
Faculty of Economic Sciences, Communication and IT
Department of Computer Science

Victor Ulhagen

Data visualization on Android

Degree Project of 15 credit points
Computer Science

Date/Term: 2011-06-09
Supervisor: Katarina Asplund
Examiner: Donald F. Ross
Serial Number: C2011:03

Karlstads universitet 651 88 Karlstad
Tfn 054-700 10 00 Fax 054-700 14 60

Information@kau.se www.kau.se

This thesis is submitted in partial ful�llment of the requirements

for the Masters degree in Computer Science. All material in this

thesis which is not my own work has been identi�ed and no mate-

rial is included for which a degree has previously been conferred.

Victor Ulhagen

Approved, 2011-06-09

Advisor: Katarina Asplund

Examiner: Donald F. Ross

iii

Abstract

The project discussed in this thesis was initiated by the Swedish IT company

Ninetech in an e�ort to simplify maintenance of the company's server farm.

The proposed method of simplifying maintenance was to create an Android

application capable of visualizing key elements of the server farm. Since the

internal information that the application should expose is of a classi�ed nature,

the whole system needs to be secured to prevent unauthorized access. This

thesis describes the development of an Android application as well as a server

application handling the communication between the Android application and

the server farm information service.

v

Aknowledgements

Katarina Asplund

For helping me greatly with my dissertation.

Henrik Bäck

For explaining and showing me magic in C#, and for providing LaTeX tools

and templates.

Ninetech

For being a generally nice place to be :)

vii

Contents

1 Introduction 1

1.1 Goal . 1

1.2 Requirements . 2

1.2.1 Security . 2

1.2.2 Data types . 2

1.2.3 Usability . 3

1.3 Results . 3

1.3.1 Proxy service . 3

1.3.2 Android application . 4

1.4 Chapter overview . 4

2 Background 5

2.1 Android OS . 5

2.1.1 Limitations . 6

2.1.2 Application lifetime . 6

2.2 Secure Socket Layer (SSL) . 7

2.2.1 SSL Connection setup 8

2.3 Information containment format 8

2.3.1 JavaScript Object Notation (JSON) 9

2.3.2 JSON Example . 9

ix

2.4 Authentication . 11

2.5 Windows Communication Foundation 11

2.6 Representational State Transfer (REST) 12

2.6.1 Connecting to service . 13

3 System implementation 15

3.1 Android API . 15

3.2 System overview . 17

3.3 Proxy service . 17

3.3.1 GetStatus . 18

3.3.2 GetSources . 18

3.3.3 GetMessages . 18

3.3.4 GetData . 19

3.4 Android application . 19

3.4.1 Manifest . 20

3.4.2 Service . 20

3.4.3 Application . 23

4 Results and evaluation 29

4.1 Results . 29

4.2 Problems . 30

4.2.1 Developing on windows 30

4.2.2 Battery versus workload 30

4.2.3 Self signed certi�cates 31

5 Conclusion 33

5.1 Future work . 33

References 35

x

List of Figures

1.1 System setup . 1

2.1 Android logo . 5

2.2 SSL connection setup . 8

2.3 JSON Example . 10

2.4 XML Example . 10

3.1 Overview of all individual parts of the system 17

3.2 Detailed overview of the Proxy service 18

3.3 Android application setup . 19

3.4 Android service setup . 21

3.5 Android application overview 24

3.6 Application splash screen . 25

3.7 Application login screen . 25

3.8 Application sources screen . 27

3.9 Application messages screen . 27

3.10 Application graph screen . 28

3.11 Application graph screen, with ruler 28

xi

Chapter 1
Introduction

Ninetech is a company that has a broad spectrum of customers which uses its

services. To ensure the future integrity and stability of these services the time

it takes to detect problems must be as short as possible. To shorten problem

detection time a Android surveillance application was proposed.

1.1 Goal

Figure 1.1: System setup

The goal of the project was to create a system which can report and vi-

sualize real time data from a server monitor service in Android smart phones

(see Figure 1.1). The Android smart phones should be able to connect to

the server monitor service from outside the internal network. Therefore, the

connections made must be encrypted to secure the sensitive data sent by the

service. It was also important to make sure that the internal network would

1

2 CHAPTER 1. INTRODUCTION

stay secure. Therefore a proxy service should be added as a negotiator between

the monitoring system and the Android smart phones.

