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Abstract 

Mobile Ad Hoc Networks are flexible, self configuring networks that do not need a fixed 

infrastructure. When these nets are simulated, mobility models can be used to specify node 

movements. The work in this thesis focuses on designing an extension of the random trip 

mobility model on a city section from EPFL (Swiss federal institute of technology). Road data 

is extracted from the census TIGER database, displayed in Google Earth and used as input for 

the model. This model produces output that can be used in the open source network simulator 

ns-2.  

 

We created utilities that take output from a database of US counties, the TIGER database, and 

convert it to KML. KML is an XML based format used by Google Earth to store geographical 

data, so that it can be viewed in Google Earth. This data will then be used as input to the 

modified mobility model and finally run through the ns-2 simulator. We present some NAM 

traces, a network animator that will show node movements over time.  

 

We managed to complete most of the goals we set out, apart from being able to modify node 

positions in Google Earth. This was skipped because the model we modified had an 

initialization phase that made node positions random regardless of initial position. We were 

also asked to add the ability to set stationary nodes in Google Earth; this was not added due to 

time constraints.  
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1 Introduction 

What later became known as ad hoc networks started out in the 70’s as “packet radio” 

networks, sponsored by DARPA1. Since then, considerable research has been done in the 

field. Wireless Ad hoc networks today are flexible, self configuring networks that do not need 

a fixed infrastructure. Recently, they have appeared in the news with the $100 laptop, a cheap 

laptop intended for distribution in developing countries, which use wireless ad hoc networks 

to establish a network “out of the box”. 

 

The work in this thesis focuses on simulations of mobile ad hoc networks. We will create a set 

of utilities to enable visualization of a simulation of a city section. The project work consists 

of several smaller parts. First, we will have to get road coordinates from a database (census 

TIGER) and convert it to a format Google Earth can display, KML, an XML based format 

used to store geographical data. Then, in the second part, we will convert the Google Earth 

data to a mobility model, which outputs all the movements on the city section for use in the 

simulator. Mobility models are used to model node movements, which in our case will be 

limited to a city section, a network of roads. 

 

The project work will be aimed at helping researchers visualize their simulations. By using 

Google Earth, it is also possible to put markers on the map to symbolize nodes that can read 

into the model.  It also makes it easier to add improvements and additional functionality later 

on. 

 

The finished solution included the major goals of the project, apart from a few limitations 

imposed by time constraints and by the mobility model that it was built upon. We did not 

implement functionality to set starting positions of nodes in Google Earth. This was skipped 

due to the fact that the mobility model randomizes starting positions in the initialization 

phase. Secondly, we were asked to have stationary nodes on the city section. We were never 

able to add this functionality due to time constraints. It would have required what we deemed 

to be rather extensive modifications to the model. 

 

                                                 
1 Defense Advanced Research Projects Agency, an agency of the US department of defence. 
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This thesis is structured as follows. First, in chapter 2, we go through some basics that will be 

needed when reading through the rest of the paper. Then follow the chapters for the different 

steps, or parts, of the entire application. In chapter 3 we describe the process of converting 

and linking road data from the United States Census Bureau TIGER database into Google’s 

KML format. The next major section is the modification of the mobility model. Here we take 

a look at what modifications where made to the existing model and also how the KML data 

was enabled as input. The final major part deals with the simulations using the ns-2 simulator. 

We will describe the processes of setting up the simulator and presenting some of the results, 

for example showing a finished simulation visualized in a network animator (NAM).  

 

Appendix A contains relevant code for the mobility model, including the modifications made 

to it.  
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2 Background 

In this chapter we provide background information that will be useful when reading the rest of 

this thesis. We start off by looking at the basics of wireless networks and more specifically ad 

hoc networks, the kind of networks that our model deals with. Then, in section 2.3 and 2.4, 

follows information on KML, Google’s language for storing three-dimensional geographic 

data, and XML, which it is based on. These sections are intended to give an overview of what 

XML is and the syntax of the KML files, which we used to store data from the TIGER 

database. 

 

The KML files are opened in Google Earth, which is discussed in the following section. In 

this section we briefly have a look at what it is and how it is used. Next comes a section on 

the TIGER database, the database we used to get information on road networks and, finally, 

section 2.7 and 2.8 discusses ns-2 and its related software. ns-2, or Network Simulator 2, is 

the simulator that will be running the simulations that our mobility model will output. 

2.1 Wireless Networks 

The most common wireless networks [3] today are the ones where you have one access point, 

i.e. a router. All computers that want to log on to the network have to check in through the 

router to gain access to the network and all traffic is sent through the router as well. 

 

The most common wireless network standard is IEEE 802.11, which includes a few different 

standards within itself that are divided by alphabetic characters such as a, b and g. These 

standards use an unlicensed radio spectrum to provide wireless ethernet.   

2.2 Ad hoc Networks 

The origin of ad hoc networking can be traced back very long ago when you needed to send 

messages in a hurry. The most common way was to have people on tall structures or heights 

shouting from one position to the other until the message reached its destination. 
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An ad hoc network works in a similar way. There are no access point, instead nodes discover 

other nodes within its range and forms a network together. In this way, you can reach nodes 

out of range by going through nodes within range, which will forward your messages, so 

called multi-hop relaying. Without base stations, the nodes does not only work as end-

systems, but also as routers forwarding packets. 

 

 

       The nodes make up 

       the network themselves. 

       C and D cannot reach A  

       directly so B needs to  

       route and forward the   

       traffic. 

Figure 1:  Example of ad hoc net structure 

 

The ad hoc network was developed because developers saw an opportunity to make a network 

without a fixed infrastructure. Self-configuring and maintenance properties are built into the 

network, which makes the ad hoc network both quick and cost-effective when deployed. 

Application domains include battlefields, search and rescue operations and collaborate 

computing. The network can be setup as a completely standalone network or it could just be 

connected to the internet. 

 

In mobile ad hoc networks (MANets)[4] the nodes are free to move about and organize 

themselves into a network. This works with the main idea that when a new node wants to be a 

part of the network the node announces its presence and listens to broadcast announcements 

from its neighbors. The node learns about new nodes in range and ways to reach them, and 

may announce that it can also reach those nodes. As time goes on, each node knows about all 

other nodes and one or more ways to reach them. 

Because of the mobility in manets, path breaks, packet collisions and transient loops often 

occurs and the network needs a good routing protocol to resolve these matters as well as 

having constant updates about which neighbors you have. 

A B C 

D 
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2.3 XML 

XML (Extensible Markup Language) [1, 2] is a meta-markup language and a W3C2 standard. 

In contrast to other markup languages, such as HTML, one can make up own tags according 

to what is needed as long as they are correctly organized. XML provides a structured and 

organized way of sharing data. For example, if you are working with personnel files you 

could write something like the code below: 

 

<employee>  

    <name>Daniel Myer</name> 

    <position>Programmer</position> 

    <salary = “2200” /> 

    … 

</employee> 

Figure 2: XML code example 

 

XML’s simplicity makes it easy for programmers of any level and even for those without 

programming experience to understand and write. At the same time XML is easy to parse, 

since it doesn’t include any formatting instructions, but only describes data. As such, it is easy 

for virtually any program to process the data. 

  

XML files are mostly created with text editors, which can range in complexity, from a simple 

editor such as vi to a fully WYSIWYG3 editor. The final document can then be processed by a 

parser that makes sure that the data is well formatted (if it is syntactically correct). The 

document can finally be read by an application. For example, it can be opened in a browser, 

which formats the data and displays it to the user. 

 

A syntactically correct XML document should have one root element, it should be properly 

nested and it should have values within quotes. Finally, one must also keep in mind that it is 

case sensitive. If a document follows these rules it is considered well formatted. 

2.4 KML 

KML (Keyhole Markup Language) [3, 4] is an XML-based language used to display three-

dimensional geographical data in Google Earth and Google Maps. It can store information 

                                                 
2 World Wide Web Consortium. International consortium that work to develop Web standards. 
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such as paths, placemarks, ground overlays (images “draped” over existing textures), 3d 

models etc. Each object is always given a longitude and a latitude. Furthermore, KML-files 

can contain descriptive data, sometimes formatted with HTML, special icons, a camera view 

etc.  

 

As an example, a placemark with HTML formatted description can look like the one below 

(the CDATA tag is used to make sure that HTML is parsed correctly): 

 

   <Placemark> 

      <name>CDATA example</name> 

      <description> 

        <![CDATA[ 

          <h1>Some title</h1> 

          <p><font color="red">This is a <i>placemark</i></font></p> 

        ]]> 

      </description> 

      <Point> 

        <coordinates>102.595626,14.996729</coordinates> 

      </Point> 

   </Placemark> 

Figure 3: KML placemark example 

 

KML files can be created with the Google Earth interface or written directly in a text editor 

and then compressed together with any images using the ZIP-format. Such ZIP-archives are 

called KMZ and is the most common way to distribute KML-files.  

