
 i

Department of Computer Science

Henrik Andersson and Peter Oreland

City Mobility Model with Google

Earth Visualization

C-dissertation (10p)
Software Engineering

Date: 07-06-05

Supervisor: Katarina Asplund

Examiner: Martin Blom

Serial Number: C2007:03

Karlstads universitet 651 88 Karlstad
Tfn 054-700 10 00 Fax 054-700 14 60

Information@kau.se www.kau.se

ii

iii

City Mobility Model with Google Earth

Visualization

Henrik Andersson and Peter Oreland

iv

This report is submitted in partial fulfillment of the requirements for the

Bachelor’s degree in Computer Science. All material in this report which is

not my own work has been identified and no material is included for which

a degree has previously been conferred.

Henrik Andersson and Peter Oreland

Approved, 07-06-05

Advisor: Katarina Asplund

Examiner: Martin Blom

v

Abstract

Mobile Ad Hoc Networks are flexible, self configuring networks that do not need a fixed

infrastructure. When these nets are simulated, mobility models can be used to specify node

movements. The work in this thesis focuses on designing an extension of the random trip

mobility model on a city section from EPFL (Swiss federal institute of technology). Road data

is extracted from the census TIGER database, displayed in Google Earth and used as input for

the model. This model produces output that can be used in the open source network simulator

ns-2.

We created utilities that take output from a database of US counties, the TIGER database, and

convert it to KML. KML is an XML based format used by Google Earth to store geographical

data, so that it can be viewed in Google Earth. This data will then be used as input to the

modified mobility model and finally run through the ns-2 simulator. We present some NAM

traces, a network animator that will show node movements over time.

We managed to complete most of the goals we set out, apart from being able to modify node

positions in Google Earth. This was skipped because the model we modified had an

initialization phase that made node positions random regardless of initial position. We were

also asked to add the ability to set stationary nodes in Google Earth; this was not added due to

time constraints.

vi

Contents

1 Introduction ... 1

2 Background.. 3

2.1 Wireless Networks... 3

2.2 Ad hoc Networks ... 3

2.3 XML .. 5

2.4 KML .. 5

2.5 Google Earth .. 6

2.6 TIGER.. 7

2.7 ns-2 .. 8

2.8 NAM .. 8

3 From TIGER to Google Earth ... 10

3.1 Why the census TIGER database .. 10

3.2 How it works.. 11

3.3 Development, problems and solutions... 14

3.4 Usage ... 17

4 Modifying the mobility model .. 18

4.1 The Mobility Model... 18

4.2 KmlReader ... 21

4.3 Problems and Solutions ... 23

5 NS-2 simulator ... 25

5.1 Simulations .. 25

5.2 Problems .. 26

6 Conclusions and future work ... 28

7 References .. 30

A Appendix .. 31

A.1 Mobility Model .. 31

vii

A.1.1 main.cpp
A.1.2 Road.h
A.1.3 Intersection.h
A.1.4 KmlReader.h
A.1.5 KmlReader.cpp

viii

List of Figures

Figure 1: Example of ad hoc net structure ... 4

Figure 2: XML code example .. 5

Figure 3: KML placemark example ... 6

Figure 4: Nam running a simulation .. 9

Figure 5: a section of KML output from the conversion ... 12

Figure 6: output.kml expanded to show all road segments .. 13

Figure 7: Google Earth showing output from TIGER Record Type 1 on the city

Nashville .. 15

Figure 8: Final version showing a section of Jersey City in the New York metropolitan

area... 16

Figure 9: Section of the road vector .. 22

Figure 10: City section in Google Earth with NAM visualization on the right 25

Figure 11: initial part of mobility model output.. 26

Figure 12: movement-part of mobility model output.. 26

 1

1 Introduction

What later became known as ad hoc networks started out in the 70’s as “packet radio”

networks, sponsored by DARPA1. Since then, considerable research has been done in the

field. Wireless Ad hoc networks today are flexible, self configuring networks that do not need

a fixed infrastructure. Recently, they have appeared in the news with the $100 laptop, a cheap

laptop intended for distribution in developing countries, which use wireless ad hoc networks

to establish a network “out of the box”.

The work in this thesis focuses on simulations of mobile ad hoc networks. We will create a set

of utilities to enable visualization of a simulation of a city section. The project work consists

of several smaller parts. First, we will have to get road coordinates from a database (census

TIGER) and convert it to a format Google Earth can display, KML, an XML based format

used to store geographical data. Then, in the second part, we will convert the Google Earth

data to a mobility model, which outputs all the movements on the city section for use in the

simulator. Mobility models are used to model node movements, which in our case will be

limited to a city section, a network of roads.

The project work will be aimed at helping researchers visualize their simulations. By using

Google Earth, it is also possible to put markers on the map to symbolize nodes that can read

into the model. It also makes it easier to add improvements and additional functionality later

on.

The finished solution included the major goals of the project, apart from a few limitations

imposed by time constraints and by the mobility model that it was built upon. We did not

implement functionality to set starting positions of nodes in Google Earth. This was skipped

due to the fact that the mobility model randomizes starting positions in the initialization

phase. Secondly, we were asked to have stationary nodes on the city section. We were never

able to add this functionality due to time constraints. It would have required what we deemed

to be rather extensive modifications to the model.

1 Defense Advanced Research Projects Agency, an agency of the US department of defence.

 2

This thesis is structured as follows. First, in chapter 2, we go through some basics that will be

needed when reading through the rest of the paper. Then follow the chapters for the different

steps, or parts, of the entire application. In chapter 3 we describe the process of converting

and linking road data from the United States Census Bureau TIGER database into Google’s

KML format. The next major section is the modification of the mobility model. Here we take

a look at what modifications where made to the existing model and also how the KML data

was enabled as input. The final major part deals with the simulations using the ns-2 simulator.

We will describe the processes of setting up the simulator and presenting some of the results,

for example showing a finished simulation visualized in a network animator (NAM).

Appendix A contains relevant code for the mobility model, including the modifications made

to it.

 3

2 Background

In this chapter we provide background information that will be useful when reading the rest of

this thesis. We start off by looking at the basics of wireless networks and more specifically ad

hoc networks, the kind of networks that our model deals with. Then, in section 2.3 and 2.4,

follows information on KML, Google’s language for storing three-dimensional geographic

data, and XML, which it is based on. These sections are intended to give an overview of what

XML is and the syntax of the KML files, which we used to store data from the TIGER

database.

The KML files are opened in Google Earth, which is discussed in the following section. In

this section we briefly have a look at what it is and how it is used. Next comes a section on

the TIGER database, the database we used to get information on road networks and, finally,

section 2.7 and 2.8 discusses ns-2 and its related software. ns-2, or Network Simulator 2, is

the simulator that will be running the simulations that our mobility model will output.

2.1 Wireless Networks

The most common wireless networks [3] today are the ones where you have one access point,

i.e. a router. All computers that want to log on to the network have to check in through the

router to gain access to the network and all traffic is sent through the router as well.

The most common wireless network standard is IEEE 802.11, which includes a few different

standards within itself that are divided by alphabetic characters such as a, b and g. These

standards use an unlicensed radio spectrum to provide wireless ethernet.

2.2 Ad hoc Networks

The origin of ad hoc networking can be traced back very long ago when you needed to send

messages in a hurry. The most common way was to have people on tall structures or heights

shouting from one position to the other until the message reached its destination.

 4

An ad hoc network works in a similar way. There are no access point, instead nodes discover

other nodes within its range and forms a network together. In this way, you can reach nodes

out of range by going through nodes within range, which will forward your messages, so

called multi-hop relaying. Without base stations, the nodes does not only work as end-

systems, but also as routers forwarding packets.

 The nodes make up

 the network themselves.

 C and D cannot reach A

 directly so B needs to

 route and forward the

 traffic.

Figure 1: Example of ad hoc net structure

The ad hoc network was developed because developers saw an opportunity to make a network

without a fixed infrastructure. Self-configuring and maintenance properties are built into the

network, which makes the ad hoc network both quick and cost-effective when deployed.

Application domains include battlefields, search and rescue operations and collaborate

computing. The network can be setup as a completely standalone network or it could just be

connected to the internet.

In mobile ad hoc networks (MANets)[4] the nodes are free to move about and organize

themselves into a network. This works with the main idea that when a new node wants to be a

part of the network the node announces its presence and listens to broadcast announcements

from its neighbors. The node learns about new nodes in range and ways to reach them, and

may announce that it can also reach those nodes. As time goes on, each node knows about all

other nodes and one or more ways to reach them.

Because of the mobility in manets, path breaks, packet collisions and transient loops often

occurs and the network needs a good routing protocol to resolve these matters as well as

having constant updates about which neighbors you have.

