

Karlstads universitet 651 88 Karlstad

Tfn 054-700 10 00 Fax 054-700 14 60
Information@kau.se www.kau.se

Department of Computer Science

Tobias Gunnarsson
Hans Johansson

Visual implementation of computer
communication

Computer Science
C-dissertation (15 hp)

Date/Term: 2010-06-08

Supervisor: Stefan Alfredsson

Examiner: Martin Blom

Serial Number: C2010:14

Visual implementation of computer

communication

Tobias Gunnarsson

Hans Johansson

c© 2010 The author(s) and Karlstad University

This report is submitted in partial fulfillment of the requirements

for the Bachelor’s degree in Computer Science. All material in

this report which is not our own work has been identified and

no material is included for which a degree has previously been

conferred.

Tobias Gunnarsson

Hans Johansson

Approved, June 8, 2010

Advisor: Stefan Alfredsson

Examiner: Martin Blom

iii

Abstract

Communication is a fundamental part of life and during the 20th century several new ways

for communication has been developed and created. From the first telegraph which made

it possible to send messages over long distances to radio communication and the telephone.

In the last decades, computer to computer communication at high speed has become in-

creasingly important, and so also the need for understanding computer communication.

Since data communication today works in speeds that are so high that the human eye

cannot by any chance see the signals that are sent it is hard to, on a basic level, show how

communication work. Therefore in this project a communication system is made of lasers,

photo diodes and Morse code as the encoding. The lasers are used to create a communica-

tion link between two computers to visualise how communication work and the Morse code

will be used as the language the lasers and the photo diodes use to understand each other.

The goal was to create a communication system that allows two way communication and

the results which was achieved are a system that allows half-duplex communication. The

project resulted in that the hardware and software can be used to show how communication

works in a controlled environment.

v

Acknowledgements

We would like to thank our advisor Stefan Alfredsson who has been invaluable when it

comes to tips, help and gathering of the components. Without him the time needed to get

as far as we did in the project would have taken several weeks of extra time. We would

also like to thank Karlstad University for the facilities we have been able to use here. A

big thank you will be directed to Simon Glyssner who have helped us to analyse the text

to eliminate spelling errors and overall read the text to make the text more flowing.

We acknowledge the following sources for some of our figures:

Figure 2.1 is copied from http://en.wikipedia.org/wiki/File:Photophony1.jpg

and since it is 130 years old we believe that copyright has expired and the picture is in the

public domain.

Figure 2.2 is copied from http://commons.wikimedia.org/wiki/File:T%C3%A9l%C3%

A9graphe_Chappe_1.jpg and is claimed to be in the public domain because of copyright

expiration. The image has been slightly modified for our report.

Figure 2.3 is copied from http://en.wikipedia.org/wiki/File:Optical_telegraph01_

4484.jpg and the licence says: ”Permission is granted to copy, distribute and/or modify

this document under the terms of the GNU Free Documentation License, Version 1.2 or

any later version published by the Free Software Foundation”.

Figure 2.4 is copied from http://en.wikipedia.org/wiki/File:J38TelegraphKey.

jpg and the licence says: ”This file has been (or is hereby) released into the public domain

by its author, Lou Sander at the Wikipedia project. This applies worldwide.” it also say ”Lou

Sander grants anyone the right to use this work for any purpose, without any conditions,

unless such conditions are required by law.”

Figure 2.5 is a modified version of http://commons.wikimedia.org/wiki/File:Spectre_

visible_light.svg originally created by Wikipedia user Tatoute and modified by Isometrik,

and licensed under Creative Commons Attribution ShareAlike 3.0.

vi

Contents

1 Introduction 1

1.1 Implementation of the project . 1

1.2 Goals . 2

1.3 Report outline . 4

2 Background 5

2.1 History of telecommunication . 7

2.2 The telegraph . 7

2.2.1 Wired communication . 9

2.2.2 Wireless Communication . 9

2.3 Motivation for using laser . 10

2.4 Physical encoding . 12

2.4.1 Manchester Code . 13

2.4.2 Morse code . 14

2.5 State machine . 15

2.6 Related work . 15

2.6.1 FSO . 16

2.6.2 IrDA . 16

2.7 Components . 16

2.7.1 Overview . 17

2.7.2 USB Experiment Interface Board 17

2.7.3 USB Interface Board API . 18

2.7.4 Laser . 20

2.8 Summary . 21

3 Design 22

3.1 Construction . 22

vii

3.2 State machine . 25

3.3 Morse code as physical encoding . 26

3.4 Summary . 27

4 Implementation 28

4.1 Message transmission . 28

4.2 Message reception . 30

4.3 Control of the interface board . 32

4.4 Summary . 33

5 Results 34

5.1 The goal-list . 34

5.2 Tests . 36

5.3 Evaluation . 38

5.4 Summary . 39

6 User manual 40

6.1 Set-up . 40

6.2 Check-list (step by step-list) . 41

7 Conclusion 42

7.1 The purpose of the project . 42

7.2 Experience . 42

7.3 Future . 43

7.4 Last Thoughts . 44

References 45

A Morse alphabet 47

viii

B Component list 48

C Morse.h 49

D Morse.c 52

ix

List of Figures

1.1 Overview of the communication system . 2

2.1 Bell and Tainter testing their photo phone receiver, of 1880. 6

2.2 Claude Chappe’s telegraph system. 8

2.3 The telegraph Abraham Niclas Edelcrantz made. 9

2.4 The J-38 electric telegraph. 10

2.5 The light spectrum . 12

2.6 Manchester code . 13

2.7 The SOS message and its signals in Morse Code. 15

2.8 The Velleman interface card. 18

2.9 The Laser pointer and the photodiode. 20

3.1 The circuit. 22

3.2 A complete sender/receiver component. 23

3.3 A ”helping hand” and a photodiode on one of the clip. 23

3.4 The circuit diagrams for the diode and the laser. 24

3.5 The three states of the program. 26

4.1 Connection control. 28

4.2 Encode function. 29

4.3 sendMessage function. 30

4.4 Event example. 31

4.5 Decode function. 32

4.6 Idle function. 32

4.7 Sigproc function. 32

4.8 Toggle function. 33

5.1 The three different sizes of the beam depending on range. 38

x

1 Introduction

In this project a basic laser communication system will be constructed. This will make it

possible to send messages between two computers with the use of laser beams. This will

then visually show how communication can work and this is striven for since it will be

useful for educational purpose when demonstrating different data communication systems

and how the different systems can work.

1.1 Implementation of the project

In order to create the communication system more knowledge had to be acquired about

similar projects. A main characteristic of the system is the operation in free space with-

out for example fibre cabling. Such technology is called Free Space Optics, FSO, and a

need to study history of telecommunications had to be made to get more aware of the

communication field. A set of laser pointers and USB Interface control board of the brand

Velleman have been acquired for each computer. The motivation for using laser can be

seen in section 2.3. The USB interface board can read input ports and control the outgoing

voltage on the outgoing ports. This can then be used to control the laser. The program will

be written in the programming language C and it will be a two-way chat program which

can exchange text messages. Morse code will be used to encode and decode the messages.

Morse code will be used since it makes it easy to comprehend for the human eye and the

communication can even be read by a person that know Morse code. The overall structure

of the project can be seen in figure 1.1. The figure shows two computers connecting to

an separate USB Interface card that is connected to a laser or a photo diode with copper

wires.

1

Computer Computer

Interface-
card

Interface-
card

Laser
Photo-
diode

Figure 1.1: Overview of the communication system

1.2 Goals

The main goal of this project is to accomplish a laser beam communication link between two

computers. The purpose is to visually demonstrate how communication between computers

can be done.

The first goal is to be able to, by using a computer, turn on and off the laser and be able

to detect at another computer. The method chosen to control the laser is through a USB

interface board, and the method to detect the laser is by a photo diode. First the API of

the USB interface board needs to be read and understood. The need to understand the API

(Application Programming Interface) is needed to be able to control the laser and to be

able to use the photo diode for detection. After being able to control the laser and have the

detection working, the focus will be on sending and detecting simple bit-patterns. Further

on when the basic hardware part of the project is working the start of creating a program

that can control the data communication will be made. First a decision on what physical

2

encoding that will be implemented and then the encoding will be implemented according to

the rules set for the specific physical encoding. When the encoding and decoding functions

are working some simple one-way messages will be sent, in the beginning just by sending

simple ASCII characters and then try out the performance by testing different distances

and higher transmit rates. When all this is working a two-way link will be created and the

developing of a basic chat application is possible.

Goal list

Step-by-step goal list in order of execution.

1. Reading and understanding the API of the interface board.

2. Control laser pointer beam from computer.

3. Detect active/inactive beam from computer.

4. Transmit a simple bit pattern.

5. Detect a bit pattern at receiver.

6. Create a Morse code communication.

7. Decide on the physical encoding.

8. Implement the physical encoding and decoding.

9. Make an one-way chat application (transmit characters, present at receiver).

10. Do a simple performance test

11. Increase the distance and find the limits of the software/hardware.

12. Increase the speed and find the limits software/hardware.

13. Implement two-way communication and chat application.

3

1.3 Report outline

The remainder of the report is structured as follows. In chapter 2, a brief history of

telecommunication is presented that will include wired- and wireless communication and

then some basic knowledge that is needed to understand the rest of the report. Then there

is a discussion of existing projects and the purpose of why to use lasers to communicate. In

chapter 3, a discussion of the construction of how the laser system have been built and how

it has been implemented to create a communication link is made. There is also a section of

what kind of technical characteristics that has been used. Chapter 4 describes the program

and its implementation. Finally in chapter 5, 6 and 7 the results, a user manual of how to

set-up and use the program, our experiences and what future work that can be made to

improve the program are described.

4

2 Background

This chapter presents a brief history in both wired and wireless communication (see section

2.1) leading up to the high-speed communication used today, followed by our motivation

for using laser to communicate in section 2.3. After that, a discussion of what physical

encoding is and how it works are explained in section 2.4, followed by a description of how

the state machine works in section 2.5. Then, a presentation of how old works and projects

are related to this project and what difference it is (see section 2.6). Last, a description of

what components that have been used and its features are explained in section 2.7.

