g. 20ms when the resolution is 26ms, the

timer will wait for about half an hour! (26ms ∗ 65536) This is because it always rounds

31

the value down, which in this case makes it zero. The first timertick makes the internal

counter, which is a word (16 bits), overflow creating the value 65535. Now another 65535

ticks, each 26ms long, will have to pass before the timer times out.

9.5 Reset a timer

The timer can be reset to its start value at any time. This can be useful if for example a

user program has a task to do that must be done within a given time but can be finished

before the limit is reached. If the task is finished before the time limit exceeds, the program

can reset the timer and start over with the task. A good example of use for a reset function

is for a screen saver that is reset everytime the mouse moves or the keyboard receives input.

9.6 Start and stop a timer

Of course the user program can start the timer and also stop the timer. When the user

program sets a timer it is not started. Therefore the user program must start the timer

after setting the values of it.

9.7 Read a timer

The user can get the current value of a timer from the timer device. This is good if the

timer is used as a stop watch. The timer can count both up and down. When reading the

timer it is important to know that the timer is not able to return every millisecond but

only multiples of the resolution.

9.8 Connect a timer

When a timer has been registered, it can be connected to a handler or a signal. A handler

is a pointer to a function in a user program that will be called when the timer times out.

For more information about signals and handlers see section 7 on page 21.

32

10 Serial communication

The serial communication functions are completely isolated from the rest of the OS compo-

nents. No other part of the OS touches the serial port or structures except these routines

described in this section. Of course this is also true for user programs.

The UART circuit used is a 16C550. It is connected to IRQ 4 through the expansion

card it is mounted on. It supports one full duplex serial channel with one FIFO buffer of

16 bytes each for receive and transmit respectively. It can be programmed to speeds up to

1.5Mbps. It is connected to use the RS232 standard. The serial routines use the settings

8N1 without any handshaking, although the hardware is wired with all signals and thus

support all kinds of handshaking available for RS232 and modems.

10.1 How it works

All serial communication is interrupt driven. This means that the rest of the OS and user

programs can take full advantage of the CPU at the same time as the serial port is fully

active.

Apart from the UART’s own 16 byte FIFO buffers there are also two 1kB FIFO buffers

in memory, one for receive and one for transmit. These are used for asynchronous reads and

writes by the other parts of the OS and user programs and being able to accept input data

even when no process is currently listening. This means that ExOS always uses buffered

I/O.

Each FIFO has three fields: a base pointer, a beginning and an end. The base pointer

points to the actual memfory location where the FIFO buffer is. The beginning and the

end are counters. Both are initiated to zero in the function InitSerial that is executed

at startup time. They will then count transmitted or received bytes indefinitely. When

they are equal there is no data in the FIFO. If end is higher than beginning it means that

data has been put in the FIFO that has not yet been read or transmitted. The beginning

33

and the end are thus not counting within the 1kB of the FIFO. The reason for this is

that it would be hard to determine the amount of data in the FIFO if the end would

have wrapped around the buffer and is then lower than the beginning which might not

has wrapped around yet. This way we also get a counter of the number of received and

transmitted bytes for free. The pointers are stored in envvars.

10.2 User functions

The serial routines supply 12 functions for sending and receiving data over the serial port

and to control it. Seven of them are used for the actual communication. The other five

are support functions. All functions for receiving and transmitting are safe to call in the

absense of the serial circuit. See appendix E for a complete description and usage of these

functions.

InitSerial This function initiates the serial circuit. If the system detects that the serial

circuit has already been initiated once, after a restart of the computer for example, it

will not be reset, only set back to its default values, except for the speed which is only

set during the first initiation. During the first initiation the 16C550 is reset externally

and speed is set to 9600 bits per second. In both the first and all subsequent calls,

this function sets the mode to 8 bits, no parity, 1 start bit. It also initiates the FIFO

pointers in RAM and the 16C550.

SetSerSpeed This function is used to set the speed for the communication.

GetSerInfo This function takes a pointer to a taglist as an argument. This taglist is

interpreted and filled with values for every request found. Information can be re-

quested about current speed, status, size of FIFOs, location of FIFOs, the current

fill level of the FIFOs and how much data that has been transferred to the FIFOs.

GetS This function is used to get one byte of data from the serial port. If there is no data

present, it blocks the caller.

34

GetA This function is used to get one byte of data from the serial port. If there is no

data present, it returns immediately with an error.

PutS This function is used to send one byte of data to the serial port. If the transmit

FIFO is full, this function blocks the caller until it can put the byte into the FIFO.

ReadS This function is used to read a specified number of bytes from the serial port. If

the receive FIFO does not contain enough data this function reads all that is available

and then blocks and waits for more data until it can satisfy the caller.

SendS This function is used to send a specified number of bytes to the serial port. If the

transmit FIFO becomes full, this function blocks the caller until it can put all data

into the FIFO.

SendA This function is used to send a specified number of bytes to the serial port. If the

transmit FIFO becomes full, this function returns immediately with the number of

bytes it actually managed to send.

PutStr This is a stub function for SendS to make it easier to send a null-terminated string

to the serial port without the need to know its length.

FlushTx This function blocks until the transmit FIFO has been emptied in both RAM

and the UART. Should be used before the speed is changed to be sure that all

previously written data has been transferred using the old speed before it is changed.

FlushRx This function resets the receive FIFO buffers in both RAM and the UART.

11 Console

To be able to communicate with the surrounding world it is not enough to only provide

serial functions. Something that can interpret what is sent over the serial port and respond

with actions is also needed.

35

This section describes how ExOS interacts over the serial port. There are two consoles

which can not be used at the same time. You may want to call the consoles shells instead.

One of them is very primitive and accepts only a few single-character commands. The

other is more advanced and accepts multi-character commands possibly with parameters.

The decision to make two consoles was made because it would be too much work to make

a full featured terminal and put it in ROM without the possibility to be able to download

programs into the microcomputer at all until it was all finished. Therefore a simple console

with only the most basic features, like starting the memory manager and loading one single

program into RAM and run it, was made first. The terminal could then be downloaded

and tested from this primitive console. When the computer starts up it initially starts the

primitive console.

11.1 The primitive console

This console can, and will, execute if the memory manager has not been initiated for

whatever reason and if the serial port is present. It can take a few simple commands

consisting of only one character. It can do things like change the serial speed and load

a program into RAM the simple way (see section 12) and run it. It can also start the

memory manager and the kernel if they, for e.g. debugging reasons, was not previously

started. By typing ”?” and then Enter a list of commands is printed.

11.2 The advanced console

The advanced console, also called the terminal, can take a lot more and complex commands

than the primitive one. It needs the memory manager to be active. If the kernel has not

been previously initiated it will initiate it. The terminal also serves as a program manager

with functionality to store and manage a list of programs in memory. By typing ”help”

and then Enter at the prompt in the terminal a list of commands is listed. Following is a

list of operations the terminal features.

36

• Load programs

• Start programs

• Stop programs

• List programs

• Delete programs

• Display memory manager information

• Read and modify memory areas

The terminal is the only part that was not written in assembly, but in the high-level

language E on the Amiga.

12 Converting motorola hex format

This section describes how programs that the user downloads into dBOX are converted

from hexadecimal format into raw binary data that can be executed by the CPU. The

hexadecimal format used is Motorola’s own hexadecimal format for transferring binary

information across platforms. This hex format is later be referenced to as the ”.s19 format”

as ”.s19” is the extension that files of this format usually have. This section will also

describe how storage of these programs is done by ExOS.

12.1 Downloading and storing a program

The user can write programs and download them into dBOX. This can be done in two

different ways, by the primitive console or by the terminal. When the primitive console is

used, the memory manager may not yet have been activated. Because of this the console

only takes one line at a time and converts it from the S19 format to binary. Since the

37

memory manager may not have been activated, there can be no allocation of memory for

the program. The console therefore puts the program just after the memory block in RAM

that may be used later by the memory manager if initiated with default values. Only S19

records of type S1 or S2 are converted; other types will be rejected.

The other way to download programs is through the terminal. When a program is

downloaded using the terminal the lines of that program are put in a linked list, where

each line is an element in the list. The terminal does this job and then calls the function

StoreProg to do the actual decoding and storing. StoreProg checks the size of the down-

loaded program. If the size is equal to zero an error code is returned and the storage is

aborted, otherwise memory is allocated for the program. If the program does not fit into

memory, an error code is returned and the storage is aborted. If no error occured, the

lines of the program are converted from the S19 format into binary. If a bad checksum is

discovered after decoding a line the storage is aborted, memory is deallocated and an error

code is returned.

If all went well, the program size and the address where the program was stored in RAM

are returned. The two values are then stored in a PCB by the terminal so that ExOS can

control the execution of the program. See appendix E for a complete description of how

to use the function StoreProg.

13 Problems

We have encountered a couple of problems during this project. They are described here in

three sub sections.

13.1 Hardware problems

We have not had any serious problems with the hardware during the project but there

have been a few minor errors.

38

• A circuit, the DIP-switch input driver, was placed in the wrong direction and made

an output. This was quite easily fixed by simply turning it around and reroute a few

signals. It was discovered before any initial tests had been made.

• A circuit was assumed to be 0.3” wide but was actually 0.6” wide which made it

unfittable. Quite easily fixed.

• A capacitor was placed in the way of a resistor that had to be placed around it. Very

small error.

• The main board had only one logical error. An enable signal to the main address

decoding circuit was inverted and thus permanently disabled the address decoder

which froze the whole computer.

• The original power supply unit was dropped on someones head (no names) and broke

while he was crawling under the desk connecting a serial cable. As it was undetected

that the power supply unit was defect, the serial circuit got 11V instead of 5V and

broke too. A new serial circuit had to be ordered and a really old and big AT PSU

had to be used.

• The low frequency clock on the main board could not be clocked faster than about

5MHz which left us with a timer that could not operate faster than 38Hz. A problem

we had to live with.

13.2 Software problems

There have been a small variety of different software problems. Some bigger, some smaller,

some hard to find.

• The first really hard to find software problem was that the program used to burn the

16-bit EPROM expected Intel byte-order on the bus and swapped the bytes which

39

resulted in garbage for our Motorola CPU to execute. It took half a week and some

extra debugging hardware before we found out what the error was. When it was

found, however, it was easily fixed.

• As assembly is a time demanding language to program in we tried to use other high-

level languages. C was one of the candidates but the one compiler we had access

to that could generate 68k-code in S19-format could not generate relocateable, or

position independant, code which is needed in our computer as it is impossible to

predict where a program might be placed in RAM. The other language, Amiga-E,

exists only for the AmigaOS and generates 68k-code but with startup code and a

loadhunk to be loadable by the AmigaOS. A disassembler and a small program to

interpret the disassembly output and turn it into S19 solved that problem.

• Switching between processes during multitasking turned out to be a big problem. As

the rescheduler can be called from many places, in supervisor mode or user mode;

it is almost impossible to know where the final return address to the user program

is on the supervisor stack. The return address needs to be saved before a switch

to another process can be made. The solution to this problem is to simply avoid

being in supervisor mode as much as possible. In interrupts or other places where

supervisor mode is forced or needed, the switch between processes is simply prohibited

or delayed.

13.3 Other problems

The delivery of some of the components took a lot longer than expected which delayed the

completion of the hardware. During that time however a lot of software was written and

this report was started on so no time was actually lost.

40

14 Testing and debugging

This section describes how the testing and debugging of the project was made. It also

describes how problems were discovered and their solutions. It is assumed that the reader

has read section 13 Problems before continuing.

14.1 Hardware

Most of the debugging and discovery of bugs was done by visual examination, before the

power was applied for the first time. The IC that did not fit and the capacitor in the way

of the resistor for example was obviously discovered during assembly of the main board.

On the other circuit boards there were etching errors that were discovered by testing

these cards separately. They were quite easily fixed. As the main board did not have that

many bugs when we started to test it with power applied the debugging of it did not take

very much time or effort. However, for the most part of testing and debugging a simple

multimeter and a two channel digital sample-and-hold oscilloscope was used. With these

instruments we could measure signals in the address decoding logic and see that the CPU

was addressing the expected areas of RAM and ROM. This is how the inverted enable

signal to the main address decoder was discovered.

When the enable signal was fixed the computer actually worked, but it executed none

of the code in ROM as expected. At one point even the CPU was suspected to have failed

so it got replaced. After two days of no progress in finding the cause of the malfunction,

two pieces of debugging hardware were constructed. One card with a lot of LEDs that was

connected directly to the CPU bus through an expansion slot. On this card the address bus

and half the data bus could be read in binary. It turned out to be quite impossible to read

anything useful as the speed of the CPU is so high. At this time another piece of hardware

was made that could inhibit the bus cycles of the CPU by gating off the DTACK signal.

With a switch connected to this circuit each bus cycle could be manually stepped one by

41

one while the bus was read. This was how the byte swap of the ROM was discovered. It

took four days to discover this error which actually was a software error.

14.2 The DIP-switches and LEDs

To be able to make simple communication possible with dBOX, the main board was fitted

with an output port connected to 8 LEDs and an input port connected to an 8-bit DIP-

switch. The DIP-switch together with IRQ 1 and IRQ 7 makes a simple input device

able to give dBOX simple instructions such as setting the clock frequency of the CPU and

output certain values of the environment variables to the LEDs.

14.3 Software

The software that was written has been tested in various ways. Some have been tested

with a simulator which is included in the assembly package that was used during the

programming of the software. Some have been tested on an Amiga running on an actual

68k CPU with wrapper functions in the high level language Amiga-E. E was chosen because

it is essentially typeless which makes it easy to use, without nasty casts cluttering the code,

when programming close to hardware. It also allows assembler instructions to be placed

anywhere in the otherwise high level constructs. It also allows code outside of procedures,

both assembly and E-code. Other pieces of code have been tested in real life directly on

our micro computer.

Most of the code that is close to the hardware is meaningless to test on anything other

than dBOX itself. Examples of this are the startup code and the serial code. Also time

critical code with interrupts can only really be tested on the actual hardware.

To test the timer device together with the connect and event functionality a test pro-

gram was written that is called the ”Running Light”. This program lets the user choose

between a few ”programs”. Each program contains a byte stream that the program could

run. During ”execution” of the ”program” each byte value is displayed on the LEDs on

42

the motherboard. The user can select which program to run via the DIP-switches. There

are three modes that each program can be executed in: Forward, Backward and Bounce.

Forward and backward is what it sounds like and bounce is simply a modified forward and

backward execution.

The code for Timer, Connect and Event were meant to reside in ROM but it was first

tested by downloading it to RAM together with the running light code. This turned out

to be more difficult than expected as the version of code in ROM was not up to date

at that time. For example, the free list was not correctly initialized, so a new one had

to be initialized via the program in RAM. Then there were something in the code that

was not functioning properly. After a huge amount of time we discovered that when the

microcomputer was reset, the pointer to the connect list was not reset. This caused the

computer to do some execution with random results.

15 Conclusions

A computer was constructed based on a slightly modified version of the original design.

An operating system was written based on our own thoughts and ideas. The hardware

works flawless. The software works very good. The OS designed actually surpassed the

goal of this project. It was originally not supposed to include a multitasking kernel. Also

the timer device was not included in the initial goal planning but was decided at a later

state to be included.

Time was always an issue during the project. The hardware could barely be finished

within the timeframe of 3 weeks (6 calendar weeks) which was 30% of the time. dBOX

did not turn out to be so very debuggable as we thought either, as extra hardware had

to be built for this purpose. The planned software consisting of serial routines, a memory

manager and a simple console were finished earlier than expected. Therefore a general

timer device based on the LF-clock, a multitasking kernel and a more advanced terminal

43

was also developed. Time did however not permit a full test of the kernel and the new

terminal.

We have learned a lot while working on this project: What startup code actually does.

Issues with general function calls when called in different CPU modes. How memory man-

agement can be implemented. And last but certainly not least; what makes a multitasking

kernel and all the problems that comes with the design of it. It has been a very interesting

and also fun project to work on.

15.1 Future

As this project could not meet all wishes covering the possibilities with the computer, this

subsection is dedicated to future thought about the project, dBOX and ExOS.

The motherboard is not optimal in this first revision. The swapping of RAM and ROM

was not a good idea. The next revision will have an additional 1kB or RAM that will be

mapped of the first kB of ROM instead. This makes life a lot easier. The timer is much

too slow to be really useful for anything but taskswitching and user delays. Two timers

will be made for revision 2. One high frequency 16-bit timer reaching from a few kHz to

a few hundred kHz. One low frequency 8-bit timer will be used that can run from a few

hertz up to a few hundred hertz. The line thickness and distance between the lines on the

circuit boards will be made a lot smaller. A wider cable for the expansion bus will be used

so that no lines, like +/-12V and A20-A22, have to use their own wires on the side.

Other things that are planned for either revision 1 or 2 is an IDE harddisk controller,

a PS/2 keyboard interface, a sound card and a graphics card. The harddisk controller is

the easiest to build. Only three 8-bit buffer driver ICs are needed. The PS/2 interface is

a little trickier as it uses its own type of serial communication. A sound card will most

likely be based on the Amiga sound chip named Paula which supports four independent

8-bit, AM and FM modulatable, DMA driven D/A-converters, configurable as two 14-bit

channels producing stereo sound from 4kHz up to 64kHz. This chip also has an RS232

44

serial interface built in and the ability to detect mouse movements from a mouse.

The hardest thing to make would be the graphics card as it requires very high data

rates. If the decision to make a graphics card from scratch is made, a 16-bit 640*480 pixel

VGA compatible card will be made. The problem with this is that it requires 617kB of

memory and a constant data rate of 16MB/s only to keep the display on the VGA monitor.

This is more than the CPU can handle so it has to be made using DMA. Another option

would be to use an old graphics card designed for the ISA-bus in PCs. The problem could

however be to aqcuire documentation for such a card. The future will tell what solution

will be made. Perhaps just a simple LCD will be used. As static RAM, which is used on

dBOX, is quite expensive the possibility to use old 72-pin SIMM moudles on dBOX will

be investigated too. A bit more exotic thought about a PowerPC based computer using

the CHRP standard has also been made which would probably run at about 100MHz.

About ExOS: As multitasking was not expected to be done in this project it would have

been a thing for the future. What is left now are improvements like prioritized pre-emptive

multitasking and garbage collection. Drivers for the new proposed hardware will of course

also have to be written.

45

A Abbreviations

8N1 8 data bits, No parity, 1 stop bit A common configuration used for RS232 serial ports.

AM Amplitude Modulate A signal modifies, or modulate, the amplitude of another much

higher frequency signal.

ASCII American Standard Code for Information Interchange. A standardized form of

letting bytes represent the different characters on a western keyboard and a few

additional control characters.

bps bits per second. Data transfer speed unit used mainly for serial transfers.

CHRP Common Hardware Reference Platform A standard for manufacturing main boards

with PowerPC processors developed by IBM and Motorola.

CPU Central Processing Unit. Also known as a micro processor or simply a processor.

This is the unit that executes the program instructions and answers to the interrupts

given by other units.

D/A Digital to Analog Usually a device dedicated to convert digital value to analog voltage

levels. Often used to convert digital sound to analog sound that humans can hear.

DIP Dual Inline Package. A method of packaging circuits and other electronical com-

ponens with many pins. In this document it is used to describe a set of switches

grouped together in a 0.3” DIP.

DMA Direct Memory Access. A method circuits other than the CPU can deploy to read

or write directly to memory by them selves while the CPU is doing other things, to

save time. No DMA is occuring on our microcomputer (yet).

EPROM Erasable Programmable Read Only Memory. A kind of non-volatile memory

that can only be written to using a special device. Ultra violet light is used to erase

46

it before it can be re-written. This kind of memory stores most part of the operating

system and startup code in our project.

FIFO First In First Out. A queuing mechanism used as an in between buffer in places

where data can not be processes immediately but must be stored and available at

the same time as new data can fill in asynchronously. In this project FIFO buffers

are used in the actual serial circuit and in RAM to serve as buffered I/O.

FM Frequency Modulate A signal modifies, or modulate, the frequency of another much

higher frequency signal.

I/O Input / Output. 1. I/O port: A name for a specific port in to or out from the

computer. 2. I/O in general: A stream of data in to or out from a computer,

typically through some kind of I/O port.

IC Integrated Circuit. A way of putting a lot of electronical components on a single

chip and integrate them into a plastic or cheramic package. In this document inter-

changably used with the word ”circuit”.

IDE Integrated Drive Electronics A standard for connecting harddisks to computers.

IRQ Interrupt ReQuest. A signal that external hardware can issue to request the CPU to

take an interrupt and serve the hardware’s urges. The abbreviation ”IRQ” is often

interchangably used with the word ”interrupt”.

k kilo. A size operator generally meaning 1000. In computer relations though it often

means 1024 when dealing with bytes and sizes but 1000 when dealing with bits and

speeds.

kB kiloBytes. 1024 bytes. Not to be confused with ”kb” which means ”kilobit” or 1000

bits.

47

LED Light Emitting Diode. A semiconductor that emits light with a specific colour when

subject to an electrical current of a few milliamperes.

LF Low Frequency. Abbreviation meaning low frequency. Used in this document together

with the timer clock on the main board which is running with a very low frequency.

The definition of LF varies depending on the context but generally reaches from 1

hertz to a few tenth of kilohertz.

MB MegaByte. 1048576 bytes or 1024kB. Used to measure amount of data or storage

capacity.

Mbps Megabit per second. 1000000 bits per second. Data transfer speed. Is sometimes

also written as Mbit.

ms milli second(s). 1/1000’s of a second.

OS Operating System. A collection of code and functions needed to make a computer

useful for user programs. It serves as an abstraction from the hardware. In this

project it includes startup code, serial functions, memory handling, an abstraction

to the LF-clock, and a user interface.

PCB Process Control Block. A structure containing information about a process.

PS/2 Personal System/2 An invention by IBM to connect mostly keyboards and mice to

computers.

PSU Power Supply Unit. A device used to convert the electricity from the net to voltages

used by the computer and supply power to the computer.

RAM Random Access Memory. Volatile memory that can be both read and written to

and addressed in any order.

48

ROM Read Only Memory. A memory that can only be read from. Usually these kinds of

memories are programmed at the factory. See also EPROM.

RS232 Recommended Standard 232 A computer serial interface standardised by IEEE.

Usually written RS-232.

SCSI Small Computer System Interface. An interface often used to connect harddisks,

scanners, tape streamers etc. to computers.

SIMM Single Inline Memory Module A memory module with the same connectors on

both sides of the module, hence single. They exists as 8-bit 30-pin, or 32-bit 72-pin

modules. They were used as main memory in computer mainly during the 1990’s.

SR Set Reset. A kind of electronical flip-flop often used to eliminate contact bounce in

physical switches. In this project SR-flip-flops are used to latch short interrupt pulses

until the CPU has time to respond.

SRAM Static Random Access Memory. A kind of RAM that does not require refresh to

keep its memory. Its information is stored in static flip-flops. See also RAM.

UART Universal Asynchronous Receiver and Transmitter. A circuit used to receive and

transmit data to an other system asynchronously with the rest of the computer. A

serial port is a good example of a UART.

VGA Video Graphics Array A standard to connect graphics cards to computers.

49

B Schematics

The design of dBOX was not part of this project but was already made several years ago.

As this project had to include a minimum of hardware, a few redesigns had to be made

to simplify the main board. It was also clear that everything would still not fit on the

main board but needed to be moved out on small plug-in cards. Interrupt-, swap- and

CPU-clock logic got placed on their own cards. During the layout and planning of the

software a few other parts were found to originally not have been made in an optimal way

and were changed.

For the interested reader it might be worth mentioning what program that was used to

do this schematic. Personal Paint is the name of the program that was used. It is an 8-bit

pixel based drawing program for the Amiga. If an old Amiga user reads this (s)he might

remember a program called Deluxe Paint which is very similar to Personal Paint, but older

and does not work on newer Amigas. This program, despite that fact that it is nothing

more than a drawing program, is surprizingly well suited to use for electronic designs and

layouts with its grid system, nine clipboards and double buffers which makes it possible

to layout double sided circuit boards. It was used for the main schematics design and the

layout of the double sided main board and combined expansion and serial card. For the

interrupt, swap and CPU-clock cards Layo1 was used. This program is a real electronic

circuit board design program for PCs with Windows. The demo version can design cards

with up to a hundred soldering pads.

50

Figure B.1: dBOX complete schematics
51

C Pinouts

There are two expansion connectors on dBOX. One is the I/O-port expansion bus, or

simply the I/O-bus. This bus does not have any signals necessary for bus mastering, nor

does it have an address bus. It is mainly intended for simple I/O-ports.

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

34

33

Figure C.1: I/O bus expansion connector

Description Abbr. Pin Pin Abbr. Description
Supply voltage 5V Vcc 1 2 GND System ground 0V
Upper data strobe UDS 3 4 LDS Lower data strobe

Data bus bit 0 D0 5 6 D1 Data bus bit 1
Data bus bit 2 D2 7 8 D3 Data bus bit 3
Data bus bit 4 D4 9 10 D5 Data bus bit 5
Data bus bit 6 D6 11 12 D7 Data bus bit 7
Data bus bit 8 D8 13 14 D9 Data bus bit 9

Data bus bit 10 D10 15 16 D11 Data bus bit 11
Data bus bit 12 D12 17 18 D13 Data bus bit 13
Data bus bit 14 D14 19 20 D15 Data bus bit 15

Interrupt request line 5 IRQ5 21 22 R/W Read/Write
I/O-port select 0 Q0 23 24 Q1 I/O-port select 1
I/O-port select 2 Q2 25 26 Q3 I/O-port select 3
I/O-port select 4 Q4 27 28 Q5 I/O-port select 5
I/O-port select 6 Q6 29 30 Q7 I/O-port select 7
I/O-port select 8 Q8 31 32 Q9 I/O-port select 9

I/O-port select 10 Q10 33 34 Q11 I/O-port select 11

Table C.1: I/O bus expansion connector

The other connector is the CPU bus expansion, also known as the CPU-slot. It is

depicted in figure C.2. It contains all signals necessary for a device connected to it to master

the bus. Bus mastering is necessary if a device needs to perform DMA data transfers. This

52

also means that another, possibly newer and faster, CPU can be connected here to take

over from the old CPU.

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

34 36 38 40 42 44 46 48 50

33 35 37 39 41 43 45 47 49

Figure C.2: CPU bus expansion connector

Description Abbr. Pin Pin Abbr. Description
Supply voltage 5V Vcc 1 2 GND System ground 0V

Bus request BR 3 4 IRQ6 Interrupt request line 6
Bus grand acknowledge BGACK 5 6 IRQ4 Interrupt request line 4

Read/Write R/W 7 8 IRQ2 Interrupt request line 2
Lower data strobe LDS 9 10 BG Bus grant
Upper data strobe UDS 11 12 DTACK Data acknowledge

Address strobe AS 13 14 SELECT CPU-bus select
Data bus bit 0 D0 15 16 D1 Data bus bit 1
Data bus bit 2 D2 17 18 D3 Data bus bit 3
Data bus bit 4 D4 19 20 D5 Data bus bit 5
Data bus bit 6 D6 21 22 D7 Data bus bit 7
Data bus bit 8 D8 23 24 D9 Data bus bit 9

Data bus bit 10 D10 25 26 D11 Data bus bit 11
Data bus bit 12 D12 27 28 D13 Data bus bit 13
Data bus bit 14 D14 29 30 D15 Data bus bit 15

System ground 0V GND 31 32 A19 Address bus bit 19
Address bus bit 18 A18 33 34 A17 Address bus bit 17
Address bus bit 16 A16 35 36 A15 Address bus bit 15
Address bus bit 14 A14 37 38 A13 Address bus bit 13
Address bus bit 12 A12 39 40 A11 Address bus bit 11
Address bus bit 10 A10 41 42 A9 Address bus bit 9
Address bus bit 8 A8 43 44 A7 Address bus bit 7
Address bus bit 6 A6 45 46 A5 Address bus bit 5
Address bus bit 4 A4 47 48 A3 Address bus bit 3
Address bus bit 2 A2 49 50 A1 Address bus bit 1

Table C.2: CPU bus expansion connector

53

D Structures used by the OS

Various parts of ExOS uses different structures to be able to store information in comfort-

able ways. This appendix section describes all structures used. C-syntax is used to make it

as understandable as possible for most readers. In the actual assembly sources this syntax

is of course not used. See appendix F, or more precisly appendix subsection F.1 on page

100 for more specific information.

D.1 Environment variables

The core structure that connects everything in ExOS is the structure containing all environ-

ment variables – envvars. A short description of every member is made as a C-comment. A

longer description of some of the fields are made below. All void*’s in envvars are actually

function pointers that can be set to point to a subroutine to be executed in a particular

place. If null, this subroutine call will be ignored.

struct EnvVars {

char mcr; /* Copy of the write-only Master Control Register on dBOX */

char lfc; /* Copy of the write-only Low-Frequency Clock on dBOX */

char led; /* Copy of the write-only LED register on dBOX main board */

char int7; /* See below */

char status; /* Global status register */

char ramlock; /* Not used */

char rxlock; /* Not used */

char txlock; /* Not used */

char ks; /* Kernel status */

char pad; /* Unused spare/pad byte */

short freez; /* Free list size: Max # of memory allocations allowed */

FreeListBase *freel; /* Memory manager user data */

char *seriptr; /* Serial Input Pointer: Serial private data */

ulong seribeg; /* Serial Input Beginning: Serial private data */

ulong seriend; /* Serial Input End: Serial private data */

char *seroptr; /* Serial Output Pointer: Serial private data */

ulong serobeg; /* Serial Output Beginning: Serial private data */

54

ulong seroend; /* Serial Output End: Serial private data */

ulong id; /* Startup code uses this to see if envvars has been copied */

void *srbint1; /* Subroutine Before Interrupt 1 */

void *sraint1; /* Subroutine After Interrupt 1 */

void *srbint2; /* -- || -- */

void *sraint2; /* -- || -- */

void *srbint3; /* -- || -- */

void *sraint3; /* -- || -- */

void *srbint4; /* -- || -- */

void *sraint4; /* -- || -- */

void *srbint5; /* -- || -- */

void *sraint5; /* -- || -- */

void *srbint6; /* -- || -- */

void *sraint6; /* -- || -- */

void *srbint7; /* -- || -- */

void *sraint7; /* -- || -- */

void *srarx; /* Subroutine After serial Receive interrupt */

void *sratx; /* Subroutine After serial Transmit interrupt */

void *sraline; /* Subroutine After serial Line status interrupt */

void *sramodem; /* Subroutine After serial Modem status interrupt */

void *srexcept; /* Subroutine for Exceptions */

TimerBase *timer; /* Pointer to private data of the timer device */

ConnectBase *connect; /* Pointer to private data of Connect */

ProcessControlBlock *pcb; /* Pointer to the linked list of PCBs */

Kernel *kernel; /* Pointer to the private data of the kernel */

void *crbucket; /* Crash Bucket subroutine */

}

The fields mcr, lfc and led are copies of the registers with the same names on the

main board. Whenever such a register it written to, then same value should be written to

one of these variables so that it can be read. The field int7 can contain a value for the

interrupt routine for IRQ 1 to read. Usually this is set by interrupt 7 during hardware

debugging. The field status can have any of the bits in table D.1 set.

The fields ramlock, rxlock and txlock can be used as semaphores to prevent more

than one process from executing in the memory manager or serial routines at the same

time. Other solutions to this problem have been developed and these variables are not

55

Bit 0 1
ES SWAP ROM at address 0 RAM at address 0
ES SER Serial is not present Serial is present and has been initiated
ES LFLED IRQ 3 will not increase LED IRQ 3 will increase LED
ES KERNEL Kernel has not been initiated Kernel has been initiated

Table D.1: Envvars status bits

currently used.

The fields srbintN/sraintN can contain addresses to subroutines to execute either be-

fore the body of an interrupt routine executes or after it has executed. They provide a snap-

in functionality so that additional code can be attached to an interrupt without interferring

with the original interrupt routine. They are all set to null by default which disables this

functionality. The fields srarx/tx/line/modem are similar to the fields srbintN/sraintN,

but are more specifically targetted to the serial routines.

The value in field crbucket can be an address of a subroutine that will be called

whenever an irreversable error such as an address- or bus error has occured while the CPU

was in supervisor mode and thus could not swap to another process and return.

D.2 Timer

The timer information is stored in two structures. The TimerBase, which keeps global

information about the timer device and an array of timer elements, and a structure that

keeps information of a single timer.

struct TimerBase {

short lastReg;

TimerElement tel[128];

}

struct TimerElement {

char userData;

56

char status;

short startValue;

short counter;

}

lastReg is a word containing an offset to the last timer element that could be regis-

tered. If this offset is 0 than there are no registered timers in the array. There may be

unregistered timers before this one. This offset is used to speed up the traversion of the

array when updating elements. userData can be used to anything the user wants. status

is an 8-bit mask where the bits are as shown in table D.2.

Bit 0 1
7 Not registered Registered
6 Off On
5 Count down Count up
4 Repeat No repeat
3-0 Not used Not used

Table D.2: Timer status bits

startValue is the value that counter is loaded with at start and reset to if the timer

is set to repeat.

D.3 Connect

The connect information is stored in a linked list with the pointer to the first element

stored in envvars. The elements in the list have the structure:

struct ConnectBase {

ConnectBase *next;

char device;

char type;

short unitNumber;

57

union uAddress {

long userData; /* type=CON_HANDL */

ulong signal; /* type=CON_SIG */

}

union iAddress {

long intHandler; /* type=CON_HANDL */

ProcessControlBlock *process; /* type=CON_SIG */

}

}

next is a pointer to the next element in the list. If it is equal to 0, the element is the

last in the list. device is a number that indicates the type of device (e.g. DEV TIMER).

unitNumber is a number that identifies a unit. Together with device it makes an unique

identification of an unit. type is the event type. It can be a handler or a signal. uAddress

is an address to user data or a signal number. iAddress is an address to a subroutine or

a PCB depending on type.

D.4 List of free memory

Memory manager structures.

struct FreeList {

short counter; /* the current number of entries in the MemBlock list */

MemBlock memBlk[1000]; /* the actual list of segments in memory */

}

struct MemBlock {

ulong startAddress; /* the address where a block starts */

ulong endAddress; /* the address where a block ends */

ulong freeSize; /* size of a block */

}

freeSize represents the size of a free block in the list, which is the same as the size of

the free segment in the memory. If this is 0 then the block is occupied, otherwise it is free.

58

memBlk has a default size of 1000 elements but can be change in run-time by a suitable

function if desired. No such function has been design when this report was written.

D.5 Kernel

The basic structure used by the kernel functions.

struct Kernel {

ProcessControlBlock* curpcb; /* currently running process */

long* sspref; /* the top of the supervisor stack */

long toppc; /* stores the original PC when the intCatcher is used */

short topsr; /* --- || --- SR ---- || ----

char qcnt; /* quantum counter */

char quantum; /* quantum used=number of timer ticks between rescheduling */

}

sspref represents the top of the supervisor stack when any user program is executing.

This might not necessarily be the absolute top of the stack as ExOS might have put

something there before initiating the kernel. This supervisor stack reference is used so

that the intCatcher routine can be put right at the final return address to user mode for

delayed rescheduling during interrupt- or exception handling.

qcnt is a counter that tells how many timer ticks there are left before rescheduling

should be done. quantum defines how many timer ticks there should be between reschedul-

ing should occur.

D.6 Process control block

The structure containing all information about a program, or process.

struct ProcessControlBlock {

ProcessControlBlock* next; /* this is a linked list.. */

char* data; /* a pointer to the actual code or data */

59

long size; /* size of the code or data in bytes */

char type; /* What this is: PS_* */

char status; /* status, or state, of the process */

short sr; /* status register when swapped out of execution */

long pc; /* program counter when swapped out of execution */

long regs[15]; /* registers except A7 when swapped out of execution */

long* sp; /* stack pointer when swapped out of execution */

long* stack; /* pointer to the allocated memory for the stack */

long stsize; /* stack size in bytes */

ulong sigmask; /* signals allocated for this process by AllocSignal */

ulong sigwait; /* the parameter sent to Block if Block would block */

ulong sigset; /* signals that have arrived but not yet been received */

char* name; /* the name of this block */

}

data is a pointer to the actual code or data this PCB represents. A PCB can also

store a data block. The type field tells if this PCB contains code or data. Perhaps it was

not such a bright idea to have the same structure designed to keep both processes and data

and also scripts. From the terminal’s point of view (which maintains all PCBs) a PCB is

essentially just a file with a type flag. In the beginning there could not be any other files

than program files which then had their different states. See section 7. Later other types

were added but the PCB remained as the only list, now representing both files, programs

and processes.

sigwait is the parameter sent to Block if Block is putting the process to sleep. Signal

verifies its parameter agains this field to see if any signals matches which means that this

process should be woken up. This field is always zero when the process is running.

sigset contains signals that have arrived to the process but not yet been received by

a call to Block.

D.7 Taglist

This is a small structure used by a few functions to send and receive various amounts of

data. An array of TagItem forms a taglist.

60

struct TagItem {

ulong code; /* command, or code describing what to do with the data */

ulong data; /* data field. May be anything;in/in-out/out value,ptr,ref */

}

data is a general field which essentially can have any type as long as it fits in an ulong.

It may be a value, it may be a pointer or reference, it may be empty and thus meant to

be filled with data by the function. The code field implicitly defines the type of the data

field. The codes are defined individually for each function using a taglist. A code value of

for example 20 may mean two completely different things for two different functions. If the

code field i 0 it indicates the end of the taglist. A code can thus never have the value of

0 as this is reserved as an end-of-list code. (This is another idea borrowed from AmigaOS

which makes heavy uses of taglists in many OS calls.)

61

E System calls

This appendix section describes how to use all system calls in detail. The functions are

sorted in alphabetic order. They generally follow the same scheme with a number of

different fields:

NAME The name of the function and a short description of what it does.

SYNOPSIS A semi-assembly-like and a C-like description of how to call the function. In

the semi-assembly-like description registers which are used as parameters or return

values are marked in a special way: Data registers can be marked in one of two ways;

either Dn.z or Dn.z.e where ”n” is the number of the register, ”z” is the normal word

size and ”e” is the word size if an error is to be signalled by a return value. The word

size can be ”.B” for byte (8 bits), ”.W” for word (16 bits) or ”.L” for long (32 bits).

Address registers can be marked in one of two ways; An or An.z where ”n” is the

number of the register and ”z” is the word size of the data that is pointed to. If no

word size is specified, the address register points to a structure of some kind that

can not be labelled by a specific word size, or the word size of the data pointed to is

irrelevant.

The distinction between a TRAP call and a syslist call can be seen in the semi-

assembly-like description. If the function name is preceded by TRAP it is a TRAP

call. If it is preceded by JSR it is a syslist call.