A B C

D

 5

2.3 XML

XML (Extensible Markup Language) [1, 2] is a meta-markup language and a W3C2 standard.

In contrast to other markup languages, such as HTML, one can make up own tags according

to what is needed as long as they are correctly organized. XML provides a structured and

organized way of sharing data. For example, if you are working with personnel files you

could write something like the code below:

<employee>

 <name>Daniel Myer</name>

 <position>Programmer</position>

 <salary = “2200” />

 …

</employee>

Figure 2: XML code example

XML’s simplicity makes it easy for programmers of any level and even for those without

programming experience to understand and write. At the same time XML is easy to parse,

since it doesn’t include any formatting instructions, but only describes data. As such, it is easy

for virtually any program to process the data.

XML files are mostly created with text editors, which can range in complexity, from a simple

editor such as vi to a fully WYSIWYG3 editor. The final document can then be processed by a

parser that makes sure that the data is well formatted (if it is syntactically correct). The

document can finally be read by an application. For example, it can be opened in a browser,

which formats the data and displays it to the user.

A syntactically correct XML document should have one root element, it should be properly

nested and it should have values within quotes. Finally, one must also keep in mind that it is

case sensitive. If a document follows these rules it is considered well formatted.

2.4 KML

KML (Keyhole Markup Language) [3, 4] is an XML-based language used to display three-

dimensional geographical data in Google Earth and Google Maps. It can store information

2 World Wide Web Consortium. International consortium that work to develop Web standards.

 6

such as paths, placemarks, ground overlays (images “draped” over existing textures), 3d

models etc. Each object is always given a longitude and a latitude. Furthermore, KML-files

can contain descriptive data, sometimes formatted with HTML, special icons, a camera view

etc.

As an example, a placemark with HTML formatted description can look like the one below

(the CDATA tag is used to make sure that HTML is parsed correctly):

 <Placemark>

 <name>CDATA example</name>

 <description>

 <![CDATA[

 <h1>Some title</h1>

 <p>This is a <i>placemark</i></p>

]]>

 </description>

 <Point>

 <coordinates>102.595626,14.996729</coordinates>

 </Point>

 </Placemark>

Figure 3: KML placemark example

KML files can be created with the Google Earth interface or written directly in a text editor

and then compressed together with any images using the ZIP-format. Such ZIP-archives are

called KMZ and is the most common way to distribute KML-files.

We mainly used the KML-files to store roads (paths) and nodes (placemarks) that were used

as input for our mobility model. We had to get the road-information from another source than

Google since it is impossible to retrieve road-layer information from Google Earth.

2.5 Google Earth

Google Earth [5], formerly Earth Viewer, is a 3d globe program developed by Keyhole, inc.

and later acquired by Google in 2004. A year later its name was changed to Google Earth.

3 What You See Is What You Get. What you see when editing is very close to or exactly what you get in the final

product.

 7

Images are obtained from satellite and aerial photography and thus resolution vary depending

on points of interest. In large cities for example, cars and people can be discerned while

smaller towns and other places have considerably lower resolution.

Geographical information, for example roads and terrain, are stored in layers that can be

turned on or off. Apart from geographical layers there are also layers with other information

such as Geographic Web. It displays points of interest that link to information from

Wikipedia4 or Panoramio5. Such layer information can be stored in KML-files that Google

Earth can read and display on the virtual globe. It is also possible to save some information to

KML-files.

Google Earth is currently available for Windows, Linux, Mac OS X and FreeBSD in three

versions. Besides the free version there are two commercial versions (plus and a pro) which

provide further functionality and customer support for a price.

2.6 TIGER

TIGER (Topologically Integrated Geographic Encoding and Referencing) [6] is a database of

geographic and cartographic information by the United States Census Bureau. The database

covers all US counties and a few surrounding islands.

The database is organized after states that contain one compressed file (ZIP format) for each

county. Each county contain a set of record types describing different aspects of the graphical

map. As an example, record type one (RT1) contain address information along with start and

end coordinates of the roads. Using the ID-number in RT1, additional coordinates are

retrieved from record type two, coordinates that makes up the curves of the roads. To get

complete information about a geographical feature it is often necessary to combine

information from several different record types in this way.

TIGER-records contain all kinds of geographical data; roads, water, buildings, borders etc.

and are spread out across a range of different record types. Apart from purely geographical

4 Free online encyclopedia, maintained by its users. http://en.wikipedia.org/
5 A site that host images linked to where they were taken.

 8

data, such as buildings, there are also information in the records that specify address ranges,

zip codes an such information. There are also record types providing information about the

database itself, for example record type H. This file stores a history of every complete chain

(record type 1), when they were split or merged. TIGER files can be displayed with most

GIS6 applications.

The current edition of the database is the second edition from 2006 (released March 6 2007)

and will be the last files the Census bureau intends to release in the current format. Future

TIGER spatial data will be released in shapefile format.

2.7 ns-2

ns (network simulator) [8, 9, 10] is a discrete event simulator, meaning it operates on an

chronological sequence of events. ns was programmed in C++ with a simulation interface

written in OTcl, an object oriented extension of the scripting language Tcl. It provides

simulation for several types of protocols over both wired and wireless networks.

ns started out as a variant of the REAL network simulator in 1989 and had six years later, in

1995, gained wider support from DARPA, among others. Today it is developed by different

institutes and researchers and has reached its second generation (ns-2). Work on ns-3 was

started July 1, 2006 and is planned to be completed sometime in 2010.

2.8 NAM

NAM (Network Animator) is a TCL/TK (Tool Command Language / TK GUI Toolkit) based

animation tool for viewing network simulations. When a simulation has been run in ns-2 it

outputs a trace file that can be opened in NAM and it’s then possible to watch the nodes move

and to see the simulation take place. With NAM you can watch the whole simulation both

forward and backwards, you can yourself change the speed of the simulation and zoom in and

out on nodes etc. See Figure 4.

6 Geographic Information System. Computer system used to handle geographic information.

 9

Figure 4: NAM running a simulation

 10

3 From TIGER to Google Earth

This chapter describes the part of the project that is responsible for extracting geographical

data from the census TIGER database and converting it to Google’s XML-based KML

format. The output at the end of this stage is readable by Google Earth and will display all the

roads in a specified area of a county.

First, in section 3.1, we will take a look at the motivation behind using the TIGER database.

Then follows section 3.2, where the conversion of TIGER data will be described in detail and

also what is needed from the TIGER database and how the data is processed. Next, in section

3.3, we will describe the development process, what problems were encountered and how

they were solved. In the final section, 3.4, there are instructions detailing how the converter is

used.

3.1 Why the census TIGER database

Before going into details about the implementation and development of the conversion utility,

we explain the motivation behind using the census TIGER database. Google Earth already has

a road layer that contain most of the roads across the globe. Furthermore, this layer can be

displayed separately, so why not use it? This was our intention at first, but however, it turned

out not to be that simple. It is impossible to save road layer information from Google Earth,

because it is streamed from Google’s servers and we were not allowed to store it. Therefore, it

became necessary to obtain this data from a second source, which we wanted to display in

Google Earth.

The U.S. Census Bureau maintains a large database of geographic and cartographic

information on every county in the United States, the TIGER database, which is available free

of charge to anyone. Using the TIGER database does of course introduce a limitation to the

project; we will be restricted to only using roads in the U.S. On the other hand, it provides us

with all the data that we need. Determined to be the best option available, it was chosen.

 11

The TIGER database does not store its data in a way that Google Earth can interpret, therefore

conversion became necessary.

3.2 How it works

The conversion part of the project was responsible for extracting and linking together

information from the TIGER database and storing it in a way Google Earth could interpret.

This conversion was done by our utility that we call TIGERconv.

To extract necessary information from the TIGER database it is sometimes necessary to link

together several file types using various id numbers. Before examining this content closer it is

worth mentioning something about the terminology. Census TIGER uses the definitions from

the Spatial Data Transfer Standard (SDTS) [11]. Interesting for us is the definition of a

complete chain:

“A chain [a sequence of non-intersecting line segments] that explicitly references left

and right polygons and start and end nodes.”

The file types that contain information on these complete chains that we needed were

primarily record types one and two (see 2.6 about TIGER structure). Type one is called

complete chain basic record and stores the start and end points for the complete chains that we

needed. Apart from these coordinates, it also contains other data that we needed to filter out,

such as street name, address range and different flags.

Since it is not possible to know how many fields each line have before going through it, we

parsed the lines to see if it contained a feature code (Census Feature Class Code) that

indicated that it was a road. Road feature codes are of class A, which means it starts with an

A. As an example, a line in the record type of class A25 lets us know that it is a “Primary road

without limited access, US highways, separated”.

