Department of Computer Science

Therese Axelsson and Daniel Melani

Hash Comparison Module for OCFA

Bachelor’s Thesis
C2010:17

Hash Comparison Module for OCFA

Therese Axelsson and Daniel Melani

(© 2010 The author and Karlstad University

This thesis is submitted in partial fulfillment of the requirements
for the Bachelor degree in Computer Science. All material in
this thesis which is not my own work has been identified and
no material is included for which a degree has previously been

conferred.

Therese Axelsson and Daniel Melani

Approved, 2010-06-09

Advisor: Johan Garcia

Examiner: Martin Blom

iii

Abstract

Child abuse content on the Internet is today an increasing problem and difficult to deal
with. The techniques used by paedophiles are getting more sophisticated which means it
takes more effort of the law enforcement to locate this content.

To help solving this issue, a EU-funded project named FIVES is developing a set of
tools to help investigations involving large amounts of image and video material. One of
these tools aims to help identifying potentially illegal files by hash signatures derived from

using classification information from another project.

Contents

1 Introduction 1
1.1 Disposition L 2

2 Background 3
2.1 Technical background 4
2.1.1 eDonkey 4

2.1.2 Hashlists 4

2.1.3 Message Digest Algorithms 5

2.1.4 MD4 — Message Digest 4 Lo 6

2.1.5 POSIX . . oo 7

2.1.6 PostgreSQL 7

2.1.7 Berkeley DB. 8

2.1.8 Differences between Berkeley DB and PostgreSQL 9

2.2 OCFA - Open Computer Forensic Architecture 10
2.2.1 Technical introduction L. 10

222 Ocfaliib 12

2.2.3 The Anycast Relay 0oL 14

2.2.4 The Router Module, 15

2.2.5 The Kickstart Module 0oL 15

2.2.6 Different OCFA Module types 16

vii

2.3 FIVES . . .
2.4 MAPAP . . .
2.4.1 Content Rating and Fake Detection System

Design and Components

3.1 Environment and language
3.1.1 Language
3.1.2 Environments

3.2 Designo
3.2.1 Hashing
3.2.2 Hashing algorithm choice
3.2.3 Storage
3.2.4 MAPAP module overview

3.3 Summary

Implementation

4.1 Interfaces between modules
4.1.1 HashTree
4.1.2 DB . .
4.1.3 MAPAP . . .

4.2 Implementation details for hash tree
4.2.1 Implementation of DB front-end

4.3 Database queries

4.4 SUumMmary . . .o oL

Concluding Remarks
5.1 Result
5.1.1 Future work

21
21
22
22
23
23
23
24
25
26

29
29
30
30
31
31
33
34
38

5.2 Evaluation 40

5.2.1 Problems 41

5.3 Summary e 41
A Acronym List 43
References 45

156

List of Figures

2.1
2.2
2.3
24
2.5

3.1
3.2
3.3

4.1
4.2
4.3
4.4
4.5
4.6
4.7

[ustration of how a hash list is built
Table over different message digest algorithms
Example of generated hash strings [17].
Timeline of the FIVES project [8]..
Overview of the FIVES tools architecture [8].

Mlustration of the hashing flow in MAPAP module. . . .
A network of five hosts connected to the same database.

An overview of the MAPAP module design

The HashTree class.
The DB class. o
The Mapap class.
Flow diagram of the hash tree.
Flow diagram of the DB connection.
Flow diagram of DB queries.

[Mustration of the flow sequence in the MAPAP module.

X1

Chapter 1

Introduction

Paedophilic content on the Internet is today a problem difficult to deal with since the
files are hard to identify and locate. To deal with this issue, a EU-funded project lead by
Karlstad University is developing a set of tools to decrease the amount of harmful files on

the Internet.

This paper is a documentation of the development of one of these tools. The purpose
for this tool is to be able to search for computer forensic evidence more effectively. It is
interesting as a bachelor thesis because it involves data structures and hash algorithms,
which are important parts in the computer science curriculum at Karlstad University. Since
the tool was implemented in the programming language C++-, this bachelor’s project also

provides a good opportunity to evolve in this area of computer science.

As this project was related to a number of other projects, it was also essential to be
involved in how the different projects work and take this into consideration in both research,

design and implementation.

No pre-defined working method has been used; the module and documentation has

been developed primarily at two PC’s with Ubuntu at the Carl lab at Karlstad University.

2 CHAPTER 1. INTRODUCTION

1.1 Disposition
This section provides a short presentation of the five chapters in this paper.

e Chapter 2 covers the necessary background information used during the development

and implementation.

e In chapter 3 a short presentation of the preparation and design of the development

is given.
e Chapter 4 explains the implementation in detail.

e Chapter 5 is a discussion of the projects result and evaluation as well as a presentation

of the problems dealt with.

Chapter 2

Background

This chapter describes the background information for this paper, both from a technical
and project oriented point of view. As the objective for this project is to develop a new
module for an existing system, some technical knowledge is needed and the most essential
details will be presented in section 2.1. This will be followed by an introduction of other

projects that are related to this project.

e Section 2.2: OCFA — Open Computer Forensics Architecture
e Section 2.3: FIVES — Forensic Image and Video Examination Support

e Section 2.4: MAPAP — Measurement and Analysis of P2P activity Against Pae-

dophilic content

Initially an introduction will be given to a computer forensic framework which consists
of several programs that runs separately on top of a tailored library inside the architecture.
After that, two EU-funded projects which aims to reduce the amount of child abuse content

on the Internet will be described.

4 CHAPTER 2. BACKGROUND

2.1 Technical background

This section will cover all the technical dependencies needed to reach the objective of the
project. These dependencies covers some database interfaces, networks and algorithms. A

discussion of differences between different technologies will as well be given.

2.1.1 eDonkey

eDonkey is an advanced file sharing program which uses peer-to-peer [21](P2P) technology.
It was initially the original client for the eDonkey2000 network, also called ED2K [18].
eDonkey is well suited for large files such as software, image, audio and video files as it is
adapted for this kind of use. Similar to torrent technology, the client can download small
pieces of the file from many different peers and as it is P2P, the network is decentralized.
An important quality of eDonkey is the functionality of searching; instead of retrieving
results by comparing file names it uses the files hash [18]. A file hash is what one may
call a file’s fingerprint which consists of a string of characters. Two different files are
nearly guaranteed not to have the exact same hash, despite how similar they are. They
are therefore optimal for file searching as when two hashes are identical, they are copies
of the same file [19]. The file sharing client eDonkey is no longer developed nor supported
since 2005 whilst the eDonkey network is kept alive by its users.