FUNCTION A longer description of what this function does and how to use it. Possibly

with details of its implementation.

INPUTS A list of the input parameters to this function and a description of them.

RESULTS A note about the result that this function produces and what return values

are given. When a two-sized return value is given by the Dn.z.e notation, and ”e” is

62

larger than ”z”, only the word size ”z” is valid unless the error code equals the value

in the word of size ”e”.

EXAMPLES An example of how to use this function, possibly together with other func-

tions.

NOTE A special note about this function that needs to be observed.

SEE ALSO Other functions related to this function.

All functions do not necessarily have all of the above fields. The two types of system calls

use the following syntax:

TRAP calls: TRAP #functionname

Syslist calls: JSR (FunctionName,An)

For syslist calls An must contain the value of address 4 in memory. All parameters use

registers. The parameters are placed in the registers before the actual call. The stack is

not used for parameters in ExOS. Note that the synopsis does not reflect the correct syntax

but is instead a simplified way of showing how the functions work and the parameters it

needs and values it returnes.

E.1 AllocMem

NAME AllocMem – Allocate a block of memory

SYNOPSIS

A0 = TRAP #allocmem(D0.L)

void* memoryBlock = AllocMem(long size);

FUNCTION Allocates a block of memory for use by a program. All programs that

require storage other than that compiled into the program as static data needs to use

this function to gain exclusive access to a memory block of a specified size. No prior

63

knowledge to where this block will be in memory is available and no assumptions

about its location must be made. All memory allocated with AllocMem must be

freed using FreeMem before the process exits.

INPUTS size (D0.L) – The number of bytes requested is placed in D0. This number is

rounded up to the nearest even number which means that the block actually allocated

will always be an even number of bytes.

RESULTS memoryBlock (A0) – A pointer to the memory block allocated or NULL if

the block could not be allocated for some reason. memoryBlock always points to an

even address.

NOTE This function is forbidden to be called in supervisor mode, i.e. interrupts, TRAPs,

exception handlers, etc.

SEE ALSO FreeMem, CompFreeList

E.2 AllocSignal

NAME AllocSignal – Allocate a signal bit

SYNOPSIS

D0.B.L = JSR AllocSignal

ulong sigbit = AllocSignal(void);

FUNCTION Allocate a signal bit for use by a process to connect to an OS function

or another process that this can use to notify the process. 24 user signal bits are

available. Allocated signals can be freed using FreeSignal. As signals are local to

the process they need not to be freed before the program exits. A signal need not

to be allocated in order to be used but if different parts of a program needs signals

AllocSignal provides a comfortable way of maintaining which bits are used and which

are not. Waiting for and receiving signals is made with Block.

64

RESULTS

sigbit (D0.B) – A number between 0 and 23 identifying the bit allocated.

error (D0.L) – If all signals were already allocated, -1 is returned in D0.L.

EXAMPLE Allocating a sigbit and make Block wait for this signal. Then free it using

FreeSignal:

MOVE.L SYSLIST,A5

JSR (AllocSignal,A5)

MOVE.B D0,D1 *store our allocated sigbit in D1

MOVEQ #0,D0 *alternatively we could have written MOVEQ #1,D0 here..

BSET.L D1,D0 *..and written LSL.L D1,D0 here.

JSR (Block,A5)

*Block has now returned and we need not check D0 as we only waited for

*one signal, ours, so only this one could have caused Block to return.

MOVE.B D1,D0

JSR (FreeSignal,A5)

NOTE The sigbit is a bit number that cannot be used directly by Signal or Block but

must be used to set one bit in a bitmask that can be sent to Signal or Block.

SEE ALSO FreeSignal, Block, Signal

E.3 Block

NAME Block – Suspend a process until a signal arrives

SYNOPSIS

D0.L = JSR Block(D0.L)

ulong recvSigMask = Block(ulong waitSigMask);

FUNCTION This function first checks to see if any of the bits in the waitSigMask has

already arrived to the process. Block will in this case return immediately with these

65

bits set in recvSigMask. If none of the bits in waitSigMask had arrived, Block will

put the process in the waiting state and search for another process that is in the

ready state. If such a process is found it will put this process in the running state.

If no process is found in the ready state a STOP instruction will be executed and

the CPU halts waiting for an interrupt. When an interrupt has arrived and been

processed, the STOP instruction will end and the list of processes will be searched

again for a process that might have been put in the ready state by the interrupt.

INPUTS waitSigMask (D0.L) – A mask of bits that Block shall wait for.

RESULTS recvSigMask (D0.L) – A mask with one or more of the bits in the waitSigMask

set.

NOTE If waitSigMask is equal to 0, i.e. no bits are set, Block will never return and the

process will be in the waiting state forever.

SEE ALSO Signal, AllocSignal, FreeSignal

E.4 CompFreeList

NAME CompFreeList – Compresses the list of free memory

SYNOPSIS

JSR CompFreeList

void CompFreeList(void);

FUNCTION Merges all memory blocks that are marked as free and that lies continously

in the list, which makes blocks that were many and small into one large block.

RESULTS The memory has been defragmented which results in larger free blocks. No

return value.

66

NOTE This function is forbidden to be called in supervisor mode, i.e. interrupts, TRAPs,

exception handlers, etc.

SEE ALSO AllocMem, FreeMem.

E.5 Connect

NAME Connect – Connect a device to an event

SYNOPSIS

JSR Connect(D0.B, D1.W, D2.B, D3.L, A0)

void Connect(char device, short unitNr, char type,

long uAddress, long iAddress);

FUNCTION Connects a device (e.g. DEV TIMER) with an event. When a timer times

out the program that owns it must be aware of this in some way. Connect offers two

ways to solve this, either via a signal or via a handler.

INPUTS

device (D0.B) – The type of device that should be connected. There are defined

constants that should be used (e.g. DEV TIMER).

unitNr (D1.W) – The unit number is a number that distinguishes two or more de-

vices of the same type. There cannot be two devices with the same device type and

the same unit number.

type (D2.B) – Is one of two types of methods to make programs aware of an event.

The two types are signal (CON SIG) and handler (CON HANDL).

uAddress (D3.L) – An address to a memory place where the user program stores

data or it is a signal number that is allocated by the user program. Which one it is

depends on the choice of type above.

iAddress (A0) – An address to a handler or a PCB. The handler takes care of what

67

should be done when an event occurs. The PCB is used for knowledge needed to

switch to right process.

type CON HANDL CON SIG
uAddress ptr to userdata signal mask
iAddress ptr to handler ptr to PCB

Table E.1: Connect parameters iAddress and uAddress

RESULTS The result of calling Connect is that a device is connected to an event. No

return value.

SEE ALSO Event, Timer.

E.6 Debug

NAME Debug – Print current PC, SR, USP and SSP to serial

SYNOPSIS

TRAP #debug

void Debug(void);

FUNCTION Prints the current program counter, status register and both stack pointers

as hexadecimal numbers to the serial port. Useful for debugging purposes.

E.7 Delay

NAME Delay – Busy-loop for a given period of time

SYNOPSIS

JSR Delay(D0.W,D1.L)

void Delay(ushort seconds, long micros);

68

FUNCTION Use the CPU to wait for up to 65536 seconds. Useful for debugging pur-

poses to slow a program down without the need to use some kind of hardware timer.

Delay is not very accurat but will estimate the time based on the current CPU clock

speed. If called while multitasking is enabled the time is very unreliable but will

never be shorter than the amount specified.

INPUTS

seconds (D0.W) – The number of seconds to wait.

micros (D1.L) – The number of microseconds to wait. It is allowed to make this

number equal or larger than 1,000,000 microseconds, which is equal to one second.

NOTE If the CPU clock speed is not set properly, Delay may not wait as long as expected.

E.8 Event

NAME Event – Handles an event

SYNOPSIS

JSR Event(D0.B, D1.W)

void Event(char device, short unitNr);

FUNCTION Checks the connection list for which type of event handler that is connected

to the device with the device type and unit number that is passed at call.

INPUTS

device (D0.B) – The type of device that should be connected. There are defined

constants that should be used (e.g. DEV TIMER).

unitNr (D1.W) – The unit number is a number that distinguishes two or more devices

of the same type. There cannot be two devices with the same device type and the

same unit number.

69

RESULTS The device with device and unit number passed, is signaled in some way. No

return value.

SEE ALSO Connect

E.9 FlushRx

NAME FlushRx – Empty the serial receive buffers

SYNOPSIS

JSR FlushRx

void FlushRx(void);

FUNCTION Reset the serial receive buffers in RAM and the serial circuit. Previously

received data that has not been read by a program or such will be lost.

SEE ALSO FlushTx

E.10 FlushTx

NAME FlushTx – Empty the serial transmit buffers

SYNOPSIS

JSR FlushTx

void FlushTx(void);

FUNCTION Wait until the serial transmit buffers in RAM and in the serial circuit are

empty. When Flush returns you can be sure that all data previously written to the

serial port has been transmitted over the line.

SEE ALSO FlushRx, SendS, SendA, PutS, PutStr

70

E.11 FreeMem

NAME FreeMem – Free allocated memory previously allocated by AllocMem

SYNOPSIS

TRAP #freemem(A0)

void FreeMem(void* address);

FUNCTION Frees a memory block allocated by AllocMem. Returned memory block is

only made available in whole and not merged with another, continous memory block.

This may make the free memory more and more fragmented. To defragment the

memory a compression of it must be done.

INPUTS address (A0) – The address to memory that should be freed.

NOTE If the address is not an address previously returned by AllocMem, nothing will

happen. Freeing a faulty pointer is in other words harmless. This function is for-

bidden to be called in supervisor mode, i.e. interrupts, TRAPs, exception handlers,

etc.

SEE ALSO CompFreeList, AllocMem

E.12 FreeSignal

NAME FreeSignal – Free a signal bit previously allocated by AllocSignal

SYNOPSIS

JSR FreeSignal(D0.B)

void FreeSignal(char sigbit);

FUNCTION Free a signal in a process that has been previously allocated by AllocSignal.

It is not necessary to free signals before a process exits as the signals are local to the

71

process and will thus die with it. Freeing a signal is useful if the use for it has ceased

but it might be needed again later in the program.

INPUTS sigbit (D0.B) – A bit number between 0-31 that was returned by AllocSignal.

If a value greater than 31 is supplied it will be truncated to five bits which allows a

number no greater than 31. A signal mask is thus not what this function expects,

but a signal number.

RESULTS The sigbit has been freed and can be allocated by AllocSignal again. No

return value.

SEE ALSO AllocSignal, Block, Signal

E.13 GetA

NAME GetA – Get a byte, if any, from the serial

SYNOPSIS

D0.B.L = JSR GetA

char byte = GetA(void);

FUNCTION Query the serial structures if there is any data pending. If so, read one

byte and return. Else, return an error. GetA will always return immediately and is

thus useful if polling the serial port is necessary or if it is required that the function

returns immediately without blocking the caller. Generally GetS should be used

which lets other processes run while waiting for data.

RESULTS byte (D0.B.L) – If a byte is present in the receive FIFO buffer it will be

fetched and returned in D0.B. If D0.L is not equal to -1 only D0.B is valid and

contains the byte read. If no data is present in the receive FIFO D0.L will be equal

to -1.

72

NOTE This function may be relayed as a general input function in the future, able to

read from any input device.

SEE ALSO GetS, ReadS, PutS

E.14 GetEnvToA6

NAME GetEnvToA6 – Obtain the pointer to the environment variables.

SYNOPSIS

A6 = JSR GetEnvToA6

EnvVars* envvars = GetEnvToA6(void);

FUNCTION The address to envvars will be put in the register A6. Used mainly by

system software as only the system stores information in envvars. No assumptions

about the whereabouts of envvars must be made. This function ensures a correct

address even when RAM and ROM has been swapped.

RESULTS envvars (A6) – The address to envvars.

E.15 GetS

NAME GetS – Get a byte from the serial

SYNOPSIS

D0.B = JSR GetS

char byte = GetS();

FUNCTION Read a byte from the serial. If no data is present at the time of the call

GetS will block until atleast one byte arrives.

RESULTS byte (D0.B) – A byte read.

73

NOTE This function may be relayed as a general input function in the future, able to

read from any input device.

SEE ALSO GetA, ReadS, PutS

E.16 GetSerInfo

NAME GetSerInfo – Obtain information about the serial port

SYNOPSIS

A0.L = JSR GetSerInfo(A0.L)

TagItem* serinfo = GetSerInfo(TagItem* serinfo);

FUNCTION Takes a taglist with requests for information. This taglist will be filled with

the requested information.

INPUTS serinfo (A0.L) – A writable taglist containing requests for information. The

following tags are currently supported by GetSerInfo: SI SPEED, SI LINESTATUS,

SI MODSTATUS, SI FIFOSIZE, SI RXFIFOLOC, SI TXFIFOLOC, SI RXFILLLEV,

SI TXFILLLEV, SI RXTOTAL, SI TXTOTAL. Unknown tags will be ignored.

RESULTS serinfo (A0.L) – The same taglist sent as input filled with data. Table E.2

shows the available tags and the results they give.

SEE ALSO SetSerSpeed

E.17 IncLed

NAME IncLed - Increase the binary number on the 8 LEDs

SYNOPSIS

JSR IncLed

void IncLed(void);

74

Code / Tag Data / Return value
SI SPEED Word: Speed in divisor values. I.e. one of SER 16Xspeed if

no custom speed has been set.
SI LINESTATUS Byte: Copy of the line status register
SI MODSTATUS Byte: Copy of modem status register
SI FIFOSIZE Long: The size of the FIFOs
SI RXFIFOLOC Long: Address of the receive FIFOs in RAM
SI TXFIFOLOC Long: Address of the transmit FIFOs in RAM
SI RXFILLLEV Long: Number of bytes currently in the receive FIFO
SI TXFILLLEV Long: Number of bytes currently in the transmit FIFO
SI RXTOTAL Long: Total number of bytes transferred to the receive FIFO
SI TXTOTAL Long: Total number of bytes transferred to the transmit FIFO

Table E.2: GetSerInfo tags

FUNCTION Read the current LED-value from envvars, increase the value by one and

output the new value to the LED register on the main board. The new value is also

written back to envvars.

E.18 InitSerial

NAME InitSerial - Initiate the serial circuit

SYNOPSIS

JSR InitSerial

void InitSerial(void);

FUNCTION Detect, reset and initiate the serial circuit. InitSerial is executed on startup.

It performs a read-write-read test to see if the serial IC is present. If it is present, it

checks envvars .status to see if it has already been initiated. If it has not, it will be

reset and the speed will be set to 9600bps. If it has been initiated already, a reset

and speed set will not be done. The FIFO pointers and counters will be initiated.

The status LEDs on the serial card will be set. The FIFOs in the 16C550 will be

75

reset and enabled. The receive interrupt will be turned on. Envvars.status will be

set to signal that the serial IC has been initiated.

SEE ALSO GetSerInfo

E.19 Int2Dec

NAME Int2Dec – Convert a binary value into a decimal value

SYNOPSIS

JSR Int2Dec(D0.L, A0.B)

void Int2Dec(long value, char* buffer);

FUNCTION This function takes a long value and converts it into a string of up to ten

decimal numbers. If a buffer is passed in, the characters are written to this buffer

with a trailing null-character. The buffer must be able to store up to 12 bytes (10

digits, possible minus sign and a null-character) unless the caller is sure less digits

will be written. No preceding zeroes will be written. If the buffer is a null-pointer

the characters will be sent directly to the serial port to ease debugging of software.

INPUTS

value (D0.L) – A signed 32-bit value to convert into an ASCII string.

buffer (A0.B) – A pointer to a buffer in which to store the converted number. This

buffer must be large enough to hold up to 12 bytes. If the user is sure less characters

will be written a smaller buffer may be used. If the buffer is null the converted string

will be written directly to the serial port.

SEE ALSO Int2Hex, Str2Int

E.20 Int2Hex

NAME Int2Hex – Convert a binary value into a hexadecimal value

76

SYNOPSIS

JSR Int2Hex(D0.L, A0.B)

void Int2Hex(long value, char* buffer);

FUNCTION This function takes a long value and converts it into a string of eight hex-

adecimal numbers. If a buffer is passed in, the 8 hex-characters are written to this

buffer without a trailing null-character. The buffer must be able to store 8 bytes.

If the value does not fill out 8 characters, preceding zeroes will be padded. If the

buffer is a null-pointer, the characters will be sent directly to the serial port to ease

debugging of software.

INPUTS

value (D0.L) – A 32-bit value to convert into an ASCII string.

buffer (A0.B) – A pointer to a buffer in which to store the converted number. This

buffer must be large enough to hold exactly 8 bytes. If the buffer is null the converted

string will be written directly to the serial port.

NOTE No trailing null-termination will be appended.

SEE ALSO Int2Dec, Str2Int

E.21 MemCheck

NAME MemCheck – Checks the memory for faults

SYNOPSIS

D0.L = JSR MemCheck(A0, D0.L)

long result = MemCheck(long startAddress, long amount);

FUNCTION Checks the memory from the start address and forward the amount of

bytes. If the start address is even, every even byte is checked and vice versa. This

77

way each of the memory ICs can be checked one at a time. If there is one byte that

is not ok this is reported, but not which one it is.

INPUTS

startAddress (A0) – The address where the checking shall begin.

amount (D0.L) – The amount of bytes to check.

RESULTS result (D0.L) – If the memory is defect the result will be equal to 1, and if

the memory is OK the result will be equal to 0.

NOTE As only even or odd bytes are checked each time, amount will effectively be in

number of words, not bytes, although only one byte of every word will be tested in

one pass.

E.22 MemInfo

NAME MemInfo – Gives information about memory

SYNOPSIS

A0.L = JSR MemInfo(A0.L)

TagItem* meminfo = MemInfo(TagItem* meminfo);

FUNCTION Gives information about how much free memory there is, size of the largest

block of free mem, how many blocks that are allocated and how many blocks that

are free.

INPUTS meminfo (A0.L) – The taglist is built up by one command followed by one

field for the result, then another pair and so on. The taglist must end with a 0 as

command. There can be as many pairs as there are commands.

Four commands exists and are listed in table E.3.

78

command Description Return value
MI TOTALFREE How much free memory there is. Number of free bytes
MI LARGEST The largest block of free memory. Size in bytes
MI NUMALLOC Amount of blocks that are allocated. Number of blocks
MI NUMFREE Amount of blocks that are free. Number of blocks

Table E.3: MemInfo tags

RESULTS meminfo (A0.L) – The address to the taglist. The actual result is stored in

the fields after each command in the taglist. The result is either a size in bytes or a

number in integers. See above.

SEE ALSO AllocMem, FreeMem, CompFreeList

E.23 PutS

NAME PutS – Write a byte synchronously to the serial

SYNOPSIS

JSR PutS(D0.B)

void PutS(char byte);

FUNCTION Sends one byte of data to the serial circuit or the transmit FIFO buffer if

the serial circuit is currently busy. If the FIFO is full it will Block until the FIFO is

not full. It will then put the byte in the FIFO and return.

INPUTS byte (D0.B) – A byte of data to send over the serial port.

NOTE This function may be relayed as a general output function in the future, able to

write to any output device.

SEE ALSO SendS, GetS, GetA

79

E.24 PutStr

NAME PutStr – Send a string synchronously to the serial

SYNOPSIS

JSR PutStr(A0)

void PutStr(char* string);

FUNCTION Sends a null-terminated string of any size to the transmit FIFO buffer. If

the FIFO is full or becomes full during the call it will Block until the FIFO is not

full. It will continue to Block until the whole string has been written to the FIFO.

It will then return.

INPUTS string (A0) – A null-terminated string that will be written.

NOTE This function may be relayed as a general output function in the future, able to

write to any output device.

SEE ALSO SendS

E.25 ReadS

NAME ReadS – Read a number of bytes synchronously from the serial

SYNOPSIS

A0.B = JSR ReadS(A0.B, D0.L)

char* buffer = ReadS(char* buffer, ulong size);

FUNCTION Reads a specified amount of data from the serial port and puts it in a

buffer. The buffer must be big enough to be able to store the specified number of

bytes that should be read. This function is synchronous which means that if not

enough data is in the receive FIFO when called it will read what data it can and

80

then Block until enough data has arrived to fill up the buffer passed in to the size

specified.

INPUTS

buffer (A0.B) – Buffer to store the data read.

size (D0.L) – The size in bytes of the buffer that will be filled with data.

RESULTS buffer (A0.B) – The same buffer passed in filled up with data.

NOTE This function may be relayed as a general input function in the future, able to

read from any input device.

SEE ALSO SendS, SendA, GetS, GetA

E.26 ReSchedule

NAME ReSchedule – Private function

SYNOPSIS

TRAP #reschedule

void ReSchedule(void);

FUNCTION This internal TRAP call will setup the kernel and the currently running

process, if any, for a task switch. It will then do a rescheduling if it was called from

user mode. If it was called from supervisor mode it will install an interrupt catcher

to intercept the last supervisor return and do a recheduling then. If no process wants

to run, ReSchedule will execute a STOP instruction to halt the CPU and wait for

an interrupt. Only Block and Signal are allowed to call this function as they are

the only one that can guarantee a pure stack. A pure stack means that only the

return address to the user program may be on the stack, no other nested system calls

or stored registers. The function will store the current status of the running user

81

program and put it in the ready state if it was running. It will then find another

ready process to start up. This function may however not be the one reviving the

current process again. Also it may not have been this function that stored the new

process in previous time. That is why the stack must be pure so that no dependencies

exists regaring the return point.

NOTE User programs must not call this function but instead use the Block function.

E.27 Reset

NAME Reset – Restart dBOX and ExOS

SYNOPSIS

TRAP #reset

void Reset(void);

FUNCTION Will perform a hardware reset on the main board and software reset on the

OS and the CPU. The 68000 CPU does not have an instruction for resetting itself,

only to activate the external reset pin on the CPU to reset external devices connected

to this pin. This trap call will simply do the steps normally done by the CPU on

an external hardware reset. That is; read the system stack pointer from address $0,

read the entry point to the startup code from address $4, then jump to the entry

point. The result is a warm restart.

E.28 SendA

NAME SendA – Write a number of bytes asynchronously to the serial

SYNOPSIS

D0.L = JSR SendA(A0.B, D0.L)

ulong bytesWritten = SendA(char* buffer, ulong size);

82

FUNCTION Try to write a specified number of bytes to the serial port. This function

is asynchronous which means that it will not Block if it could not fit the complete

buffer in the transmit FIFO at once but will instead return immediately with the

actual number of bytes written.

INPUTS

buffer (A0.B) – A buffer containing a specific amound of data to try to send over

the serial port.

size (D0.L) – The number of bytes requested to be sent.

RESULTS bytesWritten (D0.L) – This return value will tell how many bytes could

actually be fit into the transmit FIFO and that thus has been sent.

NOTE This function may be relayed as a general output function in the future, able to

write to any output device.

SEE ALSO SendS, PutStr, PutS

E.29 SendS

NAME SendS – Write a number of bytes synchronously to the serial

SYNOPSIS

JSR SendS(A0.B, D0.L)

void SendS(char* buffer, ulong size);

FUNCTION Will write a buffer with the specified number of bytes to the serial port.

If the complete buffer does not fit into the transmit FIFO buffer, SendS will Block

until enough space has been available to write the whole buffer into the FIFO.

INPUTS

buffer (A0.B) – A buffer containing a specific amound of data to send over the

83

serial port.

size (D0.L) – The number of bytes to send.

NOTE This function may be relayed as a general output function in the future, able to

write to any output device.

SEE ALSO SendA, PutStr, PutS

E.30 SetSerSpeed

NAME SetSerSpeed – Set the transfer speed of the serial port

SYNOPSIS

JSR SetSerSpeed(D0.W)

void SetSerSpeed(short divisor);

FUNCTION Setting the speed of the serial circuit is made using this function. The

speed is defined as a divisor value that will divide the 1/16’th of the crystal frequency

further. The 16C550 has a crystal of 15.360MHz connected to it. This frequency is

internally divided by 16 to form a frequency of 960kHz. This 960kHz frequency is

further divided by the input parameter to SetSerSpeed to form the transfer speed

desired.

INPUTS divisor (D0.W) – Divisor value to divide the 1/16’th crystal frequency with.

There are also a set of predefined divisor values that can be used which are listed in

table E.4.

EXAMPLES To set the speed to 19200bps without using a predefined value, the divisor

is calculated the following way:

divisor =
crystal/16

speed

84

Divisor Speed (bps) Note
SER 16X2400 2400
SER 16X4800 4800
SER 16X9600 9600
SER 16X19200 19200
SER 16X38400 38400
SER 16X57600 57600 Not exactly 57600 but 56471
SER 16X115200 115200 Not exactly 115200 but 120000

Table E.4: Predefined serial transfer speeds

In this case this will be:
15360000/16

19200
= 50

The divisor value to send to this function will be 50.

SEE ALSO GetSetInfo

E.31 Signal

NAME Signal – Signal a process

SYNOPSIS

D0.L = JSR Signal(A0, D0.L)

bool success = Signal(struct ProcessControlBlock* pcb, ulong sigmask);

FUNCTION Signal a process by sending it a set of signal bits. If the process signalled is

currently waiting for any of these signals in a Block a rescheduling will be made. It

is not certain that the process signalled will be the one resuming execution after the

rescheduling if there are other ready processes in the process list. What is certain

is that the signalling process will stop executing if atleast one other process is ready

in the process list, the signalled process is waiting for atleast one of the signals sent

and multitasking has not been inhibited.

85

INPUTS

pcb (A0) – A pointer to the process to receive the signals.

sigmask (D0.L) – A bitmask containing signal bits to send to a process. The upper

8 bits should not be used by user programs. These are reserved and used by ExOS

and may cause confusion if used. No harm will come if used but to avoid peculiarities

only the lower 24 bits, allocatable by AllocSignal should be used.

RESULTS success (D0.L) – If the process to signal existed then -1 (true) will be re-

turned. If the process to signal did not exist in the process list, 0 (false) will be

returned.

NOTE This function may be called from supervisor mode.

SEE ALSO AllocSignal, Block

E.32 SingleTask

NAME SingleTask – Enable or disable multitasking

SYNOPSIS

JSR SingleTask(D0.B)

void SingleTask(bool singleTask);

FUNCTION When it is critical that a user program does not get interrupted by the

rescheduler, this function can be used to disable the multitasking. When the program

no longer needs to singletask it should turn on multitasking again as soon as possible

to allow other processes to execute. If a program enters singletask mode for an

extended period of time without doing any output it would appear to the end user

as if the computer has hung. This is why singletask mode should be used sparingly

and only for short periods of time.

86

INPUTS singleTask (D0.B) – Set to non-zero to disable multitasking and enter single-

task mode. Set to 0 to enable multitasking.

NOTE Interrupts will not be inhibited in singletask mode, only rescheduling. A call to

Block will immediately cancel singletask mode and enable multitasking. When Block

returns (because a signal arrived) multitasking will not be turned off again.

E.33 Stop

NAME Stop – Stop the CPU

SYNOPSIS

TRAP #stop

void Stop(void);

FUNCTION Stop intruction fetching and wait for an interrupt. This function will exe-

cute the STOP-instruction of the CPU which will make the CPU cease instruction

fetching and execution and wait for an interrupt. Not very userful for user programs.

It is used by ExOS when Block is called and the kernel is not running. As STOP is

a privileged instruction user code cannot execute it but needs a TRAP call to get in

supervisor mode first. When no program needs to run, Stop provides a way of halting

the CPU and thus put the rest of the computer in low-power standby mode until an

interrupt occurs. Busy-looping is never a good idea. The STOP-instruction will set

the status register to $2000 which means supervisor mode (cannot return from the

TRAP without being in supervisor mode) and lowest interrupt priority.

NOTE User programs should use Block instead when they have nothing to do to let other

programs execute while waiting for a signal. Block will execute STOP if no other

program wants to execute.

SEE ALSO Block

87

E.34 StoreProg

NAME StoreProg – Convert and store an S19 file into binary

SYNOPSIS

A0, D0.L = JSR StoreProg(A0)

char* dataBlock, long progSize = StoreProg(LinkedList* s19List);

FUNCTION Converts a linked list of S19 records into binary. First the linked list is

scanned to calculate the size the converted data will take. Then a memory block will

be allocated in which the decoded data will be stored. S19 records of type S1, S2

and S3 will then be converted and stored within this block.

INPUTS s19List (A0) – A linked list where each node contains one S19 record. One

S19 record also equals one line in an S19 file. The linked list must end with a next

pointer that is null and has the following form:

struct LinkedList {

char* s19record;

struct LinkedList* next;

}

RESULTS

dataBlock (A0) – The block in memory that was allocated and filled with binary

data converted from the S19 file. It is up to the caller to free this block when it is

no longer needed. If an error occured this will be null.

progSize (D0.L) – If no error occured this return parameter will contain the size

in bytes of the binary data block returned. If memory could not be allocated 0 will

be returned. If a checksum error was detected during decoding -1 will be returned.

If none of the S19 records containd any data -2 will be returned.

88

NOTE Although this function allocates a memory block to store the decoded data in it

still interprets the addresses in every S19 record. This means that if the addresses in

all records are not adjecent, because an ORG was used somewhere in the assembly

source, StoreProg will most likely write outside the allocated memory block. The

allocated memory block will only be used as a base address. Therefore code written

for ExOS must always be written relocatable, never use fixed addresses (ORG) and

always use a start address of 0 for normal operation.

E.35 Str2Int

NAME Str2Int – Convert a string with a number to a binary value

SYNOPSIS

D0.L, D1.L = Str2Int(A0.B)

long value, long length = Str2Int(char* string);

FUNCTION Converts a number represented as ASCII in a string to a normal binary

value. Any leading white spaces will be skipped and ignored. The value can be

either decimal with no preceding character, hexadecimal with a $-sign as preceding

character or binary with a %-sign as a preceding character. Negative value are

representing by a ’-’-sign preceding the number. The occurence of a character not

representing a digit within a number in the string will stop the parsing and return

what has been found. If the number was too big for 32-bit 0 will be returned in both

value and length.

INPUTS string (A0.B) – A pointer to a string to parse for a number.

RESULTS

value (D0.L) – The converted value. If no number was found in the string or the

number did not fit in 32-bit 0 will be returned.

89

length (D1.L) – The number of approved characters read. This includes leading

white spaces and preceding signs. If no number was found in the string or the number

didn’t fit in 32-bit 0 will be returned.

EXAMPLES Strings that will parse correctly plus the return value and length: "45"

(45,2), "-$8C " (-140,4), " -456abc78" (456,6), " %01110101 " (117,11),

" -3.14" (-3,3)

Strings that will not parse correctly and return 0 in both return values: "abc",

"- 56", "$ B7", " % 101", "K5"

SEE ALSO Int2Dec, Int2Hex

E.36 StrCmp

NAME StrCmp – Compare two strings in a C-like manner

SYNOPSIS

D0.W = JSR StrCmp(A0.B, A1.B, D0.L)

short result = StrCmp(char* str1, char* str2, long length=-1);

FUNCTION Compare two strings and return the difference between them in the form of

the difference between the first non-equal characters. If null was encountered in both

strings at the same position before any non-equal characters, zero will be returned.

This function works like the strcmp() function in C. It can be used in sort routines.

It will always stop comparing if null is encountered in one of the strings.

INPUTS

str1 (A0.B) – The first null-terminated string to compare.

str2 (A1.B) – The second null-terminated string to compare.

length (D0.L) – An optional length parameter to be used if the comparison should

not proceed until a null character arrives in one of the strings. If a comparison until

90

null is desired this parameter is set to -1. If length is set to 0 no characters are

compared and 0 (equal) is returned. If length happens to be longer than any of the

strings, the comparison will stop when a null character is encountered as if length

was set to -1.

RESULTS result (D0.W) – This will be 0 if the two strings were equal up until null

characters were detected in both strings or the specified number of characters have

been compared and found equal. A value less than zero will be returned if a character

was encountered in str1 that has a lower ASCII value that the character on the

same position in str2. A value greater than zero will be returned if a character was

encountered in str1 that has a higher ASCII value than the character on the same

position in str2. The magnitude of the value is derived by subtracting the ASCII

value of the last compared character in str2 from the last compared character in str1.

EXAMPLES In these examples ’\0’ will illustrate terminating null characters in the

strings and bold font illustrates the characters where the comparison stops. Following

are a few examples of calls to StrCmp and their return values:

StrCmp(”Hello\0”, ”Hello\0”) = 0

StrCmp(”Hello people\0”, ”Hello world\0”) = 7

StrCmp(”test\0”, ”Test\0”) = -32

StrCmp(”testing first\0”, ”testing second\0”, 7) = 0

StrCmp(”Some string\0”, ”another string\0”, 0) = 0

StrCmp(”String\0”, ”Str\0”, 50) = 105

NOTE In assembly the length parameter may not be omitted as detecting an absent

parameter is impossible in assembly.

SEE ALSO StrCmpNC

91

E.37 StrCmpNC

NAME StrCmpNC – Compare two string case insensitive

SYNOPSIS

D0.L = JSR StrCmpNC(A0.B, A1.B, D0.L)

bool equal = StrCmpNC(char* str1, char* str2, long length=-1);

FUNCTION Compare two strings non case sensitive. This function differs from StrCmp

on two things: It ignores if letters are in UPPER CASE or lower case but treats them

the same. It also does not return a differential value but rather a bool telling if the

strings were equal or different up until the length specified, or until a null character

was encountered in one of the strings.

INPUTS

str1 (A0.B) – The first null-terminated string to compare.

str2 (A1.B) – The second null-terminated string to compare.

length (D0.L) – An optional length parameter to be used if the comparison should

not proceed until a null character arrives in one of the strings. If a comparison until

null is desired this parameter is set to -1. If length is set to 0 no characters are

compared and -1 (equal) is returned. If length happen to be longer than any of the

strings the comparison will stop when a null character is encountered as if length was

set to -1.

RESULTS equal (D0.L) – -1 is returned if both strings were equal (case ignored). 0 is

returned if the two strings differs in length or characters (other than case).

EXAMPLES In these examples ’\0’ will illustrate terminating null characters in the

strings and bold font illustrates the characters where the comparison stops. Following

are a few examples of calls to StrCmpNC and their return values:

StrCmpNC(”Hello\0”, ”Hello\0”) = -1

92

StrCmpNC(”Hello people\0”, ”Hello world\0”) = 0

StrCmpNC(”test\0”, ”Test\0”) = -1

StrCmpNC(”TESTing first\0”, ”testinG second\0”, 7) = -1

StrCmpNC(”Some string\0”, ”another string\0”, 0) = -1

StrCmpNC(”String\0”, ”Str\0”, 50) = 0

NOTE Only the letters a-zA-Z are covered by the case insensitivity. Non-english letters

like ö or ä does not match against their counterparts in another case.

SEE ALSO StrCmp

E.38 StrCopy

NAME StrCopy – Copy one string into another

SYNOPSIS

JSR StrCopy(A0.B, A1.B)

void StrCopy(char* dest, char* source, long length=-1);

FUNCTION Copy a null-terminated source string over a destination string that also will

be null-terminated. The length parameter can be omitted and the copy will proceed

until a null character is encountered in the source string. It is strongly suggested

though, that the length parameter is used to prevent overflowing the destination

memory buffer. This function works like the strcpy() function in C.

INPUTS

dest (A0.B) – The destination string that will be overwritten by the source string.

The memory buffer dest points to must be large enough to hold the entire source

string plus one additional character for null- termination, or the length specified. It

will always be null-terminated unless the length parameter specifies 0 characters.

source (A1.B) – The null-terminated string that will be copied to the destination.

93

The copying will proceed until a null character is encountered or as long as the length

parameter specifies.

length (D0.L) – This optional parameter tells how many characters that the desti-

nation string can hold including a trailing null character. If this parameter is set to

-1 the caller must be certain that the source string will fit in the destination. The

source string does not have to be null-terminated if length is used. If length defines

a longer string than the source is, the copying will stop when a null character is

encountered in the source. If length is 0 no characters will be copied and no null-

termination will be written to the destination.

EXAMPLES In these examples ’\0’ will illustrate terminating null characters in the

strings. Following are a few examples of calls to StrCopy:

StrCopy(dest, ”Test\0”) – dest=”Test\0”

StrCopy(dest, ”Short string\0”, 5) – dest=”Shor\0”

SEE ALSO StrLen

E.39 StrLen

NAME StrLen – Count the number of characters in a string

SYNOPSIS

D0.L = JSR StrLen(A0.B)

ulong length = StrLen(char* string);

FUNCTION Counts the number of characters in a string up until a null character is

encountered. The null character will not be counted. This function works like the

strlen() function in C.

INPUTS string (A0.B) – The null-terminated string to count the characters in.

94

RESULTS length (D0.L) – The number of characters in the string up until, but not

including, the terminating null character.

EXAMPLES ’\0’ illustrates the terminating null character.

StrLen(”One, two three\0”) = 14

SEE ALSO StrCopy, StrCmp, StrCmpNC

E.40 SuperVisor

NAME SuperVisor – Ask if the calling code executes in supervisor mode

SYNOPSIS

Z = TRAP #supervisor

bool isSupervisor = SuperVisor(void);

FUNCTION As code executing in user mode does not have the privilege of being able

to access the status register directly without being trapped in the privilege viola-

tion exception, this function was made. Using it makes it possible to find out if in

supervisor mode or not without the risk of being trapped in the privilege violation

exception. ExOS uses this function where Block might be called in supervisor mode

to prevent it from doing so as this is forbidden.

RESULTS isSupervisor (Z) – The return value from this function does not come in a

register but in the zero-flag. This means that a branch that depends on the Z-flag can

be made directly after the call to this function without any previous CMP-instruction

or similar test. The Z-flag will be set (1) if the calling code is executing in supervisor

mode. The Z-flag will be cleared (0) if the calling code is executing in user mode.

EXAMPLES Example of a piece of code using this function:

95

TRAP #supervisor

BEQ.S inSupervisorMode

BNE.S notInSupervisorMode

inSupervisorMode:

* code to execute in supervisor mode

BRA.S end

notInSupervisorMode:

* code to execute in user mode

end:

E.41 SwapRomRam

NAME SwapRomRam – Logically swap ROM and RAM

SYNOPSIS

TRAP #swapromram

void SwapRomRam(void);

FUNCTION Logically swaps the ROM and RAM memory spaces. This is needed if

manipulation of the interrupt vector table is desired. SwapRomRam will set up

everyting needed for the swap and then do the actual swap. All memory allocations

that have been made will be changed to point to the new memory space. All user

programs must change their own pointers and addresses that are set to point within

the ROM or RAM. The top return address on all user stacks will be changed. Any

subsequent return address on any stack caused by a subrountine call must be changed

by the programs themselves. To make this as successful as possible it is advisable

that no, or at most one program is running, preferably with an empty stack, when

this function is called. If a swap has already been made this function will swap the

memory areas back and perform a reset on the computer.

