

Karlstads universitet 651 88 Karlstad
Tfn 054-700 10 00 Fax 054-700 14 60

Information@kau.se www.kau.se

Faculty of Economic Sciences, Communication and IT
Department of Computer Science

Jonathan Vestin

CloudMAC: Access Point

Virtualization for Processing of
WLAN Packets in the Cloud

Scalability to large VAP Deployments

Degree Project of 15 credit points
IT-Design: Programvarudesign

Date/Term: 12-06-05

Supervisor: Andreas Kassler

Examiner: Donald F. Ross

Serial Number: C2012:12

CloudMAC: Access Point Virtualization for Processing

of WLAN Packets in the Cloud

Jonathan Vestin

This thesis is submitted in partial fulfillment of the requirements

for the Bachelors degree in Computer Science. All material in this

thesis which is not our own work has been identified and no mate-

rial is included for which a degree has previously been conferred.

Jonathan Vestin

Advisor: Andreas Kassler

Examiner: Donald F. Ross

iv

v

Abstract

In large organisations, wireless networks can consist of a hundreds or even thousands

of wireless access points. The workload to configure these systems can be large due to

the variety of configuration interfaces. The type of interface used to configure the access

point (AP) varies greatly between manufacturers and models. This causes management

of a large network to be complex.

In this thesis, a way to solve this problem was investigated and developed. This

was done through an architecture we call CloudMAC. CloudMAC splits the single

physical access point into two separate physical machines. One machine runs a Virtual

AP who is transparently connected to the another machine, running the Physical AP.

The connection is provided by a tunnel over the Ethernet wire. This extension to our

current wireless networks allows for easier configuration and management.

In order to test the performance of this new architecture, a prototype was con-

structed and a series of performance tests were run. The results of the performance

tests shows that this new, more flexible architecture gives a minimal loss in performance

compared to a standard wireless network.

The applications of this architecture include, but are not limited to: simplifying the

administration by centralizing the processing; eases deployment of new applications;

making wireless access points shut down or start up depending on network load, thus

saving energy.

vi

Acknowledgments

I would like to thank Peter Dely for teaching me all I needed to know about linux

networking, for helping me with the problems that I had throughout the project and

for giving advice on how to write parts of the dissertation.

I would also like to thank Andreas Kassler for being my supervisor for this

project, helping me correct the final version of the dissertation and being the person

who originally inspired me to aim for a career in computer science research.

vii

Contents

1 Introduction 1

2 Background and Related Work 3

2.1 Introduction . 3

2.2 Terminology . 3

2.3 Wireless Networking . 4

2.4 Linux Kernel and Wireless Stack . 6

2.5 mac80211 . 7

2.6 mac80211_hwsim . 8

2.7 Radiotap . 8

2.8 Userspace Tools . 9

2.8.1 hostapd . 9

2.8.2 Capsulator . 9

2.8.3 iw . 10

2.8.4 iperf . 10

2.8.5 mgen . 10

2.9 OpenWrt . 11

2.10 Related Work . 11

2.10.1 Virtual Machine . 11

2.10.2 CAPWAP . 12

viii

2.11 Summary . 12

3 CloudMAC Architecture 13

4 Design and Implementation of CloudMAC 16

4.1 Introduction . 16

4.2 Manager . 16

4.2.1 Detailed mac80211_hwsim Changes 18

4.2.2 Manager Setup . 20

4.3 Access Point . 22

4.3.1 Detailed capsulator changes . 22

4.3.2 Access Point Setup . 25

4.4 Station . 26

4.5 The Whole System Together . 27

4.6 Summary . 27

5 Evaluation 29

5.1 Introduction . 29

5.2 Machine Setup . 29

5.2.1 CloudMAC Network Setup . 29

5.2.2 Reference Network Setup . 30

5.2.3 Test Scripts . 31

ix

5.3 Machine Specifications . 31

5.4 Results . 31

5.4.1 TCP Throughput . 31

5.4.2 UDP Throughput . 33

5.4.3 Throughput Variance . 34

5.4.4 Two-Way Delay . 35

5.4.5 Association Time . 36

5.5 Summary . 37

6 Conclusions 38

7 References 40

x

List of Figures

1 Wireless Association . 6

2 Basic overview of the system . 13

3 System as seen from the station . 13

4 Ethernet tunnel between access point and manager 14

5 CloudMAC architecture compared to a regular wireless network 15

6 Overview of the manager . 17

7 Packet capsulation . 17

8 Manager internals . 18

9 Access point interfaces . 22

10 Access point internals . 23

11 Access point capsulator problem . 23

12 Access point capsulator problem solution . 25

13 Station node . 27

14 CloudMAC system overview . 28

15 CloudMAC network . 29

16 Reference network . 30

17 TCP throughput . 32

18 UDP throughput . 33

19 CloudMAC throughput variance . 34

xi

20 Reference throughput variance . 35

21 Roundtrip time ECDF . 36

xii

List of Tables

1 Machine specifications . 31

2 Association time test results (in seconds) . 37

xiii

List of Code Excerpts

1 Hardware Simulator Changes . 20

2 Insert custom module . 20

3 Setup interface and launch hostapd . 20

4 Manager hostapd configuration file . 21

5 Starting the capsulator . 21

6 Capsulator mode example . 24

7 Determine capsulated packet source MAC address 24

8 Determine if to drop or tunnel packet . 24

9 Run module reload script on access point . 25

10 Delete unused interfaces from access point 25

11 Setup access point interfaces . 26

12 Add __ap interface to the access point . 26

13 Start the capsulator on the access point . 26

14 Setup the station interface . 27

15 Reference network hostapd configuration file 30

16 Reference network access point setup script 30

17 Reference network station setup script . 30

xiv

1 Introduction

Wireless networking is a relatively young technology, within computer science, but has seen

gradually increasing developments over time [10]. Wireless networks are now used by large

organizations and in large areas. Because of this the wireless networks will be expansive,

consisting of many access points. The administration and management of these access points

could become difficult, due to the sheer size of the area and amount of devices.

There is also the issue of energy saving in wireless networks. In large networks, there are

time periods where certain access points are unused. Allowing to dynamically power these

devices down and power them up in relation to the usage could provide energy savings.

Furthermore, it would be preferable if when a wireless access point is powered off, it will

perform a seamless handover, without dropping the connection.

One already available solution to this problem is running one or more virtual machines on

each of the access points (APs). These virtual machines perform the processing logic for the

access point. All configuration is thus in the virtual machine, not in the physical access point.

