

 Computer Science

Bachelor’s Project

2004 : 23

Christer Hermansson

Fredrik Malmqvist

regTUX

A Test Tool for Command Line Interface

Regression Test

© 2004 The author(s) and Karlstad University

regTUX

A Test Tool for Command Line Interface

Regression Test

Christer Hermansson

Fredrik Malmqvist

 iii

This report is submitted in partial fulfillment of the requirements for the

Bachelor’s degree in Computer Science. All material in this report which is

not my own work has been identified and no material is included for which

a degree has previously been conferred.

Christer Hermansson

Fredrik Malmqvist

Approved, 2004-06-03

Advisor: Katarina Asplund

Examiner: Donald F. Ross

 v

Abstract

Ericsson AB develops GSN nodes, which target the GPRS and UMTS networks. In order to

facilitate the development process, they requested a test tool built. This tool, later named

regTUX, should be used in order to check input/output consistency on the nodes in question.

Having the possibility to run readily made test files via the tool would increase the efficiency

of the implementation process substantially. The purpose of these files is to inform the

developers of any changes within the node in a fast and controlled way. It was decided that

the tool should be built in Java with the purpose of making it as modular as possible. Having a

stable tool that would not cause problems on the nodes was also a part of the requirements

from Ericsson. The thesis presents the construction of regTUX, as well as a deeper discussion

regarding the usage of the tool and its interface. It also accounts for the primary concerns that

arose during the implementation process with special regards to Java functionality.

Furthermore, the thesis discusses the creation of tests for a specific area of Ericsson’s

business, namely Performance Monitoring. A presentation of the test suites constructed

follows a brief introduction to the area itself. The main focus of the thesis, however, is the

construction of the regTUX tool. This tool enables Ericsson to run the pre-constructed tests

within their internally developed environments, as well as on the actual nodes. The tool can

also easily be distributed to third-party software developers.

 vi

Contents

1 Introduction ... 1

2 Purpose... 3
2.1 Test Tool.. 3

2.2 Test Suites.. 3

3 Background.. 5
3.1 Performance Monitoring.. 5

4 Prerequisites and Requirements .. 7
4.1 Requirement Specification... 7

4.1.1 Requirement One
4.1.2 Requirement Two
4.1.3 Requirement Three
4.1.4 Requirement Four
4.1.5 Requirement Five
4.1.6 Requirement Six
4.1.7 Informal Requirements

4.2 Language Requirements .. 10

5 Program Construction .. 12
5.1 Programming Environment ... 12

5.2 Program Design ... 13

5.3 Class description.. 14
5.3.1 TestTool
5.3.2 InputHandler
5.3.3 CmdListen
5.3.4 InputFileReader
5.3.5 TestFileReader
5.3.6 FileChecker
5.3.7 TestFileWriter
5.3.8 CmdExecute
5.3.9 CompareContainer
5.3.10 Interruptor
5.3.11 OutputStreamHandler
5.3.12 Config
5.3.13 Print

5.4 Program Usage... 16

5.5 Program Modes.. 17

 vii

5.5.1 Mode One: Record Single Commands
5.5.2 Mode Two: Record Lists of Commands
5.5.3 Mode Three: Compare Results
5.5.4 Mode Four: Compare Results with Command File
5.5.5 Mode Five: Printing Input from Test File

6 Tool Interface .. 20
6.1 Normal Function.. 20

6.1.1 Task One: Build Test Files via Prompt
6.1.2 Task Two: Build Test Files from Command Files
6.1.3 Task Three: Check Test File for Inconsistency
6.1.4 Task Four: Check Test File via Command File
6.1.5 Task Five: Print All Input in Command File
6.1.6 Task Six: Print Usage Manual

6.2 Control Structures.. 28
6.2.1 Interactive Mode
6.2.2 File Incompatibilities
6.2.3 File Access

6.3 Parameter Error Handling.. 31

7 Conclusions .. 32

References ... 34

A Class Diagram.. 35

B Usage Text .. 37

 viii

List of Figures

Figure 2:1: A command file for test suite. .. 4

Figure 5:1: Snapshot of the implementation process. ... 13

Figure 5:2: Example of a command file and a test file. .. 16

Figure 6:1: Test tool shell script.. 20

Figure 6:2: Task one interface, build test file via prompt. .. 21

Figure 6:3: Task two interface, build test file from command file. 23

Figure 6:4: Task three interface, check test file for inconsistency.................................... 24

Figure 6:5: Task four interface, check test file via command file..................................... 25

Figure 6:6: Task five interface, print all input in command file 27

Figure 6:7: Interactive mode interface. ... 29

Figure 6:8: Test file header. .. 29

 1

1 Introduction

Ericsson AB develops so-called GSN nodes, which target both the GPRS1[6] and UMTS2[12]

networks. Via these nodes, Ericsson is able to run its implementations of the mentioned

networks. In order to facilitate the development of such nodes, Ericsson AB has internally

developed a Command Line Interface (CLI) to be run in their Solaris environment. Being a

part of the nodes themselves, this CLI has been primarily developed for the potential

customers of the nodes. This CLI resembles the shell prompt in a normal UNIX environment,

with the difference that the CLI is configured for different commands than the normal shell.

These commands manipulate data within the various nodes in different ways. When inputting

data into their nodes via the CLI, the node returns output of different kinds. The developers at

Ericsson would like to be able to notice any change in behavior within these nodes in an easy

fashion. They therefore request a test tool built that has the ability to record input and result

from the user. We named this tool regTUX (REGression Tool for UniX). They would like the

tool to be able to inform them about any changes that might have occurred after a system

upgrade. It is also required of the tool that it produces documentation that is easily read by

people involved in the development process, which is why any produced files should adhere

to XML-standards[5]. Because of the possibly vast amount of data that the program should be

able to handle, Ericsson has also requested that the program should take its information from

readily made files. Although they would like the possibility to input commands one at the

time, it is vital for their every day use that data can be inputted via files. These files also

enable the company to build test suites for a particular area of their production. Using these

files to check the consistency of their nodes should give them an easier development process,

as far as debugging goes.

Ericsson also wished that a test suite for one of their development areas, Performance

Monitoring (PM)[2], should be constructed. This should be done by using the program in

order to run consistency tests directly on their target environment in Gothenburg. Using a

specification of Performance Monitoring, they asked us to build this test suite according to

what we feel are the areas within PM that ought to be included in such a consistency check.

1 General Packet Radio Service. Standard for sending data via packet-switched mobile networks.
2 Universal Mobile Telecommunications System. European standard for the commonly recognized 3G networks.