After having established that the line is actually a road we could start taking out the elements

we needed. Obviously, we needed the coordinates but also the TIGER/Line ID in order to be

able to find additional data in other record types. Thus, now that we knew how the line

looked, we stored the first field (the id) and the last four (the coordinates).

 12

The next step in the conversion program was to obtain additional data from record type 2,

called Complete Chain Shape Coordinates. To be precise, certain checks were performed

before this point to see if it was necessary to proceed with the linking, for example to make

sure that it was within the coordinate-box specified by the user. If the chain passes the check,

the record will be searched for the TIGER/Line ID and if a match is found (not every line in

record type one have a matching line in record type 2) the coordinates will be extracted.

The coordinates that are stored in a long sequence, sometimes spanning more than one line,

are points between the end and start of the chain. The coordinates comprises the shape of the

road, giving it its bends. Coordinates are read until the first “0-field” is found, signalling that

there are no more coordinates in the chain.

The final step in the program was to save the data to a KML file, Google Earths XML based

format. Headers and various tags are added to produce a final result such as the KML file

depicted in Figure 5:

<?xml version="1.0" encoding="UTF-8"?>

<kml xmlns="http://earth.google.com/kml/2.1">

<Document>

 <Placemark>

 <LineString>

 <extrude>1</extrude>

 <coordinates>

 -86.767923, +36.158745, 0

 -86.768027, +36.158624, 0

 -86.769684, +36.157902, 0

 </coordinates>

 </LineString>

 </Placemark>

…

</Document>

Figure 5: a section of KML output from the conversion

 13

The section of the KML file, shown in Figure 5, shows one road segment. The first tag is the

XML header, which will always be first in each KML file. The header is followed by the

KML namespace declaration and will also always be present as line two of each file. Further

down is the first placemark element, the most commonly used feature in Google Earth, which

can contain anything from points to polygons and models. In this case it contains our road

segment. Next, we have a LineString which creates a path (road) with extrude set to 1,

specifying that the line should be extended to the ground. Finally, we give the coordinates, in

this case we have three points: the start, a middle point and the end.

Coordinates are given in the form:

-longitude, +latitude, height

A generated KML file can contain countless road segments declared in the way shown in

Figure 5. As an example, a segment of Jersey City (shown in Figure 8, later in the chapter)

can produce an output of over 4000 lines. When viewed in Google Earth, each road segment

can be viewed individually by selecting them from a long list in the interface, as can be seen

in Figure 6.

Figure 6: output.kml expanded to show all road segments

 14

3.3 Development, problems and solutions

The first step in the development was to make sure that it worked with only the start and end

points of the chains, i.e. to only use record type 1. After going through the material available

about the database we realised that we could not simply go through the file and select, for

example the fourth field in every line. The issue was that since all fields are not always

included, no easy separation between them is available and, furthermore, sometimes two

fields are not separated at all. The solution was to tokenize as much as possible and then we

would get the most important fields (ID and feature code).

Having extracted the feature code we came upon the first problem in the development; the

same atoi (ASCII to Integer) conversion gave different outputs on different systems. After a

lot of gruelling debugging we started to realise that the problem was not in the code but

seemed to be linked to the fact that we got different results on different versions of our

Windows IDE, Visual Studio. Soon after, the problem was localized to the project settings

and resolved.

At this point we had our first working output that could be examined in Google Earth, as

shown in figure 7.

 15

Figure 7: Google Earth showing output from TIGER Record Type 1 on the city Nashville

The next step was to introduce limits to what area should be extracted, since it would

otherwise take too much time to link together the record types and it would produce a very

large output. When we had an algorithm designed and were ready to test it we were faced

with another problem. The coordinates that were given in the Google Earth interface didn’t

match those in the KML and TIGER files. After some research it was concluded that the

coordinates given in Google Earth were shown as minutes and seconds instead of degrees,

which we wanted. Later on we discovered that it was possible to change from the standard in

the settings.

After getting coordinates directly from the KML file we tuned the algorithm and were able to

proceed with the linking of record type 2. Working in data from type 2 didn’t take much time

to finish since it was basically much the same tokenizing and selection that we had previously

done, with some structural differences. There was, however, one strange error left; some roads

seemed to pass through structures and deviate quite a bit from the underlying image.

 16

After further testing we were puzzled since the coordinates were not altered in the transition

from TIGER to KML. As it turned out, the “problem” was actually very simple. When we

checked the documentation it turned out that some of the feature codes of the roads were

actually tunnels. We decided to continue to use all roads, even though they were actually

tunnels.

Figure 8: Final version showing a section of Jersey City in the New York metropolitan

area

Another problem that was present during several stages of the project was various rounding

errors. The first and easiest to find was a calculation done when writing to the KML file. The

calculation was rounded off since it was not explicitly cast to a double. The second rounding

error that was a bit trickier to find was that the floating point precision was wrong, but after

setting the right number of decimals the roads lined up well with the photograph.

A final issue that we needed to consider was the change in TIGER file structure presented in

the new edition of the database. This second edition was presented after we had completed the

 17

entire conversion program and the first edition files that we were using would be removed

shortly after. Thus after going through the new documentation and some notes on the

difference in structure we concluded that no alterations to the code would be necessary.

3.4 Usage

The conversion utility is a console application that takes a filename as input, it should be the

record to be converted (e.g. TGR47037). The following two coordinates are the coordinates of

the box and the next couple of coordinates specifies how long the sides should be. This will

output all the roads within the box as a KML file. Usage should thus look like this:

TGRConv filename coordinateLongitude coordinateLatitiude devLongitude devLatitude

 18

4 Modifying the mobility model

In this chapter we will primarily focus on the mobility model and our modifications to it. First

the mobility model is described, how it works and where we made our modifications. Then

we will see how the KML files are read, processed and integrated into the mobility model.

Specifically, we will take a closer look at the class that deals with the KML files, kmlReader,

responsible for reading and converting KML-data for use in the model.

4.1 The Mobility Model

The mobility model [12, 13] we extended is one in a collection of models by Professor Jean-

Yves Le Boudec at EPFL, Switzerland and Milan Vojnovic at Microsoft Research,

Cambridge. It consists of three parts. The first part contains random waypoint and random

walk with wrapping and reflection, the second part contain restricted random waypoint on a

city section and, finally, the last part contain random waypoint on a generalized domain. In its

simplest form a random waypoint model picks a path in a set of paths, according to some

algorithm, and upon reaching its end chooses a new one.

The models we were using are more realistic than this basic example, and as a result, not quite

as simple. For example, the models have perfect sampling, which means that they start in a

steady state, avoiding any initial deviations. We will, however, not examine the complex

mathematical background for the models, but instead focus on the implementation. The

implementation we examine is that of the model we will be using and extending, random

waypoint on a city section. See Figure 9 for a class diagram over relevant classes.

In its unmodified form the random waypoint on a city section model basically operates on a

set of paths, the city section, which is passed to it as a file. The city section is then populated

by nodes whose movements are simulated by the model and a file is outputted to be used in

the ns-2 simulator. Other data of interest passed to the model is the length of the simulation

(length in seconds), the number of nodes, vehicles, pause times (how long nodes will be

stationary) and an output filename (were the output is written).

 19

Figure 9 Class diagram for relevant parts of the mobility model

 20

The first part we altered was the reading of the paths by creating a new class, KmlReader,

used to obtain data from KML files, described in detail in the next section (See Figure 9 for an

overview of the class). The city section is set up by passing a file pointer to the addRoad

method in the singleton7 class CityRoads class, responsible for storing the paths. The method

will then read one path from the file and store it. Thus, what we initially intended to do was to

override the addRoad-function to take parameters from KmlReader. This did however seem to

be problematic (see section 4.4) so we had to rethink our approach. The solution that we

finally decided upon was to use a temporary file in order to maintain the precision of our data.

Therefore, what we had to do was to modify the initialization function to take other arguments

passed to the file. We introduced a new flag, -kml, which indicates that the file passed to the

model is a KML file. Then it was opened with KmlReader and stored in our temporary file,

which in turn was passed to the addRoad method. The method assumes that all roads are

bidirectional, storing one road in each direction (of course depending upon if they are within

the bounding box) in an array of Road objects. The Road class in turn is, in comparison,

simple. It stores information on roads such as length, speed limit etc. while also containing

pointers to intersections (of class Intersection, not described here) showing where the road

starts and ends.

At this point another consideration that had to be made was how to handle speed limits. Since

we do not get any information on speed limits from the KML files we had to use a fixed speed

limit. The speed limit used throughout the example files for the model was 5.0 so we decided

to continue using it.