2.1.2 Hash lists

To ensure data integrity when transferring files, a hash list can be used. A hash list is an
expansion of the concept of using hash values of data to ensure its integrity. As shown
in Figure 2.1, instead of using a single hash value for all the data, the data is split into
several blocks of data. A hash string is then calculated separately for each block, then a

top hash is calculated as a sum of all hash pieces [20].

2.1. TECHNICAL BACKGROUND 3

TOP HASH

A A A A
#~ o ! o o

Hash1 Hash2 ‘ Hash3 HashN ‘

a A A i \ i
SR S A
| | | | | | | |
: Datablock1 : : Datablock2 : : Datablock3 : : DatablockN :
| | | | | | |

e o S e e e e i e e Pl el e B

Figure 2.1: Hlustration of how a hash list is built

When downloading files hash lists has an advantage over a regular hash. If there is an
error present in the downloaded file and a single hash value is used, the mismatch of hashes
would indicate an error and the entire file would have to be downloaded again. However, if

a hash list is used, only the file segment containing the error would have to be downloaded.

2.1.3 Message Digest Algorithms

A message digest algorithm is an algorithm which produces a hash string, or message digest,
from a file or text string of an undefined size. A hash string that is produced in this way is
not decodable, which means it is irreversible. Commonly used message digest algorithms
are MD2, MD4, MD5 and SHA-1, all suitable for different purposes. As illustrated in the
table in Figure 2.2, the hash string produced by the algorithms are of different lengths

and the algorithms are developed with different machine architectures in mind.

6 CHAPTER 2. BACKGROUND

Algorithm Length of hash | Machine

MD2 128 bits S-bit
MD 4 125 bits 32-hit
MDS 125 bits 32-hit
SHA-1 160 bits 32-hit

Figure 2.2: Table over different message digest algorithms

Though the hash strings have fairly similar length, the method of producing them differ
[9][6].

2.1.4 MD4 — Message Digest 4

MD4 is the fourth in the message digest series and is considered fast and compact. The
leap between MD4 and its predecessors is quite large as MD2 was made to compute on
8-bit machines [10]. As opposed to the relation to the predecessors, the differences between
MD4 and the successor MD5 are not large. MD5 is as well developed for 32-bit machines
and work similarly but with more security functionality. Thus, MD5 is essentially the
same algorithm as MD4 but more secure. This algorithm was developed as a result after

discovering some safety loopholes in MD4 especially on PC machines [6].

The hash string is computed by taking a message of limited undefined length and
returning a hash string with a length of 128 bits expressed as a hexadecimal of 32 characters.
Even a small change in the message, as small as one single character, result in a substantial
change in the digest message returned, which makes it in theory infeasible for MD4 to
produce two message digests with the same output value [17]. To ensure that the messages

length plus 64 is divisible by 512 it is padded with the length required.

2.1. TECHNICAL BACKGROUND 7

MD4 (“The quick brown fox jumps over the lazy dog”)
Returns the string:

lbee69%9a46ba8lll85bcl94762abacaec90

MD4 (“The gquick brown fox jumps over the lazy cog”)
Returns the string:

b86el30ce7028dab5%9e672d56ad0113df

Figure 2.3: Example of generated hash strings [17].

Figure 2.3 illustrates clearly that the generated hash changes dramatically when only
replacing the letter d with c.

2.1.5 POSIX

POSIX is a standard for an operating system’s (OS) API and other interface utilities.
POSIX is short for Portable Operating System Interface and is implemented at many of
the UNIX-like OS’s [22].

2.1.6 PostgreSQL

PostgreSQL, developed by the PostgreSQL Global Development Group, is an object-
relational database management system [7]. PostgreSQL has its origin at the University
of California, Berkeley. The database management system was started as a post-Ingres
project and used many ideas from an earlier system called Ingres. The project was named
Postgres and was lead by Michael Stonebraker, who also led the projects predecessor Ingres
[7].

In 1986, the first papers describing the basis of PostgreSQL were released, and in 1988

the first prototype was made available. The focus was to remedy a number of, at the time,

8 CHAPTER 2. BACKGROUND

common problems with database systems. The new features made it possible for a user to
fully describe the relationships within the database. This was earlier something that was
handled by the user and not the database.

PostgreSQL strongly adheres to the ANSI-SQL 92/93 standards with support for read-
committed serializable transaction isolation levels, and full support for sub queries. Post-
greSQL has a number of features and extensions that are not part of the standards. There
is also support for a wide variety of data types.

Blocks of code can be organized into functions which can be executed on the PostgreSQL
server. These functions are useful when a user wishes to extend PosgreSQL’s features.
For example, a user may wish to add functionality for different mathematical algorithms,
cryptography, or even Oracle compatibility.

The set of programming languages in which functions can be written in are:

Compiled languages — C, C++, Java

Statistical language — R

Scripting languages — Lua, LOLCODE, Perl, PHP, Python, Ruby, sh, tcl, Scheme

Built-in language — pgSQL

Access to PostgreSQL can be done through library interfaces. These interfaces exist
for many different programming languages. Examples of languages for which there exist
a library interface are: C, C++, Java, Perl, Python and LISP. Documentation for Post-
greSQL is rich and can be found on the projects web site. PostgreSQL also has a large

user community from which many code examples can be found.

2.1.7 Berkeley DB

Berkeley DB was created when BSD went from version 4.3 to version 4.4 within the time

period 1986 to 1994. The main reason for creating Berkeley DB was to remove dependency

2.1. TECHNICAL BACKGROUND 9

on source code developed by AT&T. From 1996 to 2006 the database was developed by
Sleepycat Software, a company created when Netscape requested that the authors of Berke-
ley DB improve the application. Sleepycat software was acquired by Oracle Corporation
in 2006 which is still developing the software [16].

Berkeley DB has, compared to many other database implementations, a very simple
architecture. The database system is implemented as a library. User created programs
access database through APT calls.

In Berkeley DB there is no support for a query language, SQL or similar. There are no
table schemas or table columns. How the data and keys are stored is left to be decided by
the user. Advanced features such as ACID transactions, fine-grained locking, hot backups,
and replication are, despite Berkeley DB’s simple architecture, implemented.

Berkeley DB is supported for Windows and operating systems using the POSIX (see

section 2.1.5) standard, presented in section 2.1.5 [4].

2.1.8 Differences between Berkeley DB and PostgreSQL

There are a number of important differences between the two database management sys-
tems PostgreSQL and Berkeley DB. With both database management systems there are
a number of benefits and drawbacks and there is no obvious choice between PostgreSQL
and Berkeley DB.