 

We mainly used the KML-files to store roads (paths) and nodes (placemarks) that were used 

as input for our mobility model. We had to get the road-information from another source than 

Google since it is impossible to retrieve road-layer information from Google Earth. 

 

2.5 Google Earth 

Google Earth [5], formerly Earth Viewer, is a 3d globe program developed by Keyhole, inc. 

and later acquired by Google in 2004. A year later its name was changed to Google Earth. 

 

                                                                                                                                                         
3 What You See Is What You Get. What you see when editing is very close to or exactly what you get in the final 

product. 
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Images are obtained from satellite and aerial photography and thus resolution vary depending 

on points of interest. In large cities for example, cars and people can be discerned while 

smaller towns and other places have considerably lower resolution.  

 

Geographical information, for example roads and terrain, are stored in layers that can be 

turned on or off. Apart from geographical layers there are also layers with other information 

such as Geographic Web. It displays points of interest that link to information from 

Wikipedia4 or Panoramio5. Such layer information can be stored in KML-files that Google 

Earth can read and display on the virtual globe. It is also possible to save some information to 

KML-files. 

 

Google Earth is currently available for Windows, Linux, Mac OS X and FreeBSD in three 

versions. Besides the free version there are two commercial versions (plus and a pro) which 

provide further functionality and customer support for a price. 

 

2.6 TIGER 

TIGER (Topologically Integrated Geographic Encoding and Referencing) [6] is a database of 

geographic and cartographic information by the United States Census Bureau. The database 

covers all US counties and a few surrounding islands. 

 

The database is organized after states that contain one compressed file (ZIP format) for each 

county. Each county contain a set of record types describing different aspects of the graphical 

map. As an example, record type one (RT1) contain address information along with start and 

end coordinates of the roads. Using the ID-number in RT1, additional coordinates are 

retrieved from record type two, coordinates that makes up the curves of the roads. To get 

complete information about a geographical feature it is often necessary to combine 

information from several different record types in this way. 

 

TIGER-records contain all kinds of geographical data; roads, water, buildings, borders etc. 

and are spread out across a range of different record types. Apart from purely geographical 

                                                 
4 Free online encyclopedia, maintained by its users. http://en.wikipedia.org/ 
5 A site that host images linked to where they were taken. 
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data, such as buildings, there are also information in the records that specify address ranges, 

zip codes an such information. There are also record types providing information about the 

database itself, for example record type H. This file stores a history of every complete chain 

(record type 1), when they were split or merged. TIGER files can be displayed with most 

GIS6 applications.  

 

The current edition of the database is the second edition from 2006 (released March 6 2007) 

and will be the last files the Census bureau intends to release in the current format. Future 

TIGER spatial data will be released in shapefile format. 

2.7 ns-2 

ns (network simulator) [8, 9, 10] is a discrete event simulator, meaning it operates on an 

chronological sequence of events. ns was programmed in C++ with a simulation interface 

written in OTcl, an object oriented extension of the scripting language Tcl. It provides 

simulation for several types of protocols over both wired and wireless networks. 

 

ns started out as a variant of the REAL network simulator in 1989 and had six years later, in 

1995, gained wider support from DARPA, among others. Today it is developed by different 

institutes and researchers and has reached its second generation (ns-2). Work on ns-3 was 

started July 1, 2006 and is planned to be completed sometime in 2010. 

 

2.8 NAM  

NAM (Network Animator) is a TCL/TK (Tool Command Language / TK GUI Toolkit) based 

animation tool for viewing network simulations. When a simulation has been run in ns-2 it 

outputs a trace file that can be opened in NAM and it’s then possible to watch the nodes move 

and to see the simulation take place. With NAM you can watch the whole simulation both 

forward and backwards, you can yourself change the speed of the simulation and zoom in and 

out on nodes etc. See Figure 4. 

 

                                                 
6 Geographic Information System. Computer system used to handle geographic information. 
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Figure 4:  NAM running a simulation 
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3 From TIGER to Google Earth 

This chapter describes the part of the project that is responsible for extracting geographical 

data from the census TIGER database and converting it to Google’s XML-based KML 

format. The output at the end of this stage is readable by Google Earth and will display all the 

roads in a specified area of a county. 

 

First, in section 3.1, we will take a look at the motivation behind using the TIGER database. 

Then follows section 3.2, where the conversion of TIGER data will be described in detail and 

also what is needed from the TIGER database and how the data is processed. Next, in section 

3.3, we will describe the development process, what problems were encountered and how 

they were solved. In the final section, 3.4, there are instructions detailing how the converter is 

used. 

 

3.1 Why the census TIGER database 

Before going into details about the implementation and development of the conversion utility, 

we explain the motivation behind using the census TIGER database. Google Earth already has 

a road layer that contain most of the roads across the globe. Furthermore, this layer can be 

displayed separately, so why not use it? This was our intention at first, but however, it turned 

out not to be that simple. It is impossible to save road layer information from Google Earth, 

because it is streamed from Google’s servers and we were not allowed to store it. Therefore, it 

became necessary to obtain this data from a second source, which we wanted to display in 

Google Earth.  

 

The U.S. Census Bureau maintains a large database of geographic and cartographic 

information on every county in the United States, the TIGER database, which is available free 

of charge to anyone. Using the TIGER database does of course introduce a limitation to the 

project; we will be restricted to only using roads in the U.S. On the other hand, it provides us 

with all the data that we need. Determined to be the best option available, it was chosen. 
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The TIGER database does not store its data in a way that Google Earth can interpret, therefore 

conversion became necessary. 

3.2 How it works 

The conversion part of the project was responsible for extracting and linking together 

information from the TIGER database and storing it in a way Google Earth could interpret. 

This conversion was done by our utility that we call TIGERconv. 

 

To extract necessary information from the TIGER database it is sometimes necessary to link 

together several file types using various id numbers. Before examining this content closer it is 

worth mentioning something about the terminology. Census TIGER uses the definitions from 

the Spatial Data Transfer Standard (SDTS) [11]. Interesting for us is the definition of a 

complete chain:  

 

“A chain [a sequence of non-intersecting line segments] that explicitly references left 

and right polygons and start and end nodes.” 

 

The file types that contain information on these complete chains that we needed were 

primarily record types one and two (see 2.6 about TIGER structure). Type one is called 

complete chain basic record and stores the start and end points for the complete chains that we 

needed. Apart from these coordinates, it also contains other data that we needed to filter out, 

such as street name, address range and different flags.  

 

Since it is not possible to know how many fields each line have before going through it, we 

parsed the lines to see if it contained a feature code (Census Feature Class Code) that 

indicated that it was a road. Road feature codes are of class A, which means it starts with an 

A. As an example, a line in the record type of class A25 lets us know that it is a “Primary road 

without limited access, US highways, separated”. 

 

After having established that the line is actually a road we could start taking out the elements 

we needed. Obviously, we needed the coordinates but also the TIGER/Line ID in order to be 

able to find additional data in other record types. Thus, now that we knew how the line 

looked, we stored the first field (the id) and the last four (the coordinates). 
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The next step in the conversion program was to obtain additional data from record type 2, 

called Complete Chain Shape Coordinates. To be precise, certain checks were performed 

before this point to see if it was necessary to proceed with the linking, for example to make 

sure that it was within the coordinate-box specified by the user. If the chain passes the check, 

the record will be searched for the TIGER/Line ID and if a match is found (not every line in 

record type one have a matching line in record type 2) the coordinates will be extracted.  

 

The coordinates that are stored in a long sequence, sometimes spanning more than one line, 

are points between the end and start of the chain. The coordinates comprises the shape of the 

road, giving it its bends. Coordinates are read until the first “0-field” is found, signalling that 

there are no more coordinates in the chain. 

 

The final step in the program was to save the data to a KML file, Google Earths XML based 

format. Headers and various tags are added to produce a final result such as the KML file 

depicted in Figure 5: 

 

<?xml version="1.0" encoding="UTF-8"?> 

<kml xmlns="http://earth.google.com/kml/2.1"> 

<Document> 

 <Placemark> 

  <LineString> 

    <extrude>1</extrude> 

     <coordinates> 

        -86.767923, +36.158745, 0 

        -86.768027, +36.158624, 0 

        -86.769684, +36.157902, 0 

     </coordinates> 

  </LineString> 

 </Placemark> 

… 

</Document> 

Figure 5: a section of KML output from the conversion 



 13 

The section of the KML file, shown in Figure 5, shows one road segment. The first tag is the 

XML header, which will always be first in each KML file. The header is followed by the 

KML namespace declaration and will also always be present as line two of each file. Further 

down is the first placemark element, the most commonly used feature in Google Earth, which 

can contain anything from points to polygons and models. In this case it contains our road 

segment. Next, we have a LineString which creates a path (road) with extrude set to 1, 

specifying that the line should be extended to the ground. Finally, we give the coordinates, in 

this case we have three points: the start, a middle point and the end. 

