
Computer Science

Daniel Lindsäth and Martin Persson

Implementation of a

2D Game Engine Using DirectX 8.1

Bachelor’s Project

2004:24

Implementation of a

2D Game Engine Using DirectX 8.1

Daniel Lindsäth and Martin Persson

c© 2004 The author(s) and Karlstad University

This report is submitted in partial fulfillment of the requirements

for the Bachelor’s degree in Computer Science. All material in

this report which is not our own work has been identified and

no material is included for which a degree has previously been

conferred.

Daniel Lindsäth

Martin Persson

Approved, 2004-06-03

Advisor: Hannes Persson

Examiner: Donald F. Ross

iii

Abstract

This paper describes our game engine written in C++, using the DirectX libraries for

graphics, sound and input. Since the engine is written using DirectX, an introduction to

this system is given. The report gives a description of the structure of the game and the

game kernel. Following this is a description of the graphics engine and its core compo-

nents. The main focus of the engine is on the physics and how it is used in the game to

simulate reality. Input is discussed briefly, with examples to show how it relates to the

physics engine. Implementation of audio in the game engine is not described, but a general

description of how sound is used in games is given. A theory for the basics of how artificial

intelligence can be used in the engine is presented. The system for the architecture of the

levels is described as is its connection to the graphics engine. The last section of the report

is an evaluation and suggestions for what to do in the future. A user manual for the level

editor is included as an appendix.

v

Contents

1 Introduction 1

1.1 Problem . 1

1.2 Purpose . 2

1.3 Limitation . 2

1.4 Goal . 2

1.5 Disposition . 3

2 DirectX and COM 4

2.1 The DirectX Kernel . 4

2.2 HAL and HEL . 6

2.3 The Components of DirectX . 6

2.3.1 DirectDraw . 6

2.3.2 DirectSound . 8

2.3.3 DirectSound3D . 8

2.3.4 DirectMusic . 8

2.3.5 DirectInput . 8

2.3.6 DirectPlay . 9

2.3.7 Direct3D . 9

2.3.8 DirectSetup . 9

2.3.9 DirectX Graphics . 9

2.3.10 DirectX Audio . 10

2.3.11 DirectShow . 10

2.4 COM . 10

2.4.1 The COM Objects . 11

2.4.2 GUID . 11

2.5 DirectX and COM . 12

vi

3 Game Engine Structure 13

4 The Kernel 16

5 Graphics Engine 18

5.1 Bitmaps . 18

5.2 Bitmap Object Blitter . 19

6 Physics 22

6.1 Newtonian Mechanics . 22

6.1.1 Movements — Acceleration and Inertia 22

6.1.2 Drag . 23

6.1.3 Free-fall . 24

6.2 Physics Within the Game . 25

6.3 Collision Detect . 27

6.3.1 Running Through Walls . 27

6.3.2 The Bresenham Algorithm . 29

7 Input 32

7.1 Forces . 32

7.2 Impulses . 33

8 Sound and Music 34

8.1 Sound in the Engine . 34

9 The Basics of Artificial Intelligence 35

10 The Level System 36

11 Conclusion 38

11.1 Achievements . 38

vii

11.2 Evaluation . 39

11.3 Future Plans . 40

References 42

A User Manual for the Map Editor 43

B winconsole.cpp 45

C motor.h 48

D bob.h 52

E game.h 55

E.1 Terrain . 56

E.2 Character . 56

E.3 Enemy . 57

E.4 Player . 58

E.5 Sublevel . 58

E.6 Level . 59

E.7 Game . 59

F mapeditor.h 61

G Screenshot 64

viii

List of Figures

2.1 “Classical” Programming vs. DirectX . 5

2.2 DirectX and Windows . 7

3.1 Module Overview . 13

3.2 Object Diagram of the Game Structure . 14

4.1 Game Kernel structure . 16

5.1 Bitmap Example, courtesy of [6] . 18

5.2 BOB Inheritage . 21

6.1 Velocity Vector . 26

6.2 Collision Example . 28

6.3 Another Collision Example . 28

6.4 Line Approximations . 30

10.1 The Different Layers . 37

A.1 Empty Level Editor . 43

G.1 A Screen Shot of an Example Game . 64

ix

1 Introduction

According to the authors, the gaming industry of today focuses solely on 3D games, often

with wondrous graphics as their main goal. This has had the effect that modern games

seldom have any depth, story or “feel” to them. The authors think that this is a shame,

and decided to create a 2D game engine in the hopes of returning some of the feel of the

old games.

1.1 Problem

A 2D game engine is a relatively complex thing to design. The main problem is to make

the physics in the game correspond — in a good looking way — to the objects on the

screen, using the existing graphics engine BOB [1]. The engine will, except for the the

graphics API, be built from scratch.

Problems that have to be solved is how to make the architecture of the levels1 be useful

to the physics. A great part of the problem with the physics will be collision detection

between the player and the map2 itself. The input handling using DirectInput will have

to be integrated to the movement physics of the player. How to make the enemies in the

game orientate themselves in the environment will also have to be solved. A level editor

using the same map system as the game will also have to be implemented so that levels

created using that editor can be loaded into the game. The main part of the work will be

programming the engine itself, and parallel to the implementation write a documentation

describing the engine.

1A level is an object containing a set of terrain, a number of enemies and events which one may interact
with.

2The terrain parts of a level. Sometimes used interchangeably with level.

1

1.2 Purpose

The purpose of this dissertation is to create a fully working game engine that can be used

to create two dimensional platform games using DirectX. The engine will also be the base

that Martin will use when he creates his first commercial computer game.

1.3 Limitation

A fully functioning game engine is, of course, a massive project that can hardly be com-

pleted in the amount of time available for this paper. The authors have therefore decided

to create the level system and the game physics and then make the rest of the details if

there is enough time.

1.4 Goal

When this dissertation is complete the following shall be done:

• A well documented and working game engine API that allows programmers to create

2D games with a minimum amount of foundation coding, so that they may focus on

the gaming experience.

• A good implementation design that will make it easy to add new features later.

• A working two dimensional physics engine.

• A useful level editor that can be used to create the maps of the game.

• A simple and general way to program the AI of the enemies in the game.

• A virtual class for enemies.

2

1.5 Disposition

Section 2 gives a shallow, technical introdction to DirectX and COM. These tools are then

used in sections 5, 7 and 8. Section 3 shows how the modules of the game are connected

and gives an introduction to sections 4 through 9.

Section 4 gives a description of the game kernel which handles startup, exectution and

shutdown of the game engine itself.

Section 5 explains image formats, and relates back to the second section with Direct-

Draw.

Sections 6 and 7 show how a player may alter the playing realm through input and

physics. Section 6 also describes some of the issues related to physics in games.

Sections 8 and 9 discusses sound and artificial intelligence, none of which have actually

been implemented yet. Instead they show how an implementation could be used in the

future and what to think about.

Section 10 describes how the system for levels and maps works. This is the system

that tells the graphics engine what to draw and where. The levels also contain all the

information used by the physics engine, such as gravity and atmospheric density.

Finally, Section 11 is a conclusion which summarizes the whole thesis.

3

2 DirectX and COM

The purpose of this chapter is to give the reader a brief introduction to the basic concepts of

the DirectX Application Programming Interface3 (API) and Microsoft Component Object

Model (COM).

The chapter comprises:

• An introduction to DirectX

• An introduction to COM

• How DirectX and COM relate

2.1 The DirectX Kernel

DirectX is an abstraction of many sub components that allows the programmer to uti-

lize any hardware that is DirectX compatible. Rather than creating a module for each

hardware manufacturer (as was common a few years ago), a programmer may use DirectX

to get working code for virtually any home computer configuration. DirectX is a single

component, controlling the communication with all hardware in a faster and more stable

way than regular Windows components, such as Graphics Device Interface4 (GDI) and

Media Control Interface5 (MCI), (see Figure 2.1) which are standard Windows libraries

for graphics and sound.

The functionality of DirectX is such that it gives the programmer close to direct control

of the hardware. DirectX achieves this by using a multitude of libraries and drivers — writ-

ten by both Microsoft and the companies who design and construct hardware. Microsoft

defined a set of data structures and algorithms to be used by the hardware creators’ pro-

grammers when they make DirectX compatible drivers for their components. This way, the

3A calling convention by which a program can access services such as the file system or monitor. It is
used to abstract underlying logic, thus enabling portability.

4The Windows standard COM object for graphics.
5The Windows standard COM object for sound.

4

Figure 2.1: “Classical” Programming vs. DirectX

only functions that are being called are DirectX functions, and the application programmer

has no need to know what happens at the backend.

With DirectX 8.0, Microsoft integrated DirectDraw and Direct3D into a single com-

ponent; DirectX Graphics. DirectDraw and Direct3D still exist, but they are no longer

updated. The same applies to DirectSound, DirectSound3D and DirectMusic, which are

now bundled into DirectX Audio. A great advantage of this system is complete backwards

compatibility; any program that works with old versions of DirectX will work with new

versions. Thanks to the usage of COM there’s not even a need to recompile programs

when a new version of DirectX is released. Another advantage is that when you learn one

version of DirectX, you basically know them all. New versions don’t alter old functions,

merely add more functionality.

5

2.2 HAL and HEL

Figure 2.2 shows a couple of things that have not been mentioned thus far: Hardware

Abstraction Layer (HAL) and Hardware Emulation Layer (HEL). Their purpose is to fill

any gaps in hardware drivers. If some hardware component does not support a certain

function, HAL and HEL will take care of it.

HAL is, as the name suggests, a layer that communicates directly with the hardware.

DirectX makes sure that available hardware is used whenever possible, to minize the load

on the central processing unit6 (CPU). The HAL implementations lie within the drivers of

the hardware.

When HAL cannot be used for a specific task, due to hardware restrictions, HEL

will emulate hardware capabilities to let the CPU take care of the calculations instead.

This results in slower, but working code, and is vital to ensure universal compatibility.

Compared to the 80s, programmers have an easy job creating games with DirectX.

2.3 The Components of DirectX

Figure 2.2 shows how the components of DirectX are interconnected, below are semi de-

tailed descriptions of each component.

2.3.1 DirectDraw

DirectDraw is the main rendering device of bitmap7 graphics. DirectDraw also controls the

graphics memory, which is the main medium through which all graphics must go before

it can be displayed on the monitor. DirectDraw more or less controlls the graphics card.

DirectX 8.0 and above don’t use DirectDraw as a component in its own right, but runs

everything through DirectX Graphics.

6The part of a computer that does most of the data processing; the CPU and the memory form the
central part of a computer, to which the peripherals are attached.

7The most basic of image formats, stores each pixel as three byte of data; one for each of the colours
Red, Green and Blue.

6

Figure 2.2: DirectX and Windows

7

2.3.2 DirectSound

This component helps standardising sound playback. Before DirectSound existed, sound

programming was black magic where every sound card manufacturer supplied their own

drivers and the game programmers had to make a routine for each card. Remember old

games where you had to chose sound card, IRQ and DMA? Thanks to DirectX you don’t

have to do that anymore.