 2

This task enabled us to use our test tool in a practical way to get a better feeling of how it will

work in real life. Thus, this task also provided us with a hint of how the test tool could be

improved. For instance, the different printouts could be refined, which greatly increased the

tool’s functionality. At first, a number of test suites had to be constructed in order to

accomplish the task. PM is a wide area and there was not enough time for creating test suites

for the whole area of PM. But that was not the purpose of this task even if Ericsson would

have appreciated it.

Each packet switching node within the GPRS and UMTS networks are configured by the

above mentioned CLI. Each of the available CLI commands corresponds to a given syntax

consisting of a command name, a parameter name3 as well as a parameter value4. When

inputting these into the system, the system outputs either the requested information or an error

message. However, when the system is upgraded, the CLI might change slightly with regards

to input/output consistency. This is a problem not only for Ericsson, but also for companies

developing third-party software to be run on the nodes in question. The tool should be able to

reflect possible changes via an input file consisting of commands to be run on the nodes. The

tool will then inform the user of any and all changes related to the commands in said file. This

outputted file will be useful when debugging the application, as it is readable in a normal text

editor. Being so, it enables the developer to find inconsistencies in the program in an easy

fashion.

This thesis consists of seven Sections and two appendices. After this introduction follows

Section 2, which discusses the purpose with the thesis work. Section 3 is a brief overview of

Performance Monitoring, which is the area of the tests mentioned in this Section. Section 4

presents all prerequisites and requirements that Ericsson put forward during the course of the

project. Following that Section is a detailed discussion of the structure of the tool, called

Program Construction, which is denoted Section 5. Section 6 introduces the program

interface and displays examples of how the program looks when running. Finally, Section 7 is

called Implementation Process, and it outlines the work carried out in order to complete the

tool.

Appendix A contains a class diagram of all the classes and the following appendix,

Appendix B, shows the usage text for the program.

3 An instruction to the tool denoting the task to be performed. See PARAMETERS in appendix B.
4 A file required by the task to be performed. See FILETYPES in appendix B.

 3

2 Purpose

The purpose of the thesis work was to build a test tool for command line interface regression

test. The first part of this Section describes the purpose of the tool itself, while the following

Section accounts for the purpose of the test suites we were asked to build.

2.1 Test Tool

The purpose of the test tool has been briefly described in the introduction. The introduction

states that the tool should be developed in order to facilitate the development of a GPRS or

UMTS node via Ericsson AB’s internally developed Command Line Interface. Ericsson felt

that it would be a useful part of their development to be able to establish if their CLI had

changed between implementations. By using the tool to ensure this, Ericsson can also make

certain that the underlying functionality of the nodes has not been altered. In order to do this,

they requested that a tool be developed that could compare CLI-output from a given input.

Apart from using this tool in order to facilitate their own development, the tool can be used

to aid developers of third-party software. Generally speaking, developers of third-party

software implement their products expecting very specific output from the nodes in question.

Although they would not benefit from the tool in the same way as Ericsson would, they would

still find it very useful. While Ericsson plan to use the tool in order to check their

implementation, as mentioned in Section 1, a third-party developer would use the tool

somewhat differently. Ericsson re-implements parts of their nodes on occasion. They make

these changes for a number of reasons; perhaps the most common one is in order to increase

the nodes’ performance. When such a release reaches the third-party developer, they would

like to make sure that the output they expect has not been changed. It is important to note,

however, that the third-party software developers would not use the tool themselves. Ericsson

would ensure that the necessary information would be available for such developers.

2.2 Test Suites

The test suites mentioned in Section 1 was primarily created in order to familiarize us with the

usage of the program itself. Constructing these tests enabled us to understand more about the

program’s interface, and gave us the opportunity to optimize the interface itself.

 4

A secondary reason for creating these test files was to give Ericsson a small test suite to

work with, hence allowing them to evaluate the tool upon its completion. Regardless of the

fact that the test themselves would most likely be less important for Ericsson’s development,

they would carry significance when assessing the importance of the program to their

development. Below follows an example of a command file that carries out a test upon the

node. The resulting test file has been checked according to a test specification, and the test file

can be used in a consistency check. This test file does a simple check of which commands are

available to the user of the node interface. The origins of these tests can be found in an

internal document at Ericsson[3], which specifies tests to be run upon the nodes in question.

NDPGSN_1_0_R2E02_040414201354
Test_id: PXM7/A1.1

Purpose:
Check that the Node doesn't have any set command
for Measurement type. According to the requirement
WPP-PM-007, it must not be possible to edit the
settings for a measurement type.

Expected result:
A list of all commands, sorted by application.
This list must not include any set commands for
measurement types.

Received result:
Expected. Test file adheres to standard.

gsh list_sort_cmds

Figure 2:1: A command file for test suite.

A third reason for creating the test files also arose at the end of the project. Since Ericsson

requested of us that we hold a presentation of the tool in early June, we also needed some data

to use in this presentation. Although the presentation does not constitute a physical

requirement on the tool itself, it is nonetheless an important part of the development process.

It is important that we are able to give a presentation to Ericsson’s staff, thereby enabling

them to put the tool to use in their development process.

 5

3 Background

This Section gives an introduction to Performance Monitoring, the area for which Ericsson

required the test suites to be built. Although Ericsson could have chosen almost any area for

which the tests should be constructed, they decided to choose Performance Monitoring. We

therefore decided to give a brief introduction of the chosen area in this Section.

3.1 Performance Monitoring

Ericsson is giving its operators support to monitor the performance of a packet switching

node, which means to set up measurement jobs on different counters (named gauges and

counters) in the node. When a measurement job is active the counter values of the

measurement will be collected for survey. All types of measurement jobs can be configured

via the Command Line Interface (CLI), and from that interface operators can do the

following:

• List all measurement types

• Modify control values for measurement types

• Create, delete, list and copy measurement jobs

• Suspend and resume measurement jobs

• Demand logging of counter’s and gauge’s values to file

A graphical user interface, called PXM[2] also exists for configuring the measurements.

However, any work on this graphical user interface is out of scope of this thesis.

Consequently, we were not asked to implement any graphical user interface on the test tool

itself.

By using the counters in this node, the user is given the possibility to monitor all traffic on

the node. Performance Monitoring provides the possibility to configure in order to achieve

 6

optimal performance. When setting up counters, the user is left with a vast amount of

available statistical monitoring. The user has the option of setting alarms to go off when, for

instance, values exceed predefined boundaries. The options for presenting the statistics to the

user are also substantial, thus providing easily overviewed data regarding the node’s

performance.