In the late 19th century and early 20th century many new ways to communicate were

invented, from the first telegraph transmissions to the use of the first wireless communi-

cations with the photo phone, which where invented by Guglielmo Marconi, where actual

sound was transferred. To be able to send any information some sort of medium is needed

to transfer the information sent by the transmitting side to the receiving side. May it

be, air and drums to create and propagate sound or a transceiver with wires to send the

information on. There also needs to be a language that both sides understand (can also be

seen as a protocol between the sender and the receiver). That could be simple messages

via drums e.g. that three repeated taps on the drums means forest fire, to complex binary

systems used in the computers today. This is known as the physical encoding [1].

The different common physical encodings that are used today are Manchester code

which is used in Ethernet, in both LAN and WAN. Other encodings in use today are

Morse code for long distance short message communication or common unipolar encoding

where a positive voltage is seen as a binary 1 and zero voltage as binary 0.

The purpose of this project is to create a communication link between two computers

with the use of laser pointers then get them to communicate with each other through the

communication link and to finally be able to see how communication work. The link is

constructed by using an USB interface card to control the laser on the sender side and to

5

Figure 2.1: Bell and Tainter testing their photo phone receiver, of 1880.

detect the laser on the receiver side with a photo diode.

These components will serve as the connection but to be able to even communicate at

all between the two interface cards there is a need for some sort of encoding (the protocol

used between the to sending and receiving parties). All this so both sender and receiver

know how to interpret the protocol that is used (how binary ones and zeros look like). The

easiest way to do this would be laser on (positive voltage) equals binary one, and laser off

(zero voltage) equals binary zero also known as basic line encoding. However this may lead

to problems with synchronisation.

Problems that occur with synchronization and the reason that a basic encoding system

is not used is that even though the sending computer can clock the signal and send it with

very precise timing the existence of timing-drift still exist. This can lead to for example if

the sender sends for example 100 zeros (the lights off for 100 time units) the receiver might

not be able to clock those as exactly 100 but can see them as maybe 99 or 101. To solve this

problem a protocol (physical encoding) must be used. Manchester-encoding (also known

as phase coding, see section 2.4), which is a self-clocking encoding, is one of the existing

encodings that helps the communication to stay synchronized. To get communication up

and working Morse code as physical encoding will be used which in itself is self clocking

6

encoding. Morse Code is also good since the signals of Morse Code make them easy to

understand while only looking at the signals when data is sent. To make the system

resilient to de-synchronization, a state machine will be added (see section 2.5) this is made

since the program cannot handle sending and receiving at the same time.

2.1 History of telecommunication

In the very beginning of telecommunication the way people communicate with each other,

over long distances, were very basic. They used smoke signals, fires and drum sounds.

These techniques were used to transmit news, signal danger, or gather people to a common

area [2].

All these old ways of communicating relate to this project via the basics of communica-

tion. A sender, a receiver and a protocol that both sides understand so a communication

can be made. The fires or the drums can be compared to the laser in this project and the

different ways of tapping the drums or lighting the fires can be compared to the physical

encoding. Physical encoding can easily be compared to the regular languages used in the

world. All humans can make sounds (all working lasers can send light) but to understand

a person that one needs to convert those sounds into words and the same goes for the

laser. The sender needs to control the laser to send light with certain predetermined time

intervals so they can be decoded on the receiving side using a a set of rules predetermined

before the conversation started.

2.2 The telegraph

In the 18th century, a french engineer named Claude Chappe, built the first optical tele-

graph, also known as a semaphore system [3], see figure 2.2.

A variant of the optical telegraph was developed in 1794 by the swede Abraham Niclas

Edelcrantz. The biggest difference from Chappe’s semaphore system was that instead

of three movable arms he used three fixed arms that were built on the mast, see figure

7

Figure 2.2: Claude Chappe’s telegraph system.

2.3, on each arm there were three square gaps. These square gaps could either be placed

horizontally or vertically. Any gap in the upper arm means 1, the middle 2 and on the

bottom 4th.

The nine doors that these gaps would form were organized so that they also formed

three vertical rows. The first vertical line of distinguished entities, the second line dozen

and the third line hundred. From the gaps it was possible to distinguish any three-digit

number from 0 to 777.

These gaps could be alternately opened and closed and thus create up to 1024 different

combinations [4]. The system can be described as a forerunner of the number representation

in modern computer systems, since it is based on a binary system with 10 signal elements.

All this technology including smoke signals, beacons, reflection lights and semaphore sys-

tems are also called optic telegraphy.

8

Figure 2.3: The telegraph Abraham Niclas Edelcrantz made.

2.2.1 Wired communication

In the early 19th century electric telegraphy was invented and it made it possible to send

messages via electrical wires. Messages were sent in form of short or long pulses of electrical

current to control an electromagnet that was located at the receiving end of the telegraph

wire. These pulses could represent Morse code. Figure 2.4 shows a picture of an electric

telegraph, the U.S. model J-38. Morse code was invented by Samuel F. Morse and Alfred

Vail at the start of 1836. For further description of the implementation of Morse-code used

in this project is described in section 2.4.2.

2.2.2 Wireless Communication

The distances wireless communication can travel are from just a few meters (bluetooth,

infra-red light) to millions of kilometres (space probe radio communication). The first

wireless communication occurred in 1880 when Alexander Graham Bell and Charles Sum-

ner Tainter did the first telephone call with their invention, the photo phone [5]. Figure

2.1 shows Bell and Tainter when they are testing their very first photo phone.

A pioneer in wireless communication was Guglielmo Marconi [1], an Italian inventor who

won the Nobel prize in Physics 1909 together with Karl Ferdinand Braun ”in recognition of

9

Figure 2.4: The J-38 electric telegraph.

their contributions to the development of wireless telegraphy”[6]. They built the first radio

telegraph which served as basis for wireless communication world wide. Their discovery

was also the base for the establishment of a great number of companies all around the

world (from phone companies such as Ericsson and Nokia to electronics companies such as

SONY and Toshiba). Wireless communication is now used all around the world in several

types of equipment such as mobile phones, WiFi, Television remote controls, Computer

Interface Devices and of lately Wireless energy transfers.

2.3 Motivation for using laser

When both the two sending and receiving parties are too far apart with no visible obstacles,

such as space, pure distance or that the area is dangerous to navigate in, the use of wires

to link the sender and the receiver together will be virtually impossible. For example in

satellite to satellite, or satellite to earth communication or in war zones. Laser as a medium

to propagate information on can be used to set-up quick communication links when there

is no time to set-up a wired network such as in emergencies/natural disasters, or were

the use of wires are impossible such as earth to space communication or space to space

communication. The reason to use laser instead of a radio link is that the bandwidth you

10

get from laser is over 100 times higher then what a radio link can give. Since laser is

a highly directional link the power usage of the link itself is lower then what would be

needed for radio link. The size of the equipment is a lot smaller than what is needed in

radio communication and the low-to-none spread of the light in laser beams makes them

much harder to wire tap compared to radio communication. All this since regular radio

communication spread the signals and makes them much easier to intercept and eavesdrop

[7].

The laser itself is very concentrated and have a high power output per square centimetre.

But since the light itself does not spread the actual energy needed to create the beam the

power usage is very low. From as low as the non harmful lasers with less than 1mW

to the lasers that are dangerous to both skin and eyes that are working over 0.5W. The

beam compared to regular light bulbs, anything from the small flash light bulbs with 1.5W

to regular light bulbs in lamps with 60W, and other devices that emits electromagnetic

radiation does not spread and lose energy over distance. This gives the laser the property

of creating a clear signal with very little use of power (less then 1W).

A big part of this project is the visual aspect of the laser. All the different visible

colours, non visible colours such as infra-red or ultraviolet too, all depend on the frequency

of the laser. The lower the frequency of the laser the closer to the ultraviolet spectrum

and with really low frequencies the laser becomes a X-ray laser. All the colours of the laser

are coherent with wavelength the light spectrum seen in figure 2.5. Since this project is

based on visualisation a laser with a frequency within the visual, for the human eye, light

spectrum is chosen. With a wavelength of 660nm the colour of the laser in this project

becomes red.

One big problem with laser is the directional beam of light that it produces. This

requires a clear line of sight, also known as LOS or path of sight, to let the laser propagate

the information to its destinated receiver without interruption [8].

11

400nm Visible 700nm

 0.01nm 10nm 400nm 700nm 100um 1m

Figure 2.5: The light spectrum

2.4 Physical encoding

In computer architecture a waveform that switches between two voltage levels representing

the two states of a Boolean value (0 and 1) is referred to as a digital signal, even though

it is an analog voltage waveform, since it is interpreted in terms of only two levels.

A clock signal is a special digital signal that is used to synchronize digital circuits.

Logic changes are triggered either by the rising edge or the falling edge of the signal.

Line coding is used within communication system for digital data transport. Line

coding is represented by a digital signal to be transported by an amplitude and time

discrete signal that is optimally tuned for the specific properties of the physical channel

(and of the receiving equipment). The waveform pattern of voltage or current used to

12

represent the 1s and 0s of a digital signal on a transmission link is called line encoding.

Common types of line encoding are unipolar1, polar2 and Manchester encoding [9]. Briefly,

line coding is the process of arranging symbols that represent binary data in a particular

pattern for transmission.

Following will be a brief explanation of two physical encodings, the first being Manch-

ester Code and the second is Morse Code.

2.4.1 Manchester Code

Manchester code, also known as phase modulation (PM), is a line coding method in which

the encoding of each data bit has at least one transition and occupies one clock cycle, it

means that it is self-synchronising. When sending a bit through the system the sender is

also sending the clock-time with each bit which result in that the receiver cannot lose bits

because of system-clock variations.

Clock

Data

1 0 1 0 0 1 1

Manchester
(as per IEEE 802.3)

Figure 2.6: Manchester code

The coding represent binary values, 1 and 0, where 1 represent a pulse that has a positive

1If only one polarity of voltage level is used, positive or negative.
2If both polarity of voltage level is used, positive and negative.