Coordinates are given in the form: 

-longitude, +latitude, height 

 

A generated KML file can contain countless road segments declared in the way shown in 

Figure 5. As an example, a segment of Jersey City (shown in Figure 8, later in the chapter) 

can produce an output of over 4000 lines. When viewed in Google Earth, each road segment 

can be viewed individually by selecting them from a long list in the interface, as can be seen 

in Figure 6. 

 

 

Figure 6:   output.kml expanded to show all road segments 
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3.3 Development, problems and solutions 

The first step in the development was to make sure that it worked with only the start and end 

points of the chains, i.e. to only use record type 1. After going through the material available 

about the database we realised that we could not simply go through the file and select, for 

example the fourth field in every line. The issue was that since all fields are not always 

included, no easy separation between them is available and, furthermore, sometimes two 

fields are not separated at all. The solution was to tokenize as much as possible and then we 

would get the most important fields (ID and feature code). 

 

Having extracted the feature code we came upon the first problem in the development; the 

same atoi (ASCII to Integer) conversion gave different outputs on different systems. After a 

lot of gruelling debugging we started to realise that the problem was not in the code but 

seemed to be linked to the fact that we got different results on different versions of our 

Windows IDE, Visual Studio. Soon after, the problem was localized to the project settings 

and resolved. 

 

At this point we had our first working output that could be examined in Google Earth, as 

shown in figure 7. 
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Figure 7:  Google Earth showing output from TIGER Record Type 1 on the city Nashville 

 

The next step was to introduce limits to what area should be extracted, since it would 

otherwise take too much time to link together the record types and it would produce a very 

large output. When we had an algorithm designed and were ready to test it we were faced 

with another problem. The coordinates that were given in the Google Earth interface didn’t 

match those in the KML and TIGER files. After some research it was concluded that the 

coordinates given in Google Earth were shown as minutes and seconds instead of degrees, 

which we wanted. Later on we discovered that it was possible to change from the standard in 

the settings. 

 

After getting coordinates directly from the KML file we tuned the algorithm and were able to 

proceed with the linking of record type 2. Working in data from type 2 didn’t take much time 

to finish since it was basically much the same tokenizing and selection that we had previously 

done, with some structural differences. There was, however, one strange error left; some roads 

seemed to pass through structures and deviate quite a bit from the underlying image.  
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After further testing we were puzzled since the coordinates were not altered in the transition 

from TIGER to KML. As it turned out, the “problem” was actually very simple. When we 

checked the documentation it turned out that some of the feature codes of the roads were 

actually tunnels. We decided to continue to use all roads, even though they were actually 

tunnels.  

 

 

Figure 8: Final version showing a section of Jersey City in the New York metropolitan 

area 

 

Another problem that was present during several stages of the project was various rounding 

errors. The first and easiest to find was a calculation done when writing to the KML file. The 

calculation was rounded off since it was not explicitly cast to a double. The second rounding 

error that was a bit trickier to find was that the floating point precision was wrong, but after 

setting the right number of decimals the roads lined up well with the photograph. 

 

A final issue that we needed to consider was the change in TIGER file structure presented in 

the new edition of the database. This second edition was presented after we had completed the 
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entire conversion program and the first edition files that we were using would be removed 

shortly after. Thus after going through the new documentation and some notes on the 

difference in structure we concluded that no alterations to the code would be necessary. 

3.4 Usage  

The conversion utility is a console application that takes a filename as input, it should be the 

record to be converted (e.g. TGR47037). The following two coordinates are the coordinates of 

the box and the next couple of coordinates specifies how long the sides should be. This will 

output all the roads within the box as a KML file. Usage should thus look like this: 

TGRConv filename coordinateLongitude coordinateLatitiude devLongitude devLatitude 
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4 Modifying the mobility model 

In this chapter we will primarily focus on the mobility model and our modifications to it. First 

the mobility model is described, how it works and where we made our modifications. Then 

we will see how the KML files are read, processed and integrated into the mobility model. 

Specifically, we will take a closer look at the class that deals with the KML files, kmlReader, 

responsible for reading and converting KML-data for use in the model.  

4.1 The Mobility Model 

The mobility model [12, 13] we extended is one in a collection of models by Professor Jean-

Yves Le Boudec at EPFL, Switzerland and Milan Vojnovic at Microsoft Research, 

Cambridge. It consists of three parts. The first part contains random waypoint and random 

walk with wrapping and reflection, the second part contain restricted random waypoint on a 

city section and, finally, the last part contain random waypoint on a generalized domain. In its 

simplest form a random waypoint model picks a path in a set of paths, according to some 

algorithm, and upon reaching its end chooses a new one.  

 

The models we were using are more realistic than this basic example, and as a result, not quite 

as simple. For example, the models have perfect sampling, which means that they start in a 

steady state, avoiding any initial deviations. We will, however, not examine the complex 

mathematical background for the models, but instead focus on the implementation. The 

implementation we examine is that of the model we will be using and extending, random 

waypoint on a city section. See Figure 9 for a class diagram over relevant classes. 

 

In its unmodified form the random waypoint on a city section model basically operates on a 

set of paths, the city section, which is passed to it as a file. The city section is then populated 

by nodes whose movements are simulated by the model and a file is outputted to be used in 

the ns-2 simulator. Other data of interest passed to the model is the length of the simulation 

(length in seconds), the number of nodes, vehicles, pause times (how long nodes will be 

stationary) and an output filename (were the output is written).  
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Figure 9 Class diagram for relevant parts of the mobility model 
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The first part we altered was the reading of the paths by creating a new class, KmlReader, 

used to obtain data from KML files, described in detail in the next section (See Figure 9 for an 

overview of the class). The city section is set up by passing a file pointer to the addRoad 

method in the singleton7 class CityRoads class, responsible for storing the paths. The method 

will then read one path from the file and store it. Thus, what we initially intended to do was to 

override the addRoad-function to take parameters from KmlReader. This did however seem to 

be problematic (see section 4.4) so we had to rethink our approach. The solution that we 

finally decided upon was to use a temporary file in order to maintain the precision of our data. 

 

Therefore, what we had to do was to modify the initialization function to take other arguments 

passed to the file. We introduced a new flag, -kml, which indicates that the file passed to the 

model is a KML file. Then it was opened with KmlReader and stored in our temporary file, 

which in turn was passed to the addRoad method. The method assumes that all roads are 

bidirectional, storing one road in each direction (of course depending upon if they are within 

the bounding box) in an array of Road objects. The Road class in turn is, in comparison, 

simple. It stores information on roads such as length, speed limit etc. while also containing 

pointers to intersections (of class Intersection, not described here) showing where the road 

starts and ends. 

 

At this point another consideration that had to be made was how to handle speed limits. Since 

we do not get any information on speed limits from the KML files we had to use a fixed speed 

limit. The speed limit used throughout the example files for the model was 5.0 so we decided 

to continue using it. 

The file structure which the mobility model use looks like this: 

junk limit fromX fromY toX toY 

 

We are not entirely certain what the “junk” values are, but we have a theory. The mobility 

model had extracted some roads from TIGER records using some simple script (although they 

probably didn’t link in other road data from other record types) for use in the examples. The 

junk data seem very similar to the road id’s that is used to link together data from the different 

                                                 
7 A design pattern that is used to limit the instantiation of the class to only one object. 
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record types. The other fields are fairly straightforward, limit is the speed limit and the others 

are coordinates. 

 

Finally, as an example, a line in the file looks like the one below (our junk value is a value 

borrowed from the examples, but could be anything since it is discarded by the model): 

96062880 5.0 907.100 1006.000 907.600 1006.000 

 

Now we were ready to produce the first output from our KML-files. It looked fine, but it 

turned out that the nodes were not moving as they should, instead the nodes were alternating 

between two intersections. The cause was, quite simply, that all roads were not read. This had 

to be modified further by altering the reading process to count the number of lines that were 

written to the temp-file instead of have the number of lines as a parameter to the model. 

 

After the initialization phase came the next section that we discovered needed changes, the 

generateScenario function. The generateScenario, as the name implies, is responsible for 

actually generating the scenario. For example, it is responsible for placing vehicles on the 

map. In the function there were some values on maximum distances and other parameters that 

were hardcoded for the map, westUnivPlace, that the model was using. Therefore, this 

generation needed to be done automatically somehow. It turned out that there were functions 

in one of the classes that were intended to generate these values. It increases the time it takes 

to generate the output significantly, but it is needed to be able to use other maps.  

4.2 KmlReader 

KmlReader is the class we wrote to retrieve and format KML data for use in the mobility 

model. It takes a KML-file as input and outputs the data in a format usable in the mobility 

model. It is used for several tasks in our model, for example to establish a correct bounding 

box (a box that contains every coordinate of the roads) or to get the next road start- and 

endpoints. 