The file structure which the mobility model use looks like this:

junk limit fromX fromY toX toY

We are not entirely certain what the “junk” values are, but we have a theory. The mobility

model had extracted some roads from TIGER records using some simple script (although they

probably didn’t link in other road data from other record types) for use in the examples. The

junk data seem very similar to the road id’s that is used to link together data from the different

7 A design pattern that is used to limit the instantiation of the class to only one object.

 21

record types. The other fields are fairly straightforward, limit is the speed limit and the others

are coordinates.

Finally, as an example, a line in the file looks like the one below (our junk value is a value

borrowed from the examples, but could be anything since it is discarded by the model):

96062880 5.0 907.100 1006.000 907.600 1006.000

Now we were ready to produce the first output from our KML-files. It looked fine, but it

turned out that the nodes were not moving as they should, instead the nodes were alternating

between two intersections. The cause was, quite simply, that all roads were not read. This had

to be modified further by altering the reading process to count the number of lines that were

written to the temp-file instead of have the number of lines as a parameter to the model.

After the initialization phase came the next section that we discovered needed changes, the

generateScenario function. The generateScenario, as the name implies, is responsible for

actually generating the scenario. For example, it is responsible for placing vehicles on the

map. In the function there were some values on maximum distances and other parameters that

were hardcoded for the map, westUnivPlace, that the model was using. Therefore, this

generation needed to be done automatically somehow. It turned out that there were functions

in one of the classes that were intended to generate these values. It increases the time it takes

to generate the output significantly, but it is needed to be able to use other maps.

4.2 KmlReader

KmlReader is the class we wrote to retrieve and format KML data for use in the mobility

model. It takes a KML-file as input and outputs the data in a format usable in the mobility

model. It is used for several tasks in our model, for example to establish a correct bounding

box (a box that contains every coordinate of the roads) or to get the next road start- and

endpoints.

The first step was to parse the information in the KML file, i.e. to extract all the tags and data,

 22

which is done when the file is loaded. All the elements of the KML file is split and stored in a

vector so that it can be easily accessed when we need to search it for specific data. Thus, the

vector can now be processed for the wanted information, for example roads.

In the case of roads, the parsing is done in two steps, where the last step is possible to skip.

First, the road segments are extracted from the vector and the start- and endpoints are ordered

and stored. Every segment is padded with the value -1 since the length of segments varies. To

clarify, a segment might look something like this:

 -86,766319 -86,766314 -1

+36, 161582 +36,161582 -1

Figure 10: Section of the road vector

This segment contains only one road, from (-86,766319, +36,161582) to (-86,766314,

+36,161582) and will be read until one segment contains -1. At this point it is possible to start

retrieving coordinates. They are, however, still in Google Earth's format which the mobility

model is not designed to handle. Furthermore, the bounding box is not yet determined.

Therefore, we want to convert the data once more.

All calculations on the coordinates were now performed. First off, we did not want negative

values so 180 (degrees) was added to all coordinates. Then the smallest and largest values

were retrieved by traversing the road vectors. With the data now gathered we could transform

the coordinates and determine the bounding box. The coordinate values are adjusted by the

following formula:

finalCoordinate = (oldCoordinate – smallestValue) * multiplier + 1

The formula is fairly straightforward, but the multiplier might need some explanation. It is a

multiple of 10 used to get the largest value to somewhere between 100 – 2500 in order to

avoid working on large floating point values. Thus, what is done is that the smallest value is

subtracted from our coordinate (making the smallest value 0) and then multiplied by the

multiplier. Every field containing -1 is skipped since it shouldn’t be altered. 1 is added in the

end to avoid having fields with 0. We wanted values ranging from 1 – 2500 (2500 being the

currently specified maximum value).

 23

After the calculations were completed we had all coordinates ranging from 1 to 2500 which

also conveniently provided us with the bounding box values. Bounding box values are

retrieved by taking the largest and smallest values of X and Y, giving us a box which contains

all coordinates. The data was now ready for use in the mobility model.

4.3 Problems and Solutions

Once again we had problems with the precision of our calculations, this time in our KML

reader. It turned out that several different coordinates, for example -86.766319 and -

86.766314, would eventually be converted to the same number, in this case 899. The

difference, albeit very important, was only 0.000005, which initially led us to believe that the

error came from the numbers being rounded off at some point.

It did, however, turn out that the lack of precision came earlier; when the roads were extracted

the last digit was lost. The problem turned out to be that the last digit was cut from the

coordinate when they where extracted from the KML vector.

Another precision problem came when we were about to integrate the KmlReader class with

the mobility model. Throughout the model we handled data as doubles, to maintain precision,

and not floats as was used in the mobility model. We encountered an error when we tried to

cast our values to floats using static_cast. It turned out that the value was strangely rounded

off. For example, a double value such as 170.0000 would become 169.9999 when casted to

float. We tried a few alternate solutions but we just didn’t have the time to get stuck. The

solution, as outlined in section 4.2, was to dump our data to a file and let the original function

handle it.

The last problem, not related to precision, came after we realised that the output the model

was producing didn’t actually do anything useful. The problem seemed to be that all 100

vehicles jumped between two coordinates. What had happened was that it only read as many

lines as specified by the parameters passed to the function. Since the temp file was generated

while the model was running, it had to be done automatically. As outlined in section 4.2, we

 24

modified the function to make it read all lines from the temp file. It was simply fixed by

adding a counter as the KML reader wrote lines to the file and then letting the addRoad

function read the same amount of roads.

 25

5 NS-2 simulator

In this section we explain what happened after we got the input from the mobility model,

running it through the ns-2 simulator. We also give examples of simulation as viewed in

NAM as well as how the ns-2 input is structured. Finally, we take up the problem we had with

these different parts.

5.1 Simulations

After the output from the mobility model had been made a simulation in ns-2 was possible.

From the simulation output you can get all sorts of information about the simulation of this

network. We concentrated on showing the simulation in NAM. When the simulation is

complete you have, among other things, an output file that is a NAM file, in our case the

filename was nam-out.nam. When you put the file into NAM you can watch the simulation

that was done.

Figure 11: City section in Google Earth with NAM visualization on the right

From the mobility model we got node movements as output. This data was used as input for

the simulation. The files start out by setting initial coordinates for all nodes, which can look

like what is seen in Figure 12.

 26

$node_(0) set X_ 492.239441
$node_(0) set Y_ 368.665100
$node_(0) set Z_ 0.000000
$node_(1) set X_ 225.169586
$node_(1) set Y_ 252.758728
$node_(1) set Z_ 0.000000
$node_(2) set X_ 420.013031
$node_(2) set Y_ 151.794113
$node_(2) set Z_ 0.000000
$node_(3) set X_ 77.541893
…

Figure 12: initial part of mobility model output

After the initialization the node movements are listed, ordered chronologically, starting with

0. The length of the simulation is specified by the parameter passed to the mobility model.

The movement-part of a mobility output can look like this:

$ns_ at 0.000000 "$node_(0) setdest 517.700012 410.299988 6.312355"
$ns_ at 0.000000 "$node_(1) setdest 221.162842 254.835297 0.451288"
$ns_ at 0.000000 "$node_(2) setdest 420.851898 151.359970 0.094456"
$ns_ at 0.000000 "$node_(3) setdest 78.500000 590.099976 2.035775"
$ns_ at 0.000000 "$node_(4) setdest 761.414429 339.027527 8.195236"
$ns_ at 0.000000 "$node_(5) setdest 703.400024 334.299988 5.626622"
$ns_ at 0.000000 "$node_(6) setdest 488.524384 362.589996 5.590453"
$ns_ at 0.000000 "$node_(7) setdest 511.500000 29.900000 1.522174"
$ns_ at 0.000000 "$node_(8) setdest 713.538818 330.173553 0.024292"

Figure 13: movement-part of mobility model output

Using a Tcl script the simulation was run using the node movements specified by the

model. After the simulation was performed we got the NAM file that was relevant for our

work. The result can be seen in Figure 11. In NAM we can now examine all the nodes and see

them move around.

5.2 Problems

From the first instructions we got it was said that we wouldn’t need to use the ns-2 simulator

but when we wanted to check that our output was correct in NAM. We noticed that we

couldn't use NAM without running it through the ns-2 simulator. Therefore, first we

downloaded ns-2 simulator 2.26. We tried to unpack the simulator on the school computers

but got the message that the disk quota was exceeded, we had 50MB and needed around

300MB, or so we thought at the time. We asked for more capacity and got some but it wasn't

 27

enough. Because neither of us has a computer with Linux on we got an account on an

OpenBSD8 server and used SSH9, but with this server we got several errors when we tried to

run the makefile. We tried to switch the make to gmake10 but still got many errors that we

weren't able to sort out. We tried a different version of ns-2, one that would be easier to

compile and run. However, still we faced a couple of errors that we didn't know how to solve.