1.2 Requirements

The project had a number of basic requirements that the application needed

to ful�ll. These requirements are described below.

1.2.1 Security

Since the information that is sent between the surveillance service and the

smart phone may be sensitive the connection has to be secure. In section 2.2

we discuss which protocol that was chosen and how it works.

The service also have to be password protected to deny unauthorized users the

information.

1.2.2 Data types

The Android application should be able to visualize two types of information,

outlined below:

Messages

Messages contain information about problems in the server farm, as well as

where and what the problem is. A message could for example indicate that an

application crashed or warn about high load.

1.3. RESULTS 3

Measurement data

Measurement data is real time values of di�erent measurable quantities. For

example a group of values could be the amount of connected users to a certain

service, or the transfer rate through a �rewall.

1.2.3 Usability

Since the application will be used to ease the process of detecting errors and

system diagnosis it needs to be simpler and faster than the existing error

pipeline. To aid the user a set of convince features has been added to the

application, these features will be discussed in chapter 3.

1.3 Results

In this Section the �nal results of the project are brie�y discussed.

1.3.1 Proxy service

To ensure the security of the system a server between the server monitor system

and the Android phone was created. This service is called the Proxy. The only

responsibility of the Proxy service is to act as a negotiator, forwarding requests

and responses between the server monitoring service and the Android phone.

This will increase the security of the system by hiding most of the functionality

of the server monitor service and only exposing the relevant parts through

the Proxy. The Proxy also allows the server monitoring service to disregard

encryption, since its not exposed outside the internal company network.

4 CHAPTER 1. INTRODUCTION

1.3.2 Android application

An Android application is able to post requests to the Proxy service and display

the responses. Since there are two types of information available the applica-

tion visualizes these di�erently. Messages are displayed in a list, allowing easy

navigation. While measurement data is viewed as a graph.

1.4 Chapter overview

In chapter 2 we discuss the systems which the Android application and the

Proxy service uses. Following, in chapter 3 we give a more technical overview

of how the Android application and Proxy service is implemented. Finally, in

chapter 4 we discuss the results of the project and the various problems that

arose during development.

Chapter 2
Background

In this chapter we will outline underlying systems used by the di�erent parts of

the project. In Section 2.1 we give a brief introduction to the Android operating

system. we also discuss the chosen encryption method in Section 2.2, the data

exchange format in Section 2.3 and the user authentication protocol in Section

2.4. In Section 2.5 we give a brief background on the Windows Communication

Foundation and �nally in Section 2.6 we brie�y discusses what a REST server

is and how it is used in this project.

2.1 Android OS

Figure 2.1: Android logo

Android (see Figure 2.1) is a Linux based operating system that last year

had 23% (2010) [12] of the market share, and this share is expected to increase

to 38% by the end of this year. The operating system was initially developed

by Android Inc, but was later bought by Google [4], which is the current owner.

5

6 CHAPTER 2. BACKGROUND

Android OS is licensed as an open source project, and can be used according

to the Apache license [3][2]

2.1.1 Limitations

There is a big di�erence between the performance of a smart phone and con-

sumer computers. The CPU speed for a popular smart phone which was used

when developing the application is a single 1GHz core[6], whereas laptop or

stationary computer CPUs commonly sports two or four 3.5 Ghz cores[7].

Memorywise there is a big di�erence as well. The targeted smart phone has

576 MB[6] of internal memory versus the 2-8 GB internal memory for a home

computer. These limitations forces the Android OS to handle applications

di�erently from computers, as described in the next section.

2.1.2 Application lifetime

Android has a di�erent way of handling applications compared to ordinary

computer operating systems (eg. Windows , Linux and MacOS). When most

operating systems let applications run until they are �nished, Android has two

application types suited for di�erent tasks[5]. Standard applications will use

the "Activity" type. This application type can be terminated by Android at

any moment when it is not focused by the user, in order to conserve memory.

The other type is called "Service". This application type runs until it is �nished

and it will not be stopped. This service type should be used by processes that

run in the background without direct user interaction.

