

Faculty for Economical Science, Communication and IT

Joakim Carlsson, Christian Lindeström

Incident Management System

Computer Science

C-level thesis

Date/Term: 11-06-09

Supervisor: Kerstin Andersson

Examiner: Donald F. Ross

Serial Number: C2011:08

Karlstads universitet 651 88 Karlstad

Tfn 054-700 10 00 Fax 054-700 14 60
Information@kau.se www.kau.se

Computer Science

Joakim Carlsson, Christian Lindeström

Incident Management System

Bachelor’s Project

2011:08

 i

This report is submitted in partial fulfillment of the requirements for the

Bachelor’s degree in Computer Science. All material in this report which is

not my own work has been identified and no material is included for which

a degree has previously been conferred.

Joakim Carlsson

Christian Lindeström

Approved, 2011-06-09

Advisor: Kerstin Andersson

Examiner: Donald F. Ross

 ii

Abstract

This dissertation for a bachelor project in computer science at Karlstad University will describe

how to conquer a challenge suggested by Tieto: How to create a secure Incident Reporting

System with a high level of confidentiality and security for the contents. The system should be

easy to use and encourage incident reporting, open for changes and statistics gathering, for

those with the relevant authority. The result will be a requirement specification and a prototype

incident management system that matches those requirements. Any employee of Tieto will be

able to submit an incident report and the system will notify a security administrator at Tieto who

will solve the problem. The system will be able to gather information and statistics regarding

incidents which can be used as decision support.

 iii

Table of Contents

1 Introduction ... 1

2 Background .. 2

2.1 Introduction .. 2

2.1.1 Initial Specification... 2

2.1.2 SharePoint ... 3

2.1.3 Existing applications... 4

2.1.4 Scrum .. 4

2.2 Specification and design suggestions... 5

2.2.1 Diagrams.. 5

2.2.2 User interfaces... 7

2.3 Final Specification and design adjustments ..10

2.3.1 Report states ..11

2.3.2 Database system and Security...12

3 Project Development Process ..14

3.1 Time planning ..14

3.2 Sprint introduction ...15

3.3 Sprint 1 ..15

3.3.1 Overview ..16

3.3.2 Results ..20

3.3.3 Retrospective..22

3.4 Sprint 2 ..22

3.4.1 Overview ..23

3.4.2 Results ..26

3.4.3 Retrospective..27

3.5 Sprint 3 ..28

3.5.1 Overview ..29

3.5.2 Results ..32

3.5.3 Retrospective..34

3.6 Sprint 4 ..34

3.6.1 Overview ..34

 iv

3.6.2 Results ..36

3.6.3 Retrospective..36

3.7 Sprint 5 ..36

3.7.1 Overview ..36

3.7.2 Retrospective..38

4 Results and evaluation...39

4.1 System ...39

4.2 Code ..40

4.2.1 The Graphical User Interface ...43

4.2.2 The Manager Layer ...44

4.2.3 The Accessor Layer ...45

4.2.4 The Independent Layer ...46

4.2.5 LINQ to SQL Classes Layer ...48

4.2.6 The Database Layer...48

4.3 Web Interface ..49

4.4 Security ..53

4.4.1 Access hierarchy ...53

4.4.2 Report encryption ...54

5 Conclusions ...56

5.1 Specification ..56

5.2 This project ..56

5.2.1 Security...56

5.2.2 Scrum ...57

5.3 Future work ...57

5.4 General conclusions ...58

6 Bibliography ..59

7 Appendix A – Google chart API, bar chart ..61

8 Appendix B - Drafts ..62

 v

Table of Figures

Figure 2.1 - Product backlog... 5

Figure 2.2 - A use case giving a brief overview of the reporting system. 6

Figure 2.3 - Flowchart of how incidents are handled after they have been reported. 7

Figure 2.4 - Incident Reporting Form .. 8

Figure 2.5 - Incident Management Form .. 9

Figure 2.6 - Incident Search Page Example, chart generated by Google chart API 10

Figure 2.7 – Report states ...12

Figure 3.1 - Time table with focus on “pre” ...14

Figure 3.2 – Backlog, sprint 1 ..15

Figure 3.3 - Database Structure, Sprint 1 ...17

Figure 3.4 - Submit Form...18

Figure 3.5 - Meta-Report Form..18

Figure 3.6 - Dispatching Form..19

Figure 3.7 - LINQ to SQL Classes interpretation of a few tables from a SQL database 20

Figure 3.8 - Web page design ..21

Figure 3.9 –Backlog, sprint 2 ...23

Figure 3.10 - Databse structure, sprint 2 ...26

Figure 3.11 - Sprint 2 Page ..27

Figure 3.12 – Backlog, sprint 3 ..29

Figure 3.13 - Web Page, Sprint 3 ...33

Figure 3.14 - Search Performance, worst case scenario ...37

Figure 3.15 - Database structure, sprint 5 ...38

Figure 4.1 - Use case diagram..40

Figure 4.2 - Diagram of the layers and classes in our system and how they relate to each other .42

Figure 4.3 - Incident Reporting Form ...50

Figure 4.4 - Incident Management Form ...51

 vi

Figure 4.5 - Incident Dispatching Form ..52

Figure 4.6 - Incident Statistics Form ...53

Figure 4.7 - Access hierarchy ...54

Figure 7.1 - Example bar chart...61

Figure 8.1 - Early system draft ...62

Figure 8.2 - Early state and sequence diagram draft ..63

 vii

Table of Code Extracts

Code 3.1 - LINQ Select Example...20

Code 3.2 – LINQ query to derive report statistics from the database...31

Code 3.3 – Custom property example ...32

Incident Management System 1

- 1 -

1 Introduction

For a company that offers services and solution for customers, a reliable Incident Management

System (IMS) is essential. Some customers even demand it. Customers need to easily be abl e to

contact the service provider if any problems occur. On the company side the IMS could also

provide valuable information. For example statistics on how many incidents customers report

regarding specific services or subjects. A big issue when handling incidents from different

companies is security.

This report will describe one way, the best way within the provided timeframe, of how to

implement a complete incident management system in SharePoint. Some challenges we will face

include: how to develop web parts for SharePoint since that is a completely new development

environment for us, how to secure information without sever performance hits, and how to

gather and present statistics about incident reports.

The project touches several subjects in computer science: Web design, database systems,

security, C# programming, SharePoint, agile development and more. If you are interested in any

of these you should read on.

We have chosen to write this report in a fairly unusual way. The background chapter does not

only contain an introduction to concepts brought up later; it also explains how we determined

the specification out of the initial problem statement. We think this belongs in the background

chapter because it is a preparation, of sorts, to the main project. We could have extracted it as a

separate chapter but the initial specification serves as a ground for why we need to explain

SharePoint and other subjects. The third chapter is written almost like a journal or logbook. It

explains the development process, what we did, how, why and when we did it. Chapter four

describes the finished product in detail . The last chapter contains our reflections of the project,

what we did well and what we could have done better.

2 Background

 - 2 -

2 Background

The background will mostly consist of the evolution of our specification. Section 2.1.1 will cover

the initial requirements. In Section 2.2 we will explain our own interpretation of the project, and

in Section 2.3 we will describe the final specification.

2.1 Introduction

This chapter will cover four fundamental parts of the background: the initial specification,

SharePoint, existing systems and Scrum. The Initial specification is an elaboration of the problem

statement Tieto wrote about the project. Since SharePoint is such a big part of the project we

will describe some important aspects of it. Before the project started we investigated if there

was any existing system that would fit the requirements. We also took the opportunity to look

for features that could be useful for our system. We used a personalized version of Scrum as a

development process and some of the words in this report are part of the Scrum vocabulary so

we will explain Scrum briefly.

2.1.1 Initial Specification

Tieto wants a prototype of a reporting system that handles incidents (virus outbreaks, intrusion,

system errors, etc.). The incident reports can contain sensitive information. This information

needs to be properly protected. There need to be access restrictions in order to insure that

employees cannot access information outside their scope of responsibility. Traditional issue

management systems are not appropriate because of their lack of information protection and

segmentation. Incidents are going to be reported by employees of Tieto and possibly companies

associated with them. It should be easy to report an incident while still allowing all relevant

information about the incident to be conveyed. It should be possible to generate meta-reports

containing information about several incidents. This type of report could be used as decision

support for company policies.

The key problem in this project is the reporting availability versus internal se curity constraints. In

order to not discourage users from submitting reports it needs to be easy to submit reports

without sacrificing the ability to convey important details. The main goal of this system is to

allow meta-reports to be generated from submitted incident reports on a need to know basis.

Traditional incident and issue management systems do not provide strong enough protection for

the sensitive information that Tieto wants to store.

Incident Management System 3

- 3 -

Some initial security concerns are:

 Encryption of data storage; encrypt sensitive data,

 Segmentation of information; separate information so that it is harder to gain unlawful

access to sensitive data,

 Hierarchical access principles; roles should inherit access rights,

 Dynamic report engine; generate statistics about incident reports.

2.1.2 SharePoint

Tietos intranet is built on a SharePoint foundation so it would be beneficial to implement the

incident reporting system as a SharePoint web part. SharePoint [1] is a family of products

created by Microsoft. It is supposed to facilitate collaboration, organization and sharing of files

and website management.

Web parts are components that in SharePoint can be dragged and dropped to add functionality

to a page. They can provide a wide range of functionality, for example news feeds. They are

created and behave similar to ASP.NET user controls. A web part consists of four main files:

 Elements.xml; an element manifest that describes the functionality of the web part,

 MyWebPart.cs; is the main code file and startup point [2],

 MyWebPart.webpart; an XML file describing the web part that makes it visible in the web

part gallery on SharePoint websites [3],

 MyWebPartUserControl.ascx; an ASP.NET user control.

