
Karlstads universitet 651 88 Karlstad
Tfn 054-700 10 00 Fax 054-700 14 60

Information@kau.se www.kau.se

Faculty of Economic Sciences, Communication and IT

Mats Persson, Rickard Karlsson

TOM++

Estimating One-Way Delay in Wireless 
Mesh Networks

Computer Science
C-level thesis

Date/Term: 10-01-22

Supervisor: Andreas Kassler

Examiner: Martin Blom

Serial Number: C2010-02



Computer Science

Mats Persson, Rickard Karlsson

TOM++ - Estimating One-Way Delay in

Wireless Mesh Networks

Bachelor’s Project

C2010:02





TOM++ - Estimating One-Way Delay in

Wireless Mesh Networks

Mats Persson, Rickard Karlsson

c© 2010 The author(s) and Karlstad University





This report is submitted in partial fulfillment of the requirements

for the Bachelor’s degree in Computer Science. All material in

this report which is not our own work has been identified and

no material is included for which a degree has previously been

conferred.

Mats Persson

Rickard Karlsson

Approved, 2010-01-22

Advisor: Andreas Kassler

Examiner: Martin Blom

iii





Abstract

Wireless mesh networks is a relatively new concept that is being developed for, amongst

other things, providing Internet access to rural areas. They are cheaper because no physical

connections between the routers are needed and thus also easier to deploy. However,

wireless links are slower and more unstable than wired network links, which is especially

notable when streaming media such as Voice Over IP or movies. This can be improved

with routing protocols should be able to find a path which minimizes packet delay and

schedulers that can prioritize packets that have been in the wireless mesh network too

long. For such a routing protocol to work, the delay a packet experiences in the network

has to be monitored.

To solve this problem this thesis presents TOM++, an improved implementation of

the Tool for One-way delay Measurement (TOM). The improvements take queuing time

and channel switching into consideration when performing one-way delay measurements

in a multi-radio, multi-channel wireless mesh network based on Net-X. This has been

accomplished by approximation of the sending time of packets in the transmission queue at

each intermediate node. TOM++ has been tested and evaluated on the KAUMesh testbed,

and this resulted in an increase of approximately 5% in the one-way delay measurement

accuracy. A prototype of a Kalman filter has been implemented to see if it can be used

to predict the approximation error of the sending time. No results for the Kalman filter

prototype is presented in this thesis, but suggestions on further development are.
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1 Introduction

TOM, Tool for One-way delay measurement, was made to monitor packet delays. It esti-

mates the one-way delay, which is defined as the time it takes for a packet to travel through

a wireless mesh network from when it enters the mesh backhaul until it is leaving at the

mesh gateway or, in the case of intra-mesh traffic, the last mesh router. This is shown in

figure 2.1 in section 2.1.

This thesis describes how to improve the estimation that TOM performs. TOM mea-

sures the time from when a packet arrives at a router until the packet is put into the

transmission queue in the hardware, and then adds an estimation to that time to get the

delay for the packet. The estimation is done by averaging the time it takes from when

a packet enters the hardware transmission queue until an acknowledgment is received.

The main improvement compared to TOM is made by approximating the sending time of

packets in the transmission queue of the wireless mesh routers which leads to less time

to estimate, and also taking channel switches into account. A prototype of a Kalman

filter will also be implemented to test if it can improve the sending delay estimation of

each packet. The implementation will be evaluated on the KAUMesh, Karlstad University

Mesh, testbed.

The thesis has the following structure:

Section 2 states the background information necessary for understanding the detailed

sections.

Section 3 gives an overview and detailed description of the architecture from an abstract

point of view.

Section 4 is a detailed description of what happens to a packet as it makes its way through

a mesh router.

Section 5 contains a description of the tests that where performed.

1



Section 6 sums the key points of this thesis, the result and suggests possible future im-

provements.
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2 Background

This section gives an overview of wireless mesh networks, a wireless mesh network testbed

set up at Karlstad university, different approaches of delay monitoring and a description

of the Kalman filter algorithm.

2.1 Wireless Mesh Networks

Internet

Base Station

Access Point

Wired Client
Wireless Client

Cellular Network
Wifi Network

Wireless Mesh Backhaul

Mesh Client 
with Gateway

Mesh Client 
with Gateway

Mesh Client 
with Gateway

Mesh Client 
with Gateway

Mesh Client 
with Gateway

Mesh Client

Mesh Client

Estimated by TOM++

Total end-to-end Delay

Mesh Client 
with Gateway

Figure 2.1: One-way delay overview
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A wireless mesh network[22], figure 2.1, is a network that is structured like a mesh

with radio links as data bearers. The mesh is constructed of mesh routers which connect

wirelessly with each other. For Internet connection every mesh network needs to have

dedicated mesh routers with gateway functionality relay packets between the networks.

The mesh routers are the backhaul of a wireless mesh network, the same as a backbone

is for a wired network. The radio links can be implemented with any kind of wireless

technology or a mix of several technologies, for example 802.11, 802.16 or W-CDMA.

Communication between nodes in a wireless mesh network is broken down into a series

of hops. This allows data to be sent over a large distance. Intermediate nodes route the

data dynamically through the mesh, making the network more stable since packets can

be routed around nodes that are disabled or have a high load. Traffic in wireless mesh

networks is often forwarded to and from a wired network through a gateway.

There are three generations[18] of wireless mesh networks; Single-Radio, Dual-Radio

and Multi-Radio Mesh.

Mesh Router Mesh Router Mesh Router

Mesh Client Mesh Client Mesh Client

2,4 Ghz

Figure 2.2: 1-Radio

Single-Radio Mesh (figure 2.2) uses only one radio channel for both clients and backhaul,

therefore providing merely low performance.

In a Dual-Radio Mesh (figure 2.3) the mesh routers are equipped with two radios; one
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Mesh Router Mesh Router Mesh Router

Mesh Client Mesh Client Mesh Client

2,4 Ghz

5,2 Ghz

Figure 2.3: Dual-Radio

for clients and one for the backhaul. The radios can operate at different frequencies so

that sending and receiving can be done in parallel. Although the performance is improved

from Single-Radio Mesh the backhaul is still operating at the same frequency on all mesh

routers.

Mesh Router
Mesh Router

Mesh Router

Mesh Client Mesh Client Mesh Client

5,2 Ghz
5,4 Ghz

2,4 Ghz

Figure 2.4: Multi-Radio

Multi-Radio Mesh (figure 2.4) uses different channels for the links in the backhual that

does not interfere with adjacent links and one channel for servicing clients on a different

5



interface. This increases the performance significantly since each link can be used in

parallel.

2.2 Multi-radio, Multi-channel Wireless Mesh Networks

The connection to the mesh backhaul is through mesh nodes that transmit packets wire-

lessly between each other towards the gateway nodes, which connects the mesh network

to the Internet. The number of interfaces that are used to access the backhaul to create a

mesh network limits the number of data connections that can happen at the same time. By

increasing the number of interfaces, you can also increase the upper limit of the capacity

in the network. More channels will be needed to be able to have more interfaces sending

at the same time. Depending on the country there can be up to 14 channels available in

802.11b/g and up to 13 channels in 802.11a[10].

