Department of Computer Science

Johan Garcia

Implementing Java on a Non-Generic

Platform

Master’s Thesis
1999:4

Implementing Java on a Non-Generic

Platform

Johan Garcia

© 1999 The author and Karlstad University

This thesis is submitted in partial fulfillment of the requirements
for the Masters degree in Computer Science. All material in this
thesis which is not my own work has been identified and no mate-

rial is included for which a degree has previously been conferred.

Johan Garcia

Approved, June 9, 1997

Opponent: Anna Brunstréom

Advisor: Donald Ross

Examiner: Anna Brunstrom

iii

Abstract

Java offers a number of advantages for software development. These advantages can be
beneficiary also to non-generic platforms such as telecommunication switches. This paper
examines a possible implementation of a Java execution system on the APZ 212 telecom-
munication switch central processing system. An overview of the Java Virtual Machine
Specification and of the APZ 212 is given. The problems and possibilities of implementing
a Java execution system based on the Way-Ahead of Time compiling (WAT) execution
model is presented.

The study shows that it is possible to implement a Java execution system on the APZ
212, but that several problem areas exist. The main problems arise in the fields of negative

number representation and data sharing between objects.

Contents

1 Introduction 1
1.1 Dissertation structureo Lo Lo 1
1.2 Research questions L 2
1.3 Scientific Paradigmo oo 2
1.4 Purpose e e e e 3
1.5 Restriction0 Lo 3
1.6 Prerequisites e 3
1.7 Definition of termso 4

2 Java Virtual Machine Description 5
21 OVerview L 5
2.2 Supported types Lo 6

2.2.1 Primitive types L L 6
2.2.2 Reference type Lo 8
2.3 Run-Time Data Areas 8
231 Javastackso 9
232 Heap 10
233 Methodarea. o 10
2.4 Instruction seto 11
2.4.1 Instruction set overview L. 12

vii

2.4.2 Table jumping instructions Lo L. 14

2.4.3 Array management instructionso oL 15
2.4.4 Object related instructions 16
2.4.5 Monitors and Exception handling instructions 21
25 Classfileformat L 21
2.5.1 Introduction 22
252 Accessflags 23
253 Constant Pool oo 24
254 Methods Lo 27
2.5.5 Classfilesummary 28
2.6 SUMMATY e e e e 29
APZ 212 Description 31
3.1 Overview L e 31
3.2 Introductiono 31
3.3 Logical Structure L 34
3.3.1 Program structureo oo 34
3.3.2 Datastructure oL oL 35
3.33 Signalso 37
3.4 Hardware structure 39
3.4.1 Memory overview Lo e 39
3.4.2 Program blocks Lo L 40
3.4.3 Variable blocks oo o 42
344 Signals 43
3.5 Imstruction processor (IPU) 47
3.5.1 Registers. L 47
3.5.2 Imstruction Set 48
3.6 Summary L 50

4 A mapping of the Java Virtual Machine to APZ 212

4.1 Execution model Lo
4.1.1 Interpretation L L
4.1.2 Just In Time (JIT) Compiling
4.1.3 Way Ahead of Time(WAT) Compiling
4.1.4 Recommended execution model o000 L.

4.2 Object handling
4.2.1 Runtime frameworko
4.2.2 Object representationo
4.2.3 Method inheritanceo
4.2.4 Dynamic method selection L0,

4.3 Memory handling Lo
4.3.1 Garbage collectiono
4.3.2 Proposed garbage collection scheme

4.4 Activationrecords

4.5 Multithreading L

4.6 Exceptions Lo

4.7 Number representation L oo

4.8 Library support e

4.9 Instruction Mappingo Lo

4.10 Summary e e e

5 Conclusions

5.1
5.2

9.3

5.2.1 Research questions
5.2.2 Proposed implementation00

Conclusions

1X

5.4 Related work L

5.5 Further research

5.6 Future work L

References

References

A Background on Java

A1 Introduction

A2 History of Java L

A3 KeyconceptsinJava L o

A31
A3.2
A3.3
A34
A3.5

Portability
Object-orientation
Distribution o
Security L

Performance

List of Figures

2.1 Run-time Data Areas L 9
2.2 Lookupswitch and tableswitch 15
2.3 inwvokevirtual dynamic method selectiono 0000 19
2.4 Constant pool entry types Lo 25
2.5 Java class file structureo 30
3.1 APZstructure 33
3.2 CP-program unit 34
3.3 Logical Data Structure 36
3.4 Signal Distribution exampleo 00000 46
3.5 Memory Layout 51
4.1 Execution models 55
4.2 Object representation Lo 61
4.3 Activation records file Lo 75
Al Flowof Java Source 93

xi

List of Tables

2.1 JVM primitive types . .
2.2 Access and modifier flags

3.1 Variable Sizes

xiii

Chapter 1

Introduction

Java is a concept that has attracted much attention recently. In addition to being a new
programming language, Java also defines an execution environment that has strong pro-
visions for interoperability and security. The Java programming language is designed to
address most of the weaknesses of C and C++4-, but still be a general programming lan-
guage. A general background on Java is provided in Appendix A. This dissertation studies
the possibility of implementing a Java execution system on a non-generic platform. The
platform examined in this dissertation is the processor system found in telecommunica-
tions switches manufactured by Ericsson, specifically the platform called APZ 212. This
platform differs markedly from a conventional processor platform since it has no shared

linear address space.

1.1 Dissertation structure

This dissertation comprises a general introduction (chapter 1) followed by a chapter de-
scribing the Java Virtual Machine and runtime system. Then a chapter describing the
processor architecture/environment of the APZ follows. These chapters are relatively de-

tailed in order to lay the foundation for the next chapter, a discussion on how an actual

2 CHAPTER 1. INTRODUCTION

implementation of the Java environment for the specific platform might be done. This
chapter provides a synthesis of the two previous, and describe a possible mapping of a
Java execution system onto the target hardware. The last chapter presents a summary of
the previous chapters and states the conclusions that are drawn in relation to the research

questions, see section 1.2. An appendix is provided to present the concepts behind Java.

1.2 Research questions

The problem domain studied in this dissertation is the possibility of implementing an
execution system for Java on a non-generic computer platform, in this case the APZ 212.

The research questions are:

e Is it possible to implement a practically useful Java environment for a non-generic
hardware platform which has a hardware architecture that is markedly different from

the hardware architecture the Java VM was targeted for?

e If so, what are the problems/possibilities inherent in the mapping of the execution
model of Java to the specifics of the hardware platform, and what implementation

strategy is best suited to make maximum use of the hardware.

e How is the execution performance of Java programs affected by the above factors
and what is the level of performance to be expected in comparison with similar

implementations using other hardware architectures.

1.3 Scientific Paradigm

The dominating scientific paradigm in this study is the system theoretic paradigm. The
problem domain will be divided into parts which are studied separately. This study will

cover both the APZ environment and the Java VM environment. These are disseminated

1.4. PURPOSE 3

to find the possible structures and methods that can be used to overlay Java functionality
on the APZ. The scientific basis for this study is literature studies. A further study of
this topic would probably include aspects of the positivistic paradigm as further work
would typically entail implementing an experimental Java execution system in order to
measure the actual performance and relating this to the performance available on typical

Java execution system implementations on generic platforms.

1.4 Purpose

The purpose of this study is to give an indication if Java can be viable development tool
for developing telecommunications software that is to be executed by the processor in the

exchange.

1.5 Restriction

This dissertation studies the applicability of a Java environment for telecommunications
software development from a technological point of view. The focus will be if it is techno-
logically feasible to create an execution system that is capable of using Java class files to
control a processor in an exchange. No discussion of the Java language suitability per se

for the domain of telecommunication application development will be presented.

1.6 Prerequisites

The reader is assumed to have general knowledge of the object-oriented paradigm. Thor-
ough knowledge of the APZ structure or Java is not required since the technicalities relevant
to the specific problem area are discussed in chapters 2-4. For readers who are are unfa-

miliar with the basic concepts behind Java, a brief introduction is present in appendix A.

4 CHAPTER 1. INTRODUCTION

1.7 Definition of terms
This study will use the following terms in the meaning stated below:

e Java Virtual Machine As stated in the book “The Java Virtual Machine Specifi-
cation” [17], the Java Virtual Machine is an abstract design. In some literature the
term Java Virtual Machine is confused with an implementation of the Java Virtual
Machine. This study will refer to the Java Virtual Machine as being an abstract

entity only.

e Execution model The execution model is the term used to discriminate between
implementations that distribute the translation of source code to native code differ-
ently in time. For example are interpretation and compilation different execution

models.

e Java execution system A Java execution system is an implementation of a Java
Virtual Machine along with the support functionality needed to execute Java class

files.

Chapter 2

Java Virtual Machine Description

This chapter gives an overview of the characteristics of the Java Virtual Machine (JVM)
and goes into detail where appropriate with respect to the focus of this dissertation. This
means that topics judged to be of secondary concern when implementing a Java execution
system for the APZ will not be covered. Such topics include floating point support and
some security considerations.

This chapter describes version 1.0.2 of the Java Virtual Machine (JVM) as defined by
Lindholm and Yellin [17]. This was the current version at the time of writing (Spring 1997)
and every future release of a JVM specification is expected to be backwards compatible
with this version. Besides the definition several introductory presentations of the JVM are

available [13, 16, 26].

2.1 Overview

This section gives an overview of some of the properties of the JVM in order to give an
overall 'feel’ for the JVM before going into details in the following sections.
The JVM:

e is a stack-oriented machine, i.e. an operand stack is used instead of registers for

3

6 CHAPTER 2. JAVA VIRTUAL MACHINE DESCRIPTION

arithmetic operations.
e has an address space, register size and stack width of 32 bits.
e can handle multiple threads, and each thread has its own runtime stack.
e has primitive data types ranging from 8 to 64 bits wide.
e has builtin support for exceptions.

e has a data structure referred to as the constant-pool which is used akin to a symbol-

table.

e uses run-time resolution of class names for dynamic linking.
The typographical conventions used in this chapter are:

e instructions will be staliziced.

e types and Java source code will use the typewriter font.

2.2 Supported types
The JVM has two kinds of types:

e primitive types, used to hold atomic values.

e reference type, used to hold values that reference (points to) an object or interface.

2.2.1 Primitive types

The primitive types of the JVM are specified in table 2.1 and maps nicely to the types

available in the Java language as specified in [11], with the exception of the returnAddress

2.2. SUPPORTED TYPES 7

type which is a data type internal to the JVM. The returnAddress type is a pointer to
JVM instructions and is used by the JVM instructions jsr, ret and jsr_w.

As evident by looking at table 2.1, integral values are signed and can have a size ranging
from 8 to 64 bits. The smaller types (byte and short) are however automatically extended
to int before they are pushed on the operand stack or stored in a local variable since the
stack as well as local variables are aligned on four-byte boundaries as described in section
2.3. Since the JVM instructions for arrays have support for arrays of byte and short this
suggests that all integral values that are not stored in arrays would optimally be defined

as int in order to minimize type conversions done by the JVM.

‘ Nr. of bits ‘ Type Name ‘ Description ‘
8 byte Signed integral value
16 short Signed integral value
32 int Signed integral value
64 long Signed integral value
16 char Unicode character (unsigned)
32 float IEEE 754 Float
64 double IEEE 754 Float
32 returnAddress | pointer in JVM’s address space

Table 2.1: JVM primitive types

As will be seen in section 2.4 a feature of the JVM instruction set is that the type of the
operands are defined by the instruction, thus eliminating the need for a type-defining bit
field as part of the instructions. This requires all type information regarding the primitive
types to be known at compile time which also exempts the need for run-time type checking,
yielding an improved performance.

Although there exists a boolean type in the Java Language, no such type is implemented
in the JVM. Instead the JVM uses int values to express logical values following the C
convention that any nonzero value is true. Reference types can also be used with the
convention that any non-null value is true. Although a boolean type is not supported in

the JVM instruction set it is possible to create arrays with the JVM instruction newarray

8 CHAPTER 2. JAVA VIRTUAL MACHINE DESCRIPTION

that are specified to hold boolean values. The JVM specification [17] leaves the choice of
representing the boolean values inside the array as bytes or as packed bits in a byte to the
implementer of the JVM. Insertion or retrieval of boolean values in the array is however

specified to be performed using bytes for representing the boolean values.

2.2.2 Reference type

The reference type is used to refer to objects. The concept of references is similar to the
concept of pointers as found in C and C++. There are however some major differences

between the two:

e References may not be assigned absolute memory addresses.

e References are automatically dereferenced, no explicit dereferencing is necessary as

in C.
e No arithmetic operations are allowed on references, pointers allow pointer arithmetic.

The above differences provide added security over pointers as implemented in C and add

to the overall security that was a prime design goal of Java.

2.3 Run-Time Data Areas

The details of the Run-time data areas are not a part of the JVM specification. There are
however some basic structures that are described in section 3.5 of Lindholm,Yellin [17].
These are the Java stacks, frames, heap, method area and constant pool. These will be
described in the forthcoming sections, and a pictorial summary can be found in figure 2.1.
The figure serves only an example of how the run-time data areas might be implemented.
The functionality provided by the structures showed in the picture would however need to

be present in some way in every implementation of a JVM.