2.3.3 DirectSound3D

The 3D version of DirectSound allows you to place sound sources in a room, the same way

you do with regular 3D objects. When you move around in the room the sound will change

according to your movements. DirectSound3D supports, among other things, reflection,

refraction and the Doppler effect.

2.3.4 DirectMusic

The component handles the music in your games is called DirectMusic. Mainly MIDI8,

MP39 and CD tracks are used.

2.3.5 DirectInput

DirectInput handles all the input from devices such as the keyboard, mouse or joystick. It

supports Force Feedback10 . At the moment there’s no support for speech recognition or

voice control, but this would be the logical place to put that when it arrives.

8A standard for representing musical information in a digital format. MIDI does not use recorded sound
for playback, but rather mathematical formulae for how each note should sound for every instrument.

9MPEG-1 layer 3. An audio compression standard that can compress CD-tracks about ten times with
very little quality loss.

10A standard for input devices that allows the user to feel a fairly natural response from the game.

8

2.3.6 DirectPlay

This is the network communications component of DirectX. DirectPlay allows you to create

abstract connections with other computers with an IP address through any medium. You

don’t have to know much, if anything, about network programming to be able to use

DirectPlay properly. There’s no need to understand the protocol stack, or know which

socket to use.

DirectPlay supports sessions and lobbies. A session is an ongoing network game and a

lobby is a server connection that you connect to inbetween games.

2.3.7 Direct3D

The 3D graphics part of DirectX is split into two subcomponents; Direct3D Retained Mode

(Direct3DRM) and Direct3D Immediate Mode (Direct3DIM). RM is a basic high level

system that is relatively simple, but slow. IM is a low level system that is alot more

complicated, but also alot faster. The science of 3D graphics optimization is well outside

the scope of this document.

2.3.8 DirectSetup

DirectSetup is used to simplify the installation of DirectX components. DirectX is very

complex, and therefore hard to install manually.

2.3.9 DirectX Graphics

With version 8.0 of DirectX, Microsoft combined DirectDraw and Direct3D to enhance

performance and allow 3D effects in a 2D environment. Both DirectDraw and Direct3D

still exist and work, but to call them you have to use the interface from before version 8.0.

9

2.3.10 DirectX Audio

As with DirectX Graphics, Microsoft combined the sound components DirectSound, Di-

rectSound3D and DirectMusic into DirectX Audio. The old components still exist for

backwards compatibility.

2.3.11 DirectShow

This is the component that is used for playing video in DirectX. It will automatically locate

any hardware acceleration and use it if it exists. This component is very useful since you

don’t have to care about anything but loading the film and playing it on the monitor.

2.4 COM

Computer programs of today can contain millions of lines of code. Red Hat 7.1, for example,

contains over 30 million lines of code [15]. The sheer size of this code requires a structured

hierarchy and data abstraction to avoid chaos.

COM, short for Component Object Model, is one solution to this problem. COM is

designed to be modular, like pieces of Lego or microchips. They work the same way, no

matter what you connect them to. They are all modular and they care only about what

input they get, not what sent it to them. In the same way, COM doesn’t care what

language is used to send it input, as long as it gets input it knows how to deal with. This

modularity comes with a few nice advantages; It provides for easy re-implementation of a

component — since any COM object with the same interface can replace another — and

it allows components to be programmed in different languages, thus giving the developers

a chance to utilize the language that is best for any given task.

Yet another step towards modularity comes from the fact that COM objects are com-

piled into Dynamically Linked Library (DLL) files which are loaded during execution rather

than during compilation, this means that components can be exchanged without meddling

10

anything with the main program.

2.4.1 The COM Objects

A COM object is a class that implements a number of interfaces used to communicate

with it. The most basic object implements the interface IUnknown which doesn’t really do

anything. For an object to be useful, however, the programmer has to implement at least

one interface of his own and add functionality to it.

Since the objects are completely binary11, and have a uniform calling convention, it

doesn’t matter what programming language they are coded in, nor does it matter what

language they are called from. They will always behave predictably. One of the authors

waits for the day when DirectX and COM are ported to Linux so games will be platform

independent, whereas the other claims that this could already be the case if only developers

used OpenGL12 and SDL 13

2.4.2 GUID

To create a COM object a Global Unique IDentifier (GUID) is needed. A GUID is a 128

bit long integer that is created by the operating system. The integer is divided into a

four byte word, three two byte words and six single byte words [5]. The whole GUID is

always unique within the system and is used to distinquish objects. A GUID is assigned to

a COM object, during runtime, by the operating system itself. The programmer doesn’t

have to concern him- or herself with it. As mentioned earlier in this thesis, the authors

won’t go into detail regarding the COM objects, but this introduction is included because

DirectInput uses GUIDs to locate hardware (keyboards, mice, joysticks, hand controls etc).

11As opposed to containing any code.
12Open Graphics Library.
13Simple DirectMedia Layer. The SDL implementation in Windows uses DirectX for input and sound.

11

2.5 DirectX and COM

DirectX comprises a large number of COM objects. These objects are located in DLL

files that are loaded when a DirectX program is started. Once in the memory the DirectX

program can begin to use their interfaces which in turn use their methods to manipulate

data.

When Microsoft created DirectX they had to offer more than efficient execution; The

game programmers wanted the API to be as easy to use as possible. Since COM isn’t a

very nice interface to work with, MS encapsulated about 90 % of all COM calls in DirectX

functions, thus hiding the fact that it’s COM one has to deal with.

Compiling a DirectX program requires a number of library files and associated header

files. Each component in DirectX usually has a lib file and a header file, but these files don’t

contain the actual COM object, but rather shells and references to the DLL files, which

do. DirectX objects are almost exclusively called using a function pointer (or function

reference). The value of this pointer is set during runtime, not compilation, and is yet

another step to modularization and hardware independence.

12

3 Game Engine Structure

Figure 3.1 shows a simple overview of the modules used within the engine. The first step

is initialization which then allows the main event loop to take control and start executing

game instructions.

The main event loop — consisting of input handler, AI executioner, physics simulator

and graphical engine — continues until the exit command is given by the user, most

commonly by pressing the escape key.

Figure 3.1: Module Overview

The only purpose of the main event loop (also known as the Kernel) is to tell the other

objects when it’s their turn to execute, and to make sure that each frame14 within the

game takes place at its correct time.

Input is handled by the Player object. DirectInput is called to check if any of the used

keys are pressed, and variables are set with corresponding values. For example, if the left

14A frame is one image on the screen. When a game is played, a multitude of frames are shown every
second to ensure smooth movements.

13

key is pressed, the variable walk force is set to a value appropriate for walking to the left.

When this is done, the physics engine is called into action. The values set by the input

are calculated into accellerations which then affect the velocities of the object in question

(mainly the player character, but also weapons he might fire or other objects that he can

move).

After the player is done, the computer takes care of all of its own characters with

artificial intelligence. This is similar to the input stage, but instead of reading from input

devices such as a keyboard, the computer executes predefined AI functions for all of its

characters. The AI physics is handled the same way as player physics. In fact, they’re

most likely the same function, inherited from the Character class15.

Figure 3.2: Object Diagram of the Game Structure

Note in Figure 3.2 that Game, Level and Sublevel all contain the same player object.

Also note that the pointers Fiender in Level and Level Fiender in Sublevel both point to

the same memory area.

Once the velocities have been set, the physics engine moves all the objects to their new

positions and check for collisions. Collisions are treated depending on the objects that

15Enemy units can have uniquely implemented physics functions if they aren’t supposed to adhere to
the normal laws of the world.

14

collide; a player colliding with a wall will simply stop, but characters colliding with bullets

will take damage.

After the objects have moved, they will be dispatched to the graphics engine where

they are drawn on a surface which then replaces the image that is currently on the screen.

It’s now time to check for new input and repeat until the program is terminated.

15

4 The Kernel

The kernel is the module of the game that keeps track of all other modules. It tells them

when to execute and makes sure they’re all working in the right order. In the engine,

the kernel consists of the object Game. Game has three member functions; Init, Main

and Shutdown. Init is used to start DirectX and set state variables within the engine.

Main is a simple state machine that keeps track of what level the player is currently in.

Shutdown closes DirectX and deallocates all dynamic memory. The function Game Main()

is repeatedly called from within WinMain()16 (see Appendix B). Each call to Game Main()

represents a single frame update in the game (sometimes called a ‘tick’).

Figure 4.1: Game Kernel structure

Game Main() in turn calls the different modules that make up the game. Figure 4.1

shows a simplifiied call tree with time increasing from left to right and, to a lesser extent,

from top to bottom. Most of the individual blocks will be described in the following

sections.

The function is basically a finite state machine that chooses which sub event loop should

be called. The object Game (see Appendix E.7) has member data to supervise the player

and levels. One of the members is of type Level (see Appendix E.6), which is a master

16the main function in a Windows program

16

level with a number of sublevels (Appendix E.5). These sublevels contain the actual maps

that the players can see and interact with.

The Level object has a function called Playing Level(). The function acts like a state

machine, deciding what sublevel to call. Playing Level() has to be called once for each

frame, just like Game Main().

The sublevels have a method called Playing() which handles input and logic for the

game. The sublevel also contains the enemies and events. Some of the enemies are local to

the sublevel and will disappear/reappear when the player enters and exits the room, while

others belong to the master Level object and can only be killed once. A good example of a

similar system is Zelda II [10] where the castles are levels, and all the rooms one can enter

are sublevels.

The game logic and physics is implemented in the object Character, which inherits

BOB and is inherited by Player and Enemy. The Player object has a pointer to the terrain

in sublevel which is used when the player moves. It is not, in fact, the player that moves,

but all the surrounding terrain and enemies that are moved around the player which always

stays centered on the screen.

Player and Enemy are fairly similar. The main difference is that where Player has the

function Input() that makes calls to DirectInput to do what the player wants it to do, the

Enemy class has the member AI() to simulate user input. Both classes use the function

Logic() which handles basic collision detection and movement.

Events, such as doors one can walk through, will be implemented on a case to case

basis. These implementations will deal with special animations, sounds and possible movie

sequences.

17

5 Graphics Engine

A graphics engine is the part of a game that simplifies the drawing of things on a screen.

Using a graphics API such as DirectX or OpenGL directly is quite arduous with lots of

repeated function calls and similar.

The graphics engine used in this program is a rewritten version of André LaMothe’s

engine described in [1] and [2]. The main difference is that this version is object oriented

with classes as the main datatype, rather than structs.

The central object is the Bitmap Object Blitter (BOB) (see Appendix D) which loads

a bitmap and shows it on the screen.

5.1 Bitmaps

Bitmaps constitute the simplest form of computer graphics. They consist of a matrix of

numbers corresponding to colours.