After these trials we felt that the easiest way to go forth was to take a laptop and change the

operating system to Linux so we installed Ubuntu11 on a laptop. First we tried with the latest

edition, Ubuntu 7.1, but the computer didn't boot the CD. After a few hours of trying we

decided to change to an older version and installed Ubuntu 5.04 and then tried to run the ns-2

simulator again but the problems remained. Then we downloaded a newer version of ns-2

from sourceforge which had a configure file in it that could say what was missing to make the

simulator work.

When we finally did get ns-2 to compile a new problem arose, we couldn’t find out how to

make a complete simulation. First we tried to use our own file from the mobility model as

input but only got error messages. Then we tried to understand the ns-2 documentation but we

didn't find any example of how to start a simulation. At last we did send a file that we had

created to Dr. Andreas Kassler, whom had given us the project, and he made a simulation with

our file. We then got a script to the ns-2 simulator that would work with our output files from

the mobility model.

When we tried the script we noticed that we needed to change back to the first version of ns-2

that we had got, because the script was made to that version. After that we were able to run

our simulations.

8 A Unix-like operating system based on the Berkley Software Distribution.
9 Secure Shell, a network protocol for secure communication.
10 GNU Make. A Unix make utility, used to automatically build projects.
11 A Linux distribution based on Debian.

 28

6 Conclusions and future work

The project was completed with most of the goals fulfilled. We created a visualization of the

city section in Google Earth, converted the data for use in the mobility model, which in turn

outputted meaningful data to the simulator. We encountered several problems along the way,

notably several problems with rounding errors, limitations of the mobility model and

problems working with the ns-2 simulator.

There were, however, some features that was initially intended to be included that didn’t

make it into the final utility, the most important being that users cannot place nodes on the

actual map in Google Earth. The reason we didn’t implement it was mainly because of the

mobility model. In its unmodified form the model takes nodes as a parameter. The number of

nodes, or vehicles, populating the city section are passed as a parameter and then randomly

placed on the roads. There were also some form of initialization where the nodes where

moved around for a while to remove any initial deviations in the simulations. Therefore, we

decided to skip the node placement on the maps since they would be moved around randomly

in the initialization anyway. We were also asked to add stationary nodes, but there just wasn’t

enough time to alter the model to handle stationary objects.

The previously mentioned problems with rounding errors came at the stages where data

needed to be converted between the various formats. At points, they were casted, read from

file and processed in other ways. This often left us with smaller deviations that would leave

the roads disconnected, not forming perfect edges for example.

Future additions that would really improve the user friendliness of the road layer construction

is some kind of improvement to the way the roads are extracted from the TIGER database. As

for now, the user needs to manually specify the coordinates of the “box” from which all roads

are extracted. This could be simplified by perhaps having set markers in Google Earth that

can be read or have some simple GUI to handle it.

Other parts that could be improved are the previously mentioned node placement. It might

require considerable work to modify the model, but it would definetely add to the usefulness

 29

of the application to be able to see where nodes are placed, particularly eventual stationary

nodes.

Finally, a nice addition could be to visualize the output from the simulator in Google Earth in

some way. For example, to have each node’s movement as a separate post, similarly to how

road segments are now visible (see Figure 6). You would then be able to in turn set every

node to “on”, showing the path taken throughout the simulation.

 30

7 References

[1]. Elliotte Rusty Harold, XML Bible 1.1, 3rd Edition, Wiley 2004, ISBN: 0-7645-

4986-3

[2]. Harvey M. Deitel, Paul J. Deitel, Tem Nieto, Ted Lin, Praveen Sadhu, XML:

How to program, Prentice Hall 2001, ISBN: 9780130284174

[3]. James F. Kurose, Keith W. Ross, Computer Networking A Top Down Approach

Featuring the Internet, 3rd edition, Addison Wesley 2005, ISBN: 0-321-17644-8

[4]. C. Siva Ram Murthy, B.S. Manoj, Ad Hoc Wireless Network Architectures and

Protocols, ISBN: 9780131470231

[5]. Google KML documentation, http://earth.google.com/kml/

[6]. English Wikipedia, http://en.wikipedia.org/wiki/Keyhole_Markup_Language,

2007-05-20

[7]. English Wikipedia, http://en.wikipedia.org/wiki/Google_Earth, 2007-05-20

[8]. U.S. Census Bureau TIGER technical documentation,

http://www.census.gov/geo/www/tiger/tiger2006fe/TGR06FE.pdf

[9]. BonnMotion documentation,

 http://web.informatik.uni-bonn.de/IV/Mitarbeiter/dewaal/BonnMotion/README

[10]. ns-2 official webpage, http://www.isi.edu/nsnam/ns/

[11]. English Wikipedia, http://en.wikipedia.org/wiki/Ns-2, 2007-05-20

[12]. NAM official webpage, http://www.isi.edu/nsnam/nam

[13]. Spatial Data Transfer Standard (see 2.3.2.5.1 Complete chain),

http://mcmcweb.er.usgs.gov/sdts/SDTS_standard_nov97/part1toc.html

[14]. Mobility model source code and brief description of parts,

http://www.cs.rice.edu/~santa/research/mobility/

[15]. Power Point presentation on the mobility model,

http://ica1www.epfl.ch/perfeval/slides/leb-perf05.ppt

 31

A Appendix

A.1 Mobility Model

A.1.1 main.cpp

/***

Santa @ EPFL - Summer 2004

[Code based on vehicular mobility model. Amit Saha(amsaha@rice.edu)

VANET'04]

The graph mobility model : 6 Aug

- Pause and movement alternates

- steady speed on a road around the speed limit for that road

- steady state initilization

**/

#include "road.h"

#include "intersection.h"

#include "vehicle.h"

#include "rng.h"

#include "statistics.h"

#include "common.h"

//kmlReader is used to read KML-data

#include "kmlReader.h"

#include <cstring>

void generateScenario(int vehicles);

void initialize(int argc, char * argv[]);

double steadyStatePauseProbability(float);

double residualTime(double mean, double delta);

RNG *rng = 0;

FILE *scenFptr = 0;

FILE *speedPtr = 0;

FILE *posPtr = 0;

float maxSimulationTime = 0.0;

float pauseMean, pauseDelta ;

int main(int argc, char *argv[])

{

 initialize(argc, argv);

 generateScenario(atoi(argv[5])); // change for bounding box

default

 return 0;

}

void initialize(int argc, char * argv[])

{

 if(argc != 8) {

 if (argc != 9){ // -kml

 32

 fprintf(stderr, "argc: %d, ",argc);

 fprintf(stderr, "Usage: %s",argv[0]);

 fprintf(stderr, " <input file>");

 fprintf(stderr, " <number of lines in

input file>");

// fprintf(stderr, " <Bounding box lower x

coordinate>"); // argv[3]

// fprintf(stderr, " <Bounding box lower y

coordinate>"); // argv[4]

// fprintf(stderr, " <Bounding box upper x

coordinate>"); // argv[5]

// fprintf(stderr, " <Bounding box upper y

coordinate>"); // argv[6]

 fprintf(stderr, " <pause time mean> <pause

time delta>");

 fprintf(stderr, " <number of nodes>"); //

argv[5]

 fprintf(stderr, " <simulation time

(sec)>"); // argv[6]

 fprintf(stderr, " <output file>\n"); //

argv[7]

 fprintf(stderr, " set kml mode with

optional -kml\n"); // argv[8]

 fprintf(stderr,"Exiting...\n");

 exit(1);

 }

 }

 bool KMLmode;

 if (argc == 9){

 if (strcmp("-kml", argv[8]) == 0)

 KMLmode = true;

 }

 else

 KMLmode = false;

 kmlReader kml; //only used if KMLmode == true

 FILE *fptr = fopen(argv[1],"r"); //only used if KMLmode == false

 if (KMLmode){

 if (kml.openKML(argv[1]) == -1){

 fprintf(stderr, "could not open KML\n");

 exit(1);

 }

 else

 kml.normalize();

 }

 else{

 if(!fptr) {

 fprintf(stderr,"Input file %s does not

exist !!!\n", argv[1]);

 fprintf(stderr,"Exiting...\n");

 exit(1);

 }

 }

 /* Set the bounding box for the map */

 // exact needed only for statistics. We initialize to default

// CityIntersections::getInstance()->setBoundingBox(atoi(argv[3]),

atoi(argv[4]), atoi(argv[5]), atoi(argv[6]));

 //CityIntersections::getInstance()->setBoundingBox(0, 0, 100,

100);

 33

 if (KMLmode){

 double bx1, by1, bx2, by2;

 float fx1, fy1, fx2, fy2;

 kml.getBoundBox(bx1, by1, bx2, by2);

 fx1 = static_cast<float>(bx1); fy1 =

static_cast<float>(by1);

 fx2 = static_cast<float>(bx2); fy2 =

static_cast<float>(by2);