It is possible to create user configurable web part properties. SharePoint servers interpret some

properties as user configurable if you add a few specific attributes to them. Attributes needed

for user changeable properties are [4]:

 Category; determines under which category the property in SharePoint will be visible,

 WebPartStorage; determines how the property will be stored, personal means that each

user can specify their own value,

 DefaultValue; the default value of the property,

 WebDisplayName; the name displayed to users,

 WebDescription; a description of the property,

 WebBrowsable; is the attribute that tells the SharePoint server that the property is a

custom one that can be accessed via a browser.

4 Background

 - 4 -

SharePoint handles the user identification of the user that is logged in and web parts can utilize

this.

2.1.3 Existing applications

It is possible to use a common issue management system like JIRA [5] and BugZilla [6] but they

are too open for database administrators and do not satisfy our security needs.

MySafeWorkPlace [7] is a website based incident reporting system with anonymous reporting

options. It supports a wide range of incident types to choose from when reporting incidents. A

few of these are accounting error, discrimination and sabotage. MySafeWorkPlace’s focus is too

general and does not provide the security required. As a separate website it would be

complicated to seamlessly integrate it into Tieto’s intranet.

Karlstad University uses a free open source system called Request Tracker [8] to keep track of

requests. It is mostly used internally to keep track of requests made to the university’s IT

department. As the name implies it is designed to provide a way of keeping track of requests. As

such there are limited security options and no clear way of setting up hierarchical access.

Request Tracker is written in Perl and can only run under a Linux or Unix server. This would make

the integration with Tieto’s windows based SharePoint servers cumbersome .

2.1.4 Scrum

We had the chance to plan our work hours and workflow. Our supervisor suggested going with

scrum, which we were quite familiar with, so we decided to do so. In Scrum it is important to

personalize the work process to the group and project. The basic idea of Scrum is to implement

iteratively and dividing up the development time into several shorter so called sprints. After each

sprint you should have a working, even if lightweight, product. We chose to have two week

sprints because that would give us enough interaction with our supervisor and enough time to

implement quite a chunk of features. At the end of each sprint there is a demonstration of the

application and planning for the next sprint with the supervisors. We, ourselves, also have a

retrospective to pin point what we could improve on in the next sprint.

In Scrum, a project specification is separated into small parts called tasks collectively known as a

product backlog. An example of a product backlog can be seen in Figure 2.1, where a lower

priority number means the task is more important. Tasks should be small in regard to the time

needed to complete them.

Incident Management System 5

- 5 -

Priority Name Description

1 Visual Studio Install

50 SQL Database Gain access to a SQL database.

100 Report orginizer UI (Get familliar with SharePoint)Make simple user interaface in SharePoint for outputing information from data

storage via search field. A textbox and a button.

150 Client Incident report UI Make simple user interaface in SharePoint for input of data. Ex: Title, description.

160 Incident Management UI Checkbox to mark field OK

180 Investigate Security Models Investigate diffrent methods of securing the data storage.

200 Secure storage of data Secure the data storage without limiting functionality.

300 Make ROUI work with encrypted data

310 Make CIRUI work with encrypted data

350 learn how to handle user id In SharePoint

380 create hierarchy client, managers, admin (RO).

400 connect user to report Optional (anonymity available)

410 connect report to managers N-1. Kepp track of who managed the report

420 Expand ROUI Add functionallity; field search,

430 Expand CIRUI Add functionallity; anonymity, categories?(physical incidets, software, other)

Configurabilty (web parts)

Figure 2.1 - Product backlog

Before each sprint, tasks from the backlog are selected into a sprint backlog. Each task is then

given a priority and time estimation. The time estimation is relative to another task of known

time consumption and is not always translatable to work hours. Tasks in the sprint backlog are

also known as stories and the time estimation is called story points.

For each sprint a certain number of tasks are chosen collectively called a sprint backlog. The goal

is to choose as many tasks as can be fully completed as possible. Work on a task should not

begin if it cannot be completed in the same sprint.

For a more in depth description of Scrum, read “Scrum and XP from the Trenches” [9].

2.2 Specification and design suggestions

Part of the assignment was to establish a software requirement specification with use case and

state diagrams. Early drafts of figures in this chapter can be found in Appendix B.

2.2.1 Diagrams

A use case diagram is used to show different users in the system, their roles and interaction with

each other and the system itself. We use a flowchart to show how a report travels through the

system and which state actions can occur to it.

There are 3 groups of users in the system; Submitters who report incidents, managers who

evaluate reports and handle them and administrators who can generate meta-reports. Figure 2.2

is a simplification of how these three groups interact.

6 Background

 - 6 -

Figure 2.3 shows how reports are handled after they have been submitted. First the report is

evaluated and more information is gathered if necessary, if gathering information fails the

incident remains unresolved. Once all information is available an attempt at handling the

incident is made, this can of course fail and the incident remains unresolved.

Submitter

Manager Admin

1: Report Incident

4: State Displayed to
Submitter

2: Incident Evaluated

3: Incident State Updated

5: Organiser Report

D
at

a
St

o
re

ag
e

Figure 2.2 - A use case giving a brief overview of the reporting system.

Incident Management System 7

- 7 -

Incident Reported

Incident Handled Incident Unhandled

Evaluate Report
More Information

Needed

No More Information
Needed

Handle Incident Failure

Success

Success

Failure
Gather More
Information

Figure 2.3 - Flowchart of how incidents are handled after they have been reported.

2.2.2 User interfaces

The different user interfaces of the incident management system are the reporting form, the

management form and the meta-report (statistics about incident reports) page. The images that

follow in this chapter are just simple HTML representations of our sketches and are used as

visual aid. They are not supposed to show how the design will look later.

8 Background

 - 8 -

2.2.2.1 Incident Reporting Form

The user interface for incident reporting, in Figure 2.4, consists of a form with several input fields

and buttons:

 A title field where the user can enter a subject or short description of the incident with a

maximum of 100 characters.

 A text area where the user should describe the incident more in depth.

 A drop-down list where a category can be chosen. A category can be software related

incidents; building, legal etc. “Other” should also be a choice if the user do not know or

care to choose a category.

 A button for uploading appendixes, for example images that can help clarifying the

problem or documents that relates to the incident,

 An option for the user to be anonymous is available to protect users’ identity if they feel

they could be in trouble for submitting the incident.

Figure 2.4 - Incident Reporting Form

Incident Management System 9

- 9 -

2.2.2.2 Incident Management Form

The incident management form, pictured in Figure 2.5, contains in addition to the fields in the

incident reporting form:

 A text area for inputting feedback to the submitter whose main purpose is to request

additional information.

 An action drop-down list is used to specify which state the report should transition to

next. The different actions are: Read, Supplement Required, Attended To and In

Progress.

 Also, instead of an upload button for the appendices there is a view button.

The manager should not be able to edit the title and the description of the report but should be

able to change the category.

Figure 2.5 - Incident Management Form

2.2.2.3 Meta-Report Page

We designed what we called the report organizer pictured in Figure 2.6 with a search field,

categories and a button that would show the title, submission date, state , and possibly the date

the incident was handled. We would also like to add a graph, using for example something like

Google chart API [10] which is a service that draws charts, which shows the number of reported

incidents containing the subject over time. This would give a good overview of how many and

when incidents with a given search term occurred. It would also be possible to review the graph

after new policies are enacted and see if the overall trend has changed.

10 Background

 - 10 -

Figure 2.6 - Incident Search Page Example, chart generated by Google chart API

2.3 Final Specification and design adjustments

After conferring with our supervisors at Tieto we chose to remove some and change other

features because they would needlessly complicate the project if they were left in their current

state. The user interfaces from Section 2.2.2 are used but with somewhat reduced functionality.

User anonymity is an example of a feature that would complicate things and therefore was

removed. If the user is truly anonymous, it would complicate the system. It would be

complicated to request more information from them or inform them of the status of the report

in a secure way. Another feature we removed is the ability to upload appendices. The storage

and encryption of files and the issue of how to handle uploaded files if the report is never

submitted would be too complex.

We also needed to rethink design choices. The submitter should not have to take responsibility

to make sure the report is in the correct section in the right category. With this feature gone we

Incident Management System 11

- 11 -

cannot make sure the correct manager with the appropriate knowledge and responsibility is

automatically assigned to the incident. This leads to the addition of a user class that receives all

incident reports and assigns them to appropriate managers, which we decided to call dispatcher.

This led us to rethink the states a report can be in detailed in Section 2.3.1. We also started to

think about how we are going to store information and how to secure sensitive data in Section

2.3.2. The forms in Section 2.2.2 need some modifications to accommodate these changes. The

reporting form will only have a title and description field. The management form will no longer

have an anonymity check-box or an appendix view button. We need a new form for the

dispatcher. It would be similar to the management form except the addition of a field where the

dispatcher can choose whom to assign the report. The incident statistics page will need more

advanced filtering choices, as advanced as we can make them at least.

2.3.1 Report states

The state diagram in Figure 2.7 contains all the states we envisioned was needed in our system.

It also shows what actions can cause a transition to another state. This is described in detail in

the following list:

 Waiting for dispatcher; is the state a report is in when it is pending evaluation by a

dispatcher. When it has been evaluated it can transition into five different states Closed,

Undoable, Assigned to manager or Info required.

 Info required; this state allows the submitter to supplement the report with more

information. Once more information is submitted it changes state to Waiting for

dispatcher or Assigned to manager depending on if the request came from a dispatcher

or manager.

 Closed; reports in this state describe a problem that does not exist.

 Undoable; this state means that the problem detailed in the report cannot be fixed.

 Assigned to manager; this state means that the report has been assigned to a manager

who now is responsible for solving the situation. It can then transition into five different

states Closed, Undoable, Pending, Done or Info required.

 Pending; this state means that the problem is about to be solved.

 Done; this is the state that a report that has been solved transitions into.

12 Background

 - 12 -

Figure 2.7 – Report states

Closed and undoable are very similar and could very well have been a single state , however we

choose to have two states as to be able to provide better filtration capability. The same can be

said of pending and done.

2.3.2 Database system and Security

In addition to information about reports and their connections to submitters and managers, a

history log needs to exist that stores information about each state a report has transitioned

through.