Copying the virtual machine essentially replicates the functionality of the access point. This

method allows easy management and configuration of access points. The drawback of this

method is that the resources available at the access point are often scarce. Virtualizing an

operating system, which often requires a large amount of resources, can result in performance

loss.

The basic idea behind the CloudMAC system is to split the access point into two separate

machines, a Physical AP and a Virtual AP. The Physical AP will be a simply device which

only forwards packets it receives from the Virtual AP onto the air interface, and also sends

any information it receives to the Virtual AP. The Virtual AP will perform all the processing

logic and contains the association state of the stations connected to the network.

This allows to create new, very flexible, network applications. This could prove advantageous

in various areas, such as power conservation by turning off lightly used / unused access points

1

dynamically, saving energy. Another area of usage is that multiple entities could potentially

deploy their own processing logic, using only a single device.

One possible problem with this approach may be the loss in performance. This is due to

that one device is now spread over the network. However, our evaluation shows that there

is only a very small performance loss in this new, and very flexible, architecture.

The rest of the thesis is organized as follows: Chapter 2 contains the background of the

project and related work. Chapter 3 is a description of the CloudMAC architecture. Chapter

4 is the design and implementation of the system. Chapter 5 is the results of the tests we

ran. Chapter 6 presents our final conclusions.

2

2 Background and Related Work

2.1 Introduction

In this thesis we investigate a way to move the processing logic of the physical AP to a

separate machine. This separate machine will run a virtual AP which is transparently

connected to the physical AP. This new architecture has many areas of application, such as

easy replication of access points, easily changing the processing logic, dynamically expanding

and contracting the network etc. With such a system, the possible future developments could

for example be:

• Turning access points, with few users, off to conserve energy. This could for example

be done through the usage of a OpenFlow Switch, which can monitor the activity and

dynamically power off and power on APs as required.

• Allow for complex processing logic with relatively light access points.

• Use a single router for multiple networks with different processing logic. This could

help multiple researchers perform experiments on a single device.

2.2 Terminology

Some of the most important terminology to be used in the report is briefly presented here:

SoftMAC: A SoftMAC device is a Wireless Networking Device, where the MLME (MAC

Sublayer Management Entity) is managed in software. An example of a driver api

using SoftMAC would be mac802_11. [15].

mac80211: A framework which developers can use to develop drivers for SoftMAC devices

[15].

3

VAP: Virtual Access Point. A virtual access point a virtual interface to a physical device.

For example in the newer Linux kernels one can have multiple virtual wireless devices

all representing the same physical wireless card. This could be used to allow a physical

cards to be used in monitoring mode and managed mode simultaneously.

Manager Node: The machine which runs the virtual AP. This machine could manage one

more more physical APs.

AP Node: A very simple physical AP that only forwards data from and to the Manager

Node.

Station Node: A station connected to the Manager Node through an AP Node.

2.3 Wireless Networking

Wireless networking is a relatively new technology in computer science and has seen many

recent developments. Wireless networking enables users to avoid the restriction of cables

and use networks in new locations and ways. For example one could browse the Internet

while on international flight or one could establish network connectivity in a building where

installing a cable infrastructure would be impossible (such as a historical building). [10]

Wireless communication works by sending signals over air instead of cable. This works

by using radio waves, which essentially is electromagnetic waves broadcasted by a wireless

node. This introduces several problems such as increasing error probability and a burst-like

error distribution [12]. There has been a lot of research recently to develop new and better

standards, hardware and software to cope with these difficulties [10].

In a wireless network, we have multiple stations that are associated to a single access points.

This allows for wireless communication between the stations. In wireless terms, this is called

a Basic Service Set (BSS). Wireless Networking have several standards, but the most used

by consumers today are wireless a, b, g and n. Wireless b was the first standard to be

4

developed and has a maximum data rate of 11 Mbps using the 2.4 GHz band. Later the

wireless a standard was developed, which featured a increased data rate at 54 Mbps, using

OFDM technology at the 5.0 GHz band. [1]

Thereafter, the ODFM technology of wireless a and the band of wireless b were combined

into wireless g giving us 54 Mbps at the 2.4 GHz band [1]. Finally we have a new emerging

technology using features such as frame aggregation and MIMO in order to increase the data

rate. This new wireless technology is called wireless n. [13]

In order to associate with an access point, the station node will have to perform a series

of requests and replies. The station first picks up a beacon frame from the access point

and makes the decision to connect. Thereafter it will send a Probe Request to obtain more

information about the access point. The Probe Request contains information such as the

SSID of the access point to which the station wants to connect, it also contains the supported

rates.

The station later replies to this request by sending a Probe Response. This frame contains

further information about the access point. Among this information is the SSID of the access

point, the supported rates, capabilities and the channel on which communication should take

place.

When the station receives the Probe Response and there are no problems with the access

point’s capabilities, the station proceeds by sending an Authentication message. This mes-

sage contains any authentication information required by the wireless access point. If the

provided authentication is valid, the access point responds with an Authentication Response

message.

When the Authentication Response is received, the station sends an Association Request.

The access point replies with an Association Response. Finally the station sends a NULL

Frame as a final confirmation. The NULL frame has a wide variety of uses, one being to

wake up the station if it is ’sleeping’ [5]. Figure 1 is an overview of the association process.

5

Access Point Wireless Station

Beacon Frame

Probe Response

Authentication Response

Association Response

Probe Request

Authentication

Association Request

Null Frame

Wireless Association

Wireless Medium

Figure 1: Wireless Association

2.4 Linux Kernel and Wireless Stack

As this report will be dealing extensively with the Linux Kernel and Wireless networking

this section will describe it further in detail. The Linux Kernel is the backbone of any

Linux system and a cornerstone of open source development. It is a monolithic kernel,

which means that it places most of its services in the kernel level. This reduces the context

switching required at the expense of an increase in the code that executes at the kernel level.

The problem with executing code at kernel level is that a error in the code could prove fatal

for the whole system, instead of just an isolated part of it. [11]

6

Linux uses modules to provide the link between devices and software. These modules are

dynamically loaded into the kernel by the user. The user can do this by using the insmod

<module>.ko or rmmod <module> commands. The lsmod command can be used to list the

modules currently residing inside the kernel [11]. There is also the modprobe program which

allows for even further control of kernel modules [4]. When a module is inserted into the

kernel, it is granted the same rights as the Kernel itself. This means, when a module crash,

it could cause a complete system failure.

In one end of the Linux Wireless Stack we have the device, which could be a USB or PCI

device. The device communicates through an interconnect driver to the hardware drivers.