 //CityIntersections::getInstance()-

>setBoundingBox(fx1, fy1, fx2, fy2);

 CityIntersections::getInstance()->setBoundingBox(0,

0, 1200, 1200); //ONLY for testing, fix

 }

 else

 CityIntersections::getInstance()->setBoundingBox(0,

0, 2499.99, 2499.99);

 // read in the pause time distribution

 pauseMean = atof(argv[3]);

 pauseDelta = atof(argv[4]);

 if(pauseMean<0)

 {

 fprintf(stderr,"Error: pause mean must be greater

than or equal to 0\n");

 exit(1);

 }

 if((pauseDelta>pauseMean)||(pauseDelta<0))

 {

 fprintf(stderr,"Error: pause delta must be greater

than or equal to 0 and less than or equal to pause mean\n");

 exit(1);

 }

 if (KMLmode){

 /* Read in the roads for the map, from KML file */

 double startX, startY, endX, endY;

 float fromX, fromY, toX, toY;

 int temp;

 FILE *tempFptr = fopen("temp","w");

 if (tempFptr == NULL){

 printf("Could not create temporary file,

exiting...\n");

 exit(0);

 }

 int count = 0;

 while (kml.getRoadSeg(startX, startY, endX, endY) !=

-1){

 /*

 * It is not an optimal solution to write

to a temp file, but under the time

 * constraints it was the only way we

could eliminate the rounding errors int time.

 * See C-diss for more information

 */

 fprintf(tempFptr,"96062880 5.0 %f %f %f

%f\n", startX, startY, endX, endY);

 count++;

 }

 34

 fclose(tempFptr);

 tempFptr = fopen("temp", "r");

 if (tempFptr == NULL){

 printf("could not open temp file for

reading, exiting\n");

 exit(0);

 }

 while(count > 0){

 CityRoads::getInstance()-

>addRoad(tempFptr);

 count--;

 }

 }

 else{

 /* Read in the roads for the map */

 int cnt = atoi(argv[2]);

 while(cnt > 0) {

 CityRoads::getInstance()->addRoad(fptr);

 cnt--;

 }

 fclose(fptr);

 }

 /* RNG class imported from ns-2.27 distribution in 'stand_alone'

mode i.e.

 * use -Dstand_alone when compiling

 */

 rng = new RNG;

 rng->set_seed(RNG::HEURISTIC_SEED_SOURCE);

 // Get the simulation time

 maxSimulationTime = atof(argv[6]); // change for bounding box

default

 // Open the output file

 scenFptr = fopen(argv[7],"w"); // change for bounding box

default

#if STATISTICS

 //Open some speed/position stat file

 speedPtr = fopen("nodeSpeed.dat","w");

 posPtr = fopen("nodePosition.dat","w");

#endif

#if TESTING2

 fprintf(stdout,"\n\nRoads...\n\n");

 CityRoads::getInstance()->dump(stdout);

 fflush(stdout);

 //fprintf(stdout,"\n\nIntersections...\n\n");

 CityIntersections::getInstance()->dump(stdout);

 fprintf(stdout,"\n");

 fflush(stdout);

#endif

}

/* Generate random src destination pairs for vehicles. Basically a vehicle

 * starts at a src and goes towards the destination. Dijkstra's BFS is used

to

 * find out the route from the src to the dest and then the scenario for a

 * vehicle is generated.

 35

 */

void generateScenario(int vehicles)

{

#if PRINT_NS2_SCENARIO

 fprintf(scenFptr,"#\n");

 fprintf(scenFptr,"# Number of nodes: %d\n", vehicles);

 fprintf(scenFptr,"# Pause Time, Mean & Delta: %f %f\n",

pauseMean, pauseDelta);

 fprintf(scenFptr,"# Number of roads: %d\n",

CityRoads::getInstance()->roadCount());

 fprintf(scenFptr,"# Number of intersections: %d\n",

CityIntersections::getInstance()->intersectionCount());

 fprintf(scenFptr,"#\n");

 fflush(scenFptr);

#endif

 CityIntersections* instance = CityIntersections::getInstance();

// Find the steady state

 //float avgSpeed = CityRoads::getInstance()->averageSpeed();

 //double q0 = steadyStatePauseProbability(avgSpeed);

 // For roads with varying speed

#if STEADY_STATE

 // IMP: The following calc takes time, and is fixed for a

specific

 // graph and road speeds.....Hence reuse.

 float avgMobile = instance->averageTimeMobile();

 // For 1200x1200 westUniv. speed 0.01-9.99. avg-5

 //float avgMobile = 161.3248205;

 double q0 = pauseMean / (pauseMean + avgMobile);

 printf("AverageTimeMobile %f\n",avgMobile);

 printf("SteadyStateProb %f\n",q0);

 fflush(stdout);

 float maxGraphDistance, distBwPoints;

 // calculate the MAX delta

 // IMP: again, following takes long time and is fixed for

graph.

 // Hence: reuse

 maxGraphDistance = instance->maximumDistanceInGraph();

 //exit(1);

 // for 1200x1200 westUniv

 //maxGraphDistance = 2192.9275;

 printf("Maximum Distance in Graph: %f\n",maxGraphDistance);

#endif

 bool mobile;

 float pauseTime, unirand;

 int src, dst;

 for(int i=0;i<vehicles;i++)

 {

#if STEADY_STATE

 // Steady state initialize here:

 36

 // Pause or move, // src & dst, // position // speed

or residual pause time

 // Create a new vehicle. src and dest will be later

steady stated

 while(1){

 if(rng->uniform() < q0){

 mobile = false;

 break;

 }

 else{

 src = rng->uniform(instance-

>intersectionCount()) ;

 dst = rng->uniform(instance-

>intersectionCount()) ;

 /* We dont want src and dst to

be the same !!! */

 while(dst == src)

 dst = rng->uniform(instance-

>intersectionCount()) ;

 unirand = rng-

>uniform((double)maxGraphDistance);

 // find dist between src and dst

 distBwPoints = instance-

>distanceBetweenIntersections(src,dst);

 if(unirand < distBwPoints){

 mobile = true;

 break;

 }

 }

 }

// TODO: testing. start all nodes mobile

 if(!mobile){ // node starts paused

 pauseTime = residualTime(pauseMean,

pauseDelta);

 src = rng->uniform(instance-

>intersectionCount()) ;

 CityVehicles::getInstance()-

>addVehicle(src,pauseTime, 0.0);

 }

 else{ // node starts mobile

 // STEADY STATE SPEED WITHIN addVehicle

 CityVehicles::getInstance()-

>addVehicle(src,dst, 0.0);

 }

#else // FOR NON STEADY STATE CASE

 // NODE STARTS MOBILE

 /* Generate a pair of random numbers and take the

modulo of the number

 * of intersections. */

 src = rng->uniform(instance->intersectionCount()) ;

 dst = rng->uniform(instance->intersectionCount()) ;

 // We dont want src and dst to be the same !!!

 while(dst == src)

 dst = rng->uniform(instance-

>intersectionCount()) ;

 // Create a new vehicle with this random src and

dest.

 37

 CityVehicles::getInstance()->addVehicle(src,dst,

0.0);

/* // NODE STARTS STATIC

 src = rng->uniform(instance->intersectionCount()) ;

 float pt = 0.1;

 // make it paused for a fraction time before

moving....

 CityVehicles::getInstance()->addVehicle(src,pt, 0.0);

*/

#endif

 }

//

// FROM NOW, STEADY AND NON STEADY STATE ARE EXACTLY EQUAL

//

// Now that we have all the vehicles we will start moving these vehicles.