Figure 5.1: Bitmap Example, courtesy of [6]

18

There are different versions of the bitmap format, among these are:

1 bit Also known as monochrome. Each value in the value matrix points to one of two

colours in a small palette. These are usually black and white, but can be changed to

other values.

8 bit Like the monochrome format, the values point to palette entries. The difference is

that the palette has room for 256 colours rather than just two.

16 bit Two bytes are used to represent the colour of each pixel. Each prime colour uses

five bit each, so the format actually only uses 15 bit, not 16. 24 bit graphics can

be converted to 16 bit by dividing each of the bytes with 8 and then appending the

values to eachother in a two byte variable (col16bit = ((red8bit >> 3) << 10)

+ ((green8bit >> 3) << 5) + (blue8bit >> 3);).

24 bit Each pixel is made up of three bytes representing the colours red, green and blue.

These prime colours are then combined, with values from 0 to 255, to make just

about any colour possible.

Animations with bitmaps are accomplished by loading a number of images to the video

memory and then switching between them rapidly. All these images are stored in the same

bitmap which is partitioned into squares.

The Bitmap class is used to read data from a file and is then used as an argument for

loading graphics into a BOB.

Look at the end of the first page of Appendix D for a class definition of the bitmap.

5.2 Bitmap Object Blitter

As mentioned previously, BOB is the central image component of this engine (See Ap-

pendix C and D). It is an object oriented version of the struct created by André LaMothe.

BOB is an abstraction on top of DirectDraw and is designed to implement a more user

19

friendly interface. The class uses DirectX by creating a DirectDraw object and two drawing

surfaces which are used to make sure the drawing of a new frame is smooth.

BOB takes care of the coordinates at which a bitmap will be drawn, what image should

be shown, how quickly images should change and in what direction and velocity the object

is moving. BOB also draws the image on the surface.

When Draw() is called, BOB simply tells DirectDraw where to draw, and what to draw

by using the Blt() method of a DirectDraw surface.

Figure 5.2 shows how BOB is inherited by the other graphical components of the game.

Character is the base of all movable objects and is inherited by Player and Enemy which are

somewhat more specialised. Player is the object that handles input from a human player,

and Enemy is an abstract class that is inherited by all computer controlled characters in

the game. Enemy contains a virtual function AI(), which replaces the Input() function

of the Player class. Rullare and Hoppare are the two enemy types used in the demo games

created for this report.

20

Figure 5.2: BOB Inheritage

21

6 Physics

For a game to be satisfyingly realistic, it will have to use realistic physics. This means that

the movements of characters, monsters, projectiles and simlar will have to adhere to the

same laws of physics that act in the real world. This chapter will explain what laws will

be needed, why they are needed, and how they apply to the objects in a game.

Most formulae in this chapter are taken from [4] and [7]

1. Law of Inertia — If no force is acting on a body, it will remain at rest or move in a

straight line at a constant velocity.

2. Law of Acceleration — The acceleration of a body is proportional and in the same

direction as the resultant force that is acting on it.

3. Law of Action and Reaction — For any action (force) on a body, there is an equal

and opposite reaction (reacting force).

6.1 Newtonian Mechanics

Newtonian, or classical, mechanics is the first part of physics most people will learn in

school. It deals with how forces interact with bodies and is based on Newton’s laws of

motion:

6.1.1 Movements — Acceleration and Inertia

To alter the velocity of an object, in any direction, the application of a force is required.

the change in velocity is proportional, and equal in direction, to the force according to the

following:

m a = F

22

Example code:

// Temporary v e l o c i t y v a r i a b l e used to c a l c u l a t e the drag

f loat tempvx = xv + wa lk f o r c e / mass ;

6.1.2 Drag

When objects move through gases or fluids, the surrounding environment acts as a resis-

tance to slow them down. There are two formulae to describe this resistive force:

Fv = −Cf (0.5 · ρ · vA)

and

Fv = −Cf (0.5 · ρ · v2A)

where Fv is the viscous drag force, Cf is the fluid drag coefficient, v is the speed of the

object, ρ is the density of the air, A is the cross section area of the moving object and the

minus sign means that the force works in the opposite direction of the speed. The first

formula is valid for objects moving slow enough not to cause any turbulence in the fluid

or gas (currently not used in the game engine). The second is for fast moving objects that

causes the flow streamlines surrounding it to become disturbed. Cf is usually not equal

for these two formulae.

Example code:

f loat dragx = −(0.5 f ∗ sublev−>rho ∗ tempvx ∗ tempvx ∗ area)

∗ Cd ∗ s i gn (tempvx) ;

23

6.1.3 Free-fall

Objects falling towards a large body will experience acceleration due to gravity, the general

formula for this is

F = G · m ·M
r2

��ma = G · ��m ·M
r2

a = G · M

r2

where F is the force acting on both bodies, G is Newton’s Universal Constant (gravitational

constant), m is the mass of the smaller object, M is the mass of the large body and r is

the distance between the center of graivty of both bodies. The vector a is the acceleration

resulting from the force.

Example code:

// Check to see i f o b j e c t i s on the ground

i f (On Ground ()&ONGROUND)

{

// the ground s e t s the g r a v i t y a c c e l e r a t i o n to 0

yv=0;

}

else

{

// i s i t touch ing the roo f ?

i f (On Ground ()&HITTING ROOF)

{

24

// s e t speed downwards to 1 g/ s

yv=sublev−>GRAVITY;

}

else

{

// app ly r e gu l a r g r a v i t y

yv+=sublev−>GRAVITY;

}

}

6.2 Physics Within the Game

The formulae described above are used in the game engine to make objects move as nat-

urally as possible. The most basic is the gravitation that pulls all objects towards the

ground, this is implemented using actual gravitational constants and masses for all objects

and the resulting accelleration is stored in the Level objects.

The next part is drag and user input. Both these instances cause force variables to

be set to certain values. The drag calculations are performed with the actual area of the

object in question, aswell as proper density and pressure values.

When all forces have been correctly setup the physics engine will calculate the proper

acceleration and alter the velocity variables xv and yv (Appendix D) accordingly. Fig-

ure 6.1 shows a player character with the velocity vector actually drawn next to it. This

was only used in debug mode, the vector does not show in normal gameplay.

25

Figure 6.1: Velocity Vector

26

Example code:

// The ac t ua l v e l o c i t y v a r i a b l e

xv += (int) ((wa lk f o r c e + dragx) / mass) ;

Finally, there’s collision detection which prohibits objects from falling through the

ground they’re being pulled towards. When an object touches a piece of ground, its

velocity along the y axis is set to 0. When touching the ceiling, the same velocity vector

is set to 0 and gravity kicks in. Collision with walls are handled the same way as with the

ground, but it’s the veolcity along the x axis that is affected.

6.3 Collision Detect

There must be a way to prevent objects from moving through walls, floor and ceilings, as

well as making sure that something happens when objects collide with eachother.

The BOB object has a function which will check if two BOBs are overlapping. There

is, however, another problem.

6.3.1 Running Through Walls

Keeping track of the speed and direction of a moving object in a game can easily be done

with a velocity variable for each axis. For each frame, the position of the object will change

as many pixels as the velocity variables state in each direction.

Now, imagine a 20 pixel wide object moving at the speed 200 pixels per frame towards

a wall (Fig. 6.2 a). The object is 50 pixels away from the wall, which is 50 pixels thick.

Let’s move one frame forward; without collision detect, or with collision detect only on

the position where the object ends up, it would move through the wall and stop 80 pixels

farther away (Fig. 6.2 b).

27

Figure 6.2: Collision Example

This is, of course, not acceptable in a game claiming to have a decent physics engine.

Imagine how irritated a player (Fig. 6.3 a) would be if he went straight through a ledge he

aimed for (Fig. 6.3 b), rather than stopping at it (Fig. 6.3 c). Or, possibly worse, imagine

people running through all the walls from the beginning of a level to the end, cheating

their way through a whole game.

Figure 6.3: Another Collision Example

A simple solution would be to limit the maximum speed, but that wouldn’t conform

well with the idea of a realistic physics engine.

The solution chosen for this engine is to move the object one pixel at a time, following

a line from its start location to the end point, and perform a collision detect on every step.

This way a collision is discovered the first time a pixel is overlapping another, and proper

28

actions can be taken.

Of course, a good line approximation algorithm is essential to this approach.

6.3.2 The Bresenham Algorithm

Drawing exact lines on a computer is impossible, since lines are defined as an infinite

number of zero-area points which lie between two end points. The smallest unit on a

computer screen is the pixel, and its area is quite alot more than zero. Approximations on

the other hand, are quite easy to draw if you use floating point operations:

void draw l ine (int x1 , int y1 , int x2 , int y2)

{

int dx = x2 − x1 ;

int dy = y2 − y1 ;

f loat m = dy / dx ;

for (int x = x1 ; x < x2 ; x++)

{

int y = m ∗ x + y1 + 0 . 5 ;

pu tp ixe l (x , y) ;

}

}

This, however is too slow to be acceptable in a game where speed is of the essence. The

solution is Bresenham’s midpoint algorithm [13] that will compute the point coordinates

correctly, using only integer math.

Figure 6.4 shows how pixel positions (the dots in the corners of the grid) are chosen

depending on the true line’s (the line between the bottom left corner and the top right

29

Figure 6.4: Line Approximations

corner of the grid) position relative to a midpoint (short horizontal lines). If the blue line

is below the current midline, we plot the next pixel to the right. If, however, the blue line

is above the midline, we should plot above and to the right:

I f (BlueLine < Midpoint)

P l o t R igh t P ix e l () ;

E l se

Plot AboveRight Pixe l () ;

Now to determine if a line is above or below a midline at the specific point. To do this

we work a bit with the line funktion y = kx + m where we replace k with dy/dx:

y =
dy

dx
· x + m,

dx · y = dy · x + dx ·m,

0 = dy · x− dx · y + dx ·m.

Any point (x, y) above the line will give a negative result, and a point below the line

30

will give a positive result. We use this fact to define a function F such that

F (x, y) = 2 · dy · x− 2 · dx · y + 2 · dx ·m,

the factor 2 will become evident shortly.

When provided with a midpoint between the two possible next points the function F

will return < 0 when the true line is below the midpoint and > 0 when the true line is

above.

If we start at point (x1, y1) the next point will be either (x1 + 1, y1) or (x1 + 1, y1 + 1)

so the reference midpoint will be (x1 + 1, y1 + 1/2). In order to determine which point is

the best approximation we evaluate F for the midpoint:

F

(
x1 + 1, y1 +

1

2

)
= 2 · dy · (x1 + 1)− 2 · dx ·

(
y1 +

1

2

)
+ 2 · dx ·m

Since F (x1, y1) = 2 · dy · x1 − 2 · dx · y1 + 2 · dx ·m = 0 we conclude that

F

(
x1 + 1, y1 +

1

2

)
= �����

2 · dy · x1 + 2 · dy −�����
2 · dx · y1 − dx +(((((

2 · dx ·m

= 2 · dy − dx

This is the initial decision variable and will be designated d0. Changes in midpoint

values can be calculated using incR = F (Mx + 1, My) − F (Mx, My) = 2 · dy when the

pixel is to the right and incUR = F (Mx+ 1, My)−F (Mx, My) = 2 · dy− 1 · dx when it’s

to the right and up. This means that all that has to be done to figure out what the next

pixel should be is to add incR or incUR to the current di value and check if it is positive

or negative. See [13] for more details.