 7

4 Prerequisites and Requirements

In order for Ericsson to find the tool useful it had to conform to a number of requirements. As

is common when developing a product, these requirements were given to us in a formal

request from the company. This Section of the report aims to outline these requirements in a

fashion that is more easily overviewed.

4.1 Requirement Specification

This Section presents the requirements that Ericsson had on the tool. Each subsection

discusses one requirement, as well as states the formal requirement from Ericsson. This

formal requirement is stated exactly as it was stated in the original requirement specification.

4.1.1 Requirement One

Firstly, Ericsson had to stipulate which target environment the tool was to be run upon. This

formed into requirement one:

The tool shall run in a Solaris environment. The tool shall behave as a normal UNIX command.

This requirement forced us to investigate the target environment at TietoEnator, where

we were to perform the development process.

4.1.2 Requirement Two

Because of the vast amount of data that is to be processed by the tool, it is important that the

user has the possibility to input data via pre-constructed files. This also enables the company

to utilize readily made test suites, whose purpose is to run conforming tests on a specific part

of the developed system.

 8

The tool shall use a file as input. The file shall include command name, parameter name,

parameter value, output and return code. The file shall be possible to include comments. The

input file shall be possible to view and edit with a normal text editor.

This file, although easily overviewed, is not necessarily easy to construct. Therefore, it was

desired from the start that the program could construct such a file, given the commands that

were to be included in the file. At this point, it became crucial to distinguish between a test

file and a command file. It was stipulated that a test file should denote a file, normally created

by the program, containing all of the information mentioned in the second requirement. This

file should adhere to common XML-standard, in order for a user to easily understand it. A

command file, however, was decided to represent a file containing only commands that were

to be executed by the test tool. In order to facilitate the reading of these files, we also agreed

to include support for comments as well as for blank lines.

4.1.3 Requirement Three

Apart from the possibility to use a test file as input, as in Section 4.1.2, Ericsson asked for the

possibility to input one command at the time, as one might do at a normal UNIX-prompt. This

feature should also include the possibility to store these commands in a command file, in the

requirement called text file.

The tool shall be able to create an initial input file. A text file containing CLI commands shall

be a possible source for creating an input file. An optional feature might be to “record” a

command sequence from the CLI interface and generate an input file.

Meeting this requirement meant that the tool was to be able to build a test file from

inputted commands, as previously stated in Section 4.1.2.

4.1.4 Requirement Four

It is also important for Ericsson to stipulate the conditions for running the program. Since it is

supposed to be used in order to test their internally developed nodes, they are interested in

very specific information. When using the tool to test an application, the developer is

 9

interested in knowing what, if anything, went wrong, and why. In order to assist the

development process, and make it a smoother one, it is vital that the tool presents its

information in a useful way. At the earlier stages of this project, it was not entirely clear how

this was to be done. However, after communicating closely with people at Ericsson, and after

having tested the program on their nodes, we feel that we now know how the developers want

this information presented to them.

The tool shall evaluate each CLI command output with the output specified in the input file. If

the evaluation results in a difference the user shall be notified with the test case and difference.

4.1.5 Requirement Five

Standard usage of the tool is to run the tool with a test file as input. The tool extracts the

commands from the file, executes these in the target environment, and compares the results

with the file. The user has little control over the program flow at this point in the process.

Ericsson therefore requested the possibility to run the program in what they call interactive

mode. Interactive mode means that the user can administrate the handling of the files

themselves. If the program finds a difference somewhere in the program, the user is alerted in

the usual way. What differs, however, is that the tool prompts for information on how to

continue. This mode enables developers to filter out normal deviations from the output in an

easy fashion.

The tool shall be possible to run in an interactive mode. By interactive mode means that the user

shall be able to take a decision how to continue at every difference. The tool shall not run in

interactive mode as default.

4.1.6 Requirement Six

The requirements in Section 4.1.1 to 4.1.5 were the formal requirements on the tool from the

beginning. However, Ericsson had one more requirement on the tool. Since this tool is to be

run on GPRS-nodes both internally as well as externally, they required that the tool be robust.

 10

The tool could under no circumstances cause a crash on any of the nodes. This meant that we

had to implement the tool with the aspect of security from the very beginning.

The tool shall be easy to use and maintain. The tool shall be robust and give informative and

relevant error messages if something goes wrong.

4.1.7 Informal Requirements

Apart from the requirements in Section 4.1.1 to 4.1.6, Ericsson only demanded that the source

code, the design specification, and a user manual should be delivered to them at the

completion of the project.

4.2 Language Requirements

As far as programming language goes, Ericsson had no specific requirements. They only

required that the tool could be run on their nodes. Instead they requested that we

recommended which programming language to use. We discussed different options regarding

which language was best suited for this particular assignment. We broke the discussion down

to four different options. The reason for choosing between the four following languages was

that we felt familiar with C, C++ and Java, while Erlang[1] is an internal Ericsson language,

which Ericsson recommended that we considered using. However, our recommendations were

as follows:

1. Erlang: We felt that the time required in order to fully comprehend the language

itself would be far too great. Thus, we felt that it would be impossible to perform

the given task within the given time frame if we chose this particular language.

2. C: The biggest advantage with C is that UNIX is written in this language,

enabling us to get closer to the operating system. We believed, however, that we

would get this advantage even if we used C++.

3. C++: Has the advantage mentioned above, plus the added bonus that it gives us

an easier compilation process compared to Java, which is an interpreted

 11

language. Furthermore, C++ enables us to benefit from object-oriented

programming, allowing us to organize the system in a better way. The downside,

nevertheless, is that we would have to build the system completely from the

ground up.

4. Java: This language gives us a vast amount of pre-programmed code. Thus, Java

presents us with the possibility to build the system specified, in a faster and

more secure way. The major downside with Java is that we would have to find a

way to compile the system for the specific operating system. The nodes do not

contain a Java Virtual Machine, thus forcing us to compile for the target

environment only.

Based on the discussion above, we chose to recommend that Java be used for the

development of the tool. Our primary concern was that the nodes do not contain a Java

Virtual Machine, and we did not now whether we could find a native compiler to use.

Ericsson gave us permission to start the development in Java, well aware of the difficulties we

had presented.