 

The first step was to parse the information in the KML file, i.e. to extract all the tags and data, 
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which is done when the file is loaded. All the elements of the KML file is split and stored in a 

vector so that it can be easily accessed when we need to search it for specific data. Thus, the 

vector can now be processed for the wanted information, for example roads.  

 

In the case of roads, the parsing is done in two steps, where the last step is possible to skip. 

First, the road segments are extracted from the vector and the start- and endpoints are ordered 

and stored.  Every segment is padded with the value -1 since the length of segments varies. To 

clarify, a segment might look something like this:  

 -86,766319  -86,766314 -1  

+36, 161582 +36,161582 -1  

Figure 10:  Section of the road vector 

This segment contains only one road, from (-86,766319, +36,161582) to (-86,766314, 

+36,161582) and will be read until one segment contains -1.  At this point it is possible to start 

retrieving coordinates. They are, however, still in Google Earth's format which the mobility 

model is not designed to handle. Furthermore, the bounding box is not yet determined. 

Therefore, we want to convert the data once more.   

 

All calculations on the coordinates were now performed. First off, we did not want negative 

values so 180 (degrees) was added to all coordinates. Then the smallest and largest values 

were retrieved by traversing the road vectors. With the data now gathered we could transform 

the coordinates and determine the bounding box.  The coordinate values are adjusted by the 

following formula: 

finalCoordinate = (oldCoordinate – smallestValue) * multiplier + 1 

 

The formula is fairly straightforward, but the multiplier might need some explanation. It is a 

multiple of 10 used to get the largest value to somewhere between 100 – 2500 in order to 

avoid working on large floating point values. Thus, what is done is that the smallest value is 

subtracted from our coordinate (making the smallest value 0) and then multiplied by the 

multiplier. Every field containing -1 is skipped since it shouldn’t be altered. 1 is added in the 

end to avoid having fields with 0. We wanted values ranging from 1 – 2500 (2500 being the 

currently specified maximum value). 
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After the calculations were completed we had all coordinates ranging from 1 to 2500 which 

also conveniently provided us with the bounding box values. Bounding box values are 

retrieved by taking the largest and smallest values of X and Y, giving us a box which contains 

all coordinates. The data was now ready for use in the mobility model. 

4.3 Problems and Solutions 

Once again we had problems with the precision of our calculations, this time in our KML 

reader. It turned out that several different coordinates, for example -86.766319 and -

86.766314, would eventually be converted to the same number, in this case 899. The 

difference, albeit very important, was only 0.000005, which initially led us to believe that the 

error came from the numbers being rounded off at some point. 

 

It did, however, turn out that the lack of precision came earlier; when the roads were extracted 

the last digit was lost. The problem turned out to be that the last digit was cut from the 

coordinate when they where extracted from the KML vector. 

 

Another precision problem came when we were about to integrate the KmlReader class with 

the mobility model. Throughout the model we handled data as doubles, to maintain precision, 

and not floats as was used in the mobility model. We encountered an error when we tried to 

cast our values to floats using static_cast. It turned out that the value was strangely rounded 

off. For example, a double value such as 170.0000 would become 169.9999 when casted to 

float. We tried a few alternate solutions but we just didn’t have the time to get stuck. The 

solution, as outlined in section 4.2, was to dump our data to a file and let the original function 

handle it. 

 

The last problem, not related to precision, came after we realised that the output the model 

was producing didn’t actually do anything useful. The problem seemed to be that all 100 

vehicles jumped between two coordinates. What had happened was that it only read as many 

lines as specified by the parameters passed to the function. Since the temp file was generated 

while the model was running, it had to be done automatically. As outlined in section 4.2, we 
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modified the function to make it read all lines from the temp file. It was simply fixed by 

adding a counter as the KML reader wrote lines to the file and then letting the addRoad 

function read the same amount of roads.  
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5 NS-2 simulator 

In this section we explain what happened after we got the input from the mobility model, 

running it through the ns-2 simulator. We also give examples of simulation as viewed in 

NAM as well as how the ns-2 input is structured. Finally, we take up the problem we had with 

these different parts. 

5.1 Simulations 

After the output from the mobility model had been made a simulation in ns-2 was possible. 

From the simulation output you can get all sorts of information about the simulation of this 

network. We concentrated on showing the simulation in NAM. When the simulation is 

complete you have, among other things, an output file that is a NAM file, in our case the 

filename was nam-out.nam. When you put the file into NAM you can watch the simulation 

that was done. 

 

 

Figure 11:   City section in Google Earth with NAM visualization on the right 

 

From the mobility model we got node movements as output. This data was used as input for 

the simulation. The files start out by setting initial coordinates for all nodes, which can look 

like what is seen in Figure 12. 
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$node_(0) set X_ 492.239441 
$node_(0) set Y_ 368.665100 
$node_(0) set Z_ 0.000000 
$node_(1) set X_ 225.169586 
$node_(1) set Y_ 252.758728 
$node_(1) set Z_ 0.000000 
$node_(2) set X_ 420.013031 
$node_(2) set Y_ 151.794113 
$node_(2) set Z_ 0.000000 
$node_(3) set X_ 77.541893 
… 

Figure 12:    initial part of mobility model output 

After the initialization the node movements are listed, ordered chronologically, starting with 

0. The length of the simulation is specified by the parameter passed to the mobility model. 

The movement-part of a mobility output can look like this: 

 

$ns_ at 0.000000 "$node_(0) setdest 517.700012 410.299988 6.312355" 
$ns_ at 0.000000 "$node_(1) setdest 221.162842 254.835297 0.451288" 
$ns_ at 0.000000 "$node_(2) setdest 420.851898 151.359970 0.094456" 
$ns_ at 0.000000 "$node_(3) setdest 78.500000 590.099976 2.035775" 
$ns_ at 0.000000 "$node_(4) setdest 761.414429 339.027527 8.195236" 
$ns_ at 0.000000 "$node_(5) setdest 703.400024 334.299988 5.626622" 
$ns_ at 0.000000 "$node_(6) setdest 488.524384 362.589996 5.590453" 
$ns_ at 0.000000 "$node_(7) setdest 511.500000 29.900000 1.522174" 
$ns_ at 0.000000 "$node_(8) setdest 713.538818 330.173553 0.024292" 

Figure 13: movement-part of mobility model output 

 

Using a Tcl script the simulation was run using the node movements specified by the 

model. After the simulation was performed we got the NAM file that was relevant for our 

work. The result can be seen in Figure 11. In NAM we can now examine all the nodes and see 

them move around. 

5.2 Problems 

From the first instructions we got it was said that we wouldn’t need to use the ns-2 simulator 

but when we wanted to check that our output was correct in NAM. We noticed that we 

couldn't use NAM without running it through the ns-2 simulator. Therefore, first we 

downloaded ns-2 simulator 2.26. We tried to unpack the simulator on the school computers 

but got the message that the disk quota was exceeded, we had 50MB and needed around 

300MB, or so we thought at the time. We asked for more capacity and got some but it wasn't 
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enough. Because neither of us has a computer with Linux on we got an account on an 

OpenBSD8 server and used SSH9, but with this server we got several errors when we tried to 

run the makefile. We tried to switch the make to gmake10 but still got many errors that we 

weren't able to sort out. We tried a different version of ns-2, one that would be easier to 

compile and run. However, still we faced a couple of errors that we didn't know how to solve.  

 

After these trials we felt that the easiest way to go forth was to take a laptop and change the 

operating system to Linux so we installed Ubuntu11 on a laptop. First we tried with the latest 

edition, Ubuntu 7.1, but the computer didn't boot the CD. After a few hours of trying we 

decided to change to an older version and installed Ubuntu 5.04 and then tried to run the ns-2 

simulator again but the problems remained. Then we downloaded a newer version of ns-2 

from sourceforge which had a configure file in it that could say what was missing to make the 

simulator work. 

 

When we finally did get ns-2 to compile a new problem arose, we couldn’t find out how to 

make a complete simulation. First we tried to use our own file from the mobility model as 

input but only got error messages. Then we tried to understand the ns-2 documentation but we 

didn't find any example of how to start a simulation. At last we did send a file that we had 

created to Dr. Andreas Kassler, whom had given us the project, and he made a simulation with 

our file. We then got a script to the ns-2 simulator that would work with our output files from 

the mobility model.  

 

When we tried the script we noticed that we needed to change back to the first version of ns-2 

that we had got, because the script was made to that version. After that we were able to run 

our simulations. 

 

                                                 
8 A Unix-like operating system based on the Berkley Software Distribution. 
9 Secure Shell, a network protocol for secure communication. 
10 GNU Make. A Unix make utility, used to automatically build projects. 
11 A Linux distribution based on Debian. 



 28 

6 Conclusions and future work 

The project was completed with most of the goals fulfilled. We created a visualization of the 

city section in Google Earth, converted the data for use in the mobility model, which in turn 

outputted meaningful data to the simulator. We encountered several problems along the way, 

notably several problems with rounding errors, limitations of the mobility model and 

problems working with the ns-2 simulator.  