31

7 Input

A player has to be able to interact with the game or the game will have no purpose

whatsoever. The interaction between the player and the game is called input. So far, only

keyboard input is supported by this game engine, but eventually it will also take care of

mouse events and joysticks (including gamepads).

Player input is handled by the Player class. The Input() function uses input functions

through wrapper macros such as KEY DOWN():

#define KEYDOWN(vk code) ((GetAsyncKeyState (vk code) & 0 x8000

) ? 1 : 0)

7.1 Forces

Input() sets physics variables such as walk force in the Player class and the Logic()

function then calculates movements based on these values.

i f (KEYDOWN(VK LEFT)) {

// i s he not a l r eady wa lk ing l e f t

i f (State !=WALKING LEFT) {

// Om s t i l l a s t å e n d e s ä t t wa l k f o r c e t i l l

w a l k b e g l e f t

i f (On Ground ()&ONGROUND)

wa lk f o r c e = WALK BEG LEFT;

else

32

wa lk f o r c e = WALK BEG LEFT

/ 4 ;

// s e t wa lk ing l e f t

State=WALKING LEFT;

// s e t f ace l e f t

Dir e c t i on=FACING LEFT;

// s e t the wa lk ing l e f t animation

Set Animation (1) ;

}

}

7.2 Impulses

Only once does input alter a movement variable directly; on impulses17 such as jumping:

i f (KEYDOWN(VK SPACE))

{

i f (On Ground ()&ONGROUND)

yv=−50; // the i n i t z i a t i o n speed in the y a x i s

from the jump

}

17The change in momentum over a short period of time. The collision between too billiard balls is a
good example of an impulse; the energies and momenta of both balls change momentarily.

33

8 Sound and Music

Even though sound isn’t implemented within this engine, it is an important enough subject

to merit a brief discussion.

Music and sound effects help giving depth and emotions to a gaming experience. Com-

pare it to the sounds in a movie; the soundtrack can enhance or destroy the whole viewing

exprience and the sound effects most certainly affect us. A good example is eerie music

and sudden sound effects in horror movies.

Old games rarely used digitally sampled sound — since this requires enormous amounts

of memory for storage — instead, they used formats such as MIDI which use notation

representations to play short sampled sounds, thus creating music.

Later, with the advent of CDs, games began using CD tracks for their music. Eventually,

HDD space became cheaper and wav-files were used. At that time the quality of both sound

effects and music increased alot thanks to the capabilities of the sound format.

Nowadays the use of compressed sound formats such as MP3 and OGG are gaining in

popularity since they permit alot of sound to be stored with a small amount of space.

8.1 Sound in the Engine

As mentioned above, there currently is no sound support within the engine. Eventually

though, it will be, and should then use the existing DirectX Audio API within a simple

wrapper class.

Music will be part of the Sublevel class, possibly to be triggered by events (see Sec-

tion 10). Ambient sounds will be part of sublevels to be played semi randomly and sound

effects will be triggered by events and character actions.

34

9 The Basics of Artificial Intelligence

Since Artificial Intelligence is a whole science, this thesis won’t be able to do more than

scratch the surface.

The object Enemy has a member function calles AI() which replaces the Input()

function of the Player object. Since the player orientates himself by looking at the screen,

the enemies will have to orientate themselves in a similar fashion. The class Character,

which Enemy inherits, has a reference to the terrain of the level and can use this to “see”

what surrounds it.

In his book [3], Steve Rabin includes an article that mentions how to implement intel-

ligent maps with objects that send useful information to computer controlled characters.

The game in question was The SimsTM, in which items that may provide food for the char-

acters tell the characters about this if they come close. The characters then evaluate their

current needs and wants, and if the want for food is high enough they will then approach

the object and get something to eat.

A similar feature in this game engine would be to let obstacles and hiding places tell

the enemy characters that they may hide there, and if the enemies think that an ambush

is appropriate, they will hide. A more advanced AI would make sure that the object is

large enough to hide it completely, and try to stand as close to the center as possible to

ensure protection.

A simpler implementation of AI would be something that prevents enemies from falling

over edges, perhaps by making them stop and change direction, or by making them look

for platforms to jump to.

None of the ideas above have been implemented yet, but they are all possible for future

versions.

35

10 The Level System

A graphical game without a playing field of some kind doesn’t have much to offer and —

unless the game in question is a board game — a game with only a single layout grows old

rather quickly. Therefore this game engine comes with a level system and level editor to

simplify the creation of new levels.

A level comprises five different parts; foreground, ground, background, enemies and

events. foreground, ground and background consist of Terrain objects.

Enemies is an abstract class that is inherited to create moving objects which are con-

trolled by artificial intelligence. The only implementation that has to be done is construc-

tors, destructors, the AI function and, in some cases, the physics and logic functions.

Events are areas on a map which trigger special occurances when the player enters

them. Each event has to be implemented separately to work properly. Events currently

use the Terrain class, but that will change in future versions.

Objects are drawn in the following order; background, ground, events, enemies and

foreground with background being drawn first and foreground last. The player is drawn

concurrently with the enemies. Internally within the layers, objects are drawn in the order

they are placed on the map. If a cloud were to be placed after a bush, the cloud would

appear in front of the bush.

Objects in background, ground and foreground have an attribute called SpeedFactor.

By changing its value, the object’s speed relative to the player changes. A value of 0 makes

the objects freeze on the screen and follow the player’s movements. It is not recommended

to change the value of this attribute for objects in the ground layer.

Collision detect is only performed on the ground layer, foreground and background are

solely for graphical purposes.

Figure 10.1 shows how the layers are drawn on the screen. The long bar at the bottom is

part of the ground layer. The cloud and the left bush are obviously in the background since

the player character is partially blocking them. The rightmost bush is in the foreground.

36

Figure 10.1: The Different Layers

The meta data which describes the objects of the maps are stored in arrays which are

allocated and deallocated each time a player enters or exits a sublevel.

DirectX was used for the level editor, simply because this made it easier to save the

data to a format that could easily be read by the game engine. Any graphics API could

have been used instead, with a little more work.

Some basic instructions for how to use the map editor is shown when the program is

executed.

37

11 Conclusion

The result of the dissertation is a fully working, although pretty basic, game engine with an

accompanying level editor used for creating level meta data so one can make new levels. A

good system that vill be used for the implementation of AI has been created. The system

for keeping track of the terrain blocks in the game has been designed and implemented.

The terrain blocks inherits the main graphics object, BOB as does the class where the

physics is implemented — Character — which is then derived into Player and Enemy.

The level system in the game uses the graphics engine in the sense that all objects on

the map use types derived from the base class BOB, but the level objects themselves use

no graphics except for debugging purposes.

The Level object contains the character objects, Players and Enemies, which uses the

physics and graphics engine. The Input part of the project has been implemented as macros

that check if a certain key is pushed or released.

Neither sound, AI nor networking has been implemented, due to lack of time.

11.1 Achievements

• A well documented and working game engine API that allows programmers to create

2D games with a minimum amount of foundation coding, so that they may focus on

the gaming experience.

- Mainly succeded, what is missing in the engine is good grahics, sound effects, music

and a good story. Once these elements exist, it could be called a complete platform

game.

• A good implementation design that will make it easy to add new features later.

- Done. Is is easy to add new terrain types and new enemies to the game. The level

editor uses a general system for the maps in the game that is easily modified. The

38

only coding that needs to be done for each game is for the events, but that can’t

possibly be avoided.

• A working two dimensional physics engine.

- Done. No bugs discovered so far.

• A useful level editor that can be used to create the maps of the game.

- It is useful and general. The level designer needs no knowledge of programming to

use it.

• A simple and general way to program the AI of the enemies in the game.

- AI is never simple when it tries to be good, but the Enemy class has a virtual method

called AI() that was not implemented in this tesis.

• A virtual class for enemies.

- Done, derived from character. There are no actual enemies of the class Enemy in the

game since all enemies are inherited from the virtual Enemy class.

11.2 Evaluation

The end result is more than satisfactory, The collision detect system in the physics part

of the engine uses a much more complex algorithm than was originaly planned and the

system for maps has pixel precision for placing objects on maps.

There has been no great problems throughout the work on the engine. The goals for

the project were set before the implementation and design began so the work has been a

more or less straight line from the beginning to the end.

Not all originally planned goals — namely network, sound and AI — were completed,

due to lack of time. But this doesn’t mean they won’t ever be implemented, they have

merely been postponed to a later project; a real game using the engine.

39

11.3 Future Plans

Sound and music haven’t played very large parts in the work so far. The very first sound

related thing to do in the future, is to add support for sound objects. Music will be

added to the Sublevels and possibly be directed by events. Sound effects will belong to the

objects responsible for making noise. For example, the sound of gunfire will be stored in

the character object that holds the gun.

Ambient sounds can be stored in Sublevel and be played somewhat randomly to enhance

the atmosphere of the map. This might include dripping water, the rush of wind in trees

and sounds of distant traffic. Transient sounds may be handled by events and played when

a player reaches a certain place on the map or performs a task.

The graphical objects Terrain, Characters and its descendants are inherited from BOB.

This isn’t a very good way to do things since it complicates relocation to another graphics

library such as DirectX Graphics or OpenGL. It would be better if the graphical objects

included a BOB or simliar as a data member. It would also be a good idea to imple-

ment characters as a number of smaller BOBs for different parts such as the main body,

the weapon, armour etc. This allows the character to change appearance depending on

equipment. This obviously assumes that each group of equipment will be fairly uniform

so the same animations can be used for at least most of them to save memory and ease

implementation.

A nice side effect of such a system would be that it would allow separate collision detect

and physics for different parts of the character. This would allow for special vulnerable

points where extra damage would be dealt, or part of the character acting as a mêlée

weapon. The map system wouldn’t notice this change since there’d still be a general

collision function for the whole object which would be used to detect collisions between

the terrain and character.

The map editor has to be altered so objects can be moved “outwards” and “inwards”

within a layer. As it is now, they have to be placed on the map in the correct order at

40

once or they’ll be rendered incorrectly. This is a major drawback if one should chose to

alter a map.

Player and Enemy should be reimplemented somewhat to make them more similar to

the kernel. A common interface used by the kernel would be a good idea, so it can simply

store all moving objects in the same list, and call their respective input/AI, physics and

graphics functions without discrimination.

41

References

[1] André LaMothe, Tricks of the Windows Game Programming GURUS, Sams, 2nd
Edition, 2002.

[2] André LaMothe, Windows Spelprogrammering för DUMMIES, IDG AB, ISBN 91-
7241-006-X, 1999.