One of these interfaces is called the Fixed Interface, as it is allocated at a fixed channel

over rather long periods of time compared to the switchable interface. The fixed chan-

nel is also selected by a fixed channel selection protocol and can automatically adapt in

accordance with for example the interface situation and the traffic load.

The other interface on each node is called the Switchable Interface. It can switch

dynamically between any of the remaining channels according to traffic demand, and the

maximum and minimum channel switch interval can be configured with command line

parameters.

All the data that is sent to the node must go through the fixed channel of the receiving

node since that is the only channel the node always listens on. A node can send data

through the fixed interface if the receiver shares the same fixed channel; or else the switch-

able interface of the sender will change to the receivers fixed channel, allowing the data to

be sent through the switchable interface instead. Because of this, the mechanisms do not

require coordination channels.

Each node periodically sends out a ”Hello”-message on all channels. The message

6



carries the fixed channel of all 1-hop nodes. Through this a node can learn the fixed

channels of all 2-hop nodes and then use the information to balance the assignment of the

fixed interface. For monitoring purposes each node has a wired Ethernet connection to

an administration network, making it possible to send monitoring data to the monitoring

server in the wired network. It also enables the transmission of configuration information

and the download of new kernel versions to the mesh nodes.

Net-X1[11] is a structure that has been developed by the Wireless Networking group

at UIUC, University of Illinois at Urbana-Champaign. The purpose of this structure is

to allow for instance more channels, more interfaces and higher transfer speed / power

levels in a wireless network. In the next generation of networks there will probably be

even more interfaces with different abilities available; such as setting the channel to work

on, setting different data rates on different frequencies and equipping the nodes with more

radio interfaces and antennas.

By carefully designing the protocols and by using these interface potentials the network

performance can increase a lot. However, since most operating systems today do not sup-

port the implementation of protocols necessary to these abilities, changes in the operating

systems will be needed to make.

The goal for the Net-X group is to develop a common interface, that is equal to the

interface of the operating system, so that Net-X can be integrated in the network stack.

As a first step in this direction, an architecture that supports the use of several channels,

interfaces and interface switching has been developed in Linux. The current structure can

easily be extended with other abilities, and these extensions are also a part of the future

for the Net-X group. A wireless test environment that uses the Net-X structure has been

developed and so far a set of multichannel protocols, developed earlier by the group, has

been implemented.

1A Wireless Networking Framework providing System eXtensions forSupporting Multiple Channels,
Multiple Interfaces, and Other InterfaceCapabilities
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2.3 Delay Monitoring

There are several things of interest to monitor in a wireless network; amongst others the

one-way delay of a packet, which is the focus of this thesis. Approaches for monitoring

the delay of a packet in a wireless path can be divided into two different types, passive

and active monitoring. The goal in this project is to estimate the time it takes for a

packet to travel through a network as shown in figure 2.1. This will be done with passive

monitoring but examples of active monitoring will be presented to get an understanding

of the difference between them.

2.3.1 Active Monitoring

Active monitoring approaches generate probing traffic. This results in an overhead and

lowers the capacity of the network. However, this active monitor is flexible as it gives control

over the generating of packets. There are two different ideas of active monitoring that can

be used which are widely spread: the Round Trip Time(RTT) and Packet Pairing(PP).

The PP[14] idea is to send two packets adjacent to each other and should be queued

after each other as well. The time when the first packet has been received is then compared

to the time when the second packet starts to be received. This is called the dispersion or

transmission time. If it is possible to add a timestamp just before the transmission is

made, it will result in a very accurate estimation of the transmission time. The downside

of this idea is that the clocks at the nodes have to be synchronized, since hardware clocks

in general are not coordinated and not even equally fast, synchronization is difficult.

There have been two different approaches on PP. One made by Kapoor et al.[7] that

only worked well in simulations and showed that it only functioned well in lightly loaded

networks. Sun et al.[8] did another approach with ad hoc probes that were based on the

previous mentioned method and the results they got from this were accurate in wireless

networks.

In the RTT idea, no synchronized clocks are necessary, it only needs to record the

8



time until a packet returns. In a wireless environment the downside of this idea is that it

assumes that the receiver can answer very fast and that the links are symmetric. It would

not give an exact time of the one-way delay in a multi-radio multi-channel wireless mesh

network with asymmetric links that also have interfering traffic. Another disadvantage

of this idea is that additional traffic needs to be generated to update the measurements.

Information gathered this way will only be available at the node that triggered it. Further,

the probing packets are very small, and the consequence is that the measurements may

underestimate larger packets.

There have been experiments on both of these approaches and also on a combination of

the two, but none of them gave good results. The probing packet experiments were made

by Draves et al.[6]. He compared the ideas and PP was suffering from that the probes will

cause additional overhead and are sent at intervals not correlated to the payload traffic.

RTT was suffering from problems with clock drifts, skewness and also failed to give a good

time in asymmetric links.

2.3.2 Passive Monitoring

Passive monitoring[4] uses a device to monitor something in a network, in this case a

change in the network driver that the routers use. This approach collects information and

therefore does not generate any extra traffic. Deep packet inspection could be used to

gather the information needed but this would result in privacy and security risks. In this

case, the only data collected is of how long a packet has been in a network and as a result it

does not check the actual data in the packet. The major drawbacks of passive monitoring

are to get the delay that is calculated in one node to the next node and to estimate the

time it takes for a packet to travel over the medium between two nodes.

Since none of the active monitoring methods gave any good results or suffered from

at least one drawback, an algorithm named Adaptive Per Hop Differentiation(APHD)[13]

scheme, was introduced. The basic idea of APHD is to update the delay a packet has
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experienced so far on a multi-hop path, to estimate the transmission time to the next node

at each intermediate link and to prioritize packets with a high delay. By saving the delay so

far there is a possibility to compare that value to a total delay value and thus temporarily

change the priority of packets in the network. However, this has only been simulated so

no real results have been presented.

To be able to do this, four fields has been added in the Internet Protocol(IP) header

option field. The first two fields, end-to-end delay requirement and end-to-end hops, are

set by the sender and specify the time and the hops for a packet between the sender

and receiver. The last two fields, delay so far and hops so far, will be updated at each

forwarding node. When a packet arrives to the MAC layer at node B a timestamp tin(B)

is recorded, then when the packet is to be transmitted another timestamp tout(B) will be

recorded, as shown in figure 2.5. Then the queuing and processing time at node B will be

calculated exactly as:

tB = tout(B)− tin(B) (2.1)

To avoid any problems with clock synchronization the time the packet will spend on the

link between node B and node C is estimated in node B as well. That time is calculated

as the packet length pL divided by the transmission rate R. This will not include backoffs

and retransmissions.

tBC = pL/R (2.2)

One problem with this calculation, since the backoffs and retransmissions are excluded, is

that this is also not included in the packets in the transmission queue. Therefore the delay

for a packet which is not head of the transmission queue when it arrives will have a smaller

value than expected.

Both of these are assumed to be known when the transmission starts. Just before the

packet is sent the hops so far will be increased and the delay so far (dsf) will be calculated
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and updated as

dsf = dsf + tB + tBC (2.3)

With this information the nodes can set the priority level of the packet in order to send

packets with high delay so far before packets with low delay so far.

2.3.3 TOM

TOM is a passive monitoring tool that is used to measure the one-way delay of packets in

a wireless mesh network.