13

pulse voltage during the first-half of the bit duration and a negative voltage during second

half of the bit duration. The binary 0 represent a pulse that is negative during the first-half

of the bit duration and positive during the second-half of the bit duration. Each bit in a

data transition are coded with two bits, 01 or 10 (see figure 2.6). Manchester Code is the

physical encoding used in Ethernet.

2.4.2 Morse code

A traditional physical encoding for a two-way half-duplex communication is Morse code.

Morse code is a good encoding for small text transmissions since it works on time rules

instead of on clock signals as for example Manchester code does. The time rules are based

on the time between the off and on state of the transmitter. There are five different time

rules in Morse code, these different rules are international known rules [10] and are as

follows:

• Short mark, dot (.) - one ”on” time unit long.

• Long mark, dash (-) - three ”on” time units long.

• Intra-character gap (between the dots and dashes within a character) - one ”off” time

unit long.

• Short gap (between letters) - three ”off” time units long.

• Medium gap (between words) - seven ”off” time units long.

For example if the transmitter is on for one time unit (the time units are decided on

both the receiving and the transmitting side before the transfer of information is started)

and then off for one time unit the receiver decodes that signal as a short mark and then

an intra character gap. These signals are then be saved for encoding at a later state and

the process is repeated until a short gap signal appears. When a short gap appears all the

14

short-, long- and intra character signals that have been saved are decoded via the Morse

to Latin/Latin to Morse translation table as the one seen in appendix A. A sent short

message (SOS) and how it will be decoded can be seen in figure 2.7.

 S O

 1 Timeunit 3 Timeunits

 S

Figure 2.7: The SOS message and its signals in Morse Code.

2.5 State machine

The use of different states to decide if certain operations are viable or not during the

specific state during the execution of the program is called a state machine. The basic idea

is that you have different states so that when for example a program which do not have

full duplex, is receiving data, it should not be able to send data. All to lower the chance

of problems in the system and loss of information. The state machine is further described

in section 3.2.

2.6 Related work

The following section will have a brief description of the related works to this project that

already exist.

15

2.6.1 FSO

The systems that are used for space and satellite communication are called FSO, Free

Space Optic. It was originally developed by the military and NASA and has been used

for over three decades to provide fast communication links in remote areas. FSO offers

full-duplex throughput and it is a line-of-sight3 technology. It uses laser beams to provide

optical connections and is capable of sending up to 1.25 Gbps of data, voice and video

communication simultaneously through the air [11].

Laser communication is used all around the world, but much more often in large scale.

Space and satellite communication is the area in which lasers are most often used. The

reason for using laser communication is the energy saving property a laser has and that in

space the chances that something will block the line of sight is minimal. [7]

2.6.2 IrDA

IrDA, Infra-red Data Association, is another wireless technology that uses the infra-red

spectrum of light to send information. The signals are at a frequency that are just below

what the human eye can perceive. IrDA is used mostly in the relatively short distance. The

signals cannot go through walls and are susceptible to bad weather. Infra red technology

is most often used in remote controls but also for data transmission in mobile phones and

PDAs.

All these works and projects described above use line of sight dependent technologies.

This special property is also used in this project and is a very special property since all

information needs to be sent in a straight line with no obstacles in the way.

2.7 Components

The components that are used in the project are described here.

3Electro-magnetic waves travelling in a straight line.

16

2.7.1 Overview

An overview of the main components.

• Computer (USB controller): A computer with either Windows or Linux.

• Interface card: An USB controlled Interface card with both analog and digital inputs

and outputs. Figure 2.8 shows the Interface card.

• Laser: A class 2 laser that is controlled by the computer through the interface card.

• Photo diode: A photo diode that control a current to the analog in port. With light

emitting from the laser on to the diode the analog input gives a value depending on

the intensity of the light, from 0 (0 V) when no light shines and up to 71 (1.39V)

on full exposure of light on the diode (all this is with the components used in this

project). This creates big enough change in the intensity of the light that hit the

diode that the program can convert the different signals into information, which the

computer can read and convert to a one or a zero depending on the physical encoding.

Or as in the case of Morse, the amount of time the photo diode is detecting light

from the laser.

2.7.2 USB Experiment Interface Board

The control of the laser and the photo diode detection is handled by a Velleman VM110/K8055

USB Interface Board. The board has the following features:

• 5 Digital inputs (0 = ground and 1 = open).

• 2 Analog inputs (0 - +5V).

• 8 Digital open collector output switches (max 50V/100mA).

• 2 Analog outputs.

17

Figure 2.8: The Velleman interface card.

– 0 to 5V (output resistance 1.5k ohm).

– max 100mA / 40V.

• Powersupply through USB: maximum 70mA.

• Included software.

– Diagnostic software.

– Communication DLL.

2.7.3 USB Interface Board API

To control the USB board a program is needed to be developed that can control the inter-

face board via the API. This program consist of several parts that help with the control

of the API, from a state machine to the timers that decide which part of the functions

from the API that should be called. The API consists of several control functions for the

interface card. The ports being used in the project are analog-out and digital-in which

results in that the only functions used in the API will be OutputAnalogChannel(Channel:

18

Longint, Data: Longint), ClearAnalogChannel(Channel: Longint) and ReadDigitalChan-

nel(Channel: Longint)

Function-list with descriptions:

• Long OpenDevice(Long ChannelAdress):

– ChannelAdress: Opens the connection between the interface card and the

computer.

– Data: To be able to distinguish between different cards if more than one are

connected to the computer, two jumpers can be set on the interface card. This

gives a possible combination of four different set-ups on the jumpers. The value

0 as a parameter is the card with both jumpers attached, 1 is the first jumper

off and the second on, 2 is first jumper on and second off and 3 is both jumpers

off.

– Description: Sets up the connection with the interface card.

– Result: If succeeded the return value will be the card address read from the

K8055 hardware. Return value -1 indicated that K8055 card was not found.

• void CloseDevice():

– Description: Sets all outgoing ports to 0V or digital Zero and closes the com-

munication with the K8055 card.

• void SetDigitalChannel(Long Channel):

– Channel: The value decides which channel to read (1 or 2).

– Data: The value between 1 to 8 corresponds to the output channel that is to

be set.

– Description: The selected digital output channel is set.

19

• void ClearDigitalChannel(Long Channel):

– Channel: The value between 1 to 8 corresponds to the output channel that is

to be cleared.

– Description: Sets the selected channel is cleared.

• long ReadAnalogChannel(long Channel):

– Channel: The value decides which input channel to be read (1 or 2).

– Data: The corresponding analogue to digital converter data is read.

– Description: The input voltage of the selected 8.bit Analogue to Digital con-

verter channel is converted to a value which lies between 0 (0V) and 255 (5V).

(a) Laser pointer (b) Photodiode

Figure 2.9: The Laser pointer and the photodiode.

2.7.4 Laser

(Light amplification by stimulated emission of radiation, see figure 2.9)

A mechanism for emitting electromagnetic radiation, usually in form of a visible beam

of light. There are several different classes of lasers, simply named Class I, Class II and

Class III (or Class IIIa) [12] [13]. There are even higher classified lasers but the size of

20

the power source needed to power these lasers make them hard to use as hand-held laser

pointers. The most common class of laser that the average person come across in his

everyday life are the class II lasers with visible light working in the wavelength of 400 to

700 nm and a power output lower then 1 mW. When you reach power levels of 1 mW or

higher you start to reach levels of intensity on the laser that can be harmful to the eyes.

But the natural response to protect the eyes, blink and turn the head away from the beam,

will help to protect the eyes up to lasers with class 3A intensity.

Photo diode (see figure 2.9): All semiconductor diodes have light-sensitive proper-

ties but since this often is an undesired effect they are encased in light blocking materials.

Photo diodes on the other hand are encased in materials that allow the light to pass

through. Photo diodes are used in solar cells, photometry (the science of measurement of

light) and for optical communication.

2.8 Summary

When it comes to communication many methods can be utilised, may it be drums or

electrical impulses. All share the same basics, they need a medium to propagate the

information in and some sort of protocol so both sides can understand each other. This

project is using a light in form of a laser as the medium and a physical encoding called

Morse code as the language, a self-synchronising time unit based encoding. The actual

transfer of information is handled by the laser and a photo diode, both controlled by an

USB Interface Card. The reason for using laser in this project is primarily for to visualizing

two computers communication with each other.

21

3 Design

In this chapter the overall design of the project is discussed. How the construction of the

hardware is made, see section 3.1. Then information about how the state machine works is

discussed in section 3.2. Finally, section 3.3 discusses how the physical encoding is made.

3.1 Construction

To connect the laser and interface board a solderless breadboard is used, see figure 3.1.

The construction is made simple because the main focus have been on the implementation

and not the construction in this project. The interface card is placed inside a plastic box

and figure 3.2 shows a complete sender/receiver component. On the side of the box a hole

is made were the USB cable can connect with the interface card.

Figure 3.1: The circuit.

22

(a) Photo diode (b) Laser Pointer

Figure 3.2: A complete sender/receiver component.

The laser is connected with the project board via copper wires lead through another

hole made on the top of the box. To easily target the photo diode and laser a so-called

”Helping Hand” have been used with alligator clips to hold both the diode and the laser,

see figure 3.3(a). The photo diode circuit (photo diode and resistors) are soldered together

on a tiny circuit board to make it easier to make the actual coupling, see figure 3.3(b).

(a) Helping Hand (b) Hand Clip

Figure 3.3: A ”helping hand” and a photodiode on one of the clip.

23

The circuit diagram for both the diode and laser can be seen in figure 3.4(a) and figure

3.4(b).

+

-
8.8 kOhm

VV Velleman
Analog-in

3v

 GND

(a) The circuit diagram for the photo detector

Digital-
out

+

-

GND

3v

B

C

E

(b) The circuit diagram for the laser.

Figure 3.4: The circuit diagrams for the diode and the laser.

24

See appendix B for component list and their cost.

3.2 State machine

The communication protocol are the rules that are needed to be followed so both the sender

and the receiver know how to send and receive data. To implement this the rules of Morse

code are needed to be followed and a state machine is needed to control the flow of the

program (both which are implemented in the program).