96

RESULTS The memory area at $000000-$0FFFFF has been swapped with the memory

area at $100000-$1FFFFF.

NOTE Think twice before using this function.

E.42 Timer

NAME Timer – Manipulates a timer

SYNOPSIS

D0.L = TRAP Timer(D3.L)

long result = Timer(long command);

FUNCTION Via this function the user can manipulate a timer. The user can set, reset,

register, unregister, read, start and stop a timer. The user can even initiate the timer

device, BUT should be aware of that a normal user not should be doing this.

INPUTS command (D3.L) – The command that the user wants to execute. The com-

mands that can be used are listed in table E.5 with extra parameters that must be

passed with each of them. The results, were there are any, are listed too.

RESULTS See table E.5.

SEE ALSO Event, Connect

E.43 UserTrap

NAME UserTrap – Call a user function in supervisor mode

SYNOPSIS

TRAP #usertrap(A0)

void UserTrap(void* function);

97

Command Input Result
TC RESET timerNr (D0.W) – The number of

the timer that should be reset.
None

TC START timerNr (D0.W) – The number of
the timer that should be started.

None

TC STOP timerNr (D0.W) – The number of
the timer that should be stopped.

None

TC READ timerNr (D0.W) – The number of
the timer that should be read.

currValue (D0.L) – The cur-
rent timer value.

TC SET timerNr (D0.W) – The number
of the timer that should be set.
bitmask (D1.B) – See appendix
D.2.

None

TC REG None timerNr (D0.L) – The timer
number of the registered timer.
A value of -1 means that there
were no more timers.

TC UNREG timerNr (D0.W) – The number of
the timer that should be unregis-
tered.

None

TC INIT None None

Table E.5: Timer parameters

FUNCTION This function takes a pointer to a subroutine, or function, that will be

called from the TRAP. This means that the subroutine will execute in supervisor

mode. This is mainly useful for maintenance software. The function will be called

with a simple JSR-instruction. Nothing else then the return address the JSR puts

on the stack, and of course the information the TRAP instruction puts on the stack

will be there. Note that the stack used is the supervisor stack, not the user stack

allocated for the user program itself. Multitasking will be disabled while this function

executes as rescheduling cannot be done in supervisor mode.

INPUTS function (A0) – The function to call. The return must be made with a normal

RTS-instruction, not RTE as one might have thought.

98

NOTE Registers used in the called function does not need to be preserved.

99

F Source code

Here follows the source codes for the whole project. Not including help software developed

for various things, like making these sources TEX-friendly by wrapping them in verbatim

etc. and replacing every blank line with ”-” to prevent LATEX from removing these lines

all together. Nor does it include testing software. Most code was written using assembly

but some parts were written in E, a high-level language similar to C. It is pretty clear

who wrote what code as no coding standard was deployed, except for the naming of labels

which are further discussed before the file MemLayout.s68 on page 104.

F.1 Definitions.s68

This file contains all constants and definitions used for the operating system stored in

ROM. This is, not surprisingly, the most commented file in the project.

ROM EQU 0
RAM EQU $100000
SYSSP EQU $140000
SSPSIZE EQU $1000
USPSIZE EQU $1000
MEMSIZE EQU $40000
NULL EQU 0
NIL EQU 0
TRUE EQU -1
FALSE EQU 0
SLOFF EQU -6
-
IOA EQU $200000 * These doesn’t really exists yet but the
IOB EQU $200002 * addresses are reserved in hardware.
IOC EQU $200004
IOD EQU $200006
IOE EQU $200008
IOF EQU $20000A
IOG EQU $20000C
IOH EQU $20000E
IOCTRL EQU $200010 * >Word only access!
LFC EQU $20001C * >
MCR EQU $20001D * >
DIP EQU $20001E * <
LED EQU $20001F * >
-
*TRAP functions
allocmem EQU 0 * >D0.L=size, <A0=mem
freemem EQU 1 * >A0=mem
timer EQU 2 * >D3.L=command
reschedule EQU 3 * no parameters (callable only from block:)
stop EQU 4 * no parameters
swapromram EQU 5 * no parameters (all stacks must be clean for this to work)
debug EQU 6 * no parameters (prints current PC, SR and SP)
supervisor EQU 7 * <Z=0 if user mode, Z=1 if supervisor mode
usertrap EQU 8 * >A0=ptr to function to be called and should end with RTE
reset EQU 15 * no parameters
-
*SysList functions
Delay EQU SLOFF*33 >D0.L=microseconds(max 1M), >D1.W=seconds
Event EQU SLOFF*32
Connect EQU SLOFF*31 >D0.B=Device (DEV_*), >D1.W=
InitSerial EQU SLOFF*30 >A6=ptr to envvars, trashes various registers..
SetSerSpeed EQU SLOFF*29 >D0.W=speed (SER_16Xspeed)
GetSerInfo EQU SLOFF*28 <>A0.L=ptr to taglist that will be filled with data.
SendS EQU SLOFF*27 >A0=data, >D0.L(usig)=size Send serial data synchronously
SendA EQU SLOFF*26 >A0=data, <>D0.L(usig)=size Send serial data asynchronously
GetS EQU SLOFF*25 < D0.B=data Get one byte serial data synch
GetA EQU SLOFF*24 < D0.L(B)=data <D0.L=-1=no data Get one byte serial data asynch if it exists
PutS EQU SLOFF*23 >D0.B=data Send one byte serial data synch
ReadS EQU SLOFF*22 <>A0=buf, >D0.L(usig)=size Read serial data synch
FlushTx EQU SLOFF*21 no parameters
FlushRx EQU SLOFF*20 no parameters
PutStr EQU SLOFF*19 >A0=null-terminated string
StrCmp EQU SLOFF*18 >A0.B=string1, >A1.B=string2, >D0.L=len, <D0.L=result:A0<A1=<0, A0=A1=0, A0>A1=>0
StrCmpNC EQU SLOFF*17 >A0.B=string1, >A1.B=string2, >D0.L=len, <D0.L=result:A0<>A1=0, A0=A1=-1
StrLen EQU SLOFF*16 >A0.B=ptr to 0-string, <D0.L=length excl. NIL

100

StrCopy EQU SLOFF*15 >A0.B=dest, >A1.B=source, >D0.L=length
Str2Int EQU SLOFF*14 >A0.B=string, <D0.L=int, <D1.L=length
Int2Dec EQU SLOFF*13
Int2Hex EQU SLOFF*12 >D0.L=int, >A0=buffer of 8 bytes to store the number, or NIL to output to serial
CompFreeList EQU SLOFF*11 no parameters
MemInfo EQU SLOFF*10 >D0.B=0=total,1=largest,2=numalloc,3=numfree, <D0.L=avail size/num
MemCheck EQU SLOFF*9 >A0.L=Start address, even or odd, >D0.L=Amount of bytes, D0.L> 0=OK,1=Not OK
StoreProg EQU SLOFF*8 >A0=linked list of s-recs, <A0=addr to decoded program or NIL
GetEnvToA6 EQU SLOFF*7 < A6=ptr to envvars
IncLed EQU SLOFF*6 >A0=ptr to envvars or 0 when >D7.B is used
SingleTask EQU SLOFF*5 >D0.B <>0=forbid, =0=permit multitasking. Block automatically permits multitasking.
Signal EQU SLOFF*4 >A0=pcb, D0.L=sigmask to signal to A0. <D0.L=-1 ok, 0=pcb doesn’t exist
Block EQU SLOFF*3 >D0.L=signal mask, <D0.L=signals received
FreeSignal EQU SLOFF*2 >D0.B=the number of the sigbit to clear
AllocSignal EQU SLOFF*1 < D0.B=the number of the allocated sigbit, <D0.L=-1=no free signal
-
***************** EnvVars *****************
-
EM_SWAP EQU 0 -> Ram and ROM are swapped
EM_IRQINH EQU 1 -> inhibit all interrupts
EM_LFCINH EQU 2 -> inhibit LF-clock interrupts
-
ES_SWAP EQU 0 -> swapped ROM<->RAM
ES_SER EQU 1 -> serial is attached
ES_LFLED EQU 2 -> LF-clock interrupt outputs and increments ENV_LED->LED
ES_KERNEL EQU 3 -> ENV_KERNEL is initiated.
-
ENV_MCR EQU 0 *Copy of Master Control Register: EM_*
ENV_LFC EQU 1 *Copy of LF-clock register
ENV_LED EQU 2 *Copy of LED register (not always used)
ENV_INT7 EQU 3 *<>0 - int7 got data for int1 to process, =0 - no data for int1
ENV_STATUS EQU 4 *Status: ES_*
ENV_RAMLOCK EQU 5 *Semaphore; someone is in the RAM-handler
ENV_RXLOCK EQU 6 *Semaphore; someone is in an Rx function
ENV_TXLOCK EQU 7 *Semaphore; someone is in a Tx function
ENV_PAD EQU 4*2 *pad
ENV_FREEZ EQU 5*2 *Freelist max size (num alloc (=bytes/12), 65535 max)
ENV_FREEL EQU 3*4 *Freelist base address; -1=no memhandler
ENV_SERIPTR EQU 4*4 *Ptr to serial input FIFO
ENV_SERIBEG EQU 5*4 *Serial Rx nexttoread in FIFO
ENV_SERIEND EQU 6*4 *Serial Rx nextfree in FIFO
ENV_SEROPTR EQU 7*4 *Ptr to serial output FIFO
ENV_SEROBEG EQU 8*4 *Serial Tx nexttosend in FIFO
ENV_SEROEND EQU 9*4 *Serial Tx lastin in FIFO
ENV_ID EQU 10*4 *ID-value used to see if envvars has been copied to RAM before
ENV_SRBINT1 EQU 11*4 *Int1 subroutine ptr to be executed before the original int-code (Preserved all regs!)
ENV_SRAINT1 EQU 12*4 *Int1 subroutine ptr to be executed after the original int-code
ENV_SRBINT2 EQU 13*4 *Int2 - || -
ENV_SRAINT2 EQU 14*4
ENV_SRBINT3 EQU 15*4 *This will execute before the scheduler!
ENV_SRAINT3 EQU 16*4 *Used by the timer
ENV_SRBINT4 EQU 17*4 *Int4 - || -
ENV_SRAINT4 EQU 18*4
ENV_SRBINT5 EQU 19*4 *Int5 - || -
ENV_SRAINT5 EQU 20*4
ENV_SRBINT6 EQU 21*4 *Int6 - || -
ENV_SRAINT6 EQU 22*4
ENV_SRBINT7 EQU 23*4 *Int7 - || -
ENV_SRAINT7 EQU 24*4
ENV_SRARX EQU 25*4 *Int4 Serial. Sub ptr to execute after Rx.
ENV_SRATX EQU 26*4 *Int4 Serial. Sub ptr to execute after Tx.
ENV_SRALINE EQU 27*4 *Int4 Serial. Sub ptr to execute after Line.
ENV_SRAMODEM EQU 28*4 *Int4 Serial. Sub ptr to execute after Modem.
ENV_SREXCEPT EQU 29*4 *Exceptions subroutine. On the stack a WORD with the vector number will be.
ENV_TIMER EQU 30*4 *Timerbase
ENV_CONNECT EQU 31*4 *Connect base
ENV_PCB EQU 32*4 *Process Control Block base
ENV_KERNEL EQU 33*4 *Kernel pointer
ENV_CRBUCKET EQU 34*4 *Place where a supervisor crash can escape
-
***************** Serial *****************
-
FIFO_SIZE EQU 1024 * needs to be 2^n
FIFO_AND EQU 1023 * needs to be 2^n-1
-
*Note, all odd addr multiples of 16 of SER_BASE are valid up to SER_BASE+$FFFFF.
*All even addr up to SER_BASE+$FFFFE are valid for SER_LED.
SER_BASE EQU $500000 -> Base addr for the serial circuit depending on CPU-slot.
SER_LED EQU SER_BASE+0 ->B >External LED and control register
SER_RHR EQU SER_BASE+1 ->B < Receive Holding Register
SER_THR EQU SER_BASE+1 ->B >Transmit Holding Register
SER_DLL EQU SER_BASE+1 ->B <>Divisor Latch LSB (LCR b7=1)
SER_IER EQU SER_BASE+3 ->B <>Interrupt Enable Register
*3=modem stat, 2=rx line, 1=tx holding, 0=rx holding
-
SER_DLM EQU SER_BASE+3 ->B <>Divisor Latch MSB (LCR b7=1)
SER_FCR EQU SER_BASE+5 ->B >FIFO Control Register
*7,6=rx trig lev, 3=DMA mode, 2=tx FIFO reset, 1=rx FIFO reset, 0=FIFO en
-
SER_ISR EQU SER_BASE+5 ->B < Interrupt Status Register
*7,6=FIFOs en, 3,2,1=irq pri, 0=irq stat
-
SER_LCR EQU SER_BASE+7 ->B <>Line Control Register
*7=DLL,DLM, 6=break, 5=parity, 4=even par, 3=par en, 2=stop bits, 1,0=word len
-
SER_MCR EQU SER_BASE+9 ->B <>Modem Control Register
*4=loopback, 3=/OP2, 2=/OP1, 1=/RTS, 0=/DTR
-
SER_LSR EQU SER_BASE+$B ->B < Line Status Register
*7=FIFO err, 6=all tx empty, 5=tx hold empty, 4=break irq, 3=frame err, 2=par err, 1=overrun, 0=rx ready

101

-
SER_MSR EQU SER_BASE+$D ->B < Modem Status Register
*7=CD, 6=RI, 5=DSR, 4=CTS, 3,2,1,0=delta /CD/RI/DSR/CTS
-
SER_SPR EQU SER_BASE+$F ->B <>Scratchpad Register, keeps a copy of SER_LED
-
* Speeds for the SER_DLL/M
SER_16X2400 EQU 400 ->2400 @15.360MHz
SER_16X4800 EQU 200 ->4800 @15.360MHz
SER_16X9600 EQU 100 ->9600 @15.360MHz
SER_16X19200 EQU 50 ->19200 @15.360MHz
SER_16X38400 EQU 25 ->38400 @15.360MHz
SER_16X57600 EQU 17 ->57600 @15.360MHz (exactly 16.666...)
SER_16X115200 EQU 8 ->115200 @15.360MHz (exactly 8.3333...)
-
* Serial bits
SB_LCR_8N1 EQU %00000011
SB_LCR_8ODD1 EQU %00001011
SB_LCR_8EVEN1 EQU %00011011
SB_LCR_DL EQU %10000000
SB_FCR_RXTRIG_1 EQU %00000001
SB_FCR_RXTRIG_4 EQU %01000001
SB_FCR_RXTRIG_8 EQU %10000001
SB_FCR_RXTRIG_14 EQU %11000001
SB_FCR_FIFORESET EQU %00000111
SB_FCR_RXRESET EQU %00000011
SB_FCR_TXRESET EQU %00000101
-
-
* GetSerInfo tags
SI_SPEED EQU 1 *.W Speed in divisor values
SI_LINESTATUS EQU 2 *.B Copy of line status register
SI_MODSTATUS EQU 3 *.B Copy of modem status register
SI_FIFOSIZE EQU 4 *.L The size of the FIFOs
SI_RXFIFOLOC EQU 5 *.L Address where the FIFOs are
SI_TXFIFOLOC EQU 6 *.L Address where the FIFOs are
SI_RXFILLLEV EQU 7 *.L #of bytes currently in the Rx FIFO
SI_TXFILLLEV EQU 8 *.L #of bytes currently in the Tx FIFO
SI_RXTOTAL EQU 9 *.L Total #of bytes transferred to the Rx FIFO
SI_TXTOTAL EQU 10 *.L Total #of bytes transferred to the Tx FIFO
-
***************** Memory *****************
-
MEM_DEFNUMALLOC EQU 1000
MEM_DEFSIZE EQU MEM_DEFNUMALLOC*12
FR_LST_E_SIZE EQU 3*4
-
* MemInfo parameters
MI_TOTALFREE EQU 1
MI_LARGEST EQU 2
MI_NUMALLOC EQU 3
MI_NUMFREE EQU 4
-
***************** Timer *****************
-
MAX_EL_TA EQU 8
TIMERELSIZE EQU 6
TDIVISOR EQU 52
TOFFSET EQU 4
DIVOFFSET EQU 2
-
* Timer offsets
TO_USERDATA EQU 0
TO_STATUS EQU 1
TO_STARTVALUE EQU 2
TO_COUNTER EQU 4
-
* Timer status values
TSV_UNREG EQU 0
TSV_REG EQU 1
TSV_OFF EQU 0
TSV_ON EQU 1
TSV_DOWN EQU 0
TSV_UP EQU 1
TSV_NOREP EQU 0
TSV_REP EQU 1
-
* Timer status bits
TSB_UNREGREG EQU 7
TSB_OFFON EQU 6
TSB_DOWNUP EQU 5
TSB_REPNOREP EQU 4
-
* Timer commands
TC_RESET EQU 0*4 >D0.W=TimerNr
TC_START EQU 1*4 >D0.W=TimerNr
TC_STOP EQU 2*4 >D0.W=TimerNr
TC_READ EQU 3*4 >D0.W=TimerNr, <D0.L=Current timer value
TC_SET EQU 4*4 >D0.W=TimerNr, >D1.B=Bitmask:0/1 7:UnReg/Reg, 6:Off/On 5:Down/Up, 4:Rep/NoRep, >D2.L=Startval
TC_REG EQU 5*4 <D0.L=Offset to registred timer, No more timers=-1 (L)
TC_UNREG EQU 6*4 >D0.W=TimerNr
TC_INIT EQU 7*4
-
***************** Connect *****************
-
* Devices
DEV_TIMER EQU 0
-
* Types
CON_HANDL EQU 0
CON_SIG EQU 1
-
* Offsets
CONOFFNEXT EQU 0
CONOFFDEV EQU 4
CONOFFUNIT EQU 6

102

CONOFFTYPE EQU 5
CONOFFUADR EQU 8
CONOFFIADR EQU 12
-
CONBLKSIZE EQU 16
-
***************** StoreProg *****************
-
LL_EL_SIZE EQU 8
-
***************** Kernel *****************
-
SYSLIST EQU 4 -> addr to the ptr of syslist
-
KS_INHIBIT EQU 0 -> inhibit rescheduling on int3 (as block is currently rescheduling)
KS_NOTODO EQU 1 -> do not reschedule because there is no READY process and some rescheduler is in a STOP
KS_SIGNAL EQU 2 -> set this to wake up from NOTODO in STOP
KS_FORBID EQU 3 -> a userprogram requests to be alone. This gets cancelled if block: is called.
KS_SERINTSIGTX EQU 4 -> Serial called block with SIG_SERIAL_TX and expects int4tx to signal.
KS_SERINTSIGRX EQU 5 -> Serial called block with SIG_SERIAL_RX and expects int4rx to signal.
-
KRN_CURPCB EQU 0 *.L ptr to currently running PCB
KRN_SSPREF EQU 4 *.L the highest point in the supervisor stack.
KRN_TOPPC EQU 8 *.L temp storage for the PC at SSPREF
KRN_TOPSR EQU 12 *.W temp storage for the PC at SSPREF
KRN_STATUS EQU 14 *.B KS_*
KRN_QCNT EQU 15 *.B counter from KRN_QUANTUM to 0. When it reaches 0 a rescheduling will occur.
KRN_QUANTUM EQU 16 *.B how many interrupt that should pass before a rescheduling should occur.
KERNELSIZE EQU 17 *Always last element, telling the size (for allocation)
-
DEFQUANTUM EQU 10 * Default number of LFC-ticks between rescheduling
-
PT_CODE EQU 1
PT_DATA EQU 2
PT_SCRIPT EQU 3
-
PS_NEW EQU 0
PS_SUSPENDED EQU 1
PS_FINISHED EQU 2
PS_READY EQU 4
PS_RUNNING EQU 5
PS_WAITING EQU 6
PS_CRASHED EQU $80
-
* Invariants:
* -Ready:
*Process currently not executing on the CPU but wants to.
*KRN_CURPCB can be a ready process while rescheduling is in progress
* which means KS_INHIBIT is set.
*KS_NOTODO can not be set while a ready process exists.
* -Running:
*A running process is currently using the CPU.
*A running process can recieve a signal which means the signal came from an interrupt.
* -Waiting:
*A process that is not running and does not want to.
*KRN_CURPCB can be a waiting process while rescheduling is in progress
* which means KS_INHIBIT is set.
*KS_NOTODO is set when all processes are waiting.
*PCB_SIGWAIT can only have bits set in this state.
*
* The pcb linked list is always valid.
* If PCB_TYPE<>PT_CODE then PCB_STATUS<>PS_READY|PS_RUNNING|PS_WAITING
-
PCB_NEXT EQU 0 *.L s ptr to next PCB
PCB_DATA EQU 4 *.L s ptr to the code or data
PCB_SIZE EQU 8 *.L s the size in bytes of PCB_DATA
PCB_TYPE EQU 12 *.B s is this executable PT_CODE or non-exe PT_DATA
PCB_STATUS EQU 13 *.B d if PT_CODE then PS_?
PCB_SR EQU 14 *.W d current status register
PCB_PC EQU 16 *.L d current program counter
PCB_REGS EQU 20 *.Lx15 d all 15 registers, except A7
PCB_SP EQU 80 *.L d current stack pointer
PCB_STACK EQU 84 *.L s ptr to the actual stack (low end pointer)
PCB_STSIZE EQU 88 *.L s size of the stack
PCB_SIGMASK EQU 92 *.L d allocated signalbits
PCB_SIGWAIT EQU 96 *.L d Block() was called with this signal mask. Only valid while STATUS=WAITING
PCB_SIGSET EQU 100 *.L d Signals that have arrived but not yet read by block.
PCB_NAME EQU 104 *.L s ptr to 0-string.
PCBSIZE EQU 108 *Always last element, telling the size (for allocation)
-
* Reserved global signals. All processes waiting for such
* a signal gets one when the corresponding event occurs.
SIG_CTRL_C EQU 31
SIG_SERIAL_RX EQU 30 -> KRN_STATUS must bset KS_SERINTSIGRX for this to work.
SIG_SERIAL_TX EQU 29 -> KRN_STATUS must bset KS_SERINTSIGTX for this to work.
SIG_KEYBOARD EQU 28
SIG_DISKREAD EQU 27
SIG_DISKWRITE EQU 26
SIG_RESERVED1 EQU 25
SIG_RESERVED2 EQU 24
-
USERSIGNALS EQU $00FFFFFF

103

F.2 MemLayout.s68

This is the main file in the project. It contains the interrupt vector table, the startup

code, the primitive console, the environment variables and various initialization routines.

This is the file that includes all other files that are also burned into the EPROM. The

name ”MemLayout” got stuck as this file was originally just the interrupt vector table plus

comments about the general memory layout in dBOX.

All label:’s, meaning functions, subroutines, variables, etc., are global in the entire

project. All files included in one way or another will have access to all label:’s in all files.

The development environment Eterm which was used is made this way. This creates a

naming problem which was solved by using the initials of a subroutine name (label:) as

a preamble for all branch targets within this subroutine. For example: The subroutine

”initMemory:” has all its labels named ”imLabelName:”. The naming of labels and con-

stants follows the C++/Java standard with labels beginning with a lowercase letter, then

capitalized first letter in all sub-words. Constants are all in uppercase with underscore

between words as seen in Definitions.s68.

USE definitions.s68
-
* ROM
* ORG 0
-
START EQU start
-
DC.L SYSSP *SSP
DC.L start *ResetVector and syslist base pointer
DC.L BusErr *BUS
DC.L AddrErr *ADDR
DC.L Illegal *ILLEGAL
DC.L DivBy0 *DIV/0
DC.L CHK *CHK
DC.L TrapV *TRAPV
DC.L PrivViol *Priv Viol
DC.L Trace *Trace
DC.L LineA *Line-A (MMU)
DC.L LineF *Line-F (FPU)
-
DC.L res,res,res *Reserved
DC.L spur *Spurious
DC.L res,res,res,res,res,res,res,res *Reserved
DC.L spur *Spurious2?
-
DC.L int1 *Auto1
DC.L int2 *Auto2
DC.L int3 *Auto3
DC.L int4 *Auto4
DC.L int5 *Auto5
DC.L int6 *Auto6
DC.L int7 *Auto7
-
DC.L tAllocMem *TRAP 0
DC.L tFreeMem *TRAP 1
DC.L tTimer *TRAP 2
DC.L tReSchedule *TRAP 3
DC.L tStop *TRAP 4
DC.L tSwapROMRAM *TRAP 5
DC.L tDebug *TRAP 6
DC.L tSuperVisor *TRAP 7
DC.L tUserTrap *TRAP 8
DC.L trap,trap,trap,trap,trap,trap *TRAP 9-14
DC.L tReset *TRAP 15
-
DC.L res,res,res,res,res,res,res,res,res,res,res,res,res,res,res,res *Reserved
DC.L ui,ui,ui,ui,ui,ui,ui,ui,ui,ui,ui,ui,ui,ui,ui,ui *UserInterrupt
DC.L ui,ui,ui,ui,ui,ui,ui,ui,ui,ui,ui,ui,ui,ui,ui,ui *Unused
DC.L ui,ui,ui,ui,ui,ui,ui,ui,ui,ui,ui,ui,ui,ui,ui,ui
DC.L ui,ui,ui,ui,ui,ui,ui,ui,ui,ui,ui,ui,ui,ui,ui,ui
DC.L ui,ui,ui,ui,ui,ui,ui,ui,ui,ui,ui,ui,ui,ui,ui,ui
DC.L ui,ui,ui,ui,ui,ui,ui,ui,ui,ui,ui,ui,ui,ui,ui,ui
DC.L ui,ui,ui,ui,ui,ui,ui,ui,ui,ui,ui,ui,ui,ui,ui,ui
DC.L ui,ui,ui,ui,ui,ui,ui,ui,ui,ui,ui,ui,ui,ui,ui,ui
DC.L ui,ui,ui,ui,ui,ui,ui,ui,ui,ui,ui,ui,ui,ui,ui,ui
DC.L ui,ui,ui,ui,ui,ui,ui,ui,ui,ui,ui,ui,ui,ui,ui,ui
DC.L ui,ui,ui,ui,ui,ui,ui,ui,ui,ui,ui,ui,ui,ui,ui,ui

104

DC.L ui,ui,ui,ui,ui,ui,ui,ui,ui,ui,ui,ui,ui,ui,ui,ui
-
* D7 = LED increment register during startup
* ORG $400
LEA (lowAddrErr,PC),A0
MOVE.L (A0)+,D0
BSR sendS
lowAddrLoop:
BRA.S lowAddrLoop
lowAddrErr:
DC.L 40+45+14
DC "Instruction execution at low addresses!\n"
DC "Please check the software that is being executed.\n\n"
DC "Press reset to continue.\n\n"
ALIGN
JMP (delay).L
JMP (event).L
JMP (connect).L
JMP (initSerial).L
JMP (setSerSpeed).L
JMP (getSerInfo).L
JMP (sendS).L
JMP (sendA).L
JMP (getS).L
JMP (getA).L
JMP (putS).L
JMP (readS).L
JMP (flushTx).L
JMP (flushRx).L
JMP (putStr).L
JMP (strCmp).L
JMP (strCmpNC).L
JMP (strLen).L
JMP (strCopy).L
JMP (str2Int).L
JMP (int2Dec).L
JMP (int2Hex).L
JMP (compFreeList).L
JMP (memInfo).L
JMP (memCheck).L
JMP (storeProg).L
JMP (getEnvToA6).L
JMP (incLed).L
JMP (singleTask).L
JMP (signal).L
JMP (block).L
JMP (freeSignal).L
JMP (allocSignal).L
start:
MOVE.B #1,LED -> Yes, it works!!
MOVE.B #2,LED -> Did the I/O DTACK work?
MOVE.B envvars,MCR -> Set CPU-clock to 2.5MHz etc if coldstart in ROM. Nothing will(should) happen in a hot reboot as envvars[0]=MCR.
MOVE.B #3,LED -> Still alive after MCR?
MOVEA.L #0,A6
TST.B DIP
BNE.W mainContinue
mainTestDIP:

MOVE.B DIP,D0
BTST.B #7,D0
BEQ.W mainTestDIP
ANDI.B #$7f,D0
BNE.S mainNot0
BRA.W mainWaitDIP

mainNot0:
CMPI.B #1,D0 ->1 Continue
BEQ.W mainContinue
CMPI.B #2,D0 ->2 RAM-less test (1=no RAM, 2=RAM at $100k, 3=RAM at $0)
BNE.S mainNot2
MOVE.L ROM,D0
MOVE.L D0,D1
ADDI.L #$55AA55AA,D0
MOVE.L D0,ROM
CMP.L ROM,D0
BEQ.S mainHotRAM
MOVE.L RAM,D0
MOVE.L D0,D1
ADDI.L #$55AA55AA,D0
MOVE.L D0,RAM
CMP.L RAM,D0
BEQ.S mainHasRAM
MOVE.B #1,LED
BRA.S mainNoRAM

mainHasRAM:
MOVE.L D1,RAM
MOVE.B #2,LED
BRA.S mainNoRAM

mainHotRAM:
MOVE.L D1,ROM
MOVE.B #3,LED

mainNoRAM:
BRA.W mainWaitDIP

mainNot2:
CMPI.B #3,D0 ->3 testROMRAM (ENV_ST->LED) [1]
BNE.S mainNot3
BSR.W testROMRAM
MOVE.B (ENV_STATUS,A6),LED
BRA.W mainWaitDIP

mainNot3:
CMPI.B #4,D0
BNE.S mainNot4 ->4 incLed [1]
BSR.W incLed
BRA.W mainWaitDIP

mainNot4:
105

CMPI.B #5,D0 ->5 STOP int0 [1]
BNE.S mainNot5
STOP #$2000
MOVE.B #5,LED
BRA.W mainWaitDIP

mainNot5:
CMPI.B #6,D0
BNE.S mainNot6 ->6 STOP int7 [1]
STOP #$2700
MOVE.B #6,LED
BRA.W mainWaitDIP

mainNot6:
CMPI.B #7,D0
BNE.S mainNot7 ->7 noRAM (no return from this) [1]
BRA.W noRAM
BRA.W mainWaitDIP

mainNot7:
CMPI.B #8,D0
BNE.S mainNot8 ->8 initSerial (1=no serial, 2=serial) [3]
BSR initSerial
BTST.B #ES_SER,(ENV_STATUS,A6)
BEQ.S mainNoSer
MOVE.B #2,LED
BRA.S mainWasSer

mainNoSer:
MOVE.B #1,LED

mainWasSer:
BRA.W mainWaitDIP

mainNot8:
CMPI.B #9,D0
BNE.S mainNot9 ->9 Write to MCR. Set DIP then release bit 3,

* -> which is unused in MCR, when done. [1]
mainWait9:

BTST.B #3,DIP
BNE.S mainWait9
MOVE.B DIP,D0
MOVE.B D0,(ENV_MCR,A6)
MOVE.B D0,MCR
MOVE.B #9,LED
BRA.S mainWaitDIP

mainNot9:
CMPI.B #$A,D0
BNE.S mainNotA ->A console [4]
BSR.W console
MOVE.B #$A,LED
BRA.S mainWaitDIP

mainNotA:
CMPI.B #$C,D0
BNE.S mainNotC ->C getEnvToA6 [2]
BSR.W getEnvToA6
MOVE.B #$C,LED
BRA.S mainWaitDIP

mainNotC:
CMPI.B #$E,D0
BNE.S mainNotE ->E Send welcome on serial [4]
BSR.W welcomeSerial
MOVE.B #$E,LED
BRA.S mainWaitDIP

mainNotE:
NOP
mainWaitDIP:

BTST.B #7,DIP
BNE.S mainWaitDIP
MOVE.B #0,LED

BRA.W mainTestDIP
mainContinue:
MOVEQ #3,D7
BSR.S incLed -> 4 BSR work..
BSR.S incLed -> 5 RTS and the stack works..
BSR.S testROMRAM
BSR.S incLed -> 6 Swap-test complete
BSR initSerial -> If serial is present bit 5 in LED will be set
BSR.S incLed -> 7 Serial init complete
BTST.B #ES_SER,(ENV_STATUS,A6)
BNE.S mainSerIsInited
mainStop:

STOP #$2000
BRA.S mainStop
mainSerIsInited:
BSR.S incLed -> 8
* BSR initMemory
* BSR.S incLed ->
* BSR initKernel
* BSR.S incLed ->
MOVE #$2000,SR
BSR.S incLed -> 9
BSR welcomeSerial
BSR.S incLed -> A
TST.L (ENV_FREEL,A6)
BEQ.S mainConsole
BSR terminal

mainConsole:
BRA console
-
-
incLed:
CMPA.L #0,A6
BEQ.S ilD7
ADDQ.B #1,(ENV_LED,A6)
MOVE.B (ENV_LED,A6),LED
RTS

ilD7:
ADDQ.B #1,D7
MOVE.B D7,LED
RTS
-
-
testROMRAM:
MOVE.L ROM,D0
MOVE.L D0,D1

106

ADDI.L #$55AA55AA,D0
MOVE.L D0,ROM
CMP.L ROM,D0
BEQ.S trrHot -> Is RAM at addr 0? <=> are we swapped?
MOVEA.L #envvars+RAM,A6
MOVEA.L #envvars,A0
MOVEA.L A6,A1
MOVE.W #envend-envvars-1,D0
CMPI.L #$DEADBEEF,(ENV_ID,A6) -> Did we do a warm reboot (not cold, but in ROM)?
BNE.S trrCold
SUBQ.W #8,D0
ADDQ.L #8,A1
ADDQ.L #8,A0

trrCold:
LSR.W #2,D0

trrCopyEnv:
MOVE.L (A0)+,(A1)+
DBRA D0,trrCopyEnv

*trrNoCopy:
BRA.S trrNotHot

trrHot:
MOVE.L D1,ROM
TST.B DIP
BNE.S trrNormal
MOVE.L #0,(ENV_ID,A6) -> force a fresh copy of MCR
BCLR.B #EM_SWAP,envvars
MOVEA.L #SYSSP,A7
JMP start

trrNormal:
MOVEA.L #envvars,A6
MOVEA.L #envvars+RAM+ENV_SRARX,A0 -> this is ROM now
MOVEA.L A6,A1
ADDA.L #ENV_SRARX,A1
MOVEQ #ENV_CRBUCKET-ENV_SRARX,D0
LSR.L #2,D0
trrCopyLastEnv:

MOVE.L (A0)+,(A1)+
DBRA D0,trrCopyLastEnv
BSET.B #ES_SWAP,(ENV_STATUS,A6) *We’re in RAM
trrNotHot:
BSET.B #EM_LFCINH,(ENV_MCR,A6)
MOVE.B (ENV_MCR,A6),MCR
BSET.B #6,D7
MOVE.B D7,(ENV_LED,A6)
RTS
-
-
getEnvToA6:
BTST.B #ES_SWAP,envvars+ENV_STATUS
BNE.S gea6NoSwap
MOVEA.L #envvars+RAM,A6
RTS

gea6NoSwap:
MOVEA.L #envvars,A6
RTS
-
-
tswapToRam:
DC.L 59+58+54
DC "A swap of RAM and ROM will now be made so that RAM will be "
DC "at address 0. A copy of the startup code from ROM will be "
DC "made that will overwrite the first few kB of the RAM.\n"
ALIGN
tswapBack:
DC.L 54+53+26
DC "RAM and ROM will now be swapped back so that ROM will "
DC "be at address 0 and a reset will be made. The memory "
DC "manager will be disabled.\n"
ALIGN
tswapDone:
DC.L 30
DC "The swap has now taken place.\n"
ALIGN
-
tSwapROMRAM:
BSR getEnvToA6
BTST.B #ES_SWAP,(ENV_STATUS,A6)
BEQ.S tswapInRom:
LEA (tswapBack,PC),A0
MOVE.L (A0)+,D0
BSR sendS
MOVEA.L #RAM+start,A0
MOVEA.L #ROM+start,A1
MOVE.L #mainTestDIP-1,D0
LSR.L #2,D0

tswapACopy:
MOVE.L (A0)+,(A1)+
DBRA D0,tswapACopy
CLR.L (ENV_FREEL,A6)
BCLR.B #EM_SWAP,(ENV_MCR,A6)
MOVEA.L #SYSSP,A7
JMP start
BRA tswapOut

tswapInRom:
LEA (tswapToRam,PC),A0
MOVE.L (A0)+,D0
BSR sendS
MOVEA.L #ROM,A0
MOVEA.L #RAM,A1
MOVE.L #envvars-1,D0
LSR.L #2,D0

tswapOCopy:
MOVE.L (A0)+,(A1)+
DBRA D0,tswapOCopy

107

MOVE SR,D7
MOVE #$2700,SR
TST.L (ENV_FREEL,A6)
BEQ.S tswapRomInitMem

* ->Here the noswap memmgr is inited
MOVEA.L (ENV_FREEL,A6),A0
MOVE.W (A0)+,D0 -> current size of memmgr

tswapOMFixLoop:
MOVE.L (A0),D1
ANDI.L #$FFF00000,D1
CMPI.L #$00100000,D1
BNE.S tswapOMNoFix1
ANDI.L #$000FFFFF,(A0)

tswapOMNoFix1:
ADDQ.L #4,A0
MOVE.L (A0),D1
ANDI.L #$FFF00000,D1
CMPI.L #$00100000,D1
BNE.S tswapOMNoFix2
ANDI.L #$000FFFFF,(A0)

tswapOMNoFix2:
ADDQ.L #8,A0
DBRA D0,tswapOMFixLoop
MOVE.W (ENV_FREEL,A6),D0
ANDI.W #$FFE0,D0
BNE.S tswapOMNoFixFL
BCLR.B #4,(ENV_FREEL+1,A6)

tswapOMNoFixFL:
BRA.S tswapRomCommon

tswapRomInitMem:
* ->Here no memmgr is inited

MOVEA.L #initialFreeListSwap,A0
MOVEA.L #RAM+endOfStartUpImage,A1
MOVE.W (A0)+,D0

tswapMCopy:
MOVE.L (A0)+,(A1)+
MOVE.L (A0)+,(A1)+
MOVE.L (A0)+,(A1)+
DBRA D0,tswapMCopy
MOVE.L #endOfStartUpImage,(ENV_FREEL,A6)
MOVE.W #MEM_DEFNUMALLOC,(ENV_FREEZ,A6)

tswapRomCommon:
MOVE.W (2,A7),D0 -> Fix the callers return address
ANDI.W #$FFE0,D0
BNE.S tswapOMNoFixSt
BCHG.B #4,(3,A7)

tswapOMNoFixSt:
MOVE USP,A0 -> Fix the USP
MOVE.L A0,D0
ANDI.L #$FFF00000,D0
CMPI.L #$00100000,D0
BNE.S tswapOMNoFixUSP
ANDI.L #$000FFFFF,D0
MOVEA.L D0,A0
MOVE A0,USP

tswapOMNoFixUSP:
MOVE.L A7,D0 -> Fix the SSP
ANDI.L #$FFF00000,D0
CMPI.L #$00100000,D0
BNE.S tswapOMNoFixSSP
ANDI.L #$000FFFFF,D0
MOVEA.L D0,A7

tswapOMNoFixSSP:
-
* -> Fix all programs final return address in ENV_PCB!
-

BSET.B #EM_SWAP,(ENV_MCR,A6)
MOVE.B (ENV_MCR,A6),MCR -> DO IT!
MOVE D7,SR
LEA (tswapDone,PC),A0
MOVE.L (A0)+,D0
BSR sendS

tswapOut:
RTS
-
-
* envvars must be an even amount of LONGs
envvars:
DC.B $24 *MCR (inhibit LF-clock and set 2.5MHz)
DC.B $FF *LF-clock (reset LF-clock and set speed to slowest)
DC.B 0 *LED
DC.B 0 *<>0 - int7 got data for int1 to process, =0 - no data for int1
DC.B 0 *Status: bit0=swapped, 1=serial, 2=LF connected to LED, 3=Multitasking engaged
DC.B 0 *Semaphore; someone is in the RAM-handler
DC.B 0 *Semaphore; someone is in an Rx function
DC.B 0 *Semaphore; someone is in a Tx function
DC.W 0 *pad
DC.W MEM_DEFNUMALLOC *Freelist max size (num alloc (=bytes/12), 65535 max)
DC.L 0 *Freelist base address
DC.L RAM+serInpFifo *Ptr to serial input FIFO
DC.L 0,0 *Serial Rx nexttoread,nextfree in FIFO
DC.L RAM+serOutFifo *Ptr to serial output FIFO
DC.L 0,0 *Serial Tx nexttosend,lastin in FIFO
DC.L $DEADBEEF *ID-value used to see if envvars has been copied to RAM before
DC.L 0,0 *Int1 subroutine ptr to be executed before,after the original int-code
DC.L 0,0 *Int2 - || -
DC.L 0,0 *Int3 - || -
DC.L 0,0 *Int4 - || -