After a week of implementation, Ericsson decided to install a Java-plug-in[8] on the nodes,

which gave us the possibility to run the tool on the nodes after all. Unfortunately, the plug-in

was limited to version 1.3, which gave us fewer API-methods to work with than the most

recent API, version 1.4.2[9]. We learned to deal with this situation and decided to use Java as

the primary language for building the tool. We have used the API specification for 1.4.2 as

the primary source of information. However, we have limited us to the use of the methods that

existed in 1.3.

 12

5 Program Construction

This Section presents the way in which we decided to construct the test tool. It accounts for

the different options available to the user, as well as the design itself. The first part of this

Section discusses the programming environment, and the tools used in the development

process. Subsection 2 is an overview of the program design process, after which a Section on

program usage follows.

As mentioned in Section 4.1, there are two types of files in this system, command files and

test files. The command parameters allowed in the tool are all in some way connected to

which of these files are affected. To make it easier to overview the program it has been

separated into five different modes of usage. These modes are the same ones that accounts for

the interface description in Section 6. Each of these modes conforms to one parameter in the

usage text, which can be found in appendix B.

Following the description of the different modes is an overview of the Java classes that

constitute the tool. Each class is only briefly described, while a more detailed description of

how the classes are implemented can be found in appendix A. In appendix B a more detailed

description of how to use the program can be found. This appendix accounts for the usage of

the tool, for instance which parameters can be used with which commands. This usage text is

also incorporated into the program, in order to give the user an quick guide to program usage.

5.1 Programming Environment

It was not specified in the requirement specification which tools to use, thus we had a wide

choice when we were to choose the programming environment. The tools we have used to

complete this project are the following:

• Sun Solaris 5.8 (Operating System)

• Xemacs 21.4.15 (Source Code Editor)[14]

• NetBeans IDE 3.6 (Integrated Development Environment)[10]

• Rational Rose Enterprise Edition (UML Design Tool)[11]

 13

• Microsoft Word (Documentation)

5.2 Program Design

Once the first analysis of the task was finished we generalized it into classes. The most

important parts of the system, such as command executions, command comparison and an

input handler were made into separate classes, namely CmdExecute,

CompareContainer and InputHandler.

Another vital section of the system is file handling and due to the two types of files which

are intended to be a part of the system, we generalized these types into two classes, namely

TestFileReader and InputFileReader. To construct test files we suggested a class

called TestFileWriter.

In order to establish a program, which would not crash during runtime, we generalized a

class Interruptor. This class would be used for termination purposes. In Figure 5.1, a

view over the program at this point in the implementation process is displayed.

Figure 5:1: Snapshot of the implementation process.

During realization of the classes, we considered to construct a class that would divide

responsibility for the classes using file checking to new help classes. Our consideration

resulted in a class called FileChecker.

 14

We suggested to implement a feature were a user can execute single commands in a shell.

This suggestion was accepted, implemented, and became dependent of the same classes as

InputFileReader.

Problems with the returned output from executions, described in Section 7, forced us to

implement a separate thread in order to handle the given execution results.

Late in the implementation process each class printouts were moved to a new class called

Print. This approach made the printouts much easier to manage, which turned out to be

necessary, as is described in Section 7.

The final view of the design is found in Appendix A.

5.3 Class description

This Section presents an overview of the different classes that constitute the program. Each

class is described briefly, and its function is stated.

5.3.1 TestTool

Class TestTool consists of the main function, which initializes the class InputHandler

(5.3.2). The class also contains a method for terminating the allocated resources, thus cleaning

up processes.

5.3.2 InputHandler

The class InputHandler handles any input from the user and switches the execution flow

according to the input. All modes described in Section 5.5 are initialized by this class. All

logic concerning mode 5.5.2 through 5.5.5 is also found here. While the other classes contain

methods that enables them to perform their specific task, this class governs the execution flow

in accordance with the user’s choice. All tasks that have to be performed in order for the

program to do its job are carried out by the logic in this class.

5.3.3 CmdListen

Class CmdListen writes a prompt in which the user can execute and record a single

command through using CmdExecute and TestFileWriter.

 15

5.3.4 InputFileReader

The class InputFileReader reads a command file consisting of CLI commands to be

executed. It can also compare the result of this input with the input stored in a test file.

5.3.5 TestFileReader

Class TestFileReader simply reads a test file and compares different executions in the

file with the current execution.

5.3.6 FileChecker

This class, FileChecker, prompts the user to take action if the file already exists. Also

when the execution of a command proves inconsistent, it provides the user with the possibility

to store differences in a new test file.

5.3.7 TestFileWriter

Class TestFileWriter writes the result of an execution into test files in well-formed

XML.

5.3.8 CmdExecute

CmdExecute is the class that executes commands sent from CmdListen and

InputFileReader. CmdExecute is also responsible for writing output to a test file after

each executed command. This is done via TestFileWriter.

5.3.9 CompareContainer

CompareContainer assists TestFileReader in the comparison phase; this is where

the actual comparison takes place.

5.3.10 Interruptor

Class Interruptor is a separate thread, making sure that the executions terminates safely

within a period of time.

5.3.11 OutputStreamHandler

The class OutputStreamHandler is a separate thread, taking care of the output the

executions produce.

 16

5.3.12 Config

Class Config makes it possible for a user to change specific values such as the maximum

time for executions to run.

5.3.13 Print

The class named Print serves the system with appropriate printouts.

5.4 Program Usage

Usage of the tool varies slightly depending on what kind of information one would like to

receive from the tool itself. However, two main areas of consistency checks can be seen.

Firstly, one can use the tool in order to find out which output is generated given a

collection of inputs. In order to do this, the user provides the tool with what is called a

command file5. This file is run by the tool, which produces a so-called test file6. Figure 3.1

displays an example of a test file and a command file, although the commands used within the

nodes are more complicated than the ones in the example.

Figure 5:2: Example of a command file and a test file.

5 A file consisting of command lines that are to be run by the tool.
6 A file, in XML standard, containing output and return code received from a command execution.

 17

Using a command file to build a test file is useful primarily for building test suites for

different areas of development. Nevertheless, it also has a place at developers of third-party

applications, who can use this feature in order to find out if the interface has changed in any

way concerning the specific commands they use in their applications.

Secondly, the tool has another main feature, mostly used in the development of the nodes.

This feature is to be able to check a test file for consistency. When Ericsson has built test

suites, the company can at a later time use this test file to check its consistency. When giving

the tool a test file as input, the tool runs all commands in the file and checks the returned

output against the output in the file. If any differences are found, the user is notified of these

in a useful manner.

