Computer Science

Adrian Coca Lorente
Pablo Martinez Lopez

muslQal

A music sharing web-site

Computer Science
C-level thesis

Date/Term: 12-06-05
Supervisor: Katarina Asplund
Examiner: Donald F. Ross

Serial Number: C2012:03

Karlstads universitet 651 88 Karlstad
Tfn 054-700 10 00 Fax 054-700 14 60
Information@kau.se www.kau.se

muslQal — A music sharing web-site

Adrian Coca Lorente
Pablo Martinez Lopez

(© 2012 The author(s) and Karlstad University

This report is submitted in partial fulfillment of the requirements
for the Bachelor’s degree in Computer Science. All material in
this report which is not our own work has been identified and
no material is included for which a degree has previously been

conferred.

Adrian Coca Lorente

Pablo Martinez Lopez

Approved, June 05 2012

Advisor: Katarina Asplund

Examiner: Donald F. Ross

iii

Abstract

This dissertation describes the development of a web-site which serves a system for devel-
oping music collaboratively between different people no matter where they actually are.
The users cannot only create their own music together with other people but can also have
an economical profit by selling music tracks to other users and make their music available
to the public.

The web-site uses modern programming technologies and contemporary computer capabil-
ities, such as HTML5, JQuery and ASP.NET MVCa3.

The dissertation covers the technologies behind this project and also explain how the

project has been design and implemented.

vi

Contents

Contents
List of Figures

1 Introduction
1.1 Project Description
1.2 Project Features.

1.3 Chapter Overview e

2 Background
2.1 Existing Systems
2.1.1 Soundcloud
2.1.2 Ubetoo
2.1.3 Comparison
2.2 Technology Review
221 HTML e
222 HTMLS
2.2.3 Dynamic Web Pages L.
2.2.4 JavaScript
225 AJAX
226 JQuery
227 CSS . .
228 CH . . e
229 SQL

vii

vii

xi

N 9 3 ot w ow W

2.3.2 Web browser

2.4 Chapter sumMmary o vt e

3 Design of the system

3.1 Requirements
3.2 Model-View-Controller
3.3 Database Design
3.3.1 Table Users
3.3.2 Table Songs
3.3.3 Table Suggestions
3.3.4 Table Negotiations
3.3.5 Table Contests
3.4 Program Design L
3.4.1 Code - Database Interaction
3.4.2 Model - UserManagement
3.4.3 Model - SongManagement
3.4.4 Controller
345 Viewo
3.5 Chapter summary

4 Implementation

4.1 User Identity Security
4.2 Audio Conversion and Mixing
4.3 JQuery Asynchronous Requests
4.4 Chapter Overview

5 User Interface

6 Evaluation

viii

26
26
27
28
28
29
32
33
35
36
37
38
39
43
43
44

45
45
47
47
50

51

57

6.1 Time Planning
6.2 Acquired Knowledge
6.3 What could have been done differently

7 Conclusions

7.1 Future work

Appendix A: Database Diagram

Appendix B: Model Class Diagram

Appendix C: Whole System Diagram

Bibliography

ix

59
99

60

61

63

64

List of Figures

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13

2.14

2.15

2.16
2.17

2.18

2.19
2.20

Time comments in a song from Soundcloud
Soundcloud’s applications for mobile plataforms
List of most played songs on Ubetoo
Video player on Ubetoo
A HTML div element written in short and long forms
A HTML img element with the src attribute set to somePicture.jpg
A HTML b element with the inner text: Hello world
A HTML div element with a img element as a child
A HTML audio element with a song in two different codecs
HTML5 example showing a document with 4 lines of text.
ASP.NET file example in C# writing a HTML showing 4 lines
PHP example writing a HTML showing 4 lines
JavaScript function that checks and sets which audio format should be
played when it is called.o
JavaScript function using JQuery for lookup of the div element ”ajaxSongDe-
scription” and loading the HTML elements of the file descriptionl.html, as
its children, asynchronously using AJAX.
Applying a red background colour to the HTML with id ”"ajaxSongDescrip-

"Hello World” in C#..
SQL code that retrieves the name and path of all the songs contained in the
table SONGS.
LINQ C# code that retrieves the name and path of all the songs contained
in the table SONGS.
Visual Studio 2010 debugging C# code.
Visual Studio 2010 SQL query tool.

X1

O © O O O O Ot

2.21
3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18
4.1
4.2
5.1

5.2
9.3
5.4
2.5

Google Chrome developer tools debugging JavaScript Code. 24
MVC pattern diagram. 27
Users database table. 28
Songs database table. oL 29
Streams database table.o 30
SongFolders database table. 0 0L 30
SongStreams database table. o000 31
SongUsers database table. L. 32
StreamUsers database table. L. 32
Suggestions database table. 0000000 33
Negotiations database table. 34
Comments database table. 0L 35
Contests database table. 35
StreamVotes database table. 36
User class. o 38
Comment class. 39
Song class. 40
Stream class. 41
Folder class. 42
JQuery asynchronous POST request. 48
JQuery asynchronous POST request. 49
The main web-page of the web-site. This page is still to be filled by the

customer.o e 51
User’s Login web-page. 52
List of published songs in the system. 52
List of ongoing contests in the service. 53
List of the songs created by the user. 53

xii

5.6 Page used to upload tracks and keep track of the song status. 54
5.7 Page to make suggestions to other people’s songs. 54
5.8 Users permissions of asong. 55
5.9 Negotiation proposal. Lo 55
5.10 Negotiation response. 56
5.11 Error page. L 56

xiii

1 Introduction

1.1 Project Description

This dissertation, in the field of software engineering, was suggested by professor Martin
Blom at Karlstad University, who has also been our customer for the project. Our assign-
ment was to develop a web-site for creating music in a collaborative way on the Internet.
Currently, there are not so many web-sites offering an easy way to create music together
with other people. Therefore, this project presented here will try to fill the existing gap in
this field.

The web-site will allow its users to upload music tracks, either to their own songs or
to other users’ songs. When a user uploads a track to other user’s song it is called a
suggestion. Once a suggestion is made there must be a negotiation between the owner of
the song and the owner of the suggested track where they both agree on the price of the
track. To encourage users to make suggestions to a specific song, the owner of the song

can create a contest where he or she can choose the instrument of the suggestions.

1.2 Project Features

The web-site provides the user with a system capable of:
e Storing user’s music tracks.
e Receiving or sending suggestions for other people’s songs.
e Automatic mixing and encoding of the suggestions and the original tracks.

e Negotiating between the song’s administrator and the person who makes the sugges-

tion.

e Contesting between suggestions to allow the song’s administrators to find the best

suggestion for their music.

e The web-site was developed using HTML5 and offer interactivity with the users.

1.3 Chapter Overview

The dissertation consists of the following chapters:

Chapter two contains a description of the project’s background. This chapter present
a comparison between our service and the existing services and also describes all the tech-
nologies used for developing this project.
Chapter three describes most of the design decisions made for the project, both for the
database and for the application.
Chapter four discuses the most relevant implementation details for the project, such as the
audio processing, the security aspect and the programming on the client side.
Chapter five offers a pre-view of the final user interface.
Chapter six gives a view of the project from retrospect, describing how the developing has
been and what could have been better.

Chapter seven presents the conclusion and what needs to be done in the future.

2 Background

This chapter describes the project’s background. It presents the existing systems and
compare them to our system. It also describes the technologies used for developing the

system and some of the tools used during the development.

2.1 Existing Systems

Nowadays, the world of music is changing and new ways to make and share music are
developed; these ways allow people to share their creations more easily across the Internet.
When we look on the Internet we find a large number of systems which allow us to upload
and share our music with other people and compare it. Many of these systems work online
(e.g. soundcloud [11], ubetoo [1], MixMatchMusic [12], jukeboxalive [10], blip [2]), while
others use P2P technology (e.g. blubster [3] or bearshare [13]), but not all the systems we
can find are exclusive for music. Usually, they are systems to upload, share and store any
type of data.

In this section, we focus on two web-sites designed for music that have an objective and

functionality similar to ours, Soundcloud and Ubetoo.

2.1.1 Soundcloud

Soundcloud [11] is a web-site dedicated to creation and sharing of originally-created music.
The users can easily upload or record sounds. The web-site also allow users to choose their
privacy settings for each song, with many options between private (only the creator can
see it) and public (everyone can see it).

The main goal of this web-site is to allow people to easily share music with other people and
get feedback from their listeners. The web-site has designed a set of tools to facilitate the
user to reach this objective. The Time comments system (see Figure 2.1) allow listeners to

evaluate specific moments of each track. The web-site also give you statistics about your

3

tracks. The groups system allows the user to fastly share a song with a specific group of
users. This web-site also has several applications for Iphone and Android (see Figure 2.2).
Another advantage of this web-site is the possibility to create a remiz contest for any of

your songs. However, this feature requires that every component of the song is uploaded

in a separate track.

All | Live = Samples = Sample Collections Sortby: Hottest | Latest
There are 13668 &-licensed tracks uploaded to SoundCloud in the last 7 days. Search them

2 comments at 0.

Kl" The NOIS . PSYCHEDELIC go
killthenoise & days [44768 % | 250 W | 1570

Falcon Lake - Shores (from Drown EP)

Bad Panda Records ® 7 days ago 5500k | 79O | 227 | 384 %

Save to Favorites | % Download

.. ,.l..‘l....hle..l.‘ L.l’.ldpl"m,.mmlhmduhl.lnl ..._.w.u

&

hoodinternet & days ago

H The Hood Internet - Polish City (Tyga x Neon Indian)

225020 | 25 W | 187 | 3722 %

& Share | ¥ Saveto Favorites | # Download [0]2)]

Figure 2.1: Time comments in a song from Soundcloud

Conduit Mobile
[share & Distribute

sinusoid
[create & Record

SHREDDER for
T iPhone
wewa® [] create & Record

Yamaha TNR-i
[J Create & Record

ProRecorder - Vocal
FX
[J create & Record

Herd.fm
[J Discover & Listen

i
i

-1 SoundPrism -
’ DCreate & Record

Tabletop /
@ u Create & Record

Figure 2.2: Soundcloud’s applications for mobile plataforms

FL Studio Mobile HD
D Create & Record

[cuens:) AmpKit
P
- D Create & Record

Mobile Roadie FL Studio Mabile
M [share & Distribute

u Create & Record

SEDE

One of the drawbacks of the web-site is that to get the full operation of the web-site
the user has to buy the pro account. With the free account there is a limit in upload
minutes, download per tracks, contacts list, statistics and some others tools of the web-
site. When the user selects one of his or her tracks as not downloadable for the public, it
is also forbidden for the user to download his or her own track. It is also not possible to

create collaborative music.