PostgreSQL is a complete object-relational database management system with a large
feature set, standards compliant and equipped with many and advanced extensions, while
Berkeley DB is a high performance embedded database with a simple architecture. Berkeley
DB stores data arbitrarily in byte vectors and the representation of the data is left to the
user, while PostgreSQL has support for many different kinds of data types and facilities
for creating user defined data types. There is no query language in Berkeley DB, and there
is no network support either. PostgreSQL, on the other hand, has support for both.

The two databases are distributed under different licenses. PostgreSQL is distributed

10 CHAPTER 2. BACKGROUND

under the PostgreSQL license [7]. Berkeley DB is distributed under the Sleepycat License
[16].

2.2 OCFA - Open Computer Forensic Architecture

OCFA is short for Open Computer Forensics Architecture and is an Open Source computer
system whose purpose is to facilitate the search of harmful or illegal files [11]. It is a frame-
work which brings together several modules with different purposes and the environment
allows existing tools and libraries to be easily plugged in.

The first PoC version was completed in the year 2004 by the Dutch National Police
Agency. In 2006 the first complete live version, 2.0.0, was released and now as an Open
Source software system licensed by GPL/LGPL. The current version as of this day is 2.2.0
and was released April 2nd 2009 [14]. The framework is growing rapidly since new modules
from different sources are added regularly.

It is developed to support processing of terabytes of data and files where the result is
potential evidence used by forensic analysts. In this way, the amount of files that has to
be manually processed is substantially decreased. The data, processed or pre-processed, is
easily accessible through a search and browse graphical interface [15].

This paper describes the previous OCFA release 2.1.0 while the latest release is of OCFA
is 2.2.0 [11].

2.2.1 Technical introduction

The OCFA framework is built on a Linux system but can be run on any operating system
using the POSIX standard. OCFA is in theory a set of modules, where every module is run
as a separate program. The modules are collected in the framework to form one working
system. The framework is divided into several different sections which all have a unique

purpose.

2.2. OCFA - OPEN COMPUTER FORENSIC ARCHITECTURE 11

The fundamental requirements of the OCFA functionalities are

e The result (metadata and evidence file) must be open to a third party tool used by

investigators to retrieve.

e The framework should be easy to extend, meaning development and implementation

of a new module must not be complicated.

e It must be possible to run different components of the framework on separate ma-
chines and still function as one whole framework. This is to be able to ease the

workload on one single machine.

e Several investigators must be able to search evidence and metadata at the same time.

The system overall is very stable since if one single module fails, the rest of the archi-
tecture remains intact thus in the event of a module crash, the data and metadata should
be recoverable.

The programming language used to develop the framework is mainly C++, and SQL for
the database. OCFA is developed using object oriented programming (OOP) where every
module is defined as a separate object. The framework is divided into three subprojects
[14]; Ocfaliib, OcfaArch and the OCFA modules.

The OFCA library holds the foundation on which the entire framework is built and the
most essential libraries will be described in this thesis.

The OcfaArch can also be referred to as the OCFA core modules as they set the ground
rules for the basic functionality. There are a number of modules considered to be core
modules, however, a few of them set rules for the most important parts of the system, such

as functionality for user interface and routing.

e The AnycastRelay

e The Router Module

12 CHAPTER 2. BACKGROUND

e The Kickstart Module

At last, the different types of modules and storage in OCFA will be presented.

2.2.2 OcfalLib

OcfaLib is the frameworks library and is accessible and used by all modules along with
the other subprojects. One of the purposes of Ocfalib is to enable different modules to
communicate with each other, and therefore should be included in every module. The
OcfaLib is actually a collection of many smaller libraries intended for different purposes
and much of the implementation of the framework is defined there.

Only relevant libraries will be presented in this paper but further reading is available

at [13].

Misc library

Evidence library

Treegraph library

Fs library

Message library

Store library

Facade library

All listed libraries except for Misc is part of the higher level Module library. A short

presentation of the main functionality of each library will be given below.

2.2. OCFA - OPEN COMPUTER FORENSIC ARCHITECTURE 13

The OCFA misc library is a collection of classes which defines a set of basic data
types that are unique for OCFA, such as types for date and time. Other functionality it
provides concerns logging and exception handling. The OCFA mother class, OcfaObject,

is also defined here and most modules inherit from this class.

The OCFA evidence library provides an API for other modules to extract metadata
to and from an XML file to obtain evidence information and add new metadata. The meta-
data is divided into two different levels; top level metadata and job level metadata. The
API provides for extracting both levels. The top level metadata contains fields concerning
the entire evidence used to locate or identify the evidence. This can be an id (identifica-
tion number), src (physical source of where the evidence is located) and the MD5 (message
digest 5) hash of the file itself. The job level metadata is information about the evidence
added to the metadata by other modules.

The OCFA treegraph library is the foundation of all modules using advanced tree-
graphs to extract evidence metadata on all levels, for example some of the dissector modules
(see section 2.2.6). Any module using this library can work with any level of metadata

and the derived metadata.

The OCFA fs library (named evidence tree library in later releases), file system
abstraction library, is formed by the treegraph library and uses the treegraph to traverse a
directory tree in order to gather data and metadata on evidence on all levels. This is done

by mapping the data into a structure which is easily accessible by the modules [2].

The OCFA message library contains functionality to provide processes and other
modules the possibility of sending shorter messages to each other. A message can be of

the following kinds:

e Unicast — messages directed to a pre-defined instance of modules

14 CHAPTER 2. BACKGROUND

e Broadcast — messages directed to all connected modules
e Anycast — messages directed to a specific module type in any instance

e Multicast — messages directed to all modules that are subscribing a certain channel

For sending evidence and metadata, the Anycast is used. The message server itself is

named the anycast relay, read further at section 2.2.3.

The OCFA store library provides functionality for modules to store evidence data
and metadata in a way to completely avoid redundancy. This is achieved by hashing the
evidence data with a MD5 hashing algorithm, returning a unique string. If new evidence
should be stored and an exact match of its hash string already exists in the database, those

will share the same space in the database [12].

The OCFA facade library is a collection of the most frequently used libraries for
the OCFA modules. It is defined as a namespace and including this gives access to the

majority of what is required to develop a new module.

2.2.3 The Anycast Relay

The AnycastRelay is OCFA’s messaging server. It is a robust and secure messaging service
and holds functionality for recovering of lost messages in case of a module crash. It is able
to do this by assigning different priorities, buffering the messages and keeping status flags.
As long as a message is pending, the module stays updated with which connections are
active and which messages has been sent where in order to be able to resend them.