These drivers are specifically programmed for each device. The hardware drivers provide

information for the protocol layer. The specific implementation of this layer we will focus on

is called mac80211. Applications can control the wireless card through system calls passed

to mac80211. This allows the fine-grained control, over wireless packets, we require for the

experiment. [14]

2.5 mac80211

mac80211 is, as stated above, a new framework which developers can utilize to write drivers

for SoftMAC devices . It allows software to have greater control over the hardware, thus

enabling more detail analysis and control over wireless communications. It also allows adding

multiple virtual interfaces into a single wireless device. Today most linux wireless drivers are

using the SoftMAC framework, instead of the previous FullMAC. SoftMAC supports most

of the features provided by the wireless cards today. [18]

For our purposes these properties are very suitable, since our project require a fine control,

over wireless network packets, at a low layer.

7

2.6 mac80211_hwsim

The mac80211_hwsim is a hardware simulator using the mac80211 framework. It can be

used to simulate any number of wireless interfaces and it is built to be transparent to the

software utilizing it. The wireless network cards created can communicate with each other,

as if they were in range. This provided they are on the same channel/frequency. [19]

mac80211_hwsim creates N number of interfaces when inserted into the kernel, where N can

be specified by the user. These interfaces are given regular wireless interface names (wlanX

where X is an unused number). These interfaces can communicate to each other similar to

how separate devices communicate. The simulator by default simulates perfect conditions,

which means there is no packet loss or corruption.

The simulator also creates a master interface called hwsimX, where X is an unused number.

This interface is used to listen to any communication that transpires between the simulated

wireless interfaces. This interface is a standard Ethernet monitoring interface. This interface

will receive any data sent to or between any of the simulated cards. The packets will all

contain a radiotap header.

The goal of this tool is to provide a testing ground for new wireless software, without the

requirement of hardware devices. However, this is not the purpose we will use it for. Instead

we will use it as a virtual access point at the Manager Node.

2.7 Radiotap

Radiotap is a standard for 802.11 frame injection and reception. Radiotap is the format of

the header appended to all packets received by a wireless interface. This header serves to

supply additional information about the various parameters wireless frames can have. The

Radiotap header first contains the version and the length of the header. Thereafter a bitmask

specifying which fields are present in the header. Finally the data of these fields. [9]

8

2.8 Userspace Tools

Here is a brief description of the user-space tools we will utilize in our system.

2.8.1 hostapd

hostapd is an application for providing wireless access point logic and authentication for a

Linux system. It has strong support for the mac80211 framework. hostapd works by putting

a specified interface into master mode (Access Point Mode) and broadcast beacons onto it.

It also creates an additional interface for handling any probe and/or authentication requests

received from stations. [16]

hostapd starts by repeatedly sending wireless beacons onto its master interface. This inter-

face is specified at the launch of the application. hostapd will also monitor for any incoming

packets at its secondary interface, the monitoring interface. This interface is named mon.X

where X is the name of the master interface. For example if the master interface is named

wlan0 the corresponding hostapd monitoring interface will be named mon.wlan0. When

it receives a wireless management frame on this interface, it will reply accordingly. For

example, should hostapd receive a Probe Request, it will respond with a Probe Response.

2.8.2 Capsulator

capsulator is a utility for tunneling data, from one or more interfaces on a machine, to one

or more interfaces on a different machine. Essentially, it transparently connects any number

of networks. For example, it can take wireless data received on a monitor interface and send

this through the Ethernet wire to a different node, which in turn can replay the received

data. You will require a capsulator at both ends, one retrieving the data from the wireless

device and sending it onto the wire and one receiving it and replaying it.

9

2.8.3 iw

iw is a tool for managing and configuring wireless devices and an alternative for iwconfig.

It can also be used to create multiple virtual interfaces on a single device [17]. For example

creating a new interface in iw works as follows:

iw phy phy0 interface add mon type monitor

This will add a virtual monitoring called mon interface to the physical card phy0.

iw dev mon del

Will delete the same interface. We can also view detailed information about interfaces:

iw dev wlan1 info

iw can also be used to easily connect a network:

iw wlan0 connect CLOUDMAC

This example connects the wireless device wlan0 to any network with the SSID CLOUDMAC.

2.8.4 iperf

Iperf is a tool used for measuring performance in a network using the TCP or UDP protocol.

More detailed information can be found in the Iperf Man Page [3].

2.8.5 mgen

Mgen is a tool for generating UDP packets and receiving them. It is used for accurately

measuring the UDP performance. More information can be found in the MGEN User’s and

Reference Guide Version [8].

10

2.9 OpenWrt

OpenWrt is a very small and extensible GNU/Linux distribution specifically made for embed-

ded devices. OpenWrt is very dynamic in that instead of providing a simple static firmware,

it gives us a fully functional filesystem and a system for package management. It is excellent

for developers because it is completely free and open-source, which means that any developer

could examine the source code without restrictions, thus making it an excellent candidate to

use in our system (where viewing and modifying the source code will be of key importance).

[9]

2.10 Related Work

2.10.1 Virtual Machine

A Framework of Better Deployment for WLAN Access Point using Virtualiza-

tion Technique [6] describes a way of creating virtual access points using Virtualization

Techniques. The method described in the report involves deploying a Virtual Machine on

all wireless access points in the network. Switching an access points logic is done through a

migration process, which involves copying a new virtual machine image, the device memory

and forwarding plane, to a different access point. When these three entities are copied, they

are removed from the original access point.

These nodes are to be managed by a ’manager’ node, which controls the system and contin-

uously attempts to determine a better form of deployment. It also manages the migration

process between the access points.

The solution which is specified in [6], is supposed to solve issues regarding deployment of

access points, enabling administrators to easily reconfigure them on the fly. The approach

they are using provides a way for access points to be fully programmable, at the cost of

performance. One of the problems, with this approach, is a high complexity at the access

11

point, which may in turn cause a degradation in performance. Especially since they rarely

have access to the resources required to virtualize an operating system. The architecture of

the access points can also be a problem, since most access points run on an ARM architecture.

Virtual Wireless Network Urbanization [2] suggests a similar approach but focuses

more on actual measurements of the network.

2.10.2 CAPWAP

Another related architecture is the CAPWAP architecture. CAPWAP enables a single Access

Controller to manage multiple wireless access points. This architecture splits the processing

of MAC layer frames between the access point and the Access Controller. It also introduces

a new protocol for communication between the Access Controller and the access points. [7]

In CloudMAC we, instead of splitting the MAC layer processing between access points and

virtual AP, put all processing in the virtual AP. This allows us to put the whole association

state in the virtual AP rather than splitting it between physical and virtual AP.