2.1.2 Ubetoo

Ubetoo [1] is a web-site aimed for people who wants to make money from their music. For
the users, it is free to share their creations and they earn money according to the number
of views their tracks get thanks to advertisements. However, if users want to distribute
their tracks to music stores, such as iTunes, Spotify, and Amazon MP3, they must pay.

The web-site allow users to upload tracks and create albums and singles that are automat-
ically accessible to everyone that is visiting the web-site (see Figure 2.3). One advantage
of this web-site is that you get money every time that any of your tracks is played. Fur-
thermore, you can get some feedback from the comments that other users have on your

creations. The web-site is not exclusively for audio tracks but also for video tracks. These

are managed in the same way as the audio tracks (see Figure 2.4).

T

Umpo“ (" search) Noifications Mailoox Stalkers Add media+ | User

Songs Videos Artists Playlists Store Forums

«d - Universal Music partner with Ubetoo Music Distribution - Get your music talent judged! - Spotify has landed in the US - LATEST NEWS - Have your ad on Ubetoo.com - Ne|

Most played songs on Ubetoo last 24 hours

Friday Night All charts
By: Wirror of Myself - Category: Experimental - 15,619 views - Published: 12:35 AM Mar 20th 2010 New uploads
Lrdadadada Most played
Most played (last 24 hours)
Formlessness Top rated
By: Mirror of Myself - Category: Acoustic - 2,654 views - Published: 12:50 AM May 3rd 2011 Last pushed
SR
7S Gaab : You're not Johnny Depp Categories
!
-'ﬁgl.ifﬂ'(: By: lalouline - Category: Rock - 6,340 views - Published: 11:50 AM Dec 8th 2011 All Dubstep Pop
ﬁ LILIILIT Acoustic Easylistening PostHardcore
African Electronica/Syr Powerpop
4 Michel Clement : Suzie Bang Afrobeat Emo Progressive
Alternative Experimental Psy Trance
By: lalouline - Category: Regoae - 5,555 views - Published: 618 PM Dec 15t 2011 Ambient Folk Peychedelic
Lrgrdadat Bachata FolkRock Punk
L, .) Balearic Funk Rap
Lion's : Il fallait vivre sa vie Trance Game Reggae
By: lalouline - Category: Pop - 6,132 views - Published: 11:56 AM Dec 1st2011 Beats Go-Go Reggaeton
ﬁ{lﬁﬁﬁ Bluegrass Gospel Religious
Blues Gothic Rock Rnb

Figure 2.3: List of most played songs on Ubetoo

Songs Videos Artists Playlists Store Forums

1d on Ubetoo.com - New distribution subscriptions launched - Universal Music partner with Ubetoo Music Distribution - Get your music talent judged! - Spotify has landed in

Crazy Town (Venice Video) by Mirror of Myself on Ubetoo

by Mirror of Myself

Sell your music on

WWiN\P
Get started right away .

Comment on this video

L <o O @ ¢ & OO0 D @8 ose

CopyLink Share Embed Add toPlaylist Add to Favorites Push Report

Figure 2.4: Video player on Ubetoo

One of the drawbacks of this web-site is that you cannot decide the privacy policy of
your tracks. Also, if the users want to use the distribution function, their songs cannot
be distributed by any other distributor at the same time. It is also not possible to create

collaborative music, the tracks that the user upload must be finished creations to be played.

2.1.3 Comparison

As we saw in the previous sections, there are some differences between the web-sites de-
scribed above and our web-site.

The main function that makes our web-site different is the possibility of create collabora-
tive music. That is, many users can participate in the creation of a song by adding a new
track containing the new part of the song (a new instrument, a second voice, etc).The user
also has the possibility to create a contest to find a specific component of his song, e.g. the
voice or any instrument. In soundcloud, the user can create a remix contest, but the song
must be finished to create the contest; Ubetoo do not allow users to create collaborative
music. Ubetoo is only for sharing finished songs.

Another important point where our web-site differs from the others is the possibility of

negotiating the price of a song between all participants.

2.2 Technology Review

This subsection makes a brief overview of the technologies used in this project to provide
the reader with enough information to understand further chapters.

2.2.1 HTML

HTML (HyperText Markup Language) is a markup language designed for representing
web-pages. A markup Language is a language that defines how a text shall be treated,

processed or shown.

HTML is the main starting point when you learn about web development - all the web-
pages that we can see on the Internet use some version of this language to encode their
web-pages. A web browser (Client side) has to acquire the HTML code of the web-page
and then interpret the code and most likely download some more content indicated in the
acquired HTML file and execute their JavaScript scripts if any. We will take a look at

JavaScript in section 2.2.4.

In order to retrieve a HT'ML file, the web browser communicates with the web server
(Server side) by using the HTTP protocol.
HTTP (HyperText Transfer Protocol) defines how the communication between the web
client and the web server has to be accomplished. Among a few other aspects, this proto-
col basically establishes the request methods available to the web client and also the return
codes that the web server may use as response.
The most important request methods are ”Get” and ”"Post”. The ”Get” method allows
the web client to ask the web server for a resource - this resource is most likely HT'ML
code of a web-page, but it can actually be data of any type. The address of the resource
desired is specified by a URI (Uniform Resource Identifier).
The ”Post” method is used to make a resource request but also to send data to the web

server. It is usually used for submitting a web form and for uploading files to the web server.

Once a HTML file has been received by using the "Get” or "Post” HTTP method, it
should be processed. In order to find out how this is done, let us take a look at the con-
tents of a regular HTML file.

A HTML file is composed of a set of elements called "Tags”. There are two ways to rep-
resent tags; the shorter way is where the tags have their name enclosed by the symbols <

and \ >, the longer way is where the tags follow the format <TagName> <TagName\ >,

8

see Figure 2.5.

<div \>
<div> <\div>

Figure 2.5: A HTML div element written in short and long forms

Each HTML element represents an object — such as a text box, a label, a menu, a list,
etc. — which the web browser has to understand and show if necessary. The complete list
of HTML elements version 5 of the current draft can be consulted on the w3c web-page
[15].

Depending on the HTML element, it can have different attributes or inner text or inner

html code, see Figure 2.6, 2.7 and 2.8 respectively.

Figure 2.6: A HTML img element with the src attribute set to somePicture.jpg

 Hello world <\b>

Figure 2.7: A HTML b element with the inner text: Hello world
<div>

<\div>

Figure 2.8: A HTML div element with a img element as a child

Element attributes set the properties of the object — such as width, height, destination

address of a link, which script should be called when a certain event occurs, style prefer-

ences (See section 2.2.7), etc.

Inner HTML code allows for establishing a hierarchy between the HT'ML objects. Thus, in

9

each HTML document, there will be parents, children and siblings. Inner HTML code is
useful, for instance, for making tables —where you have a table object as parent and rows

as children—, and for making lists and group boxes.

2.2.2 HTML5

The fifth version of HT'ML is currently a draft, thus its specification may change, and
probably will, when the final version get released. According to that, some parts of this

section may not be valid in the future.

This new version of the HTML standard aims to make the use of plugins unnecessary
— external software installed in the web browser — for multimedia purposes. This is ac-
complished by a set of new HTML elements which handles audio and video playback, see

Figure 2.9 for an example.

<audio id="audiol” autobuffer controls>
<source src="song.mp3”>
<source src="song.ogg’>
<\audio>

Figure 2.9: A HTML audio element with a song in two different codecs

As can be seen in Figure 2.9, several sources of the same song in different codecs have to
be provided. The reason for this is that the standard does not declare a unique format and
codec for audio and video. This means that each web browser is only compatible with the
formats and codecs that they had decided to implement. This is not a problem by itself,
the problem is that there are several popular codecs and formats that are proprietary and

these cannot be implemented on open source web browsers like Mozilla Firefox.

Currently there is an ongoing battle between web browsers that implement proprietary

10

codecs, web browsers that implements free codecs and web browsers that implements both.
At the end of the day, this battle is translated into a problem for everyone: It is a problem
for web developers, who once again have to check for compatibility with all web browsers.
It is also a problem for the server side that has to store several copies of the same resource
in different codecs. It also may be a problem for the final user who may be forced to choose

the web browser that is compatible with the web-sites that he or she uses, like in the old

days before HTML 5.

At first, HTML 5 also offered several other features such as local storage, web sockets,
webgl, geolocation, etc. but these features now have their own specification outside of the
HTML 5 specification.

For our project, we have only used the new audio element and some other minor new
elements and attributes such as sections, placeholders, header, nav and progress. A basic

HTML5 page is shown in Figure 2.10.

<!DOCTYPE html>

<html>
<head>
<title>Webpage 1</title>
</head>
<body>
line #1
line #2
line #3
line #4
</body>
</html>

Figure 2.10: HTML5 example showing a document with 4 lines of text.

11

2.2.3 Dynamic Web Pages

We have now discussed development of statics web pages using HTML. The next question
is: How can you create pages that show dynamic content? In the most typical cases you
would like to link some content from a server database - to upload user’s information or
data, for example.

For this purpose, at the server side, we will need to generate the HTML code on the fly
when the client requests the web page.

There are several platforms and programming languages designed to make this job. The

process that all of them follow is to execute a piece of code at the server which outputs

HTML code that will be sent back to the client.[9]

The two most common programming languages for this purpose are ASP.NET and PHP,

which are described below.

ASP.NET

ASP.NET is a platform built on top of the Microsoft .NET Framework.

The .NET Framework is a large set of libraries and high-level programming languages.
The compiled code for the framework is known as Common Intermediate Language (CIL)
- also called managed code because it is executed within the framework’s environment.
Since the code is not compiled to machine code, it needs a virtual machine which reads the
CIL code and transforms it into the assembler language of the processor where the appli-
cation is executed. The framework also gives the possibility of making calls to unmanaged
libraries - code that runs outside the framework’s environment in assembler code, which
allows low-level programming as well.