There are some security features that are essential to the system. For example : a user should not

be able to read other users’ incident reports because the users can work for different companies

and their reports could contain valuable information. Managers should not have access to other

managers’ reports because they may contain information that is outside of their scope. The

dispatcher however should be able to read every report because he or she needs to be able to

assign it to managers. So the system needs a hierarchical access principle, where the person at

Incident Management System 13

- 13 -

the top has access to everything under it but the different branches do not have access to other

branches.

14 Project Development Process

 - 14 -

3 Project Development Process

In this chapter, we will describe how we planned our project in Section 3.1. We will document

each sprint starting in Section 3.3. Before that, Section 3.2 will introduce the sprint

documentation.

3.1 Time planning

We called the first time portion of the project Pre; one week where we thought up a

specification for the project, described in detail in Chapter 2. The specification was later

improved on after a meeting with our supervisors at Tieto at the end of the pre-period. After this

followed five sprints consisting of two weeks each. At the beginning of each sprint was a

planning event where the sprint backlog was created. The sprints all ended with a demo event

where we demonstrated the product so far. The last time portion was called Post where we

finalized the documentation about this project.

In order to keep track of what was supposed to be done each week we created a simple HTML

page pictured in Figure 3.1. This page contains a list of all weeks that are part of our planning. If

a week is clicked a list of all weekdays are displayed along with any meetings or other important

events for those days. The weeks are also paired into sprints. If a sprint is clicked, its backlog is

displayed as seen in Figure 3.2. In the sprint backlog we color coded each story; green means it is

completed, yellow means it has been started and red means it has not been started. The story

points for each story are also listed, in parentheses after the stories name.

Figure 3.1 - Time table with focus on “pre”

Incident Management System 15

- 15 -

3.2 Sprint introduction

The sprint documentations will consist of four parts that will explain the work process of each of

the sprints. They will begin with a brief introduction of what we planned to achieve during the

sprint. Then they will continue more in depth with a detailed overview. There we will explain

what was done, how it was done and why we did it the way we did. This section is followed by a

results part in which we will describe concrete features of the application, mostly focused on

features added in that sprint. Lastly a retrospective view of the sprint will bring forth realizations

and learning experiences. Hopefully this way of writing will convey the evolution of the project

to the reader.

3.3 Sprint 1

In the first sprint we decided to install all tools needed and to get familiar with developing

SharePoint web parts. To get familiar with web parts we created the different user interfaces,

but not all of them could do something useful. We wanted at least one web part that was able to

add information to a database, and one that could perform searches and retrieve information.

The complete sprint backlog can be seen in Figure 3.2.

Figure 3.2 – Backlog, sprint 1

16 Project Development Process

 - 16 -

3.3.1 Overview

The first story in the backlog was to install development tools. The development tools we chose

to use were Microsoft Office 2010, Visual Studio 2010, SharePoint 2010 Server and Microsoft

SQL 2008 Server. The first computer that Tieto provided us with only had Microsoft Office 2010

installed so the first order of business was to install the rest of the tools. The computer ran

Windows 7 32-bit and SharePoint 2010 Server cannot be installed on a 32-bit Windows

installation. A series of attempts were made to bypass this, we tried to install SharePoint 2007

Server but it only supported Windows 2003 Server. We made a few attempts to get around this

but only made limited progress. When we finally managed to get it install ed, Tieto provided us

with another computer with a Windows 7 64-bit installation. With the 64-bit version and the

help of a guide from Microsoft’s website [11] all the installations were done with no problems

aside from a few performance issues.

The second story was to install and setup a database. We opted to use an SQL database to store

data. An SQL database was chosen because of the flexibility available, such as the wide range of

data types that can be stored. Microsoft SQL Server 2008 was the one we chose. It was mostly

because it was included with the SharePoint installation. It was determined through discussions

with our supervisors at Tieto that reports need titles, descriptions and it should be possible to

connect reports to managers. Managers should be capable of writing comments to submitters

and to change the state a report is in. A log is needed to keep track of each time a report

changes its state.

To accommodate these requirements we determined a solution where the database consist s of

four tables handling users, reports, comments and states would be most convenient. The Users

table stores the ID of users together with their user roles describing what security access the

users have. The Reports table stores unique identifiers for each report and stores titles,

descriptions and a reference to users who are manager. The Comment table should contain

comments, or feedback, and references to reports. It acts as an extension of the Reports table.

We thought it would be a good idea to separate this data because all reports will not always

have a comment. It is unnecessary to have fields that often are empty. The states table stores

references to reports, the new states, the time the reports changed their states, the users who

caused it to happen and a unique id. Figure 3.3 shows how we implemented the database. PK

means that a field is a primary key and FK means that it is a foreign key. Primary keys are used to

Incident Management System 17

- 17 -

ensure that each tuple (unordered set of data) in the table is unique. Foreign keys are used to

reference primary keys of other tuples.

reports

PK id

 titel
 description
FK1 managerId

users

PK id

 role

stateLogs

PK,FK2 id

 state
 timeChanged
 userId
FK1 reportId

comments

PK,FK1 reportId

 comment
 id

Figure 3.3 - Database Structure, Sprint 1

To get used to the development environment and have a way of adding data, which we could

later retrieve, to the database we started with the incident submission web part.

Figure 3.4 shows the design for the submitter form that was derived from Figure 2.4. The

appendix and category fields were omitted because we wanted to start out simple and get used

to SharePoint Web Parts. As the figure suggests the first field is the title field and can only hold

hundred characters. The second field is the description field which does not have any limit of the

length of its content.

18 Project Development Process

 - 18 -

Figure 3.4 - Submit Form

To be able to retrieve data from the database we implemented the meta-report web part. Figure

3.5 shows the meta-report page that provides rudimentary search functionality. A search term

can be entered and any report that contains that term as a substring will be listed. Each row in

said list has a link that if pressed will show the title and description of a report. To get the result

shown in the figure below we first pressed the search button to bring up the report table. We

then clicked the show link to bring up the description underneath.

Figure 3.5 - Meta-Report Form

We designed a manager/dispatching web part to visualize how it could look in the end but we

did not add any functionality to it. The dispatching form in Figure 3.6 allows reports to be

processed before they arrive at a manager. A text field named comment is provided so that a

dispatcher can give feedback to submitters. There is also a list that will allow dispatchers to

Incident Management System 19

- 19 -

assign managers to reports. This form also acts as the manager form but if you are logged in as a

manger the assign to list box will not be shown.

Figure 3.6 - Dispatching Form

Any differences between the current design and the initial design are because the current design

is not complete. It will continue to evolve and the functionality in the two should converge as the

sprints go on.

The connection between the data layer and the graphical user interface layer is established

through a LINQ to SQL Classes-layer. LINQ stands for Language-Integrated Query [12] and is a

really useful resource in C# .NET. It provides an easy way of searching and sorting collections.

LINQ to SQL Classes is a small framework inside Visual Studio that makes it possible to work

against a SQL database in an object oriented way. Each row in a database table is interpreted as

an object with the same attributes as the row and also provides direct access to other rows

referenced by foreign keys; both to and from that object. LINQ to SQL Classes provides a class

that gives access to the interpreted objects of all database tables that has been chosen for use

with LINQ to SQL Classes. LINQ allows lambda expressions that look and behave very similar to

SQL queries and are translated into SQL by LINQ to SQL Classes when the expression is run.

Figure 3.7 shows how LINQ to SQL Classes interprets the database pictured in Figure 3.3.

20 Project Development Process

 - 20 -

Figure 3.7 - LINQ to SQL Classes interpretation of a few tables from a SQL database

For example if you want to get a collection of reports that contains a specific search term the

LINQ query would look like the one in Code 3.1.

var result = from report in database.reports

where report.title.Contains("term")

select report;

Code 3.1 - LINQ Select Example

3.3.2 Results

On the local SharePoint web page on our development computer you can now drag out three

custom web parts on any SharePoint page; Incident reporting for submitting reports to the

system, Report Organizer for searching, and Dispatching for assigning incidents to managers. In

Figure 3.8 these web parts are shown laid out after each other for the convenience of not having

to switch page to see all of them.

With the incident reporting web part you can enter a title and a description of an incident. When

pressing submit it will be stored in a database. With the Report organizer one can search

through the database and the report organizer will display a list with the title of all reports

containing said search word together with a link to display the report in a more detailed view.

The Dispatching web part is just a design and has no connection to the database so far.

Incident Management System 21

- 21 -

Figure 3.8 - Web page design

22 Project Development Process

 - 22 -

3.3.3 Retrospective

Two days were wasted trying to get first SharePoint 2003 then SharePoint 2007 to run on the

32bit version of Windows 7. By the time we were able to get it to run we had already been given

a new workstation with the 64 bit version of Windows 7. On the new workstation we could

install SharePoint 2010 without much trouble, though we needed to install quite a few

prerequisites manually because the installer that was supposed to install them only works on

Windows 2008 R2 Server. We used the instructions found on MSDN [11].

SharePoint Server was never intended to run on an average workstation. The SharePoint and

Microsoft SQL 2008 Express server consumes up to 3GB of RAM. The SQL server was part of the

SharePoint installation. We were given a workstation with 4GB of RAM and that was barely

enough to run SharePoint alongside Visual Studio. Remote debugging was not available for the

SharePoint Server so running the server on a separate machine was not possible.

Because of this unforeseen problem we realized we would not have time to investigate how to

secure the data storage, which was the last and remaining item in our sprint backlog. This taught

us an important lesson; Setting up a development environment has a tendency to take more

time than anticipated.

We were not entirely pleased with the performance of the development machine so we decided

that we would, in the next sprint, move the entire development process to a different computer.

3.4 Sprint 2

In the second sprint we chose to have our main focus on investigating and implementing security

for reports. Secure the storage of reports and setting up user access restrictions. Some time was

spent further investigating existing systems to see if they had anything we could get inspiration

from. We also separated a lot of code away from the graphical user interface.