Ericsson spends much time on testing implementations. A simple code change might not

only affect the module whose code has been changed. Therefore they have to go through

related test suites for the product once again for any kind of version update. This is why they

requested a test tool that will make development more time efficient.

5.5 Program Modes

This Section describes the responsibilities of the five modes in the program. For a more

formal description, see appendix B. Also note that some of the modes can be run in interactive

mode. Interactive means that a separate file is created alongside the consistency check. If any

inconsistencies are found, the user will have the choice to save this new test file, which has

the same name as the executed file, with the suffix _versionX. X is the lowest number,

starting at 0, which denotes a file name not already in use.

5.5.1 Mode One: Record Single Commands7

The first mode in the tool, to record single commands, enables the user to execute single

commands in run-time from a shell prompt. Every command that is written will be recorded,

which means that the input, along with the results, will be written to a test file. Even if the

command does not exist, the program will handle the error message. The user inputs a file to

write executions to when running the command as a parameter value. This test file will after

execution contain the given input, the return code and the received output. If the user specifies

 18

an already existing file to write to, the program prompts the user for a decision on how this

situation should be handled. The user’s options are to either overwrite the file, append the

results to the file, or simply to exit the tool. In order to make the file easy to read and easy to

maintain it is structured in well-formed XML.

5.5.2 Mode Two: Record Lists of Commands8

Mode two, record lists of commands, allows a user to build a test suite. Given a file

containing a collection of input, the tool executes one command at a time, in the same fashion

as in mode 1. The results are then written to a test file specified by the user. This mode has the

possibility of taking more than one command file as input, thus building a test file with all the

input from the files.

5.5.3 Mode Three: Compare Results9

When the implementation of a node has been altered, Ericsson would like to check their nodes

for inconsistencies, which is why this mode, compare results, was implemented. In order to

check the consistency from two different executions with the same inputted command an

already generated test file is needed. The test file is traversed and each command is executed

once again. The new output is compared with the old output and if the executions are found to

be inconsistent, the program displays the differences on the screen. By default the program

just displays any inconsistency, but the user also has the possibility of running this mode in

interactive mode (see Section 5.5).

5.5.4 Mode Four: Compare Results with Command File10

If the user wants to check parts of a test files, mode four is used. The mode compares the

results from executing commands from a command file and compares them with what is

stored in a test file. This mode resembles the mode in Section 5.5.3 somewhat, with the

difference that the tool takes a command file and compares the execution with an already

existing test file. This mode can also be run in interactive mode.

7 Conforms to parameter -record.
8 Conforms to parameter -buildfile.
9 Conforms to parameter -check.
10 Conforms to parameter -compare.

 19

5.5.5 Mode Five: Printing Input from Test File11

The last mode is a simple printout function, supporting the user with the possibility to display

all input from a generated test file. This feature is needed due to the vast amount of

information that can be stored in a test file. Listing the input found in such a file can be

interesting for debugging purposes.

11 Conforms to parameter -printinput.

 20

6 Tool Interface

This Section refers to the requirements from Section 4.1 in order to make the reader familiar

with the program’s interface. The Section is divided into three main parts: Normal function,

control structures and parameter error handling. The control structure Section also discusses

the only program option, namely to run the tool in interactive mode. Note that the tool uses a

shell script called tt in order to launch the program into the Java Virtual Machine (JVM).

This shell script simply starts the tool itself by taking the parameters inputted and calling the

class TestTool. The script has only the following two lines of code:

#!/bin/sh
java -jar tt.jar $@

Figure 6:1: Test tool shell script.

The design of the program, which enables this interface to function, is further presented in

Section 5. The five modes presented in this chapter are also further explained in Section 5.5.

6.1 Normal Function

As all software, the tool expects the user to enter input in a certain way. If the user conforms

to these rules a specific result can be expected. If the user does not, the program handles

resulting errors. This Section discusses those cases in which the user has entered the input in

accordance with the usage text. In this Section it is also presupposed that there are no

conflicts with existing files. In order to read about such conflicts, see Section 6.2.

6.1.1 Task One: Build Test Files via Prompt

The first task required of the program can be derived from the latter part of requirement three

in Section 4.1.3.

 21

An optional feature might be to “record” a command sequence from the CLI interface and

generate an input file.

This requirement leads to the first task for the tool, to record the result of a single

command. The user enables this by inputting the following command at the prompt:

tt -record fileName

This command presents the user with a prompt in which it is possible to enter commands

that are to be executed. The parameter value fileName denotes the test file where the results

are to be saved. In accordance with Ericsson’s wishes, the result of the command is printed

both to a test file, and to the screen. Printing to the screen enables the user to see if something

is inconsistent in an easier fashion. Otherwise the user would have had to open the test file

after each command. Below you can find an example of a user running this task. The user

executes one command, which java, and then exits the program by typing exit at the

prompt.

seksux025+94> ./tt -record fileName

regTUX - Version 1.0

Input commands to execute, 'exit' terminates test tool.
regTUX>which java
<OUTPUT>
 /usr/bin/java
</OUTPUT>
regTUX>exit
bye...

seksux025+95>

Figure 6:2: Task one interface, build test file via prompt.

 22

6.1.2 Task Two: Build Test Files from Command Files

The second task required of the program can be derived from the first part of requirement

three in Section 4.1.3.

 A text file containing CLI commands shall be a possible source for creating an input file.

In order to accommodate this requirement, a second mode had to be created. This mode,

record a list of commands, enables the user to input a command file into the program in order

to build a test file. The program executes all commands in the file and writes the result to a

test file. The syntax for starting this mode is:

tt -buildfile testFile commandFiles

When using this command, the user is required to supply at least two parameters. The first

one denotes the test file that the results are to be written to, while the following parameter

values represent the command files containing all the commands to be executed. After

conferring with Ericsson it was decided that the result of each execution should not be written

to the screen. This decision was reached because the command files can potentially become

rather large, and the program execution would be very hard to monitor in such cases. In the

example below the user inputs two command files with a number of commands into the tool.

 23

seksux025+95> ./tt -buildfile testFile cFile1 cFile2

regTUX - Version 1.0

**
Processing: [cFile1]
File: [cFile1] completed

**
Processing: [cFile2]
File: [cFile2] completed

seksux025+96>

Figure 6:3: Task two interface, build test file from command file.

When handling files, the program has to perform checks on these files. For instance, it is

not desirable that a file is overwritten without the users consent. For more information on this

see Section 6.2, Control Structures.

6.1.3 Task Three: Check Test File for Inconsistency

The third task, as well as the fourth, required of the program can be derived from the

requirement four in Section 4.1.4. This Section presents the third task, namely to check an

already existing test file for inconsistencies.