Since the CIL is not related to any platform, processor architecture or operating system, a

NET assembly can be executed on any processor or operating system if there is a virtual

12

machine for it.

In ASP.NET you define what is to be executed when a HTTP request method (”get”
and "post” usually) is received. By using a programming language supported by the NET
Framework the code will create the HT'ML page that should be sent to the client.

The ASP.NET files contain the regular HTML code that is given back to the client, but
they also contain code written in the chosen programming language. In order to state what
HTML is and what belongs to the programming language, special ASP.NET directives are
used. The most common directives are < %% > and < % : % >. The former executes the

inner code and the latter prints out to HTML the value of the inner variable.

Figure 2.11 shows how ASP.NET can be applied to generate a document like the one

shown in Figure 2.10.

<%@ Page Language="C#’ %>
<!DOCTYPE html>

<html>
<head runat="server”’>
<title>Webpage 1</title>
</head>
<body>
<% for (int i =1; i <=4; i++) { %
<p>
<%: 7line # + i %
</p>
<%+ %>
</body>
</html>

Figure 2.11: ASP.NET file example in C# writing a HTML showing 4 lines

13

PHP

PHP is a programming language which has quite a large number of libraries the programmer
can use.

Like the .NET Framework, PHP was not meant to be compiled to machine code although
there are some compilers available which usually can speed up the execution of PHP.
The execution of native code is a little more complicated than in the .Net framework. To
do this execution, a new PHP extension in C has to be written, then compiled and inserted
in the PHP server, adding more complexity to the process of developing a wrapper.

As can be seen in Figure 2.12, the idea behind PHP is really the same as behind ASP.NET
- a HTML document with embedded code of a programming language.

<!DOCTYPE html>

<html>
<head>
<title>Webpage 1</title>
</head>
<body>
<? for ($i = 1; $i <= 4; $i++) { >
<p>
<?= ’line # + $i 7>
</p>
<t} >
</body>
</html>

Figure 2.12: PHP example writing a HTML showing 4 lines

14

2.2.4 JavaScript

Now we understand the technology behind a static web-page and how to generate dynamic
web-pages. However, there is still one last important issue to be addressed and it is the
interactivity with the user.

In some scenarios it is desirable to execute some actions at certain events, such as a click
on some button, a mouse pointer over some panel, or a periodic task. There are only two
choices, either executing a script at the server side or executing it at the client side. If it
is executed at the server side, as discussed in section 2.2.3, the script will encounter high
delays for interactive use since the server is most likely to be on a remote machine.

To solve this problem, those actions that are meant for an interactive use have to be exe-

cuted on the client side.

The programming language designed for this purpose, without the need of installing a
plugin in the web browser, is JavaScript.

The computer resources that can be used by JavaScript is strongly limited, since security
issues may arise otherwise. Therefore, the code that is given to the web browser by the
server is not compiled. Instead, it has to be interpreted in the web browser — for security
and compatibility reasons. Thus, one of the disadvantages of this limitation is also that
JavaScript code executed at the client side is exposed to the client and can be copied and
tampered with. We need to be aware of not compromising the server’s security since that

code will be public.

JavaScript is based on C, but it does not have pointers and it is weakly typed. The
language is designed for managing the elements contained in the HTML code and its val-
ues and attributes. This is accomplished by the Document Object Model (DOM). Each
time a web browser loads a HT'ML document it generates a tree of objects, where each

HTML element is contained along its attributes, values and element hierarchy, which is

15

accessible through the Document Object Model API. Any change made to those objects
will be reflected on the actual web-page.

By adding, deleting or editing the objects along some others built-in functions, we can
provide the client with a real time interactive web-page.

We can see how to search for an element with the attribute id set to ”audioPlayer” by

using the Document Object Model in JavaScript in Figure 2.13.

<script type="text/javascript”>
function changeSong(songPath) {
audioElement = document.getElementByld (’audioPlayer ’);

if (audioElement.canPlayType(’audio/mpeg’)) {
audioElement . src = songPath + ’.mp3’;

} else if (audioElement.canPlayType(’audio/ogg; codecs="vorbis” "))
audioElement . src = songPath + ’.ogg’;

} else {
/ /JFALLBACK
}

return false ;

}

<\script>

Figure 2.13: JavaScript function that checks and sets which audio format should be played
when it is called.

2.2.5 AJAX

AJAX (Asynchronous JavaScript And XML) is a technique that allows a web browser to
retrieve data from the web server to process through JavaScript. The communication is
achieved by a new JavaScript object named XMLHttpRequest. This object controls the
ingoing and outgoing traffic through http or https — others protocols may be implemented
but the W3C’s specification leaves this uncovered. The object provides us with methods

and attributes to make requests and to listen to responses. The type of data that can be

16

sent and received can be of any data type, not only XML, as may be inferred by its name.
However, the most usual use is to send and retrieve HI'ML text code or XML and for that

reason the object is prepared with special methods for those formats.

2.2.6 JQuery

JQuery is a JavaScript library which makes an abstraction to several new technologies
and techniques, such as AJAX, event handling and animation. This library removes the
underlying details, such as the communication protocols and file formats used. Therefore,
in this project wherever the AJAX technique is used it will be through JQuery, since the
methods provided by the XMLHttpRequest object are low-level and would slow down the
development of the web-site.

Figure 2.14 shows an example of AJAX using JQuery.

<script src="jquery —1.5.1.js” type="text/javascript’></script>
<div id="ajaxSongDescription” \>
<script type="text/javascript”>

function loadDescription () {

$ $("#ajaxSongDescription”).load (” descriptionl.html”);

¥
<\script>
Figure 2.14: JavaScript function using JQuery for lookup of the div element ”ajaxSongDe-

scription” and loading the HTML elements of the file descriptionl.html, as its children,
asynchronously using AJAX.

2.2.7 CSS

Whilst HTML was growing up in its early days, developers realised that if the HTML

files contains the attributes for visual presentation and style per each HTML element, the

17

HTML files become really complex and code is repeated in most of the elements.

In order to address this situation, the Cascading Style Sheets (CSS) language was created.
Therefore, the presentation and the content of a web-page was split into a CSS and a
HTML file respectively. Nevertheless, the presentation information can still be written in

the HTML file — the use of CSS is not mandatory.

A CSS file holds only presentation and style information. It contains a set of declara-
tions with the name or type name and class of the elements to apply the style (Selectors)
and its style, see Figure 2.15.

The language is called Cascading Style Sheets because several declarations can match a
single element from multiples sources. The algorithm that solves this problem chooses the
style with the most specific selector. For instance, the selector ”#ajaxSongDescription” is
more specific than "div”, since "div” is an element type and ”#ajaxSongDescription” is a

name id. Thus, the style declared by the selector " #ajaxSongDescription” will be applied.

—HIML CODE——-

<div id="ajaxSongDescription” \>

CSS CODE———

#ajaxSongDescription

{

background—color: red;

Figure 2.15: Applying a red background colour to the HTML with id ”ajaxSongDescrip-

tion”.

18

2.2.8 C#

C+# is a general purpose, object oriented programming language developed by Microsoft
and has become an European Computer Manufacturers Association (ECMA) and Interna-
tional Organization for Standardisation (ISO) standard. C# is used in this project on the
server side along with ASP.NET.

C# is one of the programming languages supported by the .NET Framework described
in section 2.2.3.

There is an ongoing free and open source project named Mono, which aims to create a plat-
form compatible with the .NET Framework platform. Currently, Mono supports almost
the entire .NET Framework version 4.0 (released on mid 2010) but it lacks the support of
the Entity Framework, which is used in our project and will be described in section 2.2.9.
When the Entity Framework gets implemented in the Mono project, it will be an option
to be taken into account by the costumer, since deploying this web-site on a web-server by

using the Mono platform should be licence-free.

C# has a similar syntax as C, C++ and Java. It also has support for pointers, but
they should not be used whenever it can be skipped, since the use may destroy the com-
patibility with different system architectures, because of different pointer lengths, word
endianness, etc.

Figure 2.16 shows the "hello world” program written in C#.

2.2.9 SQL

Structured Query Language (SQL) is a language used to make queries to database systems.
SQL allows to retrieve, insert, modify and delete data from a certain database. SQL is
powerful enough to retrieve exactly the data that you want to, avoiding the need of post-

processing the data with any other programming language to filter the results.

19

class Program

{

public static void Main ()

{
}

System . Console. WriteLine (" Hello .world”) ;

Figure 2.16: "Hello World” in C#.

The information in the database is stored in tables, where each table has its own fields.
There can exist relations between fields from one table to another. That is the basic con-

cept behind a SQL-database. A basic SQL-query is shown in Figure 2.17.

SELECT name, path
FROM SONGS;

Figure 2.17: SQL code that retrieves the name and path of all the songs contained in the
table SONGS.

In this project we are not using the SQL language directly. Instead, we are using the
Entity Framework, linked to a SQL Server which provides us with the database system.
The Entity Framework maps a database to objects in the .NET Framework. With this
approach, we do not longer depend on the database system and language, but on the model
provided by the Entity Framework. As long as the database fits the model done by ourself
or the model generated automatically by the Entity Framework, and the Entity Framework
is compatible with the database system, the database system can be replaced with another

system.

The technology used to query the database through the Entity Framework is Language-
Integrated Query (LINQ). LINQ extends the capability of C#, bringing us new language

syntax to query databases in a very similar syntax as SQL has — this is why it is also very

20

important to know how SQL works. The Entity Framework will take care of the translation
between LINQ and SQL. We can compare how LINQ differs from SQL (see Figure 2.17)
by looking at Figure 2.18. Here we can see the two major advantages; the result is in C#
objects directly and the database system is abstracted, while the code does not really differ
from SQL — LINQ is as powerful as SQL.

musicsharedbEntities context = new musicsharedbEntities ();

var queryResult = from song in context.Songs
select new { song.Name, song.Path };

Figure 2.18: LINQ C# code that retrieves the name and path of all the songs contained
in the table SONGS.

21

2.3 Tools

In this section we show the general features of the main tools used in the project. We
do not review all of the tools that have ever been used in this project due to the large
amount of technologies and API’s which this project relays on, as it has been stated in
the Technology Review section. Therefore, we describe only the two most important tools,
Visual Studio and the web browser Google Chrome, which cover the development and

debugging of the technologies used at the server side and at the client side, respectively.