2.3. RUN-TIME DATA AREAS 9

77777 /
/
Java Stack Frame for)/ Local varables
for thread #1 method 1B)/
w //
] /
F4 \ ’
&» Java Stack \ Frame for K Environment
g for thread #2 \ method 1C /
5 \ I 1
Java Stack Y Frame for Operand stack
for thread #3 \ method 2A
\
\ ~
N Free memory NN Free memory
\ in this threads T
\\ stack
z
9]
=]
L
g
8
3
Obicci C
Qhject C3
Obicct C2
Object (/
/ Run-time
Method area / Constant Pool
for Class C /
= [h
g | ObjectBl | /
= | ObjectA2 | !
/
[ObjectAl | / Field Info
l I
! Method info
Method area / incl. code for
for class B / method 1A
I
! Method info
incl. code for
Method area method 2A
for class A

Figure 2.1: Run-time Data Areas

2.3.1 Java stacks

The JVM is capable of handling multiple parallel threads of execution. In order to record
the state of each thread, every thread has an associated Java stack. This Java stack
contains the frames, also called activation records, of the chain of method invocations that
lead to the current method. The exact content of the frames is implementation specific
but they typically contain storage for local variables, a frame info part containing various
implementation specific data and an operand stack. The frame info part (sometimes called

environment) may for example hold information regarding the caller’s frame location and

10 CHAPTER 2. JAVA VIRTUAL MACHINE DESCRIPTION

state data. A slide showing the layout of Sun’s frame info structure can be found in
Yellin, Lindholm [37]. Since Java stacks only handle whole stack frames at a time, a JVM
implementation may allocate Java stacks discontinuously and may also dynamically change

the size of the stack.

2.3.2 Heap

The heap is the JVM dynamic allocation area used by all threads to store objects. Since
the JVM may dynamically load classes, the method areas (see next section) may also be
allocated on the heap. Heapsize may change dynamically and heap memory need not be
continuous. Garbage collection is used for the heap, but choosing which specific garbage
collection algorithm to use is left to the implementer. Several considerations have to be
made when choosing a garbage collection algorithm. Further discussion of these issues can
be found in Venners [25]. A discussion of how to minimize the need for garbage collection

in Java programs can be found in McManis [19].

2.3.3 Method area

The method area' is the place where the model JVM implementation stores a run-time
representation of the information found in classfiles. This information includes the constant
pool, field specifications and method specifications. All threads share one representation
of every loaded class. As is shown in section 2.5.4, the bytecodes(the actual code for the
JVM) are stored in the method info section of the method area. The layout of and handling
of this data-structure is left to the implementer of the JVM.

In order to bind the symbolic references found in the constant pool, the entries in the
constant pool have to be resolved i.e the symbolic references are bound to the corresponding

physical structure in the JVM. If this structure is a class or an interface and it is not yet

'Why Sun decided to call this area 'method area’ in lieu of ’class area’ is unknown, but ’class area’
would seem more appropriate judging by the contents.

2.4. INSTRUCTION SET 11

loaded, the JVM loads and initializes it. This loading and initialization causes loading of
the loaded class’ superclass(recursively) and execution of its static initializers. The exact
time when this resolution is to be performed is not specified, it can be done the first time a
constant pool entry is actually referenced(late), or all constant pool entries can be resolved
when a class is loaded(early). Details of the constant pool resolution process can be found

in chapter 5 of Lindholm, Yellin [17] and of initialization in section 2.16.4 of the same.

2.4 Instruction set

This section describes the instruction set of the JVM. The instruction set is specified in
chapter five of Lindholm, Yellin [17]. A briefer overview can be found in Case [5]2. This
section will begin with some characteristics and then provide an overview of the instruction
set presenting more details for the more complex instructions.

The instruction set of the JVM has some noteworthy characteristics:

Instruction opcodes are stored in one byte. The term bytecode is commonly used

to describe an instruction’s numerical value.

e The opcode can be followed by zero or more operands. No alignment is required
for the instruction stream, with the exception of the instructions lookupswitch and

tableswitch.

e Arithmetic instructions and stack instructions are type specified, i.e. the type of the

operand is given by the opcode.

e Java VM instructions signal runtime errors by throwing exceptions. These exceptions
can then be handled in a similar manner as the exceptions thrown from within the

program.

2This article gives a good overview but contains a technical inaccuracy since the author claims that
classfile bytecodes are stored in the constant pool area, whereas they are in fact stored in the method area.

12 CHAPTER 2. JAVA VIRTUAL MACHINE DESCRIPTION

e Some instructions index into a high-level data structure, the constant pool. See

section 2.5.3.

2.4.1 Instruction set overview

Typed instructions generally have versions for the int, float, long and double data types.
Byte and short are sign-extended to int before they are stored on the stack or in a local
variable, and the int version of instructions is used to operate on them. The instruction
set is non-orthogonal, since all typed instructions do not have versions for all types. The
int type has most supporting variants and can be considered to be the 'standard’ type.

The instructions can be grouped as follows:

1. Push constant
Instructions that push constant values onto the operand stack. The values can either
be given explicitly by the instruction (i.e. iconst_0) or by an operand indexing into

the constant pool. See Venners [26].

2. Load/Store from/to local variable
Instructions that move values to/from local variables from/to the stack. The local
variable index can be given either explicitly by the instruction (i.e. istore_1) or by

an operand indexing the local variable. See Venners [26].

3. Stack management
Instructions that manipulate the stack, copying, moving or removing values on the
stack. Examples: dup, swap. These instructions are type-independent (although

type size matters).

4. Arithmetic
Instructions that perform the common arithmetic functions (+, -, *, /, mod, negate)

on int, long, float and double respectively. See Venners [27, 28].

2.4. INSTRUCTION SET 13

3.

10.

Logical
Instructions that perform shifts, logical and, or, xor functions on int and long. See

Venners [28].

. Type conversion

Instructions that convert between int, long, float and double. Also instructions
that narrow int values to byte, char and short values (which still are stored inter-

nally as 4 byte values). See Venners [26].

Control transfer and compare

Instructions that perform unconditional or conditional jumps. Tests for conditional
jumping are most plentiful for int, with long, float and double requiring a two
phase compare and branch on result instead of just branch on compare. See Venners

[32].

. Table jumping

Instructions lookupswitch and tableswitch provide for a comparison of a key value
against a set of match values and jump if a match is found. See section 2.4.2 and

Venners [32].

. Array management

Instructions for allocating, storing and retrieval of arrays. Array instructions support
the byte, short, char, int, long, float, double and objectref types. Arrays
containing boolean values can also be created, these use byte type for storage and

retrieval. See section 2.4.3 and Venners [29].

Object related
These instructions handle different aspects of object operations and may be further

subdivided:

14 CHAPTER 2. JAVA VIRTUAL MACHINE DESCRIPTION

(a) Method invocation and return

Instructions that invoke methods and return from methods

(b) Field manipulation

Instructions that store and retrieve field values for object or class fields.

(c¢) Miscellaneous object handling
Instructions new, instanceof and checkcast which create a new object, checks
inheritance and checks object type respectively.

See section 2.4.4 and Venners [29].

11. Monitors and Exception handling
Instructions monitorenter and monitorezit provide locking for synchronization. In-

struction athrow throws an exception. See section 2.4.5 and Venners [30].

2.4.2 Table jumping instructions

The JVM instruction set has two instructions for supporting switch-case type of statements:

lookupswitch compares the key value on the stack against all match values in the instruc-
tion, and jumps to the associated branch offset. If a match is not found, a

jump to the default branch offset is made.

tableswitch compares the value on the stack against the low and high range values of
the instruction, and jumps to the [value-low] branch offset if the value is
inside the range. If the value is outside the range it jumps to the default
branch offset. Every value inside the range low-high must have a branch

offset.

Both of the above instructions use only int values for comparison, and both have zero to

three bytes of padding after the bytecode. See figure 2.2

2.4. INSTRUCTION SET

15

lookupswitch

Bytecode (171)

Padding
0-3 bytes

Default branch offset
4 bytes

nr of match-offset pairs
4 bytes

match value
4 bytes

Branch offset
4 bytes

nr-1 of match-offset
8 byte pairs

tableswitch

Bytecode (170)

Padding
0-3 bytes

Default branch offset
4 bytes

Low range value
4 bytes

High range value
4 bytes

Branch offset [low]
4 bytes

high-low-1 number
of 4 byte branch offsets

Branch offset [high]
4 bytes

2.4.3 Array management instructions

The JVM instruction set supports creation and handling of arrays:

newarray

anewarray

of array value popped from the stack.

Figure 2.2: Lookupswitch and tableswitch

Even 4 byte boundary

Creates an array of a specified JVM primitive type or boolean with length

Creates an array of objects of a specified class with length of array value

popped from the stack. Only an array of references is allocated, not the

objects themselves.

16 CHAPTER 2. JAVA VIRTUAL MACHINE DESCRIPTION

multianewarray Creates a multidimensional array of objects of a specified class with spec-
ified number of dimensions. The size of each dimension is popped from

the stack.

All the array creation instructions return an arrayref on the stack.
In addition to the above instructions there also exist instructions for data storage and

retrieval:

Xaload pops index and arrayref from stack and pushes arrayref[index| value.

Xastore pops value, index and arrayref from stack and assigns arrayref[index| = value.

X in the above instructions may be any letter of { b, ¢, s, i, I, f, d, a } signifying types
byte, char, short, int, long, float, double and objectref. Lastly, there is also one

support instruction:

arraylength pops arrayref from stack and the pushes the length of the array.

2.4.4 Object related instructions

The JVM has several object related instructions that are coupled to the object model of
the Java Language. The features of the object model are summarily described in appendix
A. Additional information can be found in chapter seven of Anuff [1] or chapter five of

Niemeyer, Peck [21].

Method invocation and return

invokevirtual invokes an instance method based on the class of the instance (dynamic).
This instruction specifies a constant pool index to a method and pops

an object reference and the arguments.

2.4. INSTRUCTION SET 17

invokestatic invokes a class method. (non dynamic). This instruction specifies a

constant pool index to a method and pops the arguments.

1nvokespecial invokes a superclass, private or instance initialization method. (non dy-
namic) . This instruction specifies a constant pool index to a method

and pops an object reference and the arguments.

invokeinterface invokes an interface method (dynamic). This instruction specifies a con-
stant pool index to a method and the number of arguments. It pops an

object reference and the arguments.

If an instruction is marked as (dynamic) the method to be run is decided at run-time
based on the class of the object. This is a consequence of the method overriding in the

Java Language as exemplified below.

18 CHAPTER 2. JAVA VIRTUAL MACHINE DESCRIPTION

Method overriding example

This simple example of method overriding uses a vehicle metaphor as illustration.

class Vehicle

{

void move() {...}

class Car extends Vehicle //Car inherits Vehicle

{

void move() {...}

class DoSomething ()
{
Car volvo = new Car(); //Makes new Car object

Vehicle transport = volvo; //Assign to Vehicle var

transport.move () //Accesses Car move()

This code illustrates the fact that it is the runtime type of an object that decides which
method is to be selected. This can be seen as the method run in the example above is
dependent on the runtime class of the object in the variable transport, not by the type
of the variable. This mechanism can be achieved by multiple lookups as illustrated in fig
2.3. As seen in the figure, the relative location of the method move() is the same in the
subclass Car as in the superclass Vehicle. This allows the MethodlIdx offset to be used for

both Vehicle and, as in this case, Car classes. The internal structure of the JVM including

2.4. INSTRUCTION SET 19

Instruction stream Stack

invokespecial [args]
CP10 method_index ——— objectref
DoSomething (class description) Heap (object storage)
ConstantPool MethodTable

—| ClassIdx

Methodldx |---. 8

Vehicle (class description) Car (class description)

ConstantPaol © ___ MethodTahle ConstantPaol | MethodTable

Figure 2.3: invokevirtual dynamic method selection

the runtime representation of the constant pool is implementation specific and is not given
in any specification, so the structures are only examples. Each of the method invocation

instructions creates a new frame on the stack of the executing thread (see section 2.3).

Complementing the method invocation instructions are the return instructions: return,
ireturn, lreturn, freturn, dreturn, areturn which return from methods with values of type
void, int, long, float, double and objectref respectively. On return the stack frame
of the calling method is reinstated and the stack frame of the invoked method, including

the operand stack, is discarded.

20 CHAPTER 2. JAVA VIRTUAL MACHINE DESCRIPTION

Field manipulation

Instructions that store and retrieve field values for object or class fields exist in the following

variants:

putfield specifies a constant pool index to a field. Pops a value and objectref. The

value is stored in the object’s designated field.

getfield specifies a constant pool index to a field. Pops an objectref. The value of the

object’s designated field is pushed onto the stack.

putstatic specifies a constant pool index to a field. Pops a value. The value is stored in

the class’ static field.

getstatic specifies a constant pool index to a field. The value of the class’ static field is

pushed onto the stack.

As can be derived from the above putfield and getfield operates on instance variables,

whereas putstatic and getstatic operates on class variables.

Miscellaneous object handling

new specifies a constant pool index to a class. Memory is allocated and thus is the class
instantiated as a new object on the heap. An objectref is pushed on the stack. To complete
the creation of a new object the instance initialization init method must be called before

the object is used.

instanceof and checkcast both specifies a constant pool index to a class or interface. Both
pops an objectref and check if the object is the same class or a subclass of the specified
class (respectively implements the interface). instanceof pushes 1 onto the stack if this is
true and 0 else. checkcast pushes the objectref back if true and throws en exception else.