 

There were, however, some features that was initially intended to be included that didn’t 

make it into the final utility, the most important being that users cannot place nodes on the 

actual map in Google Earth. The reason we didn’t implement it was mainly because of the 

mobility model. In its unmodified form the model takes nodes as a parameter. The number of 

nodes, or vehicles, populating the city section are passed as a parameter and then randomly 

placed on the roads. There were also some form of initialization where the nodes where 

moved around for a while to remove any initial deviations in the simulations. Therefore, we 

decided to skip the node placement on the maps since they would be moved around randomly 

in the initialization anyway. We were also asked to add stationary nodes, but there just wasn’t 

enough time to alter the model to handle stationary objects.  

 

The previously mentioned problems with rounding errors came at the stages where data 

needed to be converted between the various formats. At points, they were casted, read from 

file and processed in other ways. This often left us with smaller deviations that would leave 

the roads disconnected, not forming perfect edges for example.  

 

Future additions that would really improve the user friendliness of the road layer construction 

is some kind of improvement to the way the roads are extracted from the TIGER database. As 

for now, the user needs to manually specify the coordinates of the “box” from which all roads 

are extracted. This could be simplified by perhaps having set markers in Google Earth that 

can be read or have some simple GUI to handle it.  

 

Other parts that could be improved are the previously mentioned node placement. It might 

require considerable work to modify the model, but it would definetely add to the usefulness 
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of the application to be able to see where nodes are placed, particularly eventual stationary 

nodes.  

 

Finally, a nice addition could be to visualize the output from the simulator in Google Earth in 

some way. For example, to have each node’s movement as a separate post, similarly to how 

road segments are now visible (see Figure 6). You would then be able to in turn set every 

node to “on”, showing the path taken throughout the simulation. 
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A Appendix 

A.1 Mobility Model  

A.1.1 main.cpp 

/************************************************************************* 

Santa @ EPFL - Summer 2004 

[Code based on vehicular mobility model. Amit Saha(amsaha@rice.edu) 

VANET'04] 

 

The graph mobility model : 6 Aug 

- Pause and movement alternates 

- steady speed on a road around the speed limit for that road 

- steady state initilization 

**************************************************************************/ 

 

#include "road.h" 

#include "intersection.h" 

#include "vehicle.h" 

#include "rng.h" 

#include "statistics.h" 

#include "common.h" 

 

//kmlReader is used to read KML-data 

#include "kmlReader.h" 

#include <cstring> 

 

void generateScenario(int vehicles); 

void initialize(int argc, char * argv[]); 

double steadyStatePauseProbability(float); 

double residualTime(double mean, double delta); 

 

RNG *rng = 0; 

FILE *scenFptr = 0; 

FILE *speedPtr = 0; 

FILE *posPtr = 0; 

float maxSimulationTime = 0.0; 

float pauseMean, pauseDelta ; 

 

int main(int argc, char *argv[]) 

{ 

 initialize(argc, argv); 

 generateScenario(atoi(argv[5])); // change for bounding box 

default 

 return 0; 

} 

 

void initialize(int argc, char * argv[]) 

{ 

 

 if(argc != 8) { 

  if (argc != 9){ // -kml 
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   fprintf(stderr, "argc: %d, ",argc); 

   fprintf(stderr, "Usage: %s",argv[0]); 

   fprintf(stderr, " <input file>");

   fprintf(stderr, " <number of lines in 

input file>");  

//   fprintf(stderr, " <Bounding box lower x 

coordinate>"); // argv[3] 

//   fprintf(stderr, " <Bounding box lower y 

coordinate>"); // argv[4] 

//   fprintf(stderr, " <Bounding box upper x 

coordinate>"); // argv[5] 

//   fprintf(stderr, " <Bounding box upper y 

coordinate>"); // argv[6] 

   fprintf(stderr, " <pause time mean> <pause 

time delta>"); 

   fprintf(stderr, " <number of nodes>"); // 

argv[5] 

   fprintf(stderr, " <simulation time 

(sec)>"); // argv[6] 

   fprintf(stderr, " <output file>\n"); // 

argv[7] 

   fprintf(stderr, " set kml mode with 

optional -kml\n"); // argv[8] 

   fprintf(stderr,"Exiting...\n"); 

   exit(1); 

  } 

 } 

 

 bool KMLmode; 

 if (argc == 9){ 

  if (strcmp("-kml", argv[8]) == 0) 

   KMLmode = true; 

 } 

 else 

  KMLmode = false; 

 

 kmlReader kml;  //only used if KMLmode == true 

 FILE *fptr = fopen(argv[1],"r"); //only used if KMLmode == false 

 if (KMLmode){ 

  if (kml.openKML(argv[1]) == -1){  

   fprintf(stderr, "could not open KML\n");  

   exit(1); 

  } 

  else 

   kml.normalize(); 

 }   

 else{ 

  if(!fptr) { 

   fprintf(stderr,"Input file %s does not 

exist !!!\n", argv[1]); 

   fprintf(stderr,"Exiting...\n"); 

   exit(1); 

  } 

 } 

 

 /* Set the bounding box for the map */ 

 // exact needed only for statistics. We initialize to default 

// CityIntersections::getInstance()->setBoundingBox(atoi(argv[3]), 

atoi(argv[4]), atoi(argv[5]), atoi(argv[6])); 

 //CityIntersections::getInstance()->setBoundingBox(0, 0, 100, 

100); 
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 if (KMLmode){ 

  double bx1, by1, bx2, by2; 

  float  fx1, fy1, fx2, fy2; 

  kml.getBoundBox(bx1, by1, bx2, by2); 

 

  fx1 = static_cast<float>(bx1); fy1 = 

static_cast<float>(by1); 

  fx2 = static_cast<float>(bx2); fy2 = 

static_cast<float>(by2); 

  //CityIntersections::getInstance()-

>setBoundingBox(fx1, fy1, fx2, fy2); 

  CityIntersections::getInstance()->setBoundingBox(0, 

0, 1200, 1200); //ONLY for testing, fix 

 } 

 else 

  CityIntersections::getInstance()->setBoundingBox(0, 

0, 2499.99, 2499.99); 

 

 // read in the pause time distribution 

 pauseMean  = atof(argv[3]); 

    pauseDelta = atof(argv[4]); 

 

 if(pauseMean<0) 

     { 

        fprintf(stderr,"Error: pause mean must be greater 

than or equal to 0\n"); 

        exit(1); 

     } 

     if((pauseDelta>pauseMean)||(pauseDelta<0)) 

     { 

        fprintf(stderr,"Error: pause delta must be greater 

than or equal to 0 and less than or equal to pause mean\n"); 

        exit(1); 

     } 

 

 if (KMLmode){ 

  /* Read in the roads for the map, from KML file */ 

  double startX, startY, endX, endY; 

  float fromX, fromY, toX, toY; 

  int temp; 

  FILE *tempFptr = fopen("temp","w"); 

  if (tempFptr == NULL){ 

   printf("Could not create temporary file, 

exiting...\n"); 

   exit(0); 

  } 

 

  int count = 0; 

  while (kml.getRoadSeg(startX, startY, endX, endY) != 

-1){ 

   /* 

    * It is not an optimal solution to write 

to a temp file, but under the time  

    * constraints it was the only way we 

could eliminate the rounding errors int time.  

    * See C-diss for more information 

    */ 

   fprintf(tempFptr,"96062880 5.0 %f %f %f 

%f\n", startX, startY, endX, endY); 

   count++; 

  } 
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  fclose(tempFptr); 

  tempFptr = fopen("temp", "r"); 

  if (tempFptr == NULL){ 

   printf("could not open temp file for 

reading, exiting\n"); 

   exit(0); 

  } 

  while(count > 0){ 

   CityRoads::getInstance()-

>addRoad(tempFptr); 

   count--; 

  } 

   

 } 

 else{ 

  /* Read in the roads for the map */ 

  int cnt = atoi(argv[2]); 

  while(cnt > 0) { 

   CityRoads::getInstance()->addRoad(fptr); 

   cnt--; 

  } 

  fclose(fptr); 

 } 

 

 /* RNG class imported from ns-2.27 distribution in 'stand_alone' 

mode i.e. 