2.2. SECURE SOCKET LAYER (SSL) 7

2.2 Secure Socket Layer (SSL)

The Android application contacts a Proxy service (see Figure 1.1) for the

information that should be displayed for the user. This data could potentially

be classi�ed for the public, in which case the connection needs to be encrypted.

For this project we chose to use the SSL encryption protocol. SSL was chosen

since its widely used (eg. Https) and objects for managing SSL connections is

available in the Android OS as well as in WCF (see Section 2.5). SSL provides

a secure connection over the standard socket interface. SSL is an asymmetric

encryption protocol. This means that it uses a combination of public and

private keys for encryption and decryption (see Figure 2.2). Encryption works

by encrypting a message with the recipients public key. When the message

is received the recipient then decrypts the message with its private key. SSL

can use a multitude of encryption algorithms such as DES and AES[8]. The

algorithm to use is determined in the "Negotiation phase" of the connection

(see next section). Certi�cates are also used to assure that the host has the

right identity. This is done to secure the connection against Man-In-The-

Middle attacks. In essence a Man-In-The-Middle attack is executed by fooling

the connecting client that the attacker is the service that the client wants,

and then using the information given by the client to gain access to the real

service. SSL is widely used since it provides a standardized way of determining

encryption algorithms and makes sure that you are in fact talking to the correct

recipient The largest �eld of usage is Internet applications, where HTTPS

connections basically uses SSL for its secured communication.

8 CHAPTER 2. BACKGROUND

Figure 2.2: SSL connection setup

2.2.1 SSL Connection setup

When an SSL connection is setup the host and the client need to settle on

what type of encryption and which version of SSL they should use. This phase

is called the "Negotiation phase". During the negotiation phase several facts

are established between the client and the server:

* Public keys to use for encryption

* Which cipher to use

* Which compression algorithm to use

* Server (and optionally the client) identity

* Public keys to use for encryption

When the negotiation phase is complete the encrypted communication can

commence.

2.3 Information containment format

Since the Smart phone has limited processing ability the data sent between

the service and the phone needs to be tailored to the phone (see Section

2.1.1). XML is commonly used as the information containment format (its

2.3. INFORMATION CONTAINMENT FORMAT 9

most prominent use is for the web as XHTML). XML is very �exible but it

contains a lot of redundant data which makes it too slow to consume for a

smart phone. As an alternative to XML there is a format called JSON which

can be used. JSON is described in the next section

2.3.1 JavaScript Object Notation (JSON)

JSON [10] is a human-readable data exchange format suited for simple data

structures. As its name suggests it is derived from the Java Script program-

ming language. Despite this fact, JSON is a language-independent format.

Compared to XML, JSON is not hugely di�erent. JSON is a bit less �exible,

as an example a JSON node cannot have attributes and children at the same

time. However, this is easy to work around.

2.3.2 JSON Example

The �gure 2.3 below shows a simple JSON example describing pets.

Ignoring whitespace characters this example takes 100 characters to en-

code while still being understandable. Figure 2.4 shows the same information

encoded with XML.

Again, if we ignore the whitespace characters, we end up using 142 char-

acters. By sacri�cing a bit of �exibility we gain a compression rate of around

70% with JSON without using costly compression algorithms. This property

makes JSON ideal for low performance targets, such as smart phones

10 CHAPTER 2. BACKGROUND

{
animals:

{
dog:
[

{
name:’Rufus’,
breed:’labrador’

},
{

name:’Marty’,
breed:’whippet’

}
],
cat:
{

name:’Matilda’
}

}
}

Figure 2.3: JSON Example

<animals>
<dog>

<name>Rufus</name>
<breed>labrador</breed>

</dog>
<dog>

<name>Marty</name>
<breed>whippet</breed>

</dog>
<cat name="Matilda"/>

</animals>

Figure 2.4: XML Example

2.4. AUTHENTICATION 11

2.4 Authentication

Authentication of user credentials is handled by the HTTP Basic authoriza-

tion protocol[13]. HTTP Basic authentication works by appending the user

credentials onto a standard HTTP request. Before transmitting, the creden-

tials is concatenated together with a separating colon. The resulting string is

encrypted using Base64 encryption, and after encryption the resulting string is

attached to the request. For example, given the user name 'Aladdin' and the

password 'open sesame', the string 'Aladdin:open sesame' is Base64 encoded,

resulting in 'QWxhZGRpbjpvcGVuIHNlc2FtZQ=='[9].