2.11 Summary

This section presented a slight introduction to the Linux kernel, how it manages devices and

what the wireless stack looks like. We briefly described the mac80211 wireless framework

and how it can be useful in this project. We have also looked at the mac80211_hwsim,

which is a driver for simulating a wireless network. Furthermore, we have also looked at the

different tools the system can use, such as hostapd for access control and beacon generation,

capsulator for creating tunnels between nodes and iw for managing the wireless network

cards. We also looked on related work such as a virtualizing multiple operating systems in

a single physical access point and we also looked at CAPWAP.

12

3 CloudMAC Architecture

The overall goal with CloudMAC is to separate the physical AP into two separate compo-

nents; A virtual AP and a physical AP. The virtual interface should reside on a different

machine and be transparently connected to the physical AP wireless interface.

Figure 2: Basic overview of the system

The CloudMAC system consists of three essential core parts. The Manager, the Access Point

and the Station. The Manager has one virtual machine running, which contains the actual

processing and networking logic. The Manager is connected to the wired network, through

which it communicates with the Access Point. The Station, on the other hand, is simply

a wireless station, accessing the system. It could be for example a laptop, a cellphone or

a desktop. The Access Point relays the communication between the Manager and Station

nodes.

Figure 3: System as seen from the station

The relaying of data should be completely invisible to the Station. From its view, the system

looks something like figure 3. The Access Point provides this kind of obfuscation due to its

simplicity. The only thing the Access Point does, is forwarding data from the station to the

13

manager and data from the manager to the station. The data is forwarded through a tunnel

in the wired network, to which both the Manager and the Access Point are connected.

Figure 4: Ethernet tunnel between access point and manager

If we break the Manager and Access point apart into layers, we can show the flow of packets

through the system. The User Space Tools & Applications layer is where any tools would

reside. This could, for example, be network configuration tools like iw or network authenti-

cation tools like hostapd. These tools will send data through the Networking Stack to the

Virtual WiFi Card of the Manager. This card in turn sends the data through the Ethernet

wire using a tunnel. The access point will receive the data through the other end-point of

the tunnel and send it into the air.

Any data received by the access point will be sent through the same tunnel. The manager

will receive the data at its tunnel end-point, moving it up the networking stack to the user-

space application. A normal wireless system would simply perform all the processing in the

access point. The difference between CloudMAC and a normal wireless system can be seen

in figure 5.

14

Figure 5: CloudMAC architecture compared to a regular wireless network

15

4 Design and Implementation of CloudMAC

4.1 Introduction

In this chapter the implementation of the CloudMAC architecture will be described. First a

description of the different components in the CloudMAC architecture and their respective

implementations, then an overview of the system as a whole.

4.2 Manager

The Manager node is a virtual machine which could be running at any system using any

architecture. It is not in any way dependent on the architecture of the Access Point. The sys-

tem uses a modified version (described in detail later in this chapter) of the mac80211_hwsim

driver provided with the Linux Kernel (v2.6.27 and above). This driver creates two virtual

interfaces called wlan0 and wlan1. These two interfaces are connected through a virtual air

interface and data can be sent between them. However, this is not the purpose we will use

them for, rather we will utilize one of them as a virtual access point.

The hardware simulator also provides another important interface, called hwsim0. This

interface replays any communication sent onto the simulated wireless interfaces (wlan0 and

wlan1). We will use this interface because we need some way to relay the communication

on the simulated interfaces to the Access Point. This interface is not by itself a wireless

interface, but instead a regular Ethernet interface.

Futhermore, we will later have another interface called mon.wlan0. This is an interface

created by hostapd, which it uses to receive and transmit wireless management frames

[16]. Finally the last interface would be the Ethernet interface eth0, connected to the same

network as the Access Point. This interface will be used to tunnel packets we receive on the

hwsim0 interface and handle incoming packets. You can see a graphical representation of

the whole Manager node in figure 6.

16

Figure 6: Overview of the manager

We will have a hostapd (Wireless Authenticator) running on the wlan0 interface, which

will generate wireless beacons and manage station association. hostapd will in turn create

the mon.wlan0 interface. mon.wlan0 is the interface to which hostapd will listen for any

incoming management frames on. hostapd will start sending beacon frames on the wlan0

interface. These beacons will in turn also be received on the hwsim0 interface.

We will use a modified version of the capsulator called capsulemod, to provide a tunnel

from the hwsim0 interface to the Ethernet interface eth0. Any packet received on the hwsim0

interface is encapsulated in a tunnel frame, which adds a tag to the packet. This tag is used

to make sure only the right tunnel endpoints accept the packet. The packet is tunnelled to

the Access Point, as you can see in figure 7. What happens to the packet afterwards will be

described in the Access Point section.

Figure 7: Packet capsulation

17

Receiving information is a bit more complex, since the tunnel will put any packets coming

through eth0 from the Access Point into the hwsim0 interface. Since hostapd uses its own

interface for monitoring incoming packets it cannot detect any packets coming through the

tunnel. Thus we need to alter the behaviour of the mac802_hwsim, to allow for this. We

chose to make any packet received on the hwsim0 interface to be replayed to all regular

interfaces (wlan0 and wlan1). This will cause the hostapd to hear any packet received from

the tunnel. Figure 8 is a graphical model of how the internals of the manager work.

Figure 8: Manager internals

4.2.1 Detailed mac80211_hwsim Changes

The mac80211_hwsim is a driver for simulating wireless networks. This driver is used to

provide a fake wireless environment for hostapd to work in. However in order to do this we

need to make a small change to the driver. We need a way of allowing all information sent

to the hwsim0 interface to be replayed on all the simulated wireless cards. The function we

need to change is called hwsim_mon_xmit. This function is responsible for any information

transmitted on the hwsim0 interface. In other words, any information coming from the

tunnel will be processed by this function.

In the default driver, the function does nothing more, than simply freeing the packet data.

We need to make it send the data to the wireless cards before this happens. Since the data

received on monitoring interfaces carry a radiotap header, so will any data received on this

18

card. Frames with a radiotap header cannot be directly injected into the kernel, so the

header needs to be stripped from the packet.