Incident Management System 23

- 23 -

Figure 3.9 –Backlog, sprint 2

3.4.1 Overview

We brought our own laptop which we installed Windows 2008 R2 Server on. This computer had

access to 512 MB more RAM and a more powerful processor: a modern 2.4 GHz dual core

processor versus an old 3.2 GHz single core processor. When we did this we decided to rewrite

the project from the ground to create a more stable foundation to build on. We separated the

graphical user interface from the data accessing and processing parts of the program. We split

the Visual Studio project into two, one that housed the web parts and one with everything else

as a dynamic-link library (DLL). This file led to permission problems, it was solved by simply

changing a setting in how a DLL file was deployed. We then started to introduce users to the

system.

The code in the project was structured into five different layers:

 The Graphical User Interface Layer; formats user input into a form which the manager

layer understands and formats the output from the manager layer into a form users can

understand,

 The Manager Layer; provides error and validity checks on top of what the accessor layer

does,

 The Accessor Layer; provides the capability to create and retrieve data from the data

storage,

 The LINQ to LINQ Classes Layer; translates LINQ queries into SQL and provides a way to

interact with the database in an object oriented way,

 The Independent Layer; is a heap of loosely connected classes, mostly container classes,

 The Database Layer; consists of an SQL database.

24 Project Development Process

 - 24 -

We were interested about what kind of incident management Karlstad University was using, if

any. We visited the IT department and found out they were using Request Tracker. More

information about Request Tracker can be found in the background chapter.

We introduced the concept of users by creating a user class that returns the currently logged in

user. Currently it always returns the same user. It was done this way because we needed users

but did not want to spend much time implementing them and we did not have insight into how

Tietos intranet handles users. The addition of the user class made it possible to add several user

based features. We added access restrictions to web parts some users should not be able to

read. We also connected submitters and managers to reports in the database. Users are

connected to reports through the state log. When a report is created a state log item is also

created. So to get the creator of a report it is only a matter of checking which user caused the

first state log item for a report to be created.

There are four user classes; administrators, dispatchers, managers and users. They are

hierarchical in nature so that administrators are considered as dispatchers and dispatchers as

managers. Access restrictions have been implemented so that administrators can view the

Incident Statistics form, dispatchers can view the Incident Dispatching form, managers can view

the Incident Management form and users can view the Incident Reporting form. If a user tries to

access a form it is not supposed to, the user will be redirected to another user control named

NoAccess. This user control displays text explaining that the user does not have access to that

form.

There are several ways to ensure security of data. You just have to weigh time, both in the sense

of work hours and application responsiveness, against performance. The re is a vast amount of

available encryption algorithms so we chose for our own convenience to limit ourselves to the

ones in the .NET Framework 3.5. There are two main groups of encryption methods; One-way,

also known as hash, and two-way encryption. Hashes are not possible to decrypt so we could not

use them because we need to be able to read the contents of the submitted reports. The

algorithms that were most interesting to us were advanced encryption standard (AES), data

encryption standard (DES), and Triple DES. DES is a 56-bit encryption method [13]. Triple DES is

DES applied up to three times which is equivalent to 56, 112 or 168-bits [13]. AES can use 128,

192 or 256 bits in the key [14]. The keys are used when encrypting and decrypting. Longer keys

provide better security, because they provide more possible key values.

Incident Management System 25

- 25 -

We chose to use AES because of the higher security option. We made a simple performance test

to determine if AES encryption was a viable option. The test revolved around splitting up a large

text file into different sizes and then looking at how much time was required to decrypt. The test

showed that decryption time was reasonably fast, so we started implement encryption with AES.

At first we tried to store the encrypted byte arrays as strings. This was done by converting bytes

to characters and merging them into strings. This did not work as intended; in short the bytes

were changed when they were converted to characters. In the end we solved this by storing the

encrypted byte array as varbinary in the database. A varbinary column stores variable-length

binary data [15].

AES encrypts data by using a key and an initialization vector (IV). We randomized sixteen

integers between 1 and 255 for the IV and thirty-two for the key with an online randomization

service called Random.org [16]. We stored the result in a byte array.

These changes and additions resulted only in a few changes to the database structure seen in

Figure 3.10:

 A new table named categories has been added. It consists of two fields, an id and a

name.

 The reports table now has an id reference to the categories table.

 The description and feedback fields of the reports table have been changed from text to

varbinary(max).

 The title field of the reports table has been changed from nchar(100) to varbinary(100).

 The comment table is now a field called feedback in the reports table. This was done

because we did not think that it would be common for a report to not have feedback. At

least not enough to warrant a separate table.

26 Project Development Process

 - 26 -

reports

PK,FK1,FK2 id

 titel
 description
 feedback
 categoryId
 manager

users

PK id

 role

stateLogs

PK,FK2 id

 state
 timeChanged
 useId
FK1 reportId

categories

PK id

 name

Figure 3.10 - Databse structure, sprint 2

3.4.2 Results

Reports are now stored encrypted in the data storage. In Figure 3.11 the updated user interfaces

can be seen. The submitter form titled Incident Reporting now allows submitters to choose a

category by selecting one in a drop down list when reporting an incident. The dispatcher form

titled Incident Dispatching now allows dispatchers to assign reports to managers via the

managers’ drop down list and change the state a report is in via the actions drop down li st. The

meta-report page titled Incident statistics functionality still remains the same. The Incident

Management form does not have any functionality.

If users try to access a form which is outside their scope they will only see a text explaining that

they cannot access said form.

Incident Management System 27

- 27 -

Figure 3.11 - Sprint 2 Page

3.4.3 Retrospective

Moving the development from the workstation computer to the much faster laptop and the

complete rewriting of the code resulted in some irritating problems. When we tried to keep the

main bulk of the code in a DLL file separated from the user interface we got a series of problems.

The first was that the DLL file simply was not deployed with the rest of the code. After some

digging around we found out that it is possible to manually specify files to deploy. This manual

way had two different options for where to deploy the DLL file, Global Assembly Cache or

Application. At first we tried Global Assembly Cache deployment but that made it problematic to

28 Project Development Process

 - 28 -

use the DLL file in user controls, because you then needed to provide an absolute path to the

DLL file. So we changed to Application deployment. This made it possible to easily use the DLL

file in user controls. This led us to problem two; we got a lot of access permission errors when

using LINQ to SQL Classes. DLL files deployed to Application are less trusted than ones deployed

to Global Assembly Cache. We solved this by not using the DLL file in user controls and deploying

to Global Assembly Cache. If a DLL is to be used in user controls and in classes it would have to

be deployed both to the Application and Global Assembly Cache.

When we started to encrypt and decrypt reports we tried to save the resulting byte arrays to

strings. This was not a good idea due to C# and SQL Server tendency to error correct and pad

strings. This was solved by us discovering that SQL Server has a data type called varbinary that

allows storage of byte arrays. Another related issue was that the SQL Server padded nchar fields

with whitespaces. This resulted in strings with a lot of whitespaces where there should not be

any. This was solved by changing to nvarchar which does not pad.

We separated the key away from the code by hiding it inside a file. It worked aside from some

strange behavior where the file was locked by another process. This caused the web parts to

crash. We did not find out what locked the file. Nothing in our code should have locked the file.

We only opened the file with read access which should not lock it.

All in all, we were really pleased with the progress we made in this sprint. Every task we put in

the sprint backlog was completed. We expect to be able to run test cases in or after the next

sprint.

3.5 Sprint 3

Our main focus for the third sprint was to implement three different news feeds for the

dispatchers, managers and users. The Overview will explain how we separated the key,

implemented the news feeds, expanded the search engine, and how configurability was

achieved in web parts. The goal is that after this sprint, we will have a system in which we can

run test cases. The backlog for sprint 3 can be seen in Figure 3.12.

Incident Management System 29

- 29 -

Figure 3.12 – Backlog, sprint 3

3.5.1 Overview

We began the sprint with the separation of the master key and initialization vector from the

code into files. We created a function that could pick them out of the file. It was done by reading

a byte array from the file. The function takes an offset value to determine where to begin

reading the file. This is made as a security measure because you need the database, the code

and the file. You cannot decrypt the database with just the key file because you do not know

where the key is or how it is generated from the file. Furthermore the stored key is modified by

using data from the database before it is used.

When we implemented the news feeds we created a server control, hereafter referred to as

ReportNews feed, which would print out any list of reports we sent to it. A server control [17] is

an object that is rendered as HTML code when called and can be used in ASP.NET pages. Our

server control has a click event that registers each time a report is clicked. ReportNews feed is

used for all four feeds; dispatcher, manager, user and admin feed. All the news feeds behave the

same, when a report is clicked said report is loaded and shown except for the admin feed which

does not have any clickable links. Reports in the news feed are color coded based on what state

they are in. This is done to make it easy to see which state a report is in. The states are color

coded as following:

 AssaignedToManager; a light blue

 Closed; a light orange

 Done; a light lime

30 Project Development Process

 - 30 -

 InfoRequired; a light yellow

 Pending; a light green

 Undoable; a light red

 WaitingForDispatcher; a light purple

Done and pending are similar colors as both states imply almost the same thing. “Pending”

means that the incident is being fixed but that it might take some time. It acts as a confirmation

to the submitter that someone has read the report and the problem will soon be solved.

To track which report is clicked we created a class named ReportLinkButton that inherited from

the built in LinkButton server control and overrode two functions: RenderBeginTag and

RenderEndTag. These functions are called before and after the server control is rendered. In the

RenderBeginTag and RenderEndTag we wrapped the link in HTML code to display it in a table.

This is easier to show rather than to explain. The end result can be seen in Figure 3.13. The

ReportNews feed class instances contain a list of ReportLinkButton.

We expanded the search engine by adding a bar graph that shows how many incidents were

reported each month and how many of them were resolved. To derive this from the database

we used LINQ, see Code 3.2. First we took the creation time and current state for each report in

the reports list. Then we filtered out the reports that were outside the time span of the graph,

ordered them in descending order by creation time, and grouped the reports by the month they

were created. Lastly we selected year, month, and number of reports submitted and resolved for

respective month. We displayed the result in a bar chart generated by Google chart API. An

example of a chart generated in the API can be found in Appendix A.