A state machine is a virtual control mechanic used to perform certain actions depending

on an event and all previous events leading up the the current state. The program, used to

control the interface board via the API (see 2.7.3), uses half duplex when communicating

which mean that the state machine in the program is used to prevent that the receiving

side from sending during the time the sending side is sending. This mode of communication

allows the program to only receive or send data at any one time. To start the state machine

there is a need for a start-state, the state in which the program waits for some event to

happen.

The start-state used in the program, independently if you are on the receiving or the

sending side of the connection, is ”Stop and Wait”. In this state you may start sending

information and then jump to one of the two other states that exists (sending or receiving

state). In the sending state you may only encode and send the information specified by

the user. To make sure that the receiving side do not send any information while the

sending side is in this state the sending side will occupy the link by having the laser lit up

(ButtonPressed event in figure 3.5) until the actual transmission of the data. When this

occurs the sender will start out with a synchronisation blink with the laser and then send

the actual information. After all information has been sent the program reverts back to

the ”Stop and Wait” state. The last state is the receiving state which is a state where the

program can only receive data and decode it to the appropriate character. The program

switches to this state when it registers that the other side of the communication link has

25

Stop &
Wait Send

Receive

Stop
Print &
EnterWaitState

Space
Decode

Dot
Add

Dash
Add

Start state

SendSignal
EnterReceiveState

ButtonPressed
EnterSendState

StopSignalSent
EnterWaitState

Figure 3.5: The three states of the program.

entered the sending state by lighting the laser(SendSignal event in figure 3.5). When in

this state the program cannot do anything as long as the sending side have the laser lit and

will stay in this state as long as needed for all the information to be sent. When all the

information has been sent (using Dot Dash and Space event seen in figure 3.5) (indicated

with the 20 time unit long ”stop signal”, Stop event in figure 3.5) the receiving side reverts

back to the ”waiting to receive or send” state.

3.3 Morse code as physical encoding

Except the international rules of Morse code (seen in section 2.4.2) two extra rules were

needed as control rules for the interface card. The first being a synchronisation signal to

reset the timers so when the actual information is sent all timers start from zero. The

second rule is a stop rule telling the program to stop receiving and decode the message

transferred. The two control rules looks as follows:

26

• Synchronisation signal - one half ”on” time unit long.

• End signal - twenty ”on” time units long. If this signal is lost the text buffer will

not be reset but since this only repeats the last message again when the next text is

received no fall-back has been made for this.

A photo diode was used to solve the problems of measuring the time units correctly and

to determine if any light has been sent. The photo diode readout gives different readouts

depending on the amount of light that hit it, and different values depending on which photo

diode has been used. Zero when covered with something as thick as two regular sheets of

paper, with the room light on, and 71 (1.39V, this number was specific for the diode used

in this project) when directly hit with the laser. When the change in the intensity of light

changed the number indicated by the photo diode with over 10 (0.02V) the time since the

last change was taken and compared to the above Morse code rules. As long as a short-,

long- or intra character gap signal is registered the corresponding signal is added to a buffer

that will be decoded later on. This decoding will only happen when a new character signal

is sent or at the end when the stop signal is sent. The decoding will then decide what

character the corresponding signal was by comparing it with the already defined Morse to

Latin alphabet chart (see appendix A).

3.4 Summary

In this chapter the construction and compilation of the hardware has been discussed, from

the laser connected to the interface board into the plastic box to the photo diode and how

the wiring that connects it all are connected. The basics of the state machine has been

discussed, from what state (also know as a start-state) that will be entered at the start of

the program to what state that should be entered depending on the different events that

can occur. The last section has explained how Morse code has been implemented as a

physical encoding in this project.

27

4 Implementation

This chapter explains the program from an implementation viewpoint and explains how

the basics of the program is done. When the basics have been explained, from what

different start-up functions are made to which state the program enters at the start, an

in-depth explanation will be about how a message is transmitted. This is made through

the explanation of the code used in the transceiver. When this is done an explanation of

the function used to control the USB interface board is made.

At the very start of the program there is a need to check if there is a connection with

the USB Interface card. This is done with by the following instructions, which also gives an

error message if the connection cannot be found. See figure 4.1. It will also send back an

error message if no interface card was found. After this the signal() function is initiated

so the CTRL + C command will not only kill the process but also close the connection to

the interface board. When the CTRL + C command is done the program enters the start

state and then enters the event loop, polling both the photo-diode and the keyboard for

events. To explain the polling and usage of photo diode and keyboard the next section will

describe the course of a message.�
1 t e s t = OpenDevice (0) ;
2 i f (t e s t == −1)
3 {
4 pe r ro r ("OpenDevice") ;
5 e x i t (0) ;
6 }
7 s i g n a l (SIGINT , s i gp r o c) ;
� �

Figure 4.1: Connection control.

4.1 Message transmission

The program starts of in a start state which both polls the keyboard and the photo diode

to see if any changes has been made since last reading. If a change has been made at

28

the keyboard the program will immediately enter the sending state. The sending side will

then activate the laser and send a constant emission of light to tell the receiving side to

get ready to accept incoming transmission from the sending side. When this has started

the sender will enter the message via the keyboard and then the message is encoded from

Latin letters to Morse signals via the encode function (figure: 4.2) when the sender press

the enter-key. Code[] is the already defined Latin alphabet to Morse signal struct used to

convert between Latin letters and Morse signals.�
1 void encode (char ∗ s)
2 {
3 s i z e t i , j , k , l = 0 ;
4 char mrs [MAX] ;
5 mrs [0] = ’\0’ ;
6
7
8 for (i = 0 ; s [i] ; ++i)
9 {
10 for (j = 0 ; j < s izeof Code / s izeof ∗ Code ; ++j)
11 {
12 i f (toupper (s [i]) == Code [j] . l e t t e r)
13 {
14 s t r c a t (mrs , Code [j] . morse) ;
15 p r i n t f ("%c: " , Code [j] . l e t t e r) ;
16 p r i n t f ("%s\n" , Code [j] . morse) ;
17 break ;
18 }
19 }
20 }
21 putchar (’\n’) ;
22 sendMessage (mrs , l) ;
23 }
� �

Figure 4.2: Encode function.

When the text to be sent has been encoded it will be sent via the sendMessage()

function (figure: 4.3). This function will first synchronise the clocking on both sides via

the sync function which sends pulses of pre-defined length light so both sides know that

sending is starting. The message will then go through the morsesignal-buffer sent from

the encode function and send the corresponding sequence of light depending on if its a dot

29

(short signal), a dash (long signal), a new character signal (represented as white space),

a white space (represented as underscore) or the stop signal at the end of the message.

When this is done the sending side reverts back to the Stop and Wait state and just waits

for a new event.�
1 void sendMessage (char msg [] , s i z e t l ength)
2 {
3 s i z e t i ;
4 int time ;
5 p r i n t f ("Size of message: %d\n" , l ength) ;
6
7 sync () ; // Syncronize , s e t up t imer
8
9 for (i =0; i < l ength ; i++)
10 {
11 i f (msg [i] == ’.’)
12 shor tL ight () ;
13 else i f (msg [i] == ’-’)
14 longLight () ;
15 else i f (msg [i] == ’ ’)
16 {
17 new l e t t e rL ight () ;
18 }
19 else i f (msg [i] == ’_’)
20 {
21 newwordLight () ;
22 }
23 }
24 p r i n t f ("Last Letter sent\n") ;
25 p r i n t f ("Message: %s was sent\n" , msg) ;
26 endLight () ;
27 }
� �

Figure 4.3: sendMessage function.

4.2 Message reception

When the sending side starts sending any signal (transmit light) the receiving side enters

the receive state and then waits for the sending side to transmit. As soon as the light

intensity threshold is reached on the photo diode a timer is clocked and compared to the

30

different set of time rules already defined in the program. Depending on what time rule

is matched different states will be generated, see event example 4.4. The if-statements in

this code segment are the actual time rules for the off value of the laser.

�
1 gett imeofday(&t3 , NULL) ;
2 d i f f = t imed i f f (t3 , t4) ;
3 gett imeofday(&t4 , NULL) ;
4 p r i n t f ("The light was off for %lld useconds\n" , d i f f) ;
5
6 i f (d i f f > SPACE SIGMIN && d i f f < SPACE SIGMAX)
7 {
8 p r i n t f ("\tSignal was WHITESPACE\n") ;
9 return SPACE SIG ;
10 }
11 else i f (d i f f > INTRA CHARMIN && d i f f < INTRACHARMAX)
12 {
13 p r i n t f ("\tSignal was Intra-Character\n") ;
14 return IDLE ;
15 }
16 else i f (d i f f > NEWCHARMIN && d i f f < NEWCHARMAX)
17 {
18 p r i n t f ("\tSignal was New-Character\n") ;
19 return CHAR SPACE;
20 }
� �

Figure 4.4: Event example.

The events corresponds to the different signal sent by the sending side. From short

signals to the stop signal. As soon as the newchar event is hit the now Morse coded

character is decoded and added to a buffer via the decode function (figure 4.5).

Then the whole process is repeated and the textbuffer storing the already decoded

Morse signals is printed by entering the idle function when a stop-event is called.

It is also possible to stop the program if wished for with the CTRL and C key combi-

nation. This starts the sigproc-function (figure 4.7). In this function the connection to the

USB Interface board is closed and then the program exits like normal.

31

�
1 enum s t a t e decode (const char ∗morse)
2 {
3 s i z e t j ;
4 for (j = 0 ; j < s izeof Code / s izeof ∗Code ; ++j)
5 {
6 s i z e t s i z e = s t r l e n (Code [j] . morse) ;
7 i f (memcmp(Code [j] . morse , &morse [0] , s i z e) == 0)
8 {
9 s t r c a t (text , Code [j] . l e t t e r) ;
10 morses ig [0] = ’\0’ ;
11 p r i n t f ("text = %s \n" , t ex t) ;
12 return RECIEVE STATE;
13 break ;
14 }
15 }
16 s t r c a t (text , ’\$’) ;
17 morses ig [0] = ’\0’ ;
18 return RECEIVE STATE;
19 }
� �

Figure 4.5: Decode function.�
1 enum s t a t e i d l e (const char ∗ p la c eho ld e r)
2 {
3 addnewchars ignal (morses ig) ;
4 morses ig [0] = ’\0’ ;
5 p r i n t f ("Message recieved: %s \n" , t ex t) ;
6 t ex t [0] = ’\0’ ;
7 return WAIT STATE;
8 }
� �

Figure 4.6: Idle function.�
1 void s i gp r o c ()
2 {
3 ClearAl lAnalog () ;
4 CloseDevice () ;
5 e x i t (0) ;
6 }
� �

Figure 4.7: Sigproc function.