The AnycastRelay also functions as a connector and keeps a frequently updated map
over which modules that are connected to the router. Not all modules within the framework

are constantly active, or even started, but are initiated when called by another module [14].

2.2. OCFA - OPEN COMPUTER FORENSIC ARCHITECTURE 15

Instead of having a large number of connections active throughout the framework between

separate modules, connections are passing through the AnycastRelay.

2.2.4 The Router Module

The Router module has to be running in order to enable modules to have access to the
incoming evidence. As its name states, the router module’s purpose is to route evidence
between modules. This is achieved by sending the evidence data and metadata in means
of messages. For the module to be able to complete the evidence transfer, it only needs
access to the top level metadata attached to the evidence which gives some information to
enable the module to make a routing decision. Any other data connected to the evidence
remains untouched.

All evidence carries information about the path it has travelled within the framework
and also XML code containing job statuses. The status of evidence indicates whether
certain task has been completed or not. When a module receives this evidence, it checks
for any job status for tasks connected to that module that are not completed. Once it has
completed the task, the module sets the status label ”"processed” and returns the evidence
back to the router. The router looks for any status set to ”processed” and sets it to ”done”.
This helps the router to make a routing decision.

To be able to locate which module that should receive the evidence next, the router
uses a rulelist. The rulelist is a table which is predefined by different modules, thus when
implementing a new module it has to be added to the rulelist. When the metadata of
certain evidence matches a certain rule, the action set for that rule is executed by the

router module to route evidence forward.

2.2.5 The Kickstart Module

The kickstart module is the frameworks evidence provider. The process of submitting the

evidence into the framework is called "kickstarting”, thus the name of the module. What

16 CHAPTER 2. BACKGROUND

the module does is storing a link, or path, to where the evidence is stored physically but
the evidence data itself is not handled by the module.

Evidence files in OCFA are simply hard disk images from where the evidence was
initially located. The link can either lead to the evidence file itself or a directory where

more than one instance of evidence may be located.

2.2.6 Different OCFA Module types

A module is a program which adds some functionality to the evidence processing, such as
adding or extracting evidence data or metadata. Depending on what their functionality

is, they can be divided into three different categories:

e Extractor module
e Dissector module

e Expander module

Depending on which type of module, different functionality from Ocfaliib is given.

Extractor modules has the capability to access the actual file data of an evidence
and then depending on the modules function, doing some work on the file data. The given

result is added as new metadata to the evidence.

A dissector module has a similar functionality with the difference that it can create
new evidence file data from the evidence it works with. As opposed to an extractor module,
it can work with larger evidence that is separated in a directory hierarchy. This is possible
by using functionality provided by the treegraph library. An example is a module that can

unzip a compressed file, thus creating new evidence from the result.

2.3. FIVES 17

At last, an expander module can compare the metadata of an evidence with another
source of information. If new metadata is found in that source, it can combine them and

create new metadata.

2.2.7 Storage in OCFA

OCFA is currently using both PostgreSQL and Berkeley DB (see section 2.1.6 and 2.1.7)
to store the evidence file and metadata and is divided into two groups of database tables;
the core tables and tables storing various metadata about certain evidence. The core tables
store location of evidence and metadata, and also the relations between evidence and its

metadata to keep track so they do not get lost.

2.3 FIVES

FIVES, Forensic Image and Video Examination Support, is a project that gathers law
enforcement, academia and industry to deal with the problems with media files containing
child pornography and is planned to extend over a period of two years; February 1st 2009
to February 1st 2011 (see Figure 2.4). It is an EU-funded project and Karlstad University
(KAU) has the role of coordinator.

Project User require- System development First System development End-user Final
start ments study prototype tests software
Feb 2009 Aug 2009 Feb 2010 Aug 2010 Feb 2011

Figure 2.4: Timeline of the FIVES project [8].

To achieve the goal of decreasing the amount of child abuse content, FIVES is developing
a set of tools tailored for this sole purpose. The tools are built as modules as part of the
OCFA framework which in turn is set on a Linux operating system. As illustrated in Figure

2.5, the architecture includes modules for graphical user interfaces (GUI), decompressing

18 CHAPTER 2. BACKGROUND

archive files (extractors, E), five image and video processing (I and V) and last a module

for specialized in hashing (H).

_.I._I:D
M= C 0

i

QCFA forensic framework

Linux forensic distribution

Figure 2.5: Overview of the FIVES tools architecture [8].

The FIVES modules are developed to handle media files, such as image and video and
together they will generate rating for how probable it is that the file in question contains
child pornography or evidence of child abuse. The functionalities to obtain this can for
example be face and skin color recognition. As much paedophilic content have misleading
file names and keywords, the files are usually more difficult to find. The tools developed by
FIVES result in making these fake names toothless as it is the content of the file itself that
is analyzed. Several graphical user interfaces can be provided for, including a windows-
based front end. To enable development and testing of the tools, FIVES collects data
of harmful files from the law enforcement. Further, some changes has been made to the

standard OCFA functionality [8].

2.4. MAPAP 19

2.4 MAPAP

MAPAP, Measurement and Analysis of P2P activity Against Paedophile content, is a
project started in year 2008 in France by partners from France, Ireland, Poland and Slovenia
as a result of a french study in 2005 about the availability of paedophilic content on the
Internet. The study indicated that much of this content was spread in P2P networks.
The project aims to reduce the problem of locating these harmful files as most of them
use misleading file names. The law enforcements are approaching this problem by making
registers over keywords often used by paedophiles to search files. Though, as the keywords
are changed frequently, the register has to be updated very often[5]. A content fake rating

system has been developed to counter this problem.

2.4.1 Content Rating and Fake Detection System

The content fake rating system is a tool whose future purpose is to enable Internet service
providers to filter their traffic. The functionality of the fake rating system is to analyze
files sent by peer-to-peer and by various measurements rating the probability of if the file
name is fake, which means if the file has pornographic or paedophilic content while the file
name indicates otherwise. Instead of focusing on the file name, an estimate is made by the
fake rating system of how probable it is that the file has paedophilic content. This is done
by examining file names, looking at the user’s normal Internet habits and which files are
jointly shared within user groups and similar techniques.