Two APHD ideas are used to implement TOM. The first one is an estimation of the

one-way delay as the sum of the inter-node queuing and processing delay and the intra-node

transmission delay.

A B C

Inter Node Delay Intra Node Delay Inter Node Delay
t
AB

t
BC

t
B

t
out

(A) t
in

(B) t
out

(B) t
in

(C)

Figure 2.5: APHD - Inter- and Intra-Node Delay

As shown in figure 2.5, the inter-node delay is the delay in the network between two

nodes and the intra-node delay is the delay a packet experiences within a node. The

second idea is that each packet carries delay information in its IP header option field to

make it immediately available. With the second idea one of the drawbacks of this kind of

monitoring is solved, however TOM still needs to estimate the approximation error.
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2.4 Kalman Filter

A problem with one-way delay measurements is that it is hard to predict the traffic load in

a wireless network. For this a Kalman filter[9] can be used as it is a recursive filter that is

good for estimating the true state of a linear dynamic system where only noisy observations

or measurements are available. It is used to solve a wide variety of engineering problems,

such as computer vision and control theory, and is modeled on a Markov chain built on

linear operators perturbed by Gaussian noise. The filter updates the estimation at each

measurement, it applies a linear operator to the filter state to generate the next state. One

advantage about the Kalman filter is that it only needs the previous state and current

measurement to predict the next state.

It is a flexible algorithm, since there are many different matrices to tune and there is no

fixed number of parameters to filter, so it is tunable for many different systems. Another

reason to use the Kalman filter is because it is fairly easy to implement; it does not require

much memory or CPU and is well tested with good results. However, since there are many

different values to tune it is good to have experience in matrices and the filter itself to be

able to tune it right.

2.4.1 Discrete Kalman Filter

The Discrete Kalman filter can roughly be separated into two phases, the predict phase

and the update phase, as shown in figure 2.6.

The predict phase uses the previous estimate x̂n−1 to make a new estimate x̂−n , not

include any observations(true measurement) from the current timestep. In the update

phase, the current predict state will be combined with the new observations yn and result

in x̂n.

The predict phase equations for timestep n are:

x̂−n = A× x̂n−1 +B × u (2.4)

12



Predict Update

Figure 2.6: Kalman Filter Predict/Update cycle

P−n = A× Pn−1 × AT + Sw (2.5)

In equation 2.4 and 2.5 the a×a matrix A is the state-transition model, meaning that

it relates the state at the previous timestep n−1 to the state at the current timestep n.

In practice, A might change at each timestep, but here it is assumed to be constant.

In equation 2.4 the a × h matrix B relates the optional control input u to the current

state at timestep n.

In equation 2.5 the a × a matrix P−n is the error covariance matrix and Pn−1 is the

previous timestep error covariance matrix. The a× a matrix Sw is the process noise

covariance; this matrix could change at each timestep, but here it is assumed to be

constant.

The observation yn is made between the predict phase and the update phase. The

equations for the latter phase at timestep n are:

Kn =
P−n × CT

C × P−n × CT + Sz

(2.6)

x̂n = x̂−n +K × (yn − C × x̂−n ) (2.7)

P−n = (A−K × C)× P−n (2.8)

13



In equations 2.6, 2.7 and 2.8 the a×m matrix C is the observation model and relates

the state to the measurement yn. Practically, C might change at each timestep, but

here it is assumed to be constant.

In equation 2.6 the a×m matrix Kn represents the Kalman gain for the current timestep

n. The m × m matrix Sz is the observation noise covariance and is assumed to

be independent from the process noise matrix. It could practically change at each

timestep, but is assumed to be constant.

In equation 2.7 the estimation is updated with the observation yn. The difference (yn−

C × x̂−n ) is called the residual, and reflects the difference between the predicted mea-

surement C × x̂−n and the actual measurement yn. If the residual is zero, it means

that there is no difference between them. The weighting of K is important to this

equation, since it decides how the actual measurement and the predicted measure-

ment should be weighted. If the observation noise covariance Sz approaches zero,

the actual measurement yn is increasingly important while the predicted measure-

ment is decreasingly important. On the other hand, if the estimate error covariance

Pn approaches zero the actual measurement yn is decreasingly important, while the

predicted measurement C × x̂−n is increasingly important.

In equation 2.8 the error covariance is updated.

The observation noise variance is usually measured by taking samples before the use of

the Kalman filter which is used to initialize the observation noise covariance matrix Sz.

The process noise covariance Sw is usually more difficult to determine, since the ability

to directly observe the process that is being estimated is most often not possible. If there is

a relatively simple process model it can produce acceptable results, provided that enough

uncertainty is inserted into the process via the selection of Sw.

In either case, no matter how the parameters are chosen, superior performance can

generally be obtained by tuning the filter parameters Sz and Sw. When a parameter is
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tuned it is often done before the Kalman filter is applied, and most times with the help of

another Kalman filter, in a process referred to as system identification. If Sw and Sz are

constant, the covariance Pn and the Kalman gain K will stabilize and also become close to

constant. If this should be the case, these parameters can be tested in another test system

or by running the system off-line2 to initialize them right.

2.4.2 Scalar Kalman Filter

If the Kalman filter is to be used in a system that only has one variable to estimate. The

scalar Kalman filter[2] has a predict phase and an update phase too;

The predict phase equations for timestep n is:

x̂−n = A ∗ x̂n−1 +B ∗ un (2.9)

P−n = A2 ∗ Pn−1 + Sw (2.10)

In equation 2.9, x̂−n represents the predicted state and P−n represents the error covariance,

at timestep n without any observation.

The observation yn is made between the predict phase and the update phase. The

equations for the latter phase at timestep n are:

Kn =
C ∗ P−n

C2 ∗ P−n + Sz

(2.11)

x̂n = x̂−n +K ∗ (yn − C ∗ x̂−n ) (2.12)

Pn = P−n ∗ (1− C ∗Kn) (2.13)

A, B and C are constants in equations 2.9 through 2.13. The input to the system is

un and the output is yn

2Off-line refers to the time before the Kalman filter is applied.
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3 Design

The goal with this project is to develop an one-way delay measurement in a wireless mesh

network, based on the TOM algorithm. There are five requirements to accomplish this

for the approach used in this project. The first requirement is to measure the time spent

in a mesh node due to node internal packet handling, referred to as the measurement.

The second requirement is the calculation of the time it takes to send a packet over the

medium between the mesh nodes to determine the transmission queue waiting time, this

is referred to as the approximation. These two requirements are referred to as the mea-

surement process described in section 3.2. The third requirement is the estimation of the

unpredictable time which includes packet resends, backoffs and channel switches. This

requirement is referred to as the estimation process that is described in section 3.3. The

fourth requirement is to transfer the delay measurement values between the nodes. This is

done by extending the IP header with accumulated per hop delay estimates described in

section 3.1. The last requirement is that the software in clients connecting to the network

is to remain unmodified. This means that the one-way delay measurement will be done

in the wireless mesh network backhaul as shown in figure 2.1. Therefore the transmission

time between a client and the first mesh router will not be included.

The difference between TOM and TOM++ is that the approximation, estimation and

channel switches. TOM++ and TOMKalman differs in the estimation. This will be

described in detail in following sections.