The packet received is enclosed within a Linux skb (socket buffer). The socket buffer provides

functions for contracting and expanding the data, which we need to use in order to remove

the radiotap header. The driver was modified to read the radiotap header length from the

skb->data pointer. Later this information is used to remove as many starting bytes as we

require from the packet using skb_pull function

After this, the function will reset the socket buffer. This is done exactly the same way as

it is in the other receive functions (for example mac80211_hwsim_tx_frame). Thereafter it

will trim the last 4 bytes, because those 4 are scrap bytes left from the kernel. This is done

using the skb_trim method.

Subsequently, the packet is ready for replaying on the wireless interfaces. Before this is done,

the spinlock must be activated, which essentially is a mutex lock (semaphore) preventing

other multiple processes from simultaneously using the network card. Now the driver iterates

over all the simulated network cards in the list called hwsim_radios. This is done using a

macro called list_for_each_entry, which creates a loop over the list.

For each entry in the list, the driver checks that the radio is not idle and not started, it also

checks to see if the channel is set. If any of these parameters are wrong, the driver continues

to the next card. After this check, the socket buffer is copied using the skb_copy function.

The driver also makes sure the command was successful, if not it continues to the next card.

Thereafter, the duplicated packet is passed to the kernel using ieee80211_rx_irqsafe.

Finally the driver ends the loop and deactivates the spinlock to enable usage of the network

radios. It also frees the memory allocated for the socket buffer as it is no longer required.

19

..

skb_pull(skb, radiotap_len);
skb_orphan(skb);
skb_dst_drop(skb);
skb−>mark = 0;
secpath_reset(skb);
nf_reset(skb);
skb_trim(skb, skb−>len − 4);
spin_lock(&hwsim_radio_lock);
list_for_each_entry(nic, &hwsim_radios, list) {

struct skb_buff *nskb;
if(nic−>idle || !nic−>started ||

!nic−>channel)
continue;

nskb = skb_copy(skb, GFP_ATOMIC);
if(nskb == NULL)

continue;

ieee80211_rx_irqsafe(nic−>hw, nskb);
}
spin_unlock(&hwsim_radio_lock);
dev_kfree_skb(skb);

Code 1: Hardware Simulator Changes

4.2.2 Manager Setup

Here we will briefly describe the process of setting up the manager and show the commands

used to do it. These commands are entered using the linux shell (commandline interface).

First we remove the old mac80211_hwsim module and insert our custom hardware simulator:

.. rmmod mac80211_hwsim
insmod mac80211_hwsim.ko

Code 2: Insert custom module

After this, we bring up the hardware simulator monitoring interface and set the IP address

of the wlan0 interface to a suitable one (192.168.1.1 in this example). Then we launch the

hostapd program to listen on the wlan3 interface.

..
ifconfig hwsim0 up
ifconfig wlan0 192.168.1.1
../hostapd hostapd.conf −B

Code 3: Setup interface and launch hostapd

20

The hostapd configuration contains the code in code block 4.2.2. The first line specifies

which driver we use, which is the nl80211 driver (specific for the machine we are running the

system on). Thereafter the mode a and channel 56 is specified. The reason for using this

mode and channel is to not interfere with any other transmissions in the building. Later the

desired interface is specified, which in our case is the simulated interface wlan0. After that,

the ssid of the network is specified, which in this case is CLOUDMAC. Finally the basic and

supported rates are specified. These are set to 54 mbps, which is the highest rate available

in wireless mode a.

..

driver=nl80211
hw_mode=a
channel=56
interface=wlan0
ssid=CLOUDMAC
supported_rates=540
basic_rates=540

Code 4: Manager hostapd configuration file

Finally, we need to set up the capsulator tunnel between the Manager and the Access Point.

We do this using the capsulator command:

.. ../capsulemod −t eth0 −f <Access Point IP> −b hwsim0#1 −−mode 2

Code 5: Starting the capsulator

The -t parameter is the target interface, -b is the source interface. The -f parameter is the

destination IP address for the tunneled packet. -v enables verbose output (detailed output

messages for debugging). –mode 2 is a custom parameter, which sets the forwarding mode.

This prevents packets from being duplicated and is explained further in the Access Point

section, where it is more applicable.

After this is done, the Manager will wait for a tunnel endpoint to be created at the Access

Point.

21

4.3 Access Point

The Access Point is simpler than the Manager, but not less important. It has three interfaces

of importance. The first one is the Ethernet interface eth1, which is connected to the same

network as the Manager.

Figure 9: Access point interfaces

The next interface is mon0. This interface is simply a virtual monitoring interface (virtual

interface in monitor mode) to the physical wlan0 card. The reason we use a monitoring

interface, is because we use the ath5k functionality, so that any information sent to a virtual

monitoring interface, is sent onto the air from the respective physical card. This is important

because it enables us to send information received from the tunnel endpoint onto the wireless

medium. Another reason for putting it in monitoring mode is because we want to process

the entire wireless frame, including the MAC layer information.

The third interface is mon0a which is used to reply with ACK packets to the station. This

is required because without timely acknowledgments, the station will keep resending the

packet, creating unnecessary traffic.

As can be seen in figure 10, the messages coming in from the air medium is simultaneously

replied to by the mon0a interface, while being tagged and patched through the capsulator

tunnel towards the Manager node.

4.3.1 Detailed capsulator changes

The standard capsulator works well with the Manager, but with the Access Point there will

be a problem. Packets that are sent into the air, are going to be received by the same

22

Figure 10: Access point internals

monitor interface they are sent from, which causes a feedback loop. This creates a duplicate

for each packet sent by the Manager to be returned through the same path. This can be

seen visualized in Figure 11

Figure 11: Access point capsulator problem

To solve this, we added the possibility of selecting a mode when running the capsulator. The

mode can be either 0, 1 or 2. Mode 0 represents the ordinary capsulator. Mode 1 drops all

packets (from the air interface), where the Source MAC address ends with 00:02. mode 2

accepts only packets, where the Source MAC address ends with 00:02. This address is the

address for the Manager hwsim0 card. This will also be the source address of any packet

leaving the Manager node, which makes it an excellent way to check if a packet it destined

23

to the manager or not. The access point thus runs with the mode 1 option:

.. ../capsulemod −t eth1 −f <Manager IP> −b mon0#1 −−mode 1

Code 6: Capsulator mode example

This effectively prevents the feedback loop. In our implementation the MAC address is hard

coded, but the capsulator could easily be modified to support a modifiable address. The code

is only changed in the capsulator.c at the capsulator_thread_main_for_border_port

function:

..

unsigned short *radiotap_start = (buf + 4 + 2); //Find radiotap header start
unsigned short radiotap_len = *radiotap_start;
radiotap_len = (radiotap_len>>8)|(radiotap_len<<8); //Find radiotap length
void * frame_start = (buf + 4 + radiotap_len); //Find Frame start
char * source_addr = (frame_start + 4 + 6); //Find source address
char * sa = source_addr; //Create shorthand variable

Code 7: Determine capsulated packet source MAC address

Now that we have the source address, we can simply check the mode and source address,

and relay the packet accordingly.