Base64 encoding only disables humans from reading it, against computers

it does not provide any security. Base64 encryption is instead used to make

sure that no illegal characters make its way into the �nal URL request[9]. User

credentials are still secure however, since the connection this project uses is

encrypted using SSL (see section 2.2).

2.5 Windows Communication Foundation

Windows Communication Foundation (WCF) [11] is an application program-

ming interface provided by Microsoft for building service oriented applications.

WCF is used through the Microsoft .Net platform. WCF is designed to sup-

port easy service consumption by service consumers, this means that a client

can consume a multitude of services and a service can be consumed by a mul-

titude of clients. This consumption behavior is ideal for web based services,

which caters to a multitude of clients simultaneously.

12 CHAPTER 2. BACKGROUND

2.6 Representational State Transfer (REST)

A Representational State Transfer Server [1] is a software architectural style

suited for distributed media systems. For a server to be RESTful it needs to

abide to a set of constraints, described below:

Client-server model

Clients and servers are separated; servers are not concerned with user inter-

faces, while clients does not care about the internal state of the server.

Stateless

The server should not store client contextual data, but should instead only

react to client stimuli. The statelessness forces clients to send all the required

data with each request, making the communication more robust and scalable.

Cacheable data

All data sent from the server should be cacheable, or the client should be able

to determine when data received from a server has gotten stale. This constraint

enables the clients to reuse data, skipping some communication all together.

Layered structure

The client should not know about the internal structure of the server. This

constraint enables a service to be distributed to a multitude of internal servers

increasing scalability. It also enables intermediate services between the client

and the end service.

2.6. REPRESENTATIONAL STATE TRANSFER (REST) 13

Uniform interface

Keeping a uniform interface between the server and the client enables a strong

decoupling of the two systems. This constraint enables the client and the

server to grow independent from each other.

2.6.1 Connecting to service

Connections to a WCF REST service is simply done using the HTTP or the

HTTPS protocol. Each function in the service is mapped to a URL address

of the same name. As an example we may have a service named 'students',

which is residing on 'kau.se'. In the 'students' service we have a function named

'getStudents'. Calling the 'getStudents' function is simply done by requesting

the page 'kau.se/students/getStudents', which in turn would return a XML

(or JSON, see section 2.3.1) encoded response.

Chapter 3
System implementation

This chapter describes the actual implementation of the project, and gives a

more technical insight into the project. In section 3.1 we give a brief introduc-

tion to the Android API and the objects that are most used in it. In section

3.2 we will take a glance at the components that builds the system. Following

in section 3.3 we discuss the Proxy service, and in section 3.4 we will look at

the Android application.

3.1 Android API

The Android API is a supplement to the standard Java runtime library, in-

cluding classes that relates to the operating system of the phone and for con-

venience. Since the Android API is quite vast the application uses only a

small subset of its functionality. Following is an outline of the classes that the

application uses the most.

Activity

Every application that has a graphical user interface needs at least one class

that extends the Activity class. The Activity class handles loading and ren-

dering of user interfaces. A good feature which the project uses extensively

is the ability to load user interfaces speci�ed in a XML �le. By loading the

15

16 CHAPTER 3. SYSTEM IMPLEMENTATION

interface from an XML �le time taken to do the actual design is minimized

and it makes it easy to change the interface without changing the underlying

functionality.

IntentService

The 'IntentService' class has a similar function as the Activity class, but is

used for services instead of applications. Activities can communicate with

'IntentServices' in an asynchronous fashion to o�oad work from the applica-

tion onto the service. Being asynchronous means that when the call to the

IntentService is made the caller can continue with its business as usual, and

later on get a call with the result from the service. By o�oading work to

services in a non blocking way applications can focus on keeping its interface

responsive while the service does all the work.

Intent

The Intent class is used for a multitude of tasks in the Android API. All com-

munication to the phone or between Activities are handled by Intents. It can

be used with 'startActivity' to launch an Activity, with 'broadcastIntent' to

send it to any interested 'BroadcastReceiver' components, and with 'startSer-

vice' to communicate with a background Service.