Incident Management System 31

- 31 -

var results = from reportInfo in

 (from report in reports select new {

 Date = report.StateLogAuxes.OrderBy(w => w.timeChanged).First().timeChanged,

 State = report.StateLogAuxes.OrderByDescending(w => w.timeChanged).First().state

 })

 where reportInfo.Date >= graphTimeStart &&

 reportInfo.Date <= graphTimeStart.AddYears(years)

 orderby reportInfo.Date ascending

 group reportInfo by reportInfo.Date.Month into month

 select

 new MonthStatistics(

 month.First().Date.Year,

 month.First().Date.Month,

 month.Count(),

 month.Count(w => w.State == (int)ReportStates.Done)

);

Code 3.2 – LINQ query to derive report statistics from the database

Configurability was investigated and implemented. The SharePoint server interprets some

properties as user configurable if you add attributes to them in a specific way [4]. An example of

this is shown in Code 3.3:

 Category; determines under which category the property will be visible under in

SharePoint,

 WebPartStorage; determines how the property will be stored, personal means that each

user can specify their own value,

 WebBrowsable; is the attribute that tells the SharePoint server that the property is a

custom one that can be accessed via a browser.

The result of this would be that a new setting would be shown under sett ings for our web part in

SharePoint.

32 Project Development Process

 - 32 -

[Category("Report Filter")]

[WebPartStorage(Storage.Personal)]

[DefaultValue(default_showDoneReports)]

[WebDisplayName("Show resolved incidents")]

[WebDescription("Uncheck the box if you do not want reports for resolved incidents to

show up in your news feed.")]

[WebBrowseable(true)]

public bool ShowDoneReports { get; set; }

Code 3.3 – Custom property example

3.5.2 Results

All the web parts now have a news feeds with reports. These news feeds allow reports to be

clicked:

 In the incident reporting web part it causes a report to be loaded into the submit form. But

only if a dispatcher or manager has requested more information.

 In the incident dispatching web part a report is loaded into the dispatching form. It can then

be dispatched.

 In the incident management web part a report is loaded into the management form. It is

then ready to be managed.

 The incident statistics web part does not have any clickable reports.

The news feeds color code reports based on which state they are in as can be seen in Figure

3.13.

Incident Management System 33

- 33 -

Figure 3.13 - Web Page, Sprint 3

34 Project Development Process

 - 34 -

3.5.3 Retrospective

We did not have any major problems in this sprint with the exception of the sprint demo. The

sprint demo was delayed for about one and a half week.

At the end of the sprint we were able to run a test case where we simulated the lifetime of a

report. The test case was done as following:

1. First an incident was reported.

2. Then a dispatcher requested more information from the submitter.

3. The submitter responds with more information.

4. Then a dispatcher assigns a manager to the report.

5. The manager starts with requesting more information from the submitter.

6. The submitter once again responds with more information.

7. Then the manager sets the report as done.

A feature that was originally scrapped was revived after the sprint demo with our supervisors at

Tieto. The feature was the ability to separate incident reports based on departments, locations

and customer from each other. This will be described in the next sprint.

3.6 Sprint 4

This sprint’s main focus would have been the addition of customers. Customers need to know

that information regarding their company does not fall in the hands of someone without

permission to touch it. So we need a way to classify reports, users, managers and even

dispatchers with access restrictions. Unfortunately we did not have time to implement it

because Easter and delays cut the sprint short by more than a week. The addition of a customer

would have meant changes to all parts of the system. Instead we decided to explain in detail

how we would have implemented the feature.

3.6.1 Overview

We initially planned to include this functionality in the initial specification but it was scrapped at

that time. This was done because we wanted to start out with a simple system.

In a company, as large as Tieto, there exist several different departments on varying locations.

Customers for Tieto do not want incident reports about them to be visible to affiliates of another

customer of Tieto.

Incident Management System 35

- 35 -

This means that each department, location and customer needs to be isolated in some regard

from each other. And the whole should only be accessible by a few. However the changes

required for this addition of functionality would be quite time consuming. Due to the projected

time requirements we chose not to start implementing it.

We would make departments, locations and customers act as groups. In order to read an

incident from a group you would need to be a member of that group, or be the submitter of an

incident. The submitter of a report should always be able to see it regardless of which group it is

in. This is because a dispatcher or manager could move the report from one group to another. If

the submitter would have to be in the same group as the report to be able to read it, it would be

impossible for a manger or dispatcher to have a dialog with the submitter.

Two new tables would be added to the database: one that would contain information about

groups and one that would connect users to groups. The groups table would contain two fields;

an id and a name for the group. The table that connects users to groups would need two fields:

one that references a group and one that holds a user id. Another addition to the database

would be the addition of a foreign key to the reports table that would reference a group.

Each of the four web parts incident reporting, incident dispatching, incident management and

incident statistics would need to be connected to groups in some manner. We thought of two

distinct ways of doing this. The first would be to make the web parts configurable so that they

always connected to a group. This would require a lot of different pages with web parts. The

second was to display a drop down list of all the groups a user is connected to. This would allow

the user to choose which group the incident belongs to.

Dispatchers and managers must somehow be able to register for a group. There are differe nt

ways of accomplishing this, each with varying levels of difficulty:

 A group administrator that manually adds every eligible user to the database,

 Users receive personalized one-time-use-passwords,

 Every group has one password; it would have to be changed fairly often though. This is

because it might be leaked; a user can quit or be relocated to another department or

location.

 The easiest way would be if the groups somehow could be automatized by using user

information the system already has. We do not know what information is stored about

users or how to access it so this is a hypothetical solution.

36 Project Development Process

 - 36 -

The passwords themselves would not be stored; instead hash values of the passwords would be

stored. This in order to protect the passwords of the database would be breached.

The accessor layer would need to be updated so that the new fields are loaded when retrieving

and creating objects. The select statements would also need to be updated so that they do not

retrieve reports that the current user is not supposed to be able to read.

3.6.2 Results

Reports would belong to groups and administrators would be able to generate statistics based

on groups. Dispatchers and managers would only get incident reports that belong to the same

groups as they are. Users would only be able to submit reports to groups they belong to but

would be able to read their own reports even if they are moved to another group.

3.6.3 Retrospective

Our thoughts was that we would have had time to implement this if the sprint had not been cut

short due to scheduling problems.

3.7 Sprint 5

This sprint’s main focus was writing this report and generating some performance

measurements of the search functionality.

3.7.1 Overview

The main bottleneck in our system is the decryption process. Though it only affects the incident

statistics web part. In order to be able to search through a report it has to be decrypted first.

This can be quite time consuming and memory intensive when the number of reports goes up.

There are some ways the search process could be sped up. The reports could be filtered before

encryption occurs. The filtering could be based on categories and timespan. This would result in

that only reports matching a chosen category and timespan are decrypted and searched.

As seen in Figure 3.14 the search time is a linear function of the number of reports the search is

performed on. The peaks and valleys are caused by the use of a page file. This test was a worst

case scenario where the search term where at the end of each report and each report contained

the search term. Each report consisted of a 100 char long title and a 1,000 char long description.

The title and description were randomly generated.

Incident Management System 37

- 37 -

The test was performed in a virtual machine. A virtual machine behaves as an ordinary machine

but cannot run on its own and has to be hosted by another machine . This was chosen because

we had a virtual machine with everything needed to run the test. The machine running the

virtual machine did not. The virtual machine was configured to have one processor with four

cores and 1928 MB of RAM. It was running the 64-bit version of Windows 7. The virtual machine

was running under VMware Workstation 7.1.4. The host operating system was running the 64 bit

version of Windows 7. It had 4 GB of RAM and an Intel Core 2 Quad processor (Q6600) clocked at

2.4GHz.

Figure 3.14 - Search Performance, worst case scenario

Currently all reports are loaded into memory at once and decrypted one at a time. This requires

a lot of memory compared to alternatives. One alternative would be to only keep a few reports

in memory at a time. Another solution would be to filter the reports that are loaded, so that

fewer are kept in memory. The memory usage will of course vary depending on how many

reports are in the system and how big each report is.

It was discovered that a one hundred characters long titles could no longer be stored in the

database after they had been encrypted. About 15 % more in our case, this number comes from

y = 0,5386x - 377,46

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

0 10000 20000 30000 40000 50000 60000 70000 80000

Se
ar

ch
 t

im
e

 (
m

s)

Number of reports

Search Performance

38 Project Development Process

 - 38 -

adding the encrypted title lengths from the test in Figure 3.14 and dividing it by the total number

of reports. It was solved by increasing the number of bytes that can be stored in the title field of

the reports table.

There has been only one change in the database seen in Figure 3.15; the title field of the reports

table has been changed from varbinary (100) to varbinary(max). This was done because a title of

100 characters could not be stored in 100 bytes after it is encrypted.

reports

PK,FK1,FK2 id

 titel
 description
 feedback
 categoryId
 manager

users

PK id

 role

stateLogs

PK,FK2 id

 state
 timeChanged
 useId
FK1 reportId

categories

PK id

 name

Figure 3.15 - Database structure, sprint 5

3.7.2 Retrospective

We came to the conclusion that our choice of cryptographic algorithm was a good one. It

performs reasonably well when searching through a large amount of reports. If performance

issues are encountered when the system goes live, the algorithms could be tweaked.

Incident Management System 39

- 39 -

4 Results and evaluation

This chapter is a complete rundown of the finished system. In Section 4.1 we will briefly describe

the system as a whole; Section 4.2 will cover the code structure; Section 4.3 will provide screen

shoots of the web interface and we will explain what users can do and how; and In Section 4.4

we will describe security aspects such as user access restrictions and data encryption.