See Venners [29].

2.5. CLASS FILE FORMAT 21

2.4.5 Monitors and Exception handling instructions

monitorenter and monitorexit both pop an objectref and can be used to ensure that only
one thread uses an object at any time. These instructions set and clear the monitor flag

associated with every object.

athrow pops an objectref that must be an object of class Throwable or a subclass. The
current method’s exception table is searched for a matching handler. If none is found, the
stack is unwound and the caller of the current method has its exception table checked for
a matching handler. This is repeated until a matching handler is found or, if the calling

chain is exhausted and no handler is found, the thread becomes terminated.

2.5 Class file format

A Java class file is the representation of a compiled Java language class. It contains Java
bytecodes for the methods of the class as well as specifications for the fields of the class
and additional information to support the Java execution system. In order to understand
the information that an implementation of a Java execution system has at its disposal,
knowledge of the data structures of the classfile is essential. The format of the class file is
defined in chapter 4 of Lindholm, Yellin [17]. A brief description of the class file format
can be found in Venners [24]. An introduction to Java Classloaders, the mechanism of the
runtime system that loads class files, can be found in McManis [18]. This section will give a
fairly detailed overview of the class file layout, although focusing more on comprehensibility

rather than minute detail.

Naming conventions used in this section adheres as much as possible to the one found
in Lindholm, Yellin. One exception is made for the sake of brevity: Constant pool entry
types originally named CONSTANT xxxx are referred to as C_xxxx throughout this

section.

22 CHAPTER 2. JAVA VIRTUAL MACHINE DESCRIPTION

2.5.1 Introduction
The Java class file layout can be separated into its main parts as follows:
magic Four bytes (IxCAFEBABE) used to ascertain that this file indeed is a class file.

minor_version Two bytes containing the minor Java version number of the compiler that

produced the class file.

major_version Two bytes containing the major Java version number of the compiler that

produced the class file.
constant_pool_count Two bytes containing the number of entries in the constant pool.

constant_pool[| A table of variable length structures representing various constants such
as class names, literal strings, field names and types, referenced by other parts of the

class file. The constant pool will be discussed in greater detail in section 2.5.3.

access_flags Two bytes containing flags for the class defined in the class file. The access

flags are specified in table 2.2

this_class Two bytes containing an index to a constant pool C_Class entry leading to the

fully qualified name of the class in the class file.

super_class Two bytes containing an index to a constant pool C_Class entry leading to

the fully qualified name of the superclass of the class in the class file.
interfaces_count Two bytes containing the number of interfaces.

interfaces| | An array of indexes to a constant pool C_Class entry leading to the names

of each of the Interfaces this class implements.

fields_count Two bytes containing the number of fields.

2.5. CLASS FILE FORMAT 23

fields[] A table of variable length field_info structures representing the class and instance
variables of the class. The field_info structure gives details of the accessability of the

variable, name and type for all variables as well as value for static variables.
methods_count Two bytes containing the number of methods.

methods[| A table of variable length method_info structures representing the class and
instance methods of the class. Only methods that are explicitly defined by this
class are included, methods that are inherited are not stored here. The method_info
structure contains information such as name, a descriptor detailing the return type
and argument list, a table of exceptions caught by the method and the bytecode
sequence that implements the method. The method_info structure is described in

section 2.5.4.

attributes_count Two bytes containing the number of attributes (zero or more attributes

are allowed in the attribute section of the class file)

attributes[| A table of variable length attribute structures. The current JVM spec
(1.0.2) only defines one attribute, the SourceFile attribute, which gives the name
of the sourcefile from which this class file was compiled. It is possible for compiler
writers and JVM implementers to define their own, proprietary, attributes since the

JVM is specified to ignore attributes it cannot understand.

As evident by the above description the class file is somewhat complex. A more graphical
summary of the structures in the class file can be found at the end of this chapter in figure

2.5 and should prove to be helpful when studying the structure of the class file .

2.5.2 Access flags

The access flags are used to describe characteristics of classes, interfaces, fields and meth-

ods. Table 2.2 lists the flags. This table is an adaption of tables 4.1, 4.3 and 4.4 in

24 CHAPTER 2. JAVA VIRTUAL MACHINE DESCRIPTION

Lindholm,Yellin [17]. The abbreviations in the Used by column are C=Class, I=Interface,
F=Field, M=Method.

‘ Flag Name ‘ Value ‘ Description ‘ Used by ‘
ACC_PUBLIC 0x0001 | May be accessed outside its package | C, I, F, M
ACC_PRIVATE 0x0002 | Usable only in the defining class F, M
ACC_PROTECTED 0x0004 | May be accessed within subclasses F, M
ACC_STATIC 0x0008 | Is static F, M
ACC_FINAL 0x0010 | No overriding is allowed C,F, M
ACC_SYNCHRONIZED | 0x0020 | Wrap use in monitor lock C* I*, M
ACC_VOLATILE 0x0040 | Cannot be cached F
ACC_TRANSIENT 0x0080 | Non persistant F
ACC_NATIVE 0x0100 | Method not implemented in Java M
ACC_INTERFACE 0x0200 | Is an interface I
ACC_ABSTRACT 0x0400 | No implementation is provided C,I,M

Table 2.2: Access and modifier flags

* For Classes and Interfaces the value 0x0020 represents the flag ACC_SUPER which
indicates that superclass methods are to be treated specially in the JVM instruction invoke-

special. The reason for this dual meaning for this value cannot be found in the literature.

2.5.3 Constant Pool

The constant pool is a table of variable length entries containing literal information as well
as entries linking methods and fields to a particular class. The type of any entry is given
by the first byte of that entry, the tag byte, which contains an unsigned value. The values
inside the parentheses in the tag byte field in figure 2.4 give the tag value for every type of
entry. The entries in the constant pool can be characterized as either primitive, containing
a literal value or composite, containing one ore more references to other constant pool
entries. References to the entries in the constant pool can hence be found both inside as
well as outside of the constant pool. Figure 2.4 shows the different types of entries and
their internal references.

The different types of constant pool entries are:

2.5. CLASS FILE FORMAT 25
(doubly) Composite Composite Primitive
C_Fieldref C_Utf8
ul tag (9) A g ()
CP class_index N L u2 length
CP name_and_type_index , ~_ 7 - ! ul bytes []
\\ A AN Ve e’ , 4 /?
\ b \ s 7 / ? / C I
4 / /
\\ ‘ C_Class - , / / 1_ nteg3e:
VA ulag(7) 7 K ,/// u4 ;ag()
o /' CP name_index ~ ! S u4 bytes
\/ / , 4 ////
C_Methodref A 7/ A C Float
/ , oa
ul tag (10) W C_String / ul tag (4)
CP class_index / A 1 tag (8) S v/ £
. I ultag y ’ u4 bytes
CP name_and_type_index >/ \ CP string_index * X
N N /I \\ ///
N N \ ///
S \“) C_Long
! C_NameAndType S ul tag(5)
! 4
i A ul tag (12) S u4 high_bytes
! , 4 . /
C_InterfaceMethodref ,' / SP game'_mde).ﬁ 4 j’ ud Iw_bytes
ul tag (11) /, y / P descriptor_index
Ci class_md(elzx "y // / C_Double
CP name_and_type_index ul tag(6)
u4 high_bytes
u4 Iw_bytes

Figure 2.4: Constant pool entry types

Primitive Entries

C_Utf8 Holds a literal string in Unicode UTF-8 format. Literal strings is much used by
the JVM since the JVM uses symbolic references to classes, fields and methods in

order to achieve dynamic (late) binding.
C_Integer Holds an integer value.

C_Float Holds a float values.

26 CHAPTER 2. JAVA VIRTUAL MACHINE DESCRIPTION

C_Long Holds a long value.

C_Double Holds a double value.

Composite Entries

C_Class Holds an index to a C_Utf8 entry representing a fully qualified Java class name.

C_String Holds an index to a C_Utf8 entry representing a sequence of characters to which

a java.lang.String Object is to be initialized.

C_Fieldref Holds an index to a C_Class entry representing the class that a field belongs to.
Also holds an index to a NameAndType entry giving the name and type description
for the field.

C_Methodref Holds an index to a C_Class entry representing the class that a method
belongs to. Also holds an index to a NameAndType entry giving the name as well

as a return type and argument list description for the method.

C_IntefaceMethodref Holds an index to a C_Class entry representing the interface that
a declares a method. Also holds an index to a NameAndType entry giving the name

as well as a return type and argument list description for the method.

C_NameAndType Holds an index to a C_Utf8 entry representing a field or method name
(not fully qualified). Also holds an index to a C_Utf8 entry that contains a description
of either the type of a field or the return type and argument list of a method. The
details of how to interpret this string is given in section 4.3 of Lindholm, Yellin [17].

For the curious: tag number 2 existed in JVM specification 1.0 Beta DRAFT as C_Unicode
with exactly the same format as C_Utf8. Sun then decided to remove it from the specifi-

cation.

2.5. CLASS FILE FORMAT 27

2.5.4 Methods

Information about the methods of a class are stored in one variable length method_info
entry for each method in the class file. The structure of the method_info structure is
not very complicated, but since it contains two attributes, one Code_attribute and one
Exceptions_attribute, the total structure is somewhat complex. A good overview of the
method_info structure can be found in fig 2.5. This section will give some detail on the

involved structures: method_info, Code_attribute and Exceptions_attribute.

method_info structure

The structure of a method_info entry is as follows:

access_flags Two bytes containing flags according to table 2.2 for specifying access rights

and other properties of the method.

name_index Two bytes containing an index to a constant pool entry giving the simple,

not fully qualified name, of the method.

descriptor_index Two bytes containing an index to a constant pool entry giving the

return type and argument list of the method.
attributes_count Two bytes containing the number of attributes.

attributes|[|] A table containing variable length attributes. For the current version of the
JVM (1.0.2) only Code_attributes and Exceptions attribute are defined. These must

exist exactly once for every method.

Code_attribute

The Code_attribute contains fields with information that the JVM uses when it is to execute

a method. These name of these fields are found in figure 2.5 under the method_info heading.

28 CHAPTER 2. JAVA VIRTUAL MACHINE DESCRIPTION

The most obvious of these are of course the bytecode array which contains the JVM
instructions for the method. In addition to this, the Java compiler counts the maximum
number of words that can be placed on the operand stack by this method as well as the
number of local variables (including the method parameters) used. This means that the
required size of a method activation record/stack frame (see section 2.3.1) can be statically
determined.

Also stored in the Code_attribute is an exception table that gives the details of how
exception handling is to be performed in the method, i.e which exceptions will be dealt
with where and how.

The Code_attribute can in turn have attributes of its own, currently only two attributes

containing debug information is defined as possible attributes.

Exceptions_attribute

The Exceptions_attribute contains information on which exceptions this method can throw.
This attributes main component is an array of indexes to constant pool entries specifying

the class of the exceptions that can be thrown from this method.

2.5.5 Class file summary

The structure of the class file is presented in a compact form in fig 2.5. A few comments

on the figure:

e ul means that the value is stored as an unsigned integer in one byte.
e u2 means that the value is stored as an unsigned integer in two bytes.
e u4 means that the value is stored as an unsigned integer in four bytes.

e (P refers to an u2 holding an index to a constant pool entry.

2.6. SUMMARY 29

e (0) means that an attribute is optional and that other, proprietary, attributes are

allowed after the optional attribute. Attributes without (o) must exist exactly once.

2.6 Summary

This chapter has described the major features of the Java Virtual Machine (JVM). It
is a stack machine with a fairly set of primitive data types, all signed, and a reference
type used to refer to objects. Pointers do not exist. In order to execute any code, an
implementation of the JVM must have some run-time data areas. The exact layout of
these runtime data areas are not specified, but any Java execution system will typically
need the regular activation records (frames) based layout with a heap for object allocation.
The instruction set reflects the fact the JVM is a stack machine. In addition to stack
manipulation instructions and standard arithmetic and control instructions the instruction
set also includes instructions for arrays, objects, monitors and exceptions. The bytecode
to be executed in a Java execution system is stored in a somewhat complex .class file

containing a considerable amount of extra information besides the bytecodes.

magic
(OxCAFEBABE)

Minor version nr
Major version nr
Constant pool count
Constant Pool

|

A

/\

C_Utf8

ul tag (1)
u2 length
ul bytes []

C_Integer
ul tag (3)
u4 bytes

C_Float
ul tag (4)
u4 bytes

C_Long

ul tag(5)

u4 high_bytes
u4 lw_bytes

C_Double

ul tag(6)

u4 high_bytes
u4 lw_bytes

C_Class
ul tag (7)
CP name_index

C_String
ul tag (8)
CP string_index

C_Fieldref

ul tag (9)

CP class_index

CP name_and_type_index

C_Methodref

ul tag (10)

CP class_index

CP name_and_type_index

C_InterfaceMethodref
ul tag (11)

CP class_index

CP name_and_type_index

C_NameAndType
ul tag (12)

CP name_index

CP descriptor_index

Access flags
This class

Interfaces

Super classss
Interfaces count

field_info

u2 access_flags

CP name_index

CP descriptor_index

u2 attributes_count
attributes_info att?{)utes[1

T

ConstantValue_attribute

CP attribute_name_index
u4 attribute_length
CP constantvalue_index

Fields count

Field Info
Methods count
Method info

LineNumberTable
(debug info)

method_info

u2 access_flags

CP name_index

CP descriptor_index
u2 attributes_count

attributes_info attribl}%s[1

Attributes count
Attributes

SourceFile_attribute

CP attribute_name_index
u4 attribute_length
CP sourcefile_index

/\

Code_attribute

CP attribute_name_index

u4 attribute_length

u2 max_stack

u2 max_locals

u4 code_length

ul code []

u2 exception_table_length
exception_table []

u2 attributes_count

attribute_info attriﬂltes [

T

LocalVariableTable
(debug info)

Exceptions_attribute

CP attribute_name_index

u4 attribute_length

u2 number_of_exceptions
CP exception_index_table []

Exception_table entry

u2 start_pc
u2 end_pc
u2 handler_pc
CP catch_type

Figure 2.5: Java class file structure

Chapter 3

APZ 212 Description

3.1 Overview

This chapter describes the target system of this study, the data processing system APZ 212.
After an introductory section which provides a context to the later sections, the part of
most concern for this study, the Central Processor System is presented. First, a description
of the logical structure is given followed by an overview of the hardware system. Finally,
the instruction processing unit with its registers and instruction set is discussed.