The tool shall evaluate each CLI command output with the output specified in the input file. If

the evaluation results in a difference the user shall be notified with the test case and difference.

file.

In order to do this, the program executes all input found in a test file. This collection is

the same as the result of printing all input from a file, presented in Section 6.1.5. After

the execution, the tool compares the received result with the result that has previously

been stored in the file. To activate this mode the user types:

tt -check fileNames

 24

The parameter values in this command are test files the user wishes to check. In order

to facilitate for the user regarding the messages that appear on the screen, a new tag was

introduced. This inconsistency tag only exists on-screen. An example can be seen below.

In the example the user checks two files for inconsistencies. The first file is consistent,

while the other displays one output inconsistency and one return code inconsistency.

After conferring with Ericsson, we reached the conclusion that the display should be

formatted in the way the example illustrates.

seksux025+98> ./tt -check fileName1 fileName2

regTUX - Version 1.0

**
Processing: [fileName1]
File: [fileName1] completed

**
Processing: [fileName2]
<TIMEOUT>
 Command: sleep 40
 Timeout: 30 seconds
</TIMEOUT>
<INCONSISTENCY>
 Command: which java
 Execution: [0] /usr/bin/java
 Test File: [0] /usr/bin/jva
 Diff at line: 1
</INCONSISTENCY>
<INCONSISTENCY>
 Command: rolf
 Return Code Exec: [1]
 Return Code File: [0]
</INCONSISTENCY>
File: [fileName2] completed

seksux025+99>

Figure 6:4: Task three interface, check test file for inconsistency.

 25

6.1.4 Task Four: Check Test File via Command File

As mentioned in Section 6.1.3, requirement four has resulted in two tasks for the tool to

perform. The second task is derived from requirement four, and the fourth task to be

discussed in this Section, is to compare the executions from a command file with the results

stored in a test file. This task is useful when the user wishes to test a part of a larger system.

The tool enables the user to use a test file for a larger system, checking only the desired

commands.

Entering the following at the prompt starts a task of this type:

tt -compare testFile commandFile

The file denoted by the argument commandFile is executed in the same manner as when

a new test file is built (see Section 6.1.2). Instead of storing the results from this execution in

a new test file, the tool compares the result from said execution with the contents of the test

file denoted by the argument testFile, much like in Section 6.1.3. In the example below

the user checks the contents of a command file against that of a test file. This test results in

one inconsistency, namely that the command ls is inconsistent.

seksux025+75> ./tt -compare testFile commandFile

regTUX - Version 1.0

**
Processing: [commandFile]
<INCONSISTENCY>
 Command: ls
 Execution: [0] testFile
 Test File: [0] usage
 Diff at line: 8
</INCONSISTENCY>
File: [commandFile] completed

seksux025+76>

Figure 6:5: Task four interface, check test file via command file.

 26

This output is formatted in a similar way as the output received in Section 6.1.3. This is the

case because Ericsson wanted the two to be interchangeable, as far as user interaction is

regarded. This was agreed upon because the two tasks are essentially the same, apart from the

source of the commands to be executed.

6.1.5 Task Five: Print All Input in Command File

The next task required of the program was not originally part of Ericsson’s requirements on

the tool. Nevertheless, after testing the program a few times the need for the ability to print all

input from a collection of test files arose. Ericsson felt that printing the input would be a

useful feature, and it was added to the list of requirements. To print all input in a test file the

user enters:

tt -printinput testFile

When this command is entered, the tool traverses the specified test files looking for the

input tag. When an input tag is found, the tool prints the input to the screen via stdout. In

the example below, the user wishes to print all the input from two test files to the screen.

 27

seksux025+32> ./tt -printinput testFile1 testFile2

regTUX - Version 1.0

**
Processing: [testfile1]
<INPUT> head file1
<INPUT> wc file1
<INPUT> noCmd
File: [testfile1] completed

**
Processing: [testfile2]
<INPUT> which java
<INPUT> sleep 40
<INPUT> cat file1
File: [testfile2] completed

seksux025+33>

Figure 6:6: Task five interface, print all input in command file

This task does not include executing any of the commands, it simply states which commands

exists in the file.

6.1.6 Task Six: Print Usage Manual

The task discussed in this Section was, like the one in Section 6.1.5, not part of the original

requirements. Ericsson wanted a usage text printed on-screen, much like the man pages within

the UNIX systems. For a complete overview of this usage text see Appendix B. The usage

text is invoked by simply entering:

tt

Ericsson later asked us to make the usage text available when entering a command with a

parameter, but no parameter values, as in the example found below.

tt -compare

 28

Printing usage text in this case has been extended to cover all parameters. The usage text

covers all cases discussed in Section 6.1, enabling the user to get a quick overview of how the

program is used. The text does not, however, cover any other aspects of the program than the

usage.

6.2 Control Structures

This Section covers the control structures found in the program. All of these are connected to

some type of file, since files are the central part of the tool. First a description of the interface

for interactive mode is presented, after which the more basic controls of the files themselves

follow.

6.2.1 Interactive Mode

A further description of the usage of interactive mode can be found either in Section 5.5 or in

the usage text in Appendix B. In short, interactive mode enables the user to decide how to act

if a test file is found to contain inconsistencies. This option can be invoked when using the

modes discussed in Section 6.1.3 or 6.1.4. A user invokes the option by typing one of the two

commands:

tt -check -interactive testFiles
tt –compare -interactive testFile commandFile

If an inconsistency should be found in a test file, a prompt appears where the user has to

decide on how to continue. The user has two choices, either to save the result to a new file or

not. In the example below the user decides to save the inconsistencies.

 29

seksux025+12> ./tt -check –interactive testFile1 testFile2

regTUX - Version 1.0

**
Processing: [testFile1]
<INCONSISTENCY>
 Command: which java
 Execution: [0] /usr/bin/java
 Test File: [0] /usr/bin/jva
 Diff at line: 1
</INCONSISTENCY>

regTUX> File inconsistent: (s)tore, (i)gnore?
regTUX>s
Stored in file: testFile1_version0

**
Processing: [testFile2]
File: [testFile2] completed

seksux025+13>

Figure 6:7: Interactive mode interface.

6.2.2 File Incompatibilities

When entering the files that are to be used as values to the parameters, one rule is always to

be adhered to. This rule is that if a test file is required the test file is always the first parameter

value. There are no circumstances under which a command file precedes a test file. If the user

fails to follow this standard, the program would execute every line found in the test file. This

behavior is not desirable, which is why a test file always has the following header:

¤testFile¤
#Do not edit above this line.