4.1 System

Users can report incidents. They can help managers and dispatchers by providing additional

details about the incident if requested. Managers manage reports that they receive from

dispatchers; solving the incident. Dispatchers dispatch reports that are waiting to be dispatched ,

by solving the incident themselves or assigning it to a manager. Managers and dispatchers can

request information from the submitter of a report to gain more insight into what the incident

was about. This can make it easier to manage and dispatch the reports. Administrators can

generate statistics from reports. Dispatchers and managers can determine that the incident is

not a real problem or that the incident cannot be solved.

40 Results and evaluation

 - 40 -

Figure 4.1 - Use case diagram

4.2 Code

We chose to make the Incident Reporting System as modular as we could, to make it adaptable

to changes. This philosophy led to the creation of several different layers:

 The Graphical User Interface Layer; formats user input into a form which the manager

layer understands and formats the output from the manager layer i nto a form users can

understand;

 The Manager Layer; provides error and validity checks on top of what the accessor layer

does;

 The Accessor Layer; provides the capability to create and retrieve data from the data

storage;

Incident Management System 41

- 41 -

 The LINQ to LINQ Classes Layer; translates LINQ queries into SQL and provides a way to

interact with the database in an object oriented way;

 The Independent Layer; is a heap of loosely connected classes, mostly container classes,

 The Database Layer; consists of an SQL database.

The relationship between these layers and thereby our classes will be explained below and can

be seen in Figure 4.2. Each layer only access classes from the same layer, the layer beneath it or

to the right. This makes it relatively easy to replace layers.

42 Results and evaluation

 - 42 -

Figure 4.2 - Diagram of the layers and classes in our system and how they relate to each other

Incident Management System 43

- 43 -

4.2.1 The Graphical User Interface

The graphical user interface layer consists of four web parts and a user control. The web parts

are incident reporting, incident dispatching, incident management, incident statistics and the

user control is NoAccess.

The incident reporting web part allows users to report incidents through an HTML form. The

form is made up by a few input elements; a textbox where a title can be en tered, a text field

where a description can be entered, and a drop down list where a category can be chosen. The

category drop down list is populated by an instance of CategoryManager. The web part also has

a news feed that allow incidents reported by a user to be managed by said user. This news feed

gets a list of reports from an instance of the ReportManager. Reports can be supplemented with

more information upon request. This is done by selecting the report in question. The report is

then loaded into the HTML form mentioned earlier and can be edited freely. When reporting

incidents the currently logged in user is accessed via the User class. Reports, users and

categories are stored in Report, User and Category containers while processing occurs. If a user

without permission attempts to access this web part they will be redirected to the NoAccess user

control.

The incident dispatching web part allows dispatchers to handle incoming incident reports

through an HTML form. The form is made up by a few labels and input elements. There are two

labels one in which the title of incident is displayed and one where the description is. There is a

text field in which a message to the user who submitted the report can be written. There are two

drop down lists; one which allows a manager to be selected for an incident and one in which an

action can be selected. The manager drop down list is populated by an instance of the

UserManager. In order to populate the action drop down list the enumerator ReportStates is

used. A dispatcher is provided with a news feed which gets a list of reports from an instance of

the ReportManager. This news feed allows reports to be selected. A selected report will be

loaded into the form mentioned earlier. A loaded incident report can be assigne d to a manager,

and an action can be chosen. When a report is dispatched a new state log item is created by an

instance of the StateLogManager. The state log item records the new state and which user

caused it to be changed. The currently logged in user is accessed through the User class. Reports

and users are stored in Report and User containers while processing occurs. If a user without

permission attempts to access this web part they will be redirected to the NoAccess user control.

44 Results and evaluation

 - 44 -

The IncidentManagement web part has the same functionality as the incident dispatching web

part except for two key differences. Managers can only see incident reports assigned to them

and are waiting to be managed. And mangers cannot assign incident reports to other managers.

If a user without permission attempts to access this web part they will be redirected to the

NoAccess user control.

The incident statistics web part allows administrators to generate statistics. This is done through

an HTML form. This form has one textbox where a search term can be written. A statistics search

is limited to a one year period prior to the search date. Once a search has been done all

matching reports are displayed in a news feed which is populated by an instance of the

ReportManager. A box diagram displays the number of solved incidents versus the number of

unfinished ones. This chart is generated by the Statistics class. The currently logged in user is

accessed through the User class. Reports and users are stored in Report and User containers

while processing occurs. If a user without permission attempts to access this web part they will

be redirected to the NoAccess user control.

The user control NoAccess displays a text explaining that access was denied to another form.

4.2.2 The Manager Layer

The manager layer consists of five classes that can retrieve, save and/or create objects in the

data storage; CategoryManager, ReportManager, UserManager, StateLogManager and

StatisticsManager. The manager classes validate their input before calling accessors and will

never throw exception if given invalid input.

The CategoryManager class can retrieve categories in two different ways. It can retrieve all

categories. Or it can retrieve a specific category by using its id. Categories are retrieved by an

instance of the CategoryAccessor class. Categories are stored in Category containers while

processing occurs.

The ReportManager class can create, change, and retrieve reports. When reports are created an

initial state is created using an instance of the StateLogManager class. The reports themselves

are created using an instance of the ReportAccessor class. When creating reports the parameters

are inspected. For example one parameter is an id of a category, it is checked that the

referenced category exist. This is done using an instance of the CategoryManager. In order to

change a report, an instance of the Report class is required. The information in this instance is

then saved to the data storage using an instance of the ReportAccessor class. A new state for the

Incident Management System 45

- 45 -

report is also created using an instance of the StateLogManager. There are five different ways of

retrieving reports and all are using an instance of the ReportAccessor class. All reports can be

retrieved for a user, dispatcher or manager. When retrieving for a user, only incidents reported

by said user are retrieved. Dispatchers can only retrieve reports that are waiting to be

dispatched. And managers can only retrieve reports that are waiting to be managed. A specific

report can also be retrieved. It is possible to retrieve all reports that contain a search term.

Reports that contain the search term are retrieved. Reports, categories and state log items are

stored in Report, Category and StateLogItem containers while processing occurs.

The UserManager class can retrieve all users whom are managers using an instance of the

UserAccessor class. Users are stored in User containers while processing occurs.

The StateLogManager class can create state log items using an instance of the StateLogAccessor.

When creating a state log item the parameters are inspected. For example it is checked that the

new state exists in the enumerator ReportStates. State log items are stored in StateLogItem

containers while processing occurs.

The StatisticsManager class can generate statistics about a one year period if given a date and a

search term. The search term is used to filter the reports before statistics are made. These

statistics are generated on a per month basis using an instance of the StatisticsAccessor class.

Month statistics are stored in MonthStatistics containers while processing occurs.

4.2.3 The Accessor Layer

The accessor layer consists of five classes that can retrieve, save and/or create objects in the

data storage; CategoryAccessor, ReportAccessor, UserAccessor, StateLogAccessor and

StatisticsAccessor. The accessor classes do not validate their input and are likely to throw

exceptions if given invalid input.

The CategoryAccessor class can retrieve categories in two different ways. It can retrieve all

categories. Or it can retrieve a specific category by using its id. Categories are retrieved using the

class collection DataClasses. The DataClasses class collection provides CategoryAux class

instances. They are used to create instances of the Category class. Categories are stored in

CategoryAux or Category containers while processing occurs.

The ReportAccessor class can create, change, and retrieve reports. When reports are created an

initial state is created using an instance of the StateLogAccessor class. The reports themse lves

46 Results and evaluation

 - 46 -

are created using the class collection DataClasses. In order to change a report, an instance of the

Report class is required. The information in this instance is then saved to the data storage using

the class collection DataClasses. There are five different ways of retrieving reports and all are

using the class collection DataClasses. Reports can be retrieved for a user, dispatcher or

manager. When retrieving for a user, only incidents reported by said user are retrieved.

Dispatchers can only retrieve reports that are waiting to be dispatched. And managers can only

retrieve reports that are waiting to be managed. A specific report can also be retrieved. It is

possible to retrieve all reports that contain a search term. All reports that contain the search

term are retrieved. The DataClasses class collection provides ReportAux class instances. All text

in these instances is encrypted and are decrypted and instances of the Report class are created.

Reports are stored in ReportAux or Report containers while processing occurs.

The UserAccessor class can retrieve all users whom are managers using the class collection

DataClasses. The DataClasses class collection provides UserAux class instances. They are used to

create instances of the User class. Users are stored in UserAux or User containers while

processing occurs.

The StateLogAccessor class can create state log items using the class collection DataClasses.

State log items are stored in StateLogAux or StateLogItem containers while processing occurs.

The StatisticsAccessor class can generate statistics about a one year period if given a date and a

search term. The search term is used to filter the reports before statistics are made. These

statistics are generated using the class collection DataClasses. Month statistics and reports are

stored in MonthStatistics or ReportAux containers while processing occurs.

4.2.4 The Independent Layer

This layer consists of eleven classes and two enumerators. Six of the classes are containers;

Category, Report, StateLogItem, User, ReportEventArgs and MonthStatistics. We called them

container classes because they act as containers and mostly only hold information without any

data manipulation methods. One class is used when encrypting and decrypting (AesCryptator).

One holds global settings (Settings). One that builds URLs to charts (Statistics). Two that are

ASP.NET user controls, ReportNews feed and ReportLinkButton. The two enumerators are

ReportStates and UserRoles.

The Category class is a container. It holds the name of a category and its unique identity.

Incident Management System 47

- 47 -

The Report class is a container class. It holds the unique identity of a report, the title, the

description, the feedback, the manager of the report, an identity reference to a category and the

current state of the report. The current state of the report is stored in an instance of the

StateLogItem class.

The Settings class is a static class and the point where all the globally configurable settings in our

system can be found.

The StateLogItem class is a container class. It holds an identity reference to a report, the current

state as a ReportStates enumerator, the time the report took the new state and the user who

caused the state to change.

The User class is a container and static class. It holds the identity of the user and which role the

user has as a UserRoles enumerator. The static part of the class can be used to retrieve the

currently logged in user.

The ReportEventArgs class inherits from EventArgs. It holds an instance of the Report class. The

Report is used to hold information about the report that caused the event.