4.3 Control of the interface board

For the actual control of the Interface card an API was needed and was linked to source-

forge.net from the Velleman homepage4. After downloading and installing it the use of the

4http://www.velleman.eu/distributor/home/?country=se&lang=en32

above described functions was available and since the project only use the digital output

ports and the analog in port no more functions were needed. To manage these functions a

toggle function was needed to control the laser, see figure 4.8.�
1 void ToggleDig i ta lChanne l (long c) {
2 stat ic int cur = 0 ;
3
4 i f (cur == 0) {
5 ClearDig i ta lChanne l (c) ;
6 cur = 1 ;
7 } else {
8 SetDig i ta lChanne l (c) ;
9 cur = 0 ;
10 }
11
12 }
� �

Figure 4.8: Toggle function.

4.4 Summary

The basic process of the transmission of a message have now been explained, from the

creation of Morse-code signals translated from regular characters via the encode-function

to the detection of the signals and decoding of the signals back to characters.

33

5 Results

In this chapter the results of the project are discussed starting with a walk-through of

the goal list from the first chapter. After that, there will be a discussion of what kind of

tests have been used in the project to evaluate the system, and last there will be a short

evaluation of the tests.

5.1 The goal-list

Follow-up of the goal-list from the introduction. This list describe what has been learned,

how this experience has been gained and if the goals of the project have been reached.

1. Reading and understanding the API of the interface board: After just a

few hours of searching and reading all the knowledge needed to control the systems

hardware were known.

2. Control laser pointer beam from computer: After the initial connection to the

interface board was done the actual control of the laser was made by connecting the

laser to a 3V battery and the interface board via an open collector transistor giving

the interface board the control of the laser. The laser was then controlled with the

Set- and ClearDigitalChannel function described above (see section: 2.7).

3. Detect active/inactive beam from computer: When all the hardware was con-

nected to the interface board the photo-diode was read using the ReadAnalogChannel()

function. The photo-diode was positioned (so it blocked the current) between the

analog-in channel one and the ground on the interface board. The analog-in channel

is now a basic voltmeter, being able to read the voltage over the photo diode. When

light shines on the diode it will stop blocking the current and a voltage can be read

(more light is equal to higher voltage up to 1.39V for the photo diode used in this

34

project). The current is the same 3V battery used to power the laser. For more

information on the photo diode see section 2.7.

4. Transmit a simple bit pattern: Since Morse code was used no actual bit-pattern

was sent but instead a regular character using Morse code. The transmission was

just an encoding with a defined Morse code alphabet(appendix A), using the Morse

code time rules seen in section 2.4.2.

5. Detect a bit-pattern at the receiver: The detection of a bit-pattern, or as in

this case, Morse code was made by comparing the time difference between the signals

the sender sent. The most important thing done here was lining up the laser so it

hit the photo-diode.

6. Morse code communication: Since the encoding and decoding from the two

previous goals was working, the Morse code communication was up and running as

soon as the two previous paragraphs were working.

7. Decide on physical encoding: After a brief discussion the use of Morse code

as physical encoding was made over Manchester code because of the way Morse

code is used to communicate. Since this project is more about the visual aspect of

communication, Morse code felt much more comprehendible to see and understand

then just simple on and off signals that Manchester would give.

8. Implement physical encoding and decoding: Morse code was decided to be the

physical encoding in the project. The physical encoding was implemented as soon as

the project progressed to this goal on the goal-list.

9. Make one-way chat application: The one-way chat application is working if only

one laser is aligned and this is the way the program works now and how the program

worked before the merging of the sending and receiving parts of the program.

35

10. Simple performance test: With the first communication up, some simple trans-

mission were made with just some basic text sent which went through correctly.

There were no problems in finding the actual limit of the system but because of the

time pressure at the end of the project the bottleneck in the system could not be

found.

11. Increase distance and see limits: 20 cm (centimetres) was the first test that was

made. In this test no detection problems were found and the test range was increased

to one meter. In the one meter test no problems were detected and a further increase

of the range was made to five meter and here some interesting results started to

show. The amount of light that hit the photo diode started to get so low that certain

combinations of signals such as ”H” started to get divided into ”E” and ”S”. This was

solved by increasing the time unit time to 50 milliseconds which resulted in almost

no errors in the decoding. Due to time pressure any longer distances then five meter

were not possible to make.

12. Increase speed and see limits: With the communication up and working a speed

test could be made with ease and the lowest number one time unit (one ”dot” signal

etc.) in the system could found at 35 milliseconds with the exception of longer

distances of five meters or more. When any higher speed were tried data started to

get lost.

13. Implement two-way communication and chat application: The merging was

easy as soon as the state machine was in place and working.

5.2 Tests

To validate the reliability of the communication-link several different range tests were

made. These tests varied from 20 centimetres up to 5 meters. There was also a speed test

to see what the max bandwidth was on the link.

36

Test 1 (20 cm): The first test made was a regular distance test of 20 cm. This test

was made with a 100 000 microseconds (100 milliseconds) time unit at first. This worked

without any problem or information loss. Since the distance of this test was fairly short,

a speed test to see the bandwidth on the link was made since the distance would not be a

problem for the detection. By stepping down from 100 milliseconds to 50 milliseconds the

hardware and software clearly had no problem in detecting the laser. From here the the

time unit (tu) were lowered to only 35 milliseconds and all worked fine. But if the time

units were lowered any more than 35 milliseconds the receiver started to have problem

detecting the transmitted signals and thus information was lost.

Test 2 (100 cm): Now the biggest problem of laser communication became apparent,

the need of millimetre precision to hit the photo diode. The problem became quite obvious

as soon as both lasers needed to be aligned to each photo diode, but on only 1 meter it

only took about 1 to 2 min to line up the lasers and the photo diodes. When the Laser

was lined up (how to line up, see section 6) several different messages was sent to test the

different combinations of signals that could be sent. All to see if there was any loss of

data on the increased range. As expected on this short distance no difference at all was

detected and the messages was sent correctly.

Test 3 (500 cm): As soon as the range started to increase the amount of light that hit

the photo diode dropped to levels that gave effect on the signals sent by the sending side.

The solution to this was to increase the time units from 35 milliseconds to 50 milliseconds.

This removed the most of the errors but still signals that looked the same such as several

”H” characters (four ”dot” signals) in a row gave some errors were one part of the ”H”

were translated into ”S” (three ”dot” signals) and the other into ”E” (one ”dot” signal).

Assumption: With no time to build a proper receiving unit with a lens to gather the

laser so it would hit the diode spot on an assumption has been made. The assumption is

that the reason information is lost due to the laser not being concentrated enough, since

the laser is not a perfect laser and spreads with increased range. The spread of the laser

37

only looked at by the naked eye with the different distances can be seen on picture 5.1.

The lens on the helping hands equipment would have been possible to use it would be

needed to be removed from the base of the helping hands to be able to align it in front of

the diode.

 4mm 6mm 10mm

20cm 100 cm 500 cm

Figure 5.1: The three different sizes of the beam depending on range.

5.3 Evaluation

With the program (see the code in appendix C and appendix D) working and the tests

made a pattern emerged pretty quickly. As predicted the laser worked as long as it was

aligned and concentrated. As soon as the time unit length were increased the hardware

had more time to detect the change on the photo diode which gave a more accurate

readout from the photo diode. With the quality the lasers being somewhat low the range

of the communication could not be fully tested since some sort of lens will be needed to

concentrate the laser for longer distances. The laser as a medium to send information

visually has been a great technology since it can use light and still operate at longer

distances.

38

5.4 Summary

In this chapter the results of the project has been discussed. The range and speed limits

of the software and hardware have been narrowed down through tests and the evaluation

of the tests. There are different limits in the system, the biggest being the laser since the

beam of the laser widens with only a couple of meters of distance. Another limit of the

system is the time needed to control and detect the laser beam. The transmission- and

detection time determine the throughput of the link. It was found that a minimum beam

power-on delay of 35 milliseconds was needed for the receiver to correctly detect the beam.

This theoretically limits the throughput to one bit per 2∗0.035 seconds, or 1/2∗0.035 ≈ 14

bits per second (assuming Manchester encoding with two transitions per bit). The major

part of the delay was experimentally determined to be caused by the USB communication

or the internal operation of the USB card. Consecutive readings of the analog port showed

that 20 ms was spent from the API function call to its return.

39

6 User manual

This section is a description of how to set-up and how to use the laser communication

system. The components that are used to make the set-up are described in appendix B.

6.1 Set-up

Start of by deciding the general positions of the lasers. Since the USB cable only is 1 meter

long a position close to a computer is needed. When a position is chosen for the laser two

things are needed to be taken into consideration. First of all the laser is fairly hard to

adjust vertically, with the current construction, this makes it hard to collect the light that

the laser emits if the height of the laser has been adjusted too high or too low. A position

that has a free line of sight to the receiver is necessary (and very important).

When the position of the both transceivers (receiver and sender are called transceiver,

the name is a combination of transmitter and receiver) is set the first thing that needs to

be done is to point the laser in a rough direction towards the other transceiver. When this

is done on both sides the photo diodes should be moved so the plastic of the diode blocks

the beam, the beam can be turned on by starting the program and pressing any key on

the keyboard for easier positioning. When the position of the diode is aligned so that it

captures as much light as possible the programs can be started (if they are not already on)

to test the link. One side can start by entering the sending state and just block the beam

to see if any messages are printed on the console window on the receiving side. This means

that if the light is hitting the photo diode and then is blocked a message it will be given on

the screen for how long the beam was on (and off if the beam is applied to the photo-diode

again). If nothing happens check if the laser is actually hitting the photo diode (and is

emitting light). When the laser is lined up correctly it is time to start communication via

the laser-link. This is done by simply pressing any key on the keyboard and then typing

in the desired message and sending it with the ENTER-key. As long as one side is in the

40

send state, by pressing any key on the keyboard, the receiving side cannot send and will

have to wait for the message to be received from the sending side.