Figure 6:8: Test file header.

 30

Having this header enables the program to ensure that the test files and command files

entered as parameter values are entered in the right order. If they are not, one of the following

texts is displayed:

File [testFile] not a compatible testFile
Check inputted parameters carefully

File [cmdFile] is a testFile
Check inputted parameters carefully

6.2.3 File Access

Inputting a file as a parameter value forces the program to access files within the system. This

accessing can produce file errors. Any possible operating system error that can arise when

trying to access files that actually exists is handled in a fail-safe fashion. Putting aside errors

of this kind, the user is only left with two types of problems.

Problem number one is trying to access files that do not exist. The tool then displays the

following error:

File [fileName] does not exist

Problem two is the problem with overwriting already existing files. The program always

checks whether or not a file already exists before writing to it. If the file does exist the tool

displays a prompt with three choices:

regTUX> File exists: (o)verwrite, (a)ppend, (e)xit ?

The user can then decide whether to overwrite the existing file, to append to it or to simply

exit the program.

 31

6.3 Parameter Error Handling

The tool requires that the user inputs the parameters and their values in accordance to the

usage text. The class InputHandler contains error handling to ensure this behavior. The

error messages are of two types; one for the parameters that take an exact number of values,

and one for the parameters that take an unspecific number of parameters.

The first type, which is used in for instance Section 6.1.4, is formatted in one of the two

following ways:

ERROR: Required exactly X parameters

ERROR: Required at least X parameters

In this example, X denotes the number of parameters required for the specific task.

The second type, which is used in, for instance, Section 6.1.5 is formatted in the following

way:

ERROR: Incorrect number of parameters

 32

7 Conclusions

During this project we have realized that the choice of programming language we made

served our purpose well. The chosen programming language, namely Java, was developed

with dedication to platform independency, which has made the language very popular. This

popularity is arisen from the fact that developers do not need to adapt their software for the

platforms it is supposed to run on. However, the platform independency makes it hard when

developers need to interface with the operating system in order to carry out their specific job.

We encountered one major problem that could be derived from the platform independency

issue. This occurred when we tried to terminate commands in the UNIX environment. The

problem arose from the fact that the Java runtime execution command did not have sufficient

buffer space for input and output streams[7]. The solution to this problem was to run

commands in a separate thread. Doing so enabled the communication between Java and

UNIX to act fine.

By using Java with all its benefits, the implementation process has gone smoothly. But our

choice of programming language has also presented us with some challenges. For example,

process handling in UNIX was hard to perform due to Java’s implementation in this particular

area. There where also some known bugs which we had to handle concerning process

handling and runtime execution[13]. Nevertheless, if we were to implement the tool all over

again, we would have chosen the same programming language. We feel that the advantages of

Java greatly outweigh the disadvantages, which is why we would follow the same path.

Since our supervisor at Ericsson did not work in the same city as we did, most of the

communication took place via e-mails. With the frame of our work we did not encounter any

problems with this kind of communicative approach. We would even like to argue that the

communication might have worked even better, because our supervisor and we had to be

totally clear from the beginning to avoid excessive e-mail correspondence.

The developed test tool fulfills all requirements Ericsson stated. However, there are some

points that we would have done differently had we started over. Firstly, our design was a little

imprecise when we started the implementation process. While the program was growing, we

made our already constructed classes responsible for more tasks, instead of rewriting our

 33

predefined model. New demands from Ericsson that increased the functionality also made our

code increase in complexity. There was especially one class, named InputHandler (see

5.3.2.), which was too dependent in the system. Later we refined the class, but we could have

saved much time by doing that in an earlier phase. Our experience from this occurrence is to

examine and review new tasks more carefully and leave more space for new functionality.

Secondly, we should have put all our printouts in a separate class for easier maintenance

earlier. The most important thing, after functionality, is how the program reacts on user input.

In this text based test tool we could only inform the user via printouts. We had to rectify our

printouts more than once and thereafter we realized that a separate class was to prefer.

Finally, we decided, in conjunction with Ericsson, that our tool’s classes should be bundled

into an executable JAR-file[4]. This agreement was reached because we felt that such a

delivery should vastly improve the usage of the tool. Having all classes nicely bundled would

mean that the risk of accidentally removing one or more of the classes would significantly

diminish. This idea proved to be the last piece of the puzzle towards making the tool what

Ericsson requested, thus completing the thesis work and making our delivery possible.

 34

References
[1] Concurrent Programming in ERLANG, Second Edition -

http://www.erlang.org/download/erlang-book-part1.pdf - February 2004.

[2] Ericsson AB (Internal Document) - Functional Specification for WPP Performance
Monitoring Support. -2004.

[3] Ericsson AB (Internal Document) - Test Specification for Performance Monitoring. -
Revision C, 2004.

[4] Executable Java - http://homepage.eircom.net/~pugsleypaul/java/jars.htm - May 2004.

[5] Extensible Markup Language (XML) 1.0 (Second Edition) -
http://www.w3.org/TR/2000/REC-xml-20001006.pdf - March 2004

[6] General Packet Radio Service - http://www.gsmworld.com/technology/gprs/intro.shtml -
February 2004.

[7] Java Forum, Process Handling -
http://java.sun.com/developer/qow/archive/135/index.jsp - March 2004.

[8] Java Plug-in Technology - http://java.sun.com/products/plugin/ - February 2004.

[9] JavaTM 2 Platform, Standard Edition, v 1.4.2 API Specification -
http://java.sun.com/j2se/1.4.2/docs/api/ - February 2004.

[10] NetBeans IDE 3.6 - http://www.netbeans.org/kb/platform_use.html - March 2004.

[11] Rational Rose Enterprise Edition -

http://www-106.ibm.com/developerworks/java/library/j-jmod0508/ - February 2004.

[12] Universal Mobile Telecommunications System -
http://www.umtsworld.com/technology/overview.htm - February 2004.

[13] When Runtime.exec() won't - http://www.javaworld.com/javaworld/jw-12-2000/jw-
1229-traps.html - March 2004.

[14] Xemacs 21.4.15 - http://www.xemacs.org/Documentation/index.html - March 2004.