..

if(sa[0]==2&&sa[1]==0)
{

if(mode == 1)
{

verbose_println("CLOUDMAC: Ignoring Replayed Packet == 00:02");
continue;

}
}else
{

if(mode == 2)
{

verbose_println("CLOUDMAC: Ignoring Relayed Packet != 00:02");
continue;

}
}

Code 8: Determine if to drop or tunnel packet

As can be seen in figure 12, the packets are dropped before they can enter a feedback loop.

24

Figure 12: Access point capsulator problem solution

4.3.2 Access Point Setup

The access point setup is relatively simple and there are two scripts at work here. The first

one is apinit which initializes all the interfaces on the Access Point. The first things it does

is running a reload script to reload the network driver:

.. ../reload.sh

Code 9: Run module reload script on access point

reload.sh removes all relevant modules and reloads them again. It also replaces the built-in

ath and ath5k driver, with a custom built one. This is to enable debugging and modifying

the transmit power (txpower). After reloading the modules, our apinit script removes

unused interfaces:

.. iw dev wlan1 del
iw dev wlan2 del

Code 10: Delete unused interfaces from access point

This reduces the cluttering during testing and has no functional value. Thereafter it sets

the channel of the physical card and creates a virtual monitoring card. Finally it will set the

transmit power to 20dbm in order to increase the signal quality:

25

..

ifconfig wlan0 up
iwconfig wlan0 channel 56
ifconfig wlan0 down
iw phy phy0 interface add mon0 type monitor
iwconfig mon0 channel 56
ifconfig mon0 up
iwconfig mon0 txpower 20dbm

Code 11: Setup access point interfaces

Finally, the script creates the mon0a interface which, is set into __ap mode with a MAC

address matching the one of the Manager:

..
iw phy phy0 interface add mon0a type __ap
ip link set dev mon0a address 02:00:00:00:00:00
ifconfig mon0a up

Code 12: Add __ap interface to the access point

This causes the interface to reply, with a timely ACK, to any incoming packets, since the

delayed ACK from the manager is too slow.

When this script has finished executing, the next script is started. This script is called aprun

and has only one line of code. It starts the capsulator just as we have seen above:

.. ../capsulemod −t eth1 −f <Manager IP> −b mon0#1 −−mode 1

Code 13: Start the capsulator on the access point

Now the Access Point is initialized and ready to receive data.

4.4 Station

The Station could be any wireless station with access to a 802.11a wireless network card. In

our experiment, we will use one of the embedded systems available. The setup is a simple

script:

This script basically enables a wireless card, sets the IP address to 192.168.1.2 and the essid

to CLOUDMAC. Figure 13 shows us a graphical representation of the Station. Unremarkably, it

26

..
ifconfig wlan0 up
iwconfig wlan0 channel 56
ifconfig wlan0 192.168.1.2
iwconfig wlan0 txpower 20dbm
iwconfig wlan0 essid "CLOUDMAC"

Code 14: Setup the station interface

has no inner workings that are part of the CloudMAC system. Because of this, any Station

with a wireless card should be able to connect. We tested and were able to successfully

connect on both a MAC device and a Linux device.

Figure 13: Station node

4.5 The Whole System Together

Now, when we have described the individual components of the system, let us take a look

at the whole system combined. Previously, in figure 2 we provided a simple graphical repre-

sentation of the system. Here we will provide a more detailed one. Thereafter we will show

some figures of different packet flows. A picture of the entire CloudMAC system can be seen

in figure 14.

4.6 Summary

We have had a look at the system as a whole. How the data travels through the access

point in both directions and how the data is later processed by the manager. We have also

seen detailed information about how the driver and capsulator was altered and what special

27

Figure 14: CloudMAC system overview

configuration options for setting up the CloudMAC system.

This new system have an increased flexibility at the cost of an extended packet path, with ad-

ditional intermediate nodes. This could potentially increase the roundtrip time and through-

put of the network.

There are a few issues with the current implementation. The first is that the tunnels are

running in user space, which increases the processing time due to context switching. This

could potentially be remedied by moving the tunnel to kernel space. Another existing issue

is the hard coding of the MAC address. In a final system it would be preferable with an

option to specify which mac addresses the Manager nodes use.

28

5 Evaluation

5.1 Introduction

This chapter will investigate the performance losses of the CloudMAC system as compared

to a normal wireless system. This chapter is separated into multiple parts. The first chapter

is a look how the machines are set up. Later we will look in detail at the specifications of

all the machines used in the tests, as this greatly affects test results. There will also be

descriptions of how the various test scripts look like, for validation of the results.

5.2 Machine Setup

5.2.1 CloudMAC Network Setup

The CloudMAC network setup is described in detail above. Here we will include some

additional information on how the network is set up. The access point and station are

both embedded machines, as described in the above section. These are connected through

a wireless interface. The access point and the manager are connected by wire through a

switch. This is depicted in figure 15.

Figure 15: CloudMAC network

29

5.2.2 Reference Network Setup

The reference network is set up by having only two nodes, an access point and a station.

The access point is set up with properties similar to the CloudMAC network. In the code

excerpts below are the setup scripts for the reference network.

..

driver=nl80211
hw_mode=a
channel=56
interface=wlan0
ssid=CLOUDMACR
supported_rates=540
basic_rates=540

Code 15: Reference network hostapd configuration file

..
../reload.sh
ifconfig wlan0 up
ifconfig wlan0 192.168.1.1
nohup hostapd hostapd.conf −B
ifconfig wlan0 192.168.1.1

Code 16: Reference network access point setup script

..
../reload.sh
ifconfig wlan0 up
ifconfig wlan0 192.168.1.2
iwconfig wlan0 essid CLOUDMACR

Code 17: Reference network station setup script

Figure 16 provides a graphical representation of the reference network.

Figure 16: Reference network

30

5.2.3 Test Scripts

Here we will describe the test scripts to a small degree. We chose not to include the full

scripts due to their size. The testing scripts use expect to set up the network and then

executes the tests in sequence. expect is a tool for automating commandline entries. First

the throughput tests, then the two-way delay tests. The association time was tested at a

different time (but under similar conditions). All tests were run at night when the interference

from surrounding network would be as small as possible. This is also the main reason for

using the 5Ghz band, which assures that there is no interference from surrounding wireless

traffic.