6.2 Check-list (step by step-list)

1. Decide positions of the lasers (Remember line of sight and height positioning).

2. Point the lasers in the direction of the receiver (Roughly).

3. Move the photo-diode into the laser beam.

4. Test the connection by starting the program on both sides and enter the send-state.

If no connection is made redo the previous step and continue to this one again.

5. Start communicating by pressing any key on the keyboard, type the desired message,

and press enter.

41

7 Conclusion

This chapter contains the conclusions of the project, why this project was made and what

have been learned and also a future work section to describe what can be improved/changed

on the project.

7.1 The purpose of the project

When the project was finished, the major goal had been reached, the possibility to send

and receive data in a visual appealing way in a two-way communication. To achieve this,

knowledge in a wide span of both technical and theoretical fields needed to be touched, from

electrical circuits and program code (in this case C) to the physics behind electromagnetic

radiation (light).

7.2 Experience

This project has touched on several technical subjects. From the construction of the

electrical circuits and code needed to control the laser and read the photo diode to the

basic physics behind light. Regarding the software implementation and program code, the

experience learned here was the possibility to set the flags controlling if a command should

block the process of the program or not, and how to use a state-machine to control the flow

of the program depending on which state and which specific event that happens. Reading

and understanding Manchester-code and the implementation of Morse code and how to

use it as a physical encoding gave a good insight in how different encoding protocol works.

The use of flags was a crucial part of the program to be able to enter different states

without stopping the actual polling of the photo diode. The state machine was useful to

stop the program from being able to enter the sending state when it was receiving and

also to decode the different signals to what they were supposed to be, from short signals

to the stop signal. Since the project was all about lasers a greater understanding of this

42

technology was attained. From the dangers of lasers to the big differences between all the

classes of lasers. Also learned is how and were to utilise the special property of the laser,

from space communication to simple straight line open air communication.

The project worked out well and could easily be used to show how data-communication

works even thou some basic computer knowledge is needed to get the program up and

working.

7.3 Future

With the main goal of the program completed, several new ideas of how to improve and

develop the program were invented. Since the project time limit was closing in fast, the

theory behind these ideas are only barely touched. The following section gives a short

description on these ideas and gives suggestions for implementation.

Light collector: The first idea that should be implemented is a light collector. A

device that basically consist of a convex lens that gathers the light and concentrates it to

the photo diode. This is needed since the laser is not a perfect laser. A perfect laser is a

laser which do not spread the light it emits. This means that the laser will always have

the same size on the beam independent on the distance. Since the the photo diode needs

a minimum amount of energy in form of light landing on it to detect any change this will

be a problem when the laser is used in longer distance (5 meters or more with the laser

used in this project) communication.

Diode casing: Build some sort of casing for the photo diode to block the non-wanted

incoming light (such as roof lamps, desktops lamps and the sun). This to make the detec-

tion of the laser easier since less energy is needed to reach the threshold for the detection.

Manchester-Code: Implement the use of Manchester code as an alternative encoding

to Morse code. The purpose of using Manchester code is to make the system resemble a

Ethernet connection. This can be made by switching out the time rules of the Morse

code to different time rules which are based on either the ”on and off” or ”off and on”

43

combination of signals and only wait for two signals a time.

Acknowledgements: Create acknowledgements (acks) for the receiver to send using

checksums on each message to create a reliable connection.

Bottlenecks: Search the system for bottlenecks. If the bottlenecks can be found in

the system future upgrades can be made to the hardware and software to be able to send

information at a higher rate. This can be made by doing a simple program that calculates

the time it takes from doing different operations such as calculating the average time it

takes for the system to complete a USB system call.

Construction: Create a more robust and easier to handle support for the laser and the

photo diode. This will make the process of lining-up easier and to make the construction

more stable, lowering the risk of breaking the connection when it is up and working.

7.4 Last Thoughts

With the project completed and the program working the only thing that is needed to be

done now is the process of setting up the link easier. That the communication is working

and that the number of bugs were so low and easy to fix was something that felt good.

Generally speaking the project worked out well and the problems in the project were almost

non-exsistent compared to what was believed on beforehand.

44

References

[1] A. Michael Noll. Principles of modern communications technology. Artech House,

2001. http://books.google.com/books?id=6tDEZlwiMK0C.

[2] Carl Nassar. Telecommunications demystified. Newnes, 2001.

[3] Anton A. Huurdeman. The worldwide history of telecommunications. Wiley-IEEE,

2003. http://books.google.com/books?id=SnjGRDVIUL4C.

[4] Friedrich Georg Wieck and Otto Wilhelm Aolund. Uppfinningarnas bok. Andra ban-

det. L. J. Hierta, 1874. http://runeberg.org/uppfinn/2/.

[5] Mary Kay Carson. Alexander Graham Bell: Giving Voice to the World. Sterling,

2007. http://books.google.ca/books?id=a46ivzJ1yboC.

[6] Nobelprize.org. The official web site of the nobel prize, [retrieved 2010-05-25]. http:

//nobelprize.org/nobel_prizes/physics/laureates/.

[7] David E. Smith. Two-way laser link over interplanetary distance. Science, (311):53,

2006. http://www.sciencemag.org/cgi/content/abstract/sci;311/5757/53.

[8] Hamid Hemmati. Near-Earth Laser Communication. CRC Press, 2009. http://

books.google.com/books?id=hiFPrD55GD8C.

[9] Jerry D. Gibson. The mobile communications handbook. Number 2. CRC Press, 1999.

http://books.google.se/books?id=9gmfVq1Jt8wC.

[10] United States. War Dept. International Morse code. Govt. Print. Off, 1945. http:

//books.google.com/books?id=gsJRGwAACAAJ&dq.

[11] FSO. Official website, [retrieved 2010-05-25]. http://www.freespaceoptics.org/

freespaceoptics/default.cfm.

45

[12] Jerry D. Gibson. Safety of Laser Products. Equipment Classification and Require-

ments. B S I Standards, 2007.

[13] FDA U.S. Food and Drug Administration. Laser products and in-

struments, 2010. http://www.fda.gov/Radiation-EmittingProducts/

RadiationEmittingProductsandProcedures/HomeBusinessandEntertainment/

LaserProductsandInstruments/default.htm.

46

A Morse alphabet

Letter Code Letter Code

A . - 1 . - - - -

B - . . . 2 . . - - -

C - . - . 3 . . . - -

D - . . 4 -

E . 5

F . . - . 6 -

G - - . 7 - - . . .

H 8 - - - . .

I . . 9 - - - - .

J . - - - 0 - - - - -

K - . - ? . . - - . .

L . - . . ! . . - - .

M - - , - - . .

N - . . . - . - . -

O - - - = - . . . -

P . - - . - - -

Q - - . - (- . - - .

R . - .) - . - - .

S ... + . - . - .

T - @ . . . - . -

U . . -

V . . . -

W . - -

X - . . -

Y - . - -

Z - - . .
47

B Component list

Prices in the table is what the components cost when they were purchased.

Component Description Cost/unit Units Subtotal

Laser pointer Red, 1.5 mW SEK 199 2 SEK 398

Velleman Interface board VM110 complete, K8055 SEK 599 2 SEK 1198

IR-photo diode Wavelength 700nm SEK 10 2 SEK 20

Solders breadboard SEK 79 2 SEK 158

Helping hand With magnifying glass SEK 69 2 SEK 138

Resistors SEK 19 2 SEK 76

Total cost SEK 1991

48

C Morse.h

�
1 #ifdef l i nux

2 #define LASERCOM

3

4 #include <s t d i o . h>

5 #include <un i s td . h>

6 #include <s i g n a l . h>

7 #include <s t d l i b . h>

8 #include <s t r i n g . h>

9 #include <ctype . h>

10 #include <SDL/SDL. h>

11 #include <K8055DLL . h>

12 #include <sys / time . h>

13 #include < f c n t l . h>

14 #include <termio . h>

15

16

17 #define MAX 255

18 #define TIMECONST 50000

19

20 #define INTRA CHAR 1

21 #define NEWCHAR 3

22 #define SPACE SIGDEF 7

23 #define SHORT SIGDEF 1

24 #define LONG SIGDEF 3

25 #define STOP SIG 20

26

27 #define INTRA CHARMIN (INTRA CHAR − (INTRA CHAR/3)) ∗TIMECONST

28 #define INTRACHARMAX ((NEWCHAR − INTRA CHAR) /2 + INTRA CHAR) ∗TIMECONST

29

30 #define NEWCHARMIN (NEWCHAR − (NEWCHAR − INTRA CHAR) /2) ∗TIMECONST

31 #define NEWCHARMAX (NEWCHAR + (SPACE SIGDEF − NEWCHAR) /2) ∗TIMECONST

32

33 #define SPACE SIGMIN (SPACE SIGDEF − (SPACE SIGDEF − NEWCHAR) /2) ∗TIMECONST

34 #define SPACE SIGMAX (SPACE SIGDEF + (SPACE SIGDEF − (SPACE SIGDEF − NEWCHAR) /2)) ∗

TIMECONST

35

36 #define SHORT SIGMIN 0.8∗TIMECONST

37 #define SHORT SIGMAX (SHORT SIGDEF + (LONG SIGDEF − SHORT SIGDEF) /2) ∗TIMECONST

38

49

39 #define LONG SIGMIN (LONG SIGDEF − (LONG SIGDEF − SHORT SIGDEF) /2) ∗TIMECONST

40 #define LONG SIGMAX (LONG SIGDEF + (STOP SIG − LONG SIGDEF) /2) ∗TIMECONST

41

42 #define STOP SIGMIN (STOP SIG − (STOP SIG − LONG SIGDEF) /2) ∗TIMECONST

43 #define STOP SIGMAX (STOP SIG + (STOP SIG − (STOP SIG − LONG SIGDEF) /2)) ∗TIMECONST

44

45 struct te rmios s t o r e d s e t t i n g s ;