SharedPreferences

The SharedPreferences class is used to broadcast settings throughout an appli-

cation. Every Activity within the application can read and modify the Shared-

Preferences object. SharedPreferences is also saved between uses, adding an

easy way to store user settings.

3.2. SYSTEM OVERVIEW 17

3.2 System overview

Figure 3.1: Overview of all individual parts of the system

The system consists of two major parts. The Proxy service which handles

communication between the server monitor service and the smart phone. The

Android application which can be subdivided into two smaller parts, The Ser-

vice which handles all communication and message caching between the smart

phone and the Proxy, and the Application which enables the user to interact

and view the information provided by the server monitor service. The con-

nections between the parts can be viewed in �gure 3.1. The Proxy service is

described in section 3.3 and the Android application in section 3.4.

3.3 Proxy service

The Proxy service is implemented using C# and the WCF.net service archi-

tecture. It is residing as a negotiator between the Android application and

the server monitor service, as can be seen in �gure 3.2. This Proxy service

is simply a small set of functions that can be called from the outside. These

functions are described in the following sections:

18 CHAPTER 3. SYSTEM IMPLEMENTATION

Figure 3.2: Detailed overview of the Proxy service

3.3.1 GetStatus

The GetStatus is used as an initiation function by the Android application,

checking if the provided service address is valid. The function does not have

any input parameters, and it returns the version of the service as well as the

local server time.

3.3.2 GetSources

The GetSources function is used to construct the menu inside the Android

application. The function has no input parameters and it returns a list of data

sources, where a source is a combination of provider id and type of data.

3.3.3 GetMessages

The GetMessages function is used to collect error messages. The function has

source id as input parameters and it returns a list of messages.

3.4. ANDROID APPLICATION 19

3.3.4 GetData

The GetData function is used to collect visualization data. The function has

source id and a number representing the targeted timespan as input parameters

and it returns a list of data values.

3.4 Android application

Figure 3.3: Android application setup

The Android application is implemented as two parts to complement the

application/service model Android employs (see section 2.1.2) as can be seen

in �gure 3.3. This design allows the system to alert the user even when the

main application is not active. In the following sections we will describe the

individual parts of the Android application in more detail. In Section 3.4.1 we

talk about the application manifest. Following, in Section 3.4.2 we describe

the Service. And �nally we discuss the Application in Section 3.4.3.

20 CHAPTER 3. SYSTEM IMPLEMENTATION

3.4.1 Manifest

Coupled with the application and the service is a manifest. The manifest con-

tains settings and information about the application and it is a integral part

of any Android application. The manifest also contains a list of all activities

that the application can start, the events which the application is interested

in as well as permissions. Registering events in the manifest enables an ap-

plication to, for example, start when the phone starts, or handle viewing of

speci�c �le types. The manifest can register that it wants to react to PDF

intents, enabling other applications to just tell the phone that it wants to view

a PDF. The phone can then check if there are any applications registered for

the PDF event and start the application accordingly. Another example is that

the service registers its interest in the LAUNCHER event to start when the

phone starts. The LAUNCHER event is provided by the Android OS, and it is

broadcast when the phone starts. Having the manifest specify which permis-

sions the application wants adds to the security of the phone. For example,

the manifest can have the permission for Internet access. When installing an

application the user can review the permissions used and cancel the installa-

tion if the permissions seems invalid (for example a calculator application will

not need Internet access, and would alert the user that the application may be

malicious)

3.4.2 Service

The service part of the Android application starts when the phone is turned on

and will not stop unless the user explicitly terminates it. Its main purpose is to

periodically check the Proxy service for new error messages and display these

to the user. This means that the user does not have to check the application

3.4. ANDROID APPLICATION 21

Figure 3.4: Android service setup

periodically, which adds to user friendliness.

The service is composed of three parts (see �gure 3.4), which are described

below:

3.4.2.1 Main

The main part of the service handles service startup and tear down, as well

as initialization of the other two systems. It also acts as an entry point for

the application, exposing the two other parts. Startup of the service can be

done in two ways. The �rst option is that the service registers itself to receive

an event when the phone is turned on. By doing so the user will get the

functionality the service provides without having to start the application �rst.