The network uses channel 56 at a sending power of 20db.

5.3 Machine Specifications

We will be measuring the performance of the CloudMAC network using a small test network.

This network consists of nodes and a single virtual machine. The nodes are connected to

a switch using Fast Ethernet. The virtual machine is connected to the same switch using

Gigabit Ethernet. Here are detailed specifications of the machines:

Type Node Virtual Machine
Processor Intel® IPX435 XScale® 667MHz N/A
Memory 128 Mbyte DDRII-400 SDRAM 1024 MB

Table 1: Machine specifications

5.4 Results

5.4.1 TCP Throughput

Figure 17 shows the results of the TCP throughput test. This test was performed using

iperf using the manager node as client and station node as server. The reason for this is

31

5000

10000

15000

20000

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

200 400 600 800 1000 1200

TCP Throughput

TCP Packet Size (bytes)

T
h

ro
u

g
h

p
u

t
(k

b
p

s)

Networks

●

●

CloudMAC

Reference

Figure 17: TCP throughput

that iperf sends data in the reverse direction, in other words, from the client to the server.

Thus, data flows from the Manager to the Station. The test was run using different TCP

packet sizes (changed with the -M iperf flag) for 60 seconds every 100 bytes of packet size.

The test was run 20 consecutive times and the graph shows the average of the 20 results.

The reason for the maximum packet size of 1300 is to prevent packet fragmentation. The

CloudMAC system currently cannot handle packet fragmentation but such a feature could

be developed in the future.

The dots in the graph represent the mean values from the results. The bars show the standard

deviation.

As we can see in the graph produced above, the results show some performance loss. This is

expected as the network have additional complexity in terms of increased network path and

packet processing. The loss at the final packet size is 1 − 16580
21655

= 0.234 = 23.4%. We can

32

also see that the loss is greater for smaller packets as compared to larger packets. This is

likely to be because a smaller packet size means that more packets needs to be transfered, in

order to transfer the same amount of data. This also increases the number of ACK packets,

which also decreases the throughput.

5.4.2 UDP Throughput

5000

10000

15000

20000

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

200 400 600 800 1000 1200

UDP Throughput

UDP Packet Size (bytes)

T
h

ro
u

g
h

p
u

t
(k

b
p

s)

Networks

●

●

CloudMAC

Reference

Figure 18: UDP throughput

Figure 18 shows the results of the UDP throughput test. This test was performed using mgen

using the manager node for generating packets and the station node for packet reception.

The test was run 10 seconds every 100 bytes of packet size. The test was run 30 consecutive

times and the graph shows the average of the 30 results.

Like the TCP graph, the dots in the graph represent the mean values from the results. The

bars show the standard deviation.

33

In these results we see some difference between the performance in CloudMAC as compared

to the the Reference network. This is especially prominent for higher packet sizes. The

performance loss at the final packet size is around 1 − 18671.4
22454.43

= 0.168 = 16.8%. A reason

for better performance as compared to TCP is that UDP has no congestion control, thus

packets are sent without regard for the network. There are also no ACK packets sent when

using UDP, which could be the reason for good performance at lower packet sizes.

5.4.3 Throughput Variance

0

5000

10000

15000

●●●●●●
●●●●

●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●
●●●●●●

●●●●●●
●●●●

●●

●●

●●

●●●●●●●●●●●●●●●●●●●●

●●

●●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●●●

●●

●●

●●
●●●●

●●●●●●●●●●●●●●●●●●●●
●●
●●●●●●●●●●●●●●●●●●

●●
●●

●●
●●●●

●●

●●

●●●●

●●

●●

●●

●●
●●●●●●

●●

●●●●
●●
●●●●●●

●●

●●

●●

●●

0 20 40 60 80 100

UDP Throughput (Cloudmac)

Time

Ba
nd

wi
dt

h
(k

bp
s)

Figure 19: CloudMAC throughput variance

Figure 19 shows the results of the UDP bandwidth variance test on the CloudMAC system.

This result was achieved by running mgen like the UDP Throughput test, but for 120 seconds

to achieve higher resolution.

Figure 20 shows the results of the UDP bandwidth variance test on the reference system.

34

0

5000

10000

15000

20000

●●
●●●●●●●●●●●●

●●

●●

●●

●●●●

●●

●●●●●●●●

●●

●●
●●
●●●●

●●

●●
●●

●●

●●●●●●

●●

●●

●●
●●●●●●●●●●●●●●●●●●●●

●●

●●

●●●●
●●●●●●●●

●●

●●

●●●●●●●●●●●●●●●●●●●●

●●

●●

●●●●●●

●●

●●

0 20 40 60 80 100

UDP Throughput (Reference)

Time

Ba
nd

wi
dt

h
(k

bp
s)

Figure 20: Reference throughput variance

As we can see comparing these two graphs, in both cases we have similar amount of perfor-

mance drops, which could have several causes. One of these could be that some interference

from the outside disrupts sending for a short time, causing slower throughput.

5.4.4 Two-Way Delay

Figure 21 shows the results of the two-way delay test. This test was run using the ping

utility to ping the manager node from the station. The delays were measured for a five

minute period and the data is displayed using a empirical distribution function. This is to

easily show how the roundtrip variance differs between the CloudMAC and the reference

system.

As we can see in figure 21 CloudMAC leads to increased delay. This is due to that the data

needs to be sent through the Ethernet wire, back and fourth between the Manager node.

35

0.5 1.0 1.5 2.0 2.5 3.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Roundtrip Time ECDF

Delay (ms)

E
C

D
F

●●●●●
●●●●●
●●●●●
●●●●
●●●●
●●●
●
●
●

●

●

●

●

●
●
●
●
●
●●
●●●
●●●
●
●●
●●
●●●
●●●●●
●●●●
●●●●●●
●●●●●

● ● ● ● ● ● ●●●● ●●

●●●●●●
●●●●●●
●●●●●●

●●●●
●●●●●
●●●●
●●
●●●
●●
●●
●●●
●●
●●
●●
●
●●
●
●
●
●●
●●●
●●
●●
●●●
●
●
●●
●●
●●
●●
●●●
●●●
●●●
●●●
●●●●
●●●●●
●●●
●●●●●
●●●●●
●●●●●
●●●●●●
●●●●●●
●●●●●
●●●●● ● ● ●

●

●

CloudMAC
Reference

Figure 21: Roundtrip time ECDF

This causes a substantial increase in the delay of the system.