108

DC.L 0,0 *Int5 - || -
DC.L 0,0 *Int6 - || -
DC.L 0,0 *Int7 - || -
DC.L 0 *Int4 Serial. Sub ptr to execute after Rx.
DC.L 0 *Int4 Serial. Sub ptr to execute after Tx.
DC.L 0 *Int4 Serial. Sub ptr to execute after Line.
DC.L 0 *Int4 Serial. Sub ptr to execute after Modem.
DC.L 0 *Exceptions subroutine. On the stack a WORD with the vector number will be.
DC.L 0 *Timer base
DC.L 0 *Connect base
DC.L 0 *Process Control Block base
DC.L 0 *Kernel base
DC.L 0 *Crash bucket
serInpFifo:
DS.B FIFO_SIZE
serOutFifo:
DS.B FIFO_SIZE
envend:
-
endOfStartUpImage:
-
initMemory:
BSR getEnvToA6
BTST.B #ES_SWAP,(ENV_STATUS,A6)
BEQ.S imNoSwap
MOVEA.L #initialFreeListSwap,A0
MOVEA.L #endOfStartUpImage,A1
MOVE.L A1,(ENV_FREEL,A6)
BRA.S imWasSwap

imNoSwap:
MOVEA.L #initialFreeListNoSwap,A0
MOVEA.L #RAM+endOfStartUpImage,A1
MOVE.L A1,(ENV_FREEL,A6)

imWasSwap:
MOVE.W (A0)+,D0
imCopy:

MOVE.L (A0)+,(A1)+
MOVE.L (A0)+,(A1)+
MOVE.L (A0)+,(A1)+

DBRA D0,imCopy
MOVE.W #MEM_DEFNUMALLOC,(ENV_FREEZ,A6)
RTS
-
-
dummyProc:
BRA.S dummyProc
RTS
dummyProcEnd:
-
ikNoMemory:
DC.L 29
DC "Memory manager not initiated\n"
ALIGN
ikOutOfMem:
DC.L 15
DC "Out of memory!\n"
ALIGN
-
initKernel:
BSR getEnvToA6
TST.L (ENV_FREEL,A6)
BEQ ikNoMem
MOVEQ #KERNELSIZE,D0
TRAP #allocmem
CMPA.L #0,A0
BEQ ikOutOfMem1
MOVE.L A0,(ENV_KERNEL,A6)
MOVEA.L A0,A1
MOVE.L #PCBSIZE+6+100,D0 *+"Dummy\0"+stack
TRAP #allocmem
CMPA.L #0,A0
BEQ.S ikOutOfMem2
MOVE.L A0,(ENV_PCB,A6)
MOVE.L #RAM+MEMSIZE-SSPSIZE,(KRN_SSPREF,A1)
MOVE.B #0,(KRN_STATUS,A1)
MOVE.B #DEFQUANTUM,(KRN_QCNT,A1)
MOVE.B #DEFQUANTUM,(KRN_QUANTUM,A1)
MOVE.L A1,(ENV_KERNEL,A6)
MOVE.L #NIL,(PCB_NEXT,A0)
LEA (dummyProc,PC),A2
MOVE.L A2,(PCB_DATA,A0)
MOVE.L #dummyProcEnd-dummyProc,(PCB_SIZE,A0)
MOVE.B #PT_CODE,(PCB_TYPE,A0)
MOVE.B #PS_NEW,(PCB_STATUS,A0)
LEA (PCBSIZE+100,A0),A2
MOVE.L A2,(PCB_SP,A0)
MOVE.L #100-6,(PCB_STSIZE,A0)
LEA (PCBSIZE,A0),A2
MOVE.L A2,(PCB_NAME,A0)
MOVE.L #$44756D6D,(A2)+ *’Dumm’
MOVE.W #$7900,(A2)+ *’y\0’
MOVE.L A2,(PCB_STACK,A0)
MOVE.L A0,(KRN_CURPCB,A1)
RTS

ikOutOfMem2:
MOVEA.L (ENV_KERNEL,A6),A0
TRAP #freemem
MOVE.L #NIL,(ENV_KERNEL,A6)

ikOutOfMem1:
LEA (ikOutOfMem,PC),A0
MOVE.L (A0)+,D0
BSR sendS

109

BRA.S ikOut
ikNoMem:
LEA (ikNoMemory,PC),A0
MOVE.L (A0)+,D0
BSR sendS
ikOut:
RTS
-
-
* Used to test the serial without any RAM in the computer.
noRAM:
MOVE.B #%10,SER_LED ->reset serial
MOVE.B #0,SER_LED
MOVE.B SER_SPR,D0 ->test if serial exists
ADD.B #$5A,D0
MOVE.B D0,SER_SPR
CMP.B SER_SPR,D0
BNE nrNotAttached
MOVE.B #%10000000,SER_LCR ->enable DLL/DLM
MOVE.W #SER_16X9600,D0
MOVE.B D0,SER_DLL
LSR.W #8,D0
MOVE.B D0,SER_DLM
MOVE.B #%00000011,SER_LCR ->disable DLL/DLM and set 8N1
MOVE.B #%00000111,SER_FCR ->reset and enable FIFO
MOVE.B #%00000000,SER_SPR ->indicate nothing on the LEDs
MOVE.B SER_SPR,SER_LED
MOVE.B #%00000000,SER_IER ->No IRQ enabled

nrNoDIP:
BTST.B #0,SER_LSR
BEQ.S nrTestDIP
MOVE.B SER_LSR,D0
BTST.B #1,D0
BEQ.S nrNotOFL
BSET.B #6,SER_SPR
MOVE.B SER_SPR,SER_LED

nrNotOFL:
ANDI.B #%10001100,D0
BEQ.S nrNotErr
BSET.B #7,SER_SPR
MOVE.B SER_SPR,SER_LED

nrNotErr:
MOVE.B SER_RHR,LED

nrTestDIP:
MOVE.B DIP,D0
BTST.B #7,D0
BEQ.S nrNoDIP
ANDI.B #$7f,D0
BEQ.S nrClrSERLED
MOVE.B D0,SER_THR
BRA.S nrWaitDIP

nrClrSERLED:
MOVE.B #0,SER_SPR
MOVE.B #0,SER_LED

nrWaitDIP:
BTST.B #7,DIP
BNE.S nrWaitDIP
BRA.S nrNoDIP

nrNotAttached:
MOVE.B DIP,LED

BRA nrNotAttached
-
-
************************ Console ***************************
cHelp:
DC.L 60+19+67+55+41+36+80+32+32+33
DC "This basic console accepts only single character commands:\n\n"
DC "? - This help text\n"
DC "m - Start the memory manager so a more advanced console can be used\n"
DC "l - Load the following S1-data into addr $0+ in memory\n"
DC "e - Execute the code at addr 0 in memory\n"
DC "k - Initiate the kernel structures.\n"
DC "r - Make a software reset on the computer. DIP=0 means swap to ROM if in RAM\n"
DC "2 - Set serial speed to 2400bps\n"
DC "9 - Set serial speed to 9600bps\n"
DC "3 - Set serial speed to 38400bps\n\0"
ALIGN
cStartMem:
DC.L 57+59+27
DC "The memory manager will now be initiated so that you may "
DC "use the more advanced console and be able to load programs "
DC "into memory and run them.\n\n"
ALIGN
cMemStarted:
DC.L 37 *+64
DC "The memory manager has been started.\n"
* DC "You will now be put in the advance console, aka. the terminal.\n\n"
ALIGN
cBack:
DC.L 43
DC "You are now back to the primitive console.\n"
ALIGN
cExe:
DC.L 63
DC "I will now jump to address RAM+endOfStartUpImage+MEM_DEFSIZE..\n"
ALIGN
cExeDone:
DC.L 63
DC "\nThe program has now finished and you are back in the console.\n"
ALIGN
cKernel:
DC.L 60
DC "The kernel will now be initiated and scheduling will begin.\n"
cReset:
DC.L 37
DC "A soft reset will now be performed..\n"

110

ALIGN
cSet2400:
DC.L 83
DC "Serial speed will now be set to 2400 bps and a message will be printed afterwards.\n"
ALIGN
c2400Set
DC.L 37
DC "Serial has now been set to 2400 bps.\n"
ALIGN
cSet9600:
DC.L 83
DC "Serial speed will now be set to 9600 bps and a message will be printed afterwards.\n"
ALIGN
c9600Set
DC.L 37
DC "Serial has now been set to 9600 bps.\n"
ALIGN
cSet38400:
DC.L 84
DC "Serial speed will now be set to 38400 bps and a message will be printed afterwards.\n"
ALIGN
c38400Set
DC.L 38
DC "Serial has now been set to 38400 bps.\n"
ALIGN
cNoCommand:
DC.L 49
DC "This command is not implemented. Try ? for help.\n"
ALIGN
cLoading:
DC.L 7
DC "Loading\0"
ALIGN
cComplete:
DC.L 9
DC "complete\n\0"
ALIGN
-
console:
MOVEQ #’>’,D0
BSR putS
MOVEQ #0,D2
konsoll:
BSR getS
CMPI.B #127,D0
BEQ.S console
CMPI.B #8,D0 ->Backspace?
BNE.S cNotBS
TST.B D2
BEQ.S konsoll
BSR putS
MOVEQ #0,D2
BRA.S konsoll

cNotBS:
CMPI.B #10,D0 ->Enter?
BNE cNotLF
BSR putS
TST.B D2
BEQ.S console
CMPI.B #’?’,D2 ->Help
BNE.S cNotHelp
LEA (cHelp,PC),A0
MOVE.L (A0)+,D0
BSR sendS
BRA.S console

cNotHelp:
CMPI.B #’m’,D2 ->Start memory manager
BNE.S cNotMem
LEA (cStartMem,PC),A0
MOVE.L (A0)+,D0
BSR sendS
BSR initMemory
LEA (cMemStarted,PC),A0
MOVE.L (A0)+,D0
BSR sendS
BRA console

cNotMem:
CMPI.B #’e’,D2 ->Run program at addr envend in RAM (JSR $100000+endOfStartUpImage+MEM_DEFSIZE)
BNE.S cNotExe
LEA (cExe,PC),A0
MOVE.L (A0)+,D0
BSR sendS
CMPA.L #RAM+MEMSIZE-SSPSIZE,A7
BEQ.S cInUserMode
MOVEA.L #RAM+MEMSIZE-SSPSIZE,A0
MOVE A0,USP
MOVE #0,SR

cInUserMode:
JSR RAM+endOfStartUpImage+MEM_DEFSIZE
MOVEA.L SYSLIST,A5
LEA (cExeDone,PC),A0
MOVE.L (A0)+,D0
BSR sendS
BRA console

cNotExe:
CMPI.B #’k’,D2 ->Initiate kernel
BNE.S cNotKernel
LEA (cKernel,PC),A0
MOVE.L (A0)+,D0
BSR sendS
BSR initKernel
BRA console

cNotKernel:
CMPI.B #’r’,D2 ->Make a softreset
BNE.S cNotReset
LEA (cReset,PC),A0
MOVE.L (A0)+,D0
BSR sendS

111

TRAP #reset
BRA console

cNotReset:
CMPI.B #’2’,D2 ->Set serial to 2400kb
BNE.S cNot2400
LEA (cSet2400,PC),A0
MOVE.L (A0)+,D0
BSR sendS
BSR flushTx
MOVE.W #SER_16X2400,D0
BSR setSerSpeed
LEA (c2400Set,PC),A0
MOVE.L (A0)+,D0
BSR sendS
BRA console

cNot2400:
CMPI.B #’9’,D2 ->Set serial to 9600kb
BNE.S cNot9600
LEA (cSet9600,PC),A0
MOVE.L (A0)+,D0
BSR sendS
BSR flushTx
MOVE.W #SER_16X9600,D0
BSR setSerSpeed
LEA (c9600Set,PC),A0
MOVE.L (A0)+,D0
BSR sendS
BRA console

cNot9600:
CMPI.B #’3’,D2 ->Set serial to 38400kb
BNE.S cNot38400
LEA (cSet38400,PC),A0
MOVE.L (A0)+,D0
BSR sendS
BSR flushTx
MOVE.W #SER_16X38400,D0
BSR setSerSpeed
LEA (c38400Set,PC),A0
MOVE.L (A0)+,D0
BSR sendS
BRA console

cNot38400:
LEA (cNoCommand,PC),A0
MOVE.L (A0)+,D0
BSR sendS
BRA console

cNotLF:
TST.B D2
BNE konsoll
CMPI.B #’l’,D0 ->Load following data into RAM at addr envend
BNE.S cNotLoad
LEA (cLoading,PC),A0
MOVE.L (A0)+,D0
BSR sendS
BSR loadS1
LEA (cComplete,PC),A0
MOVE.L (A0)+,D0
BSR sendS
BRA console

cNotLoad:
CMPI.B #13,D0
BNE.S cNotCR
BSR putS
BRA console

cNotCR:
CMPI.B #32,D0
BGE.S cNotLow
BSR cSendHex
MOVEQ #10,D0
BSR putS
BRA console

cNotLow:
BTST.B #7,D0
BEQ.S cNotHi
BSR cSendHex
MOVEQ #13,D0
BSR putS
MOVEQ #10,D0
BSR putS
BRA console

cNotHi:
BSR putS
MOVE.B D0,D2
BRA konsoll
*RTS
-
-
cSendHex:
MOVE.B D0,D1
LSR.B #4,D0
CMPI.B #10,D0
BPL.S cshHigh1
ADDI.B #’0’,D0
BRA.S cshWasLow1

cshHigh1:
ADDI.B #’A’-10,D0

cshWasLow1:
BSR putS
MOVE.B D1,D0
ANDI.B #15,D0
CMPI.B #10,D0
BPL.S cshHigh2
ADDI.B #’0’,D0
BRA.S cshWasLow2

cshHigh2:
ADDI.B #’A’-10,D0

cshWasLow2:
BSR putS
RTS

112

-
-
loadS1:
MOVEA.L #RAM+endOfStartUpImage+MEM_DEFSIZE,A0
ls1Start:
MOVE.B #’.’,D0
BSR putS
BSR ls1WhiteSp -> S
CMPI.B #’S’,D0
BEQ.S ls1WasS
RTS

ls1WasS:
BSR getS -> 1
CMPI.B #’1’,D0
BNE.S ls1Not1
BSR ls1GetnDec -> len
MOVE.B D0,D2
SUBQ.B #3,D2
BSR getS -> addr
BSR getS
BSR getS
BSR getS

ls1Read:
BSR ls1GetnDec -> data
MOVE.B D0,(A0)+
SUBQ.B #1,D2
BNE.S ls1Read
BSR getS -> checksum
BSR getS
BRA.S ls1Start

ls1Not1:
CMPI.B #’2’,D0
BNE.S ls1Not2
BSR ls1GetnDec -> len
MOVE.B D0,D2
SUBQ.B #4,D2
BSR getS -> addr
BSR getS
BSR getS
BSR getS
BSR getS
BSR getS

ls2Read:
BSR ls1GetnDec -> data
MOVE.B D0,(A0)+
SUBQ.B #1,D2
BNE.S ls2Read
BSR getS -> checksum
BSR getS
BRA ls1Start

ls1Not2:
MOVE.B D0,D1
BRA.S ls1WaitLine
ls1UntilCR:

BSR getS
ls1WaitLine:

CMPI.B #10,D0
BEQ.S ls1Out
CMPI.B #13,D0

BNE.S ls1UntilCR
ls1Out
CMPI.B #’8’,D1
BEQ.S ls1Finish
CMPI.B #’9’,D1
BNE ls1Start
ls1Finish:
RTS
-
-
ls1GetnDec:
BSR getS
CMPI.B #’A’,D0
BLT.S gndNum1
SUBI.B #’A’-10,D0
BRA.S gndWasLett1

gndNum1:
SUBI.B #’0’,D0

gndWasLett1:
LSL.B #4,D0
MOVE.B D0,D1
BSR getS
CMPI.B #’A’,D0
BLT.S gndNum2
SUBI.B #’A’-10,D0
BRA.S gndWasLett2

gndNum2:
SUBI.B #’0’,D0

gndWasLett2:
OR.B D1,D0
RTS
-
-
ls1WhiteSp:
BSR getS
CMPI.B #32,D0
BLE.S ls1WhiteSp
RTS
-
************************ Terminal ***************************
-
tWelcome:
DC.L 48+55
DC "Welcome to the advanced console - The Terminal\r\n"
DC "This is currently under construction and unavailable.\r\n\0"
ALIGN
tNoMemH:
DC.L 54+56
DC "The Terminal need the memory handler to be started in "

113

DC "order to operate and it is not. Please start it first!\r\n\0"
ALIGN
-
terminal:
BSR getEnvToA6
TST.L (ENV_FREEL,A6)
BEQ.S tNoMH
LEA (tWelcome,PC),A0
BRA.S tHasMH

tNoMH:
LEA (tNoMemH,PC),A0

tHasMH:
MOVE.L (A0)+,D0
BSR sendS
RTS
-
************************ Other ******************************
USE kernel.s68
USE serial.s68
USE stdlib.s68
USE memhandling.s68
USE interrupts.s68
USE timer.s68
USE progInlasning.s68
-
* Do not remove!
* Labels RTS and RTE to be able to detect RTS’s and RTE’s written
* accidently at the left edge in any subroutine.
RTE
RTS
-
initialFreeListNoSwap:
DC.W 5
DC.L RAM,RAM+START-1,0 -> vectors
DC.L RAM+START,RAM+endOfStartUpImage-1,0 -> essential startup code
DC.L RAM+endOfStartUpImage,RAM+endOfStartUpImage+MEM_DEFSIZE-1,0 -> the mem mgr buffer
DC.L RAM+endOfStartUpImage+MEM_DEFSIZE,RAM+MEMSIZE-USPSIZE-SSPSIZE-1 -> free mem
DC.L MEMSIZE-endOfStartUpImage-MEM_DEFSIZE-SSPSIZE-USPSIZE
DC.L RAM+MEMSIZE-SSPSIZE-USPSIZE,RAM+MEMSIZE-SSPSIZE-1,0 -> user stack
DC.L RAM+MEMSIZE-SSPSIZE,RAM+MEMSIZE-1,0 -> supervisor stack
-
initialFreeListSwap:
DC.W 5
DC.L ROM,START-1,0 -> vectors
DC.L START,endOfStartUpImage-1,0 -> essential startup code
DC.L endOfStartUpImage,endOfStartUpImage+MEM_DEFSIZE-1,0 -> the mem mgr buffer
DC.L endOfStartUpImage+MEM_DEFSIZE,MEMSIZE-USPSIZE-SSPSIZE-1 -> free mem
DC.L MEMSIZE-endOfStartUpImage-MEM_DEFSIZE-SSPSIZE
DC.L MEMSIZE-SSPSIZE-USPSIZE,MEMSIZE-SSPSIZE-1,0 -> user stack
DC.L MEMSIZE-SSPSIZE,MEMSIZE-1,0 -> supervisor stack

F.3 Kernel.s68

This file contains the scheduler and signal handling functions and a few TRAPs for de-

bugging and other things. The functions Connect and Event are not in this file, but in

Timer.s68.

* WARNING! This file contains a lot of stack manipulation and non-standard
* branshes and is not intended for purists or weak-minded people. :-)
-
tReset:
RESET
MOVE #$2700,SR
MOVEA.L ROM,A7
MOVEA.L ROM+4,A0
JMP (A0)
-
-
tStop:
STOP #$2000
RTE
-
-
debugTextPC:
DC "PC: $\0"
debugTextSR:
DC "\nSR: $\0"
debugTextUSP:
DC "\nUSP: $\0"
debugTextSSP:
DC "\nSSP: $\0"
ALIGN
-
tDebug:
MOVEM.L D0/A0,-(A7)
LEA (debugTextPC,PC),A0
BSR putStr
SUBA.L A0,A0
MOVE.L (14,A7),D0
BSR int2Dec
LEA (debugTextSR,PC),A0
BSR putStr

114

SUBA.L A0,A0
MOVEQ #0,D0
MOVE.W (12,A7),D0
BSR int2Dec
LEA (debugTextUSP,PC),A0
BSR putStr
MOVE USP,A0
MOVE.L A0,D0
SUBA.L A0,A0
BSR int2Dec
LEA (debugTextSSP,PC),A0
BSR putStr
SUBA.L A0,A0
MOVE.L A7,D0
BSR int2Dec
MOVEQ #10,D0
BSR putS
MOVEM.L (A7)+,D0/A0
RTE
-
-
* >A0=ptr to subroutine that must end with RTE
tUserTrap:
JMP (A0)
-
-
* <Z=1 if in SVM, Z=0 if in user mode
tSuperVisor:
BTST.B #5,(A7)
BEQ.S tsvNo
BSET.B #2,(1,A7)
RTE

tsvNo:
BCLR.B #2,(1,A7)
RTE
-
-
* LF-clock interrupt
int3:
MOVEM.L A4-A6,-(A7) -> BSET numreg*4 down the line!!!
BSR getEnvToA6
TST.L (ENV_SRBINT3,A6)
BEQ.S i3NoBeforeSub
MOVEA.L (ENV_SRBINT3,A6),A5
JSR (A5)

i3NoBeforeSub:
BTST.B #ES_KERNEL,(ENV_STATUS,A6)
BEQ.S i3NoKernel
MOVEA.L (ENV_KERNEL,A6),A5
TST.B (KRN_QCNT,A5)
BNE.S i3Cont
MOVE.B (KRN_QUANTUM,A5),(KRN_QCNT,A5)
MOVE.B (KRN_STATUS,A5),(-1,A7)
ANDI.B #%1011,(-1,A7) -> are we inhibited?
BNE.S i3NoKernel
BSET.B #KS_INHIBIT,(KRN_STATUS,A5)
BTST.B #5,(12,A7) -> STACK! Are we already in supervisor mode?
BEQ.S i3Normal
MOVEA.L (KRN_SSPREF,A5),A4 -> intercept the last supervisor return by installing the intCatcher
MOVE.L -(A4),(KRN_TOPPC,A5)
MOVE.W -(A4),(KRN_TOPSR,A5)
LEA (intCatcher,PC),A5
MOVE.W #$2300,(A4)+
MOVE.L A5,(A4)
BRA.S i3NoKernel

i3Normal:
MOVEM.L D0-D7/A0-A3,-(A7)
MOVEA.L (A5),A1
CMPI.B #PS_RUNNING,(PCB_STATUS,A1)
BNE.S i3NotRun
MOVE.B #PS_READY,(PCB_STATUS,A1)

i3NotRun:
LEA (i3Back,PC),A0
BRA forceResched

i3Back:
BEQ.S i3Done
BSET.B #KS_NOTODO,(KRN_STATUS,A5)

i3Done:
BCLR.B #KS_INHIBIT,(KRN_STATUS,A5)
MOVEM.L (A7)+,D0-D7/A0-A3
BRA.S i3NoKernel

i3Cont:
SUBQ.B #1,(KRN_QCNT,A5)

i3NoKernel:
BTST.B #ES_LFLED,(ENV_STATUS,A6)
BEQ.S i3out
MOVE.B (ENV_LED,A6),LED
ADDQ.B #1,(ENV_LED,A6)

i3out:
TST.L (ENV_SRAINT3,A6)
BEQ.S i3NoAfterSub
MOVEA.L (ENV_SRAINT3,A6),A5 -> The timer device hooks up here
JSR (A5)

i3NoAfterSub:
MOVEM.L (A7)+,A4-A6
RTE
-
-
* This gets called when the last supervisor routine returns if some supervisor routine
* wanted to reschedule but other calls was already on the stack making it unpure.
intCatcher:
SUBQ.L #6,A7
MOVEM.L D0-D7/A0-A6,-(A7)
BSR getEnvToA6

115

MOVEA.L (ENV_KERNEL,A6),A5
MOVE.W (KRN_TOPSR,A5),(60,A7) -> STACK!
MOVE.L (KRN_TOPPC,A5),(62,A7)
MOVEA.L (A5),A1 *-> A1=curpcb
CMPI.B #PS_RUNNING,(PCB_STATUS,A1)
BNE.S icNotRun
MOVE.B #PS_READY,(PCB_STATUS,A1)

icNotRun:
LEA (icBack,PC),A0
BRA.S forceResched
icBack:
BEQ.S icDone
BSET.B #KS_NOTODO,(KRN_STATUS,A5)

icDone:
BCLR.B #KS_INHIBIT,(KRN_STATUS,A5)
MOVEM.L (A7)+,D0-D7/A0-A6
RTE
-
-
* requires a pure stack with all 15 regs on it and SVM
* curpcb.status must be set.
* >A0=return addr, >A1=curpcb, >A5=KRN, >A6=ENV, <D0=0=switched,1=NoToDo
forceResched:
MOVEA.L (A1),A2 *-> pcb:=cur.next
frLoop:

MOVEQ #NIL,D0 -> if pcb else pcb=beginning
CMP.L A2,D0
BNE.S frNotEnd
MOVEA.L (ENV_PCB,A6),A2

frNotEnd:
CMPI.B #PS_READY,(PCB_STATUS,A2)
BNE.S frNext
MOVEQ #14,D0
MOVEA.L A7,A3
LEA (PCB_REGS,A1),A4

frSt2Regs:
MOVE.L (A3)+,(A4)+
DBRA D0,frSt2Regs
MOVE.W (A3)+,(PCB_SR,A1)
MOVE.L (A3),(PCB_PC,A1)
MOVE USP,A4
MOVE.L A4,(PCB_SP,A1)
MOVEA.L (PCB_SP,A2),A4 -> now move in this new ready process
MOVE A4,USP
MOVE.L (PCB_PC,A2),(A3)
MOVE.W (PCB_SR,A2),-(A3)
MOVEQ #14,D0
MOVEA.L A7,A3
LEA (PCB_REGS,A2),A4

frRegs2St:
MOVE.L (A4)+,(A3)+
DBRA D0,frRegs2St
MOVE.B #PS_RUNNING,(PCB_STATUS,A2)
MOVE.L A2,(A5)
BCLR.B #KS_NOTODO,(KRN_STATUS,A5)
MOVEQ #0,D0
JMP (A0)

frNext:
CMPA.L A1,A2 -> if we’ve checked all and no process wants to run
BEQ.S frNoToDo
MOVEA.L (A2),A2

BRA.S frLoop
frNoToDo:
MOVEQ #-1,D0
JMP (A0)
-
-
* To be called only from Block, Signal and finalReturn.
tReSchedule:
BTST.B #5,(A7) -> in supervisor mode already from signal???
BNE.S trsNoResched
MOVEM.L D0-D7/A0-A6,-(A7)
BSR getEnvToA6
MOVEA.L (ENV_KERNEL,A6),A5
MOVEA.L (A5),A1 *-> A1=curpcb
CMPI.B #PS_RUNNING,(PCB_STATUS,A1)
BNE.S trsStart
MOVE.B #PS_READY,(PCB_STATUS,A1)

trsStart:
LEA (trsBack,PC),A0
BRA forceResched

trsBack:
BNE.S trsWait
MOVE.B (KRN_QUANTUM,A5),(KRN_QCNT,A5) -> reset the timer so it doesn’t switch until one quantum again.
BCLR.B #KS_INHIBIT,(KRN_STATUS,A5)
MOVEM.L (A7)+,D0-D7/A0-A6
RTE -> return back to Block or Signal with a new user program on the stack

trsWait:
BCLR.B #KS_SIGNAL,(KRN_STATUS,A5) *only place it’s needed to clear this as it is the only place it is read.
BSET.B #KS_NOTODO,(KRN_STATUS,A5)
BCLR.B #KS_INHIBIT,(KRN_STATUS,A5)

trsStop:
STOP #$2000
BCLR.B #KS_SIGNAL,(KRN_STATUS,A5)
BEQ.S trsStop
BRA.S trsStart

trsNoResched:
MOVEM.L A5-A6,-(A7)
BSR getEnvToA6
MOVEA.L (ENV_KERNEL,A6),A5
MOVEA.L (KRN_SSPREF,A5),A6 -> intercept the last supervisor return

116

MOVE.L -(A6),(KRN_TOPPC,A5)
MOVE.W -(A6),(KRN_TOPSR,A5)
LEA (intCatcher,PC),A5
MOVE.W #$2300,(A6)+
MOVE.L A5,(A6)
MOVEM.L (A7)+,A5-A6
RTE
-
-
* This function is called by the last RTS when a user program exits.
finalReturn:
MOVE.L A6,-(A7)
BSR getEnvToA6
MOVEA.L (ENV_KERNEL,A6),A6
BSET.B #KS_INHIBIT,(KRN_STATUS,A6)
MOVEA.L (A6),A6
MOVE.B #PS_FINISHED,(PCB_STATUS,A6)
MOVEA.L (A7)+,A6
TRAP #reschedule
RTS * The same process will never return
-
-
* callable only from user mode, SVM is undefined
* >D0.L sigmask to wait for, <D0.L=signals received
block:
MOVEM.L D1/A1/A6,-(A7)
BSR getEnvToA6
BTST.B #ES_KERNEL,(ENV_STATUS,A6) -> do we have a running kernel?
BEQ.S bStop
MOVEA.L (ENV_KERNEL,A6),A6
BSET.B #KS_INHIBIT,(KRN_STATUS,A6) -> inhibit multitasking while in Block.
BCLR.B #KS_FORBID,(KRN_STATUS,A6)
MOVEA.L (A6),A1 -> A1=curpcb
MOVE.L D0,D1
AND.L (PCB_SIGSET,A1),D1
BEQ.S bNewTask -> this task didn’t wait on any of the set signals or there are no set signals
MOVE.L D1,D0
EOR.L D1,(PCB_SIGSET,A1)
BCLR.B #KS_INHIBIT,(KRN_STATUS,A6) -> enable multitasking
MOVEM.L (A7)+,D1/A1/A6
RTS *-> return D0 with the signals set and keep on with the same task.

bNewTask:
MOVE.B #PS_WAITING,(PCB_STATUS,A1)
MOVE.L D0,(PCB_SIGWAIT,A1)
MOVEM.L (A7)+,D1/A1/A6
TRAP #reschedule
RTS

bStop:
TRAP #stop
MOVEM.L (A7)+,D1/A1/A6
RTS
-
-
* >A0=pcb, D0.L=sigmask to signal to A0.
* <D0.L=-1 ok, 0=pcb doesn’t exist
signal:
MOVEM.L D1/A0/A5/A6,-(A7)
BSR getEnvToA6
MOVEA.L (ENV_PCB,A6),A5
MOVEQ #NIL,D1
sigFind:

CMP.L A5,D1
BEQ.S sigNotFound
CMPA.L A0,A5
BEQ.S sigFound
MOVEA.L (A5),A5

BRA.S sigFind
sigFound:
MOVEA.L (ENV_KERNEL,A6),A5
MOVE.B (KRN_STATUS,A5),(-1,A7)
ANDI.B #%1011,(-1,A7)
OR.L D0,(PCB_SIGSET,A0) -> set the actual sigbits
MOVEQ #TRUE,D0
CMPI.B #PS_WAITING,(PCB_STATUS,A0)
BNE.S sigNotWaiting
MOVE.L (PCB_SIGWAIT,A0),D1
AND.L (PCB_SIGSET,A0),D1
BEQ.S sigOut
MOVE.B #PS_READY,(PCB_STATUS,A0)
BRA.S sigSwitch

sigNotWaiting:
CMPI.B #PS_READY,(PCB_STATUS,A0)
BNE.S sigOut
sigSwitch:

TST.B (-1,A7) ->inhibited?
BNE.S sigSignal
BSET.B #KS_INHIBIT,(KRN_STATUS,A5)
MOVEM.L (A7)+,D1/A0/A5/A6
TRAP #reschedule
RTS

sigSignal:
BSET.B #KS_SIGNAL,(KRN_STATUS,A5)
BRA.S sigOut

sigNotFound:
MOVEQ #FALSE,D0
sigOut:
MOVEM.L (A7)+,D1/A0/A5/A6
RTS
-
-

117

* <D0.B.L=bitnumber.B allocated, or -1.L if no free signals
allocSignal:
MOVEM.L D1/A6,-(A7)
BSR getEnvToA6
MOVEA.L (ENV_PCB,A6),A6
MOVEA.L (A6)+,A6
MOVE.L (PCB_SIGMASK,A6),D1
ANDI.L #USERSIGNALS,D1
CMPI.L #USERSIGNALS,D1 -> All but reserved
BEQ.S asNoSig
MOVEQ #-1,D0

asNotFree:
ADDQ.L #1,D0
BTST.L D0,D1
BNE.S asNotFree
BRA.S asOut

asNoSig:
MOVEQ #-1,D0
asOut:
MOVEM.L (A7)+,D1/A6
RTS
-
-
* >D0.B5=signal number to return
freeSignal:
MOVEM.L D1/A6,-(A7)
BSR getEnvToA6
MOVEA.L (ENV_KERNEL,A6),A6
MOVEA.L (A6)+,A6
MOVE.L (PCB_SIGMASK,A6),D1
BCLR.L D0,D1
MOVE.L D1,(PCB_SIGMASK,A6)
MOVEM.L (A7)+,D1/A6
RTS
-
-
* >D0.B <>0=forbid multitasking, =0=permit multitasking.
* A Block() automatically permits multitasking.
singleTask:
MOVE.L A6,-(A7)
BSR getEnvToA6
MOVEA.L (ENV_KERNEL,A6),A6
TST.B D0
BEQ.S stPermit
BSET.B #KS_FORBID,(KRN_STATUS,A6)
BRA.S stOut

stPermit:
BCLR.B #KS_FORBID,(KRN_STATUS,A6)
stOut:
MOVEA.L (A7)+,A6
RTS

F.4 Memhandling.s68

This file contains the memory manager and all functions associated with it.

MI_CMD_SIZE EQU 4
MI_INFO_SIZE EQU 4
-

* Rensa upp i frstrande funktioner !!!!!!!!!! OK 1703
*
* Jmna minnesadresser OK 0302
* MOVEM p flyttning i minnet OK 0302
* Stt maxgrns p free lists storlek OK 0302
* Komprimering av sammanhngande minne i free list OK 0302
*
* Sammanslagning av sammanhngande fritt minne vid
* allokering
*
* Deallokering av icke utnyttjat minne.