The application can also start the service if it is not started by the time the

application launches. When the application wants to couple with the service

an Intent (see section 3.1) is generated and then sent to the service (creating

the service if it is not available). The service responds by sending an event to

the application with a reference to itself. When the communication �nishes

22 CHAPTER 3. SYSTEM IMPLEMENTATION

the application ends up with a usable reference to the service, and the service

is locked to the application that requested the coupling. Finally when the

connection is not needed the application drops the connection and the service

is ready for a new coupling.

3.4.2.2 External Interface

The External Interface initializes and maintains the connection to the Proxy

service. It also provides an abstraction layer between the phone and the Proxy,

enabling easier Proxy handling. To create a valid connection a series of requests

must be made. Firstly, the interface needs a URL path locating the Proxy

service. When a path is given and validated to be an active Proxy, the interface

then needs valid user credentials. When the Proxy and user is validated the

connection is open, and other requests can now be sent. The available requests

for the external interface are outlined below:

Connect

The Connect function takes a URL address and stores it for later use. This

function is called �rst in the connection setup to specify which address the

following calls should be directed.

Authorize

Calling Authorize makes the external interface try to establish a working con-

nection to a Proxy.

Refresh Sources

By calling Refresh Sources the interface will update the list of available sources

for later use. The sources are stored inside the interface so that the application

3.4. ANDROID APPLICATION 23

request sources only one time and then reuse the cached response.

Refresh Messages

When calling Refresh Messages the interface retrieves a list of the currently

active messages from the Proxy. It also sorts the messages and compare them

to the currently cached list of messages. If a new message is detected the

caller is noti�ed by the function response. When the check for new messages

is complete the new list is sent to the Message Storage.

Get Data

Get Data needs a source id and the number of seconds back in time which the

caller is interested in. In return Get Data will give the caller a list of data

points and a value label that can be used to draw a graph.

3.4.2.3 Message Storage

Messages collected from the Proxy are stored in the Message Storage. Since

the phone only can request a list of all active messages, this part needs to sort

these messages and also detect when a new message is received so that an alert

can be sent to the user.

3.4.3 Application

The main application is treated as a collection of smaller programs (or states)

which henceforth will be called pages. Each page is its own Activity (see sec-

tion 3.1) following the implementation guidelines for the Android. Using an

Activity for each page allows automatic backwards navigation and resource

handling, but it also introduces the risk of navigational in�nite loops. Navi-

24 CHAPTER 3. SYSTEM IMPLEMENTATION

Figure 3.5: Android application overview

gational loops means that, if not careful, an application can enable the user

to navigate in circles. By navigating in circles more and more pages will be

allocated in memory, draining the phone of its resources. The problem with

the navigational loops are solved by having a strict navigational scheme (see

�gure 3.5). Below follows a description of the pages that the application is

composed of.

3.4.3.1 Splash

The Splash page (see Figure 3.6) acts as the startup page for the application.

Its only responsibility is to display the application logo and after a few seconds

send the user to the Login page.

3.4. ANDROID APPLICATION 25

Figure 3.6: Application splash screen

Figure 3.7: Application login screen

26 CHAPTER 3. SYSTEM IMPLEMENTATION

3.4.3.2 Login

The Login page (see Figure 3.7) enables the user to enter the credentials needed

to connect to the Proxy service. It also stores this information if the user

wishes, allowing for easier login on subsequent uses. The Login page is also

responsible for testing the given credentials, only advancing to the menu page

when the External Interface (see section 3.4.2.2) has a working connection.

When the user has speci�ed that the credentials should be saved, they are

saved in a Shared Preferences object. Such an object enables all other parts of

the application and the service to access this information and the credentials

can be used to create a valid connection when the service starts. When the user

has submitted credentials they are used to create a connection in the external

interface. To setup the connection a call to Connect (see section 3.4.2.2) is

made, testing if the supplied URL is valid. When a Proxy is validated the

username and password is used in a call to Authorize (see section 3.4.2.2). If

both these calls are successful a valid connection has been established and the

application can proceed to the next page.

3.4.3.3 Sources

The Source page (see Figure 3.8) lists all available message sources, enabling

navigation to message pages for each source.

3.4.3.4 Message

The Message page (see Figure 3.9) lists all messages tied to a single source.