MAPAP has focused on the eDonkey network, a peer-to-peer network commonly used
for larger files, such as image and video files. Three different techniques were used to col-
lect data on files in the network; server-side measurement, measurement by client sending
queries and measurement by honeypots. In server-side measurement, a program is record-
ning all queries to and from a certain server, though no information can be given if the

data in question were actually received. The second technique simply means that a client

20 CHAPTER 2. BACKGROUND

send queries to a server and analyze the data that is returned and in the third and last
technique, a client uses honeypots, files with names that may be appealing to paedophiles,
to record where queries to get these files come from.

In this way, the MAPAP project has collected a large amount of field data stored in

databases available for research use [1].

Chapter 3

Design and Components

This projects ambition was to develop a new module for the OCFA framework. The module
is named MAPAP module and in this chapter a brief presentation of the design and com-
ponents of the development and implementation will be given. Also a short presentation

of the MAPAP module project will be covered.

Initially, the languages used for the development will be described followed by devel-
opment platforms and chosen operating system. There will also be a discussion of the

motivation for the languages and environments of choice.

Further, an overview of the MAPAP module project will be discussed and then the

technical aspects; design and architecture.

3.1 Environment and language

This section covers which different programming languages that were used to develop the
components of the MAPAP module, as well as the environments used to implement the

new module.

21

22 CHAPTER 3. DESIGN AND COMPONENTS

3.1.1 Language

From the multitude of available languages to choose from, covering different paradigms and
having different strengths and weaknesses, the languages chosen for the implementation of
this module are C++ and Perl. The reasons for choosing these languages are many, and
they will be discussed here.

For the implementation of the MAPAP module the most obvious choice of language is
C++ since the entire OCFA framework is written in C++.

Perl has been chosen because it is widely available and because it has good functionality
for the manipulation of text. Perl is available for most Unix system and comes pre-installed
on many Linux distributions, which is one of the main reasons for being used in this project.
The good support for regular expressions is also one very important feature that Perl has
since Perl was used mainly to populate the database with hash values. This task was

simplified by the use of regular expressions.

3.1.2 Environments

The MAPAP module was deployed in a Linux environment as it is required to run OCFA.
The type of environment also affects the set of libraries and tools available to the developers.
Since the given environment is Linux, there is an additional benefit which is that the module
will be portable between systems, as long as the system conforms to the POSIX standard.

The reason for choosing Linux, and more specifically Debian, as the development envi-
ronment is a straight forward one. The documentation of OCFA available at the time when
the implementation of MAPAP was started covered the installation and configuration of
Debian best.

As choice for database environment, the object-relational database management system
(DBMS) PostgreSQL was used and bash scripts was used for different tasks such as popu-
lating the database. The motivation for this is that OCFA uses PostgreSQL and using the

3.2. DESIGN 23

same facilitates the communication between the MAPAP module and the rest of OCFA.
More of the motivation for chosing PostgreSQL will be discussed in section 3.2.
The programming environment used were Eclipse with the C++ development kit (CDK).

As not all programming was performed on a Linux machine, this was a suitable choice.

3.2 Design

3.2.1 Hashing

In a peer-to-peer network, different parts of a given file may come from different sources.
This presents a problem regarding the authenticity of the received data. A user may insert
fallacious data into a peer-to-peer network if there is no way for a receiver to authenticate
the hash list. Because each file block has a hash, malicious users can insert fallacious data
into a block and calculate a new hash. The receiver will then only know if the data was
transferred correctly and not the data the receiver actually wanted.

To remedy the problem of authenticity of the received data, a top hash is used. A top
hash is a hash calculated based on the hash list created from all the received data blocks.
To calculate the top hash, the hashes in the list are concatenated into a single sequence. A
hash algorithm, not necessarily the same algorithm used for the hash list, is then applied
to the sequence, and thus the top hash is generated. If the top hash is acquired from a

trusted source then the authenticity of the hashes in the hash list can be verified.

3.2.2 Hashing algorithm choice

The module created in this project uses a database containing MD4 hash values. The
values within the database are collected from a peer-to-peer file sharing program called
eDonkey, presented in section 2.1. Therefore the module must use MD4 in the same

manner as eDonkey in order to generate valid MD4 hash values.

24 CHAPTER 3. DESIGN AND COMPONENTS

|J Data ‘
- ": N l-.-‘ - ’ N X ».
| Block 1 | | Block 2 ‘ ‘ Block 3 | | Block 4 |
— . | \ —Y ——\
| MDa | | MD4 | {MDd | ‘ MD4 |
, R . - \
‘ MD4 Vector |
L \
Top MD4 J

Figure 3.1: Ilustration of the hashing flow in MAPAP module.

As discussed in section 3.2.1, a hash list is used. Figure 3.1 illustrates the hash flow
in the MAPAP module, where the file is cut into blocks which in order are calculated into
separate hashes. Finally, a combined top-hash is calculated. This will be described in

detail in chapter 4.

3.2.3 Storage

OCFA has a variety of databases in its standard installation. In section 2.1, PostgreSQL
and Berkeley DB is presented and both are part of the OCFA installation and they both
where considered as each have their different advantages and disadvantages.

The chosen database management system is PostgreSQL. The main reason for this is
the possibility to easily create a distributed module that has a central database over hashes
which can be accessed by other parts of the OCFA framework. As the modules functions as
separate programs, they can be run on different machines but still can access the database

(see Figure 3.2).

3.2. DESIGN 25

" —

Ll

Database

Figure 3.2: A network of five hosts connected to the same database.

Another important advantage of using PostgreSQL as the underlying database man-
agement system is the possibility to combine many queries into one. This can be used as
a method of reducing load on the database. At last, the project’s participants have better
familiarity with database management systems with support for SQL, which reduces the

workload to implement and use it.

3.2.4 MAPAP module overview

The sole objective of this project was to develop a new module for the OCFA framework.
The owner of the project is FIVES which was presented i section 2.3. The aim was to
implement a module with functionality to compare hashes of OCFA evidence image files

with hashes provided by the MAPAP project (see section 2.4) to extend OCFA with

similar functionality.

26 CHAPTER 3. DESIGN AND COMPONENTS

The MAPAP module is defined in OCFA as an extractor module to get access to the
appropriate libraries and thus the correct successor classes. To be able to receive evidence
data that the module can process, the modules main class must inherit from an object

named EvidenceFileAccessor which is provided by the OCFA facade library.