3.1 IP header

The IP header[19] contains information about the packet, such as source and destination

address for the packet, total length, options and padding. The IP header can roughly

be divided into two parts, a fixed part and an optional part as shown in figure 3.1. The

optional part contains the options and padding fields as they variable in size or nonexistent.
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Consequently the fixed part is all fields up to the options field since they are required.

TOM uses the option field to transfer the delay information. This is because the

other options are to either modify the IP header or store the values with the packet data.

Modifying the IP header can cause problems if a packet is sent to a network that does

not support this modification. Storing the values with the packet data cannot be done

because of privacy reasons. TOM++ and TOMKalman uses the same approach as TOM

so two additional delays will be stored in the option field. The reason why the TOM

delay information is not replaced is because measurements will be done to compare the

algorithms in the evaluation.

0 7 15 23 31 bit

Fixed Part

Optional Part:
Type Length Hops Remaining Padding

TOM

TOM++

TOMKalman

Figure 3.1: The IP header

The fixed part of the IP header (figure 3.1) is not described since it is not important
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for this project.

The optional part contains seven fields; type is the IP option type; length is the total IP

option size in bytes, this includes all seven fields; hops remaining keeps track of the maxi-

mum hops until the packet should leave the backhaul; padding is used for aligning the fields

32-bit chunks; TOM, TOM++ and TOMKalman are the one-way delay measurements for

the respective algorithms.

3.2 Measurement Process

The one-way delay measurement will be updated at every node within the wireless mesh

backhaul. The measurement process is from when a packet arrives at one node until it is

transfered to the hardware transmission queue.

As shown in figure 3.2, there are five key points. Point A and E are also shown in figure

3.3.

At point A a packet arrives at a mesh router, in this example a mesh gateway, and the

packet is marked with a timestamp by the hardware.

At point B the IP header option field is checked for the delay information. If it is present

the delay fields are updated with the timestamp from point A. Otherwise the delay

information is added to the option field and initialized. The measurement is started.

At point C the packet is put into the correct channel queue where it resides until the

scheduler switches channel to the channel associated to the queue, then transfers the

packet to the MadWifi driver. At the channel switches the TOM++ and TOMKalman

estimations, described later, are reset. This point is only relevant if Net-X is used.

At point D the sending time tn, where n is the position of the packet in the queue, is

approximated by dividing the packet size s of this packet and the possible packets in
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Figure 3.2: Packet Path Through a Node
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the transmission queue with the transmission rate r in equation 3.1.

tn =

∑n
i=0 si

r
(3.1)

Then the measurement is ended by updating the delay fields TOMi (equation 3.2),

TOM + +i (equation 3.3) and TOMKalmani (equation 3.4) where i is the current

one-way delay and i− 1 is the previous one-way delay. This is done with the current

time currT ime, the approximation a and the respective estimation e. The packet is

then transfered to the hardware transmission queue.

TOMi = TOMi−1 − currT ime+ eTOM (3.2)

TOM + +i = TOM + +i−1 − currT ime+ a+ eTOM++ (3.3)

TOMKalmani = TOMKalmani−1 − currT ime+ a+ eTOMKalman (3.4)

At point E the estimation is updated as described below.

3.3 Estimation Process

The estimation process includes the backoff, possible packet resends and acknowledgment,

which can be seen at point E in figure 3.3.

The backoff is a random time that the hardware waits before checking if the medium

is clear to send on. This time is determined by the hardware and the range of values that

the time can obtain increases in case of collisions in the medium. It is used to avoid packet

resending.

A resend can be caused by for example packet collisions and interference in the medium,

thus it is impossible to predict.

The acknowledgment is used to determine when to end the estimation and thus its
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sending time is included in the estimation. Hence the estimation of a packet will be used

on the next packet to be sent.

In TOM++ the estimation is calculated with an Exponential Weighted Moving Average

(EWMA)[1] filter that uses weighting factors which decrease exponentially, giving more

importance to recent measurements while not discarding the old measurements completely

(equation 3.5).

en = α ∗ en−1 + (1− α) ∗ t, α ∈ [0, 1] (3.5)

where en is the new estimation; en−1 is the previous estimation; α is the weighting factor

which could change over time, but here it is assumed to be constant; and t is the measured

time from when a packet becomes head of the transmission queue until an acknowledgment

is returned.

TOMKalman uses a scalar Kalman filter instead of the EWMA used in TOM++ to

calculate the estimation. In the scalar Kalman filter the weighting factor is K which is

dynamically updated. TOMKalman uses the same measurement to update the estimation

as TOM++ does.
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4 Implementation

As described roughly in section 3 the one-way delay measurement includes several steps,

measuring the time a packet spends in the node until it is put in the hardware queue,

approximating the sending time for the packet and the hardware transmission queue, and

estimating the approximation error, which includes the backoff and retransmission time,

and the time for the acknowledgment to return.

NF_IP_PROUTING

NF_IP_FORWARD

NF_IP_LOCAL_OUT

Linux NetfilterLinux Netfilter MadWifi driver

H
A

L

H
A

L

ath_tx_start()

Transmit queue

ath_tx_processq()

Local

Mesh node

ACK

Packet

Packet

Packet

ath0

ath1

Figure 4.1: Implementation Overview

Here is a short summary of what this chapter contains. When a packet arrives at a

node it goes through the Linux Netfilter as described in section 4.1, and if the packet

arrives from outside the wireless mesh network the three delay fields are added to the IP

header, initialized and the measurement is started, otherwise the fields are updated to

start the measurement. Then in the MadWifi driver (section 4.2.1) the measurement is

completed, the approximation is calculated, delay fields and estimations are updated. The

approximation is the same for TOM++ and TOMKalman. The TOM algorithm, however,
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has no approximation and therefore only uses an estimation. Estimations for TOM++ and

TOMKalman are different in that TOM++ uses a simple averaging function, described in

section 4.2.1, and TOMKalman uses a Kalman filter, described in section 4.3. All variables

referring to time are in nanoseconds.

4.1 Linux Netfilter

The Linux Netfilter contains five different hooks in the network stack as shown in figure

4.2. Depending on from where the packet arrives and its destination it passes through dif-

ferent hooks. Three of these hooks are used for delay estimation: NF IP PREROUTING,

NF IP FORWARD and NF IP LOCAL OUT. The NF IP LOCAL IN hook is not used

because the packet has reached its destination and the NF IP POST ROUTING hook is

not used because the IP header option field has already been initialized.

NF_IP_PREROUTING

If the three delay fields 
are present
Do: add the current time 
to all three fields

NF_IP_FORWARD

If packet arrives from 
outside the WMN 
and have to travel 
through the WMN
Do: initialize the 
three IP header delay 
fields

NF_IP_LOCAL_IN NF_IP_LOCAL_OUT

If the packet shall travel 
through the WMN
Do: initialize the three 
IP header delay fields

NF_IP_POST_ROUTING

Figure 4.2: Linux Netfilter Hooks

When a packet arrives at a node it goes through the NF IP PREROUTING hook

where the IP header is checked to see if the three delay fields are present by checking if

the length of the IP header is equal to the length of the fixed part of the IP header and

the length of the three delay fields. The IP header structure is described in section 3.1. If

they are not, nothing further is done here because the header fields will be added in the

NF IP FORWARD hook. Otherwise the current time is added to all three fields to start
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the measurement. If this node is not the destination of the packet it is routed through

the NF IP FORWARD hook. Here the packet is checked where it was before entering

this node and where it is heading by looking at which interface it was received and which

interface it is to be sent on. If it comes from outside the wireless mesh network heading

into it the three delay fields are added and initialized to 10000000000LL + timestamp.