// Our time will proceed at timesteps of DEFAULT_TIME_STEP

 bool reachedDestination;

 Vehicle* currentV;

 int intTime = 0;

 for(float time = 0.0; time < maxSimulationTime; time +=

DEFAULT_TIME_STEP)

 {

 printf(" ********* Current time = %f *******************\n",

time);

 //fprintf(speedPtr,"TIME = %d\n",intTime);

 //fprintf(posPtr,"TIME = %d\n",intTime);

 for(int i = 0;i<CityVehicles::getInstance()-

>vehicleCount();i++)

 {

 currentV = CityVehicles::getInstance()-

>getVehicle(i);

 // PRINT STATS about SPEED and COORDINATE EVERY 10

seconds

 intTime = (int) time;

#if PRINT_STATISTICS

 //printf("intTime=%d

intTime%10=%d\n",intTime,intTime%10);

 //if(intTime%10 == 0) {

 fprintf(speedPtr,"#%d %d

%f\n",intTime, i, currentV->speed());

 // fflush(speedPtr);

 //}

 //if(intTime%10 == 0) {

 fprintf(posPtr,"#%d %d %f

%f\n",intTime, i, currentV->x(),currentV->y());

 // fflush(posPtr);

 //}

#endif

 if(!currentV->mobile()){// node is paused

 currentV->pauseTime() -=

DEFAULT_TIME_STEP;

#if TESTING

 fprintf(stderr,"pause=%f",currentV->pauseTime());

 38

#endif

 if(currentV->pauseTime() < 0){

 //printf("pause=%f",currentV->pauseTime());

 currentV->pauseTime()

= 0.0;

 currentV->mobile() =

true;

 currentV-

>reset(time+DEFAULT_TIME_STEP, true);

 }

 }

 else {// node is mobile

 reachedDestination = currentV-

>update(time, DEFAULT_TIME_STEP);

 if(reachedDestination)

 {

 // Choose another random

destination with the current

 // destination as source and

then start moving towards it.

 float pauseTime = pauseMean +

rng->uniform(-pauseDelta, pauseDelta);

 currentV->reset(pauseTime,

false);

 }

 }

 }

#if PRINT_STATISTICS

 fprintf(posPtr,"\n");

 fprintf(speedPtr,"\n");

#endif

#if TESTING2

 // Calculate all the metrics for this mobility

scenario at this time instant.

 CityVehicles::getInstance()->dump(stderr);

#endif

#if PRINT_STATISTICS

 Statistics::getInstance()->calculateStatistics(time);

#endif

 }

//#if PRINT_STATISTICS

// Statistics::getInstance()->printGrid();

//#endif

 return;

}

// The steady state pause probability:

// check calculation for roads with variable speed

double steadyStatePauseProbability(float avgSpeed)

{

 double alpha1, q, delta1;

 float pauseHigh = pauseMean + pauseDelta;

 float pauseLow = pauseMean - pauseDelta;

 float speedHigh = avgSpeed +

CONVERSION_FACTOR*SPEED_LIMIT_LEEWAY;

 float speedLow = avgSpeed -

CONVERSION_FACTOR*SPEED_LIMIT_LEEWAY;

 39

 alpha1 = ((pauseHigh+pauseLow)*(speedHigh-

speedLow))/(2*log(speedHigh/speedLow));

 // find the bound on max distance

 //delta1 = sqrt((maxX*maxX) +(maxY*maxY));

 q = alpha1/(alpha1+delta1);

 return q;

}

// The residual time left for uniform distribution

double residualTime(double mean, double delta)

{

 double residual;

 double t1 = mean - delta;

 double t2 = mean + delta;

 double u = rng->uniform();

 if(delta!=0.0)

 {

 if(u < (2*t1/(t1+t2)))

 {

 residual=u*(t1+t2)/2;

 //fprintf(stdout, "# Case 1 u: %f ", u);

 }

 else

 {

 residual=t2-sqrt((1-u)*(t2*t2 - t1*t1));

 //fprintf(stdout, "# Case 2 u: %f ", u);

 }

 }

 else

 residual=u*mean;

#if TESTING

 printf("# Initial residual Time: %f\n",residual);

#endif

 return residual;

}

A.1.2 Road.h

#ifndef _ROAD_H_

#define _ROAD_H_

#include "common.h"

/* Forward declaration of class Intersection

 */

class Intersection;

/* This class denotes a Road between two nodes

 */

class Road

{

 /* The unique identifier for this road */

 int id_;

 /* The speed limit on this road in m/s (compatible with ns2)

 * We have to be politically correct you know.

 */

 40

 float speedLimit_;

 /* The length of the road

 */

 float length_;

 /* Average density of nodes on this road

 */

 float density_;

 /* Width of the road in lanes */

 int lanes_;

 /* Type of road */

 char type_[5];

 // STEADY STATE Nominal Distance

 float nd_;

 /* This road is a road from node 'from' to node 'to'.

 * This means that roads are directional and hence for a two way

 * road the road has to be

 */

 Intersection *from_, *to_;

 /* variables for describing the line of the road (y = mx+c form)

 */

 float m;

 float c;

public:

 Road(int id);

 /* Accessor functions */

 int id();

 float speedLimit();

 float density();

 int lanes();

 float nd();

 float length();

 Intersection* from();

 Intersection* to();

#if 0

 // int vehicleCount();

 // Return vehicles[index]

 // int getVehicle(int index);

 // Add a vehicle to this road

 // void addVehicle(int index);

#endif

#if 0

 /* Read line */

 bool readLine(FILE *fptr);

#else

 bool fillRoad(const char *type, float fromX, float fromY, float

toX, float toY);

 bool fillRoad(float limit, float fromX, float fromY, float toX,

float toY);

 41

#endif

 /* Generate a random position on the road */

 void getRandomPosition(float& x, float& y, float& z);

 // Add lane jitter

 void addLaneJitter(float& x, float& y);

 // returns the time simulated. Normal case will return time ==

remainingTime

 // however, if the end of the road is reached the a time <

remainingTime is

 // returned. x and y are starting positions and after moving

towards the

 // 'to' end of the road with 'speed' speed and for

'remainingTime' time the

 // x,y coordinates are returned through the reference variables

x and y.

 float updatePosition(float& x, float& y, float remainingTime,

float speed);

 /* Print this road */

 void dump(FILE *fptr);

};

class CityRoads

{

 public:

 static CityRoads* getInstance()

 {

 if(instance_ == 0)

 {

 instance_ = new CityRoads();

 }

 return instance_ ;

 }

 /* Add a road by reading it from the input file

denoted by 'fptr'

 */

 void addRoad(FILE *fptr);

 /* return roads[index] */

 Road* getRoad(int index);

 /* return the road between intersections given by

indices 'from' and

 * 'to'

 */

 Road* getRoad(int from, int to);

 /* Return total number of roads */

 int roadCount();

 /* Get the speed limit from the type of road */

 float getSpeedLimit(char *type);

 /* Dump road stats */

 void dump(FILE *fptr);

 42

 // STEADY STATE: get the average speed of city roads

 float averageSpeed(void);

 private:

 /* Singleton class */

 CityRoads();

 static CityRoads* instance_;

 /* List of roads */

 Road* roads[MAX_TOTAL_ROADS];

 /* Total road count */

 int roadCount_;

 /* How many types of roads are present */

 int typeCount_;

};

#endif

A.1.3 Intersection.h

#ifndef _INTERSECTION_H_

#define _INTERSECTION_H_

#include <stdio.h>

#include "common.h"

/* Forward declaration of class Road

 */

class Road;

/* This class denotes a Node. In other words it denotes all those places

such as

 * intersections, parking lots, etc. where a road might end

 */

class Intersection

{

 /* Unique identifier of this intersection

 */

 int id_;

 /* The X Y and Z coordinates of the intersection

 */

 float x_;

 float y_;

 float z_;

 /* Number of outgoing roads

 */

 int outgoingRoadCount_;

 /* Number of incoming roads

 */

 int incomingRoadCount_;

 43

 /* When a vehicle reaches at this node, it has to wait for these

many

 * minutes. For example if this node is simulating a parking lot

then the

 * waiting time is very large (say around an hour)

 * whereas if this is an intersection then the waiting time is

on the order

 * of minutes.

 */

 float waitTime_;

 /* In order to help with Dijkstra's algo we keep the neighbor

list. i.e.

 * other intersections that this intersection is directly

connected to

 */

 int neighbors[MAX_NEIGHBORS];

 int neighborCount_;

public:

 Intersection(float x, float y, float z);

 /* List of incoming roads

 */

 Road* incomingRoads[MAX_ROADS_AT_INTERSECTION];

 /* List of outgoing roads

 */

 Road* outgoingRoads[MAX_ROADS_AT_INTERSECTION];

 /* Accessor functions */

 int id();

 float x();

 float y();

 float z();

 int outgoingRoadCount();

 int incomingRoadCount();

 float waitTime();

 int neighborCount();

 /* Helper functions */

 void addToOutgoingRoads(Road *r);

 void addToIncomingRoads(Road *r);

 /* Get the i'th neighbor */

 int getNeighbor(int index);

};

class CityIntersections

{

 public:

 static CityIntersections* getInstance()

 {

 if(instance_ == 0)

 {

 instance_ = new

CityIntersections();

 }

 44

 return instance_ ;

 }

 // return intersection at x,y,z

 Intersection* getIntersection(float x, float y, float

z=0.0);

 // return intersections[index]

 Intersection* getIntersection(int index);

 // If no intersection present at x,y,z then add one,

else return pointer

 // to existing intersection.

 Intersection* addIntersection(float x, float y, float

z=0.0);

 // Accessor for intersectionCount_

 int intersectionCount();

 // Dump all roads

 void dump(FILE *fptr);

 // Compute dijkstra's shotest path between 'src' and

'dst' and fill the

 // indexes of the roads to take in 'directions'.