5.4.5 Association Time

We tested the association time of the system and compared it to a reference system. As-

sociation time is the time it takes for a station to become associatied to the wireless access

point. The time is measured from the first Probe Request to the last Acknowledgment. This

measurement is important because users often have expectations on the waiting time before

36

being connected to a wireless network. Various statistics on the results can be seen in table

2.

Statistic CloudMAC Reference
Minimum 1.436 1.437
1st Quantile 1.436 1.437
Median 1.436 1.437
Mean 1.477 1.439
3rd Quantile 1.436 1.445
Maximum 2.261 1.446

Table 2: Association time test results (in seconds)

As you can see from the measurements, there is little or no difference in association time

between the CloudMAC and Reference network.

5.5 Summary

We have now described the tests we used and shown some results of the difference in per-

formance between CloudMAC and a Reference network. We have for example seen that the

UDP variance and wireless association time is almost the same between CloudMAC and the

reference network. We have also seen that the UDP and TCP throughput and two-way delay

differ slightly.

37

6 Conclusions

Wireless networking in large scale corporations can involve up to a hundred or even a thou-

sand access points. Management and configuration of these access points can be very diffi-

cult. This is because the configuration interface changes heavily between manufacturers and

models.

In this thesis we developed a alternate architecture for wireless networks. Instead of simply

running all the packet processing logic in the access point, we move most of it to a separate

machine. This separation in processing provides an additional flexibility at the cost of

performance. Using this alternate architecture, one can prevent the difficulty in configuring

large scale wireless networks by centralizing the configuration.

We were able to create this new architecture by using a modified hardware simulator driver

and user space tunnels. We ran the hardware simulator at the Manager to provide a virtual

wireless interface. This wireless interface would be, using the user space tunnels, seamlessly

connected to the access point, thus providing a virtual access point to the Manager.

We can see, according to the test results, that a virtualization system like CloudMAC could

be viable in real-world situations. The test results show us that there are performance losses,

but they are still fairly small in relation to performance.

Our measurements show that the TCP performance losses are around 23%. This is within

reasonable bounds. As the TCP protocol is used by the majority of Internet applications

today, this metric is very important. An interesting aspect to investigate is the large variation

in the CloudMAC performance.

The UDP performance (16.8%), approximately the same as the TCP performance, is sub-

stantial enough to be of use in a real-world network. However, the decline in performance

with increased window size would be an interesting aspect to investigate in the future. The

other tests such as roundtrip time and association time are all as expected.

38

There are many possible future developments for this system. First and foremost there are

components that could be improved, such as making the modified capsulator more dynamic,

by removing the static MAC address requirements. One could also add the functionality

to support more than one network. This could involve multiple virtual machines using

the same access point, or vice versa. Another change that could improve the CloudMAC

architecture is to use kernel tunnels instead of user space tunnels. This allows the tunneling

to be performed faster and thus can increase the performance of the CloudMAC network.

39

7 References

References

[1] Stefan Mangold & Lars Berlemann Bernhard H. Walke. IEEE 802 Wireless Systems.

John Wiley & Sons, 2006.

[2] O. Braham and G. Pujolle. “Virtual wireless network urbanization”. In: Network of the

Future (NOF), 2011 International Conference on the. 2011, pp. 31 –34. doi: 10.1109/

NOF.2011.6126678.

[3] Linux Software Documentation. Iperf Man Page. url: http://staff.science.uva.

nl/~jblom/gigaport/tools/man/iperf.html.

[4] Linux Software Documentation. Modprobe Man Page. url: http://linux.die.net/

man/8/modprobe.

[5] Wenjun Gu et al. “On Security Vulnerabilities of Null Data Frames in IEEE 802.11

Based WLANs”. In: Distributed Computing Systems, 2008. ICDCS ’08. The 28th In-

ternational Conference on. 2008, pp. 28 –35. doi: 10.1109/ICDCS.2008.17.

[6] T. Hamaguchi et al. “A Framework of Better Deployment for WLAN Access Point Us-

ing Virtualization Technique”. In: Advanced Information Networking and Applications

Workshops (WAINA), 2010 IEEE 24th International Conference on. 2010, pp. 968

–973. doi: 10.1109/WAINA.2010.61.

[7] Inc. M. Montemurro Research In Motion D. Stanley P. Calhoun Cisco Systems and

Aruba Networks. CAPWAP Protocol Specification. 2007. url: http://www.capwap.

org/files/draft-ietf-capwap-protocol-specification-06.txt.

[8] pf.itd.nrl.navy.mil. MGEN User’s and Reference Guide Version 5.0. url: http://pf.

itd.nrl.navy.mil/mgen/mgen.html.

[9] radiotap.org. Radiotap - radiotap.org. url: http://www.radiotap.org/.

40

[10] James Kurose & Keith Ross. Computer Networking: A Top-Down Approach. 5th. Ad-

dison Wesley, 2009.

[11] David A Rusling. The Linux Kernel. url: http://tldp.org/LDP/tlk/tlk.html.

[12] Jochen H. Schiller. Mobile Communications. 2nd. Addison Wesley, 2003.

[13] Vivek Shrivastava et al. “802.11n under the microscope”. In: Proceedings of the 8th

ACM SIGCOMM conference on Internet measurement. IMC ’08. Vouliagmeni, Greece:

ACM, 2008, pp. 105–110. isbn: 978-1-60558-334-1. doi: 10.1145/1452520.1452533.

url: http://doi.acm.org/10.1145/1452520.1452533.

[14] M. Vipin and S. Srikanth. “Analysis of open source drivers for IEEE 802.11 WLANs”.

In: Wireless Communication and Sensor Computing, 2010. ICWCSC 2010. Interna-

tional Conference on. 2010, pp. 1 –5. doi: 10.1109/ICWCSC.2010.5415877.

[15] Linux Wireless. Linux Wireless Glossary. url: http://linuxwireless.org/en/

developers/Documentation/Glossary.

[16] Linux Wireless. Linux Wireless: hostapd. url: http : / / linuxwireless . org / en /

users/Documentation/hostapd.

[17] Linux Wireless. Linux Wireless: iw. url: http://linuxwireless.org/en/users/

Documentation/iw.

[18] Linux Wireless. Linux Wireless: mac80211 Documentation. url: http://linuxwireless.

org/en/developers/Documentation/mac80211.

[19] Linux Wireless. Linux Wireless: mac80211_hwsim Documentation. url: http : / /

linuxwireless.org/en/users/Drivers/mac80211_hwsim.

41