The timestamp is stored in the socket buffer of the packet when it is received by the

network interface and is used for starting the measurement. If a packet is sent from a node

it passes the NF IP LOCAL OUT hook where if the packet is to travel into the wireless

mesh network the same as at the NF IP FORWARD hook occurs. Then the MadWifi

driver takes over.

4.2 MadWifi

MadWifi[17], Multiband Atheros Driver for Wireless Fidelity, are drivers for WLAN devices

with the Atheros chipset. These drivers are also the most advanced ones available for

Linux. The driver themselves are open source but they depend on the Atheros hardware

abstraction layer[15] which, for this project, is in binary form. The reason why all the

communication between the MadWifi driver[23] and the Atheros card is routed through

the hardware abstraction layer is to prevent users from tuning the card to frequencies or

transmission powers which violate regulatory restrictions. This generates some problems

for the estimation calculation since the last timestamp that can be taken before the packet is

sent is just before the packet is transfered to the hardware through the hardware abstraction

layer and not when the packet is actually sent.

Changes done in the MadWifi driver[16] are done in the functions in listings 1, 2 and

4. Only the changes made to the functions are shown the rest is cut out. Changes has

also been made in the data transmit queue (struct ath txq) handling. The changes are

described further in section 4.2.1.
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4.2.1 MadWifi Driver

The changes to the transmit queue handling revolve around the variable axq totaltime

which has been added to the struct ath txq. This variable contains the approximated total

time it will take to send the queue. Each time a packet is added to or removed from the

transmit queue the approximated time it will take to send that packet, explained below,

is added to or subtracted from axq totaltime respectively.

Listing 1: IP Header Field Update

1 stat ic int a t h t x s t a r t ( ) {

2 /∗ CUT ∗/

3 bf−>delayEst=tomppGetDelayEstimation ( ) ;

4 bf−>sendEst =

5 ( bf−>approx = 1000 ∗ a th f f approx tx t ime ( sc , an , skb ) ) ;

6 mh update outgoing aphd opt ( skb , ( txq−>axq to ta l t ime ?

7 txq−>axq to ta l t ime : bf−>sendEst /2) + bf−>sendEst ) ;

8 bf−>tomppTimestamp=bf−>timestamp=mh timespec now ( ) ;

9 /∗ CUT ∗/

10 }

At the end of the function ath tx start() the packet is added to the hardware queue

from there on no changes to the packet can be made. Thus, near the end of that function,

listing 1, the IP header delay fields are updated using the following formula.

di = di−1 − t− a− e (4.1)

where di is the new delay; di−1 is the old delay with the measurement starting time added

to it; t is the current time; a is the approximated sending time of this packet and the

packets before it in the transmission queue; and e is the current estimated approximation

error. Note that TOM does not have an approximation as the queuing time is estimated.
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Listing 2: Sending Time Approximation Function

stat ic u i n t 3 2 t a th f f app rox tx t ime ( struct a t h s o f t c ∗ sc ,

struct ath node ∗an , struct s k b u f f ∗ skb ) ;

The function in listing 2 from the MadWifi driver is used to approximate the sending

time of a packet. The parameters to the function includes channel configuration (sc), node

state (an) and a packet (skb). The function takes the packet length and adds the sizes

of the 802.11 encapsulation and cyclic redundancy check, encryption overhead, fast-frame

header and padding, and tunneling overheads. It then uses the hardware abstraction layer

to calculate the time it will take to send that amount of data with the current state and

configuration. The value returned by athff approx txtime() is in microseconds so it is

converted to nanoseconds as seen on line 5 in listing 1.

Listing 3: Pseudo code of mh update outgoing aphd opt()

mh update outgoing aphd opt ( in : packet , in : approximation ) {

subt rac t cur r ent time from TOM, TOM++ and

TOMKalman IP header f i e l d s

subt rac t the TOM est imat ion from TOM IP header f i e l d

subt rac t the TOM++ est imat ion and the approximation parameter

from TOM++ IP header f i e l d

subt rac t the TOMKalman es t imat i on and

the approximation parameter from TOMKalman IP header f i e l d

}

Packets arriving to an empty queue got low delay values. To compensate for this the ap-

proximation for a packet arriving to an empty queue is set to β ∗calculatedApproximation

and for other packets it is calculatedApproximation + axq totaltime. In this project β

is set to 1.5. The approximation and estimation are stored in the driver packet buffer

(struct ath buf) and subtracted from the TOM++ IP header delay field. Then the mea-
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surement is calculated by subtracting the current time from the delay fields as shown in

listing 3, since the time when the packet arrived at the node where added to the delay

fields as described in section 4.1. A timestamp, bf-¿tomppTimestamp, is also stored in

the driver packet buffer which is used for updating the estimation for both TOM++ and

TOMKalman. This timestamp starts the measurement for the estimation as seen on line

8 in listing 1. The bf-¿timestamp is used by TOM.

Listing 4: Estimation Update

1 stat ic void a t h t x p r o c e s s q ( ) {

2 /∗ CUT ∗/

3 {

4 struct ath buf ∗next ;

5 mh updateCurrentDelayEstimation ( bf−>timestamp ) ;

6 tomppUpdateDelayEstimation ( bf−>tomppTimestamp , bf−>approx ) ;

7

8 next = STAILQ FIRST(&txq−>axq q ) ;

9 i f ( next != NULL) {

10 next−>tomppTimestamp=mh timespec now ( ) ;

11 }

12 }

13 /∗ CUT ∗/

14 }

The estimation is updated in the function ath tx processq() in listing 4 which is called

by an interrupt when an ACK is received. TOM++ and TOMKalman estimations are

measured from when a packet is head of the transmission queue until an ACK for that

packet is received. To measure the estimation from when a packet becomes head of the

transmission queue the timestamp for the next packet is set to the current time. This is
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done on line 10 in listing 4. Both TOM++ and TOMKalman estimations are initiated to

zero when the driver is loaded into the Linux kernel. TOM++ uses an EWMA filter to

update the estimation

newEstimation = α ∗ oldEstimation+ (1− α) ∗measuredT ime (4.2)

which is located in the function tomppUpdateDelayEstimation() in the file mh shared.c.

This function also calls the function kalmanUpdate() that updates the TOMKalman esti-

mation, described in section 4.3.

Listing 5: Channel Switch

stat ic int a th chan se t ( ) {

/∗ CUT ∗/

tomppReset ( ) ;

kalmanReset ( ) ;

/∗ CUT ∗/

}

The estimation algorithms are reset when a channel switch is made in the function

ath chan set(), listing 5. Both TOM++ and TOMKalman are reset to zero, because the

state of the new channel is unknown, since no measurements are made for the estimation

on the idle channels.

4.3 Kalman Filter

The Kalman filter is the algorithm that updates the estimation for the TOMKalman IP

header field, in the function kalmanUpdate() that is located in mh shared.c. A code library

with matrix arithmetics and the Kalman filter calculations were provided online[20] through

the tutor of this thesis. The matrix algorithm code uses floating point operations. How
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this was implemented is described in section 4.4.

The Kalman filter algorithm uses several matrices as described in detail in section 2.4.