Since this chapter contains many new terms which stem from Ericsson terminology,
relevant terms are italiziced the first time they are used to show that they are previously

not discussed.

3.2 Introduction

The APZ 212 system is the controlling part of some telecommunication switches man-
ufactured by Ericsson. Since the APZ 212 is designed for this specific application, its
architecture has by necessity to reflect the demands made on the system by the appli-

cation. This leads to an architecture that has some differences compared to a generic

31

32 CHAPTER 3. APZ 212 DESCRIPTION

microprocessor-based system.

A switch in a telephone network typically needs to perform many similar time-constrained
tasks in parallel with high reliability. An example would be a Central Subscriber Stage(CSS)
which must handle a large number of uncomplicated subscriber operations. In order to ef-
ficiently perform multiple tasks, the switch is constructed with a regional processor system
(RPS) containing many regional processors (RP) which can handle routine tasks. More
complicated tasks are performed by the central processor system (CPS). Since the regional
processors are specialized in performing switch-related operations, they cannot be used
efficiently for performing general program operations. This makes the regional processors
unsuitable as a target for use by the Java execution system. The regional processor system
is hence not examined further in this chapter.

The regional processors communicate with the central processor via signals, a central
concept in the software structure that will be presented in section 3.3.3. The concept of
signals has no connection to analog signals or DSP!, it is more akin to the concept of
messages in the object oriented world.

As shown in figure 3.1 the RPB and CPS are duplicated. This is done for reasons of
service reliability, and this parallelism cannot be used for improving performance. Figure

3.1 also shows that the CPS can be divided into the following parts:

e Central processing unit (CPU). The CPU is further subdivided into

— Instruction processor (IPU). The IPU is used for actual instruction execution.

— Signal processor (SPU). The SPU handles job administration such as signal

buffer handling, prioritizing signals and transfer of signals.

e Program storage (PS). The program storage is used to store the program code and
tables related to the distribution of signals. The PS and the DRS will be further

explained in section 3.4.1.

!Digital Signal Processing

3.2. INTRODUCTION 33

Central Processor system (CPS) x2

CPU
Instruction
Processor \
(IPU)
Signal
Processor
(SPU)
RPH Data and
Regional Processor Reference
Handler Program Storage
Storage (DRS)
(PS)
Regional Processor Bus (RPB) x 2
fmmmmm e — e L __ N
| l
I
I Regional Regional :
: Processor Processor I
I
: (RP) (RP) |
I
! I
! I
I
| |
I ‘ :
I Switch : Switch Switch : Switch :
: Hardware Sywitch Hardware Hardware Switch Hardware I
I
| Hardware Hardware |
! I

Regional Processor System (RPS)

Figure 3.1: APZ structure

e Data and reference storage (DRS). This physical store is logically divided into

— Data storage (DS). The DS is used to store data for variable blocks.

— Reference storage (RS). The RS is used to store tables containing information

about the system.

e Regional Processor handler (RPH). The RPH handles the interface to possibly mul-
tiple RP busses.

34 CHAPTER 3. APZ 212 DESCRIPTION

The system is designed so that program blocks as well as data are relocatable at run-time.

No absolute addresses are used, instead all referencing is done by using tables.

3.3 Logical Structure

3.3.1 Program structure

This section presents the software structure of the CPS. The software structure of the
CPS is part of the system hierarchy of the APZ as described section 1 of [8]. The CPS

functionality required by a specific function block is provided by a CP program-unit.

—— |

CP Program unit

I\ 4 N > ~ N
! N
T 1 N
| \
\ ,’ Program Block f t
Incoming (in PS) L]
. vy
Signals .
Outgoing
Signals
File
(in DS) R
N J 7

Figure 3.2: CP-program unit

A CP program-unit contains instructions(one program block) and data(one or more
files). All software in the system is built up around program blocks, self-contained code
parts which have access to their own data only and communicate with each other by means
of signals. Signals are the chief method of inter-block communication and will be further

examined in section 3.3.3. Figure 3.2 illustrates the logical structure of program blocks.

3.3. LOGICAL STRUCTURE 35

3.3.2 Data structure

The data belonging to CP program-unit is organized in one or more files. These files
contain one or more records. Each record contains one or more variables. Each variable
can be indexed, i.e. be an array wvariable and it can be split into several subvariables.
All data is accessed by means of tables, which means that data is relocatable in memory
at run-time. Variables can have a number of different sizes according to table 3.1. The

smaller variables in the table are packed in order to achieve maximum space efficiency.

| Length (in bits) | Abbrev. | Name |
1 B Bit
2 T Bit-pair
4 C Character
8 H Half-word
16 W Word
32 D Double-word
64 Q Four-word
128 O Eight-word

Table 3.1: Variable Sizes

The file is a logical unit, and a file need not be contiguously allocated in memory. A
variable however, is a physical entity and is continually allocated in memory. The address
calculations necessary to obtain the absolute address of a specific instance of a (sub)variable
is performed by hardware (or microcode) and need not concern the programmer. An
example of the above concepts is illustrated in fig 3.3.

Figure 3.3 illustrates a file with p number of records. This implies that there are also
p instances of variables AVAR, BVAR, CVAR and DVAR respectively.

These variables are of different types:
e AVAR is a plain variable.

e BVAR is a composite variable which contains four subvariables. Subvariables can

have the the sizes of 1,2,4,8 or 16 bits. All subvariables in a variable have the same

36 CHAPTER 3. APZ 212 DESCRIPTION

File

Record

AVAR

Plain variable

[]
BVAR @

Variable with subvariables .
in operand

Index register

| | [0 7] 3

Array of variables m variables

Index register

I — ‘ I ‘ --- - -]
DVAR L L o
n variables

Array of variables

in operand
with subvariables P

p records

Figure 3.3: Logical Data Structure

size. The subvariable to be accessed is given as an operand value to the machine

instruction processing the variable.

e CVAR is an array of variables. The indexed variable to be accessed is given by the

index register (IR) in the processor.

e DVAR is an array of composite variables. The IR is used to determine which index
variable and an operand is used to determine which subvariable part of the variable

is to be accessed.

From the above we can draw the conclusion that a maximum of four determinants must

be used to uniquely identify a value in a variable:

3.3. LOGICAL STRUCTURE 37

1. Variable name. Determines which variable to access.

2. Pointer register (PR0O). Determines which instance of the variable (which record) to

aCCess.

3. Index register (IR). Determines which indexed variable to access if the variable is an

array variable.

4. Operand value. An operand value given to the data processing instruction specifies

which subvariable to access if the variable is composite.

3.3.3 Signals

Signals are the means by which program blocks communicate. Signals are sent from one
program block to another, or from one program block to itself. Signals can carry data,
the data is placed in the pointer register (PR0) and signal data registers (DR0-DR23) (see
section 3.5.1 on registers). Signals have a format which specifies how many signal data
registers is used.

When programming, signals are identified with a name, but this is mapped to a number
and this number is then percolated through some tables as will be shown in section 3.4.4.
This is done in order to achieve the same storage independence (re-allocatability) as the
program blocks and data blocks.

There are several types of signals. One type carries information between program
blocks in the central processor (a CP-CP signal). Other signals are concerned with the
flow of information between central processor blocks and regional processor blocks. Since
this study is limited to the central processor, all signals discussed henceforth will refer
to the CP-CP signal type. In addition to the types of signals there are several more

categorizations of signals.

38 CHAPTER 3. APZ 212 DESCRIPTION

Direct and delayed signals

Signals can be either direct or delayed. The delay can be either a fixed time or based on
priorities and is implemented by buffers in the signal processing unit, SPU. Further details
of delays and prioritizing can be found in section 2.3.1 and 3.4 of [8]. Direct signals will
cause execution to continue in the program block that receives the signal. Execution in
the sending block will be frozen until the receiving program block has finished executing.
If execution is to be continued in the sending block, the signal must be sent as a delayed

signal via job buffers in the SPU where it will be subject to prioritizing and delays.

Single and combined signals

A further categorization of signals is into single signals and combined signals:

Single signals are sent to a program block to trigger an activity in that block. A single

signal never returns.

Combined signals can only be direct. They are used when then the receiving program
block function will return some data. The return is performed with what is called a
backwards combined signal and the execution is then continued in the sending block.
The backwards combined signal can carry data just as the forward. Only the block
number and address is stored on the link register stack when a combined signal is
sent, no processor registers are preserved. Combined signals can also be referred to

as being linked.

Unique and multiple signals

Signals can also be either unique or multiple:

Unique signals have only one program block as possible recipient.

3.4. HARDWARE STRUCTURE 39

Multiple signals have many program blocks as possible recipients. Each instance of
a multiple signal can however only be received by a single program block. When
sending a multiple signal, a block reference specifying the receiving program block
is given in a processor register. A multiple signal can also be referred to as being

indirect.

3.4 Hardware structure

This section will discuss the hardware structures and tables related to program blocks,

data blocks and signals. First an overview of the memory layout is presented.

3.4.1 Memory overview

The memory subsystem of the APZ is divided into two physical parts: Program Storage
(PS) and Data and Reference Storage (DRS). The DRS is logically subdivided into Refer-
ence Storage (RS) and Data Storage (DS). The Program storage is partly cached in order to
improve performance. The cache resides in the Program Storage Cache Memory (PSCM).

The memory contents of the different stores can in general be categorized as follows:

e Program Storage
Contains program blocks (i.e. code) both for the Central Processor (CP) and Re-
gional Processors (RP). Also contains two tables for multiple signals (see section

3.4.4) and a transport area used for temporary storage during reallocations.

e Program Storage Cache Memory
Contains frequently accessed CP program blocks. Also contains two tables (GSDT-U
and GSDT-M) used for global signal routing,(see section 3.4.4) and one (RTC) used

to hold a reduced variant of the reference table.

40 CHAPTER 3. APZ 212 DESCRIPTION

e Reference Storage
Contains OS information tables and free address tables for PS, RS and DS. Also
contains various tables used to store information about the program blocks. The
reference storage also contains a transport area used for temporary storage during

reallocations.

e Data Storage
The data storage contains data stored in variable blocks. Also contains a storage

bank area used for dynamic allocation of storage and a transport area.

A graphical example of the memory layout is given in figure 3.5 at the end of this chapter.
Both the PS and DRS are physically 32 bits wide, but addresses in PS program blocks are

counted in 16-bit words from the program block start address.

3.4.2 Program blocks

Program blocks contain the actual code. Program blocks are either stored in the regular
program storage (PS) or in the cached part (PSCM). Only CP program blocks can be
stored in PSCM.

Structure of a program block

A program block consists of the following parts:

Identification word.

Product identity. Max 32 ISO characters used to identify the block.

Signal distribution table (SDT). Maps local signal numbers to an address in the

program code.

Signal sending table (SST). Maps local signal sending pointer to global signal num-
bers. Section 3.4.4 covers signals and the SDT and SST tables.

3.4. HARDWARE STRUCTURE 41

e Program code. The machine code to execute.

e (Correction area. Is used for temporary corrections to the code. Signals may be
redirected to code in the correction area for temporary corrections or testing purposes.

The correction area is optional.

A program block is limited in size to 32768 16-bit words.

Reference table

The reference table is used to keep information about the program blocks. Among the

information stored are:

e Program block name. Stored with max 7 ISO chars.

e Size. The size of the program block.

e Start address. The address at which the program block is stored. A flag indicates
whether it is stored in PS or PSCM.

o Base Address Table start. The location of the Base address table. The base address
table stores information about the variables used by the program block. See next

section.

e The number of different incoming and outgoing signals.

e Various flags and fields used to support tracing.

The first entry in the reference table is used to point to the operating system area in the
reference storage. The reference table can store a maximum of 4096 items, which sets the

maximum number of program blocks to 4095.

42 CHAPTER 3. APZ 212 DESCRIPTION

3.4.3 Variable blocks

Variable blocks are the physical representation of a variable. As shown in section 3.3.2, a
variable can exist in several instances (one per record). Each instance can then be an array
variable. The array variable could be an array of variables split into subvariables.. This

structure is mapped onto the one dimensional memory space used to store the variable in

DS.