The MonthStatistics class is a container class. It holds the year in which the statistic occurred, the

month of the year the statistics occurred, the number of incidents reported, and the number of

solved incident reports.

The ReportNews feed class is a server control and can be placed in ASP.NET pages and user

controls. It is used to create lists of reports. Reports are color coded based on what state they

are in. There is a click event for when a report i s clicked. This event uses the ReportEventArgs

class for event arguments.

The ReportLinkButton class inherits from LinkButton is a server control and can be placed in

ASP.NET pages and user controls. It is used to create lists of reports. It holds a reference to a

report and provides some formatting. The formatting renders a HTML table around the link

button. The table contains information about the referenced report.

The ReportStates enumerator contains all the seven states a report can be in; these are

described in Section 2.3.1.

The UserRoles enumerator contains all the user roles that exist in our system; User, Manager,

Dispatcher and Admin.

48 Results and evaluation

 - 48 -

The Statistics is a static class and can generate links to charts if given statistics.

The AesCryptator class is a wrapper for the built in .NET AesCryptographicService class. It

provides a simple way to encrypt and decrypt strings and byte arrays.

4.2.5 LINQ to SQL Classes Layer

This layer consists of five classes; DataClassesDataContext, ReportAux, CategoryAux, UserAux

and StateLogAux. The DataClasses class collection is used to give an object oriented way of

interacting with the database tables. It consists of several classes we called aux classes and a

data context class.

The DataClassesDataContext class is used to connect and access the different tables of the

database.

The ReportAux class is a wrapper for the reports table. It holds a reference to a CategoryAux for

the category referenced by the report. A list of all the StateLogAux that reference the report is

also available.

The CategoryAux class is a wrapper for the categories table. It holds a list of references to

ReportAux to keep track of all reports that reference the category.

The UserAux class is a wrapper for the users table.

The StateLogAux class is a wrapper for the stateLogs table. It holds a reference to a Report to

keep track of which report a state log item belongs to.

In order to save new instances of an aux classes, just set their properties and then use an

instance of the DataClassesDataContext class to save them to the database.

4.2.6 The Database Layer

The database-layer consists of a SQL server with four tables; reports, users, stateLogs and

categories. A diagram of the SQL database can be seen in Figure 3.15.

The reports table has six fields:

 Id; is a unique integer and the primary key;

 Title; is a varbinary(max);

 Description; is a varbinary(max);

 Feedback; is a varbinary(max);

Incident Management System 49

- 49 -

 CategoryId; is a foreign key to the id field of the categories table;

 Manager; is a reference to the id field of the users table;

Of these six fields two are voluntary; feedback and manager. Title, description and feedback are

strings that have been encrypted. Feedback allows dispatchers and managers to have dialogs

with the submitter.

The categories table has two fields; id which is a unique integer and name which is an nvarchar.

The id is the primary key. Both of these fields are mandatory.

The stateLogs table has five fields:

 Id; is a unique integer and the primary key;

 State; is an integer;

 TimeChanged; is a date time;

 UserId; is a reference to the id field of the users table;

 ReportId; is a foreign key to the id field of the reports table.

All five fields are mandatory. The state field is the state a report was in at the time specified in

TimeChanged. It should exist in the ReportStates enumerator. TimeChanged should be the time

the state log item was created. The user reference should be to the user who created the new

state log item.

The users table has two fields; id which is a unique integer and role which is an integer. The id is

the primary key. The role is a user role and should exist in the UserRoles enumerator. Both of

these fields are mandatory.

4.3 Web Interface

There are four web parts in our system; Incident Reporting, Management, Dispatching and

Statistics.

Anyone is allowed to view the Incident Reporting web part seen in Figure 4.3. In this web part

users can report an incident by entering a short description or subject in a title field, and

describe the incident in a text area. They can choose to categorize the incident within a category

but it is not necessary; it defaults to a general category and can be changed by dispatchers and

managers later on. The web part also has a list of incident reports showing all reports the user

has submitted.

50 Results and evaluation

 - 50 -

Figure 4.3 - Incident Reporting Form

The user must have manager privileges to view the Incident Management web part seen in

Figure 4.4. A manager can write feedback back to the submitter and can request more

information. The manager can perform a few actions:

 Assign the report to themselves; does nothing, can be used to write feedback to the

submitter;

 Mark the report as solved;

 Request more information from the submitter;

 Mark the report as pending to be solved;

 Close reports; reports that are not describing real problems should be closed and not

solved;

 Mark reports as undoable; a problem is described that cannot be solved.

Incident Management System 51

- 51 -

The web part also has a list of incident reports showing all reports that are assigned to the

manager and are waiting to be managed.

Figure 4.4 - Incident Management Form

If the user has dispatcher privileges it can view the Dispatching web part seen in Figure 4.5. The

dispatcher can perform a few actions:

 Assign the report to a manager,

 Mark a report as waiting for dispatcher; can be used to write messages (feedback) to

other dispatchers or the submitter,

 Mark the report as solved,

 Request more information from the submitter,

 Close reports; reports that are not describing real problems should be closed and not

solved,

 Mark reports as undoable; a problem is described that cannot be solved.

A dispatcher can write feedback back to the submitter and can request more information. The

web part also has a list of incident reports showing all reports that are waiting to be dispatched.

52 Results and evaluation

 - 52 -

Figure 4.5 - Incident Dispatching Form

Users with administrator privileges can view the Statistics web part seen in Figure 4.6.

Administrators can generate statistics based on a search term that can be entered.

Incident Management System 53

- 53 -

Figure 4.6 - Incident Statistics Form

4.4 Security

The security consists of two major parts, user access restriction and protection of sensitive

information. User access restriction will be described in Section 4.4.1, followed by a description

of how we protected incident report information in Section 4.4.2.

4.4.1 Access hierarchy

There are four different user types in our system; administrator, dispatcher, manager and user.

Administrators can generate statistics from reports based on search results. Dispatchers can

54 Results and evaluation

 - 54 -

dispatch new reports to make sure that they have relevant information and that the report gets

to a manager who can solve it. Managers solve incident reports assigned to them. Users can

report incidents. The different user types are hierarchical in nature as can be seen in Figure 4.7.

Administrators expand from the access rights that dispatchers have. Dispatchers do the same

from managers and managers from users.

Figure 4.7 - Access hierarchy

4.4.2 Report encryption

Sensitive information in Incident reports is the titles, the descriptions and the feedbacks. This

information needs to be protected. We protected it by encrypting it with AES. The added

protection comes at a cost of course. In order to access the information it needs to be

decrypted. This is especially true if the information needs to be searched, in which case the

information needs to be decrypted before search can be done. This however does not pose a

Incident Management System 55

- 55 -

serious problem in our system because the time penalty is small and only affects a small part of

the system.

To protect the encryption process we partly separated the key and initialization vector from the

code and database. It is hidden partly in the code, database and the file system. In other words

one needs access to the database, the code and two special files in order to encrypt and decrypt

reports. Unfortunately we cannot go in to too much detail about the concrete method of which

we accomplished this. But it is very easy to secure the database even against us by just editing a

few variables in the code before deploying the project.

56 Conclusions

 - 56 -

5 Conclusions

We will review the specification and describe an improved version of it with all the learning

experiences the project has given in Section 5.1. An overview of the project can be found Section

5.2. A discussion of possible future development opportunities can be seen in Section 5.3. The

chapter will end with a general overview in Section 5.4

5.1 Specification

There are some aspects that we realized during and after the development process. Some things

that could have been handled better from the start or simply removing redundant functionality.

We would include groups in the specification, for more details about groups see Section 3.6.1.

We would merge the two states closed and undoable into a single state.

5.2 This project

We are really happy with what this project has given us. Learning how to develop SharePoint

web parts was overall a fun experience. Getting familiar with the cryptographic options in C#

.NET framework 3.5 was interesting. Working with Scrum on a real project was a good

experience.

We managed to satisfy everything in the final specification described in Section 2.3. There was a

late addition of groups (detailed in Section 3.6.1) that we were unable to implement. Our

supervisors at Tieto did seem reasonably pleased considering the time we had to implement the

system. But they still need to evaluate the code. The lack of groups is a major drawback.

5.2.1 Security

Encrypting the sensitive information in reports with AES worked well. It was fast enough at

decrypting to be able to decrypt up to a thousand reports in a reasonable amount of time; see

Figure 3.14. Some performance problems arise when the number of reports searched at once is

greater than one thousand or if many administrators try to search at the same moment. See

Figure 3.14 for the time requirements needed to search different amount of reports.

The access hierarchy isolates the different type of users and makes sure users only have access

to the web parts they need in order to fulfill their roles.

Incident Management System 57

- 57 -

5.2.2 Scrum

Scrum worked out quite well. We were able to have a working system after each sprint. It was

useful to have the sprint demos where our supervisors at Tieto could point out if we were going

in the wrong direction.

There was however a problem that occurred in sprint four where a holiday and scheduling

conflicts caused the third sprint demo to be delayed over a week. This cut the fourth sprint short

and ended up being just two days long. We chose to just investigate and not implement due to

the lack of time available. Though the time was not wasted, it was used to write this report.

This highlights a problem in Scrum, the need to have the customer (in our case our supervisors at

Tieto) readily available for meetings throughout the development process.

5.3 Future work

Our prototype system was not integrated into Tieto’s intranet. In order to do this the web parts

would need to be deployed to the SharePoint server. The cryptographic algorithm would need to

be configured. Meaning that a key and initialization vector has to be chosen and stored in files.

An SQL database would need to be created and configured; it can be done by using the LINQ to

SQL Data Classes. SharePoint users need to be integrated into the system. Currently a hardcoded

user is returned when the User class is used to access the logged on SharePoint user. Groups

need to be implemented for the system to fit the specification properly.

There are some features we would like see added to the system in the future to make it even

more convenient.

Reloading the entire page just to keep the news feeds updated is wasteful and could disturb

other web parts. It would therefore be positive to reload the web parts independently from the

page. This could be achieved by using the ASP.NET update panel user control. The update panel

causes everything in it to reload independently from the page the control is on . It is done by

using AJAX (Asynchronous JavaScript and XML).