  * use -Dstand_alone when compiling 

  */ 

 rng = new RNG; 

 rng->set_seed(RNG::HEURISTIC_SEED_SOURCE);  

 

 // Get the simulation time 

 maxSimulationTime = atof(argv[6]); // change for bounding box 

default 

 

 // Open the output file 

 scenFptr = fopen(argv[7],"w"); // change for bounding box 

default 

#if STATISTICS 

 //Open some speed/position stat file 

 speedPtr = fopen("nodeSpeed.dat","w"); 

 posPtr = fopen("nodePosition.dat","w");  

#endif 

#if TESTING2 

 fprintf(stdout,"\n\nRoads...\n\n"); 

 CityRoads::getInstance()->dump(stdout); 

 fflush(stdout); 

   

 //fprintf(stdout,"\n\nIntersections...\n\n"); 

 CityIntersections::getInstance()->dump(stdout); 

 fprintf(stdout,"\n"); 

 fflush(stdout); 

#endif 

} 

 

/* Generate random src destination pairs for vehicles. Basically a vehicle 

 * starts at a src and goes towards the destination. Dijkstra's BFS is used 

to 

 * find out the route from the src to the dest and then the scenario for a 

 * vehicle is generated. 
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 */ 

 

void generateScenario(int vehicles) 

{ 

 

#if PRINT_NS2_SCENARIO 

 fprintf(scenFptr,"#\n"); 

 fprintf(scenFptr,"# Number of nodes: %d\n", vehicles); 

 fprintf(scenFptr,"# Pause Time, Mean & Delta: %f %f\n", 

pauseMean, pauseDelta); 

 fprintf(scenFptr,"# Number of roads: %d\n", 

CityRoads::getInstance()->roadCount()); 

 fprintf(scenFptr,"# Number of intersections: %d\n", 

CityIntersections::getInstance()->intersectionCount()); 

 fprintf(scenFptr,"#\n"); 

 fflush(scenFptr);  

#endif 

 CityIntersections* instance = CityIntersections::getInstance(); 

 

// Find the steady state 

 //float avgSpeed = CityRoads::getInstance()->averageSpeed(); 

 //double q0 = steadyStatePauseProbability(avgSpeed); 

 // For roads with varying speed 

#if STEADY_STATE 

 // IMP: The following calc takes time, and is fixed for a 

specific 

 // graph and road speeds.....Hence reuse. 

  

 float avgMobile = instance->averageTimeMobile(); 

 // For 1200x1200 westUniv. speed 0.01-9.99. avg-5 

 //float avgMobile = 161.3248205; 

  

 double q0 = pauseMean / (pauseMean + avgMobile); 

 printf("AverageTimeMobile %f\n",avgMobile); 

 printf("SteadyStateProb %f\n",q0); 

 fflush(stdout);  

  

 float maxGraphDistance, distBwPoints; 

 // calculate the MAX delta 

 // IMP: again, following takes long time and is fixed for  

graph. 

 // Hence: reuse 

  

 maxGraphDistance = instance->maximumDistanceInGraph(); 

 //exit(1); 

 // for 1200x1200 westUniv 

 //maxGraphDistance = 2192.9275; 

 

 printf("Maximum Distance in Graph: %f\n",maxGraphDistance); 

#endif 

 

 bool mobile; 

 float pauseTime, unirand; 

 int src, dst; 

    

  

 for(int i=0;i<vehicles;i++) 

 { 

#if STEADY_STATE 

  // Steady state initialize here:  
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  // Pause or move, // src & dst, // position // speed 

or residual pause time 

  // Create a new vehicle. src and dest will be later 

steady stated 

  while(1){ 

   if(rng->uniform() < q0){ 

    mobile = false; 

    break; 

   } 

   else{ 

    src = rng->uniform(instance-

>intersectionCount()) ; 

    dst = rng->uniform(instance-

>intersectionCount()) ; 

    /* We dont want src and dst to 

be the same !!! */ 

    while(dst == src) 

      dst = rng->uniform(instance-

>intersectionCount()) ; 

    unirand = rng-

>uniform((double)maxGraphDistance); 

 

    // find dist between src and dst 

    distBwPoints = instance-

>distanceBetweenIntersections(src,dst); 

    if(unirand < distBwPoints){ 

     mobile = true; 

     break; 

    } 

   } 

  } 

// TODO: testing. start all nodes mobile   

  if(!mobile){ // node starts paused 

   pauseTime = residualTime(pauseMean, 

pauseDelta); 

   src = rng->uniform(instance-

>intersectionCount()) ; 

   CityVehicles::getInstance()-

>addVehicle(src,pauseTime, 0.0); 

  } 

  else{ // node starts mobile 

   // STEADY STATE SPEED WITHIN addVehicle 

   CityVehicles::getInstance()-

>addVehicle(src,dst, 0.0); 

  } 

   

#else   // FOR NON STEADY STATE CASE 

  // NODE STARTS MOBILE 

  /* Generate a pair of random numbers and take the 

modulo of the number 

   * of intersections.  */ 

   

  src = rng->uniform(instance->intersectionCount()) ; 

  dst = rng->uniform(instance->intersectionCount()) ; 

  // We dont want src and dst to be the same !!!  

  while(dst == src) 

   dst = rng->uniform(instance-

>intersectionCount()) ; 

  // Create a new vehicle with this random src and 

dest. 
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  CityVehicles::getInstance()->addVehicle(src,dst, 

0.0); 

 

/*  // NODE STARTS STATIC 

  src = rng->uniform(instance->intersectionCount()) ; 

  float pt = 0.1; 

  // make it paused for a fraction time before 

moving.... 

  CityVehicles::getInstance()->addVehicle(src,pt, 0.0); 

*/   

#endif 

 } 

 

// 

*************************************************************************** 

// FROM NOW, STEADY AND NON STEADY STATE ARE EXACTLY EQUAL ............... 

// 

*************************************************************************** 

// Now that we have all the vehicles we will start moving these vehicles. 

// Our time will proceed at timesteps of DEFAULT_TIME_STEP 

 bool reachedDestination;  

 Vehicle* currentV; 

 

 int intTime = 0; 

 

 for(float time = 0.0; time < maxSimulationTime; time += 

DEFAULT_TIME_STEP) 

 { 

 printf(" ********* Current time = %f *******************\n", 

time); 

  //fprintf(speedPtr,"TIME = %d\n",intTime); 

  //fprintf(posPtr,"TIME = %d\n",intTime); 

 

  for(int i = 0;i<CityVehicles::getInstance()-

>vehicleCount();i++) 

  { 

   currentV = CityVehicles::getInstance()-

>getVehicle(i); 

  // PRINT STATS about SPEED and COORDINATE EVERY 10 

seconds 

   intTime = (int) time; 

#if PRINT_STATISTICS 

   //printf("intTime=%d 

intTime%10=%d\n",intTime,intTime%10); 

   //if(intTime%10 == 0) { 

    fprintf(speedPtr,"#%d %d 

%f\n",intTime, i, currentV->speed()); 

   // fflush(speedPtr); 

   //} 

   //if(intTime%10 == 0) { 

    fprintf(posPtr,"#%d %d %f 

%f\n",intTime, i, currentV->x(),currentV->y()); 

   // fflush(posPtr); 

   //} 

#endif 

   if(!currentV->mobile()){// node is paused 

    currentV->pauseTime() -= 

DEFAULT_TIME_STEP; 

#if TESTING 

   

 fprintf(stderr,"pause=%f",currentV->pauseTime()); 
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#endif 

    if(currentV->pauseTime() < 0){ 

    

 //printf("pause=%f",currentV->pauseTime()); 

     currentV->pauseTime() 

= 0.0; 

     currentV->mobile() = 

true; 

     currentV-

>reset(time+DEFAULT_TIME_STEP, true); 

    } 

   } 

   else {// node is mobile 

    reachedDestination = currentV-

>update(time, DEFAULT_TIME_STEP); 

     if(reachedDestination) 

     { 

    // Choose another random 

destination with the current 

    // destination as source and 

then start moving towards it.  

    float pauseTime = pauseMean + 

rng->uniform(-pauseDelta, pauseDelta); 

    currentV->reset(pauseTime, 

false); 

     } 

   } 

  } 

#if PRINT_STATISTICS 

  fprintf(posPtr,"\n"); 

  fprintf(speedPtr,"\n"); 

#endif   

 

#if TESTING2 

  // Calculate all the metrics for this mobility 

scenario at this time instant.  