2.3.1 Visual Studio

Visual Studio 2010 is an IDE (Integrated Development Environment) made for working
with several general-purpose programming languages for the Windows platform, such as
ASP.NET and C#. Visual Studio 2010 also has tools for managing SQL server and there-
fore for making SQL queries. These features makes Visual Studio 2010 perfectly suitable
for developing the server side of our project since it provides us with high quality tools to
work with and for debugging the languages that our project requires.

Visual Studio 2010 helps us with code highlighting, code auto-completion and real-time
compiling — it compiles our code as we write it, showing up syntax errors earlier — but the
greatest and most helpful feature that an IDE can have are the debugging tools; hence, we

are going to show them in the upcoming figures.

Figure 2.19 shows the use of Visual Studio 2010 for debugging C# code of the web-site
and Figure 2.20 shows the SQL query tool that allows creating and debugging databases

easily.

22

|=] MusicShare (Debugging) - Microsoft Visual Web Developer 2010 Express. o [[sl]
File Edit View Project Debug Tools Window Help
Ho AT I R NG R [&

boal> He <5 |~ ¢

o [5| o < § O Full Screen ¢

ontroller.cs @ ntroller.cs @ - ~ 1 x

haredbModel.edmx

AdminSongTreeasc [E N B MakeNegotiation.ascx Solution Explorer

% MusicShare.Models.SongManagement. Stream <] % Stream(Song seng, string usermame, string streamName, Felder branch, string serverPath, System.0.5t < =3 @&
68 =0 2 MusicShare

using (musicsharedbEntities context = new musicsharedbE () 0+ Ea Properties

o [References

» [App_Data

Models.Stream streamDbl = new Models.Stream();

StreanDbl.Name = streamhame; > O3 Content
4 streamDbl.Path = filename; » [Contrallers
75 streamDbl.Description = string.Empty; 4 [Models
76 streamDbl.Branch = branch.FullFolderhame; H 2] AccountModels.cs
Qo 77 streamDbl.Length = duratien > 4 musicsharedbMod]

78 streamDbl.MixedTrackR @ duration| 243 = %] SongManagement. |

79 #] UserManagement.d
ZE Ery » [Seripts
52 context.Streams.Addobject (streamdbl); > O Views
a3 context.SaveChanges(); b a\] Global.asax
4 context.Sengstreams.Addobject (new Songstream() { Songld = song.ID, Streamld = streamDbl.StreamId }); = packages.config
85 context.StreamUsers.AddObject (new StreamUser() { Username = username, Streamld = streamDbl.StreamId }); b |5 Web.config
86 context.saveChanges();
&7 }
88 catch -
00% - ¢ I] »

Lacals - 1 X Immediate Window > B x
context.Contests.Where(x => x.StreanlD == Streans[@].10)
Expression cannot contain lambda expressions
context.Contests.All()

lNo overload for method 'All' takes @ arguments

context . Contests. AsEnumerable()

Name Value Type -
@ this {MusicShareModels. SongManagement.Stream} Musicsh
@ song {MusicShare,Models.SongManagement.5ong} Musicsh| =
@ usemame "Coki0d” @+ string

@ streamName "Dover - Judas" A v/sting [Q{system.Data.Objects.ObjectSet<MusicShare. Models. Contest>}

@ branch {MusicShare.Models.SongManagement.Felder} MusicSh base {System.Data.Objects.ObjectQuery<MusicShare.Models.Contest>}: {System.D:
@ serverPath " C:\Users\\Coki04\\Documents\\Visual Studio 2010\\Pre & - string EntitySet: {Contests}

@ streamData {System.Web.HttpInputStream} System T

P ;

EIEY =] Immediate Window [- NeltaINg

[0 11cicGhare Morels Straaml RcicSh

-
=Y

DET®E YD T A

Figure 2.19: Visual Studio 2010 debugging C# code.

=] MusicShare - Microsoft Visual Web Developer 2010 Express = | |
File Edit View Project Debug Data QueryDesigner Tools Window Help
Pl - S @ & B9 - ® -] b [Debug Il][B < i (4 86 | o < i (O FullScreen

i = # | ChangeType~ | ¥ boy | = | #3178 -

P27l Song: Query(coki..USICSHAREDB.MDF) [ot I uR x AdminSongTree.ascx ngManagement.cs MakeNegotiation.ascx . o yerController.cs

Song =

* [All Calumns)

[status

Songld Title Album Streamld Status
One And Justice for ... 1 1
Fade to Black Ride the Lightni... 2 0
NuLL NuLL NuLL

Cellis Read Only.

R ErorList B Output

- TeE Y

Figure 2.20: Visual Studio 2010 SQL query tool.

23

2.3.2 Web browser

We have chosen Google Chrome as web browser, not only because it is the only one
which currently supports all the HTML5 features that we use but also because we find its
developer tools very helpful.

Google Chrome developer tools offer the possibility of setting breakpoints in the JavaScript
code pausing its execution when the breakpoint is hit, allowing you to analyse the values
of whichever variable you want to, or to see what flow the script follows. This functionality
gets more important as the script grows since debugging big scripts without such tools
becomes a really tedious work. These tools also provide us with a network sniffer which
shows the HTTP messages exchanged between the client and the server. This sniffer
became quite useful for debugging our AJAX messages, made us able to inspect the actual
sent and received data and it also made us able to locate where the errors were taking
place.

Figure 2.21 shows the Google Chrome developer tools.

g Developer Tools - http://127.0.0.1:49173/PlayerfUnfinisheds
= — " =
= {}z TR
@ < @ T Q[a
Elements Resources MNetwork Scripts Timelie Profies Audks Console S
<|» Unfinished! LAR- RIS St Paused
T e ~| » Watch Expressions + e
[<a href='/Account/Logon"=Log On] ¥ Call Stack
{ Register |
</div> (anonymaus function) 49173(Playe
</section= ;
</section- onclick 49173iPlaye:
</header> Paused on 2 JavaSeript breakpaint.

=section id="main">

40
41 <hz=Unfinished</hz=

5 <script type="text/javascript’s

pt
44 function changeSeng(sengPath) {
pt audicElement = docunent .getElementById(audioPlayer);
45

- T (audioETenent . canPLayTypel sudio/naeg 1] ©
48 audioElement . src = songPath
49 ¥ else 1 Taudioflenent canplayType audm/ntJEJ codecs="vorbis" ")) {
50 audon‘.amant sre = songPath +

51 ¥ oelse {
52 / TraLLBRCK

return false;

${docunent) . ready(function() {
§("#songs") .children() . each(functionf] {
1f ($(this).attr(taghane’) == 'TR' & §(this).attri'id'}) {
$(this) . clicki function()

$("#ajaxSongDescription”) attr('hidden', false
haN

T
e

H:
58 </script>
69
70 |=ul ul— “subneny”
1

o hrCi= fPlayer fFinished/">Finished Songs</am<rli
pition "/Flayer /Unfinished/">Unfinished Songs

§('#ajaxSongDescription”) load(" /Playsr/Dss:rjmmr\/ +§(this).attr(*id'));
N

v Scope Variables
¥ Local
songPath: "/Content/Music/1/1"

»this: DOMWindow
» Global DoMindow
¥ Breakpoints
V] 491731 PlayerUnfinishe di 47

if (audioElenent .canPlayType(audio/npeg’)) {
» DOM Breakpoints
» XHR Breakpoints +
¥ Event Listener Breakpoints.
» Keyboard
) Mouse

Control
_J Clipboard

Load
L) DOM Mutation
o Device

o Timer

YYv Yy vovyoww

) Toueh
¥ Workers

) Pause on start

Shared workers can be inspected in the Task Manager

Dedicated worker inspectors

Figure 2.21: Google Chrome developer tools debugging JavaScript Code.

2.4 Chapter summary

The objective of this chapter has been to provide the reader with enough knowledge about
what this project is based on. In order to do so, in section 2.1 we have presented a
comparison between our web-site and others web-sites which have a similar function as
ours. As aresult, we found out that although services for music sharing are quite developed,
services for creating music in a collaborative way, like in our project, have been not.
Section 2.2 gives a brief introduction to the technologies used in this project. It is intended
to make the reader able to understand the design and implementation chapters.

Finally, in section 2.3 we give an overview of the main tools used for developing the server

and client side code.

25

3 Design of the system

This chapter discusses the design decisions that have been taken for the program and for
the database design. First, however, it is necessary to present the features that we were
required to implement, since the design had to be done according to them.

The whole project follows the Model-View-Controller pattern. Hence, we will also explain

what this architectural pattern is, requires and offers.

3.1 Requirements

The goal of the project was to offer a web-site where the users can upload their own music
tracks, allowing other users to make suggestions for completing a song in exchange of
money, a share of the profit made by the song, or just for fun. Therefore, since money is
involved in the system, we were also required to take a close look of the web-site security
and personal data confidentiality.

A negotiation system should also be built — users must be able to debate what they can
offer and what they want in exchange for their tracks. Suggested tracks shall not be used
if the song’s administrators and the person who has uploaded the suggestion have not
reached an agreement.

The system has to keep track of which suggestion belongs to which track, forming a track
tree. The tree is not restricted to suggestions; the song’s administrator could also use this
tree to upload each instrument played in the song independently. Thus, users can focus on
the instruments they want to make suggestions of.

The system also has to mix all the tracks and their suggestions, allowing the user to listen
to each track independently or to listen to the whole set of tracks.

In addition to the suggestion system, the system should provide the users with contests,
where the song’s administrators will set a prize that will be won by the user with the best

suggestion, chosen out of public votes or by the song’s administrators.

26

3.2 Model-View-Controller

Model-View-Controller (MVC) is a software architectural pattern which separates a pro-
gram into several components. As we can see in Mehran Nikoo’s [14] diagram of MVC (see

Figure 3.1), there are three components: the Model, the View and the Controller.

MVC

Controller

View . Model

Figure 3.1: MVC pattern diagram.

The Model takes care of the storage of the data in the system and the Model is also
the component that knows how to work with the data.
The View is the representation of the system which is given to the final user. It is the
component that makes it possible to work with the system. The View gets its data from
the Model which is generated from the controller.
The Controller is the component that initiates each action taken in the system. Each event
made in the View is forwarded to the Controller. In the Controller the event is processed
and it takes all the needed data from the Model. The Controller also sends all the required
messages to update the Model if necessary.
We decided to use this pattern because we thought it would be a great advantage to have
these components separated. Not only because everything gets more structured but also

because a single change in one of the components no longer affects the whole project.