‘ EvidenceFileAccessor ‘

HashTree
- hashVector: vector<Hash * >
= numChunks: unsigned int DB
- topHash: Hash* Mapap
+ pstql: PGeonn *
+ HashTree(filename:const char *) < + Mapapl)
+ ~HashTree() + ~Mapap() + mapapdb(host: char *, dbname: char®, user: char *, password: char *)
- calculateChunks(): void + processEvidence: void + ~mapapdb()()
- calculateFileSize(): void + query(hash:const char *): struct result
- getNextChunk(): char *
- calculateHashTree(): void
- calculateHash(data: const char*, size:long): Hash *

Figure 3.3: An overview of the MAPAP module design

As illustrated in figure 3.3, the module architecture consists of three main classes where
Mapap is the junction point. It binds the classes within the module together and is also
the class that connects the MAPAP module with OCFA. Mapap is the coordinator and
initiates the process. It fetches the evidence through EvidenceFileAccessor and routes it to
HashTree and DB to process it to get a result. When one evidence file is finished, Mapap
stores the result in the evidence metadata.

The MAPAP module methods and functionality will be discussed in detail in chapter

3.3 Summary

This chapter has discussed an overview of the different aspects of the MAPAP module

project.

e The technological aspects as language and environment has been presented

3.3. SUMMARY 27

e Choice of algorithms and storage has been discussed

e An overview of the MAPAP module project and design has been given.

In the next chapter, a more technically detailed description of the implementation will

be given.

Chapter 4

Implementation

In this chapter different aspects of the implementation of the MAPAP module is covered
and we go into depth of the parts that make up MAPAP. The development environment
is described and discussed as well. The different interfaces exposed by the objects that are
a part of MAPAP is presented and explained in detail. By explaining the internal flow of
the different objects of which MAPAP is composed, the reader is given insight into the
inner workings of the different objects.

There is a subsection in this chapter that covers how the sequences of calls needed
for initialization and evidence processing. Further, how evidence is tagged with metadata
when it is either fake, known or suspected child pornography is also explained.

In the last section, a brief description of the scripts used to populate the database with

the initial data on known, suspected and fake child pornography will be given.

4.1 Interfaces between modules

This section will introduce the components of the MAPAP module in a more technical
manner. An overview of the components is described in section 3.2.4 and the relation

between them is illustrated in Figure 3.3.

29

30

CHAPTER 4.

IMPLEMENTATION

4.1.1 HashTree

HashTree

- hashVector: vector<Hash * >
- numChunks: unsigned int
- topHash: Hash*

+ HashTree(filename:const char *)
+ ~HashTree()

- calculateChunks(): void

- calculateFileSize(): void

- getNextChunk(): char *

- calculateHashTree(): void

- calculateHash{data: const char®, size:long): Hash *

Figure 4.1: The HashTree class.

The hash tree class exposes an interface which contains two functions; one constructor and

one destructor. The constructor takes a path to a file as the only argument. The destructor

frees up internal memory usage and destroys the object.

4.1.2 DB

DB

+ pstgl: PGeconn *

+ mapapdb(host: char *, dbname: char®, user: char *, password: char *)
+ ~mapapdbi}()
+ query(hash:const char *): struct result

Figure 4.2: The DB class.

The database object has an interface which contains three public functions; constructor,

destructor and a query function. The constructor takes four arguments. The arguments

specify the necessary parameters to successfully establish a connection to a PostgreSQL

database, although the intention of the DB interface is to be independent from the specific

4.2. IMPLEMENTATION DETAILS FOR HASH TREE 31

database used in the implementation. To establish a database connection, a host name,
database name, user name and password has to be provided to the constructor.

The query function takes a reference to a hash value and returns a structure which
contains the result of the database query. The structure has four different values of which
zero, two or four have been set to relevant information depending on which type of result
the database query yielded. If the hash value cannot be found in the database all values

are set to -1 in the structure to indicate there was no hit.

4.1.3 MAPAP

Mapap

+ Mapap()
+ ~Mapap()
+ processEvidence: void

Figure 4.3: The Mapap class.

This class represents the implementation of MAPAP. It contains a constructor and a de-
structor which both take no arguments. The process evidence function is the main function
of MAPAP. This function is called upon to process all evidence routed to MAPAP. It does

not take any arguments and does not return anything.

4.2 Implementation details for hash tree

The hash tree class is the central part of MAPAP. For each evidence object that is routed
to MAPAP, a hash tree has to be generated in order to calculate the top hash. The top
hash is important because it is the value that is used to uniquely identify each file on the

eDonkey2000 network, upon which MAPAP is used to identify harmful files.

32 CHAPTER 4. IMPLEMENTATION

!

Open File

File failed to open

File successfully opened

o o \
Get file size)

/]
s »

o2 ~
|' Calculate number of |
chunks

- 4

| I

Iterate over file chunks
b

P)
|' Calculate hash value for \|
file chunk

\f-/

g

™
S

Add hash value to the end | More

of the vector containing all chunks to
\ calculated hash values rocess
g P P

v

- oy
|' Check if there are more |
\-chunks to be processed /

'

Mo more chunks

|" Calculate the hash value |
\ of the hash value vectcr)

I

- -

| Store the top hash \JI
" 5/

Figure 4.4: Flow diagram of the hash tree.

In order to calculate the top hash value, several steps have to be taken. As illustrated
in Figure 4.4, at first the evidence file must be opened, otherwise no data can be retrieved

to create the vector of hash values that is needed to calculate the actual top hash.

The evidence is processed in several parts, called chunks or data blocks. The number
of chunks is calculated by dividing the file size measured in kB retrieved in the previous

step by 9500kB and rounding upwards.

4.2. IMPLEMENTATION DETAILS FOR HASH TREE 33

FileSize

N = ——
umberO fChunks 9500k

This means that the last chunk may only be partially filled if the file size is not an
exact multiple of 9500kB. If this happens to be the case, the last chunk is padded with
zeroes to fill the entire chunk. The HashTree class uses OpenSSL and its’ crypto library
to calculate the MD4 hash value for each chunk.

When the MD4 hash has been calculated for every available file chunk, the vector
containing all the values is then converted to an array of bytes. This array is in turn
passed on to the MD4 hash function in the OpenSSL crypto library. The value that is
returned by the hash function is known as the hash tree’s top hash. The top hash is stored

for later usage in the database query function.

4.2.1 Implementation of DB front-end

The database front-end is designed to as simplistic as possible in order to efficiently create
an abstract layer in between the user of the database and the actual database. The
intention of this decision is that the database used shall be possible to replace if needed.
This possibility is desirable if for example the underlying database is not efficient enough
in terms of resource usage or if the performance is too low. The database is also an
appropriate component to implement database query caches in if it also deemed necessary.
Connecting to the database is one simple step.

All parameters that are required to successfully establish a connection to the database
is provided to the database front-end class by passing them as arguments to the class
constructor. The required parameters that must be passed to the constructor are user

name, password, database name and host name.