[3] Steve Rabin, AI Game Programming Wisdom, Jenifer Niles, 1st Edition, 2002.

[4] David M. Bourg, Physics for Game Developers, O’Reiley & Associates, 1st Edition,
2002.

[5] Unknown author, Component object model — Wikipedia, the free encyclopedia, home
page, http://en.wikipedia.org/wiki/Component object model, 2004-04-28.

[6] Unknown author, Raster graphics — Wikipedia, the free encyclopedia, home page,
http://en.wikipedia.org/wiki/Bitmap, 2004-05-14.

[7] Carl Nordling and Jonny Österman, Physics Handbook for Science and Engineering,
Studentlitteratur, Lund, 6th Edition, 1999.

[8] J. M. Meriam and L. G. Kraige, Engineering Mechanics Statics SI version, Wiley, 5th
Edition, 2003.

[9] J. M. Meriam and L. G. Kraige, Engineering Mechanics Dynamics SI version, Wiley,
5th Edition, 2003.

[10] Zelda II: The Adventure of Link, Nintendo, 1988.

[11] Robert A. Adams, Calculus, Addison Wesley, 4th Edition, 1998.

[12] Bjarne Stroustrup, The C++ Programming Language, Addison Wesley, Special Edi-
tion, 2000.

[13] Hexar, Drawing Lines — The Bresenham Algorithm,
http://gamedev.cs.colorado.edu/tutorials/Bresenham.pdf, 2004-05-10.

[14] Charles Petzold, Programming Windows, Microsoft Press, 5th Edition, 1998.

[15] David A. Wheeler, More Than a Gigabuck: Estimating GNU/Linux’s Size, home page,
http://www.dwheeler.com/sloc/redhat71-v1/redhat71sloc.html 2004-05-30.

42

A User Manual for the Map Editor

The level editor isn’t exactly user friendly, but all functionality is described in a text field

on the left hand side of the monitor. Some debuggning information is still printed.

The screen is partitioned into two surfaces; edit area and toolbox. The edit area is the

actual map as it will look in the game and the toolbox contains all the objects that can be

placed on the level. Figure A.1 shows what the editor looks like before any objects have

been placed on the edit area.

Figure A.1: Empty Level Editor

To begin with, ignore the blue doll. To place an object on the map, left click the object

in question in the toolbox and then left click on the edit area where you want it placed.

43

To move the object to another place, use the arrow keys. O and P are used iterate the list

of placed objects.

The space key is used to change between terrain, enemies and events. To specify the

terrain layer, use the keys 0, 1 and 2.

To make objects move faster or slower than the player, K and L are used for changing

the speed factor. The default value is 1, which means that object is stationary on the

map, this is the best value to use for most objects. A value less than 1 makes the object

move slower than the player (appearing to be farther away from the “camera”), and a

higher value makes it move faster (therefore close to the “camera”). Even the objects in

the ground layer can have their speed factor altered, but this isn’t advisable since it would

look rather strange.

The view is changed by using the arrow keys when no object is marked. The speed

facter isn’t used when moving around in the editor, only within the game itself.

Press S to save the map. It will be called level00.ban and placed in the same folder as

the map editor. To open the map level00.ban in the editor, press D.

44

B winconsole.cpp

#define WIN32 LEAN AND MEAN
#define INITGUID

#include <windows . h> // inc lude important windows s t u f f
#include <windowsx . h>
#include <mmsystem . h>
#include <objbase . h>
#include < i o s t ream . h> // inc lude important C/C++ s t u f f
#include < con io . h>
#include < s t d l i b . h>
#include <malloc . h>
#include <memory . h>
#include < s t r i n g . h>
#include < s tdarg . h>
#include < s t d i o . h>
#include <math . h>
#include < i o . h>
#include < f c n t l . h>

#include ”ddraw . h” // directX inc l ude s
#include ”dinput . h” // directX inc l ude s
#include ”dsound . h” // directX inc l ude s

#include ”game . h” // My Game Engine

// DEFINES //

// de f i n e s f o r windows
#define WINDOW CLASS NAME ”WINXCLASS” // c l a s s name

#define WINDOWWIDTH 64 // s i z e o f window
#define WINDOW HEIGHT 48

// GLOBALS //

HWND main window handle=NULL; // po in t e r to toe the window handle
HINSTANCE main instance=NULL; // po in t e r to the ins tance

///
// STANDARD WINDOW FUNCTIONS //
///

LRESULT CALLBACK WindowProc (HWND hwnd ,
UINT msg ,
WPARAM wparam ,
LPARAM lparam)

{
// t h i s i s the main message handler o f the system

PAINTSTRUCT ps ; // used in WM PAINT
HDC hdc ; // handle to a dev i ce con tex t

// what i s the message
switch (msg)
{

case WMCREATE:
{

// do i n i t i a l i z a t i o n s t u f f here

45

return (0) ;
} break ;

case WM PAINT:
{

// s t a r t pa in t ing
hdc=BeginPaint (hwnd,&ps) ;

// end pa in t ing
EndPaint (hwnd,&ps) ;
return (0) ;

} break ;

case WMDESTROY:
{

// k i l l the app l i c a t i on
PostQuitMessage (0) ;
return (0) ;

} break ;

default : break ;
} // end swi tch

// process any messages t ha t we didn ’ t take care o f
return (DefWindowProc (hwnd , msg , wparam , lparam)) ;

} // end WinProc

///

int WINAPI WinMain(HINSTANCE hinstance ,
HINSTANCE hprev instance ,
LPSTR lpcmdline ,
int ncmdshow)

{
// t h i s i s the winmain func t ion

WNDCLASS winc l a s s ; // t h i s w i l l ho ld the c l a s s we crea t e
HWND hwnd ; // gener i c window handle
MSG msg ; // gener i c message
HDC hdc ; // gener i c dc
PAINTSTRUCT ps ; // gener i c p a i n t s t r u c t

// f i r s t f i l l in the window c l a s s s t u c tu r e
winc l a s s . s t y l e = CS DBLCLKS |CSOWNDC|CSHREDRAW|

CSVREDRAW;
winc l a s s . lpfnWndProc = WindowProc ;
w inc l a s s . cbClsExtra = 0;
w inc l a s s . cbWndExtra = 0;
w inc l a s s . hInstance = hins tance ;
w inc l a s s . hIcon = LoadIcon (NULL, IDI APPLICATION) ;
w inc l a s s . hCursor = LoadCursor (NULL, IDC ARROW) ;
w inc l a s s . hbrBackground = (HBRUSH ∗) GetStockObject (BLACK BRUSH) ;
w inc l a s s . lpszMenuName = NULL;
w inc l a s s . lpszClassName = WINDOW CLASS NAME;

// r e g i s t e r the window c l a s s
i f (! Reg i s t e rC l a s s (&winc l a s s))

return (0) ;

// crea t e the window , note the use o f WS POPUP
i f (! (hwnd=CreateWindow (WINDOW CLASS NAME, // c l a s s

46

TITLE, // t i t l e o f the window
WS POPUP|WS VISIBLE ,
0 ,0 , // x , y
WINDOWWIDTH, // width
WINDOW HEIGHT, // he i gh t
NULL, // handle to parent
NULL, // handle to menu
hinstance , // ins tance
NULL))) // crea t i on parms

return (0) ;

// save the window handle and ins tance in a g l o b a l po in t e r
main window handle = hwnd ;
main instance = hins tance ;

Game Spel ;
// perform a l l game conso le s p e c i f i c i n i t i a l i z a t i o n
Spel . Game Init () ;

// enter main event loop
while (1)
{

i f (PeekMessage(&msg ,NULL, 0 , 0 ,PMREMOVE))
{

// t e s t i f t h i s i s a qu i t
i f (msg . message==WM QUIT)

break ;

// t r a n s l a t e any ac c e l e r a t o r keys
TranslateMessage(&msg) ;

// send the message to the window proc
DispatchMessage(&msg) ;

} // end i f

// main game proces s ing goes here
Spel . Game Main () ;

} // end whi l e

// shutdown game and r e l e a s e a l l r e sources
Spel . Game Shutdown () ;

// return to Windows l i k e t h i s
return (msg .wParam) ;

} // end WinMain

///

47

C motor.h

/∗==;
∗
∗ Copyright (C) 2004 Martin Persson . D i r e c t l y s t o l e n from André LaMothe .
∗
∗ Fi l e : motor . h
∗ Content : Game Engine inc lude f i l e
∗
∗∗ ∗/

#ifndef motor h
#define motor h

// DEFINES //

// d e f a u l t screen s i z e
#define SCREEN WIDTH 1600 // s i z e o f screen
#define SCREEN HEIGHT 1200
#define SCREEN BPP 8 // b i t s per p i x e l

// ba s i c unsigned types
typedef unsigned short USHORT;
typedef unsigned short WORD;
typedef unsigned char UCHAR;
typedef unsigned char BYTE;

#define MAX SOUNDS 64 // max number o f sounds in system at once

#define SOUND NULL 0
#define SOUND LOADED 1
#define SOUND PLAYING 2
#define SOUND STOPPED 3

// voc f i l e d e f i n e s
#define NVB SIZE 6 // s i z e o f new vo ice b l o c k in by t e s

// screen t r an s i t i o n commands
#define SCREEN DARKNESS 0 // fade to b l a c k
#define SCREEN WHITENESS 1 // fade to whi te
#define SCREEN SWIPE X 2 // do a ho r i z on t a l swipe
#define SCREEN SWIPE Y 3 // do a v e r t i c a l swipe
#define SCREEN DISOLVE 4 // a p i x e l d i s o l v e
#define SCREEN SCRUNCH 5 // a square compression
#define SCREEN BLUENESS 6 // fade to b lue
#define SCREEN REDNESS 7 // fade to red
#define SCREEN GREENNESS 8 // fade to green

// MACROS ///

// the se read the keyboard asynchronous ly
#define KEYDOWN(vk code) ((GetAsyncKeyState (vk code) & 0 x8000) ? 1 : 0)
#define KEY UP(vk code) ((GetAsyncKeyState (vk code) & 0 x8000) ? 0 : 1)

// i n i t i a l i z e s a d i r e c t draw s t r u c t
#define DD INIT STRUCT(ddst ruct) {memset(&ddstruct , 0 , s izeof (ddst ruct)) ;\

ddst ruct . dwSize=s izeof (ddst ruct) ; }
// s e t s the volyme to 0−100 whi tout crapy logar i tms
#define DSVOLUME TO DB(volume) ((DWORD) (−30∗(100 − volume)))

// TYPES //

48

// t h i s ho ld s a s i n g l e sound
typedef struct pcm sound typ
{

LPDIRECTSOUNDBUFFER dsbu f f e r ; // the ds b u f f e r conta in ing the sound
int s t a t e ; // s t a t e o f the sound
int r a t e ; // p layback ra t e
int s i z e ; // s i z e o f sound
int id ; // id number o f the sound

} pcm sound , ∗ pcm sound ptr ;