27

3.3 Database Design

In this section, we describe which tables and fields were needed in the database and why
we decided to create each and one of them. Our database is bound entirely to the Model
component of the Model-View-Controller pattern. Each one of the following subsections
corresponds to a requirement of the project.

The whole Database diagram can be seen in Appendix A.

3.3.1 Table Users

The system will manage user data since each song is bound to a specific user and users will
also be able to negotiate songs between each other. Therefore, it becomes clear that we
need to store some user information and we also need to authenticate them in our system

by using some password, since their information and identity must remain safe.

dbo.Users: Table...MUSICSHAREDB.MDF) ><_
Column Mame Data Type Allow Mulls
Sfusername varchar(20) T
Password varchar(160) [l
Ermail varchar(50) [l
([

Figure 3.2: Users database table.

In Figure 3.2 the table Users and its fields are shown. The table contains the Username
as the primary key of the table since the Username will work as the identifier for the user
and we do not allow two users or more with the same Username. Furthermore, the table
stores the password that is used for authentication and the email which may be used for
contacting the user.

Additional user data may be required in the future. In that case, it should be easy to add

28

the data to the database if needed.

3.3.2 Table Songs

Songs are at the core of the database design and involves several tables that we discuss
below.

The first table we discuss is the Song table, which can be seen in Figure 3.3.

dbo.Song: Table(..UsicsHareDe.MDF) > [N
Column Mame Data Type Allow Mulls

Slionald bigint =
Title warchar(50) [l
Album varchar(50) [
Streamld bigint [
Status tinyint [
[l

Figure 3.3: Songs database table.

We use Songld as the primary key for each song, since we want to allow several songs
with the same title or album. Therefore, Songld is an auto-incremented number that
identifies each song.

The Title and Album fields are just strings for naming each song. Status describes whether
the song is open to suggestions, in negotiation or if it is published.
Streamld links the song to a stream database table which describes its main track, that is,

the final finished song track, see Figure 3.4.

29

dbo.Stream: Tabl...USICSHAREDE.MDF) < [

Column Name Data Type Allow Mulls

SeMlstreamld| bigint =
Mame warchar(50) [
Path warchar(255) [l
MixedTrackPath warchar(255) [E
Length int [l
Description warchar(500)
Branch warchar(255)

[

Figure 3.4: Streams database table.

Since each song can have several tracks, such as suggestions and different instruments,
for composing of the final track to get released, we introduce the Stream table. Each
Stream represents an audio file. Therefore, the field Path and MixedTrackPath stores the
physical path to the audio file and to the track mixed with all the previous tracks in its
branch of the tree. We also include the branch name where the stream belongs, which is
essential for, later on, extracting the hierarchy of the Streams that compose the song. The
Length field stores the track duration in seconds, which is shown to the final user on the

web-site. The tree-structure of the song is stored in the table SongFolder, see Figure 3.5

dbo.SengFolder.. MUSICSHAREDB.MDF))-(_
Column Mame Data Type Allow Mulls
S li5onglD bigint [l
% FolderMame varchar(255) [
[

Figure 3.5: SongFolders database table.

30

This table relates the songs with their folder which builds the Stream tree. The field
FolderName contains the name of the folder following the standard Unix file systems path
naming policy, that is, /folderl/folder2/folderN /filel. It is important to realise that these
paths describes logical paths — the song structure— they do not describe the physical path
of the audio files.

We also needed a connection between Songs and Stream. There is already one link be-
tween them in the field Streamld of the Table Song, which represent the final composed
song track, but it is still needed to connect all the Streams that compose the song with

the song itself. For this purpose, the table SongStreams was created, see Figure 3.6.

dbo.SongStream:.. USICSHAREDE.MDF) = _
Colurmn Mame Data Type Allow Mulls
Crillsonald] bigint =
% Streamld bigint O
=

Figure 3.6: SongStreams database table.

This SongStreams table is just an ordinary relational table, which link songs and

streams with each other.

There is still one last piece of information to be stored. Right now, we could load all
the songs with all their Stream hierarchy and be able to find all the audio files, but we
have not established relations with their owners and their permissions. The followings

tables solve this issue.

31

dbo.SongUsers: T...USICSHAREDE.MDF) _

Column Name Data Type Allow Mulls
WlUserlame varchar(50) =
Songld bigint [l
Permissions tinyint [l
[

Figure 3.7: SongUsers database table.

dbo.5treamUsers:.. USICSHAREDE.MDF) < _

Column Mame Data Type Allow Mulls
S ffstreamid bigint El
% Username wvarchar(50) O
(]

Figure 3.8: StreamUsers database table.

The SongUsers table shown in Figure 3.7 makes a connection between songs and users

and also adds a permissions field with indicates whether the user has administrator rights

The StreamUsers table in Figure 3.8 connects streams and users. The permissions field

is not needed here because the song’s owners already have all the rights , otherwise the

song’s administrator would not be able to publish their song.

3.3.3 Table Suggestions

The suggestions table that can be seen below in Figure 3.9, is a simple table.
stream is used as a suggestion, therefore we just need to link a suggestion with the stream

and with the song. If a stream is included in any suggestion, we will treat that stream

32

as a suggestion. By doing so, rather than making a new big suggestion object with all
the information that a Stream has, we are making use of the Stream table, which already

exists and we are not complicating the final design.

.u:II::n:u.Suggestiu:-n:...MUSICSHAREDB.MDFJ x _
Column Mame Data Type Allow Mulls
»? bigint E
Songll bigint [
SuggestedStreamID bigint [l
(]

Figure 3.9: Suggestions database table.

3.3.4 Table Negotiations

The negotiation process is based on a special type of messages which are exchanged be-
tween the negotiation parties. The messages states whether they want to give or get the
music track for free, for an amount of money or for a share of the song’s profit. The
message type is indicated in the field Type of the table Negotiations, see Figure 3.10. The
field Value store the amount of money or the percentage of song’s profit, if needed.

Who has created the negotiation, when he or she has created it, who is the receiver and
who is the sender, is stored in the fields Creator, Date, ToUser and FromUser, respectively.
The negotiation is also linked to a suggestion which is what is being negotiated in the field
Suggestionld and it is also linked to a comment object that the sender may leave. The
field ResponseTo is a link to another negotiation object. This field makes it possible to
renegotiate and to make a negotiation history.

Finally, the Status field tells us if the negotiation has been rejected, accepted or renegoti-

ated.

33

dbo.Megotiation:...USICSHAREDB.MDF) = _
Colurmn Mame Data Type Allow Mulls

¥2 | NegotiationID . bigint [
Type tinyint [
Value money
CommentlD bigint
Status tinyint [
FromUser varchar(20]
Tolser varchar(20]
SuggestionID bigint [
Date date &
ResponseTo bigint
Creator varchar(20] [l
(]

Figure 3.10: Negotiations database table.

The Comments table as shown in Figure 3.11 is used to send messages between users
or to link a message to another object, like was the case in the Negotiation object, where
the user who sends the offer or the counteroffer can leave a message by using a Comment

object.

34

dbo.Comment: Ta...USICSHAREDB.MDF) ¢ _
Colurmn Mame Data Type Allow Mulls

[yl CommentID bigint ol
UserMame varchar(20] [l
Comment varchar(2048) [
ResponseTo bigint
Date date [
(&l

Figure 3.11: Comments database table.

3.3.5 Table Contests

dbo.Contest: Tab,. USICSHAREDE.MDF) _
Column Mame Data Type Allow Mulls

Rl ContestiD bigint [
StreamID bigint [l
Type tinyint [l
Status tinyint =
CreationDate date =
StartDate date =
EndDate date [l
Prize money [l
Description warchar(255]
(]

Figure 3.12: Contests database table.

The Contests table (see Figure 3.12), has the fields Status, Type and Prize, which are

analogous to the Status, Type and Value fields in the Negotiations table (see Figure 3.10).

35

CreationDate, StartDate and EndDate are used to open and close the contest when the

creator specifies. Streamld is a link to a Stream upon which the contest is made.

dbo.StreamVote:.. USICSHAREDB.MDF) < _
Colurmn Mame Data Type Allow Mulls
v (SN bigint El
StreamlD bigint [
UserMame varchar{50) &
Positive bit [
(]

Figure 3.13: StreamVotes database table.

The StreamVotes table shown in Figure 3.13 is made for keeping track of the votes that
the public have made to a certain stream. This table is used later on to decide who is the
winner of a certain contest when the administrator has chosen the contest to be decided

by the public.

3.4 Program Design

Since we followed the MVC pattern commented before in this section, the design of the
program is, of course, ruled by it. The main responsibility relays on the Model component,
since the Model is the component in charge of the data and its management — this was
also the biggest and hardest part of the project.

Therefore, this sub-section is focused on the Model component of the code, although a few
details of the Controller and View components are also discussed. A class diagram of the
Model is shown in Appendix B.

The big picture of the whole system is shown in Appendix C.

36

3.4.1 Code - Database Interaction

One of the biggest design decisions made for the model was how to make the interaction
between the database and the code. This interaction is of utmost importance since the
simplicity of the code for the rest of the project depends on how this interaction is designed.
Furthermore, by offering simplicity you usually offer an easy-to-maintain code.

Since we wanted to implement a very simple management of the database, we came with the
idea of not making the users aware of that they are working with a database at all. There-
fore, we have not explicitly implemented any "save to database”, "load from database”
or "update the database with” method, in any of the classes of the Model component.
Instead, we let the language semantic to do the work for us.

The constructors of each class of the Model Component take care of — besides creating a
new object in local memory — storing of the new object in the database and, if necessary,
the constructor also stores files into the file system (usually the different audio files that
cach song uses).

When you want to load an object into memory that has been previously created, the class
that load the object implements a FromID static method which loads the object into mem-
ory. This method will also populate the new object with data taken from the database.
To delete an object, the class that needs to do this also implements a delete method. The
Delete method will delete the information stored in the database and also the files in the
file system if any. It will not delete the object from memory since the .Net platform uses
a garbage collector, which keeps track of every .Net object and decide when to remove the
object. A deleted object should no longer been used — calling its method can trigger an
exception.