The matrices B and u are not used since there is no outside controller. Following matrices

are initialized as described below.

x̂ =

 a

b

 (4.3)

where a is the estimation and b is a state used by the Kalman filter algorithm. Both are

initialized to zero.

Sw =

 4
1000

16
1000

0 63
1000

 (4.4)

The algorithm adapts faster to change if the values of Sw are low and the delays vary much

from packet to packet.

P =

 1 0

0 1

 (4.5)

A =

 1 1
2

0 1

 (4.6)

Matrices P and A was initialized with very simple values since there was not enough time

to study the Kalman filter in this project. The solution to this was simply to use a brute

force approach to get an initiation that will generate roughly correct values.

The implementation of the Kalman filter was later discovered to be wrong, since there

was a scalar version of the Kalman filter which is what this project approach needs. The

scalar Kalman filter equations is similar to the normal Kalman filter that had been im-

plemented thus the implementation of the new version went fast and smooth. The scalar
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Kalman filter is described in detail in section 2.4.2 and is initialized as following:

A = 0.85 (4.7)

Sw = 100

Sz = 0.1

C = P = X = 1

The values chosen in the equations 4.7 are randomly chosen due to the lack of time and

knowledge of the Kalman filter.

4.4 Floating-point Operations

Floating-point operations are not supported by the Linux kernel. This means that no

floating-point operations can be done in kernel code per default. Furthermore, the ARM

architecture used on the mesh nodes does not have a floating-point unit, a coprocessor

specialized for floating-point operations[21]. Instead, the ARM Linux kernel has a floating-

point emulation software which can be loaded into the kernel as a module to be used in

user space programs. This will not allow floating-point operations in the kernel code but

it can be modified to do so.

The solution was to compile parts of the floating-point emulation software as a kernel

module. All floating-point operations needed resides in the file softloat.c. This file and the

header files it relies upon were copied to the working directory, and the symbols for the

functions that would be used were exported. Then softfloat.c were added to the project

Makefile.

The matrix algorithm code was modified to use the new module floating-point opera-

tions instead of the C standard library calls. The floating-point emulator uses packing and

unpacking functions to store or load the floating-point values in 32, 64 or 80 bits. This

means that the normal C operators for addition, subtraction, multiplication and division
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cannot be used and neither can normal value assignment. For example a calculation with

the ordinary C operators on 64 bit integers may look like this:

Listing 6: Standard C Code Calculation Example

a = b + 42 ;

With the floating-point operators it is:

Listing 7: Floating-point Library Calculation Example

struct roundingData rd = { f l o a t r o u n d n e a r e s t e v e n , 64 , 0} ;

a = f l oa t64 add (&rd , b , i n t 3 2 t o f l o a t 6 4 ( 4 2 ) ) ;

The first line of the above example contains the struct roundingData. This struct is

defined in fpall.h as:

Listing 8: Rounding Data Structure

struct roundingData {

i n t 8 mode ;

i n t8 p r e c i s i o n ;

signed char except ion ;

} ;

The members of this structure are used as follows.

mode: controls how the rounding of floating-point values should be done. This can take

one of the values in listing 9.

Listing 9: Rounding Mode Constants

enum {

f l o a t r o u n d n e a r e s t e v e n = 0 ,

f l o a t r o u n d t o z e r o = 1 ,

f loat round down = 2 ,

32



f l o a t r ound up = 3

} ;

precision: specifies if the rounding should be with 32, 64 or 80-bit precision.

exception: determines which exceptions should be able to be thrown, if any. The excep-

tion member can be set to any of the values in listing 10.

Listing 10: Rounding Exception Flag Constants

enum {

f l o a t f l a g i n v a l i d = 1 ,

f l o a t f l a g d i v b y z e r o = 2 ,

f l o a t f l a g o v e r f l o w = 4 ,

f l o a t f l a g u n d e r f l o w = 8 ,

f l o a t f l a g i n e x a c t = 16

} ;

The rounding configuration used in the example listing 7 above is used for all floating-point

calculations in this project.

The calculation on the second line of listing 7 shows how to do calculations and how

to convert integers to floating-point values.

Listing 11: 32-bit integer to 64-bit float Conversion

f l o a t 6 4 i n t 3 2 t o f l o a t 6 4 ( signed int ) ;

The conversion is done with the function in listing 11. It takes a 32 bit integer as parameter

and returns a 64-bit float.

Listing 12: Floating-point Operations

f l o a t 6 4 f l o a t64 add ( struct roundingData ∗ , f l o a t64 , f l o a t 6 4 ) ;
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f l o a t 6 4 f l o a t 6 4 s u b ( struct roundingData ∗ , f l o a t64 , f l o a t 6 4 ) ;

f l o a t 6 4 f l oa t64 mu l ( struct roundingData ∗ , f l o a t64 , f l o a t 6 4 ) ;

f l o a t 6 4 f l o a t 6 4 d i v ( struct roundingData ∗ , f l o a t64 , f l o a t 6 4 ) ;

Calculations are done with the functions shown in listing 12 which use a common interface

of three parameters and a float64 return value. The first parameter is a pointer to rounding

data object described in listing 8, the second is the left operand and the third the right

operand.

Listing 13: 64-bit Float to 32-bit Integer Conversion

signed int f l o a t 6 4 t o i n t 3 2 ( struct roundingData ∗ , f l o a t 6 4 ) ;

Listing 14: 64-bit Float to 32-bit Integer Conversion with Rounding to Zero

signed int f l o a t 6 4 t o i n t 3 2 r o u n d t o z e r o ( f l o a t 6 4 ) ;

There are two functions to convert from a 64-bit float to an integer. The first one seen

in listing 13 takes two parameters; a pointer to a rounding data object and the 64-bit float

that is to be converted. The second function in listing 14 only takes the 64-bit float as a

parameter as it rounds to zero.

4.5 Example

This example describes what happens at Node 2 in figure 4.3 when it receives traffic from

Node 1 that is to be sent to Node 3.

At A the first packet, P1, is received and the packet delay is updated.

dP1 = m1 + a1 + e0 (4.8)

where dP1 is the packet delay; m1 is the measured time spent in the node; a1 is the

approximated sending time; and e0 is the estimated approximation error.
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Figure 4.3: Example - Delay Estimation with 2 Packet Queue

At B the second packet, P2, arrives and its delay is updated as dp1 .

dP2 = m2 + a2 + e0. (4.9)

Note that the same estimated error, e0, as in the calculation of dP1 was used.

At C the packet P1 has been sent and an ACK has been received, thus the estimated

approximation error is updated as

e1 =
e0 + t1

2
(4.10)

where e1 is the new estimated error; e0 is the previous estimated error; and t1 is the actual

time from when P1 entered the transmit queue to that the ACK was returned.

At D the ACK for packet P2 has been received and the estimated approximation error
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is updated.

e2 =
e1 + t2

2
(4.11)

At E packet P3 has arrived and its delay is updated as

dP3 = m3 + a3 + e2. (4.12)

The estimated approximation error e2 was used since packet P2 was the last packet to be

acknowledged. If P3 had arrived between C and D the estimated error e1 would have been

used instead.