// PROTOTYPES ///

// DirectDraw func t i ons
int DD Init (int width , int height , int bpp) ;
int DD Shutdown(void) ;
LPDIRECTDRAWCLIPPER DD Attach Clipper (LPDIRECTDRAWSURFACE lpdds ,

int num rects , LPRECT c l i p l i s t) ;
LPDIRECTDRAWSURFACE DD Create Surface (int width , int height , int mem flags) ;
int DD Flip (void) ;
int DD Wait For Vsync (void) ;
int DD Fi l l Sur face (LPDIRECTDRAWSURFACE lpdds , int c o l o r) ;
UCHAR ∗ DD Lock Surface (LPDIRECTDRAWSURFACE lpdds , int ∗ l p i t c h) ;
int DD Unlock Surface (LPDIRECTDRAWSURFACE lpdds , UCHAR ∗ s u r f a c e b u f f e r) ;
UCHAR ∗ DD Lock Primary Surface (void) ;
int DD Unlock Primary Surface (void) ;
UCHAR ∗ DD Lock Back Surface (void) ;
int DD Unlock Back Surface (void) ;

// genera l u t i l i t y f unc t i on s
DWORD Get Clock (void) ;
DWORD Star t C lock (void) ;
DWORD Wait Clock (DWORD count) ;
int Co l l i s i o n Te s t (int x1 , int y1 , int w1 , int h1 ,

int x2 , int y2 , int w2 , int h2) ;
int Color Scan (int x1 , int y1 , int x2 , int y2 ,

UCHAR scan s t a r t , UCHAR scan end ,
UCHAR ∗ s c an bu f f e r , int s c a n l p i t c h) ;

// graph ic s f unc t i ons
int Draw Clip Line (int x0 , int y0 , int x1 , int y1 ,UCHAR co lo r ,

UCHAR ∗ de s t bu f f e r , int l p i t c h) ;
int Cl ip L ine (int &x1 , int &y1 , int &x2 , int &y2) ;
int Draw Line (int xo , int yo , int x1 , int y1 , UCHAR co lo r ,UCHAR ∗ vb s ta r t , int l p i t c h) ;
int Draw Pixel (int x , int y , int co lo r ,UCHAR ∗ v id eo bu f f e r , int l p i t c h) ;
int Draw Rectangle (int x1 , int y1 , int x2 , int y2 , int co lo r ,LPDIRECTDRAWSURFACE lpdds) ;
int Sc r e en Trans i t i on (void) ;
void HLine (int x1 , int x2 , int y , int co lo r , UCHAR ∗ vbuf f e r , int l p i t c h) ;
void VLine (int y1 , int y2 , int x , int co lo r , UCHAR ∗ vbuf f e r , int l p i t c h) ;
void Sc r e en Tran s i t i on s (int e f f e c t , UCHAR ∗ vbuf f e r , int l p i t c h) ;

// p a l e t t e f unc t i ons
int Se t Pa l e t t e Ent ry (int co l o r i ndex , LPPALETTEENTRY co l o r) ;
int Get Palet te Entry (int co l o r i ndex , LPPALETTEENTRY co l o r) ;
int Load Palet te From Fi le (char ∗ f i l ename , LPPALETTEENTRY pa l e t t e) ;
int Save Pa l e t t e To F i l e (char ∗ f i l ename , LPPALETTEENTRY pa l e t t e) ;
int Save Pa l e t t e (LPPALETTEENTRY sav pa l e t t e) ;
int Se t Pa l e t t e (LPPALETTEENTRY s e t p a l e t t e) ;
int Rotate Colors (int s t a r t i ndex , int c o l o r s) ;
int Bl ink Co lo r s (void) ;

// gd i f unc t i ons

49

int Draw Text GDI (char ∗ text , int x , int y ,COLORREF co lo r ,
LPDIRECTDRAWSURFACE lpdds) ;

int Draw Text GDI (char ∗ text , int x , int y , int co lo r , LPDIRECTDRAWSURFACE lpdds) ;

// error func t i ons
int Open Error Fi l e (char ∗ f i l ename) ;
int Clo s e E r r o r F i l e (void) ;
int Write Error (char ∗ s t r i ng , . . .) ;

// sound
int Load VOC(char ∗ f i l ename) ;
int Load WAV(char ∗ f i l ename ,

int c o n t r o l f l a g s=DSBCAPS CTRLPAN |DSBCAPS CTRLVOLUME|
DSBCAPS CTRLFREQUENCY) ;

int Repl icate Sound (int s ou r c e i d) ;
int Play Sound (int id , int f l a g s =0, int volume=0 , int r a t e =0 , int pan=0) ;
int Stop Sound (int id) ;
int Stop Al l Sounds (void) ;
int DSound Init (void) ;
int DSound Shutdown (void) ;
int Delete Sound (int id) ;
int Dele te Al l Sounds (void) ;
int Status Sound (int id) ;
int Set Sound Volume (int id , int vo l) ;
int Set Sound Freq (int id , int f r e q) ;
int Set Sound Pan (int id , int pan) ;

// input
int DInput In i t (void) ;
void DInput Shutdown (void) ;
int DI In i t J o y s t i c k (int min x=−256, int max x=256 , int min y=−256,

int max y=256) ;
int DI Init Mouse (void) ;
int DI Init Keyboard (void) ;
int DI Read Joyst ick (void) ;
int DI Read Mouse (void) ;
int DI Read Keyboard (void) ;
void DI Re l ea s e Joy s t i ck (void) ;
void DI Release Mouse (void) ;
void DI Release Keyboard (void) ;

// EXTERNALS //

extern FILE ∗ f p e r r o r ; // genera l error f i l e
extern LPDIRECTDRAW lpdd ; // dd o b j e c t
extern LPDIRECTDRAWSURFACE lpddsprimary ; // dd primary sur face
extern LPDIRECTDRAWSURFACE lpddsback ; // dd back sur face
extern LPDIRECTDRAWPALETTE lpddpal ; // a po in t e r to the

// crea ted dd p a l e t t e
extern LPDIRECTDRAWCLIPPER lpddc l i pp e r ; // dd c l i p p e r
extern PALETTEENTRY pa l e t t e [2 5 6] ; // co l o r p a l e t t e
extern PALETTEENTRY sav e pa l e t t e [2 5 6] ; // used to save p a l e t t e s
extern DDSURFACEDESC ddsd ; // a d i r e c t draw sur face

// de s c r i p t i on s t r u c t
extern DDBLTFX ddb l t fx ; // used to f i l l
extern DDSCAPS ddscaps ; // a d i r e c t draw sur face

// c a p a b i l i t i e s s t r u c t
extern HRESULT ddrval ; // r e s u l t back from dd

// c a l l s
extern UCHAR ∗ pr imary bu f f e r ; // primary v ideo b u f f e r
extern UCHAR ∗ back bu f f e r ; // secondary back b u f f e r

50

extern int pr imary lp i t ch ; // memory l i n e p i t c h
extern int back l p i t ch ; // memory l i n e p i t c h
extern DWORD s t a r t c l o c k c oun t ; // used fo r t iming

// the se de f ined the genera l c l i p p i n g r e c t ang l e
extern int min c l ip x , // c l i p p i n g r e c t ang l e

max cl ip x ,
min c l ip y ,
max c l ip y ;

// the se are overwr i t t en g l o b a l l y by DD Init ()
extern int screen width , // width o f screen

s c r e en he i gh t , // he i gh t o f screen
screen bpp ; // b i t s per p i x e l

extern LPDIRECTSOUND lpds ; // d i rec t sound i n t e r f a c e po in t e r
extern DSBUFFERDESC dsbd ; // d i rec t sound de s c r i p t i on
extern DSCAPS dscaps ; // d i rec t sound caps
extern HRESULT d s r e s u l t ; // genera l d i rec t sound r e s u l t
extern DSBCAPS dsbcaps ; // d i rec t sound bu f f e r caps

extern LPDIRECTSOUNDBUFFER lpdsbprimary ; // the primary mixing b u f f e r
// the array o f secondary sound b u f f e r s
extern pcm sound sound fx [MAX SOUNDS] ;

extern WAVEFORMATEX pcmwf ; // gener i c waveformat s t r u c t u r e

// d i r e c t i n pu t g l o b a l s
extern LPDIRECTINPUT8 lpd i ; // dinput o b j e c t
extern LPDIRECTINPUTDEVICE8 lpd ikey ; // dinput keyboard
extern LPDIRECTINPUTDEVICE8 lpdimouse ; // dinput mouse
extern LPDIRECTINPUTDEVICE8 l pd i j o y ; // dinput j o y s t i c k
extern LPDIRECTINPUTDEVICE2 lpd i j o y2 ; // dinput j o y s t i c k
extern GUID joystickGUID ; // guid f o r main j o y s t i c k
extern char joyname [8 0] ; // name of j o y s t i c k

// the se contain the t a r g e t records f o r a l l d i input packe t s
extern UCHAR keyboard s ta te [2 5 6] ; // conta ins keyboard s t a t e t a b l e
extern DIMOUSESTATE mouse state ; // conta ins s t a t e o f mouse
extern DIJOYSTATE j o y s t a t e ; // conta ins s t a t e o f j o y s t i c k
extern int j o y s t i c k f ound ; // t rack s i f s t i c k i s p lugged in

#endif // motor h

51

D bob.h

/∗==;
∗
∗ Copyright (C) 2004 Martin Persson . D i r e c t l y s t o l e n from Andre LaMothe .
∗
∗ Fi l e : bob . h
∗ Content : Bitmap Objekt B l i t t e r inc l ude f i l e
∗
∗∗ ∗/

// watch f o r mu l t i p l e i n c l u s i on s
#ifndef bob h
#define bob h

// DEFINES //

// de f i n e s f o r Bobs
#define BOB STATE DEAD 0 // t h i s i s a dead bob
#define BOB STATE ALIVE 1 // t h i s i s a l i v e bob
#define BOB STATE DYING 2 // t h i s bob i s dying
#define BOB STATE ANIM DONE 1 // done animation s t a t e
#define MAX BOB FRAMES 64 // maximum number o f bob frames
#define MAX BOB ANIMATIONS 16 // maximum number o f animation

// sequeces
#define BOB ATTR SINGLE FRAME 1 // bob has s i n g l e frame
#define BOB ATTR MULTI FRAME 2 // bob has mu l t i p l e frames
#define BOB ATTR MULTI ANIM 4 // bob has mu l t i p l e animations
#define BOB ATTR ANIM ONE SHOT 8 // bob w i l l perform the animation

// once
#define BOB ATTR VISIBLE 16 // bob i s v i s i b l e
#define BOB ATTR BOUNCE 32 // bob bounces o f f edges
#define BOBATTRWRAPAROUND 64 // bob wraps around edges
#define BOB ATTR LOADED 128 // the bob has been loaded
#define BOB ATTR CLONE 256 // the bob i s a c lone