Other methods in the class implements searching into the database if needed, but the
classes outside does not have knowledge of this. Searching is transparent to the upper
classes.

As can be realised now, this design offers an abstraction layer to the users of the class since

37

they do not know that they are actually working with an underlying database. The design
provides simplicity since you do not longer have to be worried about managing a database

at a certain layer.

3.4.2 Model - UserManagement

The UserManagement class handles the information about the users. Whenever a user
is registered on the web-site, the controller accesses this class instancing the User class
contained inside the UserManagement class. The User class’ constructor will validate all
his or her information and store it in the database. Inside the UserManagement class we

find two inner classes called User and Comment.

| User |ﬁ
Public: Clazs
— O bject

=] Properties
e Megotiationz : ReadOnlyCollectionsMegohation:
5" Jzetame : string

=] Methods
& FromUserMame : Uger
. b &k eddministrator ; woid

Figure 3.14: User class.

The user class, as seen in Figure 3.14, includes the methods to authorize the user in the
system, to check their permissions and to access the negotiations which they are taking

part of.

38

| Comment E |
Public Class '
— Object

= Properties

ﬁ' CommentString : zting
ﬁ" From : string

=P ID: long

ﬁ' ResponzeT o Comment
%‘When cDateTime

i Methods
& Comment : Comment
& Comment : Comment
& Comment : Comment
#& FromlD : Comment
RespondComment : void

Figure 3.15: Comment class.

On the other hand, the inner class Comment, see Figure 3.15, holds the fields that are

stored in the database and its methods allow the creation of a new comment and also to

respond to a previous comment.

3.4.3 Model - SongManagement

The SongManagement class is composed of all the classes which implement concepts related
to the songs. Most of the classes have a clear link to the database tables. Thus, we will

not discuss those classes’ properties that have been already discussed in the Database

sub-section. Instead, we will discuss the methods of the classes mostly.

39

| Song
Public Clazs
— O bject

i=] Properties
ﬁ'.ﬁ.lhum: zlring

ﬁ' FinalStream : Stream
ﬁ'ID - long

ﬁ' SongStatus ; Status
ﬁ' StreamTree : Folder

ﬁ' Titlz : zting

= Methods

% CancelMegotiationR ound : void
#% EndMeqatiationB ound © waid

% FromlD : Song

% Publish : woid

% S0ong : Song

% S0ng : Song

StartMegotiationF ound ; woid

= Mested Types

Status @
Public E rum
— E iam

& |nMegotiationBound ; Status
& Megotiated : Status

& Open ; Statuz

Publizhed : Status

Figure 3.16: Song class.

In the song class, see Figure 3.16, we made methods for starting and ending negotiation
rounds as well as for publishing the song. When a negotiation round starts, the song’s
administrators can negotiate the percentage of those who asked for a share of the song’s

profit. If the negotiation round is ended, not cancelled, no further negotiation round can

be set for that song, since the percentages are already agreed.

The StreamTree property gives access to the root Folder of the song, allowing navigation

through all the streams the song is composed of.

40

| Stream

Public: Clazs
—p Object

i Properties

e Branch : Folder

o_s&l"l Dezcription : gtring
ﬁ'ID > lang

= MinedPath ; string
ﬁ' Mame : zting

e Meqgativel/otes : int
ﬁ' Fath : string

e Positivetotes ; int
ﬁ'l SongdrfStream ; Song
%ﬂfutes : ReadOnlvCollection: W abe:

i Methods

& ChangeFalder ; waoid
& Delete : void

deleteFiles void

FromlD : Stream

#% Stream : Stream

% Stream : Stream

& Mested Types

Figure 3.17: Stream class.

41

The Stream class (see Figure 3.17) holds the data needed in order to find the audio
streams which the song is composed of. The Stream class provides properties and methods

to change its name, and to change the folder in the song’s folder hierarchy where the stream

More importantly, the class provides the necessary methods to convert the audio stream
formats, required to support the different web-browsers that exist in the market. Also,
there is a method inside the class which is in charge of mixing the audio tracks.
explain the implementation of those methods later in Chapter 4. We also designed a
property to access the votes of the stream, which can be used later to decide which stream

should win a contest or just to display the vote count to the public. This class is used by

the class Song (see Figure 3.16) to refer the final audio stream of a song and it is heavily

used in the Folder class (see Figure 3.18).

| Folder E
Public Clazs
—p Object

= Propertiez

ﬁ'Ehildren : ReadOnlCollection<Falder:
ﬁ' Contest : Contest

ﬁ' FullFaldert ame : string

ﬁ' Mame : zting

ﬁ' Farent : Folder

ﬁ' Song : Song

ﬁ'Streams - AeadOnlyCollection Strean:
ﬁ'Suggestinns . ReadOnlCollection<5 tream:

= Methods

& Delete : void

% Folder ; Folder

Folder ; Folder

getFolder : Folder

Figure 3.18: Folder class.

The Folder class generates a hierarchy by having a property, Parent, which points
toward the parent folder and also a property, children, which points toward a list of children
in the folder achieving a folder hierarchy which we can navigate in. Each folder has a list of
streams and suggestions. If the property Contest of the folder is set, then all the suggestions
stand for the contributions in the contest.

The FullFolderName property builds the folder’s path by navigating through the folder’s
parents. Finally, we made the GetFolder method which searches for a folder given its path.
The Negotiation and Contest classes have methods for starting them, cancelling them and

responding to them. They are not shown here since they are quite big classes. You can

see them in Appendix B.

42

3.4.4 Controller

The different controllers implemented are basically waiting for a GET or POST HTTP
request. When the request occurs, an action (a method) of the controller is triggered.
Those methods are just bound to parse the parameters sent in the GET or POST request
and to call methods in the Model component for making the requested actions. At the
end, the controller will generate a view, usually with the data provided by the Model as

well.

3.4.5 View

The views are written in HTML5 and generated by ASP.NET code, but the interesting
part resides in the several scripts that we have implemented using Javascript and JQuery.
The JQuery code in the views performs asynchronous data and views requests and provides
some real-time interactivity between the user and the web-page. We comment some of the

implementation details in Chapter 4.

43

3.5 Chapter summary

In this chapter, we have described, in overall, the important aspects of the design of
the application. Thus, first we commented the requirements of the customer with all the
details that we were given by him. Then, we discussed the Model-View-Controller software
architectural pattern, since we based our system design on it.

Later, the two most important design components of the system, the Database and the
Program are presented.

The Database is discussed along its tables and the most important fields of the tables, so
the reader can understand their need and meaning. We explained the connection bridge
between the code and the database and how they work together.

Moreover, we commented and showed the most important classes of the code, mainly by
describing their methods and structure since their fields can be inferred from the database
subsection.

Finally, we briefly discussed the Controller and View components.

44

4 Implementation

This chapter discusses those implementation aspects which are particularly interesting,

namely the security, the audio processing and the web-pages-user interaction.

4.1 User Identity Security

The user authentication has been something that we have taken special care of. Our system
is prepared to make monetary transactions in the future and in this stage of development
the system already gives an interface for negotiating with money and songs between users.
Therefore, we must assure that the system is trustful. Both identity and user information

must remain safe.

Currently, we store the user’s nickname, email and password in the database. If we were
not careful enough and we left an open door through which attackers can use to access
our database and steal the data, the users’ passwords would really compromise the users’
security if they got stolen. Many users will use the same password they use for their email
accounts, e-bank accounts and many other services. Thus, we are not only talking about

security within our system but also in many other aspects.

We addressed this problem by storing passwords using a one-way hash encryption algo-
rithm. We do not store the actual password, instead, the one-way hash algorithm, SHAT,
generates a different string out of the password given. The special thing about these kind
of algorithms is that by not even knowing exactly how the password was encrypted you
can go back to original password from the encrypted one. No attacker could ever figure out
the original password since not even we ourselves know it. In order to compare passwords
when the user tries to log in, we also encrypt the given password with the same algorithm

and compare them directly.

45

On the other hand, once the user has been authenticated, the web-server must know
which client is which. This is achieved by using cookies but you have to be very careful
while doing this because there are plenty of ways to tamper with the cookies.

A first approach would be to store the username directly in the cookie. This should not
be done since, to steal the identity of someone, you just have to create a cookie with the
name of the victim and that is all. Secondly, you can think of storing both the username
and the password and check them on the server every time. In this case, if the cookie is
stolen, the attacker will know the user’s password and keeping the password secret was one

of the reasons for not storing the actual password in the database.

Instead, we created an authentication ticket, which consists of the authenticated user’s
name and the expiration date. Then this authentication ticket is encrypted — this time, in
contrast with what we did when storing the password in the database, we use a two-way
encryption algorithm; the algorithm can encrypt and also decrypt. The ticket is stored
encrypted as a cookie in the client’s web-browser and decrypted and checked at the server
side. Note that it is not necessary to store the user’s password to check the authenticity of
the ticket in the server, since the server, which is the only one who knows the encryption
key, is also the only one which can generate a valid ticket. If the ticket can be decrypted
and the control data is okay, then the ticket is valid.

In order to implement these encryption techniques we have used the System.Web.Security

namespace of the .NET platform which can encrypt and decrypt our data using algorithms

that have been proven in real applications.

46

4.2 Audio Conversion and Mixing

Since the different web-browsers available for the Internet can only reproduce the audio
format that they have chosen, our web-site has to provide several audio formats in order
to reach as much people as possible.

The conversion is achieved by using the free source project FFMpeg[5] which can decode
and code several hundreds of audio and video formats and codecs by using the library
libavcodec. Since this library is cross-platform, we can use it in our Windows server
machine but FFMpeg could be used in linux or unix as well, if the customer decides to
execute the web-site by using Mono in the future.

We use FFMpeg by launching a new process and making a pipe between the web-server
and the FFMpeg process where we send the audio data as input and the FFMpeg process
stores the converted audio file for us. Since FFMpeg is not a software developed by us, the
customer will have to be aware of updates for security, performance or bug reasons.

We also need to mix the audio between different audio streams. For that purpose we chose
SOX[4] — A free source project for audio editing. Among other things, SOX allows mixing

several audio tracks in a very easy way.