  CityVehicles::getInstance()->dump(stderr); 

#endif 

#if PRINT_STATISTICS 

  Statistics::getInstance()->calculateStatistics(time); 

#endif 

 } 

//#if PRINT_STATISTICS 

// Statistics::getInstance()->printGrid(); 

//#endif 

 return; 

} 

 

// The steady state pause probability: 

// check calculation for roads with variable speed 

double steadyStatePauseProbability(float avgSpeed) 

{ 

        double alpha1, q, delta1; 

 float pauseHigh = pauseMean + pauseDelta;  

 float pauseLow = pauseMean - pauseDelta;  

 float speedHigh = avgSpeed + 

CONVERSION_FACTOR*SPEED_LIMIT_LEEWAY;        

 float speedLow = avgSpeed - 

CONVERSION_FACTOR*SPEED_LIMIT_LEEWAY;        
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 alpha1 = ((pauseHigh+pauseLow)*(speedHigh-

speedLow))/(2*log(speedHigh/speedLow)); 

 // find the bound on max distance 

  

        //delta1 = sqrt((maxX*maxX) +(maxY*maxY)); 

        q = alpha1/(alpha1+delta1); 

        return q; 

} 

 

// The residual time left for uniform distribution 

double residualTime(double mean, double delta) 

{ 

        double residual; 

        double t1 = mean - delta; 

        double t2 = mean + delta; 

        double u = rng->uniform(); 

        if(delta!=0.0) 

        { 

                if(u < (2*t1/(t1+t2)) ) 

                { 

                  residual=u*(t1+t2)/2; 

                //fprintf(stdout, "# Case 1 u: %f ", u); 

                } 

                else 

                { 

                 residual=t2-sqrt((1-u)*(t2*t2 - t1*t1)); 

                 //fprintf(stdout, "# Case 2 u: %f ", u); 

                } 

        } 

        else 

           residual=u*mean; 

#if TESTING   

        printf("# Initial residual Time: %f\n",residual); 

#endif   

        return residual; 

} 

 

A.1.2 Road.h 

#ifndef _ROAD_H_ 

#define _ROAD_H_ 

 

#include "common.h" 

 

 

/* Forward declaration of class Intersection 

 */ 

class Intersection; 

 

/* This class denotes a Road between two nodes  

 */ 

class Road 

{ 

 

 /* The unique identifier for this road */ 

 int id_; 

  

 /* The speed limit on this road in m/s (compatible with ns2) 

  * We have to be politically correct you know. 

  */ 
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 float speedLimit_; 

 

 /* The length of the road  

  */ 

 float length_; 

 

 /* Average density of nodes on this road 

  */ 

 float density_; 

 

 /* Width of the road in lanes */ 

 int lanes_; 

 

 /* Type of road */ 

 char type_[5]; 

 

 // STEADY STATE Nominal Distance 

 float nd_; 

 

 /* This road is a road from node 'from' to node 'to'. 

  * This means that roads are directional and hence for a two way  

  * road the road has to be  

  */ 

 Intersection *from_, *to_;  

 

 /* variables for describing the line of the road (y = mx+c form) 

  */ 

 float m; 

 float c; 

 

public: 

 

 Road(int id); 

 

 /* Accessor functions */ 

 int id(); 

 float speedLimit(); 

 float density(); 

 int lanes(); 

 float nd(); 

 float length(); 

 Intersection* from(); 

 Intersection* to(); 

#if 0 

 // int vehicleCount(); 

 

 // Return vehicles[index] 

 // int getVehicle(int index); 

 

 // Add a vehicle to this road 

 // void addVehicle(int index); 

#endif 

 

#if 0 

 /* Read line */ 

 bool readLine(FILE *fptr); 

#else 

 bool fillRoad(const char *type, float fromX, float fromY, float 

toX, float toY); 

 bool fillRoad(float limit, float fromX, float fromY, float toX, 

float toY); 
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#endif 

 

 /* Generate a random position on the road */ 

 void getRandomPosition(float& x, float& y, float& z); 

 

 // Add lane jitter 

 void addLaneJitter(float& x, float& y); 

 

 

 // returns the time simulated. Normal case will return time == 

remainingTime 

 // however, if the end of the road is reached the a time < 

remainingTime is 

 // returned. x and y are starting positions and after moving 

towards the 

 // 'to' end of the road with 'speed' speed and for 

'remainingTime' time the 

 // x,y coordinates are returned through the reference variables 

x and y.  

 float updatePosition(float& x, float& y, float remainingTime, 

float speed); 

 

 /* Print this road */ 

 void dump(FILE *fptr); 

 

}; 

 

class CityRoads 

{ 

 public: 

  static CityRoads* getInstance() 

  { 

   if(instance_ == 0) 

   { 

    instance_ = new CityRoads(); 

   } 

   return instance_ ; 

  } 

 

  /* Add a road by reading it from the input file 

denoted by 'fptr' 

   */ 

  void addRoad(FILE *fptr); 

 

  /* return roads[index] */ 

  Road* getRoad(int index); 

 

  /* return the road between intersections given by 

indices 'from' and 

   * 'to' 

   */ 

  Road* getRoad(int from, int to); 

 

  /* Return total number of roads */ 

  int roadCount(); 

 

  /* Get the speed limit from the type of road */ 

  float getSpeedLimit(char *type); 

   

  /* Dump road stats */ 

  void dump(FILE *fptr); 
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  // STEADY STATE: get the average speed of city roads 

  float averageSpeed(void); 

   

 private: 

  /* Singleton class */ 

  CityRoads(); 

  static CityRoads* instance_; 

 

  /* List of roads */ 

  Road* roads[MAX_TOTAL_ROADS]; 

   

  /* Total road count */ 

  int roadCount_; 

 

  /* How many types of roads are present */ 

  int typeCount_; 

 

}; 

 

 

#endif 

 

 

A.1.3 Intersection.h 

#ifndef _INTERSECTION_H_ 

#define _INTERSECTION_H_ 

 

#include <stdio.h> 

#include "common.h" 

 

/* Forward declaration of class Road 

 */ 

class Road; 

 

/* This class denotes a Node. In other words it denotes all those places 

such as 

 * intersections, parking lots, etc. where a road might end 

 */ 

class Intersection 

{ 

 /* Unique identifier of this intersection 

  */ 

 int id_; 

  

 /* The X Y and Z coordinates of the intersection 

  */ 

 float x_; 

 float y_; 

 float z_; 

 

 /* Number of outgoing roads 

  */ 

 int outgoingRoadCount_; 

 

 /* Number of incoming roads 

  */ 

 int incomingRoadCount_; 
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 /* When a vehicle reaches at this node, it has to wait for these 

many 

  * minutes. For example if this node is simulating a parking lot 

then the 

  * waiting time is very large (say around an hour) 

  * whereas if this is an intersection then the waiting time is 

on the order 

  * of minutes.  

  */ 

 float waitTime_;  

 

 /* In order to help with Dijkstra's algo we keep the neighbor 

list. i.e. 

  * other intersections that this intersection is directly 

connected to 

  */ 

 int neighbors[MAX_NEIGHBORS]; 

 int neighborCount_; 

 

public: 

 

 Intersection(float x, float y, float z); 

 

 /* List of incoming roads 

  */ 

 Road* incomingRoads[MAX_ROADS_AT_INTERSECTION]; 

 

 /* List of outgoing roads 

  */ 

 Road* outgoingRoads[MAX_ROADS_AT_INTERSECTION]; 

 

 /* Accessor functions */ 

 int id(); 

 float x(); 

 float y(); 

 float z(); 

 int outgoingRoadCount(); 

 int incomingRoadCount(); 

 float waitTime(); 

 int neighborCount(); 

 

 

 /* Helper functions */ 

 void addToOutgoingRoads(Road *r); 

 void addToIncomingRoads(Road *r); 

 

 /* Get the i'th neighbor */ 

 int getNeighbor(int index); 

 

}; 

 

class CityIntersections 

{ 

 public: 

  static CityIntersections* getInstance() 

  { 

   if(instance_ == 0) 

   { 

    instance_ = new 

CityIntersections(); 

   } 
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   return instance_ ; 

  } 

 

  // return intersection at x,y,z 

  Intersection* getIntersection(float x, float y, float 

z=0.0); 

 

  // return intersections[index] 

  Intersection* getIntersection(int index); 

 

  // If no intersection present at x,y,z then add one, 

else return pointer 

  // to existing intersection.  

  Intersection* addIntersection(float x, float y, float 

z=0.0); 

 

  // Accessor for intersectionCount_ 

  int intersectionCount(); 

 

  // Dump all roads 

  void dump(FILE *fptr); 

 

  // Compute dijkstra's shotest path between 'src' and 

'dst' and fill the 

  // indexes of the roads to take in 'directions'. 

Check that the number 

  // of roads does not cross 'maxRoads'. Return the 

actual number of 

  // roads.   

  int BFSDijkstra(int src, int dst, int *directions, 

int maxRoads); 

 

  // Set bounding box coordinates 

  void setBoundingBox(float x1, float y1, float x2, 

float y2); 

 

  // Check if coordinates within bounding box or not 

  bool withinBoundingBox(float x1, float y1, float x2, 

float y2); 

 

  // check if coordinate is withing bounding box. 

  bool withinBoundingBox(float x, float y); 

 

  // Check if coordinate is within limits 

  bool withinXLimits(float x); 

  bool withinYLimits(float y); 

 

  // get span of X and Y of bounding box 

  void getXYSpan(float& x, float& y); 

 

  // STEADY STATE 

  float distanceBetweenIntersections(int src, int dst); 

  float maximumDistanceInGraph(void); 

  float timeBetweenIntersections(int src, int dst); 

  float averageTimeMobile(void); 

   

 private: 

  /* Singleton class */ 

  CityIntersections(); 

  static CityIntersections* instance_; 
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  /* List of intersections */ 

  Intersection* intersections[MAX_TOTAL_INTERSECTIONS]; 

   

  /* Total interesection count */ 

  int intersectionCount_; 

 

  /* Extract min function for dijkstra's algorithm */ 

  int extractMin(int *Q, int &qCount, float *distance); 

 

  /* The function for the updation of distance[] and 

previous[]  

   * for dijkstra's algo 

   * This function is equivalent to the "RELAX()" 

function in Cormen. 