-
*getEnvToA6:
* MOVEA.L #envvars,A6
* RTS
-
*envvars:
* DC.W $10
* DC.L $5000
-

* Input: size in D0.L
* Output: index in D1.W, $FFFF in D1 if none
seekFreeBlock:

MOVEM.L A0/D2,-(A7)
CMPI.W #$FFFF,(A6)
BEQ sfb_noneFound
MOVE.W #0,D1
LEA (2,A6),A0
ADDA.L #8,A0

sfb_nextBlock:
MOVE.L (A0),D2
CMP.L D0,D2
BCC sfb_memFound

118

CMP.W (A6),D1
BEQ sfb_noneFound
ADD.W #1,D1
ADDA.L #12,A0
BRA sfb_nextBlock

sfb_noneFound:
MOVE.L #$FFFF,D1

sfb_memFound:
MOVEM.L (A7)+,A0/D2
RTS

-
-

* Input: index in D1.W where the hole will be
* Output: index + 1 set in memory
makeHole:

MOVEM.L D2-D5/A2,-(A7)
MOVE.W (A6),D3
MULU #FR_LST_E_SIZE,D3 // Block’s adress in D3
LEA (2,A6),A2
MOVE.W (A6),D2
SUB.W D1,D2 // Counter in D2
ADDA.L D3,A2

moveBlocksDown:
MOVEM.L (0,A2),D3-D5
MOVEM.L D3/D4/D5,(FR_LST_E_SIZE,A2)
SUBA.L #FR_LST_E_SIZE,A2
SUBI.W #1,D2
CMPI.W #$FFFF,D2
BNE moveBlocksDown
ADDI.W #1,(A6)
MOVEM.L (A7)+,D2-D5/A2
RTS

-
-

* Input: index in D1.W
* Output: index - 1 set in memory
listRemoveBlock:

MOVEM.L D0/D2-D5/A1,-(A7)
MOVE.W D1,D0
MULU #FR_LST_E_SIZE,D0
LEA (2,A6),A1
MOVE.W (A6),D2
SUB.W D1,D2

removeBlock:
MOVEM.L (FR_LST_E_SIZE,A1,D0.L),D3-D5
MOVEM.L D3-D5,(0,A1,D0.L)
ADDI.L #FR_LST_E_SIZE,D0
SUBI.W #1,D2
CMPI.W #$FFFF,D2
BNE removeBlock
SUBI.W #1,(A6)
MOVEM.L (A7)+,D0/D2-D5/A1
RTS

-
-

* Input: wanted size in D0.L, index in D1.W
* Output: adress in A0.L
listGetMem:

MOVEM.L D0/D2-D3/A1,-(A7)
MOVE.L D1,D3
MULU #FR_LST_E_SIZE,D3 // Rkna fram adress
LEA (2,A6),A1
ADDA.L D3,A1 // Adress + offset
MOVEA.L (A1),A0 // Lgg RAM adress i A0
CMP.L (8,A1),D0
BEQ allMemInBlock // nskat minne tar upp helt block
BSR makeHole // Block ska splittras
MOVE.L (8,A1),D2
SUB.L D0,D2
MOVE.L D2,(20,A1)
MOVE.L (A1),D2
ADD.L D0,D2
MOVE.L D2,(4,A1)
MOVE.L (4,A1),(12,A1)
SUBI.L #1,(4,A1)

allMemInBlock:
MOVE.L #0,(8,A1)
MOVEM.L (A7)+,D0/D2-D3/A1
RTS

-

* Input: size in D0.L
* Output: adress in A0.L, else 0 in A0.L
tAllocMem:

MOVEM.L D0-D1/A5/A6,-(A7)
TST.L D0
BEQ.S am_noMemFree
BSR getEnvToA6
MOVEA.L A6,A5
MOVEA.L (ENV_FREEL,A6),A6
MOVE.W (A6),D1 // Check if free limit reached
CMP.W (ENV_FREEZ,A5),D1 //
BEQ am_expandFreeList
ADDI.L #1,D0 // Round up to even bytes
ANDI.L #$FFFFFFFE,D0 //
BSR seekFreeBlock
CMPI.W #$FFFF,D1
BEQ am_noMemFree
BSR listGetMem
BRA.S amOut

am_noMemFree:

119

MOVEA.L #0,A0
BRA.S amOut

am_expandFreeList:
* VAD SKA GRAS HR!!!!!!! CompFreeList

MOVEA.L #0,A0
amOut:

MOVEM.L (A7)+,D0-D1/A5/A6
RTE

-

* Input: Adress in A0.W
* Output: Index in D1.W, otherwise $FFFF in D1.W
seekBlock:

MOVEM.L A0-A1,-(A7)
MOVE.W #0,D1 // Reset counter
LEA (2,A6),A1

seekB:
CMPA.L (A1),A0
BEQ sb_blockFound
CMP.W (A6),D1
BEQ sb_blockNotFound
ADDI.W #1,D1
ADDA.L #FR_LST_E_SIZE,A1
BRA seekB

sb_blockFound:
BRA.S sbOut

sb_blockNotFound:
MOVE.W #$FFFF,D1

sbOut
MOVEM.L (A7)+,A0-A1
RTS

-

* Input: Adress in A0.L
* Output: Memory returned to free list
tFreeMem:

MOVEM.L D1-D2/A1/A6,-(A7)
BSR getEnvToA6
MOVEA.L (ENV_FREEL,A6),A6

* Leta upp index med startadress A0
BSR seekBlock
CMPI.W #$FFFF,D1
BEQ tfmError

* Rkna ut storlek (end-start) och lgg in.
MULU #FR_LST_E_SIZE,D1
LEA (2,A6),A1
MOVE.L (4,A1,D1.L),D2
SUB.L (A1,D1),D2
ADDI.L #1,D2
MOVE.L D2,(8,A1,D1.L)
BRA.S tfmOut

tfmError:
* VAD SKA GRAS HR!!!!!!!

NOP
tfmOut:

MOVEM.L (A7)+,D1-D2/A1/A6
RTE

-

* Input: None
* Output: free list compressed
compFreeList:

MOVEM.L D0-D5/A0/A6,-(A7)
BSR getEnvToA6
MOVEA.L (ENV_FREEL,A6),A6
MOVE.W (A6),D0

* MOVE.W FR_LAST_INDX,D0 // Offset in D0
TST.W D0
BEQ cfl_compressDone
MULU #FR_LST_E_SIZE,D0 //
LEA (2,A6),A0

* MOVEA.L #FREE_LIST,A0 // Start of free list in A0
cfl_Loop:

MOVE.L (8,A0,D0.L),D1
TST.L (8,A0,D0.L) // Check if free block
BEQ cfl_doLoop
TST.L (-4,A0,D0.L) // Check earlier block
BEQ cfl_doLoop
MOVE.L (4,A0,D0.L),D1 // Merge
MOVE.L (-4,A0,D0.L),D2
ADD.L (8,A0,D0.L),D2
MOVEM.L D1/D2,(-8,A0,D0.L)
MOVE.L D0,D1 // Move blocks up
MOVE.W (A6),D2

* MOVE.W FR_LAST_INDX,D2
MULU #FR_LST_E_SIZE,D2
ADDI.W #FR_LST_E_SIZE,D2

cfl_moveBlocksUp:
MOVEM.L (12,A0,D1.L),D3-D5
MOVEM.L D3/D4/D5,(A0,D1.L)
ADDI.W #FR_LST_E_SIZE,D1
CMP.W D2,D1
BNE cfl_moveBlocksUp
SUBI.W #1,(A6)

* SUBI.W #1,FR_LAST_INDX
cfl_doLoop:

SUBI.W #FR_LST_E_SIZE,D0
TST.W D0
BNE cfl_Loop

cfl_compressDone:
MOVEM.L (A7)+,D0-D5/A0/A6
RTS

-
120

-
-
**
* NEW
* >A0.L = Address to taglist (CMD.L,INFO.L,...,0)
*
memInfo:

MOVEM.L A6/D0-D3,-(A7)
BSR getEnvToA6
MOVEA.L (ENV_FREEL,A6),A6 // Address to FreeList in A6
MOVE.L #0,D3 // OFFSET

miLoop:
CMPI.L #0,(A0,D3) // End of taglist
BEQ.S miOut

-
CMPI.L #MI_TOTALFREE,(A0,D3)
BNE.S mi1
BSR miFreeMem
MOVE.L D0,(MI_CMD_SIZE,A0,D3)
BRA.S miDoLoop

mi1:
CMPI.L #MI_LARGEST,(A0,D3)
BNE.S mi2
BSR miLargest
MOVE.L D0,(MI_CMD_SIZE,A0,D3)
BRA.S miDoLoop

mi2:
CMPI.l #MI_NUMALLOC,(A0,D3)
BNE.S mi3
BSR miNumAlloc
MOVE.L D0,(MI_CMD_SIZE,A0,D3)
BRA.S miDoLoop

mi3:
CMPI.L #MI_NUMFREE,(A0,D3)
BNE.S miDoLoop
BSR miNumFree
MOVE.L D0,(MI_CMD_SIZE,A0,D3)

miDoLoop:
ADDI.L #MI_CMD_SIZE+MI_INFO_SIZE,D3
BRA.S miLoop

miOut:
MOVEM.L (A7)+,A6/D0-D3
RTS

-
miFreeMem:

MOVE.L #0,D0 // Reset sum
MOVE.W (A6),D1 // Counter in D1
MOVE.L #0,D2 // Offset

mifmLoop:
TST.L (2+8,A6,D2.L) // Check if free block
BEQ.S mifmDoLoop
ADD.L (2+8,A6,D2.L),D0 // Add to Sum

mifmDoLoop:
ADDI.L #FR_LST_E_SIZE,D2 // Increase offset
DBRA D1,mifmLoop // Check if more
BRA.S miOut2

-
miLargest:

MOVE.L #0,D0 // Reset largest
MOVE.W (A6),D1 // Counter in D2
MOVE.L #0,D2 // Offset

milLoop:
TST.L (2+8,A6,D2.L) // Check if free block
BEQ.S milDoLoop
CMP.L (2+8,A6,D2.L),D0
BGT milDoLoop
MOVE.L (2+8,A6,D2.L),D0 // New largest

milDoLoop:
ADDI.L #FR_LST_E_SIZE,D2 // Increase offset
DBRA D1,milLoop // Check if more
BRA.S miOut2

-
miNumAlloc:

MOVE.L #0,D0 // Reset sum
MOVE.W (A6),D1 // Counter in D2
MOVE.L #0,D2 // Offset

minaLoop:
TST.L (2+8,A6,D2.L) // Check if free block
BNE.S minaDoLoop
ADDI.L #1,D0 // Increase Sum

minaDoLoop:
ADDI.L #FR_LST_E_SIZE,D2 // Increase offset
DBRA D1,minaLoop // Check if more
BRA.S miOut2

-
miNumFree:

MOVE.L #0,D0 // Reset sum
MOVE.W (A6),D1 // Counter in D2
MOVE.L #0,D2 // Offset

minfLoop:
TST.L (2+8,A6,D2.L) // Check if free block
BEQ.S minfDoLoop
ADDI.L #1,D0 // Increase Sum

minfDoLoop:
ADDI.L #FR_LST_E_SIZE,D2 // Increase offset
DBRA D1,minfLoop // Check if more
BRA.S miOut2
NOP

-
miOut2:

RTS
-
-

121

**
* >A0.L = Start address, even to check even addresses
* odd to check odd addresses
* >D0.L = Amount of bytes to check
* D0.L> = 0 = OK, 1 = Not OK
memCheck:

MOVEM.L D1/A0,-(A7)
SUBI.L #1,D0
CMPI.L #-1,D0
BEQ.S mcError

mcLoop:
MOVE.B (A0),D1
MOVE.B #55,(A0)
CMPI.B #55,(A0)
BNE.S mcError
MOVE.B D1,(A0)
ADDA.L #2,A0
SUBI.L #1,D0
CMPI.L #-1,D0
BNE.S mcLoop

mcOk:
CLR.L D0
BRA.S mcOut

mcError:
MOVE.L #1,D0

mcOut:
MOVEM.L (A7)+,D1/A0
RTS

F.5 Timer.s68

This file contains the timer device. It also includes the functions Connect and Event which

are currently only associated with the timer.

* >D0.B=Device TIMER
* >D1.W=Unit number
* >D2.B=Type CONHANDL OR CONSIG
* >D3.L=Address to userdata OR signal number
* >A0.L=Address to interrupt handler OR process
connect:

MOVEM.L D0/D4/D5/A0/A1/A6,-(A7)
MOVEA.L A0,A1
BSR getEnvToA6
MOVEA.L (ENV_CONNECT,A6),A6

* Kolla om paret Device och Unit finns redan
conChkExist:

TST.L (A6)
BEQ.S conMoveOn
CMP.B (CONOFFDEV,A6),D0
BNE.S conChkNext
CMP.W (CONOFFUNIT,A6),D1
BNE.S conChkNext
BRA.S conExist

conChkNext:
MOVEA.L (A6),A6
BRA.S conChkExist

conMoveOn:
* Om paret inte finns allokera minne och lgg in.

MOVE.B D0,D5
MOVE.L #CONBLKSIZE,D0
TRAP #allocmem

* Koll att minne fanns
MOVE.L A0,D4
TST.L D4 * Memsize = 0 ?
BEQ.S conErr

* Minne fanns, lgg in
BSR getEnvToA6
MOVE.L (ENV_CONNECT,A6),(A0)
MOVE.B D5,(CONOFFDEV,A0)
MOVE.W D1,(CONOFFUNIT,A0)
MOVE.B D2,(CONOFFTYPE,A0)
MOVE.L D3,(CONOFFUADR,A0)
MOVE.L A1,(CONOFFIADR,A0)
MOVE.L A0,(ENV_CONNECT,A6)
BRA.S conOut

conExist:
NOP

conErr:
* FEL!!!!!!!! Vad gra?

NOP
conOut:

MOVEM.L (A7)+,D0/D4/D5/A0/A1/A6
RTS

-
**
* >D0.B=Device e.g. TIMER
* >D1.W=Unit number
event:

MOVEM.L D0/D1/D2/A0/A1/A6,-(A7)
BSR getEnvToA6
MOVEA.L (ENV_CONNECT,A6),A6
MOVE.L A6,D2
TST.L D2

122

BEQ.S evOut
* Kolla om Device och Unit finns
evChkExist:

CMP.B (CONOFFDEV,A6),D0
BNE.S evChkNext
CMP.W (CONOFFUNIT,A6),D1
BNE.S evChkNext

* Type CONHANDL or CONSIG
* Address to userdata or signal number
* Address to interrupt handler or process

CMPI.B #CON_HANDL,(CONOFFTYPE,A6)
BEQ.S evConHandl
CMPI.B #CON_SIG,(CONOFFTYPE,A6)
BNE.S evOut

evConSig:
MOVEA.L (CONOFFIADR,A6),A0
MOVE.L (CONOFFUADR,A6),D0
MOVEA.L 4,A5
JSR (Signal,A5)
BNE.S evOut

* Processen finns inte. Device borde tas bort.
BRA.S evOut

evConHandl:
MOVEA.L (CONOFFUADR,A6),A0
MOVEA.L (CONOFFIADR,A6),A1
JSR (A1)
BRA.S evOut

evChkNext:
MOVEA.L (A6),A6
MOVE.L A6,D2
TST.L D2
BNE.S evChkExist

evOut:
MOVEM.L (A7)+,D0/D1/D2/A0/A1/A6
RTS

-
* Jump list for timer commands
tflist:

JMP (timerReset,PC)
JMP (timerStart,PC)
JMP (timerStop,PC)
JMP (timerRead,PC)
JMP (timerSet,PC)
JMP (timerReg,PC)
JMP (timerUnReg,PC)
JMP (timerDeviceInit,PC)

**
* >D3.L=Command
* <D0.L=Result if there is any (see above)
tTimer:

MOVEM.L D1-D7/A0-A6,-(A7)
BSR getEnvToA6
CMPI.L #TC_INIT,D3
BEQ.S ttCont
TST.L (ENV_TIMER,A6)
BNE.S ttCont
MOVEQ #-1,D0
BRA.S ttOut

ttCont:
MOVEA.L (ENV_TIMER,A6),A0
LEA (tflist,PC),A1
JSR (A1,D3)

ttOut:
MOVEM.L (A7)+,D1-D7/A0-A6
RTE

-
**
* Timer initialization
timerDeviceInit:

MOVE.L #MAX_EL_TA*TIMERELSIZE+TOFFSET,D0
TRAP #allocmem

* Check to see if we have memory
MOVE.L A0,(ENV_TIMER,A6)
BEQ.S tdiOut
MOVEQ #0,D1
SUBQ.L #1,D0

tdiNullLoop:
MOVE.B D1,(A0)+
DBRA D0,tdiNullLoop
MOVEA.L (ENV_TIMER,A6),A0
MOVE.W #TDIVISOR,(DIVOFFSET,A0)
LEA (timerAdvance,PC),A0
MOVE.L A0,(ENV_SRAINT3,A6)
MOVE.B #%00000001,(ENV_LFC,A6)
MOVE.B (ENV_LFC,A6),LFCLK
BCLR.B #EM_LFCINH,(ENV_MCR,A6)
MOVE.B (ENV_MCR,A6),MCR

tdiOut:
RTS

-
**
* <D0.L=Offset to registred timer, No more timers=-1 (L)
timerReg:

MOVEM.L D1/A0,-(A7)
MOVEA.L (ENV_TIMER,A6),A0
CLR.L D0

trLoop:
BTST.B #TSB_UNREGREG,(TO_STATUS+TOFFSET,A0,D0)
BEQ.S trDone

trNext:
ADDQ.W #TIMERELSIZE,D0
CMPI.W #MAX_EL_TA*TIMERELSIZE,D0
BNE.S trLoop
MOVEQ #-1,D0

123

BRA.S trOut
trDone:

BCLR.B #TSB_OFFON,(TO_STATUS+TOFFSET,A0,D0)
BSET.B #TSB_UNREGREG,(TO_STATUS+TOFFSET,A0,D0)

-
** SKA TESTAS *****************
* Koll mste ske om D0 strre n LastIndex

MOVE.W D0,D1
ADDI.W #TIMERELSIZE,D1
CMP.W (A0),D1
BLE.S trOut
MOVE.W D1,(A0)

-
trOut:

MOVEM.L (A7)+,D1/A0
RTS

-
**
* >A0.L=Adress to timerArray
* >D0.W=TimerNr
timerUnReg:

MOVEM.L D1,-(A7)
* SKA TESTAS **********************************
* Om D0 r lika med offset till sista registrerade, fixa det.

MOVE.W (A0),D1
SUBI.W #TIMERELSIZE,D1
CMP.W D1,D0
BNE.S turNotLast
MOVE.W D1,(A0)

turNotLast:

BCLR.B #TSB_UNREGREG,(TO_STATUS+TOFFSET,A0,D0)
MOVEM.L (A7)+,D1
RTS

-
**
* >A0.L=Adress to timerArray
* >D0.W=TimerNr
* <D0.L=Current timer value
timerRead:

MOVEM.L D1,-(A7)
BTST.B #TSB_DOWNUP,(TO_STATUS+TOFFSET,A0,D0)
BNE.B treUp
MOVE.W (TO_COUNTER+TOFFSET,A0,D0),D0
BRA.S treOut

treUp:
MOVE.W (TO_COUNTER+TOFFSET,A0,D0),D1
ADD.W (TO_STARTVALUE+TOFFSET,A0,D0),D1
MOVE.W D1,D0

treOut:
MULU (DIVOFFSET,A0),D0
MOVEM.L (A7)+,D1
RTS

-
**
* >A0.L=Address to timerArray
* >D0.W=TimerNr
timerStart:

BSET.B #TSB_OFFON,(TO_STATUS+TOFFSET,A0,D0)
RTS

-
**
* >A0.L=Address to timerArray
* >D0.W=TimerNr
timerStop:

BCLR.B #TSB_OFFON,(TO_STATUS+TOFFSET,A0,D0)
RTS

-
**
* >A0.L=Address to timerArray
* >D0.W=TimerNr
* >D1.B=Bitmask 0/1 7:UnReg/Reg, 6:Off/On 5:Down/Up, 4:Repeat/NoRepeat
* >D2.L=Startvalue
timerSet:

MOVEM.L D1-D2,-(A7)
CMP.W (A0),D0

* SIGNAL ?
BGT tSetDone
BTST.B #TSB_UNREGREG,(TO_STATUS+TOFFSET,A0,D0)
BEQ.S tSetDone
BSET.B #TSB_UNREGREG,D1
MOVE.B D1,(TO_STATUS+TOFFSET,A0,D0)
BCLR.B #TSB_OFFON,(TO_STATUS+TOFFSET,A0,D0)
DIVU (DIVOFFSET,A0),D2
MOVE.W D2,(TO_STARTVALUE+TOFFSET,A0,D0)
BTST.B #TSB_DOWNUP,(TO_STATUS+TOFFSET,A0,D0)
BNE.B tSetUp
MOVE.W (TO_STARTVALUE+TOFFSET,A0,D0),(TO_COUNTER+TOFFSET,A0,D0)
BRA.S tSetDone

tSetUp:
CLR.W (TO_COUNTER+TOFFSET,A0,D0)
MOVE.W (TO_STARTVALUE+TOFFSET,A0,D0),D1
SUB.W D1,(TO_COUNTER+TOFFSET,A0,D0)

tSetDone:
MOVEM.L (A7)+,D1-D2
RTS

-
**
* >A0.L=Address to timerArray
* >D0.W=TimerNr
timerReset:

MOVEM.L D1-D2,-(A7)
CMP.W (A0),D0

* SIGNAL ?
BGT tRstDone
BTST.B #TSB_UNREGREG,(TO_STATUS+TOFFSET,A0,D0)
BEQ.S tRstDone

124

BTST.B #TSB_DOWNUP,(TO_STATUS+TOFFSET,A0,D0)
BNE.B tRstUp
MOVE.W (TO_STARTVALUE+TOFFSET,A0,D0),(TO_COUNTER+TOFFSET,A0,D0)
BRA.S tRstDone

tRstUp:
MOVE.B (TO_STATUS+TOFFSET,A0,D0),D1
BCLR.B #TSB_OFFON,(TO_STATUS+TOFFSET,A0,D0)
CLR.W (TO_COUNTER+TOFFSET,A0,D0)
MOVE.W (TO_STARTVALUE+TOFFSET,A0,D0),D2
SUB.W D2,(TO_COUNTER+TOFFSET,A0,D0)
MOVE.B D1,(TO_STATUS+TOFFSET,A0,D0)

tRstDone:
MOVEM.L (A7)+,D1-D2
RTS

-
**
* >A0.L=Address to timerArray
timerAdvance:

MOVEM.L D0-D2/A0/A6,-(A7)
BSR getEnvToA6
MOVEA.L (ENV_TIMER,A6),A0
MOVE.W (A0),D0
TST.W D0
BEQ.S taDone
ADDQ.L #TOFFSET,A0

taLoop:
SUBQ.W #TIMERELSIZE,D0
BTST.B #TSB_UNREGREG,(TO_STATUS,A0,D0)
BEQ.S taNext
BTST.B #TSB_OFFON,(TO_STATUS,A0,D0)
BEQ.S taNext
BTST.B #TSB_DOWNUP,(TO_STATUS,A0,D0)
BEQ.S taDown
ADDQ.W #1,(TO_COUNTER,A0,D0)
BRA.S taChkZero

taDown:
SUBQ.W #1,(TO_COUNTER,A0,D0)

taChkZero:
BNE.S taNext
MOVE.L D0,D2 // Save
MOVE.W D0,D1
MOVE.B #DEV_TIMER,D0
BSR event
MOVE.L D2,D0 // Restore
BTST.B #TSB_REPNOREP,(TO_STATUS,A0,D0)
BNE.S taNoRep

* Reset grs hr
BTST.B #TSB_DOWNUP,(TO_STATUS,A0,D0)
BNE.B taRstUp
MOVE.W (TO_STARTVALUE,A0,D0),(TO_COUNTER,A0,D0)
BRA.S taRstDone

taRstUp:
CLR.W (TO_COUNTER,A0,D0)
MOVE.W (TO_STARTVALUE,A0,D0),D1
SUB.W D1,(TO_COUNTER,A0,D0)

taRstDone:
BRA.S taNext

taNoRep:
BCLR.B #TSB_OFFON,(TO_STATUS,A0,D0)

taNext:
TST.W D0
BNE.S taLoop

taDone:
MOVEM.L (A7)+,D0-D2/A0/A6
RTS

F.6 Serial.s68

This file contains all serial routines including the interrupt routine associated with the

serial circuit.

*LEDs on the slot-bus card:
-
*1=Reset serial - Reset the 16C550, no LED
*0=RxIRQ - Reciever interrupt enabled (orange narrow flat)
*2=TxIRQ - Transmitter interrupt enabled (orange narrow flat)
*4=FIFO - FIFOs enabled (green narrow flat)
*6=DataError - 16C550 has detected a data-error (red flat)
*7=RxOverRun - Memory receive buffer of 1kB is overflown (red flat)
*3,5=unused
-
*RxRDY - Signal from the 16C550 (5mm transp. orange)
*TxRDY - Signal from the 16C550 (5mm transp. green)
-
* Pre: Needs envvars in A6
initSerial:
BTST.B #ES_SER,(ENV_STATUS,A6)
BNE.S isSerIsInited
MOVE.B #%10,SER_LED ->reset serial
NOP
MOVE.B #0,SER_LED

125

MOVE.B SER_SPR,D0 ->test if serial exists
ADDI.B #$55,D0
MOVE.B D0,SER_SPR
CMP.B SER_SPR,D0
BNE isNotAttached
MOVE.W #SER_16X9600,D0
BSR.S setSerSpeed -> this sets 8N1

isSerIsInited:
MOVE.B #SB_FCR_FIFORESET|SB_FCR_RXTRIG_4,SER_FCR
MOVE.B #%00010001,SER_SPR ->indicate RxIRQ and FIFO on the LEDs
MOVE.B SER_SPR,SER_LED
BTST.B #ES_SWAP,(ENV_STATUS,A6)
BEQ.S isNoSwap
MOVE.L #serInpFifo,(ENV_SERIPTR,A6)
MOVE.L #serOutFifo,(ENV_SEROPTR,A6)
BRA.S isWasSwap

isNoSwap:
MOVE.L #RAM+serInpFifo,(ENV_SERIPTR,A6)
MOVE.L #RAM+serOutFifo,(ENV_SEROPTR,A6)

isWasSwap:
MOVEQ #0,D0
MOVE.L D0,(ENV_SERIBEG,A6)
MOVE.L D0,(ENV_SERIEND,A6)
MOVE.L D0,(ENV_SEROBEG,A6)
MOVE.L D0,(ENV_SEROEND,A6)
BSET.B #ES_SER,(ENV_STATUS,A6)
BSET.B #5,(ENV_LED,A6)
MOVE.B #%00000001,SER_IER ->Rx IRQ enabled
RTS

isNotAttached:
BCLR.B #ES_SER,(ENV_STATUS,A6)
RTS
-
-
* Pre: Serial must exist
setSerSpeed:
MOVE.B #SB_LCR_8N1|SB_LCR_DL,SER_LCR
MOVE.B D0,SER_DLL
LSR.W #8,D0
MOVE.B D0,SER_DLM
MOVE.B #SB_LCR_8N1,SER_LCR
RTS
-
-
* <>A0.L=ptr to taglist that will be filled with data.
getSerInfo:
MOVEM.L D0/A0/A6,-(A7)
BSR getEnvToA6
BTST.B #ES_SER,(ENV_STATUS,A6)
BEQ gsiOut
gsiLoop:

TST.L (A0)
BEQ gsiOut
MOVE.L (A0)+,D0
CLR.L (A0)
CMPI.L #SI_SPEED,D0
BNE.S gsiNoSpeed
MOVE.B #SB_LCR_8N1|SB_LCR_DL,SER_LCR
MOVE.B SER_DLM,D0
LSL.W #8,D0
MOVE.B SER_DLL,D0
MOVE.B #SB_LCR_8N1,SER_LCR
MOVE.L D0,(A0)
BRA gsiMore

gsiNoSpeed:
CMPI.L #SI_LINESTATUS,D0
BNE.S gsiNoLine
MOVE.B SER_LSR,(3,A0)
BRA gsiMore

gsiNoLine:
CMPI.L #SI_MODSTATUS,D0
BNE.S gsiNoModem
MOVE.B SER_MSR,(3,A0)
BRA.S gsiMore

gsiNoModem:
CMPI.L #SI_FIFOSIZE,D0
BNE.S gsiNoSize
MOVE.L #FIFO_SIZE,(A0)
BRA.S gsiMore

gsiNoSize:
CMPI.L #SI_RXFIFOLOC,D0
BNE.S gsiNoRxLoc
MOVE.L (ENV_SERIPTR,A6),(A0)
BRA.S gsiMore

gsiNoRxLoc:
CMPI.L #SI_TXFIFOLOC,D0
BNE.S gsiNoTxLoc
MOVE.L (ENV_SEROPTR,A6),(A0)
BRA.S gsiMore

gsiNoTxLoc:
CMPI.L #SI_RXFILLLEV,D0
BNE.S gsiNoRxFill
MOVE.L (ENV_SERIEND,A6),D0
SUB.L (ENV_SERIBEG,A6),D0
MOVE.L D0,(A0)
BRA.S gsiMore

gsiNoRxFill:
CMPI.L #SI_TXFILLLEV,D0
BNE.S gsiNoTxFill

126

MOVE.L (ENV_SEROEND,A6),D0
SUB.L (ENV_SEROBEG,A6),D0
MOVE.L D0,(A0)
BRA.S gsiMore

gsiNoTxFill:
CMPI.L #SI_RXTOTAL,D0
BNE.S gsiNoRxTotal
MOVE.L (ENV_SERIEND,A6),(A0)
BRA.S gsiMore

gsiNoRxTotal:
CMPI.L #SI_TXTOTAL,D0
BNE.S gsiNoTxTotal
MOVE.L (ENV_SEROEND,A6),(A0)

gsiNoTxTotal:
gsiMore:

ADDQ.L #4,A0
BRA gsiLoop

gsiOut:
MOVEM.L (A7)+,D0/A0/A6
RTS
-
-
putStr:
MOVEM.L D0/A1,-(A7)
MOVEQ #-1,D0
MOVEA.L A0,A1
psCount:

ADDQ.L #1,D0
TST.B (A1)+

BNE.S psCount
BSR sendS
MOVEM.L (A7)+,D0/A1
RTS
-
-
flushRx:
MOVEM.L A6,-(A7)
BSR getEnvToA6
BTST.B #ES_SER,(ENV_STATUS,A6)
BEQ.S frOut
MOVE.L (ENV_SERIBEG,A6),(ENV_SERIEND,A6)
MOVE.B #SB_FCR_RXRESET,SER_FCR

frOut:
MOVEM.L (A7)+,A6
RTS
-
-
flushTx:
MOVEM.L D0/A5/A6,-(A7)
BSR getEnvToA6
BTST.B #ES_SER,(ENV_STATUS,A6)
BEQ.S ftOut
MOVEA.L (ENV_KERNEL,A6),A5

ftWait:
MOVE.L (ENV_SEROEND,A6),D0
CMP.L (ENV_SEROBEG,A6),D0
BEQ.S ftUntilEmpty
BSET.B #KS_SERINTSIGTX,(KRN_STATUS,A5)
MOVE.L #SIG_SERIAL_TX,D0
BSR block

BRA.S ftWait
ftUntilEmpty:

BTST.B #6,SER_LSR
BEQ.S ftUntilEmpty

ftOut:
MOVEM.L (A7)+,D0/A5/A6
RTS
-
-
putS:
MOVEM.L D0-D3/A0/A6,-(A7)
BSR getEnvToA6
BTST.B #ES_SER,(ENV_STATUS,A6)
BEQ.S tpsOut
BTST.B #6,SER_LSR
BEQ.S tpsPutInFIFO
MOVE.B D0,SER_THR
BRA.S tpsOut

tpsPutInFIFO:
MOVE.L (ENV_SEROBEG,A6),D3
MOVE.L (ENV_SEROEND,A6),D2
MOVE.L D2,D1
SUB.L D3,D2
CMPI.L #FIFO_SIZE,D2
BLT.S tpsNotFull
TRAP #supervisor
BEQ.S tpsPutInFIFO
MOVEA.L (ENV_KERNEL,A6),A0
BSET.B #KS_SERINTSIGTX,(KRN_STATUS,A0)
MOVE.L D0,D1
MOVE.L #SIG_SERIAL_TX,D0
BSR block
MOVE.L D1,D0
BRA.S tpsPutInFIFO

tpsNotFull:
ANDI.L #FIFO_AND,D1
MOVEA.L (ENV_SEROPTR,A6),A0
MOVE.B D0,(A0,D1)
ADDQ.L #1,(ENV_SEROEND,A6)
BSR.S serSetTxIRQ

tpsOut:
MOVEM.L (A7)+,D0-D3/A0/A6

127

RTS
-
-
serSetTxIRQ:
BSET.B #2,SER_SPR
MOVE.B SER_SPR,SER_LED
BSET.B #1,SER_IER
RTS
-
-
sendS:
MOVEM.L D0-D3/A0/A1/A6,-(A7)
BSR getEnvToA6
BTST.B #ES_SER,(ENV_STATUS,A6)
BEQ.S tssOut
TST.L D0
BEQ.S tssOut

tssTryAgain:
MOVEA.L (ENV_SEROPTR,A6),A1
MOVE.L (ENV_SEROEND,A6),D1
MOVE.L D1,D2
SUB.L (ENV_SEROBEG,A6),D2
MOVEQ #0,D3

tssMore:
CMPI.L #FIFO_SIZE,D2
BLT.S tssNotFull
ADD.L D3,(ENV_SEROEND,A6)
BSR.S serSetTxIRQ
TRAP #supervisor
BEQ.S tssTryAgain
MOVEA.L (ENV_KERNEL,A6),A1
BSET.B #KS_SERINTSIGTX,(KRN_STATUS,A1)
MOVE.L D0,D1
MOVE.L #SIG_SERIAL_TX,D0
BSR block
MOVE.L D1,D0
BRA.S tssTryAgain

tssNotFull:
ANDI.L #FIFO_AND,D1
MOVE.B (A0)+,(A1,D1)
ADDQ.L #1,D1
ADDQ.L #1,D2
ADDQ.L #1,D3
SUBQ.L #1,D0
BNE.S tssMore
ADD.L D3,(ENV_SEROEND,A6)
BSR serSetTxIRQ

tssOut:
MOVEM.L (A7)+,D0-D3/A0/A1/A6
RTS
-
-
sendA:
MOVEM.L D2-D4/A0/A1/A6,-(A7)
BSR getEnvToA6
MOVEQ #0,D4
BTST.B #ES_SER,(ENV_STATUS,A6)
BEQ.S tsaOut
TST.L D0
BEQ.S tsaOut
MOVEA.L (ENV_SEROPTR,A6),A1
MOVE.L (ENV_SEROEND,A6),D3
MOVE.L D3,D2
SUB.L (ENV_SEROBEG,A6),D2

tsaMore:
CMPI.L #FIFO_SIZE,D2
BGE.S tsaDone
ANDI.L #FIFO_AND,D3
MOVE.B (A0)+,(A1,D3)
ADDQ.L #1,D2
ADDQ.L #1,D3
ADDQ.L #1,D4
SUBQ.L #1,D0
BNE.S tsaMore

tsaDone:
ADD.L D4,(ENV_SEROEND,A6)
BSR serSetTxIRQ

tsaOut:
MOVE.L D4,D0
MOVEM.L (A7)+,D2-D4/A0/A1/A6
RTS
-
-
readS:
MOVEM.L D0-D3/A0/A1/A6,-(A7)
BSR getEnvToA6
BTST.B #ES_SER,(ENV_STATUS,A6)
BEQ.S trsOut
TST.L D0
BEQ.S trsOut

trsTryAgain:
MOVEA.L (ENV_SERIPTR,A6),A1
MOVE.L (ENV_SERIBEG,A6),D1
MOVE.L (ENV_SERIEND,A6),D2
MOVE.L D1,D3
SUB.L D1,D2
BNE.S trsHasData
TRAP #supervisor
BEQ.S trsTryAgain
MOVEA.L (ENV_KERNEL,A6),A1
BSET.B #KS_SERINTSIGRX,(KRN_STATUS,A1)
MOVE.L D0,D1
MOVE.L #SIG_SERIAL_RX,D0
BSR block
MOVE.L D1,D0
BRA.S trsTryAgain

128

trsHasData:
ANDI.L #FIFO_AND,D3
MOVE.B (A1,D3),(A0)+
ADDQ.L #1,D1
ADDQ.L #1,D3
SUBQ.L #1,D0
BEQ.S trsDone
SUBQ.L #1,D2
BNE.S trsHasData
MOVE.L D1,(ENV_SERIBEG,A6)
BRA.S trsTryAgain

trsDone:
MOVE.L D1,(ENV_SERIBEG,A6)

trsOut:
MOVEM.L (A7)+,D0-D3/A0/A1/A6
RTS
-
-
getS:
MOVEM.L A0/A6,-(A7)
BSR getEnvToA6
BTST.B #ES_SER,(ENV_STATUS,A6)
BEQ.S tgsNoSer
tgsTryAgain:

MOVE.L (ENV_SERIBEG,A6),D0
CMP.L (ENV_SERIEND,A6),D0
BNE.S tgsHasData
TRAP #supervisor
BEQ.S tgsTryAgain
MOVEA.L (ENV_KERNEL,A6),A0
BSET.B #KS_SERINTSIGRX,(KRN_STATUS,A0)
MOVE.L #SIG_SERIAL_RX,D0
BSR block
BRA.S tgsTryAgain

tgsHasData:
MOVEA.L (ENV_SERIPTR,A6),A0
ANDI.L #FIFO_AND,D0
MOVE.B (A0,D0),D0
ADDQ.L #1,(ENV_SERIBEG,A6)
BRA.S tgsOut

tgsNoSer:
MOVEQ #-1,D0
tgsOut:
MOVEM.L (A7)+,A0/A6
RTS
-
-
getA:
MOVEM.L A0/A6,-(A7)
BSR getEnvToA6
BTST.B #ES_SER,(ENV_STATUS,A6)
BEQ.S tgaOut
MOVE.L (ENV_SERIBEG,A6),D0
CMP.L (ENV_SERIEND,A6),D0
BPL.S tgaNoSer
MOVEA.L (ENV_SERIPTR,A6),A0
ANDI.L #FIFO_AND,D0
MOVE.B (A0,D0),D0
ADDQ.L #1,(ENV_SERIBEG,A6)
BRA.S tgaOut

tgaNoSer:
MOVEQ #-1,D0
tgaOut:
MOVEM.L (A7)+,A0/A6
RTS
-
-
int4:
MOVEM.L A0/A5/A6,-(A7)
BSR getEnvToA6
TST.L (ENV_SRBINT4,A6)
BEQ.S i4NoBeforeSub
MOVEA.L (ENV_SRBINT4,A6),A0
JSR (A0)

i4NoBeforeSub:
MOVEM.L D0-D3,-(A7)
BTST.B #ES_SER,(ENV_STATUS,A6)
BEQ i4Out
i4TryAgain:
MOVE.B SER_ISR,D0
ANDI.B #7,D0
******************* Receive *****
CMPI.B #4,D0
BNE i4NotRx
MOVEA.L (ENV_SERIPTR,A6),A0
MOVE.L (ENV_SERIEND,A6),D1
MOVEA.L #SER_LSR,A5
MOVE.B (A5),D2
BTST.B #7,D2 -> an error?
BNE.S i4RxErr
BTST.B #1,D2
BEQ.S i4NoRxErr

i4RxErr:
BSET.B #6,SER_SPR
MOVE.B SER_SPR,SER_LED -> use the dipinp to clear this led-bit

i4NoRxErr:
MOVE.L D1,D2
SUB.L (ENV_SERIBEG,A6),D2 -> D2 is now fill level
MOVEQ #0,D0 -> cntr to add to ENV_SERIEND when done

i4MoreRx:
CMPI.W #FIFO_SIZE,D2 -> change this to .L for a larger FIFO_SIZE
BLT.S i4NotOFL
BSET.B #7,SER_SPR

129

MOVE.B SER_SPR,SER_LED
MOVE.B #SB_FCR_RXRESET,SER_FCR -> flush RxFIFO
BRA.S i4WasOFL

i4NotOFL:
ANDI.L #FIFO_AND,D1
MOVE.B SER_RHR,(A0,D1)
ADDQ.L #1,D0
ADDQ.L #1,D1
ADDQ.L #1,D2
BTST.B #0,(A5)
BNE.S i4MoreRx

i4WasOFL:
ADD.L D0,(ENV_SERIEND,A6)