At F the ACK for packet P3 is received and the estimation is updated to

e3 =
e2 + t3

2
. (4.13)
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5 Evaluation

This section contains an introduction to the evaluation environment (5.1). After that are

presentations and discussions of the three test cases that were made; one-channel two-hop

scenario without interference; one-channel two-hop scenario with interference; and multi-

channel two-hop scenario.

All traffic in the tests are generated by using MGEN[12], Multi-Generator. MGEN is an

open source traffic generator. It generates UDP datagrams of configurable size and rate.

When MGEN generates a packet it marks it with the local system time. Furthermore,

when MGEN receives a packet, it writes the sending timestamp and the receiving time

into a log file. To have an accurate measurement of a one-way delay, the clocks at the

sender and receiver needs to be synchronized. To synchronize the clocks the start node

continuously do NTP updates against the end node via the wired interface. It is done with

the help of the script shown in listing 15. The mesh routers are configured to send at a

rate of 6Mbps and the packet size for all packets are set to 1000 bytes during all tests.

More details on mesh node configuration are given in each test case section.

Listing 15: sync.sh

k i l l a l l ntpd

while true ; do

ntpdate −b 1 9 2 . 1 6 8 . 3 1 . $1 2>&1 >/dev/ n u l l

s l e e p 1

done

For a better understanding of the graph descriptions the terms offset, spike and shift

are explained here. When the term offset is used, it means the difference between the delay

measured by MGEN and the delay measured by the algorithm. The term spike is used for

delays noticeably higher than the average delay. If the delay curve of the modules shows

the same course as the delay curve of MGEN but both curves are out of sync, the packet
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difference is referred to as shift.

TOM++ has been evaluated in the KAUMesh testbed to determine the accuracy of

the improved delay measurement, compared to the TOM implementation. This is done on

a stream of packets with a normal percent error formula:

e =
|
∑n

i=0(ai −mi)|∑n
i=0mi

(5.1)

where e is the percent error of the data stream; n is the total number of packets; ai is the

delay measured by either TOM or TOM++ for packet i; and mi is the reported MGEN

time for packet i. Note though that the actual delay time is smaller than that reported by

MGEN and thus these values are not completely accurate but can be seen as a guideline.

This is due to that MGEN executes in user space and thus an amount of time is taken to

transfer the packet to the kernel.

In this project α in the EWMA filter used by TOM++ is set to 0.5 to get an equal

weight between the old estimations and the new estimation measurement. A few tests were

done with different values of α but there was not enough time to get any valuable results.

The Kalman filter is not part of this evaluation, since it is not tuned correctly and

consequently the results are erroneous. There were both negative and positive offsets of

up to several seconds between the Kalman filter graph and the MGEN graph.

5.1 KAUMesh

At Karlstad University there is a wireless mesh network testbed called KAUMesh[5], which

is based on 18 mesh nodes that are permanently installed to cover a large area of the newly

built House 21. The mesh nodes are based on 802.11a/b/g WLAN, Wireless Local Area

Network, but other 802.11b/g based clients can also connect to the wireless mesh network.

KAUMesh is a multi-radio, multi-channel mesh solution that is based on Net-X, suited

to run on a high-performance network processor platform and extended by using several
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extra functionalities. An example of a functionality that is used is that each node has

several interfaces. One interface is made for transparent client access, generally by using

802.11b/g mode. The mesh backhaul connection is made by using several radio interfaces

per mesh node.

Multi-hop tests Multi-hop Net-X tests

n25 n25

n19 n19

n17 n17

Figure 5.1: Traffic Route for the Tests

The positions of the nodes and how the traffic is routed in these tests are shown in figure

5.1. The following tests includes 3 Gambria GW2358-4 nodes[3], deployed in building 21,

that are running the Linux operating system with the customized kernel of version 2.6.22.2.

5.2 2-hop Tests with no Interfering Traffic

This is a simple setup with node 17 sending traffic in one stream to node 25 via node

19, as indicated by the green arrow in figure 5.1. No interfering traffic is generated. Two

tests with different transfer rates were performed with this setup. The first test was at

100 packets per second and the other at 200 packets per second, both for a period of 60

seconds.

As seen in the graph in figure 5.2 TOM++ has a lower offset and follows the reported
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Figure 5.2: 2-Hop 200packets/sec - no Interfering Traffic

MGEN time better than in the TOM algorithm as the queue sending time is included in

the TOM++ one-way delay measurement but not in TOM. The spikes that can be seen in

the figure are due to delays in the hardware, caused by for example interrupts, DMA data

transfer delay or resent packets. This can be seen by the shift of one packet that occurs

from the MGEN spike to the TOM++ and TOM responses.

Algorithm 100pkt/s 200pkt/s
TOM 16.4% 12.5%
TOM++ 3.5% 5.3%

Table 5.1: Percent Error for 2-hop Traffic with no Interfering Traffic

The results in table 5.1 shows the percent error for the data streams in this test. They

40



show that TOM++ is better than TOM. This is because there is little interference in this

test, so the estimation part of the TOM++ delay is almost zero.

5.3 2-hop Tests with Interfering Traffic

For a more realistic scenario these tests are done with interfering traffic. This leads to

collisions in the medium which results in increased backoff times and packet resending. In

this setup node 17 is sending traffic in one stream to node 25 via node 19 at 100 and 200

packets per second for 60 seconds, while node 25 is generating 140 packets per second to

node 19 to get interfering traffic. The interfering traffic is using interface ath2 while the

normal traffic is using ath0 but they are sending on the same channel. The green arrow in

figure 5.1 is the generated measured traffic and the red arrow is the interfering traffic.
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Figure 5.3: 2-Hop 200packets/sec - 140packets/sec Interfering Traffic
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The graph in figure 5.3 shows that TOM++ has a lower offset and follows the graph

better then TOM.

The one-way delay measurement at packets 8268 through 8271 does not follow the

reported MGEN time, this might be because the packet can be stuck in user space where

no measurements are made, neither for TOM nor TOM++. This can be seen in other

places in the graph but at these packets it is most obvious.

Algorithm 100pkt/s 200pkt/s
TOM 14.8% 17.2%
TOM++ 9.8% 11.6%

Table 5.2: 2-hop Traffic with 140pkt/s Interfering Traffic

Table 5.2 shows that TOM++ is 5.0% better than TOM in the 100pkt/s case, and in

the 200pkt/s case TOM++ is 5.6% better. In the 100pkt/s case there is rarely any queue

buildup at all, whilst there is almost always a transmit queue buildup of two packets, that

are consequently transmitted simultaneously, in the 200 pkt/s case. Therefore the TOM

uses the same delay estimation in both packets that are put into the queue while TOM++

adds the transmission time of the first packet to the second packet.

5.4 2-hop Tests with Net-X

In this setup node 25 is sending traffic in one stream through node 19 to node 17 with Net-

X enabled. All nodes use two interfaces ath0 and ath1. They are set up to listen on a fixed

channel on ath0 and to send on two switchable channels on ath1. The specific channels for

each node are set up as described in table 5.3. The blue arrow in figure 5.1 represents the

traffic from node 25 to node 17. This is set up to see how the delay estimations react to the

channel switches that Net-X perform. Channel switches are forced by sending broadcast

messages on node 19. The minimum time to stay on a channel after a channel switch is

set to 25ms and the maximum time is set to 60ms.
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As can be seen in table 5.3 node 25 will be sending on channel 44 when sending the test

stream and node 19 will be sending on channel 36, these channels will be called the test

channels. When the broadcast is sent the nodes switch to every switchable channel and

send the broadcast message on them. The channels not used for the test stream are 64 and

36 for node 17 and 25 respectively. These channels will be called the alternate channels.