 35

A Class Diagram

Config
FILENAME : String = "conf.ini"
prop : java.uti l .Properties
isInitial ized : boolean = false

init()
getInt()
getFloat()
getString()

FileChecker
fileName : String

FileChecker()
testFi leStatusOK()
promptForAction()
writeHeader()
storeDifferences()
fileExists()
getBackupFileName()
printFi le()
promptForInput()

Inconsistency
input : String
returnCodeExe : String
returnCodeFile : String
errorLine : int
l ineFromExe : String
lineFromFile : String

Inconsistency()
setReturnCodes()
setErrorLine()
setOutputLines()
getInput()
getOutputExe()
getOutputFile()
getReturnCodeExe()
getReturnCodeFile()
getErrorLine()

InputHandler
BUILD_FILE_FLAG : String = new String ("-buildfi le")
RECORD_CMD_FLAG : String = new String ("-record")
COMPARE_FILES_FLAG : String = new String ("-compare")
CHECK_FILE_FLAG : String = new String ("-check")
INTERACTIVE_MODE_FLAG : String = new String ("-interactive")
PRINT_INPUT_FLAG : String = new String ("-printinput")

InputHandler()
readCmd()
printUsageText()
recordCommands()
printCommandsFromFile()
executeFromFile()
executeFromFileCompare()
checkTestFile()

Interruptor
delay : int

Interruptor()
start()
run()
disable()

Print
filePrompt : String = new String ("fi lePrompt>")

timeOut()
commandUnsupported()
exitProgram()
readError()
incompatibleTestFile()
incompatibleCommandFile()
fileReadError()
displayInconsistency()
returnCodeError()
doesNotExist()
commandNotFound()
displayOutputOnScreen()
printVersion()
printProcessingFile()
printFi leDone()
startRecord()
gshOpenError()
fileExistsPrompt()
fileInconsistentPrompt()
printSeparator()

TestTool

main()
exitRuntime()

 36

-fileReadCommand

OutputStreamHandler
output : java.util.Vector

OutputStreamHandler()
run()
readHandlerOutput()

CmdExecute
returnCode : int
input : String
commandTimedOut : boolean

CmdExecute()
execute()
getCmd()
getReturnCode()
isSuccessfulExecution()
getStandardOut()
getStandardErr()
commandTimedOut()
storeResult()
setReturnCode()

-err
-out

CompareContainer
input : String
returnCode : String
output : java.util.Vector

CompareContainer()
CompareContainer()
inputEquals()
returnCodeEquals()
outputEquals()
makeInconsistencyContainer()
isConsistent()
partMatches()
removeIgnoreFromLines()
getInput()
getReturnCode()
getOutput()

TestFileReader
allFileInput : java.util.Vector
testFileName : String

TestFileReader()
setCurrentCommand()
inputFoundInFile()
setCommandFromFile()
compare()
getInputFromFile()
removeInputTags()
findPositionInFile()
getReturnCodeFromFile()
getOutputFromFile()

-currentCommand

CmdListen

CmdListen()
startPromptingForInput()
inputIsNewGshShell()
doExecute()
writeTestFile()
promptForInput()

-xCmd

TestFileWriter
fileName : String

TestFileWriter()
writeRootElement()
writeResults()
doNotKeepFile()
getFileName()
writeStartTag()
writeEndTag()
writeInput()
writeReturnCode()
writeOutput()

-fileWriter

InputFileReader

InputFileReader()
getCommand()
getResults()
doExecute()
checkCmd()
writeTestFile()
readFile()
promptForInput()

-xCmd

-fileWriter

 37

B Usage Text

NAME
 tt - a tool for Command Line Interface (CLI)
 regression test

SYNOPSIS
 tt parameter [option] files

DESCRIPTION
 This program tests the CLI according to the following:
 A command is executed by the program. Upon receiving
 return code 0, the program stores the output from stdout.
 If the return code is greater than 0, stderr is used.
 There are two sorts of files connected with input,
 commandFiles and testFiles. commandFile denotes a file
 containing commands used as input when creating a testFile,
 while testFile is the file in XML-format created by the
 program itself. The testFile is what is used when running
 tests, for instance regression tests.
 A specific file, called conf.ini exists, containing
 configuration settings for the program. It also contains a
 timeout value. This value, entered in seconds, specifies the
 allocated time for the execution of a command. If the command
 has not been executed within this timeframe, it is
 interrupted by the program. The default value is 30 seconds.
 (FILETYPE)* indicates one or more files of this type.
 (FILETYPE) indicates exactly one file of specified type.

FILETYPES
 commandFile
 Denotes a file containing CLI commands that are used in
 order to build a testFile. These commands should conform
 to the commands specified in the CLI documentation.
 testFile
 A file built by the program. Contains CLI input, return
 code, output, parameter name and parameter value. This
 file uses XML style tags in order to facilitate reading.

OPTIONS
 -interactive
 Used as a modifier together with parameter -check
 or parameter -compare. This modifier provides the
 user with a choice to save any difference in the
 comparison to a separate file. The new output is
 saved to a file with the name (testFile)_versionX
 where X is the lowest integer that does not
 denote an already existing file.
 Using this mode causes the program to halt its
 execution at any inconsistency, thus waiting for a
 decision from the user regarding how to continue.
 +Usage: -check -interactive (testFile)*

 38

 +Usage: -compare -interactive (testFile) (commandFile)

PARAMETERS
 Parameters instruct the program to perform a specific task.
 The parameters below are used together with options and files

according to the synopsis above. This makes the program
perform the required tasks.

 -buildfile
 Used as a single parameter.
 Constructs a testFile from the given input in the
 commandFile.
 +Usage: -buildfile (testFile) (commandFile)*

 -check
 Used as a single parameter, followed by the names
 of the testFiles that are to be checked for
 consistency. Runs a check for consistency on all
 input in the testFiles. Should any file be found
 not to be consistent, the program prints by default
 out any differences on the screen.
 +Usage: -check (testFile)*

 -compare
 Used as a single parameter, followed by the name
 of a testFile and the name of a commandFile.

Compares the execution of commands from one
commandFile with results already stored in a
testFile. Any differences will by default be
printed out on the screen

 +Usage: -compare (testFile) (commandFile)

 -printinput
 Used as a single parameter, followed by the names
 of the testFiles that are to be traversed.
 Prints all input from testFiles to the screen.
 +Usage: -printinput (testFile)*

 -record
 Used as a single parameter, followed by the name
 of a testFile to which the results are to be
 written.
 This command opens a shell prompt where the user
 can enter commands one at the time. This command
 is the executed, and the result is stored in the
 testFile. Recording mode is exited by using the
 command 'exit' at the prompt.
 +Usage: -record (testFile)