4.3 JQuery Asynchronous Requests

Since the customer wishes the web-site to be as dynamicly loaded and interactive as pos-
sible, this project makes an intensive use of Asynchronous Requests to the web-server by
using the JQuery Javascript library.

There are several cases where a user’s action does not imply a web-page refresh. For in-
stance, when a user uploads a new track, he or she can see the upload process in real-time
and when the process is completed the track is immediately displayed in his or her track
list. In order to achieve this and provide interactivity, we must download and upload data

to the server asynchronously. In Figure 4.1 we can see a commented piece of code extracted

47

from our project for managing the an asynchronous POST request.

/*The variable data holds the information that

we need to pass to the web—serversx/

var data = new FormData();

data.append (' audioFile ’, event.dataTransfer. files [0]);
data.append ('branch’, liUploading.getAttribute (’id’));

/*Initiates the POST request with our selected data
giving the url written below and providing
a callback function progressUpload, where we trace
the progress of the upload and uploadSuccessful where we receive
and treat the server’s response. This function is non—blocking.x/
$.ajax({
url: ’/User/SongUpload/<%: ViewData[”songld”] %,
xhr: function () {
uploadXhr = §.ajaxSettings.xhr ();
uploadXhr.upload.addEventListener (’progress ’,
progressUpload , false);
return uploadXhr;
I
data: data,
cache: false
type: 'POST’,

success: uploadSuccessful

Figure 4.1: JQuery asynchronous POST request.

48

When we receive the server’s response we need a way to indicate which kind of response
it is, because we will not always want to perform the same action. When we upload a track,
the usual response would be to add the received html code, which would be the new track
item, to the current html code. However, there is another type of response that could be
sent. For instance, the upload or conversion process may fail and in that case the server
would send us an error message. We address this problem by using html comments in the
response and at the client side we search for these comments to decide what we should do

with the response. Figure 4.2 provides an example.

/* the variable event is the server’s response as HIML code. x/
if (event.search(”<!l——Replace—>") > —1) {
/* Replace type response.
We should add or replace the given HIML code x/
} else if (event.search(”<!l——FullScreenMessage—>") > —1) {
/% Full screen message type response.
We should display the given HIML code as a
message over the current web—page. %/

} else if (event.search (.......) > —1) {

Figure 4.2: JQuery asynchronous POST request.

49

4.4 Chapter Overview

In this chapter we have commented the most relevant aspects of the implementation of
the project’s features. We thought it would be worth to explain the implementation of
the security in detail, since otherwise it could have passed unnoticed because the security

aspects tend to be ignored until someday the security is broken.
The conversion and mixing are two processes which will demand a huge amount of com-
putational resources. It was important to define how these processes are performed and

which libraries are used.

Finally, the main JQuery techniques uses are described, which have been quite impor-

tant for providing a nice user interaction with the web-site.

50

5 User Interface

This section shows the final user interface running the basic features that the web-site

provides.

[———————————————————————— T

&« € (0127.00.1:49173 RN

muslQal [Home | Player | About]

Welcome To musiQal

In muslQal you can compose your music in collaboration with all the users of the website.

You can also listen other people's music and make suggestions to it

Figure 5.1: The main web-page of the web-site. This page is still to be filled by the

customer.

o1

€« € ® 127.0.0.1:49173/Account/LogOn Yy
muslQal [Home | Player | About]
Sign in
Signin
Usermname Password

Figure 5.2: User’s Login web-page.

€« C |® 127.0.0.1:49173/Player/Flayer N

muslQal [Home | Player | My Songs | My Negotiations: | About]

Player

| Finished songs Unfinished songs Contests

[Seach |

Title Album Tags
cancionl albuml Guitar Vialin >

song2 album2 Guitar Violin bass »
1 01:19 4)

{ © You can select hetween the songs that have been already published and songs that are still in development (You might want to make some contribution to them) and you can also see the ongoing J

contests

Figure 5.3: List of published songs in the system.

52

« C | (® 127.00.1:49173/Player/Player N

muslQal [Home | Player | My Songs | My Negotiations: | About]

Player

Finished songs Unfinished songs Contests ‘

[Soacn

Song Album Description Tags
songl albuml Descriptionl » Participate

song3 album3 descripton] Guitar Violin » Participate

01

© You can select hetween the songs that have been already published and songs that are still in development (You might want to make some contribution to them) and you can also see the ongoing
contests

Figure 5.4: List of ongoing contests in the service.

€« C | ® 127.0.0.1:49173/User/MySongs N
mus|Qal [Home | Player | My Songs | My Negatiations | About] B
MySongs
‘ My Creations | My Confributions My Suggestions
Title Album
New song fitle New song's album]
One And Justice for All View Details
Fade to Black Ride the Lightning View Details
cancionl album1 View Details 1
cancion2 albuml View Details
Martin's song Martin's album View Details
songl album1 View Details
songd whatever View Details
song2 album2 View Details
song3 album3 View Details
(o You can select between your own songs, the contributions that you have made to other songs and the suggestions that you have made and are still waiting for approval J

Figure 5.5: List of the songs created by the user.

53

€« C |® 127.0.0.1:49173/User/Song/19
musiQal

| A
[Home | Player | My Songs | My Negotiations | About]

Song: song3, album: album3

[© The song is currently open to new suggestions
I Tres

Start Negotiation Round
Adeltional information

Publish
Users permissions

" x® E

bas_bas_dist 00 by Coki04 Set As Main
There is not description. Click here to add one
Ongoing Contest

Start date: 23/05/2012 0:00:00 End date: 26/05/2012 0:00:00

Description: deseription

Prize: This contest offers 200,0000

Winner: The winner will be chosen out of the votes made by the people

the bassist_02 suggested by SuggestionMan * Mixed

Figure 5.6:

Page used to upload tracks and keep track of the song status.

€« C | ® 127.0.0.1:49173/User/Suggestion/19
musiQal

[Home | Player | My Songs | My Negotiations | About]

| A

Suggestions page for the song: song3, album: album3

bas_bas_dist_00 by Coki04
There is not description

Ongeing Contest

Download WAV
Start date: 23/05/2012 0:00:00 End date: 26/05/2012 0:00:00
Description: description |

Prize: This contest offers 200,0000

Winner: The winner will be chosen aut of the votes made by the people

the bassist_02 suggested by SuggestionMan
Votes: 2 # 0 =

» Mxed = Vote ® | vote @

Drag your MP3

Figure 5.7:

Page to make suggestions to other people’s songs.

o4

€« C |® 127.0.0.1:49173/User/Song/10 N

muslQal [Home | Player | My Songs | My Negotiations: | About]

Song: Martin's song, album: Martin's album

UserName Permissions

Tree

Addtional information UserName to add or chz

Administrator v o
I Users permissions

Coki0d Administrator Delete
hola None Delste
Suggestionhan None Delete

Figure 5.8: Users permissions of a song.

) Suggestion

€« C | ® 127.0.0.1:49173/User/Suggestion/19

| A

Suggestions page for the song: song3, | Negotiation o

When would you like to negotiate?

‘ Now Later

@ You can either to negotiate right away asking for money or

giving the track for free or you can negotiate later on asking for
a share of the song's profit when the song's authors starts the
negotiation round.

I

bas_bas_dist_00 by Coki0d
There is not description

Download WAV

Ongoing Contest

Start date; 23/05/2012 0:00:00 End da
Description: description

Prize: This contest offers 200,0000

‘Winner: The winner will be chosen out of the vt

the bassist_02 suggested by Sugge:
Votes: 2 ¥ 0 =

Drag your MP3 or O stion here

| will give this track for,

‘ Money | Free

20/

Description

Leave a o

omment for this r

> Mixed vote @ vote ©

Make Negotiation Cancel

Figure 5.9: Negotiation proposal.

55

) seng

€« C |® 127.0.0.1:49173/User/Song/17 N

muslQal

Negotiation Proposal
Song: testl, album: album test

Cokio4 wants to sell this track for 20.

© The song is currently o negotiation comment J

| want this track for...

Mane; Free)
4 ‘ * Mixed ‘ See Negotiation |‘
Sl |

I want it for free

Send New Negotiation Cancel

Figure 5.10: Negotiation response.

NotLogged x

L3 C | (® 127.0.0.1:49173/Home/NotLogged WA

musiQal [Home | Player | About]

Log in

‘ Error Message x ‘

A You are not logged in the system. You shall not pass

Figure 5.11: Error page.

56

6 Evaluation

This chapter evaluates different aspects of the project in retrospect, analysing what have
worked out, what have not and what could have been better. This is an essential part of

every project or work and the best way to improve and make the work meaningful.

6.1 Time Planning

We followed the time table proposed by the coordinator of the dissertation with several
adjustments to better fit our project demands, such as incrementing the time used for
research about the different technologies and tools used and extend the time for writing
of the Design chapter and reducing the time for writing the Implementation chapter since
it fitted our dissertation better. These adjustments were made possible thanks to our

supervisor and her experience also helped us with the timing aspects.

6.2 Acquired Knowledge

Just by looking at the table of contents of the background chapter you can realise that
this project has been made using quite a lot of technologies and tools. Moreover, one of
the most important technologies, HTML5, is in continuous development since it has not
reached a final version. This means that we have learnt a good number of technologies
which are extremely much used by countless number of companies. Furthermore, some of
them, such as HTML5, JQuery and the entity framework, are quite new and extremely
powerful and their demand in the market is increasingly unstoppably.

We had previous experience in C# and SQL programming but almost no knowledge in
web related technologies. This project made us learn about the languages used for web
development almost from scratch. Knowledge in web development also has been beneficial
for us since this field is constantly expanding and will really help us in our future as

computer engineers.

57

6.3 What could have been done differently

Thanks to the fact that we had enough time to research and think about the technologies
to use, we have not gone into any problems because of the technologies used.

The communication with the customer has been also great. We were working in two-weeks
iterations where, at the end of each iteration, we showed the work done to the customer
and he provided us with feedback and new requirements. These iterations helped us to
stay on the right track.

The adaptation to the new technologies was also quite successful since we started to have
results quite soon. We were also happy with the interleaving between the writing of the
dissertation and the coding. About the visual style (CSS), we were never actually good
at it and the result is not as good as would be desired. This fact was acknowledged by
the customer and in consequence he decided that we should focus on designing and imple-
menting all the required features rather than spending time on the visual aspect. What
we would improve is the internal group coordination which could have been a bit better.
Specially, sharing the code by using SVN did not work exactly as expected. Additional

research on SVN or similar system would be needed for further projects.