-
BTST.B #ES_KERNEL,(ENV_STATUS,A6)
BEQ.S i4RxNoKrn
MOVEA.L (ENV_KERNEL,A6),A5
MOVE.B (KRN_STATUS,A5),D1
BTST.B #KS_SERINTSIGRX,D1
BEQ.S i4RxNoKrn
ANDI.B #%1011,D1 -> are we inhibited?
BSET.B #KS_INHIBIT,(KRN_STATUS,A5) ->this will get cleared by the intCatcher or whoever already set it.
MOVEA.L (ENV_PCB,A6),A0

i4RxKrnLoop:
BTST.B #SIG_SERIAL_RX-24,(PCB_SIGWAIT,A0) ->is SIG_SERIAL_RX set?
BEQ.S i4RxNoSig
BSET.B #SIG_SERIAL_RX-24,(PCB_SIGSET,A0)
MOVE.B #PS_READY,(PCB_STATUS,A0)
TST.B D1
BNE.S i4RxNoResch
MOVEA.L (KRN_SSPREF,A5),A0 ->intercept the last supervisor return
MOVE.L -(A0),(KRN_TOPPC,A5)
MOVE.W -(A0),(KRN_TOPSR,A5)
LEA (intCatcher,PC),A5
MOVE.W #$2300,(A0)+
MOVE.L A5,(A0)
MOVEQ #1,D1
BRA.S i4RxNoSig

i4RxNoResch:
BSET.B #KS_SIGNAL,(KRN_STATUS,A5) ->signal an eventual STOP

i4RxNoSig:
MOVEA.L (A0),A0 ->pcb.next
CMPA.L #0,A0
BNE.S i4RxKrnLoop

i4RxNoKrn:
-

TST.L (ENV_SRARX,A6)
BEQ.S i4NoRxSub
MOVEA.L (ENV_SRARX,A6),A0
JSR (A0)

i4NoRxSub:
BRA i4TryAgain

i4NotRx:
******************* Transmit *****
CMPI.B #2,D0
BNE i4NotTx
BCLR.B #2,SER_SPR
MOVE.B SER_SPR,SER_LED
BCLR.B #1,SER_IER
MOVE.L (ENV_SEROBEG,A6),D0
MOVE.L (ENV_SEROEND,A6),D2
MOVEA.L #SER_THR,A5
SUB.L D0,D2
BLS.S i4TxOut
MOVEA.L (ENV_SEROPTR,A6),A0
MOVEQ #15,D1

i4MoreTx:
ANDI.L #FIFO_AND,D0
MOVE.B (A0,D0),(A5) ->SER_THR
ADDQ.L #1,D0
SUBQ.L #1,D2
BEQ.S i4TxDone
DBRA D1,i4MoreTx
ADDI.L #16,(ENV_SEROBEG,A6)
BSR serSetTxIRQ
BRA.S i4TxOut

i4TxDone:
MOVE.L (ENV_SEROEND,A6),(ENV_SEROBEG,A6)

i4TxOut:
-

BTST.B #ES_KERNEL,(ENV_STATUS,A6)
BEQ.S i4TxNoKrn
MOVEA.L (ENV_KERNEL,A6),A5
MOVE.B (KRN_STATUS,A5),D1
BTST.B #KS_SERINTSIGTX,D1
BEQ.S i4TxNoKrn
ANDI.B #%1011,D1 -> are we inhibited?
BSET.B #KS_INHIBIT,(KRN_STATUS,A5) ->this will get cleared by the intCatcher or whoever already set it.
MOVEA.L (ENV_PCB,A6),A0

i4TxKrnLoop:
BTST.B #SIG_SERIAL_TX-24,(PCB_SIGWAIT,A0) ->is SIG_SERIAL_TX set?
BEQ.S i4TxNoSig
BSET.B #SIG_SERIAL_TX-24,(PCB_SIGSET,A0)
MOVE.B #PS_READY,(PCB_STATUS,A0)
TST.B D1
BNE.S i4TxNoResch
MOVEA.L (KRN_SSPREF,A5),A0 ->intercept the last supervisor return
MOVE.L -(A0),(KRN_TOPPC,A5)
MOVE.W -(A0),(KRN_TOPSR,A5)
LEA (intCatcher,PC),A5
MOVE.W #$2300,(A0)+
MOVE.L A5,(A0)

130

MOVEQ #1,D1
BRA.S i4TxNoSig

i4TxNoResch:
BSET.B #KS_SIGNAL,(KRN_STATUS,A5) ->signal an eventual STOP

i4TxNoSig:
MOVEA.L (A0),A0 ->pcb.next
CMPA.L #0,A0
BNE.S i4TxKrnLoop

i4TxNoKrn:
-

TST.L (ENV_SRATX,A6)
BEQ.S i4NoTxSub
MOVEA.L (ENV_SRATX,A6),A0
JSR (A0)

i4NoTxSub:
BRA i4TryAgain

i4NotTx:
******************* Line and Modem *****
CMPI.B #6,D0
BNE.S i4NotLSR
MOVEA.L (ENV_SRALINE,A6),A0
CMPA.L #0,A0
BEQ.S i4NoLSRSub
JSR (A0)

i4NoLSRSub:
BRA i4TryAgain

i4NotLSR:
CMPI.B #0,D0
BNE.S i4Out
TST.L (ENV_SRAMODEM,A6)
BEQ.S i4NoMSRSub
MOVEA.L (ENV_SRAMODEM,A6),A0
JSR (A0)

i4NoMSRSub:
BRA i4TryAgain

i4Out:
MOVEM.L (A7)+,D0-D3
TST.L (ENV_SRAINT4,A6)
BEQ.S i4NoAfterSub
MOVEA.L (ENV_SRAINT4,A6),A0
JSR (A0)

i4NoAfterSub:
MOVEM.L (A7)+,A0/A5/A6
RTE
-
-
welcomeSerTxt:
DC "Welcome to ExOS v0.2\n"
DC "This version is designed for MC68000, 128kB ROM, 256kB RAM.\n\n"
DC "R\0M is now located at address $0 where we are now executing.\n"
DC "The memory manager is currently \0running.\n"
DC "The CPU is running at speed \0\n"
DC "You will be sent to the \0 console where you can enter ? for help.\n\n\0"
-
wstAdvanced: DC "advanced\0"
wstPrimitive: DC "primitive\0"
ALIGN
-
welcomeSerial:
BSR getEnvToA6
LEA (welcomeSerTxt,PC),A0
BSR.S wsPutStr
MOVE.B #’O’,D0
BTST.B #ES_SWAP,(ENV_STATUS,A6)
BEQ.S wsInROM
MOVE.B #’A’,D0

wsInROM:
BSR putS
BSR.S wsPutStr
TST.L (ENV_FREEL,A6)
BNE.S wsNoMH1
MOVE.B #’n’,D0
BSR putS
MOVE.B #’o’,D0
BSR putS
MOVE.B #’t’,D0
BSR putS
MOVE.B #’ ’,D0
BSR putS

wsNoMH1:
BSR.S wsPutStr
MOVE.B (ENV_MCR,A6),D0
LSR.B #5,D0
ADDI.B #’1’,D0
BSR putS
BSR.S wsPutStr
MOVEA.L A0,A1
TST.L (ENV_FREEL,A6)
BEQ.S wsIsMH2
LEA (wstAdvanced,PC),A0
BRA.S wsNoMH2

wsIsMH2:
LEA (wstPrimitive,PC),A0

wsNoMH2:
BSR.S wsPutStr
MOVEA.L A1,A0
BSR.S wsPutStr
RTS
-
wsPutStr:
MOVE.B (A0)+,D0
BEQ.S wsOut
BSR putS

BRA.S wsPutStr
wsOut:
RTS

131

F.7 ProgInlasning.s68

This file, along with the next file: ”S19convert.s68”, contains the function StoreProg which

decodes S19-records into binary.

* >A0.L = Adress till lnkad lista
* A0.L> = Adress till programminne
* D0.L> = Programstorlek, 0 = out of memory,
* -1 = Checksum ERROR, -2 = No data
storeProg:

MOVEM.L D1-D3/A2-A4,-(A7)
MOVEA.L A0,A3
BSR progSize
TST.L D0
BEQ.S spNoData
TRAP #allocmem
CMPA.L #0,A0
BEQ.S spNoMem
MOVEA.L A0,A2 // Konvertera och lgg in i minne, adress i A2
MOVE.L D0,-(A7)
BSR convert
MOVE.L (A7)+,D1
CMPI.B #1,D0 // Check if OK
BEQ.S spDone

* Something went wrong, return memory.
spError:

MOVEQ #-1,D0
MOVEA.L A2,A0
TRAP #freemem
MOVEA.L #0,A0
BRA.S spOut

spNoData:
MOVEQ #-2,D0
BRA.S spOut

spNoMem:
MOVEQ #0,D0
BRA.S spOut

* Returnera pekare till program A2>
spDone:

MOVEA.L A2,A0
MOVE.L D1,D0

spOut:
MOVEM.L (A7)+,D1-D3/A2-A4
RTS

-
*
* Get program size
*
progSize:

MOVEA.L A3,A4 // Spara adress fr senare bruk
MOVE.L #0,D3 // Nollstll storlek

* Ls en post i den lnkade listan (adress, next)
psLoop:

MOVEA.L (A3),A0 // Lgg adressen till strngen i A0
BSR ps_getLineSize
ADD.L D2,D3 // ka storleken

* Slut p listan
CMPI.L #0,(4,A3)
BEQ psDone

* Nej, ta nsta post
ADDA.L #LL_EL_SIZE,A3
BRA psLoop

* Ja, returnera
psDone:

MOVEA.L A4,A3
MOVE.L D3,D0
RTS

-
ps_getLineSize:
* Ls typ (0x53xx)

MOVE.W (A0)+,D1 // och lgg typ i D1
BSR doByte // Hmta byte
MOVE.L D0,D2 // och lgg lngd i D2
ADDA.L #$2,A0 // Flytta fram till adress

-
* Ls adress med lngd beroende av typ
ps_s1:

CMPI.W #$5331,D1 // S1
BNE ps_s2
SUBI.L #3,D2
RTS

ps_s2:
CMPI.W #$5332,D1 // S2
BNE ps_s3
SUBI.L #4,D2
RTS

ps_s3:
CMPI.W #$5333,D1 // S3
BNE ps_default
SUBI.L #5,D2
RTS

ps_default:
132

MOVE.L #0,D2
RTS

-
USE s19convert.s68

F.8 S19convert.s68

*BASE EQU $4200
*LEDS EQU $20000B
-
*LL_EL_SIZE EQU 8 // BYTES
-
* >A2 = basadressen till programminne
* >A3 = adress till lnkad lista
* D0> = 1 = OK, 0 = Not OK
convert:

MOVEA.L A3,A4 // Spara adress fr senare bruk
* Ls en post i den lnkade listan (adress, next)
convLoop:

MOVEA.L (A3),A0 // Lgg adressen till strngen i A0
* Konvertera posten och lgg in i minnet

BSR convLine
CMPI.B #1,D0 // Check if OK
BNE.S convDone

* Slut p listan
CMPI.L #0,(4,A3)
BEQ convDone

* Nej, ta nsta post
ADDA.L #LL_EL_SIZE,A3
BRA convLoop

* Ja, returnera
convDone:

MOVEA.L A4,A3
RTS

-
* >A2 = basadressen till programminne
* >A0 = adressen till strngen
convLine:
* Kontrollera checksumma

MOVEM.L A0,-(SP) // Spara adressen p stacken
ADDA.L #$2,A0 // Hoppa ver typen
BSR checkChecksum // Kontrollera checksumman
MOVEM.L (SP)+,A0 // Hmta adressen frn stacken
CMPI.B #$1,D0
BNE convLineDone

* Ls typ (0x53xx)
MOVE.W (A0)+,D1 // och lgg typ i D1
BSR doByte // Hmta byte
MOVE.L D0,D2 // och lgg lngd i D2
ADDA.L #$2,A0 // Flytta fram till adress

-
* Ls adress med lngd beroende av typ

CMPI.W #$5330,D1 // S0
BNE s1

* NGOT SKA KANSKE GRAS HR
MOVE.B #1,D0 // Allt OK
BRA convLineDone

s1:
CMPI.W #$5331,D1 // S1
BNE s2
SUBI.L #3,D2
MOVE.L #$4,D3 // Stt rknare till 4
BSR doAdress
ADDA.L #$4,A0
BRA storeData // Hoppa till gemensam kod

s2:
CMPI.W #$5332,D1 // S2
BNE s3
SUBI.L #4,D2
MOVE.L #$6,D3 // Stt rknare till 6
BSR doAdress
ADDA.L #$6,A0
BRA storeData // Hoppa till gemensam kod

s3:
CMPI.W #$5333,D1 // S3
BNE s4
SUBI.L #5,D2
MOVE.L #$8,D3 // Stt rknare till 8
BSR doAdress
ADDA.L #$8,A0
BRA storeData // Hoppa till gemensam kod

s4:
CMPI.W #$5334,D1 // S4
BNE s5
BRA storeData // Hoppa till gemensam kod

s5:
CMPI.W #$5335,D1 // S5
BNE s7
BRA storeData // Hoppa till gemensam kod

s7:
CMPI.W #$5337,D1 // S7
BNE s8
MOVE.L #$8,D3 // Stt rknare till 8
BSR doAdress
ADDA.L #$8,A0
BRA endRecords // Hoppa till gemensam kod

133

s8:
CMPI.W #$5338,D1 // S8
BNE s9
MOVE.L #$6,D3 // Stt rknare till 6
BSR doAdress
ADDA.L #$6,A0
BRA endRecords // Hoppa till gemensam kod

s9:
CMPI.W #$5339,D1 // S9
BNE convLineDone
MOVE.L #$4,D3 // Stt rknare till 4
BSR doAdress
ADDA.L #$4,A0
BRA endRecords // Hoppa till gemensam kod

storeData:
* Ls data och lgg in med brjan p adress

BSR doByte
MOVE.B d0,(0,A1,A2) // Flytta data till adress+basadress
ADDA.L #$1,A1
ADDA.L #$2,A0
SUBI.B #$1,D2
BNE storeData
MOVE.B #1,D0 // Allt OK
BRA convLineDone

endRecords:
* Vad ska gras hr. Lite olika i txt-fil och exempel

MOVE.B #1,D0 // Allt OK
BRA convLineDone

convLineDone:
RTS

-
-
* doAdress:
* PVERKAR: D3
* PRE: D3 innehller adresslngd (4,6,8 tecken)
* POST: A1 innehller adressen D3 = 0
doAdress:

MOVEM.L A0/D0/D1,-(SP) // Spara pverkade p stacken
MOVE.L #0,D1 // Rensa address

doA_loop:
MOVE.B (A0)+,D0
BSR asciiToHex
ASL.L #$4,D1
ADD.L D0,D1
SUBI.L #$1,D3
BNE doA_loop
MOVEA.L D1,A1
MOVEM.L (SP)+,A0/D0/D1 // Spara pverkade p stacken
RTS

-
-
* asciiToHex:
* PVERKAR: D0
* PRE: D0 innehller ASCII-vrde
* POST: D0 innehller HEX-vrde
asciiToHex:

CMPI.B #65,D0
BGE ath1
SUBI.B #48,D0 // Omvandla frn ASCII till siffra
BRA ath_end

ath1:
SUBI.B #55,D0 // Omvandla frn ASCII till siffra

ath_end:
RTS

-
-
* doByte:
* PVERKAR: D0
* PRE: A0 innehller adressen till frsta asciitecknet
* POST: D0 innehller byte
doByte:

MOVEM.L A0/D1,-(SP) // Spara pverkade p stacken
MOVE.L #$0,D0 // Nollstll D0
MOVE.L #$0,D1 // Nollstll D1
MOVE.B (A0)+,D0 // Lgg frsta byten i D0
CMPI.B #65,D0
BGE alpha1
SUBI.B #48,D0 // Omvandla frn ASCII till siffra
BRA multi1

alpha1:
SUBI.B #55,D0 // Omvandla frn ASCII till siffra

multi1:
MULU #$10,D0 // Multiplicera med 16; Hg del av byte
MOVE.B (A0),D1 // Lgg andra byten i D1
CMPI.B #65,D1
BGE alpha2
SUBI.B #48,D1 // Omvandla frn ASCII till siffra
BRA add

alpha2:
SUBI.B #55,D1 // Omvandla frn ASCII till siffra

add:
ADD.B D1,D0 // Skapa byte i D0
MOVEM.L (SP)+,A0/D1 // Spara pverkade p stacken
RTS

* checkChecksum:
* Kontrollerar checksumman genom att ta 8-bitars 1-komp.
* p summan av lngd, adress, data
* PVERKAR: D0, D1, D2, A0
* PRE: A0 innehller adressen till strngen
* POST: D0 innehller svaret 0=false 1=true
checkChecksum:
* Ta reda p lngden och lgg i D0

BSR doByte // Omvandla de tv frsta byten till lngd i D0
-
* Summera ihop lngd, adress och data och lgg i D2

134

MOVE.L D0,D1 // Flytta lngd till D1
MOVE.L #0,D2 // Nollstll summa

chk_loop:
BSR doByte // Omvandla de tv frsta byten till och lggs i D0

-
ADD.L D0,D2 // Summera
ADDA.L #$2,A0 // Flytta fram tv bytes
SUBI.L #$1,D1 // Minska lngd med 1
BNE chk_loop
BSR doByte // Omvandla de tv frsta byten till lngd i D0
NOT.B D2 // 1-komplement
CMP.B D0,D2
BNE ret0
MOVE.L #$1,D0
RTS

ret0:
MOVE.L #$0,D0
RTS

F.9 Interrupts.s68

This file contains all interrupt routines not assigned to anything special, like the scheduler

or the serial. It also contains all exception handlers for address error, division by zero,

illegal instruction, etc. A bit of scheduling code is also included to be able to safely crash

any user program that caused an exception. Interrupt routines 1 and 7, which are directly

connected to switches on the main board, are able to read the DIP-switch and execute

simple commands while debugging.

*LED outputs:
*BusErr =82 -> 1000 0010
*AddrErr =83 -> 1000 0011
*Illegal =84 -> 1000 0100
*DivBy0 =85 -> 1000 0101
*CHK =86 -> 1000 0110
*TrapV =87 -> 1000 0111
*PrivViol =88 -> 1000 1000
*Trace =89 -> 1000 1001
*LineA =8A -> 1000 1010
*LineF =8B -> 1000 1011
*Reserved =8C -> 1000 1100
*Spurious =8D -> 1000 1101
*Uninit Trap=8E-> 1000 1110
*UserInt =8F -> 1000 1111
*int1 =F9 -> 1111 1001
*int2 =FA -> 1111 1010
*int3 =FB -> 1111 1011
*int4 =FC -> 1111 1100
*int5 =FD -> 1111 1101
*int6 =FE -> 1111 1110
*int7 =FF -> 1111 1111
-
-
*********** Autovector interrupts (except int4=serial):
-
**** Secondary DIPINP interrupt
int1:
MOVEM.L A0/A6,-(A7)
BSR getEnvToA6
TST.L (ENV_SRBINT1,A6)
BEQ.S i1NoBeforeSub
MOVEA.L (ENV_SRBINT1,A6),A0
JSR (A0)

i1NoBeforeSub:
MOVEM.L D0-D2,-(A7)
MOVE.B #$F9,LED
MOVE.B (ENV_INT7,A6),D0
BEQ i1NotQuiteOut
CMPI.B #$80,D0 ->Just output the DIPs to the LED
BNE.S i1try1
MOVE.B DIP,LED
MOVE.B DIP,(ENV_LED,A6)
BRA i1out

i1try1
CMPI.B #$81,D0 ->Set LF clock
BNE.S i1try2
MOVE.B DIP,LFCLK
BRA i1out

i1try2:
CMPI.B #$82,D0 ->Set serial bitrate
BNE.S i1try3
MOVE.B #%10000011,SER_LCR
MOVE.B SER_DLL,LED
MOVE.B #0,SER_DLM

135

MOVE.B DIP,SER_DLL
MOVE.B #%00000011,SER_LCR
BRA.S i1out

i1try3:
CMPI.B #$83,D0 ->Output DIPs to serial
BNE.S i1try4
MOVE.B DIP,SER_THR
BRA.S i1out

i1try4:
CMPI.B #$84,D0 ->Read serial to LEDs
BNE.S i1try4

i14NoData:
BTST.B #0,SER_LSR
BEQ.S i14NoData
MOVE.B SER_RHR,LED
BRA.S i1out

i1NotQuiteOut:
CMPI.B #$FF,DIP
BNE.S i1out
MOVE.B (ENV_LED,A6),LED
SUBI.B #1,(ENV_LED,A6)
MOVE.L #1000,D2

i1Delay:
MOVE.L #$5555,D0
MOVE.L #12345678,D1
DIVS D1,D0
DBRA D2,i1Delay
BRA.S i1OverOut

i1out:
BCLR.B #ES_LFLED,(ENV_STATUS,A6)

i1OverOut:
MOVEM.L (A7)+,D0-D2
TST.L (ENV_SRAINT1,A6)
BEQ.S i1NoAfterSub
MOVEA.L (ENV_SRAINT1,A6),A0
JSR (A0)

i1NoAfterSub:
MOVEM.L (A7)+,A0/A6
RTE
-
**** Slot-bus interrupt
int2:
MOVEM.L A0/A6,-(A7)
BSR getEnvToA6
TST.L (ENV_SRBINT2,A6)
BEQ.S i2NoBeforeSub
MOVEA.L (ENV_SRBINT2,A6),A0
JSR (A0)

i2NoBeforeSub:
BTST.B #ES_LFLED,(ENV_STATUS,A6)
BNE.S i2out
MOVE.B #$FA,LED

i2out:
TST.L (ENV_SRAINT2,A6)
BEQ.S i2NoAfterSub
MOVEA.L (ENV_SRAINT2,A6),A0
JSR (A0)

i2NoAfterSub:
MOVEM.L (A7)+,A0/A6
RTE
-
*int3 is in kernel.s68
*int4 is in serial.s68
-
**** I/O-bus interrupt
int5:
MOVEM.L A0/A6,-(A7)
BSR getEnvToA6
TST.L (ENV_SRBINT5,A6)
BEQ.S i5NoBeforeSub
MOVEA.L (ENV_SRBINT5,A6),A0
JSR (A0)

i5NoBeforeSub:
BTST.B #ES_LFLED,(ENV_STATUS,A6)
BNE.S i5out
MOVE.B #$FD,LED

i5out:
TST.L (ENV_SRAINT5,A6)
BEQ.S i5NoAfterSub
MOVEA.L (ENV_SRAINT5,A6),A0
JSR (A0)

i5NoAfterSub:
MOVEM.L (A7)+,A0/A6
RTE
-
**** Slot-bus interrupt
int6:
MOVEM.L A0/A6,-(A7)
BSR getEnvToA6
TST.L (ENV_SRBINT6,A6)
BEQ.S i6NoBeforeSub
MOVEA.L (ENV_SRBINT6,A6),A0
JSR (A0)

i6NoBeforeSub:
BTST.B #ES_LFLED,(ENV_STATUS,A6)
BNE.S i6out
MOVE.B #$FE,LED

i6out:
TST.L (ENV_SRAINT6,A6)
BEQ.S i6NoAfterSub
MOVEA.L (ENV_SRAINT6,A6),A0
JSR (A0)

i6NoAfterSub:
MOVEM.L (A7)+,A0/A6

136

RTE
-
**** Primary DIPINP interrupt
int7:
MOVEM.L A0/A6,-(A7)
BSR getEnvToA6
TST.L (ENV_SRBINT7,A6)
BEQ.S i7NoBeforeSub
MOVEA.L (ENV_SRBINT7,A6),A0
JSR (A0)

i7NoBeforeSub:
MOVEM.L D0/D1,-(A7)
MOVE.B #$FF,LED
BSR getEnvToA6
MOVE.B DIP,D0
BTST.B #7,D0
BEQ.S i7tryNormal
MOVE.B D0,(ENV_INT7,A6)
BRA i7out

i7tryNormal
MOVE.B D0,D1
LSR.B #4,D1
ANDI.B #$F,D0
CMPI.B #%0000,D1
BNE.S i7try1
* Do nothing

BRA i7out
i7try1:
CMPI.B #%0001,D1 ->Remove interrupt subroutines
BNE i7try2
CMPI.B #0,D0
BNE.S i71Not0
LEA (ENV_SRBINT1,A6),A0
MOVEQ #13,D0

i71ClearAll:
MOVE.L #0,(A0)+
DBRA D0,i71ClearAll
BRA i7out

i71Not0:
CMPI.B #8,D0
BNE.S i71Not8
MOVE.L #0,(ENV_SRARX,A6)
MOVE.L #0,(ENV_SRATX,A6)
MOVE.L #0,(ENV_SRALINE,A6)
MOVE.L #0,(ENV_SRAMODEM,A6)
BRA i7out

i71Not8:
CMPI.B #1,D0
BNE.S i71Not1
MOVE.L #0,(ENV_SRBINT1,A6)
BRA i7out

i71Not1:
CMPI.B #2,D0
BNE.S i71Not2
MOVE.L #0,(ENV_SRBINT2,A6)
BRA i7out

i71Not2:
CMPI.B #3,D0
BNE.S i71Not3
MOVE.L #0,(ENV_SRBINT3,A6)
BRA i7out

i71Not3:
CMPI.B #4,D0
BNE.S i71Not4
MOVE.L #0,(ENV_SRBINT4,A6)
BRA i7out

i71Not4:
CMPI.B #5,D0
BNE.S i71Not5
MOVE.L #0,(ENV_SRBINT5,A6)
BRA i7out

i71Not5:
CMPI.B #6,D0
BNE.S i71Not6
MOVE.L #0,(ENV_SRBINT6,A6)
BRA i7out

i71Not6:
CMPI.B #7,D0
BNE.S i71Not7
MOVE.L #0,(ENV_SRBINT7,A6)
BRA i7out

i71Not7:
CMPI.B #$9,D0
BNE.S i71Not9
MOVE.L #0,(ENV_SRAINT1,A6)
BRA i7out

i71Not9:
CMPI.B #$A,D0
BNE.S i71NotA
MOVE.L #0,(ENV_SRAINT2,A6)
BRA i7out

i71NotA:
CMPI.B #$B,D0
BNE.S i71NotB
MOVE.L #0,(ENV_SRAINT3,A6)
BRA i7out

i71NotB:
CMPI.B #$C,D0
BNE.S i71NotC
MOVE.L #0,(ENV_SRAINT4,A6)
BRA i7out

i71NotC:
CMPI.B #$D,D0
BNE.S i71NotD
MOVE.L #0,(ENV_SRAINT5,A6)
BRA i7out

i71NotD:

137

CMPI.B #$E,D0
BNE.S i71NotE
MOVE.L #0,(ENV_SRAINT6,A6)
BRA i7out

i71NotE:
CMPI.B #$F,D0
BNE.S i71NotF
MOVE.L #0,(ENV_SRAINT7,A6)
BRA i7out

i71NotF:
BRA i7out

i7try2:
CMPI.B #%0010,D1 ->Set serial IRQ (write DATA to SER_IER)
BNE.S i7try3
MOVE.B D0,SER_IER
BTST.B #0,D0
BEQ.S i72NoRx
BSET.B #0,SER_SPR
BRA.S i72RxOut

i72NoRx:
BCLR.B #0,SER_SPR

i72RxOut:
BTST.B #1,D0
BEQ.S i72NoTx
BSET.B #2,SER_SPR
BRA.S i72TxOut

i72NoTx:
BCLR.B #2,SER_SPR

i72TxOut:
MOVE.B SER_SPR,SER_LED
BRA i7out

i7try3:
CMPI.B #%0011,D1 ->Execute STOP
BNE.S i7try4
STOP #$2000
BRA i7out

i7try4:
CMPI.B #%0100,D1 ->Read env on LED (0000=MCR, 0001=Stat, 0010=RAM lock, 0100=Rx lock, 0101=Tx lock)
BNE.S i7try5
CMPI.B #0,D0
BNE.S i74NotMCR
MOVE.B (ENV_MCR,A6),LED
BRA.S i74Out

i74NotMCR:
CMPI.L #1,D0
BNE.S i74NotStat
MOVE.B (ENV_STATUS,A6),LED
BRA.S i74Out

i74NotStat:
CMPI.L #2,D0
BNE.S i74NotRAM
MOVE.B (ENV_RAMLOCK,A6),LED
BRA.S i74Out

i74NotRAM:
CMPI.L #4,D0
BNE.S i74NotRxLock
MOVE.B (ENV_RXLOCK,A6),LED
BRA.S i74Out

i74NotRxLock
CMPI.L #5,D0
BNE.S i7out
MOVE.B (ENV_TXLOCK,A6),LED

i74Out:
BCLR.B #ES_LFLED,(ENV_STATUS,A6)
BRA.S i7out

i7try5:
CMPI.B #%0101,D1 ->Connect LF-clock to LED (xxx1=connect, xxx0=disc.)
BNE.S i7try6
BTST.B #0,D0
BEQ.S i7lfLedOff
MOVE.B #0,(ENV_LED,A6)
BSET.B #ES_LFLED,(ENV_STATUS,A6)
BRA.S i7out

i7lfLedOff:
BCLR.B #ES_LFLED,(ENV_STATUS,A6)
BRA.S i7out

i7try6:
CMPI.B #%0110,D1 ->Write DATA to MCR LSN
BNE.S i7try7
MOVE.B (A6),D1
MOVE.B D1,LED
ANDI.B #$F0,D1
OR.B D0,D1
MOVE.B D1,(A6)
MOVE.B D1,MCR
BRA.S i7out

i7try7:
CMPI.B #%0111,D1 ->Write DATA to MCR MSN
BNE.S i7out
MOVE.B (A6),D1
MOVE.B D1,LED
ANDI.B #$F,D1
LSL.B #4,D0
OR.B D0,D1
MOVE.B D1,(A6)
MOVE.B D1,MCR

i7out:
MOVEM.L (A7)+,D0/D1
TST.L (ENV_SRAINT7,A6)
BEQ.S i7NoAfterSub
MOVEA.L (ENV_SRAINT7,A6),A0
JSR (A0)

i7NoAfterSub:
MOVEM.L (A7)+,A0/A6
RTE
-

138

*********** Exceptions:
-
msgBusErr:
DC.L 14
DC "Bus error at $\0"
ALIGN
msgAddrErr:
DC.L 18
DC "Address error at $\0"
ALIGN
msgIllegal:
DC.L 24
DC "Illegal instruction at $\0"
ALIGN
msgDivBy0:
DC.L 21
DC "Division by zero at $\0"
ALIGN
msgCHK:
DC.L 27
DC "CHK instruction failed at $\0"
ALIGN
msgTrapV:
DC.L 18
DC "Trap oVerflow at $\0"
ALIGN
msgPrivViol:
DC.L 24
DC "Privilige violation at $\0"
ALIGN
msgTrace:
DC.L 20
DC "Trace exception at $\0"
ALIGN
msgLineA:
DC.L 31
DC "MMU trap, line-A exception at $\0"
ALIGN
msgLineF:
DC.L 31
DC "FPU trap, line-F exception at $\0"
ALIGN
msgSupVisEnd:
DC.L 66+30
DC "The CPU was in Supervisor mode and will now permit only interrupts"
DC "unless a crash bucked exists.\n\0"
ALIGN
-
BusErr:
MOVE.B #$82,LED
MOVEM.L D0/A0/A5-A6,-(A7)
LEA (msgBusErr,PC),A0
MOVE.L #$10002,D0
JMP (excCommonEnd,PC)
-
AddrErr:
MOVE.B #$83,LED
MOVEM.L D0/A0/A5-A6,-(A7)
LEA (msgAddrErr,PC),A0
MOVE.L #$10003,D0
JMP (excCommonEnd,PC)
-
Illegal:
MOVE.B #$84,LED
MOVEM.L D0/A0/A5-A6,-(A7)
LEA (msgIllegal,PC),A0
MOVEQ #4,D0
JMP (excCommonEnd,PC)
-
DivBy0:
MOVE.B #$85,LED
MOVEM.L D0/A0/A5-A6,-(A7)
LEA (msgDivBy0,PC),A0
MOVEQ #5,D0
JMP (excCommonEnd,PC)
-
CHK:
MOVE.B #$86,LED
MOVEM.L D0/A0/A5-A6,-(A7)
LEA (msgCHK,PC),A0
MOVEQ #6,D0
JMP (excCommonEnd,PC)
-
TrapV:
MOVE.B #$87,LED
MOVEM.L D0/A0/A5-A6,-(A7)
LEA (msgTrapV,PC),A0
MOVEQ #7,D0
JMP (excCommonEnd,PC)
-
PrivViol:
MOVE.B #$88,LED
MOVEM.L D0/A0/A5-A6,-(A7)
LEA (msgPrivViol,PC),A0
MOVEQ #8,D0
JMP (excCommonEnd,PC)
-
Trace:
MOVE.B #$89,LED
MOVEM.L D0/A0/A5-A6,-(A7)
LEA (msgTrace,PC),A0
MOVEQ #9,D0
JMP (excCommonEnd,PC)

139

-
LineA:
MOVE.B #$8A,LED
MOVEM.L D0/A0/A5-A6,-(A7)
LEA (msgLineA,PC),A0
MOVE.L #$1000A,D0
JMP (excCommonEnd,PC)
-
LineF:
MOVE.B #$8B,LED
MOVEM.L D0/A0/A5-A6,-(A7)
LEA (msgLineF,PC),A0
MOVE.L #$1000B,D0
JMP (excCommonEnd,PC)
-
*********** Uninitialited exceptions:
-
msgReserved:
DC.L 20
DC "Reserved exception\n\0"
ALIGN
msgSpurious:
DC.L 20
DC "Spurious exception\n\0"
ALIGN
msgTrap:
DC.L 30
DC "Uninitialized TRAP exception\n\0"
ALIGN
msgUserInt:
DC.L 29
DC "Uninitialized user interrupt\n\0"
-
res:
MOVE.B #$8C,LED
MOVEM.L D0/A0/A5-A6,-(A7)
LEA (msgReserved,PC),A0
MOVEQ #$81,D0
JMP (excCommonEnd,PC)
-
spur:
MOVE.B #$8D,LED
MOVEM.L D0/A0/A5-A6,-(A7)
LEA (msgSpurious,PC),A0
MOVEQ #$82,D0
JMP (excCommonEnd,PC)
-
trap:
MOVE.B #$8E,LED
MOVEM.L D0/A0/A5-A6,-(A7)
LEA (msgTrap,PC),A0
MOVEQ #$83,D0
JMP (excCommonEnd,PC)
-
ui:
MOVE.B #$8F,LED
MOVEM.L D0/A0/A5-A6,-(A7)
LEA (msgUserInt,PC),A0
MOVEQ #$84,D0
JMP (excCommonEnd,PC)
-
msgCausedBy:
DC.L 9
DC "Process: \0"
-
excCommonEnd:
BSR getEnvToA6
TST.L (ENV_SREXCEPT,A6)
BEQ.S ecxNoExcSub
MOVEA.L (ENV_SREXCEPT,A6),A5
MOVE.W D0,-(A7)
JSR (A5)
ADDQ.L #2,A7
BRA ecxOut

ecxNoExcSub:
MOVEA.L D0,A5
MOVE.L (A0)+,D0
BSR sendS
SUBA.L A0,A0
MOVE.L (18,A7),D0 -> STACK!
BSR int2Hex
MOVEQ #10,D0
BSR putS
BTST.B #5,(16,A7) -> STACK!
BNE ecxSupVis
BTST.B #ES_KERNEL,(ENV_STATUS,A6)
BEQ ecxStop
MOVE.L A5,D0
MOVEA.L (ENV_KERNEL,A6),A5
BSET.B #KS_INHIBIT,(KRN_STATUS,A5)
MOVEA.L (A5),A0
ORI.B #PS_CRASHED,D0
MOVE.B D0,(PCB_STATUS,A0)
LEA (msgCausedBy,PC),A0
MOVE.L (A0)+,D0
BSR sendS
MOVEA.L (A5),A0
MOVEA.L (PCB_NAME,A0),A0
BSR putStr
MOVEQ #10,D0
BSR putS
MOVEM.L (A7)+,D0/A0 -> STACK!

140

MOVEM.L D0-D7/A0-A4,-(A7) -> STACK!
LEA (ecxBack,PC),A0
MOVEA.L (A5),A1 -> curpcb

ecxStart:
BRA forceResched

ecxBack:
BEQ.S ecxDone
BCLR.B #KS_SIGNAL,(KRN_STATUS,A5)
BSET.B #KS_NOTODO,(KRN_STATUS,A5)
BCLR.B #KS_INHIBIT,(KRN_STATUS,A5)

ecxStopLoop
STOP #$2000
BCLR.B #KS_SIGNAL,(KRN_STATUS,A5)
BEQ.S ecxStopLoop
BRA.S ecxStart

ecxDone:
MOVE.B (KRN_QUANTUM,A5),(KRN_QCNT,A5) -> reset the timer so it doesn’t switch until one quantum again.
BCLR.B #KS_INHIBIT,(KRN_STATUS,A5)
MOVEM.L (A7)+,D0-D7/A0-A6
RTE -> return with a new process

ecxSupVis:
LEA (msgSupVisEnd,PC),A0
MOVE.L (A0)+,D0
BSR sendS

ecxStop:
MOVE.L A5,D0
BTST.L #16,D0
BEQ.S ecxOut
TST.L (ENV_CRBUCKET,A6)
BEQ.S ecxNoCrBkt
MOVE.L (ENV_CRBUCKET,A6),(-4,A7)
MOVEM.L (A7)+,D0/A0/A5-A6 -> STACK!
JMP (-20,A7) -> STACK!

ecxNoCrBkt:
MOVEM.L (A7)+,D0/A0/A5-A6 -> STACK!

ecxLoop:
STOP #$2000
BRA.S ecxLoop

ecxOut:
MOVEM.L (A7)+,D0/A0/A5-A6 -> STACK!
RTE

F.10 Stdlib.s68

This file contains support functions for string handling and converting numbers to strings

and strings to numbers.