Base address table

There is one base address table for each program block. The base address table contains
information about all the variables used by this program block. Each program block can
only locate its own base address table, and thus it can only access its own variables. Among

the information stored in the base address table are:

e Variable length in bits. Possible variable lengths are given in table 3.1.

e Number of indexed variables in an array variable. The number of indexed variables

can be 2™ where n =1...15.

e Number of records in data file. Specifies the number of variable instances. A flag bit

is used to specify that there are multiple instances.
e Start address. Where in DS the variable starts.
e Data file number.

e Variable category. This field is used to store information on which kind of variable

it is and what should happen during restart. The following options are given:

— Bit 0: Dynamic buffer (STATIC)

— Bit 1: Is reloaded during restart with reload (RELOAD)

3.4. HARDWARE STRUCTURE 43

— Bit 2: Cleared during restart (CLEAR)
— Bit 3: Preserved during restart (DUMP)

— Bit 4: Permanent data. Data are not transfered from old to new block during

function transfer. (STATIC)
— Bit 5: Spare

— Bit 6: Register marked. Variable is r-Declared, length 32 bits. (R)

e Various flags and fields used to support tracing and double writing. Double writing
indicates that when writing to a variable, not only the value at the calculated variable
address will be changed, but also a value at an address corresponding to the calculated

address plus a value in a special register. Double writing is used during reallocations.

The first entry in the base address table is used to store the current program block number
and during reallocations. The maximum number of remaining entries in the base address
table is 4095, which is the maximum number of variables per program block. Just as
performance critical program blocks are stored in a cache memory (PSCM), likewise the
base address table for these time critical program blocks are stored in a simplified format

in a separate cache memory (BAS).

Storage Bank

The storage bank is used for dynamic allocation. It comprises of several data files that can
be allocated and deallocated by sending signals to OS function blocks. There is a lack of

background material on this subject.

3.4.4 Signals

This section will describe the way signals are processed and distributed. First the program
block signal tables will be studied. Then the global tables related to signals are presented.

Lastly, the signal distribution for multiple signals are discussed.

44 CHAPTER 3. APZ 212 DESCRIPTION

Signals are the means of interwork between programs. Signals are sent and received
by program blocks and data transfer occurs via the signal data registers. Delayed signals
have the data copied from the registers in order to preserve the data while the signal is
waiting in the buffer. The amount of data transferred in a signal is specified so that only
the necessary registers are copied. Besides the pointer register PR0, 0-8,12,16,20 or 24
signal data registers may be used to hold data when sending a signal.

When discussing the distribution of signals, two terms are useful: local signal number
(LSN) and global signal number (GSN). The LSN is used for identifying an incoming
signal within a program block. The GSN is a globally unique number that identifies a

signal outside the program block.
Program block signal tables

The program block has two signal tables:

Signal Distribution table (SDT): used to map a LSN to a code address in the codespace

of the program block.
Signal Sending table (SST): used to map the signal sending pointer (SSP) to a global
signal number (GSN). The SSP is given as an operand to a signal sending instruction.
Global signal tables

The system has two global signal distribution tables. The global signal distribution tables

are:

GSDT-U. Global Signal Distribution Table for Unique signals. Unique signals only have
one possible recipient block and this table maps an incoming GSN to a block number

and a LSN.

GSDT-M. Global Signal Distribution Table for Multiple signals. Multiple signals have

several possible recipient blocks and this table maps a hash index to a block number

3.4. HARDWARE STRUCTURE 45

and a LSN. The hash index is constructed by applying the hash function: receiving
block number XOR GSN.

Multiple signals collision tables

When using the GSDT-M two different signals may result in the same hash index when
the hash function is applied. To solve this, two tables are used. The Collision table start
address table (CTSAT) is indexed by the hash index and points to the start of collision list
in the collision table. The collision list is searched for the corresponding receiving program

block number and the LSN is then retrieved from the list.

46 CHAPTER 3. APZ 212 DESCRIPTION

Signal Distribution example

Program Storage (PS)

CP Program Block > CTSAT
Product information ‘\
(Id. word + max 32 chars for name) \
\
3 Flags, Start address, GSN \ > Collision Table
SDT 2 Flags, Start address, GSN “
1 Flags, Start address, GSN ‘\
PSA) 0 Instruction set version \
1 Flags, GSN
SST
2 Flags, GSN
3 Flags, GSN > CP Program Block
/
Code /
| ! i
I I /
| | !
! b > CP Program Block
\Other CP & RP Prog. Blocks)
@: and other PS areas :
éspr-u - N PS
GSN > RTC PSCM
N
0 BN-R(Block nr recv) | LSN (Local sign. nr) AN
1 BN-R(Block nr recv) | LSN (Local sign. nr) > GSDT-U
2 BN-R(Block nr recv) | LSN (Local sign. nr) /
" > GSDT-M
3 BN-R(Block nr recv) | LSN (Local sign. nr) |
l
I
4 BN-R(Block nr recv) | LSN (Local sign. nr) "
I I
1
| | ! : :
| | ! | |
| | ! .
1
65535 by

Figure 3.4: Signal Distribution example

Example of unique signal

1. An ssl instruction in the code sends a unique, linked and direct signal. The operand
sig2 gives a signal sending pointer (SSP) which points to an entry in the signal sending

table (SST).

2. The signal Global Signal Number (GSN) is fetched from the SST and used to access

3.5.

INSTRUCTION PROCESSOR (IPU) 47

an entry in the Global Signal Distribution Table for unique signals (GSDT-U).

. From the GSDT-U a block number and a local signal number(LSN) is fetched.

. The block number is used to find the receiving program blocks start address in the

reference table cache (RTC).

. The program block start address from the RTC and the Local signal number from

the GSDT-U is used to find the correct entry in the signal distribution table(SDT)

of the program block.

. The SDT entry holds an code offset from the start of the block. Transfer of execution

is made to this code, which is the code which is to respond to this signal.

3.5 Instruction processor (IPU)

3.5.1 Registers

The processor has the following registers:

Index register (IR). Selects which variable in an array variable is to be accessed.
Pointer register (PR0O). Selects which record is to be used when accessing variables.
Extra pointer register (PR1).

Comparison register (CR). Used by comparing instructions (conditional jumps).
Signal transmission register 1 (SR1).

Signal transmission register 2 (SR2).

Signal data registers (DR0-DR23). Used for data transfer in signals.

48 CHAPTER 3. APZ 212 DESCRIPTION

e Arithmetic registers (AR0O-AR3). Used for arithmetic operations.

e Other process registers (WR0-WR29). General use registers.

These 64 registers are 32 bits wide for the APZ system studied (APZ212). Numeric values
are stored in an unsigned format.

There are 24 registers(DR0-DR23) which can be used to transport information in sig-
nals. The pointer register also retains its data, the other registers are not guaranteed to

hold their value when the signal reaches its destination.

3.5.2 Instruction Set

The instruction set of the APZ is adapted to its specific architecture. Instructions for
dealing with the unusual data structure is provided for example. This section is based on
the information in [3]. Below is a functional grouping of the assembler instruction with

some comments:

1. Reading and writing from/to store.
These instructions support the data structure that the APZ uses. For example,
instructions for reading a variable instance from an array variable in a specified
record are provided. Some of these instructions provide transfer of more than one

value.

2. Register instructions.
These instructions are used for moving data between registers and for loading con-

stant values to registers.

3. Arithmetic instructions
Addition, subtraction, multiplication and division instructions are available. Addi-

tion and subtraction can be performed register to register, constant to register or

3.5. INSTRUCTION PROCESSOR (IPU) 49

constant to store. Multiplication and division can only be performed register to

register.

4. Logical instructions

These instructions are used for shifts, rotations, logical and, or, xor functions.

5. Local control transfer
Unconditional jumps, subroutine(linked) jumps and conditional jumps are provided.
Also zero-start indexed table jump instructions are available with both a register or

a stored variable used as index value.

6. Signal transmission instructions
Several signal sending instructions exist although many are not relevant for this
study; the signals that deal with regional processors and time queues for example.
The signal sending instructions of most interest are the linked, which store the calling
block and a return address on a link register stack. The end of program instruction

is used to return to the return address of the calling block.

7. Search instructions
These instructions search for set bits in a register or for a value in a variable which

exists in several instances. A string comparison instruction is also present.

8. OS-instructions
Many OS instructions exist. These are instructions for handling the system tables,

direct writing/reading in stores and other system functions.

9. Macro instructions
This instruction category represents instructions that are made available by the as-
sembler, and the instructions in this category range from simple aliases for other in-
structions, label defining instructions which generate no code, to instructions which

extract information from system tables.

20 CHAPTER 3. APZ 212 DESCRIPTION

3.6 Summary

After an introduction describing the distributed nature of a telecommunications switch,
this chapter has presented the logical and hardware-level structure of the central proces-
sor system of APZ 212. Logically, programs are divided into a number of program units
which contains both program code (in a program block) and data (in ’files’). The files
can contain several 'records’ which each can contain several variables, arrays of variables
or variables with subvariables. Communication between program blocks is performed by
sending signals, which exists in several variations. On the hardware implementation level,
the Program Storage and the Data and Reference Storage provide storage for program
blocks and files, respectively. Both storages uses a number of tables to provide reallo-
catability and flexibility. The signal sending mechanism, which also is a heavy user of
tables, can transport up to 24 32-bit values in the signal data registers. The assembler
instruction set used for the APZ provides, in addition to standard arithmetic and control
instructions , a number of instructions supporting the hardware features, such as signal

sending instructions.

Program Storage (PS)

CTSAT

Collision Table

CP Program Block
SWITCH1

RP Program Block
REG1

Other CP & RP Prog. Blocks

Free PS Area

Transport Area

RTC

GSDT-U

GSDT-M

Data and Reference Storage (DRS)

JEE—

OS area start address

Reference Table

OS area

Program Clock

RSU Table

Free address table PS

Free address table RS

Free address table DS

SNTT Table

A

Base address table
Block JAVAL1

A

CP Program Block
JAVAL

Other CP Program Blocks

Free PS Area

Program Storage
Cache Memory
(PSCM)

Base address table
Block SWITCH1

Free RS area

Reference
Transport Area Storage
(RS)
L
Variable Block Data
- Storage
DS
Variable Block (DS)
Free DS Area
Variable block
Storage Bank

N:B: No signal sending relations]

are shown.

Transport area

Figure 3.5: Memory Layout

Explanations

CTSAT
Collision Table Start Address Table
Stores start of collision list

Collision Table
Stores collision lists for
for multiple signals

RTC

Reference Table Cache
Shortened cache version of
the Reference table

GSDT-M

Global Signal Distribution Table
for unique signals

maps GSN to BN+LSN

GSDT-U

Global Signal Distribution Table
for multiple signals

maps GSN to BN+LSL

Reference Table

Stores information about

CP program units: name,

program block start,

Base address table(variable table) start
etc.

RSU Table
Regional Software Unit Table
RP equiv. of Reference Table

SNTT
Signal Translation Table
Used for microcode access to signals

Base Address Table

Stores start address of each variable
belonging to a specific CP program unit

Chapter 4

A mapping of the Java Virtual
Machine to APZ 212

This chapter studies the possible mappings from the Java Virtual Machine specification to
the APZ. This chapter is divided into problem subgroups that are discussed individually.

The subgroups are:

1. Execution model.
Possible layouts of the execution system is presented. Whether to use an interpreting

or compiling execution system is discussed.

2. Object handling.
How to implement the structures needed to cater for the object model of Java is

discussed. Specifically the following areas are covered:

(a) Method Inheritance, both for instance and static (class) methods.
(b) Variable Inheritance, both for instance and static (class) variables.
(c) Dynamic Method selection, how to select the correct method based on object

type.

93

o4

CHAPTER 4. A MAPPING OF THE JAVA VIRTUAL MACHINE TO APZ 212

. Memory handling.

How the memory model that is implicit in the Java VM can be mapped on the
APZ’s non-standard memory architecture as well as methods for garbage collection

are discussed.

. Activation records.

Discusses how the functionality of the Java Stacks can be mapped to the APZ where

no stack or heap is present.

. Multithreading.

Covers the implementation of multithreading and the adjacent topic of method syn-
chronization. Also the yielding made necessary by the hardware architecture is dis-

cussed.

. Exception handling.

How to implement the functionality for exception based error handling is discussed.

. Number representation.

Different strategies for adopting the unsigned format of the APZ to the signed format
of the JVM is covered.

. Library support.

What standard Java packages need to be included and how they can map to the APZ

system is discussed.

. Instruction mapping.

The similarities and how to overcome the dissimilarities between the JVM instruction

set and the APZ instruction set is covered.

Some of the above problem subgroups present multiple solutions to a problem. Where

the selection of one solution is not essential for the continued presentation, the selection is

deferred to the next chapter.

4.1. EXECUTION MODEL 95

4.1 Execution model

Since one prime design goal of Java was to achieve portability, Java uses an execution model
based on platform independent bytecodes stored in a classfile as explained in section 2.5.
By basing the APZ’s Java execution system on bytecodes instead of a Java sourcecode

several benefits are gained:
e Ability to use state-of-the-art development tools for producing the bytecodes.
e Enhanced ability to buy components from other vendors.

The bytecodes must by some means be transformed into native instructions for the specific
hardware platform that the Java runtime system run on. This can be done in several
ways, mainly differentiating in the time when the translation from bytecodes to native
instructions occur as illustrated in fig 4.1. Three variants will be discussed in this section
along with the consequences for a possible APZ implementation.