34 CHAPTER 4. IMPLEMENTATION

!

Connect to database :I

o
|' Check if connection was |
| successfully established |
b "

:

Connection successfull

o

Failed to
open | Save handle to database
connection) 4

B

Figure 4.5: Flow diagram of the DB connection.

.
"

If the connection is successfully established, the handle to the database is stored in the
database front-end object for later use in every query towards the database. As shown
in Figure 4.5, in the event that an error occurs during the connection establishment an
exception is raised and thrown. It is up to the caller of the constructor to handle this

exception and decide what mitigating measures to take.

4.3 Database queries

In order to keep the interface as simple as possible to provide a fast and simple switch
between databases, only one type of query is supported. The query function takes one
argument, which is a top hash. This top hash is then searched for in three different tables
which contain the three different types of possible matches.

The type of the return value from the query function is a structure which has four

4.3. DATABASE QUERIES 35

fields; one field for each possible attribute stored in the database. The structure is filled
with invalid values if no match was found in the database, or two or four values, depending

on which type of match occurred (see Figure 4.6).

=,

Generate guery string |
A

P

L

Y

P
(Send query to database

\J

|" Check if query retuned |

\ any results)
p vy

.

Mo results returned

Results were returned

Y
Fal s, e
et invalid values in return | | Set values in return
\ structure) A structure /
. e L A

:
@

Figure 4.6: Flow diagram of DB queries.

If needed for later performance improvements this is where database query caching

should be implemented.

Figure 4.7 illustrates a set of DB query sequences. This set contains the two most
common sequences that will occur and they describe initialization of the MAPAP module

and evidence processing, both of which are triggered by OCFA.

36 CHAPTER 4. IMPLEMENTATION

OCFA MAPAP Hash tree Database frontend Database

Initialize
Connect
Connect

Connection established

Connection established

Process evidence

Calculate top hash

Search database for top hash

Query database
Return matches
Return result structure

Add metadata to evidence

Figure 4.7: Illustration of the flow sequence in the MAPAP module.

The initialization sequence is a sequence with a small number of steps. It is,
however, a very essential sequence since MAPAP will fail to start if it does not succeed.
The sequence starts with OCFA requesting MAPAP to initialize itself, whereupon MAPAP
tries to establish a connection towards the database. The database connection is established
by the database front-end module when MAPAP creates the database front-end object. If

the connection is successfully established, a handle towards the database is stored for later

4.3. DATABASE QUERIES 37

usage. If there is a problem in creating a connection an error is indicated by throwing an

exception.

The second part of the sequence diagram depicts the sequence of messages passed
between OCFA, MAPAP, the hash tree object, the database front-end and the database
when OCFA places a request upon MAPAP to process a given evidence object.

By calling the MAPAP module, OCFA can start the processing of given evidence.
MAPAP then passes the evidence object along to the hash tree module which calculates
the top hash for the evidence. The top hash is then sent back to the MAPAP module.
MAPAP relays this top hash to the database front-end. The database front-end embeds
the top hash into a query which is then sent to the database. If the the top hash can
be found in the database, the database front-end will fill in the corresponding values into
a structure and pass this structure back to the MAPAP module. The parameter in this
structure will, in the event that no matching top hash could be found in the database, be

set to values indicating no match.

Depending on what is returned from the database front-end, MAPAP will set a different
amount of evidence metadata. No amount of metadata is set when the structure returned
from the database front-end contain nothing but invalid values. This will be the case when
the evidence processed by MAPAP is not previously known child pornography. This is
indicated by the absence of its’ top hash in the database. If the returned structure has two
valid values, the two values indicate whether the evidence is either fake or suspected child
pornography and this fact will be indicated by setting two fields of metadata for the given
evidence. Should the case be that four valid values are set in the returned structure, this
indicates that the processed evidence is know child pornography and the four fields in the

structure will be set as metadata for the processed evidence.

38 CHAPTER 4. IMPLEMENTATION

The sequence described in Figure 4.7 will be executed for each and every evidence object
passed to MAPAP by OCFA for processing. If the performance of MAPAP is inadequate
in terms of processing speed, it is possible to add a layer of buffering so that a set of top
hashes can be gathered from different evidence objects and passed on to the database in

one aggregated clump.

4.4 Summary

In this chapter the implementation of the MAPAP module for the OCFA framework has
been presented and its’ inner workings has been explained. As can be seen from the
diagrams previously presented, the architecture has been kept as simple as possible to ease
any future improvements, optimizations and further development of the MAPAP module
if the need should ever arise.

Since short execution time is an important factor in the MAPAP module as millions
of files can be processed by the OCFA framework, much effort has gone into designing
and implementing the module in an execution efficient fashion. The amount of abstraction
levels and inheritance hierarchies have been reduced to increase the effectiveness of the
module. The cost of this comes in the form of slightly less readability of the implemented
program code.

A number of places where further optimizations can be implemented has also been

presented and discussed.

Chapter 5

Concluding Remarks

In this chapter, the result of the development and implementation will be explained. Fur-

ther, an evaluation of the projects progress and problems will be discussed.

5.1 Result

The result of this project was a fully implemented module, the MAPAP module, in the
OCFA framework. It has been tested without any indication of errors or weaknesses.

To ensure that the MAPAP module functions as intended a number of scenarios has
been identified and tested against. One scenario covers the case when the top hash is to
be calculated on an empty file. This file is to be padded with zeroes such that it fills one
chunk. This scenario has been tested by passing empty files to MAPAP and validating the
result.

In another scenario files with sizes that are not an exact multiple of the chunk size are
tested with MAPAP. This requires MAPAP to correctly pad the files with zeroes before
calculating the top hashes. These values have been verified.

The case where the files passed along to MAPAP have sizes of even multiples of the

chunk size has also been covered. This case requires no zero padding and is correctly

39

40 CHAPTER 5. CONCLUDING REMARKS

handled by MAPAP.
To test if MAPAP correctly allocates and frees memory it has been let run for longer
periods of time and then analysed for any inconsistencies. No inconsistencies has been

found in the memory management of the MAPAP module.

5.1.1 Future work

Some things have been taken into consideration as the OCFA framework is open source and
other developers may come across the MAPAP module. The module has been implemented
in simplest manner possible, but is still functional, so it will be easily extended.

FIVES is still an ongoing project and some modifications may be required. The module
is implemented and fully functional, though some optimization of the code can always be
made. As calculating the hash is the part that takes the longest time, this is something

that can be evaluated and developed further.