* >A0.B=string1, >A1.B=string2, >D0.L=len, <D0.L=result:A0<A1=<0, A0=A1=0, A0>A1=>0
strCmp:
MOVEM.L D1/A0/A1,-(A7)
TST.L D0
BEQ.S scOut
scLoop:

SUBQ.L #1,D0
BEQ.S scDiff
TST.B (A0)
BEQ.S scDiff
CMPM.B (A0)+,(A1)+

BEQ.S scLoop
SUBQ.L #1,A0
SUBQ.L #1,A1
scDiff:
MOVEQ #0,D0
MOVEQ #0,D1
MOVE.B (A0),D0
MOVE.B (A1),D1
SUB.W D1,D0
scOut:
MOVEM.L (A7)+,D1/A0/A1
RTS
-
-
* >A0.B=string1, >A1.B=string2, >D0.L=len, <D0.L=result:A0<>A1=0, A0=A1=-1
strCmpNC:
MOVEM.L D1/D2/A0/A1,-(A7)
TST.L D0
BEQ.S scncEqual
scncLoop:

MOVE.B (A0)+,D1
BSR.S scncAlfaCase
EXG D1,D2
MOVE.B (A1)+,D1
BEQ.S scncDiff
BSR.S scncAlfaCase
SUBQ.L #1,D0
BEQ.S scncDiff
CMP.B D2,D1

BEQ.S scncLoop
MOVEQ #0,D0
BRA.S scncOut

141

scncDiff:
CMP.B D2,D1
BEQ.S scncEqual
scncNotEqual

MOVEQ #0,D0
BRA.S scncOut

scncEqual:
MOVEQ #-1,D0

scncOut:
MOVEM.L (A7)+,D1/D2/A0/A1
RTS
-
scncAlfaCase:
CMPI.B #’a’,D1
BLT.S scncNotAlfa
CMPI.B #’z’,D1
BGT.S scncNotAlfa
BCLR.B #5,D1

scncNotAlfa:
RTS
-
-
* >A0.B=ptr to 0-string, <D0.L=length excl. NIL
strLen:
MOVE.L A0,D0
slLoop:

TST.B (A0)+
BNE.S slLoop
EXG D0,A0
SUBQ.L #1,D0
SUB.L A0,D0
RTS
-
-
* >A0.B=dest, >A1.B=source, >D0.L=length
strCopy:
MOVEM.L D0/A0/A1,-(A7)
TST.L D0
BEQ.S scyOut
scyMore:

SUBQ.L #1,D0
BEQ.S scyNull
MOVE.B (A1)+,(A0)+

BNE.S scyMore
BRA.S scyOut
scyNull:
CLR.B (A0)
scyOut:
MOVEM.L (A7)+,D0/A0/A1
RTS
-
-
delay:
RTS
-
-
int2Dec:
MOVEM.L D0,-(A7)
MOVEM.L (A7)+,D0
RTS
-
-
* >D0.L=int, >A0=buffer of 8 bytes to store the number, or NIL to output to serial
int2Hex:
MOVEM.L D0-D2/A0,-(A7)
MOVE.L D0,D1
MOVEQ #7,D2
i2hLoop:
ROL.L #4,D1
MOVE.B D1,D0
ANDI.B #$F,D0
CMPI.B #9,D0
BGT.S i2hAPlus
ADDI.B #’0’,D0
BRA.S i2hDone

i2hAPlus:
ADDI.B #’A’-10,D0

i2hDone:
CMPA.L #0,A0
BEQ.S i2hSerial
MOVE.B D0,(A0)+
DBRA D2,i2hLoop

i2hSerial:
BSR putS

DBRA D2,i2hLoop
MOVEM.L (A7)+,D0-D2/A0
RTS
-
-
* <D0.L=int, <D1.L=length, >A0.B=string
str2Int:
MOVEM.L D2-D6/A0-A4,-(A7)
MOVEA.L A0,A2
MOVEA.L A0,A4
MOVEQ #0,D6
s2i20:
MOVE.B (A2)+,D0
BEQ s2i29
CMPI.B #$21,D0
BMI.S s2i20
SUBQ.L #1,A2
CMPI.B #$2D,(A2)
BNE.S s2i21
ADDQ.L #1,A2
MOVEQ #-1,D6
s2i21:
CMPI.B #$24,(A2)
BEQ s2i2B

142

CMPI.B #$25,(A2)
BEQ s2i35
LEA ($B,A2),A1
MOVEA.L A2,A0
s2i22:
MOVE.B (A2)+,D0
CMPI.B #$3A,D0
BPL.S s2i23
CMPI.B #$30,D0
BPL.S s2i22
s2i23:
SUBQ.L #1,A2
MOVE.L A2,D4
CMPA.L A2,A0
BEQ.S s2i29
MOVEQ #0,D0
CMPA.L A1,A2
BPL.S s2i29
LEA (s2i25,PC),A3
s2i24:
MOVEQ #0,D3
MOVE.B -(A2),D3
MOVE.L (A3)+,D2
SUBI.B #$30,D3
MOVE.L D3,D1
MULU D2,D3
SWAP D2
MULU D2,D1
SWAP D1
ADD.L D1,D3
ADD.L D3,D0
BCS.S s2i29
CMPA.L A0,A2
BNE.S s2i24
BRA.S s2i26
s2i25:
DC.L 1,10,100,1000,10000,100000,1000000,10000000,100000000,1000000000
-
s2i26:
SUB.L A4,D4
TST.L D6
BEQ.S s2i28
NEG.L D0
s2i28:
MOVE.L D4,D1
MOVEM.L (A7)+,D2-D6/A0-A4
RTS
-
s2i29:
MOVEQ #0,D0
MOVEQ #0,D1
MOVEM.L (A7)+,D2-D6/A0-A4
RTS
-
s2i2B:
ADDQ.L #1,A2
MOVEA.L A2,A0
MOVE.L A0,D3
MOVEQ #0,D1
MOVEQ #0,D2
s2i2C:
MOVE.B (A0)+,D0
CMPI.B #$47,D0
BPL.S s2i32
CMPI.B #$30,D0
BMI.S s2i2D
CMPI.B #$3A,D0
BPL.S s2i31
BRA.S s2i2C
s2i2D:
SUBQ.L #1,A0
MOVE.L A0,D4
CMP.L A0,D3
BEQ.S s2i29
s2i2E:
CMP.L A0,D3
BEQ.S s2i30
MOVEQ #0,D0
MOVE.B -(A0),D0
CMPI.B #$41,D0
BPL.S s2i33
SUBI.B #$30,D0
s2i2F:
CMPI.W #$20,D2
BEQ s2i29
LSL.L D2,D0
ADD.L D0,D1
ADDQ.L #4,D2
BRA.S s2i2E
s2i30:
MOVE.L D1,D0
BRA.S s2i26
s2i31:
CMPI.B #$41,D0
BPL.S s2i2C
BRA.S s2i2D
s2i32:
CMPI.B #$61,D0
BMI.S s2i2D
CMPI.B #$67,D0
BPL.S s2i2D
BRA.S s2i2C
s2i33:
CMPI.B #$61,D0
BPL.S s2i34
SUBI.B #$37,D0
BRA.S s2i2F
s2i34:
SUBI.B #$57,D0

143

BRA.S s2i2F
s2i35:
ADDQ.L #1,A2
MOVEA.L A2,A0
MOVE.L A0,D3
MOVEQ #0,D1
MOVEQ #0,D2
s2i36:
MOVE.B (A0)+,D0
CMPI.B #$31,D0
BEQ.S s2i36
CMPI.B #$30,D0
BEQ.S s2i36
SUBQ.L #1,A0
MOVE.L A0,D4
CMP.L A0,D3
BEQ s2i29
s2i37:
CMP.L A0,D3
BEQ.S s2i39
MOVEQ #0,D0
MOVE.B -(A0),D0
CMPI.B #$30,D0
BEQ.S s2i38
BSET.L D2,D1
s2i38:
CMPI.W #$20,D2
BEQ s2i29
ADDQ.L #1,D2
BRA.S s2i37
s2i39:
MOVE.L D1,D0
BRA s2i26

F.11 Terminal.e

This file is the terminal written in E. It contains a lot of preprocessor directives which

makes it possible to compile for either ExOS or AmigaOS.

OPT PREPROCESS
OPT REG=5
-
MODULE ’*RawDoFmt’
-
-> Define AMIGA to compile for AmigaOS. Undefine to compile for ExOS.
->#define AMIGA
-
#ifdef AMIGA
MODULE ’intuition/intuition’, ’exec/tasks’
#define SYSLIST syslist(PC)
#endif
-
#ifndef AMIGA
#define EXOS
#define SYSLIST 4
#endif
-
-> To be able to copy constants from assembly, EQU must be redefined as "=".
#define EQU =
#define DC CHAR
-
CONST PCB_NEXT EQU 0, ->.L s ptr to next PCB
PCB_DATA EQU 4, ->.L s ptr to the code or data
PCB_SIZE EQU 8, ->.L s the size in bytes of PCB_DATA
PCB_TYPE EQU 12, ->.B s is this executable PT_CODE or non-exe PT_DATA
PCB_STATUS EQU 13, ->.B d if PT_CODE then PS_?
PCB_SR EQU 14, ->.W d current status register
PCB_PC EQU 16, ->.L d current program counter
PCB_REGS EQU 20, ->.Lx15 d all 15 registers, except A7
PCB_SP EQU 80, ->.L d current stack pointer
PCB_STACK EQU 84, ->.L s ptr to the actual stack (low end pointer)
PCB_STSIZE EQU 88, ->.L s size of the stack
PCB_SIGMASK EQU 92, ->.L d allocated signalbits
PCB_SIGWAIT EQU 96, ->.L d Block() was called with this signal mask. Only valid while STATUS=WAITING
PCB_SIGSET EQU 100, ->.L d Signals that have arrived but not yet read by block.
PCB_NAME EQU 104 ->.L s ptr to 0-string.
-
-> Reserved global signals. All processes waiting for such
-> a signal gets one when the corresponding event occurs.
CONST SIG_CTRL_C EQU 31,
SIG_SERIAL_RX EQU 30, -> KRN_STATUS must bset KS_SERINTSIGRX for this to work.
SIG_SERIAL_TX EQU 29, -> KRN_STATUS must bset KS_SERINTSIGTX for this to work.
SIG_KEYBOARD EQU 28,
SIG_DISKREAD EQU 27,
SIG_DISKWRITE EQU 26,
SIG_RESERVED1 EQU 25,
SIG_RESERVED2 EQU 24,
USERSIGNALS EQU $00FFFFFF
-
CONST SI_SPEED EQU 1, ->*.W Speed in divisor values
SI_LINESTATUS EQU 2, ->*.B Copy of line status register
SI_MODSTATUS EQU 3, ->*.B Copy of modem status register
SI_FIFOSIZE EQU 4, ->*.L The size of the FIFOs

144

SI_RXFIFOLOC EQU 5, ->*.L Address where the FIFOs are
SI_TXFIFOLOC EQU 6, ->*.L Address where the FIFOs are
SI_RXFILLLEV EQU 7, ->*.L #of bytes currently in the Rx FIFO
SI_TXFILLLEV EQU 8, ->*.L #of bytes currently in the Tx FIFO
SI_RXTOTAL EQU 9, ->*.L Total #of bytes transferred to the Rx FIFO
SI_TXTOTAL EQU 10 ->*.L Total #of bytes transferred to the Tx FIFO
-
CONST FIFO_SIZE EQU 1024,
SER_16X2400 EQU 400, ->2400 @15.360MHz
SER_16X4800 EQU 200, ->4800 @15.360MHz
SER_16X9600 EQU 100, ->9600 @15.360MHz
SER_16X19200 EQU 50, ->19200 @15.360MHz
SER_16X38400 EQU 25, ->38400 @15.360MHz
SER_16X57600 EQU 17, ->57600 @15.360MHz (exactly 16.666...)
SER_16X115200 EQU 8 ->115200 @15.360MHz (exactly 8.3333...)
-
CONST MI_TOTALFREE EQU 0
CONST MI_LARGEST EQU 1
CONST MI_NUMALLOC EQU 2
CONST MI_NUMFREE EQU 3
CONST MEM_DEFNUMALLOC EQU 1000,

MEM_DEFSIZE EQU 1000*12,
FR_LST_E_SIZE EQU 3*4

-
CONST KS_INHIBIT EQU 0 -> inhibit rescheduling on int3 (as block: is currently rescheduling)
CONST KS_NOTODO EQU 1 -> do not reschedule because there is no READY process
CONST KS_SIGNAL EQU 2 -> set this to wake up from NOTODO
CONST KS_FORBID EQU 3 -> a userprogram requests to be alone. This gets cancelled if block: is called.
CONST KS_SERINTSIGTX EQU 4 -> Serial called block with SIG_SERIAL_TX and expects int4tx to signal.
CONST KS_SERINTSIGRX EQU 5 -> Serial called block with SIG_SERIAL_RX and expects int4rx to signal.
CONST DEFQUANTUM EQU 3 ->10 -> Default number of LFC-ticks between rescheduling
-
CONST TAllocMem EQU 0, -> >D0.L=size, <A0=mem
TFreeMem EQU 1, -> >A0=mem
-> TTimer EQU 2, -> >D3.L=command
TReSchedule EQU 3, -> no parameters (callable only from block:)
TStop EQU 4, -> no parameters (execute STOP #2000)
-> TSwapROMRAM EQU 5, -> no parameters (all stacks must be clean for this to work)
TDebug EQU 6, -> no parameters (prints current PC, SR and SP)
TUserTrap EQU 7 -> >A0=ptr to function to be called and should end with RTE
-> TReset EQU 15 -> no parameters
-
CONST FDelay EQU -6*33,-> >D0.L=microseconds(max 1M), >D1.W=seconds
FEvent EQU -6*32,->
FConnect EQU -6*31,-> >D0.B=Device (DEV_*), >D1.W=
FInitSerial EQU -6*30,-> >A6=ptr to envvars, trashes various registers..
FSetSerSpeed EQU -6*29,-> >D0.W=speed (SER_16Xspeed)
FGetSerInfo EQU -6*28,-> <>A0.L=ptr to taglist that will be filled with data.
FSendS EQU -6*27,-> >A0=data, >D0.L(usig)=size Send serial data synchronously
FSendA EQU -6*26,-> >A0=data, <>D0.L(usig)=size Send serial data asynchronously
FGetS EQU -6*25,-> < D0.B=data Get one byte serial data synch
FGetA EQU -6*24,-> < D0.L(B)=data <D0.L=-1=no data Get one byte serial data asynch if it exists
FPutS EQU -6*23,-> >D0.B=data Send one byte serial data synch
FReadS EQU -6*22,-> <>A0=buf, >D0.L(usig)=size Read serial data synch
FFlushTx EQU -6*21,->
FFlushRx EQU -6*20,-> no parameters
FPutStr EQU -6*19,-> >A0=null-terminated string
FStrCmp EQU -6*18,->
FStrCmpNC EQU -6*17,->
FStrLen EQU -6*16,->
FStrCopy EQU -6*15,->
FStr2Int EQU -6*14,->
FInt2Dec EQU -6*13,->
FInt2Hex EQU -6*12,-> >D0.L=value to convert, >A0=buffer of 8 bytes to store the number, or NIL to get the output to serial
FCompFreeList EQU -6*11,-> no parameters
FMemInfo EQU -6*10,-> >D0.B=0=total,1=largest,2=numalloc,3=numfree, <D0.L=avail size/num
FMemCheck EQU -6*9, -> >A0.L=Start address, even or odd, >D0.L=Amount of bytes, D0.L> 0=OK,1=Not OK
FStoreProg EQU -6*8, -> >A0=linked list of s-recs, <A0=addr to decoded program or NIL
FGetEnvToA6 EQU -6*7, ->< A6=ptr to envvars
FIncLed EQU -6*6, -> >A0=ptr to envvars or 0 when >D7.B is used
FSingleTask EQU -6*5, -> >D0.B <>0=forbid multitasking, =0=permit multitasking. A Block() automatically permits multitasking.
FSignal EQU -6*4, -> >A0=pcb, D0.L=sigmask to signal to A0. <D0.L=-1 ok, 0=pcb doesn’t exist
FBlock EQU -6*3, -> >D0.L=signal mask, <D0.L=signals received
FFreeSignal EQU -6*2, -> >D0.B=the number of the sigbit to clear
FAllocSignal EQU -6*1 ->< D0.B=the number of the allocated sigbit, <D0.L=-1=no free signal
-
CONST ROM EQU 0,
RAM EQU $100000,
SYSSP EQU $140000,
SSPSIZE EQU $1000,
USPSIZE EQU $1000,
MEMSIZE EQU $40000,
EM_SWAP EQU 0, -> Ram and ROM are swapped
EM_IRQINH EQU 1, -> inhibit all interrupts
EM_LFCINH EQU 2, -> inhibit LF-clock interrupts
-
ES_SWAP EQU 0, -> swapped ROM<->RAM
ES_SER EQU 1, -> serial is attached
ES_LFLED EQU 2, -> LF-clock interrupt outputs and increments ENV_LED->LED
ES_KERNEL EQU 3, -> ENV_KERNEL is initiated.
-
ENV_MCR EQU 0, -> *Copy of Master Control Register: EM_*
ENV_LFC EQU 1, -> *Copy of LF-clock register
ENV_LED EQU 2, -> *Copy of LED register (not always used)
ENV_INT7 EQU 3, -> *<>0 - int7 got data for int1 to process, =0 - no data for int1
ENV_STATUS EQU 4, -> *Status: ES_*
-
ENV_SRBINT3 EQU 15*4,-> *This will execute before the scheduler!
ENV_SRAINT3 EQU 16*4,-> *Used by the timer

145

ENV_SREXCEPT EQU 29*4,-> *Exceptions subroutine. On the stack a WORD with the vector number will be.
ENV_TIMER EQU 30*4,-> *Timerbase
ENV_CONNECT EQU 31*4,-> *Connect base
ENV_PCB EQU 32*4,-> *Process Control Block base
ENV_KERNEL EQU 33*4,-> *Kernel pointer
ENV_CRBUCKET EQU 34*4,-> *Place where a supervisor crash can escape
-
KRN_CURPCB EQU 0, -> *.L ptr to currently running PCB
KRN_SSPREF EQU 4, -> *.L the highest point in the supervisor stack.
KRN_TOPPC EQU 8, -> *.L temp storage for the PC at SSPREF
KRN_TOPSR EQU 12,-> *.W temp storage for the PC at SSPREF
KRN_STATUS EQU 14,-> *.B KS_*
KRN_QCNT EQU 15,-> *.B counter from KRN_QUANTUM to 0. When it reaches 0 a rescheduling will occur.
KRN_QUANTUM EQU 16 -> *.B how many interrupt that should pass before a rescheduling should occur.
-
CONST DIP=$20001E, LED=$20001F, MCR=$20001D, LFC=$20001C
CONST NUM_COMMANDS=15, TAB=9, BACKSP=8, DEL=127,

CTRL_A=1, CTRL_C=3, CTRL_D=4, CTRL_S=19, CTRL_W=23,
DEF_STACK=1024, MYSELF=35000, TOKENS=6, MAXTOKEN=5

-
CONST PT_CODE=1, PT_DATA=2, PT_SCRIPT=3,

PT_PROTCODE=$41, PT_PROTDATA=$42, PT_PROTSCRIPT=$43,
PT_PROT=$40

-
SET BYTE, WORD, LOONG, STR
ENUM PS_NEW, PS_SUSPENDED, PS_FINISHED, PS_READY, PS_RUNNING, PS_WAITING,

PS_CRASHED=$80
-
OBJECT envvars
mcr :CHAR
lfc :CHAR
led :CHAR
int7 :CHAR
st :CHAR
ramlock:CHAR
rxlock :CHAR
txlock :CHAR
pad :INT
freez :INT
freel :LONG
seriptr:PTR TO CHAR
seribeg:LONG
seriend:LONG
seroptr:PTR TO CHAR
serobeg:LONG
seroend:LONG
id :LONG
srbint1:LONG
sraint1:LONG
srbint2:LONG
sraint2:LONG
srbint3:LONG
sraint3:LONG
srbint4:LONG
sraint4:LONG
srbint5:LONG
sraint5:LONG
srbint6:LONG
sraint6:LONG
srbint7:LONG
sraint7:LONG
srarx:LONG
sratx:LONG
sraline:LONG
sramodem:LONG
srexcept:LONG
timer:PTR TO timer
connect:PTR TO connect
pcb:PTR TO program
kernel:PTR TO kernel
crbucket:LONG
ENDOBJECT
-
OBJECT timer
lastReg:INT
timerEl:PTR TO CHAR -> [128]:timerElement
ENDOBJECT
-
OBJECT kernel
curpcb:PTR TO program ->.L ptr to currently running PCB
sspref:LONG ->.L the highest point in the supervisor stack.
toppc:LONG ->.L temp storage for the PC at SSPREF
topsr:INT ->.W temp storage for the PC at SSPREF
status:CHAR ->.B KS_*
qcnt:CHAR ->.B counter from KRN_QUANTUM to 0. When it reaches 0 a rescheduling will occur.
quantum:CHAR ->.B how many interrupt that should pass before a rescheduling should occur.
ENDOBJECT
-
OBJECT connect
next:PTR TO connect
device:CHAR
type:CHAR
unit:INT
uAddr:LONG
iAddr:LONG
ENDOBJECT
-
OBJECT program
next:PTR TO program
data:PTR TO CHAR
size:LONG
type:CHAR
status:CHAR
sr:INT
pc:LONG
regs[15]:ARRAY OF LONG
sp:PTR TO LONG
stack:PTR TO LONG
stsize:LONG
sigmask:LONG
sigwait:LONG

146

sigset:LONG
name:PTR TO CHAR
ENDOBJECT
-
OBJECT loadS19
data:PTR TO CHAR
next:PTR TO loadS19
ENDOBJECT
-
OBJECT commands
c:PTR TO CHAR
h:PTR TO CHAR
h2:PTR TO CHAR
ENDOBJECT
-
#ifdef EXOS
#define GLOB1SIZE 18
CONST GLOB4SIZE=GLOB1SIZE/4
#endif
#ifdef AMIGA
DEF lastchar=-1, scrap, w:PTR TO window, task:PTR TO tc, sspref[40]:ARRAY
#endif
-
DEF x, y, z, a, buf, doskey, tl:PTR TO LONG, s:PTR TO CHAR, t:PTR TO CHAR,

ab, aw:PTR TO INT, al:PTR TO LONG, outOfMem, noEntry, invParams,
prg:PTR TO program, envvars:PTR TO envvars, help:PTR TO commands

-
PROC main()
DEF tl_[TOKENS]:ARRAY OF LONG, t_[20]:STRING, fail=TRUE
#ifdef EXOS
DEF globs[GLOB1SIZE]:ARRAY OF LONG, self -> E uses A4 for global variables but as the AmigaOS startup
MOVEA.L globs,A4 -> code has been stripped in ExOS mode it must be setup here
ADDA.L #$200+GLOB4SIZE,A4 -> using a piece of the stack..
LEA a4(PC),A0
MOVE.L A4,(A0)
#endif
putStr(’Starting the terminal...\n’)
tl:=tl_
t:=t_
outOfMem:=’Out of memory!\n’ -> saving precious RAM by using only one copy of these std strings..
noEntry:=’Unable to find entry!\n’
invParams:=’Invalid parameters!\n’
putStr(’Installing the kernel..\n’)
IF install()
putStr(’Allocating buffers..\n’)

#ifdef AMIGA
task:=FindTask(NIL)
task.trapcode:={trapcode}
IF (w:=OpenW(900,400,100,30,$200600,$100a,’input’,NIL,1,NIL))=NIL THEN CleanUp()
WriteF(’scrap=$\h, \d\ntrapcode=$\h\n’,{scrap},{scrap},task.trapcode)

#endif
NOP
NOP
NOP
IF s:=allocStr(400)
stringf(s,’Expected startup address: $\h, main() is located at: $\h\n’,

RAM+$1244+FIFO_SIZE+FIFO_SIZE+MEM_DEFSIZE,{main})
putStr(s)

#ifdef EXOS
IF self:=allocMem(MYSELF) -> As the console doesn’t alloc memory, the terminal has to alloc its own memory

#endif
IF buf:=allocMem(256)
IF doskey:=allocMem(256)
doskey[0]:=NIL
putStr(’\nWelcome to the Terminal v1.0 in ExOS! (2004-04-27)\n’ +

’Type "help" or "?" to get a list of commands.\n\n’)
help:=[’clear’,NIL,NIL,’cls’, NIL,NIL,’delete’,NIL,NIL,’echo’,NIL,NIL,

’exit’, NIL,NIL,’help’,NIL,NIL,’list’, NIL,NIL,’load’,NIL,NIL,
’meminfo’,NIL,NIL,’peek’, NIL,NIL,’poke’,NIL,NIL,’rename’,NIL,NIL,
’run’, NIL,NIL,’speed’,NIL,NIL,’stop’,NIL,NIL]:commands

inithelp()
terminal()
fail:=FALSE
putStr(’Freeing buffers..\n’)
freeMem(doskey)

ENDIF
freeMem(buf)
ENDIF

#ifdef EXOS
freeMem(self)
ENDIF

#endif
freeStr(s)
ENDIF
putStr(’Disengaging the kernel..\n’)
forbid()
freeMem(envvars.pcb.name)
freeMem(envvars.pcb)
envvars.pcb:=NIL

#ifdef AMIGA
CloseW(w)

#endif
ENDIF
IF fail THEN putStr(’Could not allocate memory for myself, buffers or structures!\n’)
ENDPROC
-
PROC ws(c) IS c=" " OR (c=13) OR (c="\n") OR (c="\t")
-
-> Ctrl codes:
-> l=cls, k=line up, g=bell, n=8-bit, o=7-bit
PROC terminal()
DEF eko=0
LOOP
putStr(’T> ’)
y:=z:=0 -> cursor, size

147

REPEAT
x:=getS()
IF eko
stringf(t,’\r\z\h[2] ’,x)
sendS(t,3)
ENDIF
SELECT x
CASE CTRL_W -> "pil upp"
a:=z-y
WHILE y<z
putS(" ")
INC y
ENDWHILE
y:=StrLen(doskey)
WHILE z
IF eko=0
IF a<z THEN sendS([BACKSP," ",BACKSP]:CHAR,3) ELSE putS(BACKSP)

ENDIF
DEC z
ENDWHILE
AstrCopy(buf,doskey,256)
z:=y
putStr(buf)
CASE CTRL_A -> "pil vnster"
IF y
DEC y
putS(BACKSP)
ENDIF
CASE CTRL_D -> "pil hger"
IF y<z
putS(buf[y])
INC y
ENDIF
CASE CTRL_S -> "pil ner"
IF z
a:=z-y
WHILE y<z
putS(" ")
DEC z

ENDWHILE
WHILE a
putS(BACKSP)
DEC a

ENDWHILE
WHILE y
sendS([BACKSP," ",BACKSP]:CHAR,3)
DEC y

ENDWHILE
z:=0
ENDIF
CASE BACKSP
IF y
IF y<z
putS(BACKSP)
sendS(buf+y,z-y)
sendS([" ",BACKSP]:CHAR,2)
DEC y
DEC z
FOR a:=y TO z-1
buf[a]:=buf[a+1]
putS(BACKSP)
ENDFOR

ELSE
DEC y
DEC z
IF eko=0 THEN sendS([BACKSP," ",BACKSP]:CHAR,3)

ENDIF
ENDIF
CASE DEL
IF y<z
DEC z
sendS(buf+y+1,z-y)
sendS([" ",BACKSP]:CHAR,2)
FOR a:=y TO z-1
buf[a]:=buf[a+1]
putS(BACKSP)

ENDFOR
ENDIF
DEFAULT
IF z<256
IF eko=0 THEN putS(x)
IF x>=32 OR (x="\t")
IF y<z
IF eko=0 THEN sendS(buf+y,z-y)
FOR a:=z TO y+1 STEP -1
buf[a]:=buf[a-1]
putS(BACKSP)
ENDFOR
ENDIF
buf[y]:=x
INC y
INC z

ENDIF
ENDIF
ENDSELECT
UNTIL x=10 OR (x=13)

#ifdef AMIGA
IF x=13 THEN putS("\n")
#endif

IF z
WHILE z=256 OR ws(buf[z-1]) AND z DO DEC z
buf[z]:=0
ENDIF
IF z

148

AstrCopy(doskey,buf,256)
tokenize()

putStr(’Tokenizer says..:’)
y:=0
WHILE tl[y]
sendS(’\n"’,2)
putStr(tl[y++])
putS("\q")
ENDWHILE
putS("\n")

a:=tl[]
LowerStr(a)
IF StrCmp(a,’cls’) ; putStr([$9b48,$9b4a,0]:INT)
ELSEIF StrCmp(a,’exit’) ; putStr(’The Terminal is exiting...\n’) ; RETURN
ELSEIF StrCmp(a,’help’) OR StrCmp(a,’?’,x) ; hlp()
ELSEIF StrCmp(a,’list’) ; list()
ELSEIF StrCmp(a,’load’) ; load()
ELSEIF StrCmp(a,’meminfo’) ; meminfo()
ELSEIF StrCmp(a,’speed’) ; speed()
ELSEIF tl[1]
IF StrCmp(a,’clear’) ; clear()
ELSEIF StrCmp(a,’delete’) ; delete()
ELSEIF StrCmp(a,’echo’) ; eko:=echo()
ELSEIF StrCmp(a,’peek’) ; peek()
ELSEIF StrCmp(a,’run’) ; run()
ELSEIF StrCmp(a,’stop’) ; stop()
ELSEIF tl[2]
IF StrCmp(a,’poke’) ; poke()
ELSEIF StrCmp(a,’rename’) ; rename()
ELSE
stringf(s,’Unknown command: "\s"\n’,a)
putStr(s)

ENDIF
ELSE
stringf(s,’Unknown command or too few parameters: "\s"\n’,a)
putStr(s)
ENDIF
ELSE
stringf(s,’Unknown command or too few parameters: "\s"\n’,a)
putStr(s)
ENDIF
ENDIF

ENDLOOP
ENDPROC
-
PROC clear()
DEF x, y, ab
IF prg:=findprg(tl[1])
IF prg.type AND PT_CODE
IF prg.status=PS_SUSPENDED OR (prg.status=PS_FINISHED)
prg.sr:=0
prg.pc:=prg.data
prg.sp:=NIL
prg.status:=PS_NEW
IF prg.stack
freeMem(prg.stack)
prg.stack:=NIL
ENDIF
prg.stsize:=DEF_STACK
prg.sigmask:=0
ELSEIF prg.status=PS_NEW
putStr(’No point to clear a newly downloaded or cleared program.\n’)
ELSE
putStr(’Can not clear a running program.\n’)
ENDIF
ELSEIF prg.type AND PT_DATA
IF prg.type=PT_PROTDATA
putStr(’Cannot clear a protected data area.\n’)
ELSE
y:=prg.size-1
ab:=prg.data
FOR x:=0 TO y DO ab[]++:=0
ENDIF
ELSEIF prg.type AND PT_SCRIPT
putStr(’A script cannot be cleared.\n’)
ENDIF

ELSE
putStr(noEntry)

ENDIF
ENDPROC
-
PROC delete()
IF prg:=findprg(tl[1])
IF prg.type AND PT_PROT
putStr(’This entry is protected against deletion.\n’)
ELSE
putStr(’Are you sure you want to delete this ’)
putStr(IF prg.type AND 3=2 THEN ’data block’ ELSE ’program’)
putStr(’? y/N: ’)
x:=getS()
putS(x)
IF x OR 32="y"
IF prg.type=PT_CODE
forbid()
IF prg.status=PS_NEW OR (prg.status=PS_SUSPENDED) OR (prg.status=PS_FINISHED) OR (prg.status=PS_CRASHED)
IF prg=envvars.pcb
envvars.pcb:=prg.next

149

ELSE
x:=prg
prg:=envvars.pcb
WHILE prg.next<>x AND prg.next DO prg:=prg.next
prg.next:=prg.next.next
prg:=x
ENDIF
StrCopy(s,prg.name)
IF prg.stack THEN freeMem(prg.stack)
freeMem(prg.name)
freeMem(prg.data)
x:=1

ELSE
putStr(’This program is running. You must stop it before you can remove it.\n’)
x:=0

ENDIF
permit()
ELSE
freeMem(prg.name)
freeMem(prg.data)
x:=1
ENDIF
IF x
putS("\q")
putStr(s)
putStr(’" has been deleted.\n’)
ENDIF
ENDIF
ENDIF

ELSE
putStr(noEntry)

ENDIF
ENDPROC
-
PROC echo()
IF x:=Val(tl[1])
y:=bwl(tl[2])
SELECT y
CASE WORD
putS(Shr(x,8))
putS(x)
CASE LOONG
putS(Shr(x,24))
putS(Shr(x,16))
putS(Shr(x,8))
putS(x)
DEFAULT
putS(x)
ENDSELECT

ELSE
IF Long(tl[1]) AND $dfdfff00="ON\0\0"
putStr(’Global echo mode is now on. Type "echo OFF" to turn it off again.\n’)
RETURN TRUE
ELSEIF Long(tl[1]) AND $dfdfdfff="OFF\0"
putStr(’Global echo has been turned off.\n’)
RETURN FALSE
ELSE
putStr(invParams)
ENDIF

ENDIF
ENDPROC
-
PROC hlp()
IF tl[1]
FOR y:=0 TO NUM_COMMANDS-1 DO EXIT StrCmp(tl[1],help[y].c,z)
IF y<NUM_COMMANDS
putStr(help[y].h)
IF help[y].h2 THEN putStr(help[y].h2)
putS(10)
putS(10)
ENDIF

ELSE
FOR x:=0 TO NUM_COMMANDS-1
putStr(help[x].c)
putS("\n")
y:=getA()
EXIT y=CTRL_C
IF y>=32
REPEAT
y:=getS()
UNTIL y=10 OR (y=13)
ENDIF
ENDFOR
putStr(’\nType "help <command>" to get help about a specific ’ +

’command. F.ex: "help help".\n\n’)
ENDIF
ENDPROC
-
PROC list()
al:=[’New’,’Suspended’,’Finished’,’Ready’,’Running’,’Waiting’,’Crashed’,’Undefined’]
aw:=[’Code’,’Data’,’Script’,’PCode’,’PData’,’PScript’,’Unknown’]
IF tl[1]
IF prg:=findprg(tl[1])
y:=prg.type-1
IF y AND PT_PROT THEN y:=y AND Not(PT_PROT)+3
IF y<0 OR (y>6) THEN y:=7
y:=Shl(y,2)
x:=prg.status
IF x>=PS_CRASHED
x:=PS_WAITING+1
ELSEIF PS_WAITING+1<x

150

x:=PS_WAITING+2
ENDIF
stringf(s,’Name: "\s"\nSize: \d bytes\nLocation: \r$\z\h[6]\n’ +

’Type: \s\nStatus: \s\nProgram counter: $\z\h[6]\n’ +
’Status register: $\z\h[4]\nStack location: $\z\h[6]\n’,
prg.name,prg.size,prg.data,Long(aw+y),al[x],prg.pc,prg.sr,prg.stack)

putStr(s)
stringf(s,’Stack pointer: $\z\h[6]\nStack size: \d bytes\n’ +

’SigAlloc: $\z\h[8]\nSigSet: $\z\h[8]\n’ +
’SigWait: $\z\h[8]\nRegisters:\n’,
prg.sp,prg.stsize,prg.sigmask,prg.sigset,prg.sigwait)

putStr(s)
al:=prg.regs
stringf(s,’\rD0:\z\h[8] D1:\z\h[8] D2:\z\h[8] D3:\z\h[8]\n’ +

’D4:\z\h[8] D5:\z\h[8] D6:\z\h[8] D7:\z\h[8]\n’,
al[0],al[1],al[2],al[3],al[4],al[5],al[6],al[7])

putStr(s)
stringf(s,’A0:\z\h[8] A1:\z\h[8] A2:\z\h[8] A3:\z\h[8]\n’ +

’A4:\z\h[8] A5:\z\h[8] A6:\z\h[8]\n’,
al[8],al[9],al[10],al[11],al[12],al[13],al[14],al[15])

putStr(s)
ELSE
putStr(noEntry)
ENDIF

ELSE
prg:=envvars.pcb
a:=z:=0
putStr(’Name: Size: Type: Status: Location: PC: Stack: \n’)
WHILE prg
y:=prg.type-1
IF y AND PT_PROT THEN y:=y AND Not(PT_PROT)+3
IF y<0 OR (y>6) THEN y:=7
y:=Shl(y,2)
x:=prg.status
IF x>=PS_CRASHED
x:=PS_WAITING+1
ELSEIF PS_WAITING+1<x
x:=PS_WAITING+2
ENDIF
IF x=6
stringf(s,’\l\s[20] \r\d[5] \l\s[7] \rCrashed\h[2] $\z\h[6] $\z\h[6] \d[5] \n’,

prg.name,prg.size,Long(aw+y),prg.status AND $7f,prg.data,prg.pc,prg.stsize)
ELSE
stringf(s,’\l\s[20] \r\d[5] \l\s[7] \s[9] \r$\z\h[8] $\z\h[6] \d[5] \n’,

prg.name,prg.size,Long(aw+y),al[x],prg.data,prg.pc,prg.stsize)
ENDIF
putStr(s)
INC a
z:=z+prg.size
prg:=prg.next
x:=getA()
EXIT x=CTRL_C
IF x>=32
REPEAT
x:=getS()
UNTIL x=10 OR (x=13)
ENDIF
ENDWHILE
stringf(s,’\n\d entries in \d bytes\n’,a,z)
putStr(s)

ENDIF
ENDPROC
-
PROC load()
DEF x, y, z, a, b, c, data, type, load, l:PTR TO loadS19
data:=type:=b:=0
IF a:=tl[1]
z:=2
IF strCmpNC(a,’S19’) ; data:=0
ELSEIF strCmpNC(a,’BINARY’) ; data:=1
ELSE
data:=type:=0
z:=1
b:=a
ENDIF
IF z=2 THEN a:=tl[2]
IF a
b:=tl[z+1]
IF strCmpNC(a,’PROGRAM’) ; type:=0
ELSEIF strCmpNC(a,’DATA’) ; type:=1
ELSEIF strCmpNC(a,’SCRIPT’) ; type:=2
ELSE
IF b
putStr(invParams)
RETURN
ENDIF
b:=a
ENDIF
ENDIF

ENDIF
IF b=NIL
prg:=envvars.pcb
z:=0
WHILE prg
b:=prg.name[]
IF b="P" OR (b="D") OR (b="S") THEN z:=Max(z,Val(prg.name+1))
prg:=prg.next
ENDWHILE
stringf(t,’\c\d’,Char(’PDS’+type),z)
b:=t

ENDIF

151

al:=[’a program’,’data’,’a script’]
stringf(s,’Loading \s data as \s named "\s"..’,

IF data=0 THEN ’S19’ ELSE ’binary’,al[type],b)
putStr(s)
prg:=NIL
IF data
readS({z},4)
IF x:=allocMem(z)
putS(".")
prg:=envvars.pcb
WHILE prg.next DO prg:=prg.next
forbid()
prg.next:=allocMem(StrLen(b)+1+SIZEOF program)
IF prg.next
prg:=prg.next
prg.next:=NIL
prg.status:=PS_NEW
permit()
readS(x,z)
putStr(’download finished!\n’)
ELSE
permit()
prg:=NIL
putStr(outOfMem)
ENDIF
ELSE
putStr(outOfMem)
ENDIF