Compile Time Load Time Run Time

Interpretation | Java Compilation } >

Bytecode ! !
|
JIT Bytecode i
o Java Compilation B =C0mpilatiorﬁ Execution of native code
Compilation ytecode !
T
WAT ! Bytecode
Compilation Java Compilation | Compilation K ™1 Execution of native code
| Native code
—
Time

Figure 4.1: Execution models

o6 CHAPTER 4. A MAPPING OF THE JAVA VIRTUAL MACHINE TO APZ 212

4.1.1 Interpretation

The first implementations of a Java runtime system used the interpreting model for execu-
tion of bytecodes. Under this model the program is stored as bytecodes in memory. As the
program executes, the interpreter evaluates the bytecode to be performed and executes the
native instructions specified for the bytecode. This means that every bytecode is evaluated
every time it is to be executed.

Advantages:

e Easy to implement. An implementation based on an interpreter is relatively easy
to construct. This is true on generic platforms that use standard memory access

schemes. As seen below this is not true for the APZ.

e Dynamic loading of classes is possible. Some applications dynamically load classes

at runtime. This is easily accustomed for in an interpreted environment.

e Platform independence. The same bytecode-based software can be executed on any

platform which has a Java execution system.
Disadvantages:

e Speed. The interpreting model is slow since it incurs a large amount of redundancy
in the bytecode to native code translation process. In some applications this is not
critical, but for the applications domain targeted by this study this speed decrease

is clearly unsuitable.

An example of an interpreting execution system is Sun’s JDK 1.1 execution system.

4.1.2 Just In Time (JIT) Compiling

Just in time(JIT) compiling was conceived when the speed of execution for interpretation

based execution systems proved to be inadequate for some applications. The JI'T model

4.1. EXECUTION MODEL o7

uses select compilation just before runtime to improve the performance. As a JIT based
execution system loads an application it compiles some or all classes based on some analysis.
As compilation occurs during load time, JIT compilers typically tries to minimize the time
for compilation resulting in minimal optimizations. Also most kinds of global optimizations
are impossible to perform because of the per-class compilation scheme.

Advantages:

e Faster than interpretation.
e Dynamic loading of classes is possible.

e Platform independence. Since compilation is performed transparently on the local

system, the platform independent bytecodes are still used for distribution.
Disadvantages:

e More complex than an interpreting model. A JIT compiler contains both a compiler

and an interpretator (in most cases).

Examples of JIT compilers can be found in the Java execution systems of Netscape Nav-
igator and Internet Explorer. A possible evolution of JIT compilers is to let them com-

pile/recompile classes as an background process, for example when waiting for user input.

4.1.3 Way Ahead of Time(WAT) Compiling

Way ahead of time (WAT) compiling is similar to the ’ordinary’ concept of compiling.
Current WAT compilers convert Java bytecodes to C language statements which is compiled
to native instructions. The use of C as an intermediate representation is because the
extensive optimizations made possible by modern C compilers. A WAT compiler for the
APZ architecture cannot reap similar benefit because the lack of optimizing C compilers for

the APZ environment, instead a WAT compiler is proposed to generate native instructions

o8 CHAPTER 4. A MAPPING OF THE JAVA VIRTUAL MACHINE TO APZ 212

directly from the bytecodes. It is still possible to perform substantial optimizations if
deemed necessary.

Advantages:

e Speed of execution. No interpretation overhead is present and the level of optimiza-

tion can be adapted to the need of the application.
Disadvantages:

e Dynamic loading of classes is not possible.

e Platform independence is lost to some degree. When using APZ-specific binaries
instead of bytecode ’binaries’ the platform independence is lost. The bytecodes used

to generate the APZ-specific binaries are however still platform independent.

Examples of Java WAT compilers which generate C-code are Toba [22] and Harissa [20].

4.1.4 Recommended execution model

Applications for telecommunication switches typically differs somewhat from regular Java
applications. Software for telecommunication switches does not need to retain platform in-
dependence to the same degree as applications targeted for distribution over a heterogenous
network such as the Internet. Speed is more relevant since telecommunications applica-
tions are in greater need of efficient execution than the normal applications. Using WAT
compilation seems to be the most appropriate execution model since it provides the highest

execution speed and the drawbacks are manageable.

4.2 Object handling

The structures and mechanism used to support the object model of Java as presented in
section A.3.2 is discussed in this section. How to represent objects, implement variable

and method inheritance and the overall runtime framework are covered.

4.2. OBJECT HANDLING 99

4.2.1 Runtime framework

The runtime framework is based around an ezxecutive program block which performs the

bookkeeping related to the execution system. This includes functions for the following:

e Object creation and allocation.
e Garbage collection.
e Dynamic method selection.

e Exception handling.

The detailed functioning of the executive block is explained in the individual sections below.

4.2.2 Object representation

The representation of Java objects in the APZ runtime system are proposed to be as

follows:

e A class corresponds to a function block (i.e. a program block with zero or more

associated files).

e The method code is represented in the program block where each method is executed

by sending a direct, combined(linked) signal.

e Instance variables are stored in a file associated with the program block. If the
number of objects exceed the number of records in the file, a dynamic buffer can be

allocated to the block in order to accommodate more object instances.

e Inheritance of instance variables is achieved by allocating space for the inherited

variables in the subclass.

60 CHAPTER 4. A MAPPING OF THE JAVA VIRTUAL MACHINE TO APZ 212

e Inheritance of class variables is performed by sharing the superclass’ storage location

for the class variable.

e Inheritance of methods is discussed later, see section 4.2.3.

To exemplify the above the following fragment of code is used as an illustration:

class A {
int varAl;
int varB;

static int classvarAi;

int setA (int newA) {
varA=nevA;

return varA;

class B extends A {

int varC;

int setA (int newA) {
varC=varA=newA;

return varC;

The code defines the two classes A and B. Class B inherits the variables varA and varB

from class A. Class B also inherits the method setA, which it however overrides with its

4.2. OBJECT HANDLING 61

own method setA. Both class A and class B have access to the class variable classvarA
which is common to all instances of either class A or class B (or any other subclass of A).
The strategies available to class B for accessing classvarA are discussed in the paragraph

on data sharing in section 4.2.3.

The above Java code is compiled to bytecodes and then a WAT compiler is used to
produce APZ native code. The above code is illustrated in fig 4.2 which shows how the
classes could be represented in memory. The figure shows how class variables are separately

allocated from instance variables.

Program Block

Method Code

Class Variables varB

I [1]

Instance variables

Static allocation Dynamic allocation
[2R ’

oo e \‘
| Program Block :
| Method Code :
! |
|

|
|

|
! |
|

|
|

|
|
| |
\ s N\ N |
: varA :
|

|
: varB |
! |
! |
\ varC |
: & J & J |

|
| Instance variables :
| Static allocation Dynamic allocation !

Figure 4.2: Object representation

62 CHAPTER 4. A MAPPING OF THE JAVA VIRTUAL MACHINE TO APZ 212

Each object is uniquely identified by using 32 bits. The 32 bits are split into two 16
bit areas, with the 16 most significant bits representing the class of the object and the 16
least significant bits representing the instance of the object. This representation allows for

a maximum of 65536 different classes and 65536 instances of objects for each class.

4.2.3 Method inheritance

In order to support method inheritance there must be some mechanism by which either
code or data could be shared between different program blocks. The APZ is designed to
disallow sharing of data between program blocks, so how to implement method inheritance
becomes a problem. The possible strategies to achieve method inheritance can be divided

into two groups:

1. Code copy.
This implies that each inherited method is copied into each subclass program block.
This leads to extensive duplication of code but also leads to immediate access to

inherited variables for the inherited methods.

2. Data sharing.
This implies that inherited variables are operated on by inherited methods that are
physically a part of the program block of the superclass and as such are blocked from
accessing the variables of a subclass program block by the APZ system. Different

schemes exist for achieving the needed data sharing:

(a) Patch in Base Address Table(BAT). This scheme involves sending a reference to
the data that is to be accessed with the call and then manipulating the BAT so
that the program block has access to the data. This however requires hardware

changes to be possible and reduces the system robustness.

(b) Copy the BAT. This scheme copies the BAT entries for the inherited variables

4.2. OBJECT HANDLING 63

so that the superclass also has BAT entries for the the inherited variables in the

subclasses. This needs support by the Operating System function blocks.

(c) By using inspectors. This scheme uses signals to access the inherited variables.
This requires the signal numbers for the signals used to access the variables to
be sent as parameters in addition to the original method calls parameters. This

scheme uses a large amount of signal numbers.

(d) Signal sending without BAT change. This scheme changes the program block
without changing the BAT reference. This means that the inherited method
code in the superclass has access to the inherited variables in the subclass.

Minor hardware changes are required to make this scheme possible.

4.2.4 Dynamic method selection

As shown in section 2.4.4 the Java virtual machine uses virtual methods to dynamically
call the correct method based on the type of the object making the call. Since each object
is identified with 16 bits representing the class of the object and 16 bits representing the
instance of the object, every object reference also holds type information for the object.
Dynamic method selection is done by sending a method invocation request signal to the
executive block containing the object reference, method index and method parameters
in addition to the local variables and stackstate which is already present in the signal
dataregisters and which are to be retained in an activation record. The executive block
creates a new activation record and sends a multiple, linked signal indicating the receiving
class by using the object reference class identification part.

Using dynamic method selection is slightly more complex and takes more time than
ordinary static method invocation. One method for minimizing the use of dynamic method
selection is Class Hierarchy Analysis (CHA). Results reported by Muller, et al [20] show
that between 18 to 40 percent of the dynamic method calls could be replaced by static calls
as a result of CHA. A more complete description of CHA can be found in Dean, et al [9].

64 CHAPTER 4. A MAPPING OF THE JAVA VIRTUAL MACHINE TO APZ 212

4.3 Memory handling

The Java virtual machine typically uses a heap to allocate objects, and a garbage collection
routine to reuse memory that becomes unused. The APZ memory structure has no heap,
so the required functionality must be provided by other means. As can be seen in figure
4.2 the objects are allocated in two parts of the memory, one statically allocated in a
file and one dynamically allocated in the storage bank. Each object type must have an
anticipated number of maximum number of concurrently existing objects associated with
it. This number can either be calculated by performing code analysis on the Java code
or by manually providing meta-information about the classes. The exact mechanisms for
this needs to be investigated further to examine to which extent it is possible to by code
analysis generate an estimate of the maximum number of concurrent objects of any given
class. A discussion on meta architecture for Java can be found in Kleinéder, Golm [14].
If the statically allocated object space runs out for an object, it is possible for the
executive block to create a dynamic buffer to hold further instances of the object. This can
be regarded as a ’safety valve’ if the estimation of the maximum number of objects should
prove to be incorrect. Since all allocations are handled by the executive block, continuous
monitoring of the available free store for each class can be performed. Dynamic buffers
can also be used as a mechanism for objects which temporarily exist in large quantities

and where it would be wasteful to statically allocate space for that large number.

4.3.1 Garbage collection

As shown in section 4.2.2, the storage of objects are based on per-class structures and
not a general heap. Many garbage collection algorithms are difficult to implement for this
structure, especially since they cannot have direct access to all memory. Garbage collection
routines are forced to use one or more of the data sharing mechanisms described in section

4.2.3.

4.3. MEMORY HANDLING 65

A thorough investigation of all aspects of using garbage collection on the APZ is out of
the scope of this study and therefore only a basic scheme for handling garbage collection
will be presented. This scheme may have possibilities for execution speed optimizations,
but still has the necessary functionality for use in the particular environment and is suitable

to real-time applications.

4.3.2 Proposed garbage collection scheme

The garbage collection system proposed for the execution system is based on reference
counting. This means that each object instance has an associated value indicating the
number of references to it. Every time a reference to the object is created, i.e. when a
variable is assigned a reference to the object, the reference count is incremented. Con-
versely, when a reference to an object is removed (for example by assigning another value
to a referring variable) the reference count is decremented. When the reference count is
zero any finalizers are run and the object space is inserted into the free list.

The reference counting scheme has advantages:

e Easy to implement. This scheme is relatively easy to implement in the APZ environ-

ment.

e It is incremental. The garbage collection work is interleaved in the normal work of

the executing program.

e Real-time bounds. The execution of this garbage collection can be made to conform

to real-time requirements.
Some disadvantages of reference counting also exist:

e Performance. The total time spent on garbage collection is larger than many other

garbage collection schemes.

66 CHAPTER 4. A MAPPING OF THE JAVA VIRTUAL MACHINE TO APZ 212

e Efficiency. Objects which are referring to each other creates cyclic dependencies.
These cyclic dependencies cannot be identified by reference counting and therefore
two object referring to each other cannot be reclaimed although no other references

to either of them exist.

The performance problem can to some extent be relieved by using deferred reference count-
ing. When using deferred reference counting the transient local variables are handled by
a separate stage, relieving the need of reference increment/decrement each time a local
reference variable is assigned.

The problem of efficiency can be resolved by a using a complimentary garbage collec-
tion routine that can be run in the background. This complementary routine traces the
references of all objects and resets the reference count of all objects it cannot reach.

A good overview of garbage collection issues and a further explanation of reference
counting an tracing is found in Wilson [34]. Discussions of real-time garbage collection can

be found in Armstrong, Virding [2] and Wilson, Johnstone [35].