Check that the number

 // of roads does not cross 'maxRoads'. Return the

actual number of

 // roads.

 int BFSDijkstra(int src, int dst, int *directions,

int maxRoads);

 // Set bounding box coordinates

 void setBoundingBox(float x1, float y1, float x2,

float y2);

 // Check if coordinates within bounding box or not

 bool withinBoundingBox(float x1, float y1, float x2,

float y2);

 // check if coordinate is withing bounding box.

 bool withinBoundingBox(float x, float y);

 // Check if coordinate is within limits

 bool withinXLimits(float x);

 bool withinYLimits(float y);

 // get span of X and Y of bounding box

 void getXYSpan(float& x, float& y);

 // STEADY STATE

 float distanceBetweenIntersections(int src, int dst);

 float maximumDistanceInGraph(void);

 float timeBetweenIntersections(int src, int dst);

 float averageTimeMobile(void);

 private:

 /* Singleton class */

 CityIntersections();

 static CityIntersections* instance_;

 45

 /* List of intersections */

 Intersection* intersections[MAX_TOTAL_INTERSECTIONS];

 /* Total interesection count */

 int intersectionCount_;

 /* Extract min function for dijkstra's algorithm */

 int extractMin(int *Q, int &qCount, float *distance);

 /* The function for the updation of distance[] and

previous[]

 * for dijkstra's algo

 * This function is equivalent to the "RELAX()"

function in Cormen.

 */

 void updateDistanceMatrix(int u, float *distance, int

*previous);

 /* list out the shortest path from src to dst and

return the length of

 * the path */

 int fillUpShortestPath(int *previous, int src, int

dst,

 int *directions, int maxRoads);

 /* Get the weight of the edge between two

intersections. Looseley

 * dependant on the speedlimit of the road connecting

the two

 * intersections

 */

 float weight(int from, int src);

 /* Bounding box coordinates */

 float bbX1;

 float bbY1;

 float bbX2;

 float bbY2;

};

#endif

A.1.4 KmlReader.h

#ifndef _KMLREADER_

#define _KMLREADER_

#include <string>

#include <fstream>

#include <vector>

#include <cstdlib>

#include <iostream>

using namespace std;

class kmlReader

 46

{

public:

 kmlReader();

 /* opens a KML-file and reads its contents

 returns 0 on success, -1 on failure

 */

 int openKML(char* filename);

 /* makes every road offset from the smallest value

 multiplies values so that largest is in the range

 999 < x < 9999

 also setts bounding box variables

 returns -1 on error

 */

 int normalize();

 /* get road segment (fromX, fromY, toX, toY)

 returns -1 when there are no more roads to be read

 */

 int getRoadSeg(double &startX, double &startY, double &endX,

double &endY);

 /* resets the index counter used by getRoadSeg

 */

 void resetIndex();

 /* get bounding box values

 */

 void getBoundBox(double &bx1, double &by1, double &bx2, double

&by2);

 /* returns the size of the start/end vectors (only one

 value needed since start.size() == end.size())

 */

 unsigned int getRVectorSize();

private:

 /* takes line (string) from the KML and splits it into

 elements and data. Appends result to pased vector

 */

 void getElements(string line);

 /* extracts roads from the elements vector and puts

 them in vectors start and end. returns -1 on error

 */

 int extractRoads();

 /* stores elements and data from KML file

 */

 vector<string> elements;

 /* stores start and end points of road-segments

 */

 vector<double> start;

 vector<double> end;

 /* the boundning box

 */

 double bndSX, bndSY, bndEX, bndEY;

 47

 /* index used by getRoadSeg

 */

 unsigned int index;

};

#endif

A.1.5 KmlReader.cpp

#include "kmlReader.h"

kmlReader::kmlReader()

{

 index = 0;

}

int kmlReader::openKML(char* filename)

{

 string str;

 char line[100];

 fstream kml(filename, fstream::in);

 if (!kml.is_open())

 return -1;

 while(!kml.eof())

 {

 kml.getline(line,100);

 str.assign(line);

 getElements(str);

 }

 kml.close();

 if(elements.empty())

 return -1;

 if(extractRoads() != 0)

 return -1;

 bndSX = 0, bndSY = 0, bndEX = 0, bndEY = 0;

 return 0;

}

void kmlReader::getElements(string line)

{

 string retStr;

 size_t start, end, wSpace;

 bool finished = false;

 while(!finished){

 start = line.find('<', 0);

 end = line.find('>', 0);

 if (start == string::npos || end == string::npos){

//no tag on current line

 if (line.length() > 0){

 48

 wSpace =

line.find_first_not_of(" \t\n\r");

 if (wSpace != string::npos)

//found something other than whitespaces

 elements.push_back(line.substr(wSpace));

 }

 finished = true;

 }

 else{

 if (start > 1){ //any data preceeding next

tag?

 wSpace =

line.find_first_not_of(" \t\n\r", 0); //skip inital whitespaces

 if (wSpace != string::npos &&

wSpace < start)

 elements.push_back(line.substr(wSpace, (start - wSpace)));

 }

 elements.push_back(line.substr(start + 1,

(end-start) - 1)); //skip first and last char (< and >)

 end++; //skip last '>'

 if (line.length() > end)

 line = line.substr(end,

line.length() - end);

 else

 finished = true;

 }

 }

}

int kmlReader::extractRoads()

{

 size_t pos1, pos2;

 string tmpStr;

 for (unsigned int i = 0; i < elements.size(); i++)

 if (elements[i] == "coordinates"){

 i++; //step to first coordinate

 while(elements[i] != "/coordinates"){

 pos1 =

elements[i].find_first_of(",");

 if (pos1 != string::npos){

 start.push_back(atof(elements[i].substr(0,pos1).c_str()));

 pos2 =

elements[i].find_first_of(",", pos1 + 1);

 if (pos2 !=

string::npos){

 tmpStr =

elements[i].substr(pos1 + 1, (pos2-pos1-1));

 tmpStr =

tmpStr.substr(tmpStr.find_first_of("+") + 1);

 end.push_back(atof(tmpStr.c_str()));

 }

 else

 49

 return -1;

 }

 else

 return -1;

 i++;

 }

 start.push_back(-1); end.push_back(-1);

 //padd with -1 to signal end of segment

 }

 return 0;

}

int kmlReader::normalize()

{

 for (unsigned int k = 0; k < start.size(); k++){

 if (end[k] != -1) end[k] += 180;

 if (start[k] != -1) start[k] += 180;

 }

 double smallestS = start[0], smallestE = end[0], largestS = 0,

largestE = 0;

 double temp;

 int mult = 1;

 if(start.size() != end.size()) //if this fails something is

wrong with the code =)

 return -1;

 //determine largest and smallest values

 for(unsigned int i = 1; i < start.size(); i++){

 if (start[i] != -1 && end[i] != -1){

 if (start[i] > largestS) largestS

 = start[i];

 if (start[i] < smallestS) smallestS =

start[i];

 if (end[i] > largestE) largestE

 = end[i];

 if (end[i] < smallestE) smallestE =

end[i];

 }

 }

 if ((largestS - smallestS) > (largestE - smallestE))

 temp = largestS - smallestS;

 else

 temp = largestE - smallestE;

 while (temp < 250){

 mult = mult * 10;

 temp = temp * 10;

 }

 //adjust values of the arrays

 for(unsigned int j = 0; j < start.size(); j++){

 if (start[j] != -1 && end[j] != -1){

 start[j] = (start[j] - smallestS) * mult +

1; // +1 so that smallest value is not 0

 end[j] = (end[j] - smallestE) * mult

+ 1; // -||-

 }

 50

 }

 //now we can set the values of the boundning box

 bndEX = (largestS - smallestS) * mult + 1, bndEY = (largestE -

smallestE) * mult + 1;

 return 0;

}

int kmlReader::getRoadSeg(double &startX, double &startY, double &endX,

double &endY)

{

 bool finished = false;

 while (!finished){

 if (index + 1 >= start.size() || index + 1 >=

end.size()) //"eof"

 return -1;

 if (start[index] != -1 && start[index+1] != -1 &&

end[index] != -1 && end[index+1] != -1){

 startX = start[index]; endX =

start[index+1];

 startY = end[index] ; endY =

end[index+1];

 index++;

 finished = true;

 }

 else

 index++; //if padding (-1) was found,

step forward

 }

 return 0;

}

void kmlReader::resetIndex()

{

 index = 0;

}

void kmlReader::getBoundBox(double &bx1, double &by1, double &bx2, double

&by2)

{

 bx1 = bndSX, by1 = bndSY, bx2 = bndEX, by2 = bndEY;

}

unsigned int kmlReader::getRVectorSize()

{

 return start.size();

}