   */ 

  void updateDistanceMatrix(int u, float *distance, int 

*previous); 

 

  /* list out the shortest path from src to dst and 

return the length of 

   * the path */ 

  int fillUpShortestPath(int *previous, int src, int 

dst,  

      

    int *directions, int maxRoads); 

 

  /* Get the weight of the edge between two 

intersections. Looseley 

   * dependant on the speedlimit of the road connecting 

the two 

   * intersections 

   */ 

  float weight(int from, int src); 

 

  /* Bounding box coordinates */ 

  float bbX1; 

  float bbY1; 

  float bbX2; 

  float bbY2; 

 

}; 

 

 

#endif 

 

A.1.4 KmlReader.h 

#ifndef _KMLREADER_ 

#define _KMLREADER_ 

 

#include <string> 

#include <fstream> 

#include <vector> 

#include <cstdlib> 

#include <iostream> 

 

using namespace std; 

 

class kmlReader 
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{ 

public: 

 kmlReader(); 

 

 /* opens a KML-file and reads its contents 

  returns 0 on success, -1 on failure 

 */ 

 int openKML(char* filename); 

 

 /* makes every road offset from the smallest value 

  multiplies values so that largest is in the range 

  999 < x < 9999 

  also setts bounding box variables 

  returns -1 on error   

 */ 

 int normalize(); 

 

 /* get road segment (fromX, fromY, toX, toY) 

  returns -1 when there are no more roads to be read

 */ 

 int getRoadSeg(double &startX, double &startY, double &endX, 

double &endY); 

 

 /* resets the index counter used by getRoadSeg 

 */ 

 void resetIndex(); 

 

 /*  get bounding box values   

 */ 

 void getBoundBox(double &bx1, double &by1, double &bx2, double 

&by2); 

 

 /* returns the size of the start/end vectors (only one 

  value needed since start.size() == end.size())

 */ 

 unsigned int getRVectorSize(); 

  

private: 

 /* takes line (string) from the KML and splits it into  

  elements and data. Appends result to pased vector 

 */ 

 void getElements(string line); 

 

 /* extracts roads from the elements vector and puts 

  them in vectors start and end. returns -1 on error

 */ 

 int extractRoads(); 

 

 /* stores elements and data from KML file  

  */ 

 vector<string> elements; 

 

 /* stores start and end points of road-segments

 */ 

 vector<double> start; 

 vector<double> end; 

 

 /* the boundning box   

 */ 

 double bndSX, bndSY, bndEX, bndEY; 
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 /* index used by getRoadSeg  

 */ 

 unsigned int index; 

}; 

 

#endif 

 

A.1.5 KmlReader.cpp 

#include "kmlReader.h" 

 

kmlReader::kmlReader() 

{ 

 index = 0; 

} 

 

int kmlReader::openKML(char* filename) 

{ 

 string str; 

 char line[100]; 

 

 fstream kml(filename, fstream::in); 

 if (!kml.is_open()) 

  return -1; 

 

 while(!kml.eof()) 

 { 

  kml.getline(line,100); 

  str.assign(line); 

  getElements(str); 

 } 

 

 kml.close(); 

 

 if(elements.empty()) 

  return -1; 

 

 if(extractRoads() != 0) 

  return -1; 

 

 bndSX = 0, bndSY = 0, bndEX = 0, bndEY = 0; 

 

 return 0; 

} 

 

void kmlReader::getElements(string line) 

{ 

 

 string retStr; 

 size_t start, end, wSpace; 

 bool finished = false; 

 

 while(!finished){ 

  start = line.find('<', 0); 

  end   = line.find('>', 0); 

   

  if (start == string::npos || end == string::npos){ 

//no tag on current line 

   if (line.length() > 0){ 
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    wSpace = 

line.find_first_not_of(" \t\n\r"); 

    if (wSpace != string::npos) 

//found something other than whitespaces 

    

 elements.push_back(line.substr(wSpace)); 

   } 

   finished = true; 

  } 

  else{ 

   if (start > 1){ //any data preceeding next 

tag? 

    wSpace = 

line.find_first_not_of(" \t\n\r", 0); //skip inital whitespaces 

 

    if (wSpace != string::npos && 

wSpace < start) 

    

 elements.push_back(line.substr(wSpace, (start - wSpace))); 

   } 

    

   elements.push_back(line.substr(start + 1, 

(end-start) - 1)); //skip first and last char (< and >) 

   end++; //skip last '>' 

 

   if (line.length() > end) 

    line = line.substr(end, 

line.length() - end); 

   else 

    finished = true; 

  } 

 } 

} 

 

int kmlReader::extractRoads() 

{ 

 size_t pos1, pos2; 

 string tmpStr; 

 

 

 for (unsigned int i = 0; i < elements.size(); i++) 

  if (elements[i] == "coordinates"){ 

   i++; //step to first coordinate 

   while(elements[i] != "/coordinates"){ 

    pos1 = 

elements[i].find_first_of(","); 

    if (pos1 != string::npos){ 

    

 start.push_back(atof(elements[i].substr(0,pos1).c_str()));  

     pos2 = 

elements[i].find_first_of(",", pos1 + 1); 

     if (pos2 != 

string::npos){ 

      tmpStr = 

elements[i].substr(pos1 + 1, (pos2-pos1-1)); 

      tmpStr = 

tmpStr.substr(tmpStr.find_first_of("+") + 1); 

     

 end.push_back(atof(tmpStr.c_str())); 

     } 

     else 
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      return -1; 

    } 

    else 

     return -1; 

    i++; 

   } 

   start.push_back(-1); end.push_back(-1);

 //padd with -1 to signal end of segment 

  } 

 

 return 0; 

} 

 

int kmlReader::normalize() 

{ 

 for (unsigned int k = 0; k < start.size(); k++){ 

  if (end[k] != -1)   end[k] += 180; 

  if (start[k] != -1) start[k] += 180; 

 } 

 

 double smallestS = start[0], smallestE = end[0], largestS = 0, 

largestE = 0; 

 double temp; 

 int mult = 1; 

 

 if(start.size() != end.size()) //if this fails something is 

wrong with the code =) 

  return -1; 

 

 //determine largest and smallest values 

 for(unsigned int i = 1; i < start.size(); i++){ 

  if (start[i] != -1 && end[i] != -1){ 

   if (start[i] > largestS)  largestS

 = start[i]; 

   if (start[i] < smallestS) smallestS = 

start[i]; 

   if (end[i]   > largestE)  largestE

 = end[i]; 

   if (end[i]   < smallestE) smallestE = 

end[i]; 

  } 

 } 

 

 if ((largestS - smallestS) > (largestE - smallestE)) 

  temp = largestS - smallestS; 

 else 

  temp = largestE - smallestE; 

 

 while (temp < 250){ 

  mult = mult * 10; 

  temp  = temp * 10; 

 } 

  

 //adjust values of the arrays 

 for(unsigned int j = 0; j < start.size(); j++){ 

  if (start[j] != -1 && end[j] != -1){ 

   start[j] = (start[j] - smallestS) * mult + 

1; // +1 so that smallest value is not 0 

   end[j]  = (end[j]   - smallestE) * mult 

+ 1; //    -||- 

  } 
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 } 

 

 //now we can set the values of the boundning box 

 bndEX = (largestS - smallestS) * mult + 1, bndEY = (largestE - 

smallestE) * mult + 1; 

 

 return 0; 

} 

 

int kmlReader::getRoadSeg(double &startX, double &startY, double &endX, 

double &endY) 

{ 

 bool finished = false; 

 while (!finished){ 

  if (index + 1 >= start.size() || index + 1 >= 

end.size()) //"eof" 

   return -1; 

  if (start[index] != -1 && start[index+1] != -1 && 

end[index] != -1 && end[index+1] != -1){ 

   startX = start[index]; endX = 

start[index+1]; 

   startY = end[index]  ; endY = 

end[index+1]; 

   index++;  

   finished = true; 

  } 

  else 

   index++; //if padding (-1) was found, 

step forward 

 } 

  

 return 0; 

} 

 

void kmlReader::resetIndex() 

{ 

 index = 0; 

} 

    

 

void kmlReader::getBoundBox(double &bx1, double &by1, double &bx2, double 

&by2) 

{ 

 bx1 = bndSX, by1 = bndSY, bx2 = bndEX, by2 = bndEY; 

} 

 

unsigned int kmlReader::getRVectorSize() 

{ 

 return start.size(); 

} 

 