// bitmap de f i n e s
#define BITMAP ID 0x4D42 // un i v e r s a l id f o r a bitmap
#define BITMAP EXTRACT MODE CELL 0
#define BITMAP EXTRACT MODE ABS 1

// t h i s b u i l d s a 16 b i t co l o r va lue
#define RGB16BIT(r , g , b) ((b%32) + ((g%32) << 5) + ((r%32) << 10))

// b i t manipulat ion macros
#define SET BIT(word , b i t f l a g) ((word) =((word) | (b i t f l a g)))
#define RESET BIT(word , b i t f l a g) ((word)=((word) & (˜ b i t f l a g)))

// c l a s s d e f f i n i t i o n s ///

// Bitmap
typedef c l a s s Bitmap
{
pub l i c :

// t h i s conta ins the b i tmap f i l e header
BITMAPFILEHEADER bi tmap f i l eheade r ;
// t h i s i s a l l the in f o inc l ud ing the p a l e t t e
BITMAPINFOHEADER bitmapinfoheader ;
// we w i l l s t o r e the p a l e t t e here

52

PALETTEENTRY pa l e t t e [2 5 6] ;
// t h i s i s a po in t e r to the data
UCHAR ∗ bu f f e r ;

Bitmap (void) ;
int Flip Bitmap (UCHAR ∗ image , int by t e s p e r l i n e , int he ight) ;
int Load Fi l e (char ∗ f i l ename) ;
int Unload Fi l e (void) ;

} Bitmap File , ∗ Bitmap Fi le Ptr ;

// Bob
typedef c l a s s Bob // the Bitmap Object B l i t t e r c l a s s Bob
{
protec t ed :

// the bitmap images DD sur f a c e s
LPDIRECTDRAWSURFACE images [MAX BOB FRAMES] ;
// the sur face to draw on
LPDIRECTDRAWSURFACE ∗ Des t i na t i on Su r f a c e ;

pub l i c :
LPDIRECTDRAWSURFACE∗ Get Des t ina t i on Sur f a c e (void)

{return (De s t i na t i on Su r f a c e) ;}
LPDIRECTDRAWSURFACE∗ Get images (void) {return (images) ;}

protec t ed :
int s t a t e ; // the s t a t e o f the o b j e c t (genera l)
int an im state ; // an animation s t a t e va r i a b l e , up to you
int a t t r ; // a t t r i b u t e s pe r t a in ing to the o b j e c t (genera l)
int x , y ; // po s i t i on bitmap w i l l be d i s p l a y ed at
int xv , yv ; // v e l o c i t y o f o b j e c t
int width , he ight ; // the width and he i gh t o f the bob
int w i d t h f i l l ; // in t e rna l , used to f o r ce 8∗ x wide su r f a c e s
int counte r 1 ; // genera l counters
int counte r 2 ;
int max count 1 ; // genera l t h r e s ho l d va lue s ;
int max count 2 ;
int va r s I [1 6] ; // s tack o f 16 i n t e g e r s
f loat varsF [1 6] ; // s tack o f 16 f l o a t s
int cur r f rame ; // current animation frame
int num frames ; // t o t a l number o f animation frames
int curr an imat ion ; // index o f current animation
int anim counter ; // used to time animation t r a n s i t i o n s
int anim index ; // animation element index
int anim count max ; // number o f c y c l e s b e f o r e animation
int ∗ animations [MAX BOB ANIMATIONS] ; // animation sequences

pub l i c :
// Bob metods
Bob(int x , int y , int width , int height , int num frames , int att r ,

int mem flags ,LPDIRECTDRAWSURFACE ∗ d e s t i n a t i o n s u r f a c e) ;
v i r t u a l ˜Bob(void) ;
Bob(void) ;
int Draw(void) ;
int Draw Scaled (int swidth , int she i gh t) ;
int Load Frame (Bitmap Fi le Ptr bitmap , int frame , int cx , int cy ,

int mode) ;
int Animate (void) ;
int S c r o l l (void) ;
int Move(void) ;
int Load Animation (int Anim index , int Num frames , int ∗ sequence) ;

53

int Set Pos (int X, int Y) ;
int Set Anim Speed (int speed) ;
int Set Animation (int Anim index) ;
int Set Ve l (int Xv , int Yv) ;
int Hide (void) ;
int Show(void) ;
int Co l l i s i o n (Bob ∗ bob2) ;
Bob(Bob ∗ bob src) ;

} ∗Bob ptr ;

#endif // bo b h

54

E game.h

/∗ ∗∗
∗
∗ Copyright (C) 2004 Martin Persson . A l l r i g t h s reserved .
∗
∗ Fi l e : game . h
∗ Content : Main Game inc lude f i l e
∗
∗∗ ∗/

// watch f o r mu l t i p l e i n c l u s i on s
#ifndef game h
#define game h

// INCLUDES ///
#include ”bob . h”

// DEFINES //

#define TITLE ”Martins Spelmotor ” // T i t l e o f the window
// t e r r a i n l a y e r t y p e d e f i n e s to keep t rack o f what you are doing
#define BACKGROUND 0
#define GROUND 1
#define FOREGROUND 2

// only used f o r the ground l ay e r o f terran to i nd i c a t e t ha t p i x e l s c an shou ld
// be used in s t e d o f the ord inery Bob : : Co l l i s i o n
#define TERRAIN TYPE NON SQUARE 1

#define NUM ORIGINAL GROUND 6
#define NUM ORIGINAL ENEMIES 2
#define NUM EVENT TYPES 1
#define HOPPARE 0
#define RULLARE 1

// charac ter d e f i n e s
#define STANDING STILL 0
#define WALKING RIGHT 1
#define WALKING LEFT 2

#define FACING LEFT 1
#define FACING RIGHT 2

#define IN FREE AIR 0
#define ONGROUND 1
#define HITTING ROOF 2
#define ON LEFT WALL 4
#define ON RIGHT WALL 8
#define HITTING UP LEFT CORNER 16
#define HITTING UP RIGHT CORNER 32
#define HITTING DOWN LEFT CORNER 64
#define HITTING DOWN RIGHT CORNER 128

// dev i e rd eneny de f i n e s
#define HOPPARE ANIMATION 0
#define ROLL RIGHT 0
#define ROLL LEFT 1

///
// OBJECT DEFINES ///

55

///

E.1 Terrain

// TERRAIN CLASS //
typedef c l a s s Terra in : pub l i c Bob
{
protec t ed :

int Ter ra in At t r i bu t e s ;
pub l i c :

// used to i d e n t i f y what type o f o r i g i n a l t e r r a i n i t was c loned from
// so the f i l ename can be saved in the ∗ . ban f i l e
int Type Index ;

double t x , t y ;
double t xv , t yv ;
// used to make the ForeGround and BackGround move f a s t e r or s lower
// than the p layer
double SpeedFactor ;

void Set Type (int type arg) ;
void Set SpeedFactor (double SpeedFactor arg) ;
void Set Pos (int x arg , int y arg) ;
int Move(void) ;
void Move(int X, int Y) ;

Terra in (int X, int Y, int Width , int Height , int Num frames , int Attr ,
int Mem flags ,LPDIRECTDRAWSURFACE ∗ d e s t i n a t i o n s u r f a c e) ;

˜Terra in (void) ;
Terra in (Terra in ∗ t e r r a i n s r c) ;

} ∗ Ter ra in p t r ;

E.2 Character

// CHARACTER CLASS //
// ska senare ärvas ner t i l l en underk la s s f ö r s p e l a r e och en f ö r va r j e f i ende
typedef c l a s s Character : pub l i c Bob
{
// t h i s i s where the phys i c s engine i s implemented
protec t ed :

// a t t r u bu t e s
int Sty , Fys , Smi , Int , Psy , Kar , Sto ;
// s k i l l s
// jag l ä g g e r t i l l mer sen !
// used to know what d i r e c t i on the p layer i s f a c e ing
int Dir e c t i on ;
// used to know what the p layer i s doing
int State ;
// po in t e r to the ground in the s u b l e v e l
Ter ra in p t r ∗∗Ground ;
// the s i z e o f the map in the s u b l e v e l
int ∗ Ter r a i n S i z e ;
// the re f e r ence
Ter ra in p t r Re fe rencepo int ;
void Move Level (int x , int y) ; // only used by the p layer
i n l i n e bool Ground Col l i s i on (void) ;

int Anta l Hande l s e r i Sub l ev e l ;
Te r ra in p t r ∗ Sub leve l Events ;

// These va lue s are used f o r the phys i c s

56

int mass ;
f loat area ;
f loat Cd;
f loat wa lk f o r c e ;

pub l i c :
Sub l e v e l p t r sub lev ;

void Move(int dx , int dy) ;

Character (int X, int Y, int Width , int Height , int Num frames , int Attr ,
int Mem flags ,LPDIRECTDRAWSURFACE ∗ d e s t i n a t i o n s u r f a c e) ;

v i r t u a l ˜ Character (void) ;
Character () : Bob () {} // used fo r c l one ing o f enemies
int Co l l i s i o n (Te r ra in p t r Block) ;
i n l i n e bool C o l l i s i o n v 1 5 (Te r ra in p t r Block) ;
// re turnva lue depends on where the charac ter i s
int On Ground (void) ;
void Set Ground (Te r ra in p t r ∗Global Ground [] , int s i z e []) ;
void Se t Re f e r encepo in t (Te r ra in p t r Reference) ;

void Set Sub l eve l Event s (Te r ra in p t r ∗ hande l se arg , int an t a l hande l s e r) ;

} ∗ Characte r pt r ;

E.3 Enemy

// ENEMY CLASS //
typedef c l a s s Enemy : pub l i c Character
{
// t h i s i s the enemy c l a s s
protec t ed :
pub l i c :

Enemy(int X, int Y, int Width , int Height , int Num frames , int Attr ,
int Mem flags ,LPDIRECTDRAWSURFACE ∗ d e s t i n a t i o n s u r f a c e) ;

Enemy() : Character () {} // used fo r c l one ing o f enemies
v i r t u a l ˜Enemy(void) ;
v i r t u a l void I n i t (void) ;
v i r t u a l void Enemy Move(void) ;
v i r t u a l void AI(void) ; // motsvarar input i p l ayer
v i r t u a l void Logic (void) ;

} ∗Enemy ptr ;

typedef c l a s s Ru l la re : pub l i c Enemy
{
protec t ed :

i n l i n e bool Reached Right Edge (void) ;
i n l i n e bool Reached Left Edge (void) ;

pub l i c :
Ru l l a r e (LPDIRECTDRAWSURFACE ∗ d e s t i n a t i o n s u r f a c e) ;
Ru l l a r e (Ru l l a re ∗ Ru l l a r e s r c) ;
Ru l l a r e (Enemy ∗Enemy src) ;
Ru l l a r e () : Enemy() {}
v i r t u a l ˜ Rul la re (void) ;
v i r t u a l void AI(void) ;