46

47 stat ic const struct

48 {

49 const char l e t t e r , ∗morse ;

50 } Code [] =

51 {

52 { ’A’ , ".- " } ,{ ’B’ , " -... " } ,{ ’C’ , " -.-. " } ,{ ’D’ , " -.. " } ,

53 { ’E’ , ". " } ,{ ’F’ , "..-. " } ,{ ’G’ , "--. " } ,{ ’H’ , ".... " } ,

54 { ’I’ , ".. " } ,{ ’J’ , ".--- " } ,{ ’K’ , ".-.- " } ,{ ’L’ , ".-.. " } ,

55 { ’M’ , "-- " } ,{ ’N’ , "-. " } ,{ ’O’ , "--- " } ,{ ’P’ , ".--. " } ,

56 { ’Q’ , "--.- " } ,{ ’R’ , ".-. " } ,{ ’S’ , "... " } ,{ ’T’ , "- " } ,

57 { ’U’ , "..- " } ,{ ’V’ , "...- " } ,{ ’W’ , ".-- " } ,{ ’X’ , " -..- " } ,

58 { ’Y’ , "-.-- " } ,{ ’Z’ , " --.. " } ,{ ’1’ , ".---- " } ,{ ’2’ , "..--- " } ,

59 { ’3’ , "...-- " } ,{ ’4’ , "....- " } ,{ ’5’ , "..... " } ,{ ’6’ , " -.... " } ,

60 { ’7’ , " --... " } ,{ ’8’ , " ---.. " } ,{ ’9’ , "----. " } ,{ ’0’ , "----- " } ,

61 { ’?’ , "..--.. " } ,{ ’!’ , "..--. " } ,{ ’,’ , " --..-- " } ,{ ’.’ , ".-.-.- " } ,

62 { ’=’ , " -...- " } ,{ ’-’ , " -....- " } ,{ ’(’ , " -.--. " } ,{ ’)’ , " -.--.- " } ,

63 { ’+’ , ".-.-. " } ,{ ’@’ , "...-.- " } ,{ ’ ’ , "_" } ,

64 } ;

65

66 void r e s e t k e yp r e s s (void) ;

67 void s e t k e yp r e s s (void) ;

68 char getch () ;

69 void s i gp r o c () ;

70 enum s t a t e decode (const char ∗morse) ;

71 void ToggleDig i ta lChanne l (long c) ;

72 long long t im ed i f f (struct t imeva l t2 , struct t imeva l t1) ;

73 enum s t a t e addnewchars ignal () ;

74 enum s t a t e stop () ;

75 enum s t a t e s ends ta t e () ;

76 enum s t a t e addspace s i gna l () ;

77 enum s t a t e add longs i gna l () ;

78 enum s t a t e addsho r t s i gna l () ;

79 enum s t a t e nop () ;

50

80 enum s t a t e i d l e () ;

81 enum event getEvent () ;

82

83 void s i gp r o c () ;

84 void sync () ;

85 void sendMessage (char∗ msg , s i z e t l ength) ;

86 void encode (char ∗ s) ;

87 void ToggleDig i ta lChanne l (long c) ;

88 long long t im ed i f f (struct t imeva l t2 , struct t imeva l t1) ;

89 void endLight () ;

90 void newl e t t e rL igh t () ;

91 void newwordLight () ;

92 void shor tL ight () ;

93 void l ongLight () ;

94 void send () ;

95

96 #endif
� �

51

D Morse.c

�
1

2 #include "morse.h"

3

4 enum event { SHORT SIG = 0 , LONG SIG, SPACE SIG , CHAR SPACE, IDLE , STOP, SEND } ;

5 enum s t a t e { WAIT STATE=0, RECEIVE STATE, SEND STATE} ;

6

7 enum event e ;

8 enum s t a t e s ;

9 char morses ig [MAX] ;

10 char t ex t [MAX] ;

11 struct t imeva l t1 , t2 , t3 , t4 = {0 ,0} ;

12 double in =0;

13 double o ld in =0;

14 int qu i t = 0 ;

15

16 typedef enum s t a t e (∗ fp) (const char ∗ p la c eho ld e r) ; /∗ dek l a r e r a funkt ionspekartyp ∗/

17

18 /∗ t a b e l l med eventhanterare ∗/

19 fp eventhand le r s [] [7] = {{ addshor t s i gna l , add longs igna l , addspaces igna l , nop , nop , stop ,

s ends ta t e } , /∗ s t a t e WAIT STATE ∗/

20 { addshor t s i gna l , add longs igna l , addspaces igna l , addnewcharsignal ,

nop , stop , s ends ta t e } , /∗ RECEIVE STATE ∗/

21 {nop , nop , nop , nop , nop , i d l e , nop }} ; /∗ SEND STATE ∗/

22

23

24

25 // Cal led on c t r l+C

26 void s i gp r o c ()

27 {

28 int f l a g s ;

29 Cl e a rA l lD i g i t a l () ;

30 CloseDevice () ;

31 p r i n t f ("\n Digital out: Off \n Connection to USBInterfaceCard: off \n") ;

32 f l a g s = f c n t l (0 , F GETFL, 0) ; /∗ get cur rent f i l e s t a tu s f l a g s ∗/

33 f l a g s &= !ONONBLOCK; /∗ turn o f f b lock ing f l a g ∗/

34 f c n t l (0 , F SETFL , f l a g s) ;

35 e x i t (0) ;

36 }

37

52

38 // Takes the complete morse s i gna l bu f f e r and decodes i t to the cor re spond ing message

39 enum s t a t e decode (const char ∗morse)

40 {

41 s i z e t j ;

42 p r i n t f (" IN DECODE MORSE BUFFER: %s\n" , morse) ;

43 for (j = 0 ; j < s izeof Code / s izeof ∗Code ; ++j)

44 {

45 s i z e t s i z e = s t r l e n (Code [j] . morse) ;

46 i f (memcmp(Code [j] . morse , &morse [0] , s i z e) == 0)

47 {

48 t ex t [s t r l e n (t ext)+1] = ’\0’ ;

49 t ex t [s t r l e n (t ext)] = Code [j] . l e t t e r ;

50 morses ig [0] = ’\0’ ;

51 p r i n t f ("text = %s \n" , t ex t) ;

52 return RECEIVE STATE;

53 break ;

54 }

55 }

56 t ex t [s t r l e n (t ext)+1] = ’\0’ ;

57 t ex t [s t r l e n (t ext)] = ’$’ ;

58 morses ig [0] = ’\0’ ;

59 return RECEIVE STATE;

60 }

61

62 // Sets the d i g i t a l channel to o f f i f on and v i c e ver sa

63 void ToggleDig i ta lChanne l (long c) {

64 stat ic int cur = 0 ;

65

66 i f (cur == 0) {

67 ClearDig i ta lChanne l (c) ;

68 cur = 1 ;

69 } else {

70 SetDig i ta lChanne l (c) ;

71 cur = 0 ;

72 }

73

74 }

75

76 // Return the time d i f f e r e n c e in microseconds between t1 and t2

77 long long t im ed i f f (struct t imeva l t2 , struct t imeva l t1)

78 {

53

79 return 1000000LL∗(t2 . tv sec−t1 . t v s e c) + t2 . tv usec−t1 . t v u s e c ;

80 }

81

82 // Exi t s the program

83 enum s t a t e stop (const char ∗ p l a c eho ld e r)

84 {

85 putchar (’\n’) ;

86 t ex t [0] = ’\0’ ;

87 return WAIT STATE;

88 }

89

90 // Enters the r e c e i v e s t a t e

91 enum s t a t e s ends ta t e (const char ∗ p l a c eho ld e r)

92 {

93 i f (s != RECEIVE STATE)

94 {

95 return RECEIVE STATE;

96 p r i n t f ("Entering receivestate !\n") ;

97 }

98 }

99

100 // Adds a spa c e s i gna l at the end o f the morsebuf f e r

101 enum s t a t e addspace s i gna l (const char ∗ p la c eho ld e r)

102 {

103 morses ig [s t r l e n (morses ig)+1] = ’\0’ ;

104 morses ig [s t r l e n (morses ig)] = ’ ’ ;

105 decode (morses ig) ;

106 morses ig [s t r l e n (morses ig)+1] = ’\0’ ;

107 morses ig [s t r l e n (morses ig)] = ’_’ ;

108 decode (morses ig) ;

109 return RECEIVE STATE;

110 }

111

112

113 // Adds a new char charac t e r to the morsebuf f e r

114 enum s t a t e addnewchars ignal (const char ∗ p la c eho ld e r)

115 {

116 morses ig [s t r l e n (morses ig)+1] = ’\0’ ;

117 morses ig [s t r l e n (morses ig)] = ’ ’ ;

118 decode (morses ig) ;

119 return RECEIVE STATE;

54

120 }

121

122 // Adds a long charac t e r to the morsebuf f e r

123 enum s t a t e add longs i gna l (const char ∗ p la c eho ld e r)

124 {

125 morses ig [s t r l e n (morses ig)+1] = ’\0’ ;

126 morses ig [s t r l e n (morses ig)] = ’-’ ;

127 return RECEIVE STATE;

128 }

129

130 // Adds a shor t cha rac t e r to the morsebuf f e r

131 enum s t a t e addsho r t s i gna l (const char ∗ p la c eho ld e r)

132 {

133 morses ig [s t r l e n (morses ig)+1] = ’\0’ ;

134 morses ig [s t r l e n (morses ig)] = ’.’ ;

135 return RECEIVE STATE;

136 }

137

138 // Does nothing /wait s

139 enum s t a t e nop (const char ∗ p l a c eho ld e r)

140 {

141 /∗ Stay in the cur rent s t a t e ∗/

142 return s ;

143 }

144

145 enum s t a t e i d l e (const char ∗ p l a c eho ld e r)

146 {

147 morses ig [0] = ’\0’ ;

148 p r i n t f ("Message received: %s \n" , t ex t) ;

149 t ex t [0] = ’\0’ ;