Each message is composed of a time stamp, an error level and the actual

message text.

3.4. ANDROID APPLICATION 27

Figure 3.8: Application sources screen

Figure 3.9: Application messages screen

28 CHAPTER 3. SYSTEM IMPLEMENTATION

3.4.3.5 Graph

Figure 3.10: Application graph screen

The Graph page (see Figure 3.10) handles the visualization of a data source

in the form of a graph. The graph is continually updated automatically, scaling

the vertical axis depending on the currently largest data point. This page also

features a user controlled "ruler". The ruler works by �nding the data point

nearest to where the user presses the screen (see Figure 3.11). This function

enables the user to view the value of interesting data points.

Figure 3.11: Application graph screen, with ruler

Chapter 4
Results and evaluation

In this chapter we present the �nal results of the project in section 4.1 we

also discuss the various problems encountered while developing the Android

application as well as the Proxy service in section 4.2.

4.1 Results

When the project �nished we had created three systems, the Android appli-

cation as well as two implementations of the Proxy service. To uncouple the

development of the server information system and the Android application a

Proxy simulator was created. The Proxy simulator is used to test connectivity

and functionality of the Android application. The simulator works by acting

like a Proxy but instead of gathering data from the server information service

it generates it when requested. In the end of the project we also created a

Proxy which connects to a server information service to generate data. The

Android application was also �nished. The �nished application can commu-

nicate through an encrypted connection with a Proxy, and display the data

received.

29

30 CHAPTER 4. RESULTS AND EVALUATION

4.2 Problems

In this section we discuss the problems which was not foreseen to happen when

implementing the system during planning.

4.2.1 Developing on windows

The Proxy service was developed using Microsoft Visual Studio 2010. The

development service server shipped with Visual Studio does not accept con-

nections from other sources than localhost. Since the phone is an external

source with its own IP address it was denied access.

This problem was solved by using a port forwarding application, and in turn

mask the external connection as a local connection.

4.2.2 Battery versus workload

Since the background service on the Android runs inde�nite, making requests

to the Proxy service whenever it can, it adds a constant processor load over-

head to the phone. Since requesting messages and then sorting these messages

takes a lot of processing the processor does not have time to rest. This would

be an acceptable solution on a computer since the thread that handles message

updating could be set to a low priority, maintaining the performance integrity

of the system. Having the processor work all the time on a smart phone, on

the other hand, is a very bad idea, because constantly updating drained the

phone's battery in a couple of hours.

The problem was mitigated by adding a timer to the update routine, so up-

dating would only happen every other minute.

4.2. PROBLEMS 31

4.2.3 Self signed certificates

As described in section 2.2, a SSL connection uses certi�cates to ensure the

identity of the server. These certi�cates costs money to acquire unless you

create a self signed certi�cate. A self signed certi�cate does not provide any

security since anyone can forge a dubious copy. When developing it is not

viable to pay for a real certi�cate, which lead to the use of a self signed cer-

ti�cate being used. The only problem with using a self signed certi�cate was

that the implementation of SSL connections on Android by default terminates

when it registers the self signed certi�cate.

This was solved by bluntly forcing the SSL implementation trust every certi�-

cate, signed or not. This e�ectively renders the SSL encryption useless until a

valid certi�cate is placed, and this override is removed.

Chapter 5
Conclusion

There are still room for extensions and improvements to the application and

Proxy, but the completed version should cover the basic needs of server farm

surveillance. From a personal point of view it has been interesting to work

with an application that hopefully will see practical use in the future. It has

also been interesting and rewarding working with newer technology. Especially

since this project has been centered around smart phone development, which

in the coming years will be commonplace. In the end I am satis�ed with the

�nished product, and hope that Ninetech will be too.

5.1 Future work

In this section we will discuss a few options for improving the system. Adding

a system to change di�erent properties of the Android application would help

usability further. For example, changing update frequency or alert methods

could make the application more convenient for the user. The graph is cur-

rently rendered in software mode. Changing the rendering to use OpenGL

instead would drastically improve graph performance and visual quality of the

graph.

33

References

[1] IBM Alex Rodriguez. Restful web services: The basics. 2011-06-12.
Available from: https://www.ibm.com/developerworks/webservices/
library/ws-restful/.