} ∗ Ru l l a r e p t r ;

typedef c l a s s Hoppare : pub l i c Enemy
{
protec t ed :
pub l i c :

57

Hoppare (LPDIRECTDRAWSURFACE ∗ d e s t i n a t i o n s u r f a c e) ;
Hoppare (Hoppare ∗ Hoppare src) ;
Hoppare (Enemy ∗Enemy src) ;
Hoppare () : Enemy() {}
v i r t u a l ˜ Hoppare (void) ;
v i r t u a l void AI(void) ;

} ∗ Hoppare ptr ;

E.4 Player

// PLAYER CLASS ///
typedef c l a s s Player : pub l i c Character
{
// t h i s i s the Player c l a s s
protec t ed :

void I n i t (void) ;
// used fo r e the movement o f enemies when the p layer i s moving
Enemy ptr ∗ Sub l eve l F i ende r ;
int Anta l F i ende r i Sub l e v e l ;

pub l i c :
Player (int X, int Y, int Width , int Height , int Num frames , int Attr ,

int Mem flags ,LPDIRECTDRAWSURFACE ∗ d e s t i n a t i o n s u r f a c e) ;
v i r t u a l ˜ Player (void) ;
void Input (void) ;
void Logic (void) ;
void Player Move (void) ;
void Set Enemies (Enemy ptr ∗ Fiende arg , int a n t a l f i e n d e r) ;
void Move Level (int x , int y) ;

} ∗ Playe r p t r ;

E.5 Sublevel

// SUBLEVEL CLASS ///
typedef c l a s s Sub l eve l
{
protec t ed :

// Terrain in dynamic arrays
Ter ra in p t r ∗Ground [3] ;

// the o r i g i n a l t e r r a i n t ha t w i l l be used to c lone a l l o ther t e r r a i n
Ter ra in p t r Orig inal Ground [NUM ORIGINAL GROUND] ;

// the p layer d o l l . I t i s the r e f e r en s epo in t to a l l o t h e t o b j e k t s in
// the map i t i s not the s t a r t i n g po s s i t i o n o f the p layer
// the s t a r t i n g po s s i t i o n w i l l be s e t by the game
Ter ra in p t r p l a y e r d o l l ;

// the s i z e o f the map
int Ter r a i n S i z e [3] ;

// ponter to the same data in Leve l
Enemy ptr ∗ Leve l F i ender ;
// enemies l o c a l to the Sub l e v e l
Enemy ptr ∗ Sub l eve l F i ende r ;
int a n t a l s u b l e v e l f i e n d e r ;
// the o r i g i n a l enemies t ha t w i l l be used to c lone a l l o ther t e r r a i n
Enemy ptr Or ig ina l Enemies [NUM ORIGINAL ENEMYS] ;

// event s on the map
Ter ra in p t r Or ig ina l Event s [NUM EVENT TYPES] ;
Te r ra in p t r ∗ Sub leve l Events ;

58

int an t a l s u b l e v e l h and e l s e r ;

int Level To Play ;

// po in t e r to the same data in game
Playe r p t r Player ONE ;

// SUBLEVEL METODS //

void Load Terra in Graphics (void) ;
void Load Map Data (char f i l ename []) ;

void Move(int x , int y) ;

void Draw(void) ;

pub l i c :
Sub l eve l (char l e v e l f i l e n ame [] , P l aye r p t r P laye r sou r c e) ;
˜ Sub l eve l (void) ;
int Playing (void) ;

} ∗ Sub l e v e l p t r ;

E.6 Level

// LEVEL CLASS //
typedef c l a s s Leve l
{
protec t ed :

// the number o f maps in l e v e l
int maps ;
// the s u b l e v e l t ha t the p layer i s p l ay ing on
int Level To Play ;
// the curent map tha t the p layer i on
int Current Map ;

// the maps or d i f f e r e n t rooms in l e v e l
Sub l e v e l p t r karta [2] ;

// the l i s t o f the enemies in the l e v e l . i f you l eave a room the
// enemies are s t i l l t h e re when you come back
Enemy ptr Fiender ;
// po in t e r to the same data in game
Playe r p t r Player ONE ;

pub l i c :
Leve l (P laye r p t r Globa l P layer) ;
˜ Leve l (void) ;
// the main event loop fo r the l e v e l
void Play ing Leve l (void) ;

} ∗ Leve l p t r ;

E.7 Game

// GAME CLASS ///
c l a s s Game
{
protec t ed :

59

// the p layer data . Globa l
Playe r p t r Player ONE ;

// the Leve l s in the game
Leve l p t r Leve l 1 ;

// Animations

// GAME FUNKTIONS ///

pub l i c :

int Game Init (void ∗ parms=NULL) ;
int Game Shutdown(void ∗ parms=NULL) ;
int Game Main(void ∗ parms=NULL) ;

} ;

#endif // game h

60

F mapeditor.h

/∗==;
∗
∗ Copyright (C) 2004 Martin Persson . A l l Rights Reserved .
∗
∗ Fi l e : game . h
∗ Content : Main Game inc lude f i l e
∗
∗∗ ∗/

// watch f o r mu l t i p l e i n c l u s i on s
#ifndef game h
#define game h

// INCLUDES ///
#include ”bob . h”

// DEFINES //

#define TITLE ”Martins Spelmotor ” // T i t l e o f the window
// t e r r a i n l a y e r type d e f i n e s to keep t rack o f what you are doing
#define BACKGROUND 0
#define GROUND 1
#define FOREGROUND 2
#define NO BLOCK SELECTED −1
#define PLAYER SELECTED −2

// only used f o r the ground l ay e r o f t e r r a i n to i nd i c a t e t ha t p i x e l scan
// shou ld be used in s t ed o f the ordinary Bob : : Co l l i s i o n
#define TERRAIN TYPE NON SQUARE 1

#define NUM ORIGINAL GROUND 6
#define NUM ENEMY TYPES 2
#define NUM EVENT TYPES 1

#define GROUND TYPE 1 //
#define ENEMY TYPE 2 // used fo r s e l e c t i o n on the o b j e c t s on the map
#define EVENT TYPE 3 //

// GLOBALS //

// PROTOTYPES ///

// TERRAIN CLASS //
typedef c l a s s Terra in : pub l i c Bob
{
protec t ed :

int Ter ra in At t r i bu t e s ;
pub l i c :

// Used to i d e n t i f y what type o f o r i g i n a l t e r r a i n i t was c loned from
// so the f i l ename can be saved in the ∗ . ban f i l e
int Type Index ;

double t x , t y ;
double t xv , t yv ;
// Used to make the ForeGround and BackGround move f a s t e r or s lower
// than the p layer
double SpeedFactor ;

61

int Move(void) ;
void Move(int X, int Y) ;

Terra in (int X, int Y, int Width , int Height , int Num frames , int Attr ,
int Mem flags ,LPDIRECTDRAWSURFACE ∗ d e s t i n a t i o n s u r f a c e) ;

˜Terra in (void) ;
Terra in (Terra in ∗ t e r r a i n s r c) ;

} ∗ Ter ra in p t r ;

// MAP EDITOR CLASS ///
// ed i t o r c l a s s
typedef c l a s s Map Editor
{
protec t ed :

// Used to po in t at the g l o b a l Direc t Input mouse
Bob ptr mouse ;

// This array might be converted to a l i n k ed l i s t l a t e r on
Ter ra in p t r ∗Ground [3] ;

// The o r i g i n a l t e r r a i n t ha t w i l l be used to c lone a l l o ther t e r r a i n
Ter ra in p t r Orig inal Ground [NUM ORIGINAL GROUND] ;

// The p layer d o l l . I t i s the re f e r ence po in t to a l l o t h e t o b j e c t s
// in the map . I t i s not the s t a r t i n g po s i t i on o f the p layer .
// The s t a r t i n g po s s i t i o n w i l l be s e t by the game
Ter ra in p t r p l a y e r d o l l , t o o l b o x do l l ;

// The s i z e o f the map
int Ter r a i n S i z e [3] ;

// The enemies used to c lone the enemies shown on the map
Ter ra in p t r Org ina l F i ender [NUM ENEMY TYPES] ;

Te r ra in p t r ∗ Fiender ;

// The ev e t s used to c lone the even t s on the map
Ter ra in p t r Or ig ina l Event s [NUM EVENT TYPES] ;
Te r ra in p t r ∗ Events ;

int Antal Fiender ;
int Current Enemy type ;
int Current Enemy ;

int Current Terra in Block ;

int Current Layer ;
int Current Or ig ina l B lock ;

int Current Event ;
int Current Event Type ;
int Antal Hande lser ;

bool show ring ;

int objekttype ;

// metods

// Adds an enemy to the map
void New Enemy(int Enemytype) ;

62

// Removes an enemy from the map
void Delete Enemy (int index) ;
// Adds an event to the map
void New Event (int index) ;
// Removes an event from the map
void Delete Event (int index) ;
// Returns t rue i f the b l o c k i s c l i c k e d
bool Te r r a i n C l i c k Le f t (Te r ra in p t r b lock) ;
bool Te r ra in C l i ck R igh t (Te r ra in p t r b lock) ;
// Metod tha t adds an o b j e c t to the map
void New Terrain (int o r i g i n a l t e r r a i n i n d e x , int l aye r type) ;
// Metod tha t removes an o b j e c t in the map
void De l e t e Ter ra in (int intex , int l aye r type) ;
// Saves the map to a ∗ . ban f i l e
void Save map (char f i l emane []) ;
// Loads a v a l i d ∗ . ban f i l e in to the memory
void Load map (char Filemane []) ;
// Moves a t e r r a i n b l o c k
void Move Terrain Block (int index , int l ayer type , int x d i s tance ,

int y d i s t anc e) ;

// S t ruc tur ing o f Ed i t ing ()
void Mouse Ed i t ing s tu f f (void) ;
void Keyboard Ed i t ing s tu f f (void) ;

void Move Map(int x , int y) ;
void Move Map Objekt (Te r ra in p t r objekt , int x , int y) ;

pub l i c :
// the cons t ruk tor
Map Editor (Bob ptr g lobal mouse) ;
// the de s t ru k t o r
˜Map Editor (void) ;
// to be used in the main event loop
void Edit ing (void) ;
// metod tha t draws a l l t e r r a i n b l o c k s and enemys and events
void Draw(void) ;

} ∗ Map Editor ptr ;

// game conso le
c l a s s Game
{
protec t ed :
// GAME OBJEKTS ///

Map Editor ptr ed i t o rn ;

pub l i c :
// the mouse
Bob ptr mouse ; // pub l i c because the ed i t o r needs i t

// GAME FUNKTIONS ///
int Game Init (void ∗ parms=NULL) ;
int Game Shutdown(void ∗ parms=NULL) ;
int Game Main(void ∗ parms=NULL) ;

} ;

#endif // game h

63

G Screenshot

Figure G.1 shows what the test game looks like. The arrows are velocity vectors and

Figure G.1: A Screen Shot of an Example Game

aren’t actually shown during gameplay.

64