4.4 Activation records

As shown is section 2.3.1, the Java VM uses what is called Java stacks to store activation
records for each thread. An activation record contains data relating to a specific invocation
of a particular method. The state of a Java stack thus reflects the calling chain that led
to the current method.

An activation record typically contains space for the method’s local variables, some
environment information and an operand stack. The operand stack is used by the stack
oriented bytecode instructions. The proposed implementation of the Java execution system
translates the bytecodes into native instructions before runtime and can at the same time
make a static evaluation of the stack and replace all stack operations with operations on

the signal data registers (DR0-DR23) in the APZ register file. As the maximum stack

4.4. ACTIVATION RECORDS 67

depth for each method is calculated by the Java compiler and stored in the class file (see
section 2.5.4), the required number of registers is known. The need of an operand stack is
hence excluded.

The local variables are also stored in the signal data registers. Since both the operand
stack and local variables are located in the signal data registers, they are retained intact
during a signal sending. This makes it possible for the executive block to store this infor-
mation when it receives a method invocation request signal. The executive block stores
all signal data registers each time it receives a method invocation request. By using this
scheme the sum of local variables, stack depth and method parameters cannot be larger
than 22, which is the number of signal data registers minus the two registers needed for
object reference and global signal number.

The activation records are stored in a file with each thread having it’s own linked list.
Each activation record includes information on which thread it belongs to, the previous
activation record in the thread and the signal register contents. An index to the current
method in each thread are stored in a separate variable. The free entries are also organized
in a linked list with tail of the free list stored in a variable. All linked lists are singly
linked and have insertion and removal done at the tail only, which gives them the logical
function of a stack. This method of handling the activation record is efficient and has a
time complexity of O(1) which makes it well suited for this implementation.

An example of activation records is given in figure 4.3.

Example of activation record handling:

1. Assume that there are two threads that have been running for some time. The

activation record file now has the appearance shown in state 1.

2. Thread 2 is executing and returns from three methods without invocating any new.

Thread 1 then returns from one method leaving the activation record file in state 2.

3. Thread 2 now executes and invokes a method which in turn invokes a new method.

68 CHAPTER 4. A MAPPING OF THE JAVA VIRTUAL MACHINE TO APZ 212

Thread 1 Thread 2

e

FJ

Free List

Thread 1 Thread 2

==

\%T/«\,/\,/\/

Free List

Thread 2 Thread 1

N N N j

T\/ N
Free List

Figure 4.3: Activation records file

Thread 1 then executes and invokes one method leaving the activation record file in

state 3.

4.5 Multithreading

Since all method calls are handled via the executive program block, it is also possible for
the executive block to perform the switching between the different threads. This implies
that change of threads can only be done when a method is called (i.e when a signal is sent)

which maps well to the APZ restriction of not interrupting the execution inside a program

4.6. EXCEPTIONS 69

block.

The executive block can also yield to other programs outside of the Java execution
system by temporarily storing an incoming method invocation request signal and sending
a delayed (buffered) signal to itself. Before the buffered signal is processed, other signals in
the queue are processed. When the buffered signal is received the executive block continues
execution by sending the appropriate signal as specified by the method invocation request
signal.

Methods that have long execution times without any method invocations need to have
buffered signal calls to themselves inserted. This is a prerequisite of the APZ system since
it has no preemptive multitasking. By sending a buffered signal, other tasks in the APZ

job queues can be performed.

4.6 Exceptions

Java exceptions are normally handled by the VM by looking up the the program counter
value where the exception occurred in the exception table. If a handler for the exception
type is found in the exception table, the exception handler begins to execute.

In the APZ environment no access to the program counter is given so some other
mechanism for exception handling has to be devised. A solution based on the following is

proposed:

e The selection of which handler to use is based on an exception state. Every code part
which are covered by an exception handler (i.e. are inside a try statement) has an

exception state.

e When translating the bytecode to native instructions, the exception table is examined
and at each exception handling boundary instructions to change the exception state

are inserted.

70

CHAPTER 4. A MAPPING OF THE JAVA VIRTUAL MACHINE TO APZ 212

e At the translation of bytecodes, an exception table for each method is set up. The

exception table specifies which types of exceptions can be handled at different ex-
ception states, and which signals to send when handling an exception(i.e. which

exception handling code to execute).

When an exception occurs, a signal is sent to the executive block which performs the

exception table searching and invokes the matching exception handler.

Since exception handlers can be nested some mechanism to determine the scope of
exception handlers must be provided. This is done by representing the exception
states with bits in a 32 bit number. The states are thus numbered 2°,2'...23! as they
are found from the beginning of the method. By scanning for the most significant bit
that holds a one, the innermost exception handler is found. If the innermost exception
handler does not handle exceptions of the thrown type, the scanning continues for

the next handler.

If no handler for the thrown exception type is found within the exception table
of the executing method, the calling chain is traversed backwards to the caller of
the current method, and the caller’s exception table is examined for handlers. The
exception state of the caller has been saved in the activation record so the executive

block can search its exception table correctly.

The above proposal has a maximum limit of 32 different exception handlers for each

method. Although no such limitation is present in the Java VM specification the need

of more than 32 different exception handlers in one method is highly unlikely.

4.7 Number representation

The Java VM specification [17] specifies that the VM uses two’s-complement signed inte-

gers. The APZ uses unsigned integers. This creates a problem when doing arithmetic and

4.7. NUMBER REPRESENTATION 71

comparison operations. Three possible solutions are:

1. Disallowing negative numbers.
This is easy since it forces the APZ integer representation onto the Java execution
system. It does however induce an inconsistency in the Java implementation that
could lead to program malfunction if code is executed which is dependent on the

default behavior for negative numbers.

2. Using a sign bit.
By using the most significant bit as an indicator of a positive number the sign of
the value can be represented. This approach allows the full use of negative numbers
with the normal Java semantics even though the internal representation is different
from the representation specified in the Java VM specification. By using the most
significant bit and letting a one signify a positive number the native APZ comparison
operations could be used without any complementing code. Arithmetic operations
would however be significantly complicated since they would need to handle multiple

sign cases and also overflow conditions.

3. Using two’s-complement.
This is a common method to handle representation of negative numbers. When using
this representation the APZ arithmetic instructions used for addition and subtraction
can be directly used. Multiplication an division instructions,as well as comparison

instructions, need to be extended by sign handling code.

The selection of which number representation to use implies a tradeoff involving speed,
reliability and complexity. For the purpose at hand, the most reasonable choice seems to

be to use two’s-complement.

72 CHAPTER 4. A MAPPING OF THE JAVA VIRTUAL MACHINE TO APZ 212

4.8 Library support

This section describes the API packages that are part of a standard Java distribution and
their relevance in the context of application development for the APZ. A good overview of
the API packages can be found in Flanagan [10].

The packages are:

e java.applet. This package contains a class used when implementing an applet (i.e.
an application executable in a browser). This package is irrelevant for APZ applica-

tions.

¢ java.awt & java.awt.image. These packages provide GUI and image manipulation

functionality. These packages are irrelevant.

e java.io. This package provides I/O functionality. Depending on the application this
package could be useful. Implementing this package requires mapping of the native

methods to the APZ functions for 1/0.

e java.lang. This package contains many classes that are central to Java usability and
most are required in order to make a viable Java execution environment. Some of

these classes are:

— java.lang.Object This is the root class in Java. All classes are subclasses of

this class.

— java.lang.System. This class provides methods that interface to system func-

tions.

— Wrapper classes for primitive types. Makes it possible to handle primitive values

as objects.

e java.net. This package interfaces to TCP/IP network libraries. Unless the APZ is
to have any direct connectivity with TCP/IP this package can be ignored.

4.9. INSTRUCTION MAPPING 73

e java.util. This package is a utility package containing several useful classes such as
Hashtable, Date and Random. These classes should be implemented as the provide

functionality used by other packages.

4.9 Instruction Mapping

This section discusses how the instruction set of the Java VM can be mapped to the
instruction set of the APZ. The categorization used here is the same as the one used in
section 2.4 where the JVM instruction set is presented. The instruction set of the APZ is
presented in section 3.5.2.

The instructions groups are presented with an explanation on what their function are

in the JVM and how this functionality is achieved with APZ instructions.

1. Push constant
JVM: Instructions that push constant values onto the operand stack.

APZ: Load the value into the corresponding register.

2. Load/Store from/to local variable
JVM: Instructions that move values to/from local variables to/from local variables.
APZ: Move to/from register representing local variable from/to register representing

the stack.

3. Stack management
JVM: Instructions that manipulate the stack, copying, moving or removing values
on the stack.

APZ: Manipulation of registers representing the stack.

4. Arithmetic
JVM: Instructions that perform the common arithmetic functions (+, -, *, /, mod,

negate) on int, long, float and double respectively.

74

CHAPTER 4. A MAPPING OF THE JAVA VIRTUAL MACHINE TO APZ 212

10.

APZ: Support for arithmetic operations on int only. Negative number representation

differs, see 4.7.

Logical
JVM: Instructions that perform shifts, logical and, or, xor functions on int and long.

APZ: Corresponding functions exist for int.

. Type conversion

JVM: Instructions that convert between int, long, float and double.

APZ: No conversion needed, only int type available.

Control transfer and compare
JVM: Instructions that perform unconditional or conditional jumps.

APZ: Required compares can easily be constructed.

. Table jumping

JVM: Instructions lookupswitch and tableswitch provide for a comparison of a key
value against a set of match values and jump if a match is found.
APZ: The instruction lookupswitch can be transformed to a native table jump in-

struction, tableswitch has to be constructed by performing multiple comparisons.

. Array management

JVM: Instructions for allocating, storing and retrieval of arrays. Array instructions
support the byte, short, char, int, long, float, double and objectref types.

APZ: Array management are provided by sending signals to the executive block.

Object related
JVM: These instructions handle different aspects of object operations.

APZ: All these instructions are transformed to suit the object handling model of the
APZ. See section 4.2.

4.10. SUMMARY 75

11. Monitors and Exception handling
JVM: Instructions monitorenter and monitorexit provide locking for synchronization.
Instruction athrow throws an exception.
APZ: Synchronization is provided by the executive block which handles all method

invocations. An exception is dealt with according to section 4.6.

4.10 Summary

This chapter has proposed Way ahead of time compilation as being the most appropriate
execution model. Object handling is proposed to be performed by a runtime framework
whose principal component is an executive program block that performs functions such
as object creation, dynamic method selection, exception handling and garbage collection.
A combination of statically and dynamically allocated memory are suggested for object
storage, supervised by the executive program block. Activation records are stored in single
linked lists in a file. The task switching needed to support multithreading can be obtained
by sending buffered signals since the hardware lacks any pre-emption. The problem posed
by the difference in number representation between the JVM and the APZ was discussed.
An instruction set mapping between the JVM and the APZ assembler instructions were

provided, and no overwhelming difficulties in performing the mapping was found.

Chapter 5

Conclusions

5.1 What has been done?

This work examined the feasibility of implementing a Java execution system on a non-
generic platform, in this case the APZ 212. The Java Virtual Machine was presented in
chapter 2 and the APZ 212 in chapter 3. The information in these chapters was synthezied
into chapter 4 which presented several possible alternatives for method inheritance, number
representation and execution model. Chapter 4 also presented the mechanisms developed
for handling object representation, dynamic method selection, memory handling, activation
records, multithreading and exceptions for a Java execution system implementation on the
APZ. An overview of the library support and instruction mapping was also given. A large
fraction of the work needed to complete this work was collecting, reading and re-reading
the source material, which was typically lacking the structure needed to penetrate this

somewhat complex subject.

7

78 CHAPTER 5. CONCLUSIONS

5.2 Results

This section presents answers to the research questions as summarized below and gives an

overview of the details of the implementation proposed in chapter 4.

5.2.1 Research questions

Question 1

Is it possible to implement a practically useful Java environment for a non-
generic hardware platform which has a hardware architecture that is markedly

different from the hardware architecture the Java VM was targeted for?

Answer 1
This work shows that no insurmountable difficulties exist for implementing a practically

useful Java execution environment for the APZ 212 platform, but there are difficulties.

Question 2

If so, what are the problems/possibilities inherent in the mapping of the
execution model of Java to the specifics of the hardware platform, and what

implementation strateqy s best suited to make mazrimum use of the hardware.

Answer 2

1. Problems/Possibilities

(a) Problems.
Problems arise in the areas where the architectural discrepancies are the greatest

between the platform upon which the Java VM was designed to run and the

APZ 212. These are:

5.2. RESULTS 79

i.

ii.

Memory handling.

The memory handling of the APZ is markedly different from the generic
computer platform upon which the JVM was designed to be run. The APZ
physically separates code and data, and by default disallows any sharing of
data between different program blocks.

Negative number representation.

The JVM is specified to use signed integers, and the APZ is based on
unsigned integers. This problem and possible solutions are discussed in

section 4.7.

(b) Possibilities.

The APZ architecture also has some features that can be used to effectively

implement some functionality needed for the JVM. These are:

i.

ii.

Signal sending
Signal sending is a fast hardware assisted mechanism which allows for ex-

ample, non-complex method invocations to be performed quickly.

Powerful addressing modes.
The composite data structures used for storing data are directly accessible

with APZ instructions.