[2] Apache. Apache license, version 2.0. 2011-06-12. Available from: http:
//www.apache.org/licenses/LICENSE-2.0.

[3] Dave Bort. Android is now available as open source. 2011-06-12. Available
from: https://sites.google.com/a/android.com/opensource/posts/
opensource.

[4] Ben Elgin. Google buys android for its mobile arsenal. 2011-06-12.
Available from: http://www.businessweek.com/technology/content/
aug2005/tc20050817_0949_tc024.htm.

[5] Google. Application fundamentals. 2011-06-12. Available from: http:
//developer.android.com/guide/topics/fundamentals.html.

[6] HTC. Htc desire. 2011-06-12. Available from: http://www.htc.com/www/
product/desire/specification.html.

[7] Intel. Intel processor comparison. 2011-06-12. Available
from: http://www.intel.com/consumer/products/processors/
compare-processors.htm?select=desktop.

[8] Intel. Transport layer security (tls) parameters. 2011-06-12.
Available from: http://www.iana.org/assignments/tls-parameters/
tls-parameters.xml#tls-parameters-3.

[9] S. Josefsson. The base16, base32, and base64 data encodings. 2011-06-12.
Available from: http://tools.ietf.org/html/rfc4648.

[10] JSON. Introducing json. 2011-06-12. Available from: http://json.org/.

35

https://www.ibm.com/developerworks/webservices/library/ws-restful/
https://www.ibm.com/developerworks/webservices/library/ws-restful/
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
https://sites.google.com/a/android.com/opensource/posts/opensource
https://sites.google.com/a/android.com/opensource/posts/opensource
http://www.businessweek.com/technology/content/aug2005/tc20050817_0949_tc024.htm
http://www.businessweek.com/technology/content/aug2005/tc20050817_0949_tc024.htm
http://developer.android.com/guide/topics/fundamentals.html
http://developer.android.com/guide/topics/fundamentals.html
http://www.htc.com/www/product/desire/specification.html
http://www.htc.com/www/product/desire/specification.html
http://www.intel.com/consumer/products/processors/compare-processors.htm?select=desktop
http://www.intel.com/consumer/products/processors/compare-processors.htm?select=desktop
http://www.iana.org/assignments/tls-parameters/tls-parameters.xml#tls-parameters-3
http://www.iana.org/assignments/tls-parameters/tls-parameters.xml#tls-parameters-3
http://tools.ietf.org/html/rfc4648
http://json.org/

36 REFERENCES

[11] Microsoft. Windows communication foundation is... . 2011-06-
12. Available from: http://msdn.microsoft.com/en-us/netframework/
aa663324.aspx.

[12] Don Reisinger. Gartner: Android market share to near 50 per-
cent. 2011-06-12. Available from: http://news.cnet.com/8301-13506_

3-20051610-17.html.

[13] UC Irvine H. Frystyk T. Berners-Lee, R. Fielding. Hypertext transfer
protocol � http/1.0. 2011-06-12. Available from: http://www.ietf.org/
rfc/rfc1945.txt.

http://msdn.microsoft.com/en-us/netframework/aa663324.aspx
http://msdn.microsoft.com/en-us/netframework/aa663324.aspx
http://news.cnet.com/8301-13506_3-20051610-17.html
http://news.cnet.com/8301-13506_3-20051610-17.html
http://www.ietf.org/rfc/rfc1945.txt
http://www.ietf.org/rfc/rfc1945.txt

	Introduction
	Goal
	Requirements
	Security
	Data types
	Usability

	Results
	Proxy service
	Android application

	Chapter overview

	Background
	Android OS
	Limitations
	Application lifetime

	Secure Socket Layer (SSL)
	SSL Connection setup

	Information containment format
	JavaScript Object Notation (JSON)
	JSON Example

	Authentication
	Windows Communication Foundation
	 Representational State Transfer (REST)
	Connecting to service

	System implementation
	Android API
	System overview
	Proxy service
	GetStatus
	GetSources
	GetMessages
	GetData

	Android application
	Manifest
	Service
	Application

	Results and evaluation
	Results
	Problems
	Developing on windows
	Battery versus workload
	Self signed certificates

	Conclusion
	Future work

	References