5.2 Evaluation

The module was partially developed at the Carl Lab at Karlstad University, though much
work was done remotely via a VPN-tunnel. The distribution of time was relatively evenly
disposed, where the design and development of the module occupied 60% and the writing
of the paper 40%.

The project can be divided into the following sections:

Setting up and getting to know the environment

The development of the module

Implementation and testing

Writing the documentation

5.3. SUMMARY 41

As for getting used to the OCFA framework, the learning curve was steep, but as soon
as the environment felt familiar it was friendly and easy to work with.

Writing this thesis felt dense in the beginning but in time it became a very important
learning experience. At first, Open Office was used for this purpose but after some con-
sideration a switch was made to LaTeX. This to save time but also to be able to structure

the thesis better.

5.2.1 Problems

In the initial period of the project, too much time was spent on installing OCFA on the
Carl Lab computers. The operating system installed did not provide with all the necessary
packages to run OCFA and the OS had to be reinstalled.

Using Debian as development platform was initially not the first choice. The learning
curve was steep as opposed to if Ubuntu 8.10 had been chosen. Although the OCFA project
provides with specification and documentation for Ubuntu 8.10, the packages and libraries
provided by that OS were insufficient. Any other Linux distribution would suffice as a
development environment but small differences such as dependencies upon libraries and
tools could have caused small, but not insurmountable problems. However, to save time,
Debian was the choice.

Far into the project, a new OCFA was released and thus the documentation provided
was removed and not immediately replaced with a new one. Once the documentation was
updated, it was no longer suitable. To solve this issue, a website called Web Archive was

used [3]. On this site, most of old Internet content is archived and available for browsing.

5.3 Summary

Although, the workload to pull this through was underestimated, the overall result of the

project is satisfactory.

42 CHAPTER 5. CONCLUDING REMARKS

The experience and knowledge was unevenly spread between the project members and
due to lack of time, the work had to be performed by the most suitable member. What we
have learned from this is that more time should have been spent to planning the process
before starting to develop.

One upside is to have gotten to know how a larger framework may function and how
to adapt a program into that framework. It has also been very fulfilling to participate in
the work of decreasing the amount of child abuse content and learn how different projects

deal with this problem.

Appendix A

Acronym List

In order of appearance:

FIVES
OCFA
MAPAP
pP2P
MD4
SHA-1
SQL
ANSI
PHP
LISP
DB
BSD
API
ACID
POSIX

Forensic Image and Video Examination Support
Open Computer Forensics Architecture
Measurement and Analysis of P2P activity Against Paedophilic content
Peer-to-Peer

Message Digest 4 (Similar for MD2 and MD5)
Secure Hash Algorithm 1

Structured Query Language

American National Standards Institute
Personal Hypertext Preprocessor

LISt Processing

Database

Berkeley Software Distribution

Application Programming Interface

Atomicity, Consistency, Isolation, Durability

Portable Operating System Interface

43

44 APPENDIX A. ACRONYM LIST
PoC - Proof of Concept
(L)GPL - (Lesser) General Public License
XML - Extensible Markup Language

VPN

Virtual Private Network

References

[1] Mapap information website. http://antipaedo.lip6.fr/, May 2010. Last visited
in May 2010.

[2] Ofca - open computer forensics architecture library. http://web.archive.org/web/
20080505054241/http://ocfa.sourceforge.net/, May 2010. Last visited in May
2010.

[3] Web Archive. Web archive. http://www.archive.org/web/web.php, May 2010. Last
visited in May 2010.

[4] Freshmeat. Berkeley db. http://freshmeat.net/projects/berkeleydb/, May 2010.
Last visited in May 2010.

[5] Europe’s information society. Mapap information website. http://ec.europa.
eu/information_society/apps/projects/factsheet/index.cfm?project_ref=
SIP-2006-PP-221003, May 2010. Last visited in May 2010.

[6] RSA Laboratories. Definitions of md2,md4 and md5. http://www.rsa.com/rsalabs/
node.asp?id=2253, May 2010. Last visited in May 2010.

[7] PostgreSQL. Postgresql. http://www.postgresql.org/about/, May 2010. Last
visited in May 2010.

[8] The FIVES project. Forensic image and video examination support. http://fives.
kau.se/, May 2010. Last visited in May 2010.

[9] FIPS PUBS. Sha-1. http://www.itl.nist.gov/fipspubs/fip180-1.htm, May
2010. Last visited in May 2010.

[10] SearchSecurity. Definition of md4. http://searchsecurity.techtarget.com/
sDefinition/0, ,sid14_gcib27478,00.html, May 2010. Last visited in May 2010.

[11] Softpedia. Ofca - open computer forensics architecture li-
brary. http://linux.softpedia.com/get/System/Shells/

45

46 REFERENCES
Open-Computer-Forensics-Architecture-27425.shtml, May 2010. Last vis-
ited in May 2010.

[12] Sourceforge. Ofca - open computer forensics architecture. http://sourceforge.net/
apps/trac/ocfa/wiki, May 2010. Last visited in May 2010.

[13] Sourceforge. Ofca - open computer forensics architecture library. http://
sourceforge.net/apps/trac/ocfa/wiki/0Ocfalib, May 2010. Last visited in May
2010.

[14] Oscar Vermaas. Open computer forensic architecture, school of computer science and
informatics, May 2010. University College Dublin, page 8.

[15] Forensics Wiki. Ofca - open computer forensics architecture library. http:
//www.forensicswiki.org/wiki/Open_Computer_Forensics_Architecture, May
2010. Last visited in May 2010.

[16] Wikipedia. Berkeley db wikipedia. http://en.wikipedia.org/wiki/Berkeley_DB,
May 2010. Last visited in May 2010.

[17] Wikipedia. Definition of md4. http://en.wikipedia.org/wiki/MD4, May 2010. Last
visited in May 2010.

[18] Wikipedia. edonkey 2000. http://en.wikipedia.org/wiki/EDonkey2000, May
2010. Last visited in May 2010.

[19] Wikipedia. Hash function. http://en.wikipedia.org/wiki/Hash_function, May
2010. Last visited in May 2010.

[20] Wikipedia. Hash lists. http://en.wikipedia.org/wiki/Hash_list, May 2010. Last
visited in May 2010.

[21] Wikipedia. Peer-to-peer. http://en.wikipedia.org/wiki/Peer-to-peer, May
2010. Last visited in May 2010.

[22] Wikipedia. Posix - portable operating system interface. http://en.wikipedia.org/

wiki/POSIX, May 2010. Last visited in May 2010.