150 return WAIT STATE;

151 }

152

153 // Gets the event f o r the event handler

154 enum event getEvent ()

155 {

156 long long d i f f ;

157 int f l a g s ;

158 o ld in = in ;

159 /∗ Reception ∗/

160 in = ReadAnalogChannel (1) ;

55

161 i f (abs (o ld in−in) > 10) /∗ only r ea c t to sudden changes ∗/

162 {

163 i f (in > o ld in)

164 {

165 gett imeofday(&t3 , NULL) ;

166 d i f f = t imed i f f (t3 , t4) ;

167 gett imeofday(&t4 , NULL) ;

168 p r i n t f ("The light was off for %lld useconds\n" , d i f f) ;

169

170 i f (d i f f > SPACE SIGMIN && d i f f < SPACE SIGMAX)

171 {

172 p r i n t f ("\tSignal was WHITESPACE\n") ;

173 return SPACE SIG ;

174 }

175 else i f (d i f f > INTRA CHARMIN && d i f f < INTRACHARMAX)

176 {

177 p r i n t f ("\tSignal was Intra -Character\n") ;

178 return IDLE ;

179 }

180 else i f (d i f f > NEWCHARMIN && d i f f < NEWCHARMAX)

181 {

182 p r i n t f ("\tSignal was New -Character\n") ;

183 return CHAR SPACE;

184 }

185 }

186 else

187 {

188 gett imeofday(&t3 , NULL) ;

189 d i f f = t imed i f f (t3 , t4) ;

190 gett imeofday(&t4 , NULL) ;

191 p r i n t f ("The light was on for %lld useconds\n" , d i f f) ;

192 i f (d i f f > STOP SIGMIN && d i f f < STOP SIGMAX)

193 {

194 p r i n t f ("\tSignal was STOP\n\n") ;

195 return STOP;

196 }

197 else i f (d i f f > SHORT SIGMIN && d i f f < SHORT SIGMAX)

198 {

199 p r i n t f ("\tSignal was SHORT\n" , d i f f) ;

200 return SHORT SIG ;

201 }

56

202 else i f (d i f f > LONG SIGMIN && d i f f < LONG SIGMAX)

203 {

204 p r i n t f ("\tSignal was LONG\n" , d i f f) ;

205 return LONG SIG ;

206 }

207 }

208

209

210

211 o ld in=in ;

212

213

214 }

215

216 i f (getch () != EOF && s != RECEIVE STATE)

217 {

218 f l a g s = f c n t l (0 , F GETFL, 0) ; /∗ get cur rent f i l e s t a tu s f l a g s ∗/

219 f l a g s &= !ONONBLOCK; /∗ turn o f f b lock ing f l a g ∗/

220 f c n t l (0 , F SETFL , f l a g s) ;

221

222 send () ;

223

224 f l a g s = f c n t l (0 , F GETFL, 0) ; /∗ get cur rent f i l e s t a tu s f l a g s ∗/

225 f l a g s |= ONONBLOCK; /∗ turn on b lock ing f l a g ∗/

226 f c n t l (0 , F SETFL , f l a g s) ;

227 }

228

229 i f (in > 55 && s != RECEIVE STATE) return SEND;

230

231 return IDLE ;

232 }

233

234 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ SEND ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/

235

236 //Sends the message msg [] with the l ength s i z e t

237 void sendMessage (char msg [] , s i z e t l ength)

238 {

239 s i z e t i ;

240 int time ;

241 p r i n t f ("Size of message: %d\n" , l ength) ;

242

57

243 sync () ; // Syncronize , s e t up t imer

244

245 for (i =0; i < l ength ; i++)

246 {

247 i f (msg [i] == ’.’)

248 shor tL ight () ;

249 else i f (msg [i] == ’-’)

250 l ongLight () ;

251 else i f (msg [i] == ’ ’)

252 {

253 newl e t t e rL igh t () ;

254 }

255 else i f (msg [i] == ’_’)

256 {

257 newwordLight () ;

258 }

259 }

260 p r i n t f ("Last Letter sent\n") ;

261 p r i n t f ("Messeage: %s was sent\n" , msg) ;

262 endLight () ;

263 }

264

265 // Sends a quick synch ron i s a t i on s i g n a l to r e s e t t imers be f o r e the a c t u a l l message i s sent

266 void sync ()

267 {

268 int time = 0 .2 ∗ TIMECONST;

269 ToggleDig i ta lChanne l (1) ;

270 us l e ep (time) ;

271 ClearDig i ta lChanne l (1) ;

272 us l e ep (time) ;

273 }

274

275 // Encodes the message s to morsecode so i t can be sent over the l i n k

276 void encode (char ∗ s)

277 {

278 s i z e t i , j , k , l = 0 ;

279 char mrs [MAX] ;

280 mrs [0] = ’\0’ ;

281

282

283 for (i = 0 ; s [i] ; ++i)

58

284 {

285 for (j = 0 ; j < s izeof Code / s izeof ∗ Code ; ++j)

286 {

287 i f (toupper (s [i]) == Code [j] . l e t t e r)

288 {

289 s t r c a t (mrs , Code [j] . morse) ;

290 l = l + s t r l e n (Code [j] . morse) ;

291 p r i n t f ("%c: " , Code [j] . l e t t e r) ;

292 p r i n t f ("%s\n" , Code [j] . morse) ;

293 break ;

294 }

295 }

296 }

297 putchar (’\n’) ;

298 mrs [l +1] = ’\0’ ;

299 sendMessage (mrs , l) ;

300 }

301

302 // The l a s t s i g n a l sent be f o r e te rminat ion o f the sending cy c l e

303 void endLight ()

304 {

305 int time = STOP SIG ∗ TIMECONST;

306 SetDig i ta lChanne l (1) ;

307 us l e ep (time) ;

308 ClearDig i ta lChanne l (1) ;

309 }

310

311 // Sent when the a new l e t t e r i s found in the bu f f e r

312 void newl e t t e rL igh t ()

313 {

314 int time = 3 ∗ TIMECONST;

315 p r i n t f ("New Letter\n") ;

316 ClearDig i ta lChanne l (1) ;

317 us l e ep (time) ;

318 }

319

320 // Sent when a whitespace i s found in the bu f f e r

321 void newwordLight ()

322 {

323 int time = 4 ∗ TIMECONST;

324 p r i n t f ("New Word\n") ;

59

325 ClearDig i ta lChanne l (1) ;

326 us l e ep (time) ;

327 }

328

329 // Sent when a ’ . ’ i s found in the bu f f e r

330 void shor tL ight ()

331 {

332 p r i n t f ("Shortlight \n") ;

333 int time = 1 ∗ TIMECONST;

334 SetDig i ta lChanne l (1) ;

335 us l e ep (time) ;

336 ClearDig i ta lChanne l (1) ;

337 us l e ep (time) ;

338 }

339

340 // Sent when a ’− ’ i s found in the bu f f e r

341 void l ongLight ()

342 {

343 p r i n t f ("Longlight \n") ;

344 int time = 3 ∗ TIMECONST;

345 SetDig i ta lChanne l (1) ;

346 us l e ep (time) ;

347 time = 1 ∗ TIMECONST;

348 ClearDig i ta lChanne l (1) ;

349 us l e ep (time) ;

350 }

351

352 void send ()

353 {

354 char sendtext [MAX] ;

355

356 SetDig i ta lChanne l (1) ;

357 p r i n t f ("Enter the message you want to send and then press Enter: ") ;

358 f g e t s (text , MAX, s td in) ;

359

360 ClearDig i ta lChanne l (1) ;

361 encode (t ext) ;

362 ClearDig i ta lChanne l (1) ;

363 }

364

365 //Resets the f l a g s f o r input

60

366

367 void r e s e t k e yp r e s s (void) {

368 s t o r e d s e t t i n g s . c l f l a g |= 16 ;

369 t c s e t a t t r (0 ,TCSANOW,& s t o r e d s e t t i n g s) ;

370 }

371

372 // Sets the f l a g s to be ready f o r input

373 void s e t k e yp r e s s (void) {

374 struct te rmios new se t t i ng s ;

375 t c g e t a t t r (0 ,& s t o r e d s e t t i n g s) ;

376 new se t t i ng s = s t o r e d s e t t i n g s ;

377 new se t t i ng s . c l f l a g &= (˜ICANON) ;

378 new se t t i ng s . c c c [VTIME] = 0 ;

379 t c g e t a t t r (0 ,& s t o r e d s e t t i n g s) ;

380 new se t t i ng s . c c c [VMIN] = 1 ;

381 new se t t i ng s . c l f l a g&=0x15 ;

382 t c s e t a t t r (0 ,TCSANOW,&new se t t i ng s) ;

383 }

384

385 //Returns a char without us ing ECHO

386 char getch ()

387 {

388 char c ;

389 s e t k e yp r e s s () ;

390 c=getchar () ;

391 r e s e t k e yp r e s s () ;

392 return c ;

393 }

394

395 int main (int argc , char∗∗ argv)

396 {

397 long t e s t = 0 ;

398 int f l a g s = f c n t l (0 , F GETFL, 0) ; /∗ get cur rent f i l e s t a tu s f l a g s ∗/

399 f l a g s |= ONONBLOCK; /∗ turn o f f b lock ing f l a g ∗/

400 f c n t l (0 , F SETFL , f l a g s) ;

401

402 i f (argc < 2)

403 {

404 p r i n t f ("Usage: ./morse # (where # is the interface ID)\n") ;

405 e x i t (0) ;

406 }

61

407 gett imeofday(&t4 , NULL) ;

408 s i g n a l (SIGINT , s i gp r o c) ;

409 t e s t = OpenDevice (a t o i (argv [1])) ;

410 i f (t e s t == −1)

411 {

412 pe r ro r ("OpenDevice") ;

413 e x i t (0) ;

414 }

415 in = ReadAnalogChannel (1) ;

416 s = WAIT STATE; // Star t s t a t e

417 while (! qu i t)

418 {

419 e = getEvent () ;

420 s = eventhand le r s [s] [e] (morses ig) ;

421 }

422

423 return 0 ;

424 }
� �

62