The web parts could be made highly customizable. This would allow users to personalize their

web parts. An example would be to make it a choice if the forms and news feeds in the web

parts should be displayed or hidden by default. At the moment the news feeds are displayed

while the forms are hidden and a link has to be pressed to show them.

58 Conclusions

 - 58 -

The search process can be streamlined quite a bit. How this can be done is explained in Section

3.7.1.

Currently certain things can only be managed with direct access to the SQL database. Categories

cannot be managed and users cannot be given roles without direct SQL access. It would be a lot

more convenient if web parts existed that would allow such things to be edited via the intranet.

5.4 General conclusions

Overall, the project went well. We set up a development environment for developing SharePoint

web parts. The main goal was to create an Incident Management System which uses a capable

security model. Reported incidents can contain sensitive information that should not be

accessible by even database administrators. Existing systems expose sensitive information to

database administrators and do not sufficiently protect reports from external attacks. Therefore

the data is encrypted in the database, and there are checks that make sure that only users with

proper access rights can read reports. We are very pleased with how we solved the security

issue. Reports are well protected in a three pronged approach, in order to encrypt and decrypt

one needs access to the database, the code and two secret files. The access rights need to vary

depending on which state a report is in. Another goal was to make it as easy as possible for the

users to report incidents and encourage them to do so. Both of these goals were completed.

Another feature we are pleased with is the box chart in the statistics web part. It gives a good

visual representation of trends and feedback for post decision evaluation of policies.

Our supervisors at KaU and Tieto have been really helpful. Our supervisor at KaU helped us a lot

by reading this report regularly and suggesting changes. Our two supervisors at Tieto helped us

create the specification and had a lot of valuable and intelligent input when we implemented it.

Incident Management System 59

- 59 -

6 Bibliography

[1] Wikipedia. (2011, Feb.) Wikipedia. [Online].

http://en.wikipedia.org/w/index.php?title=Microsoft_SharePoint&oldid=416182459

[2] Tyler Holmes. (2008, Mar.) System.What? [Online].

http://blog.tylerholmes.com/2008/03/walkthrough-creating-sharepoint-feature.html

[3] Microsoft. MSDN. [Online]. http://msdn.microsoft.com/en-

us/library/ms499606%28v=office.12%29.aspx

[4] Microsoft. MSDN. [Online]. http://msdn.microsoft.com/en-

us/library/dd584174%28office.11%29.aspx

[5] Atlassian. Atlassian. [Online]. http://www.atlassian.com/software/jira/

[6] Bugzilla. Bugzilla. [Online]. http://www.bugzilla.org/

[7] My Safe Workplace. [Online]. http://www.mysafeworkplace.com/

[8] Best Pratical. [Online]. http://bestpractical.com/rt/

[9] Henrik Kniberg, Scrum and XP from the Trenches.: C4Media, 2007.

[10] Google. (2010, Feb.) Google Code. [Online]. http://code.google.com/intl/sv-SE/apis/chart/

[11] pisces1012000 and Senthilrajan Kaliyaperumal. (2010, May) MSDN. [Online].

http://msdn.microsoft.com/en-us/library/ee554869.aspx

[12] Don Box and Anders Hejlsberg. (2007, Feb.) MSDN. [Online].

http://msdn.microsoft.com/library/bb308959.aspx

[13] Wikipedia. (2011, Mar.) Wikipedia. [Online].

http://en.wikipedia.org/w/index.php?title=Triple_DES&oldid=418332025

[14] Wikipedia. (2011, Apr.) Wikipedia. [Online].

http://en.wikipedia.org/w/index.php?title=Advanced_Encryption_Standard&oldid=42248

9156

[15] Microsoft. MSDN. [Online]. http://msdn.microsoft.com/en-us/library/ms188362.aspx

[16] Random.org. RANDOM.ORG. [Online]. RANDOM.ORG - True Random Number Service

[17] Microsoft. MSDN. [Online]. http://msdn.microsoft.com/en-

us/library/bs302eat%28v=vs.80%29.aspx

[18] Google. (2010, Feb.) Google Code. [Online]. http://code.google.com/intl/sv-

SE/apis/chart/docs/gallery/bar_charts.html

http://en.wikipedia.org/w/index.php?title=Microsoft_SharePoint&oldid=416182459
http://blog.tylerholmes.com/2008/03/walkthrough-creating-sharepoint-feature.html
http://msdn.microsoft.com/en-us/library/ms499606%28v=office.12%29.aspx
http://msdn.microsoft.com/en-us/library/ms499606%28v=office.12%29.aspx
http://msdn.microsoft.com/en-us/library/dd584174%28office.11%29.aspx
http://msdn.microsoft.com/en-us/library/dd584174%28office.11%29.aspx
http://www.atlassian.com/software/jira/
http://www.bugzilla.org/
http://www.mysafeworkplace.com/
http://bestpractical.com/rt/
http://code.google.com/intl/sv-SE/apis/chart/
http://msdn.microsoft.com/en-us/library/ee554869.aspx
http://msdn.microsoft.com/library/bb308959.aspx
http://en.wikipedia.org/w/index.php?title=Triple_DES&oldid=418332025
http://en.wikipedia.org/w/index.php?title=Advanced_Encryption_Standard&oldid=422489156
http://en.wikipedia.org/w/index.php?title=Advanced_Encryption_Standard&oldid=422489156
http://msdn.microsoft.com/en-us/library/ms188362.aspx
RANDOM.ORG%20-%20True%20Random%20Number%20Service
http://msdn.microsoft.com/en-us/library/bs302eat%28v=vs.80%29.aspx
http://msdn.microsoft.com/en-us/library/bs302eat%28v=vs.80%29.aspx
http://code.google.com/intl/sv-SE/apis/chart/docs/gallery/bar_charts.html
http://code.google.com/intl/sv-SE/apis/chart/docs/gallery/bar_charts.html

60 Bibliography

 - 60 -

[19] Wikipedia. (2011, Apr.) Wikipedia. [Online].

http://en.wikipedia.org/w/index.php?title=RSA&oldid=422735691

[20] Wikipedia. (2011, Apr.) Wikipedia. [Online].

http://en.wikipedia.org/w/index.php?title=Data_Encryption_Standard&oldid=421969035

[21] Wikipedia. (2010, Nov.) Wkipedia. [Online].

http://en.wikipedia.org/w/index.php?title=Microsoft_Search_Server&oldid=399335297

http://en.wikipedia.org/w/index.php?title=RSA&oldid=422735691
http://en.wikipedia.org/w/index.php?title=Data_Encryption_Standard&oldid=421969035
http://en.wikipedia.org/w/index.php?title=Microsoft_Search_Server&oldid=399335297

Incident Management System 61

- 61 -

7 Appendix A – Google chart API, bar chart

Google chart API [18] generates charts if given a few parameters in the URL, for example

https://chart.googleapis.com/chart?

 chs=600x300&; chart size in the <width>x<height> form,

 cht=bvo&; chart type,

 chd=t:40,38,37,35,37,41,43,41,42,39,37,21|41,39,37,36,39,43,44,45,43,42,40,41&; chart

data series separated by |,

 chco=FFCC33,FFE9A4&; chart color for the different data series,

 chxt=x,y&; sets how the axis are aligned in the <horizontal>,<vertical> form,

 chxr=1,0,70&; chart axis range in the <axis index>,<min value>,<max value> form,

 chds=0,70,0,70&; chart data scaling,

 chxl=0:|Oct|Nov|Dec|Jan|Feb|Mar|Apr|May|Jun|Jul|Aug|Sep|&; chart axis labels

 chtt=Incident+reports+by+month+last+year|containing+%22term%22; chart title | is

used as line break.

If the link above is concatenated with everything before the semi colon in the bullet list the

result will be as seen in Figure 7.1.

Figure 7.1 - Example bar chart

https://chart.googleapis.com/chart

62 Appendix B - Drafts

 - 62 -

8 Appendix B - Drafts

Figure 8.1 - Early system draft

Incident Management System 63

- 63 -

Figure 8.2 - Early state and sequence diagram draft

	1 Introduction
	2 Background
	2.1 Introduction
	2.1.1 Initial Specification
	2.1.2 SharePoint
	2.1.3 Existing applications
	2.1.4 Scrum

	2.2 Specification and design suggestions
	2.2.1 Diagrams
	2.2.2 User interfaces
	2.2.2.1 Incident Reporting Form
	2.2.2.2 Incident Management Form
	2.2.2.3 Meta-Report Page

	2.3 Final Specification and design adjustments
	2.3.1 Report states
	2.3.2 Database system and Security

	3 Project Development Process
	3.1 Time planning
	3.2 Sprint introduction
	3.3 Sprint 1
	3.3.1 Overview
	3.3.2 Results
	3.3.3 Retrospective

	3.4 Sprint 2
	3.4.1 Overview
	3.4.2 Results
	3.4.3 Retrospective

	3.5 Sprint 3
	3.5.1 Overview
	3.5.2 Results
	3.5.3 Retrospective

	3.6 Sprint 4
	3.6.1 Overview
	3.6.2 Results
	3.6.3 Retrospective

	3.7 Sprint 5
	3.7.1 Overview
	3.7.2 Retrospective

	4 Results and evaluation
	4.1 System
	4.2 Code
	4.2.1 The Graphical User Interface
	4.2.2 The Manager Layer
	4.2.3 The Accessor Layer
	4.2.4 The Independent Layer
	4.2.5 LINQ to SQL Classes Layer
	4.2.6 The Database Layer

	4.3 Web Interface
	4.4 Security
	4.4.1 Access hierarchy
	4.4.2 Report encryption

	5 Conclusions
	5.1 Specification
	5.2 This project
	5.2.1 Security
	5.2.2 Scrum

	5.3 Future work
	5.4 General conclusions

	6 Bibliography
	7 Appendix A – Google chart API, bar chart
	8 Appendix B - Drafts