Channel
Switchable

Node Fixed Test Alternate
17 36 44 64
19 44 64 36
25 64 36 44

Table 5.3: Net-X Test Node Channel Setup

Two tests were performed with this setup as well. In the first test the stream was

sending at a rate of 50 packets per second, and then 100 packets per second in the second

test.

The three spikes in figure 5.4 occurs when there is a channel switch from the test

channel to the alternate channel.

The last of these spikes represents a channel switch on node 19. Only packet 3270

arrives at node 19 while it is sending on the alternate channel during this channel switch,

so this packet is put into the bonding queue until the node switches back to sending on the

test channel. The time spent in the bonding queue counts as a part of the measurement

described in section 4, thus the time reported by both TOM and TOM++ will be near

accurate for that packet.

Packet 3271 arrives when node 19 has started to transmit on the test channel again.

The delay measurements for this packet is not nearly as accurate. The reported MGEN

time is about 6.5ms greater than the TOM++ and almost 9ms greater than the TOM

delay. This might be because of delays in the hardware after the channel switch since

this would not be covered by the measured or the approximated part. The figure also
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Figure 5.4: 2-Hop 100packets/sec Net-X

suggests that packet 3271 waits in the hardware transmit queue for a brief time since the

TOM++ delay is 3.1ms higher than the TOM delay and the increase in delay to packet

3272 is greater in TOM than in TOM++. The reason the TOM delay increase is higher

might be because the TOM estimation includes the hardware transmit queue time while

the TOM++ estimation only includes the time from when the packet becomes head of

the queue until the acknowledgment that it has been sent is returned. At packet 3274 the

channel has started stabilizing after the channel switch.

The second spike is a channel switch in node 25. Here two packets, 3257 and 3258,

arrive while node 25 is sending on the alternate channel. Packet 3259 arrives when node

25 has switched to the test channel again and therefore it is put directly into the transmit

queue with one or two packets ahead of it in the queue as shown by the slight increase of
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delay relative to the normal delay of about 5ms.

At the first spike both node 25 and node 19 switches channel before packet 3233 resulting

in a total delay of almost 45ms at packet 3233. Both TOM and TOM++ keep up with this

rapid change since the packets mainly reside in the bonding queue. Node 25 is sending on

the alternate channel for two packets thus at packet 3235 the delay drops. However, node

19 is still transmitting on the alternate channel until packet 3237 has arrived.

As seen in the area between the spikes, the TOM++ delay is greater than the reported

MGEN time. This is because there is no queue buildup and thus the approximation for

the packets are 50% higher which is explained in detail in section 4.2.1.

As described above in section 4.2.1 the estimation for TOM++ is reset at each channel

switch thus the packets in the spikes does not get an estimation. This proves to be good

as the TOM++ delay gets close to the reported MGEN time. However packets 3238, 3259

and 3271 after each spike has a lower value compared to the reported MGEN time which

can be because the TOM++ estimation part was reset to zero during the channel switch.

Algorithm 50pkt/s 100pkt/s
TOM 20.5% 22.0%
TOM++ 11.2% 8.8%

Table 5.4: 2-hop Traffic with Net-X

From table 5.4 can be read that TOM++ is 9.3% and 13.2% better than TOM in the

50pkt/s and 100pkt/s cases respectively. The reason the TOM++ measurement improves

with the transmission rate is because more packets are received while the nodes are sending

on the alternate channel.
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6 Conclusion

This thesis presented a way to improve the TOM algorithm to be more accurate with little

added system load and a prototype of a Kalman filter.

The improvements from the TOM algorithm to the TOM++ algorithm is the calculated

approximation of the transmission queue and packet sending times and that the estimated

approximation error is reset at each channel switch. This was done because the TOM

algorithm was too inaccurate and estimated the above mentioned sending times. Therefore,

by calculating the sending time it is only the backoffs and packet resends left to estimate

which leads to less inaccuracy in the one-way delay measurement. This improvement

resulted in an increased accuracy of about 5% as described in section 5.3, which is the

most realistic case of the tests.

The Kalman filter prototype was implemented to see if it could replace the current

estimation process, since these types of filters are good at predicting states. There was

not enough time in this project to finish the implementation of the Kalman filter and

thus a conclusion to whether it can replace the estimation which is now used could not

be made. In section 6.1.1 there are some thoughts on how to further develop the Kalman

filter prototype.

The difficulties in doing this has been the hardware abstraction layer and the implemen-

tation of the Kalman filter prototype. The hardware abstraction layer prevents changes

to the packets after transferring them to the transmission queue. The problems with the

Kalman filter prototype was that the original version of it used floating-point operations

which the Linux kernel does not support and that the Kalman filter is complex and therefor

takes time to fully complete.

6.1 Future Work

There is room for further development in this project. Here are some ideas.
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6.1.1 Kalman Filter

The Kalman filter was first implemented and tested as a discrete Kalman filter. It was

later discovered that it was the wrong algorithm for this projects approach. Then the

scalar Kalman filter was implemented and tested but there was not enough time to tune

the filter correctly nor to make proper tests. The current implemented version needs to be

tuned to work properly.

Another improvement might be to change the current implementation from using float-

ing point calculation to fixed point. By doing so there might be some time to gain on the

packing and unpacking that is described in detail in section 4.4.

6.1.2 Low Delay Compensation

The time added for the first packet in the transmit queue, 1.5∗approx, is not correct since

that calculation is based on the reported MGEN sending time. It includes the time it takes

to transfer the packet data from user space to the kernel. It should not be included in

the one-way delay calculation since this represents the transfer time before entering the

wireless mesh network.

6.1.3 Improved Tests

The tests done in this project are done by synchronizing the clocks on the nodes with

NTP, this can be done by using GPS instead which is more accurate. If the clocks are

better synchronized the final MGEN delay measurement time will be more accurate, if the

MGEN time is more accurate the calculations to get the accuracy for the algorithm will

also be more accurate.

Another thing which can be improved on the tests are to calculate the average time it

takes for MGEN to send a packet from user space to the kernel, since this time should not

be included in the total one-way delay calculation. This time then needs to be removed
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from the final reported MGEN time two times, since it needs to travel from kernel to user

space on the receiver node.

6.1.4 Channel Switch Reset

When a channel switch happens the delay for TOM++ and TOMKalman are reset to zero

in the current implementation, the question is if it should be reset to zero or another value.

In the results from the tests it is hard to tell if this should be changed or if it should stay

at zero, since the new channel a node is switching to in the tests did not have any traffic

at all. A more realistic scenario would be to set up a larger Net-X tests with more nodes

and traffic on several channels, so when a node switches channel the new channel will have

initial traffic.

6.1.5 Intra-node Measurement

The intra-node measurement starts when the packet enters the node and stops when the

packet is put into the hardware transmit queue. If there is a way to alter the packet while

it resides in the hardware queue the measurement could be extended to include the queuing

time which would increase the overall one-way delay estimation. There might be some way

to do this through the Atheros hardware abstraction layer or a more direct approach with

later versions of the MADWifi driver since they use an open source version of the hardware

abstraction layer.
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