ELSE
load:=l:=NIL
REPEAT
c:=getS()
IF c=CTRL_C THEN RETURN
UNTIL c="S"
x:=TRUE
z:=0
REPEAT
readS(t,3)
a:=Shl(IF t[1]>="A" THEN t[1]-"A"+10 ELSE t[1]-"0",4) OR (IF t[2]>="A" THEN t[2]-"A"+10 ELSE t[2]-"0")

#ifdef AMIGA
WriteF(’a=$\h\n’,a)
#endif

y:=t[]
IF y>="0" AND (y<="9") AND x
IF c:=allocMem(a*2+4+SIZEOF loadS19)
IF load
l.next:=c
l:=l.next

ELSE
load:=l:=c

ENDIF
l.next:=NIL
l.data:=l+SIZEOF loadS19
l.data[]:="S"
l.data[1]:=y
l.data[2]:=t[1]
l.data[3]:=t[2]
readS(l.data+4,a*2)
z:=z+a-4
ELSE
putStr(outOfMem)
x:=FALSE
MOVEA.L SYSLIST,A0
JSR FFlushRx(A0)
ENDIF
putS(".")
ENDIF
IF y<"7" OR (y>"9")
REPEAT
c:=getS()
UNTIL c="S" OR (c=CTRL_C)
IF c=CTRL_C THEN x:=FALSE
ENDIF
UNTIL y>="7" AND (y<="9") OR (x=FALSE)
IF x=FALSE
l:=load
WHILE l
load:=l
l:=l.next
freeMem(load)
ENDWHILE
RETURN
ENDIF
IF load

#ifdef AMIGA
WriteF(’z=$\h \d\n’,z,z)
#endif

putStr(’finished! Now decoding..’)
MOVE.L load,A0
MOVE.L SYSLIST,A6
JSR FStoreProg(A6)
MOVE.L A0,data
MOVE.L D0,z

#ifdef AMIGA
WriteF(’z=$\h \d\n’,z,z)
#endif

IF data
prg:=envvars.pcb
WHILE prg.next DO prg:=prg.next
forbid()
prg.next:=allocMem(StrLen(b)+1+SIZEOF program)
IF prg.next
prg:=prg.next
prg.next:=NIL

152

prg.status:=PS_NEW
permit()
putStr(’.done!\n’)
ELSE
permit()
prg:=NIL
putStr(outOfMem)
ENDIF
ELSEIF z=0
putStr(outOfMem)
ELSEIF z=-1
putStr(’Checksum error in S19 data!\n’)
ELSEIF z=-2
putStr(’No data in S19 file.\n’)
ENDIF
l:=load
WHILE l
load:=l
l:=l.next
freeMem(load)
ENDWHILE
ELSE
putStr(’finished! No data was transfered!\n’)
RETURN
ENDIF

ENDIF
IF prg
prg.name:=prg+SIZEOF program
AstrCopy(prg.name,b,ALL)
prg.data:=data
prg.size:=z
prg.stsize:=0
SELECT type
CASE 0
prg.type:=PT_CODE
prg.stsize:=DEF_STACK
CASE 1
prg.type:=PT_DATA
CASE 2
prg.type:=PT_SCRIPT
ENDSELECT

ENDIF
ENDPROC
-
PROC meminfo()
DEF a, b, c, d
x:=1
a:=b:=c:=d:=y:=0
WHILE tl[x]
IF strCmpNC(tl[x],’MEMHDL’) ; a:=1
ELSEIF strCmpNC(tl[x],’VERBOSE’) ; b:=1
ELSEIF strCmpNC(tl[x],’COMPRESS’) ; c:=1
ELSEIF strCmpNC(tl[x],’CHECK’) ; d:=1
ELSE
y:=1
ENDIF

ENDWHILE
IF y
putStr(invParams)
RETURN

ENDIF
IF a=0 THEN b:=0
IF c
MOVE.L SYSLIST,A6
JSR FCompFreeList(A6)

ENDIF
MOVE.L SYSLIST,A6
MOVEQ #MI_TOTALFREE,D0
JSR FMemInfo(A6)
MOVE.L D0,x
MOVEQ #MI_LARGEST,D0
JSR FMemInfo(A6)
MOVE.L D0,y
stringf(s,’Total free memory: \d bytes, largest free block: \d bytes\n’,x,y)
putStr(s)
IF a
MOVE.L SYSLIST,A6
MOVEQ #MI_NUMALLOC,D0
JSR FMemInfo(A6)
MOVE.L D0,x
MOVEQ #MI_NUMFREE,D0
JSR FMemInfo(A6)
MOVE.L D0,y
stringf(s,’\d allocations have been made.\n’ +

’\d additional allocations can be made before the current free list is full.\n’ +
’\d is the size of the current free list.\n’,x,y,x+y)

putStr(s)
IF x+y<>envvars.freez
stringf(s,’Oops! The calculated size of the current free list does not ’ +

’match the maximum size in envvars which is \d!\n’,envvars.freez)
putStr(s)
ENDIF
IF b
putStr(’Status: Start: End: Size:\n’)
aw:=envvars.freel
b:=aw[]++
al:=aw
FOR a:=0 TO b
IF al[2]
stringf(s,’Free: \r\z\z\z\z\z\h[6] \z\z\z\z\z\h[6] \z\z\z\z\z\h[6]=\d\n’,

al[]++,al[]++,al[],al[]++)
ELSE
c:=al[1]-al[]

153

stringf(s,’Occupied: \r\z\z\z\z\z\h[6] \z\z\z\z\z\h[6] \z\z\z\z\z\h[6]=\d\n’,
al[]++,al[]++,c,c)

al[]++
ENDIF
putStr(s)
c:=getA()
EXIT c=CTRL_C
IF c>=32
REPEAT
c:=getS()

UNTIL c=10 OR (c=13)
ENDIF
ENDFOR
ENDIF

ENDIF
IF d
MOVE.L SYSLIST,A6
MOVE.L #131072,D0
JSR FMemCheck(A6)
MOVE.L D0,x
MOVE.L #131072,D0
JSR FMemCheck(A6)
ADDQ.L #1,A0
MOVE.L D0,y
IF x
putStr(’Atleast one byte in the memory on the most significant ’ +

’part of the data bus was erroneous!\n’)
ELSE
putStr(’No errors were found in the most significant memory IC.\n’)
ENDIF
IF y
putStr(’Atleast one byte in the memory on the least significant ’ +

’part of the data bus was erroneous!\n’)
ELSE
putStr(’No errors were found in the least significant memory IC.\n’)
ENDIF

ENDIF
ENDPROC
-
PROC peek()
LowerStr(tl[1])
IF StrCmp(tl[1],’dip’)
ab:=DIP
stringf(s,’DIP: $\r\z\h[2] \d "\c"\n’,ab[],ab[],IF ab[]<32 THEN " " ELSE ab[])

ELSEIF StrCmp(tl[1],’mcr’)
stringf(s,’MCR: $\r\z\h[2] \d\n’,envvars.mcr,envvars.mcr)

ELSE
x:=BYTE
y:=Val(tl[1])
z:=1
IF tl[2]
x:=bwl(tl[2])
IF x=0
x:=BYTE
z:=Val(tl[2])
ELSEIF tl[3]
z:=Val(tl[3])
ENDIF
ENDIF
IF x=STR
sendS(y,z)
ELSE
ab:=aw:=al:=y
IF z=1
SELECT x
CASE BYTE
stringf(s,’\r\z\z\z\z\z\h[6]: $\z\h[2] \d "\c"\n’,

y,ab[],ab[],IF ab[]>=32 THEN ab[] ELSE " ")
CASE WORD
stringf(s,’\r\z\z\z\z\z\h[6]: $\z\z\z\h[4] \d "\c\c"\n’,

y,aw[],aw[],IF ab[]>=32 THEN ab[] ELSE " ",IF ab[1]>=32 THEN ab[1] ELSE " ")
CASE LOONG
stringf(s,’\r\z\z\z\z\z\h[6]: $\z\z\z\z\z\z\z\h[8] \d "\c\c\c\c"\n’,

y,al[],al[],IF ab[]>=32 THEN ab[] ELSE " ",IF ab[1]>=32 THEN ab[1] ELSE " ",
IF ab[2]>=32 THEN ab[2] ELSE " ",IF ab[3]>=32 THEN ab[3] ELSE " ")

ENDSELECT
ELSE
y:=Shr(z,4)
FOR x:=0 TO y
stringf(s,’\r\z\z\z\z\z\h[6]: ’,ab)
putStr(s)
FOR a:=0 TO 15 DO buf[a]:=IF ab[a] AND $7f>=32 THEN ab[a] ELSE "."
buf[a]:=NIL
SELECT x
CASE BYTE
stringf(s,’\z\h[2] \z\h[2] \z\h[2] \z\h[2] \z\h[2] \z\h[2] \z\h[2] \z\h[2] ’,

ab[]++,ab[]++,ab[]++,ab[]++,ab[]++,ab[]++,ab[]++,ab[]++)
stringf(s,’\z\h[2] \z\h[2] \z\h[2] \z\h[2] \z\h[2] \z\h[2] \z\h[2] \z\h[2] ’,

ab[]++,ab[]++,ab[]++,ab[]++,ab[]++,ab[]++,ab[]++,ab[]++)
CASE WORD
stringf(s,’\r\z\z\z\h[4] \z\z\z\h[4] \z\z\z\h[4] \z\z\z\h[4] ’ +

’\z\z\z\h[4] \z\z\z\h[4] \z\z\z\h[4] \z\z\z\h[4] ’,
aw[]++,aw[]++,aw[]++,aw[]++,aw[]++,aw[]++,aw[]++,aw[]++)

ab:=aw
CASE LOONG
stringf(s,’\z\z\z\z\z\z\z\h[8] \z\z\z\z\z\z\z\h[8] \z\z\z\z\z\z\z\h[8] \z\z\z\z\z\z\z\h[8] ’,

al[]++,al[]++,al[]++,al[]++,al[]++,al[]++,al[]++,al[]++)
ab:=al

ENDSELECT
putStr(s)
putStr(buf)
putS("\n")

154

x:=getA()
EXIT x=CTRL_C
IF x>=32
REPEAT
x:=getS()
UNTIL x=10 OR (x=13)

ENDIF
ENDFOR
ENDIF
ENDIF

ENDIF
ENDPROC
-
PROC poke()
DEF y:REG
LowerStr(tl[1])
y,z:=Val(tl[2])
IF StrCmp(tl[1],’LED’)
MOVE.B y,LED

ELSEIF StrCmp(tl[1],’MCR’)
MOVE.B y,MCR

ELSEIF StrCmp(tl[1],’LFC’)
MOVE.B y,LFC

ELSE
IF tl[3] THEN x:=bwl(tl[3]) ELSE x:=BYTE
IF x<>STR AND z
ab:=aw:=al:=tl[1]
SELECT x
CASE BYTE ; ab[]:=y
CASE WORD ; aw[]:=y
CASE LOONG ; al[]:=y
ENDSELECT
ELSEIF x=STR
x:=tl[2]
WHILE x[]
y[]++:=x[]++
ENDWHILE
ELSE
putStr(invParams)
ENDIF

ENDIF
ENDPROC
-
PROC rename()
IF prg:=findprg(tl[1])
IF findprg(tl[2])
putStr(’Name already exists!\n’)
ELSEIF x:=allocMem(StrLen(tl[2]+1))
AstrCopy(x,tl[2],ALL)
freeMem(prg.name)
prg.name:=x
ELSE
putStr(’Could\at allocate memory for the new name!\n’)
ENDIF

ELSE
putStr(noEntry)

ENDIF
ENDPROC
-
PROC run()
IF prg:=findprg(tl[1])
IF prg.type AND PT_CODE
x:=prg.status
SELECT x
CASE PS_NEW
IF tl[2] THEN y:=Val(tl[2]) ELSE y:=DEF_STACK
IF y>=100
prg.stack:=allocMem(y)
IF prg.stack
prg.pc:=prg.data
prg.sr:=0
prg.sp:=prg.stack+prg.stsize-4 -> 4=last RTS
prg.sp[]:={finalReturn}
prg.sigmask:=0
prg.sigwait:=0
prg.sigset:=0
prg.status:=PS_READY

ELSE
putStr(’Couldn\at allocate memory for the stack!\n’)

ENDIF
ELSE
putStr(’Too small stack! An absolute minimum of 100 bytes is required.\n’)
ENDIF
CASE PS_READY
putStr(’This program is already running.\n’)
CASE PS_RUNNING
putStr(’Unless you tried to run the terminal from itself ’ +

’there is a serious error in the system!\n’)
CASE PS_WAITING
IF prg.sigwait=0
putStr(’This program is active but waiting forever.\n’)
IF prg.sigset
putStr(’It has signals set. Do you want to make it accept them? y/N: ’)
IF getS() OR 32="y"
prg.sigwait:=prg.sigset
prg.status:=PS_READY
ENDIF

ELSE
putStr(’Do you want to give it a CTRL-C signal? y/N: ’)
IF getS() OR 32="y"
prg.sigwait:=SIG_CTRL_C

155

prg.sigset:=prg.sigset OR SIG_CTRL_C
prg.status:=PS_READY
ENDIF

ENDIF
ELSE
putStr(’This program is already active and waiting for signals.\n’)
ENDIF
CASE PS_SUSPENDED
prg.status:=PS_READY
CASE PS_FINISHED
ENDSELECT
ELSE
putStr(’This entry is not executable.\n’)
ENDIF

ELSE
putStr(noEntry)

ENDIF
ENDPROC
-
PROC speed()
DEF a, b, c, d, e
a:=b:=c:=d:=e:=0
WHILE tl[x]
IF strCmpNC(tl[x],’MIPS’)
a:=TRUE
ELSEIF strCmpNC(tl[x],’CPU’)
c,b:=Val(tl[x+1])
IF c<=0 OR (c>5) AND b
putStr(invParams)
RETURN
ENDIF
b:=TRUE
ELSEIF strCmpNC(tl[x],’SERIAL’)
IF tl[x+1]
INC x
d,e:=Val(tl[x])
IF e<=0 OR (e>65535) AND d
putStr(invParams)
RETURN
ELSEIF strCmpNC(tl[x],’SER_16X2400’) ; e:=SER_16X2400
ELSEIF strCmpNC(tl[x],’SER_16X4800’) ; e:=SER_16X4800
ELSEIF strCmpNC(tl[x],’SER_16X9600’) ; e:=SER_16X9600
ELSEIF strCmpNC(tl[x],’SER_16X19200’) ; e:=SER_16X19200
ELSEIF strCmpNC(tl[x],’SER_16X38400’) ; e:=SER_16X38400
ELSEIF strCmpNC(tl[x],’SER_16X57600’) ; e:=SER_16X57600
ELSEIF strCmpNC(tl[x],’SER_16X115200’) ; e:=SER_16X115200
ELSE
e:=0
DEC x
ENDIF
ELSE
e:=0
ENDIF
d:=TRUE
ENDIF

ENDWHILE
IF a
putStr(’MIPS meassurement is currently not implemented.\n’)

ENDIF
IF b AND c
SELECT c
CASE 6
putStr(’This requires an external clock signal to be connected ’ +

’to the clock card. Do you want to proceed? y/N: ’)
IF getS() OR 32="y"
envvars.mcr:=envvars.mcr AND $1f OR $82
ab:=MCR
ab[]:=envvars.mcr
putStr(’\nThe clock speed has been set to "external".’)
ENDIF
putS("\n")
CASE 5
putStr(’This will set the CPU to 20MHz which may cause it to hang.\n’ +

’Do you want to proceed? y/N: ’)
IF getS() OR 32="y"
envvars.mcr:=envvars.mcr AND $1f OR $84
ab:=MCR
ab[]:=envvars.mcr
putStr(’\nThe clock speed has been set to 20MHz.’)
ENDIF
putS("\n")
DEFAULT
envvars.mcr:=envvars.mcr AND $1f OR Shl(c-1,5)
ab:=MCR
ab[]:=envvars.mcr
putStr(’A new CPU clock speed has been set.\n’)
ENDSELECT

ELSEIF d=0
b:=Shr(envvars.mcr,5)
IF b=4 OR (b=7) THEN b:=0
IF b=6 THEN b:=4
al:=[’1.25’,’2.5’,’5’,’10’,’20’,’Unknown/external ’]:LONG
stringf(s,’The current speed of the CPU is \b (\sMHz)\n’,b+1,al[b])
putStr(s)
b:=0

ENDIF
IF d
IF e
putStr(’The serial port will now be set to the new speed.\n’ +

’Press Enter when you are done.\n’)
MOVE.L SYSLIST,A6
JSR FFlushTx(A6)
MOVE.L e,D0
JSR FSetSerSpeed(A6)

156

REPEAT
UNTIL getS()="\n"
putStr(’If you see this text it means the new speed settings work.\n’)
ELSE
putStr(’Calculate the 16X divisor value like this: divisor=960000/bps.\n’ +

’Predefined speeds (divisor values) that can be used are:\n’ +
’"SER_16X2400" for 2400bps\n’ +
’"SER_16X4800" for 4800bps\n’ +
’"SER_16X9600" for 9600bps\n’ +
’"SER_16X19200" for 19200bps\n’ +
’"SER_16X38400" for 38400bps\n’ +
’"SER_16X57600" for 57600bps (this may not work as the value is not exact)\n’ +
’"SER_16X115200" for 115200bps (this may not work as the value is not exact)\n’)

ENDIF
ELSEIF b=0
a:=[SI_SPEED,{x},NIL]:LONG
MOVE.L a,A0
MOVE.L SYSLIST,A6
JSR FGetSerInfo(A6)
SELECT x
CASE SER_16X2400 ; a:=’2400’
CASE SER_16X4800 ; a:=’4800’
CASE SER_16X9600 ; a:=’9600’
CASE SER_16X19200 ; a:=’19200’
CASE SER_16X38400 ; a:=’38400’
CASE SER_16X57600 ; a:=’57600’
CASE SER_16X115200 ; a:=’115200’
DEFAULT
a:=0
ENDSELECT
IF a
stringf(s,’The speed of the serial port is set to \sbps which equals ’ +

’a 16X divisor of \d @ 15.360MHz.\n’,a,x)
ELSE
stringf(s,’The serial port is currently set to a custom speed with a ’ +

’16X divisor of \d which equals ’ +
’a speed of \dbps @ 15.360MHz.\n’,x,Div(960000,x))

ENDIF
ENDIF
ENDPROC
-
PROC stop()
IF prg:=findprg(tl[1])
IF prg.type AND PT_CODE
IF tl[2]
UpperStr(tl[2])
IF StrCmp(tl[2],’FORCE’) THEN prg.status:=PS_SUSPENDED ELSE putStr(’Illegal parameter!\n’)
ELSE
prg.sigset OR SIG_CTRL_C
ENDIF
ELSE
putStr(’Can not stop a script or data.\n’)
ENDIF

ELSE
putStr(noEntry)

ENDIF
ENDPROC
-
/************************ ****************** **************************
************************* support and system **************************
************************* ****************** *************************/
-
PROC install()
#ifdef EXOS
MOVEA.L SYSLIST,A6
JSR FGetEnvToA6(A6)
MOVE.L A6,envvars
#endif
#ifdef AMIGA
NEW envvars
PutLong({syslist},{syslist})
WriteF(’syslist=$\h\n’,{syslist})
#endif
FOR x:=0 TO 0
IF envvars.kernel=0
y:=allocMem(SIZEOF kernel)
envvars.kernel:=y
ENDIF
EXIT envvars.kernel=NIL

#ifdef AMIGA
envvars.kernel.sspref:=sspref

#endif
#ifdef EXOS

envvars.kernel.sspref:=RAM+MEMSIZE
#endif

envvars.kernel.status:=0
envvars.kernel.qcnt:=DEFQUANTUM
envvars.kernel.quantum:=DEFQUANTUM
prg:=allocMem(SIZEOF program)
EXIT prg=NIL
prg.next:=NIL
prg.data:={main}
prg.size:=MYSELF
prg.type:=PT_PROTCODE
prg.status:=PS_RUNNING
prg.stack:=RAM+MEMSIZE-SSPSIZE-USPSIZE
prg.stsize:=USPSIZE
prg.sigmask:=0
prg.sigwait:=0
prg.sigset:=0
prg.name:=’Terminal’
envvars.pcb:=prg
envvars.kernel.curpcb:=prg

157

ENDFOR
IF x=0
freeMem(envvars.kernel)
freeMem(envvars.pcb)

ENDIF
ENDPROC x
-
PROC tokenize()
x:=0
FOR y:=0 TO MAXTOKEN
tl[y]:=NIL
EXIT buf[x]=NIL
WHILE buf[x]=" " OR (buf[x]="\t") OR (buf[x]="\n") OR (buf[x]=13) AND buf[x] DO INC x
IF buf[x]
IF buf[x]="\q"
INC x
tl[y]:=buf+x
WHILE buf[x]<>"\q" AND buf[x] DO INC x
IF y<MAXTOKEN AND buf[x]
buf[x]:=NIL
INC x
ENDIF
ELSE
tl[y]:=buf+x
WHILE buf[x]<>" " AND (buf[x]<>"\t") AND buf[x] DO INC x
IF y<MAXTOKEN AND buf[x]
buf[x]:=NIL
INC x
ENDIF
ENDIF
ENDIF

ENDFOR
ENDPROC y
-
PROC bwl(st)
IF st
UpperStr(st)
IF StrCmp(st,’BYTE’) ; RETURN BYTE
ELSEIF StrCmp(st,’WORD’) ; RETURN WORD
ELSEIF StrCmp(st,’LOONG’) ; RETURN LOONG
ELSEIF StrCmp(st,’STR’) ; RETURN STR
ENDIF

ENDIF
ENDPROC 0
-
PROC findprg(n)
DEF pcb:PTR TO program
pcb:=envvars.pcb
WHILE pcb
EXIT strCmpNC(pcb.name,n)
pcb:=pcb.next

ENDWHILE
ENDPROC pcb
-
PROC strCmpNC(s,t,strlen=-1)
DEF x, y, z, a, b
IF strlen=0 THEN RETURN TRUE
z:=Min(StrLen(s),StrLen(t))
IF strlen>0 THEN z:=Min(strlen-1,z)
FOR x:=0 TO z
a:=s[x]
b:=t[x]
IF a>=65 AND (a<=90) THEN a:=a OR 32
IF b>=65 AND (b<=90) THEN b:=b OR 32
EXIT y:=a<>b

ENDFOR
ENDPROC y=0
-
PROC allocStr(z)
DEF x:PTR TO INT
IF x:=allocMem(z+5)
x[0]:=z
x[1]:=0
x[2]:=0
z:=x+4
z[x[0]]:=0
RETURN z

ENDIF
ENDPROC NIL
-
PROC freeStr(z) IS freeMem(z-4)
-
#ifdef AMIGA
-
PROC allocMem(z) IS New(z)
PROC freeMem(z) IS Dispose(z)
PROC putStr(s) IS WriteF(’\s’,s)
PROC sendS(a,z) IS Write(stdout,a,z)
PROC putS(x) IS WriteF(’\c’,x)
-
PROC forbid()
MOVEQ #TRUE,D0
MOVE.L SYSLIST,A6
JSR FSingleTask(A6)
ENDPROC
-
PROC permit()
MOVEQ #FALSE,D0
MOVE.L SYSLIST,A6
JSR FSingleTask(A6)
ENDPROC
-
PROC getA()
DEF ms:PTR TO intuimessage
IF ms:=GetMsg(w.userport)

158

x:=ms.code
ReplyMsg(ms)
RETURN x

ENDIF
ENDPROC -1
-
PROC readS(a,z)
WHILE z
a[]++:=getS()
DEC z

ENDWHILE
ENDPROC
-
PROC getS()
DEF x
WHILE (x:=WaitIMessage(w))=$400
x:=MsgCode()
IF x>=80 AND (x<=89) -> using F-keys in the input window for TRAPs :)
x:=x-80
SELECT x
CASE 0 ; TRAP #0
CASE 1 ; TRAP #1
CASE 2 ; TRAP #2
CASE 3 ; TRAP #3
CASE 4 ; TRAP #4
CASE 5 ; TRAP #5
CASE 6 ; TRAP #6
CASE 7 ; TRAP #7
CASE 8 ; TRAP #8
CASE 9 ; TRAP #9
ENDSELECT
ENDIF

ENDWHILE
SELECT x
CASE $200
CloseW(w)
CleanUp()

CASE $200000
lastchar:=-2
RETURN MsgCode()

ENDSELECT
ENDPROC
-
trapcode:
SUBI.L #32,(A7)
ADDQ.L #4,A7
CMPI.L #0,-4(A7)
BNE.S tcNot0
MOVE.L D0,x
MOVEM.L D0-D7/A1-A6,-(A7)
x:=allocMem(x)
MOVEA.L x,A0
MOVEM.L (A7)+,D0-D7/A1-A6
RTE

tcNot0:
CMPI.L #1,-4(A7)
BNE.S tcNot1
MOVE.L A0,x
MOVEM.L D0-D7/A0-A6,-(A7)
freeMem(x)
MOVEM.L (A7)+,D0-D7/A0-A6
RTE

tcNot1:
CMPI.L #3,-4(A7)
BNE.S tcNot3
JMP tReSchedule(PC)

tcNot3:
CMPI.L #4,-4(A7)
BNE.S tcNot4
JMP tStop(PC)

tcNot4:
CMPI.L #6,-4(A7)
BNE.S tcNot6
JMP tDebug(PC)

tcNot6:
CMPI.L #7,-4(A7)
BNE.S tcNot7
JMP tUserTrap(PC)

tcNot7:
CMPI.L #8,-4(A7)
BNE.S tcNot8
JMP incLed(PC)

tcNot8:
CMPI.L #9,-4(A7)
BNE.S tcNot9
JMP int3(PC)

tcNot9:
RTE
-
tReSchedule:
tStop:
tDebug:
tUserTrap:
int3:
RTE
-
delay:
event:
connect:
initSerial:
setSerSpeed:
getSerInfo:
_sendS:
_sendA:
_getS:
_getA:
_readS:

159

flushTx:
flushRx:
strCmp:
_strCmpNC:
strLen:
strCopy:
str2Int:
int2Dec:
compFreeList:
memInfo:
memCheck:
_storeProg:
_singleTask:
signal:
block:
freeSignal:
allocSignal:
RTS
-
_putStr:
MOVEM.L D0-D7/A0-A6,-(A7)
MOVE.L A0,x
putStr(x)
MOVEM.L (A7)+,D0-D7/A0-A6
RTS
-
_putS:
MOVEM.L D0-D7/A0-A6,-(A7)
MOVE.L D0,x
putS(x)
MOVEM.L (A7)+,D0-D7/A0-A6
RTS
-
int2Hex:
MOVEM.L D0-D2/A0,-(A7)
MOVE.L D0,D1
MOVEQ #7,D2
i2hLoop:
ROL.L #4,D1
MOVE.B D1,D0
ANDI.B #$f,D0
CMPI.B #9,D0
BGT.S i2hAPlus
ADDI.B #"0",D0
BRA.S i2hDone

i2hAPlus:
ADDI.B #"A"-10,D0

i2hDone:
CMPA.L #0,A0
BEQ.S i2hSerial
MOVE.B D0,(A0)+
DBRA D2,i2hLoop

i2hSerial:
BSR _putS

DBRA D2,i2hLoop
MOVEM.L (A7)+,D0-D2/A0
RTS
-
incLed:
BCHG.B #1,$BFE001
RTS
-
getEnvToA6:
MOVE.L envvars,A6
RTS
-
JMP delay(PC) ; NOP
JMP event(PC) ; NOP
JMP connect(PC) ; NOP
JMP initSerial(PC) ; NOP
JMP setSerSpeed(PC) ; NOP
JMP getSerInfo(PC) ; NOP
JMP _sendS(PC) ; NOP
JMP _sendA(PC) ; NOP
JMP _getS(PC) ; NOP
JMP _getA(PC) ; NOP
JMP _putS(PC) ; NOP
JMP _readS(PC) ; NOP
JMP flushTx(PC) ; NOP
JMP flushRx(PC) ; NOP
JMP _putStr(PC) ; NOP
JMP strCmp(PC) ; NOP
JMP _strCmpNC(PC) ; NOP
JMP strLen(PC) ; NOP
JMP strCopy(PC) ; NOP
JMP str2Int(PC) ; NOP
JMP int2Dec(PC) ; NOP
JMP int2Hex(PC) ; NOP
JMP compFreeList(PC) ; NOP
JMP memInfo(PC) ; NOP
JMP memCheck(PC) ; NOP
JMP _storeProg(PC) ; NOP
JMP getEnvToA6(PC) ; NOP
JMP incLed(PC) ; NOP
JMP _singleTask(PC) ; NOP
JMP signal(PC) ; NOP
JMP block(PC) ; NOP
JMP freeSignal(PC) ; NOP
JMP allocSignal(PC) ; NOP
syslist:
LONG $DEADBEEF

160

-
#endif
-
#ifdef EXOS
a4: LONG 0
-
PROC allocMem(z)
MOVE.L z,D0
TRAP #TAllocMem
MOVE.L A0,z
ENDPROC z
-
PROC freeMem(z)
MOVE.L z,A0
TRAP #TFreeMem
ENDPROC
-
PROC forbid()
MOVEQ #TRUE,D0
MOVE.L SYSLIST,A6
JSR FSingleTask(A6)
ENDPROC
-
PROC permit()
MOVEQ #FALSE,D0
MOVE.L SYSLIST,A6
JSR FSingleTask(A6)
ENDPROC
-
PROC putStr(s)
MOVE.L s,A0
MOVE.L SYSLIST,A6
JSR FPutStr(A6)
ENDPROC
-
PROC sendS(a,z)
MOVE.L a,A0
MOVE.L z,D0
MOVE.L SYSLIST,A6
JSR FSendS(A6)
ENDPROC
-
PROC readS(a,z)
MOVE.L a,A0
MOVE.L z,D0
MOVE.L SYSLIST,A6
JSR FReadS(A6)
ENDPROC
-
PROC getS()
MOVE.L SYSLIST,A6
JSR FGetS(A6)
ENDPROC D0
-
PROC getA()
MOVE.L SYSLIST,A6
JSR FGetA(A6)
ENDPROC D0
-
PROC putS(x)
MOVE.L x,D0
MOVE.L SYSLIST,A6
JSR FPutS(A6)
ENDPROC
-
#endif
-
PROC inithelp()
x:=0
help[x++].h:=’"clear <entry>": If <entry> is a program its stack will\n’ +

’be deallocated, program counter reset, signals deallocated\n’ +
’and its status set to "New". If <entry> is a data block its\n’ +
’contents will be set to zero. Scripts cannot be cleared.’

-
help[x++].h:=’"cls": Clear screen. This command is supposed to clear\n’ +

’the shell in the other end. This command is equal to\n’ +
’"echo $9b489b4a LONG".’

-
help[x++].h:=’"delete <entry>": Remove an entry from the list.’
-
help[x++].h:=’"echo <data|ON|OFF> [BYTE|WORD|LONG]": Echoes the binary\n’ +

’value of <data> directly back to the serial port. Practical\n’ +
’if you need to see how the shell in the other end reacts to\n’ +
’a specific byte or set of bytes.\n’ +
’<data> is a number of size BYTE, WORD or LONG.\n’ +
’The keywords ON or OFF can be used instead of a value to\n’ +
’turn global echo on or off. In global echo mode everything\n’ +
’written will be echoed back as hex numbers instead of the\n’ +
’actual text typed in. Practical if you want to know exactly\n’ +
’what is typed in. Commands will be parsed as usual,\n’ +
’including "echo".’

-
help[x++].h:=’"exit": Exit the terminal. You will most likely end up in\n’ +

’the primitive console. No global resources like the list of\n’ +
’programs and data will be freed so if the terminal is\n’ +
’restarted it will resume management of its data where it\n’ +
’left off.’

-
help[x].h:= ’"help|? [command]": Displays this text. Type "help >command<"\n’ +

’to get help about a specific command. [option] means that\n’ +
’this is an optional parameter. <param> means that this is a\n’ +
’mandatory parameter (not to be confused with >this< which\n’ +
’is only an emphasis of a non-keyword option in the text.\n\n’

help[x++].h2:=’UPPERCASE means that it is a keyword that should litterary\n’ +

161

’be in the command line. lowercase means that it should be\n’ +
’substituted with a name or number.\n’ +
’Numbers can be either decimal, $hexadecimal or %binary.\n’ +
’BYTE means 8 bits, WORD means 16 bits, LONG means 32 bits,\n’ +
’STR means a string of characters than can be of variable\n’ +
’length depending on if it is used as an input or output.\n’ +
’<parameters> may not be swapped around but need to be in\n’ +
’the specific order the command template shows.\n’ +
’[KEYWORDS] may be swapped with other [KEYWORDS] but not\n’ +
’with [options].’

-
help[x++].h:=’"list [entry]": List all programs and data blocks currently\n’ +

’in memory and their status. If the parameter >entry< is\n’ +
’given only this entry will be listed. In this case more\n’ +
’information will be given too.’

-
help[x].h:= ’"load [S19|BINARY] [PROGRAM|DATA|SCRIPT] [name]": Put the\n’ +

’terminal in a ready mode to accept a load command.\n’ +
’Option S19 is default and makes "load" wait for an "S"\n’ +
’which signals the first record of an S19 file.\n’ +
’Option BINARY will make load wait for 4 bytes of binary\n’ +
’length and then this number of binary bytes to be\n’ +
’downloaded. Be careful not to enter text when the four\n’ +
’size-bytes are requested as this will result in a very big\n’ +
’32-bit number and the terminal will not stop reading until\n’ +
’it has received this very large amount of data!\n\n’

help[x++].h2:=’The option PROGRAM is default and will make "load" treat\n’ +
’the downloaded data as an executable program. If the\n’ +
’option DATA is used, the loaded file will be treated as\n’ +
’non-executable data usable by some other program.\n’ +
’The option SCRIPT will make the terminal treat the data as\n’ +
’a shell script executable by the terminal.\n\n’ +
’The option >name< will give a name to the data, otherwise\n’+
’a default Pnum, Dnum or Snum name will be given.’

-
help[x++].h:=’"meminfo [MEMHDL] [VERBOSE] [COMPRESS] [CHECK]": Display\n’ +

’memory information. Without any parameter "meminfo" will\n’ +
’display the amount of free memory and the largest free\n’ +
’block. With the parameter MEMHDL "meminfo" will display\n’+
’details about the memory handler, such as how many\n’+
’allocation have been made and how many more can be made\n’+
’using the current buffer. Also the address of the buffer.\n’+
’If VERBOSE is added a complete list of the memory buffer\n’+
’will be printed.\n’ +
’The keyword COMPRESS will cause the memory handler to\n’ +
’attemt to optimize the free list by grouping all adjacent\n’ +
’free blocks together. If COMPRESS is given together with\n’ +
’any other keyword the compression will be done first.\n’ +
’CHECK will perform a memory check and tell you about eny\n’ +
’possibly physical errors found.’

-
help[x++].h:=’"peek <address> [BYTE|WORD|LONG|STR] [numbytes]": Look at\n’ +

’the contents of a memory address. Specify the format you\n’ +
’want the contents displayed in using BYTE, WORD or LONG.\n’ +
’BYTE is default. Use >numbytes< to specify how many number\n’ +
’of bytes you want to display rounded up to the nearest word\n’ +
’size. When >numbytes< is not specified one word will be\n’ +
’displayed in all number systems, else a hex display with\n’ +
’addresses will be displayed. <address> can also be one of\n’ +
’the keywords DIP or MCR to make it easier to address those\n’ +
’registers on the motherboard. Size and >numbytes< will be\n’ +
’ignored and BYTE is the word size that will be used.’

-
help[x++].h:=’"poke <address> <data> [BYTE|WORD|LONG|STR]": Change a word\n’ +

’in the memory space. Use one of the keywords BYTE, WORD,\n’ +
’LONG or STR to specify the word size of >data<. BYTE is\n’ +
’default. If STR is used as word size the actual length of\n’ +
’the string typed will be written to the address given\n’ +
’excluding a null-termination.\n’ +
’>address< can also be one of the keywords LED, MCR or LFC\n’ +
’to make it easier to write to the corrsponding specific\n’ +
’motherboard registers. Size and >numbytes< will then be\n’ +
’ignored and BYTE is the word size that will be used.’

-
help[x++].h:=’"rename <oldname> <newname>": Rename an entry in the list.’
-
help[x++].h:=’"run <programname> [stack]": Start the execution of a\n’ +

’program that has not yet been executed, has been stopped or\n’ +
’finished executing. The option >stack< is a positive number\n’+
’used as stack size if you want to override the default 1kB\n’+
’of stackspace. This option can not be used when restarting\n’ +
’a stopped program, only for new and finished programs.’

-
help[x].h:= ’"speed [MIPS] [CPU [value]] [SERIAL [div]]": Display and/or\n’ +

’set the speed of the CPU and the serial port or meassure\n’ +
’the speed of the CPU in Million Instructions Per Second.\n\n’ +
’Without any arguments "speed" will display the current\n’ +
’speed settings for the CPU and the serial port. If the\n’ +
’keyword MIPS is used the performance of the CPU will be\n’ +
’meassured. With the keyword CPU the speed of the CPU clock\n’ +
’can be set by giving it a value between 1 and 6 where 5 is\n’ +

162

’the fastest, 20MHz and 6 is an external clock.\n\n’
help[x++].h2:=’The keyword SERIAL will allow you to set the speed of the\n’ +

’serial port. The speed is set by specifying a divisor value\n’ +
’that is equal to 15360000/16/<your preferred speed>. You\n’ +
’can also use one of the predefined constants that will be\n’ +
’printed if you leave out the >div< parameter.’

-
help[x++].h:=’"stop <programname> [FORCE]": Stop a running program.\n’ +

’Use FORCE to halt a program that doesn\at respond to Ctrl-C.\n’ +
’A program stopped with FORCE can be restarted at the exact\n’ +
’point it was stopped by using run again. Without FORCE\n’ +
’"stop" will just send a Ctrl-C signal to the process.’

ENDPROC
-
finalReturn:
MOVE.L A6,-(A7)
MOVE.L 4,A6
JSR FGetEnvToA6(A6)
MOVEA.L ENV_KERNEL(A6),A6
BSET.B #KS_INHIBIT,KRN_STATUS(A6)
MOVEA.L (A6),A6
MOVE.B #PS_FINISHED,PCB_STATUS(A6)
MOVE.L (A7)+,A6
TRAP #TReSchedule
RTS ->The same process will never return

163