58

7 Conclusions

We have succeeded in implementing all the required features by our customer, Martin Blom,
providing the clients with a web-site which stores their music and allow them to develop
the music collaboratively with other users. Furthermore, their music can be listened to
and mixed on the web-site itself, without requiring any additional software. Finally, the
users can negotiate for tracks with other users and they can also start contests for their
songs to encourage other people to collaborate with them.

All these features have been implemented using the latest technologies (HTML5, JQuery)

as demanded.

7.1 Future work

If this project gets successful on the Internet, with a high process load, this project will
need to significantly reduce the processing time consumed by the audio converting and
mixing. Probably a good field for researching in order to address this problem would be
to process the audio by using the GPU instead of the CPU. Some encoding algorithm
could be parallelized. Thus, the system could show speed improvements programming it

in OpenCL[7] and executing the code on the GPU.

One more feature needed is to offer actual banking transactions. Thus, the users could
actually send and receive money for their music. This would require researching the API
of services such as Paypal[8] or Google Checkout[6] or any other e-banking service chosen

by the customer of this project.

59

Appendix A: Database Diagram

SongFolder
Son gD StreamVote
VotelD
Fol derhame
StreamID
UserName
P ositive
SongStream
4&_ Son gld
Streamld
SongTags Song
———
Son gD Son gid
Title
TaglD b Contest
A lbum ContestiD
Stream|d Streamid
Status Ty pe
Stream Status]
Streamid Creati on Date R0
Name StartDate ContestTags
e Path n ddate ContestiD
Tag MixedTrac kP ath Prize TagD
o Length Desc ri ption
Name Descri ption
Bran ch
[
j—
Negotiation
Negoti ati on 1D
Ty pe
W al ue
e Commen tiD
Status
. St lJ FromUser
SongUsers reamusers
UserName Streamld ToUser
son gd Usern ame Su ggesti on 1D
Dat
P ermissi ons st
Suggestion Respon seTo
Su ggesti on ID Creator
SO
Son gD
Su ggestedstream|D J;_
- Comment
Commen tiD
Userhame
Comment
Respon seTo
Date
Users
Usern ame
Passw ord
Email

60

Appendix B: Model Class Diagram

| UgerM anagement

Public: Clazs
—p Object

= Fields
@ contest: 7

= Mested Types

Comment

Public: Clazs
—p Object

=) Propertiez

%‘ CommentString : ztring
%‘ Fram : ztring

%‘ [0 : lokig

%‘ RezponzeT o ; Comment
%‘ YWhen : DateTime

=) hMethods

#& Comment : Comment

#& Comment : Comment

#& Comment : Comment

% FromlD ; Comment

#% RespondComment ; woid

61

A

Uszer |ﬁ
Public: Clazs

—p O bject

=| Propertiez

A" AdminizteredSongs ;- [List< 7>

A" Contributions ; [List< 7>

A" Megotiations : ReadOnlyCollection 7>
A" Suggestions ; [Lists

A" [zt ame : string

=| Methods

& AuthonizedU ser ; User

% FromlJzerMame ; User

& GetSongPermizzion © SongPermizzion
% |zSongddministrator : bool

% Logln : bool

& LogOut : woid

& SetSongPermizzion ; wvoid

& User: User

& User: User

=| Mested Types

SongPermiszion o
Public: Enum '
—Enum

& Adminigtrator © SongPermizgion
¢ Mone : SongPermizsion
& Way : SongPermizzion

SongM anagement
Public Class
—p Object

= Properties
%muz.mwﬁ FReadOnlyCollections Contest>
" Songs : ReadOnlyCallection<Sang>

= Methods

® mirShieam : void

 SearchContests © ReadOnlCollection<Contest
 SearchSongs : ReadDnlyColection<Song>

* storeSitream © int

= Fields

@ contest : musicsharedbE mtties

@ FFMPEGPATH : stiing

@ FFMPEGSOXTIMEOUT : int

@ SOMPATH : sting

= Mested Types

Song &
Public Class
5 Objact

= Propetties

5 Album: sting

¢ FinalStream : Stream

1D long

7§ SongStatus : Status

g SheamTres : Falder

o Tags : ReadDnlyCollection:T ag>

o Ttk : stiing

1 UserPermissions © ReadOnlCollection<SongliserP ermissions
&

= Methods

@ addTags : voi
& CanceNegatiationRound : void
& EndNegatiationRound : void
& FromiD : Song

® Publish : voi
®Song: Song

®Song: Song

& StanlegotistionRound : void

=) Nested Types

Status
Public Enum
—pEnum

»

@ InNegofiationFiound : Status
@ Megotiated : Status

@ Open : Status

@ Published : Status

SonglUserPermission a
Fublic Struct
—pValueType

= Properties
o Permission : SongPermission
i User: User

[Stieam [&]| [Folder @l
Pubiic Class Public Class
—»Object — Object
@ Propetiss) Propsies
4 Branch - Folder 5 Chidren - ReadDriyCollecioncFolders
o5 Creators © ReadnlyCollectioncUsen <57 Contest: Contest
<5 Diesciption : sting =5 FulFalderhlame : sting
D long 5# Name - sting
4 MinecPath : sing < Parent - Foldar
Name : stiing Song - Sang
=y =
<5 Neaativeoes : int = Stieams : ReadOriyCollection<Sheam>
= Path: sing =5 Suggestions : PleadinlyColction<Streans>
4 Posiiveb/otes - int .
& SongliStieam - Song o Defete : void
2§ Voles ReadlnlyCollectioncViote o Folcer : Folder
Methods Folcer : Folder
- gelfolder : Fold
 ChangeFolder : woid gefrolder - Fewer
& Deletz: void .
® deleteFiles : void Suggestion A
& FromlD - Stream Public Class
® Stream : Strsam —» Objeet
® Stream : Stream N
=) Properties
@ Nested Types 210 - ong
f 5 Ongoingegatistion : Negatiation
Pubiic Class f
—pDbject & SuggestedStream : Shieam
= Propetiss 5 Methods
Dalele: void
@ "uc ._.D_E.U , & FromiD : Suggestion
@t Positive - boal ® FromStieam : Suggestion
4 Stieam/ote - Strsam @ Suggestion : Suggestion
o4 User: User Suggestion : Suggestion
= Methods
@ FromiD : Vote Tag A
@ Vote : Vate Public Class
@ ot : Vole —»Obiect
= Fields = Propettizs
@ stieamld : long &PID - long
@ username : shing *Name: sting
= Methods
® FromiD ; Tag
» Seachlags : ReaddnlyCollection< Tag>
® Tag: Tag
® Tag: Tag

Hegotiation A
Public Class
—»Object

=) Fropetties

4t Comment : Comment
4 Crestor - sting

¢ Date : DatsTime

& FromUse - sting

10 : lang

4" NegotiationStatus : Gtatus
& NegotiationType - Type

* ResponseTo : Negoiation
24* Suggestion : Suggestion

&* Tollser : sting

o Value : decimal

= Methods

® ficcept: void

® Cancel : woid

® CanRenegotiate : boal
@ FromiD : Hegatiation

@ MakeN egotiation : void
ation - Hegatiation
ation - Hegatiation
ation - Hegatiation
ation - Hegatiation
ation - Hegatiation
ation - Hegatiation
ation - Hegatiation
® RespondHlegatiation : void
® TaSting: sting

=) Nested Types

Type A
Public Erum
—pErurn

@ Delaped: Type

@ ForFree : Tupe

 Monew: Type

Percertage : Type
Status A
Public Enum
—Enum

& Aocepted : Status
@ Cancelled - Status
 Ongoing - Status
@ Predeoepted : Status
@ Risjected : Status

Contest
Public Class
— Object

= Praperies
Wl_uu-imm_m_mfm Status
ContestType : Type

& CreationDale : DateTime
5 Description : sting

P EndDale : DateTime
&0 long

&P Prize - decimel

&P SonginCanlest : Sang
blmnm:UmG“ DateTime
wlm:mmi_:_uuj_mwﬁ Stream
& Tags : ReadOnColction<Tagh o
& Methods Nel
» addTags : void

» Chase - vaid

D ——

 Contest: Contest
 Contest: Contest

@ FramiD | Conest

@ lsCumsrtphctive | bool

= Mested Types

@ Money : Type
@ NoPiize : Type
¢ Percentage - Type
@Voted: Type

Status
Public Enum
—»Enum

@ Ended: Status
@ Ongoing : Status

»|

Appendix C: Whole System Diagram

View

v

WebPages

Controller

Model

Logic Code

Database

63

Bibliography

1]

[11]
[12]

[13]

[14]

[15]

Ubetoo AB. Ubetoo — digital music distribution — paid streaming -
http://www.ubetoo.com/, 2008.

blip. Free music — listen to music online — free streaming radio — blip.fm —
http://blip.fm/, February 2012.

blubster. Blubster free music downloads — http://www.blubster.com/, February 2012.

et al. Chris Bagwell. Sound exchange’s project web-page — http://sox.sourceforge.net/,
2012.

FFMPEG. Ffmpeg’s project web-page, 2012.
Google. Google checkout web-page — https://checkout.google.com/, 2012.

Apple inc. Open computing language (opencl) web-page —
http://www.khronos.org/opencl, 2012.

Paypal inc. Paypal web-page — https://www.paypal.com/, 2012.
A.R. Jones. Mastering ASP.NET with C#. SYBEX, 2002.

jukeboxalive. Download music, upload music, listen to music free — jukeboxalive.com
— http://www.jukeboxalive.com/, February 2012.

SoundCloud Ltd. Soundcloud - share your sounds — http://soundcloud.com/, 2007.

Ltd MixMatchMusic. Mixmatchmusic - because connected fans are loyal fans —
http://www.mixmatchmusic.com/, 2007.

LLC Musiclab. Free music download - download free mp3 music - best limewire
alternaative! — http://www.bearshare.com/, 2012.

Mehran Nikoo. Mehran nikoo’s mvc blog entry =
http://mnikoo.net/2010/06/14 /model-view-star/, 2012.

w3c. W3¢ html 5 elements — http://dev.w3.org/html5/spec/section-index.html, 2012.

64