2. Implementation strategy

The implementation strategy found to be best suited for the implementation of a Java

execution system on the APZ 212 is Way Ahead Compiling (WAT) of the bytecodes,

i.e. the translation of bytecodes to native instructions is performed before runtime

and outside of the APZ system. The proposed implementation also entails the use of

an executive program block to perform the services that requires special treatment

due to the architecture specific constraints of the APZ. The executive program block

thus creates a degree of abstraction used to lessen the architectural differences.

80 CHAPTER 5. CONCLUSIONS

Question 3

How is the execution performance of Java programs affected by the above
factors and what is the level of performance to be expected in comparison with

stmilar implementations using other hardware architectures.

Answer 3
Since no actual implementation of a Java execution system has been performed on the
APZ, no empirical results exist. However, some assumptions can be made about the per-
formance. The factors that affect performance are listed below and their influence relative
to an interpreted implementation on a generic platform is discussed. Such a generic im-

plementation can for example be Sun’s JDK on a PC.

Positive:

e The bytecodes are compiled, not interpreted. This yields a significant speed advan-

tage.

e Some functions such as method invocations should be faster due to the effective

implementations of signal sending in the APZ.

Negative:

e Some variable accesses may require signal sending due to the memory protection of

the APZ.

e The proposed garbage collection algorithm is slower than some of the algorithms

available on machines with generic memory systems.

5.2. RESULTS 81

How these factors distribute is varied depending on the characteristics of the application
being run. It is impossible to make a precise estimate of how the execution speed is affected
by the above factors. However it is likely that it will be within an order of magnitude
relative to a generic computer platform with a similar (WAT) execution system and with
similar hardware performance. The implications of the architectural differences are hard
to ascertain, but probably the restrictions set up by the memory handling of the APZ has

enough negative side-effects as to result in an overall slower system.

5.2.2 Proposed implementation

This section presents an overview of the proposed implementation of a Java execution
system. A more detailed description of the different issues are found in chapter 4.

The proposed implementation is as follows:

e The execution model is based on Way Ahead Compiling (WAT) of the bytecodes, i.e.
the translation of bytecodes to native instructions is performed before runtime and
outside of the APZ system. The main advantage of this model besides speed is that
it is suited to the architecture of the APZ in that the translation and optimization of

bytecodes are done outside of the APZ, in an environment better suited to perform

such work than the APZ.

e An executive program block performs the runtime functions of the execution systems.

This includes:

— Memory management task such as object allocation and garbage collection.

— Method invocation. Both dynamic and static method invocation and the asso-
ciated processing of activation records.

— Exception handling. Finding the correct handler for an exception is done

by searching the exceptions tables and, if necessary, unwinding the activation

records on the call stack of the affected thread.

82 CHAPTER 5. CONCLUSIONS

— Thread switching. This is done by inserting buffered signals between method

invocations or inside lengthy methods.

e (Classes are represented as program blocks with object instances stored in a variable
file associated to the program block. The variable file is statically sized and a dynamic
buffer in the storage area is used in case the number of objects exceeds the size of

the static allocation.

e The implementation is dependent on some type of data sharing mechanism to be
present. Several mechanisms are presented in section 4.2.3, and the selection of
which to use is dependent on decisions outside of the scope of this study, primarily to
which degree the APZ are allowed to change in order to accommodate the required
data sharing. Mechanisms are proposed that require hardware changes, software

changes and no changes to the APZ.

e The Java virtual machine is specified to operate on signed integers whereas the APZ
is based on unsigned integers only. Three possible solutions are discussed in section
4.7. The proposed solution is to use two’s complement to represent negative numbers.
This requires multiplication, division and comparison instructions of the APZ to be

embedded with additional sign handling code.

5.3 Conclusions

It is possible to implement a Java execution system on a non-generic architecture such as
the APZ 212 platform. The main problems are related to the memory architecture and
the use of unsigned numbers in the APZ. The problems related to memory architecture
has several possible solutions, differentiating in the degree of change induced to the APZ

212. The problem of unsigned numbers also have several possible solutions.

5.4. RELATED WORK 83

5.4 Related work

Many implementations of Java execution systems exist, but no known implementation for
a machine similar to the APZ is known to exist. There are however some WAT based
execution systems in development for generic platforms. These are Harissa [20], developed
at University of Rennes, and Toba [22], developed at University of Arizona. Harissa in-
cludes a bytecode interpreter in the runtime library, which enables it to dynamically load
classes. Toba has no such ability, but are able to handle threads, which Harissa can not.
They both have techniques that are applicable to a Java execution system implementation
on the APZ. Examples of useful techniques are static stack evaluation and class hierarchy

analysis.

5.5 Further research

This study proposes an overall framework for the implementation of a Java execution
environment for the APZ. Several areas needs to be investigated in further detail in order

to achieve a optimum implementation. These areas are:

e Garbage collection (section 4.3.1). The implementation details of the reference count-

ing mechanism needs to be further examined.

e Object dynamics (section 4.2.2). The possibility of determining the maximum num-
ber of concurrent objects for all classes needs to be investigated. Algorithms for
examining the bytecode needs to be developed and possibly a meta-notation for

specification by the programmer needs to be created.

e Task switching (section 4.5). The mechanisms of inserting buffered signals into

lengthy methods with few method invocations need to be further examined.

84 CHAPTER 5. CONCLUSIONS

5.6 Future work

Future work to be made on this subject would, besides the above mentioned, include:

1. Construction of a class file loader and analyzer.
2. Designing and writing the executive program block, probably in ASA assembler code.

3. Adding a bytecode compiler to the class file loader & analyzer which is capable of

interfacing to the constructed executive program block.

References

[1] ANUFF, E.; Java Sourcebook; John Wiley & Sons; New York; 1996.

[2] ARMSTRONG, J., VIRDING., R.; One Pass Real-Time Generational Mark-Sweep

Garbage Collection, Ellemtel Telecommunications System Laboratories

[3] ASA210C, Assembler Instruction Summary, Internal Document, Ericsson, 11/1551-
ANZ 211 51 Uen. 1993.

[4] Bank, D.; The Java Saga, Hotwired, Issue 3.12, December 1995.

http://www.hotwired.com/wired /3.12 /features/java.saga.html
[6] CAsE, B.; Implementing the Java Virtual Machine, Microprocessor Report, Nr 4 1996.

[6] CASE, B.; Java Virtual Machine Should Stay Virtual, Microprocessor Report, Nr 5
1996.

[7] CHRISTENSON, B., MITCHELL, J. D.; That First Gulp of Java, Linuz Journal, Octo-

ber 1996, pg 17-19
[8] CPS Priciples, Internal Document, Ericsson, 2/1551-ANZ 211 60 Uen. 1995.

9] DEAN, J., GroOVE, D., CHAMBERS, C.; Optimization of object-
oriented programs using static class hierarchy analysis. In Proceed-
ings of ECOOP °95, Aarhus, Denmark, August 1995. Springer-Verlag.
http://www.cs.washington.edu/research /projects/cecil/www/Papers /hierarchy.html

85

86 REFERENCES

[10] FLANAGAN, D.; Java in a Nutshell; O’Reilly & Associates, Sebastopol, Calif. 1996.

[11] GosuiNg, J., Joy, B., STEELE, G.; The Java Language Specification; Addison-
Wesley, Reading; Mass. 1996.

[12] GosLiNG, J., McGiuton, H., The Java Language Environment - A
White Paper, Sun Microsystems Computer Company, Mountain View CA, 1996.
http://java.sun.com/doc/white_papers.html

[13] Inside the Java Virtual Machine, Uniz Review, January 1997.

[14] KLEINODER, J., GoLM, M.; MetaJava: An efficient Run-Time Meta Architecture

for Java. Proceedings of the International Workshop on Object Orientation in Operatin

Systems - IWOQOOS ’96, Seattle, IEEE, 1996

[15] KRAMER, D.; The Java Platform - A White Paper, JavaSoft, Mountain View CA,
1996. http: //java.sun.com/doc/white_papers.html

[16] LENTCZNER, M.; Java’s Virtual world, Microprocessor Report, Nr 4 1996.

[17] LinpHOLM, T., YELLIN, F.; The Java Virtual Machine; Addison-Wesley, Reading;
Mass, 1996.

[18] McMaANis, C.; The basics of Java class loaders, Java World Magazine, October 1996.
http://www.javaworld.com /javaworld /jw-10-1996 /jw-10-indepth.html

[19] McMaAnNts, C.; Not using garbage collection; Minimize heap thras-
ing in your Java programs, Java World Magazine, September 1996.

http://www.javaworld.com /javaworld /jw-09-1996 /jw-09-indepth.html

[20] MULLER, G., MOURA B., BELLARD F., CoNsEL C.; Harissa: a Flexible and Effi-
cient Java Environment Mixing Bytecode and Compiled Code, Technical Report, IRISA
/ INRIA - University of Rennes, http://www.irisa.fr/compose/harissa/harissa.html

REFERENCES 87

[21] NIEMEYER, P., PECK, J.; Ezploring Java; O’Reilly & Associates, Sebastopol, Calif.
1996.

[22] PROEBSTING T. A., TOWNSEND, G., BRIDGES, P., HArRTMAN, J. H., NEW-
sHAM, N., WATTERSON, S. A.; Toba: Java For Applications - A Way Ahead
of Time (WAT) Compiler. Technical Report TR97-01, University of Arizona, 1997,

http://www.cs.arizona.edu/sumatra/toba

[23] VENNERS, B.; Under The Hood: The lean, mean virtual machine, JavaWorld Maga-
zine, June 1996. http://www.javaworld.com/javaworld /jw-06-1996 /jw-06-vm.html

[24] VENNERS, B.; Under The Hood: The Java class file lifestyle, JavaWorld Magazine,
July 1996. http://www.javaworld.com/javaworld /jw-07-1996 /jw-07-classfile.html

[25] VENNERS, B.; Under The Hood: Java’s garbage collected heap, Java World Magazine,
August 1996. http://www.javaworld.com/ javaworld /jw-08-1996/jw-08-gc.html

[26] VENNERS, B.; Under The Hood: Bytecode basics, JavaWorld Magazine, September
1996. http://www.javaworld.com /javaworld /jw-09-1996 /jw-09-bytecodes.html

[27] VENNERS, B.; Under The Hood: Floating-point arithmetic, JavaWorld Magazine,
October 1996. http://www.javaworld.com/javaworld /jw-10-1996 /jw-10-hood.html

[28] VENNERS, B.; Under The Hood: Logic an integer arithmetic, Java World Magazine,
November 1996. http://www.javaworld.com/javaworld /jw-11-1996 /jw-11-hood.html

[29] VENNERS, B.; Under The Hood: Objects and arrays, Java World Magazine, December
1996. http://www.javaworld.com /javaworld /jw-12-1996 /jw-12-hood.html

[30] VENNERS, B.; Under The Hood: How the virtual machine handles exceptions, Java-
World Magazine, January 1997. http://www.javaworld.com/ javaworld/jw-01-1997 /jw-
01-hood.html

88 REFERENCES

[31] VENNERS, B.; Under The Hood: Try-finally clauses defined and demonstrated,
JavaWorld Magazine, September 1996. http:// www.javaworld.com/javaworld /jw-02-
1996 /jw-02-hood.html

[32] VENNERS, B.; Under The Hood: Control flow, JavaWorld Magazine, March 1997.
http://www.javaworld.com/javaworld /jw-03-1997 /jw-03-hood.html

[33] WAYNER, P.; Sun Gambles on Java Chips, BYTE, November 1996

[34] WiLsoN, P. R.; Uniprocessor garbage collection Techniques, In Beckers, Y., Cohen,
J., editors, International Workshop on Memory Mangement, number 637 in Lecture
Notes in Computer Science, pages 1-42, St. Malo, France, September 1992, Springer-
Verlag.

[35] WiLsoN, P. R., JOHNSTONE, M. S.; Real-Time Non-Copying Garbage Collection.
Position paper ACM OOPSLA Workshop on Memory Management and Garbage Col-
lection, 1993.

[36] YELLIN, F.; The Java Native Code API, JavaSoft, Mountain View CA, 1996.
http://java.sun.com/doc/jit_interface.html

[37] YELLIN, F., LinpHOLM T Java Runtime Internals, Slides
from a lecture at JavaOne Developers Conference, 1996,

http://www.javasoft.com/javaone/javaone96 /pres/Runtime.pdf

Appendix A

Background on Java

A.1 Introduction

This appendix presents an overview of the Java language. In order to understand the
rationale of the language design, this appendix begins with a brief historical background of
the development that was to lead to the Java language. The key concepts of the language
is then discussed in order to give a feel for the language characteristics. More information

on the history of Java is available in Bank [4].

A.2 History of Java

The history of Java began in 1991 with a programming language called Oak. This was
a programming language originally designed to offer control interfaces for consumer elec-
tronics. The control interfaces were to be constructed using a device with a touch sensitive
LCD matrix display showing a virtual video player for example. This was part of a project
at Sun which was looking for new applications and to diversify Sun’s business opportu-
nities. In August 1992 a control device programmed using Oak was demonstrated and

Oak was pushed as the programming language for creating user interfaces in devices such

89

90 APPENDIX A. BACKGROUND ON JAVA

as cellular phones, televisions, home and industrial automation systems. After the initial
enthusiasm had died down due to the relatively high cost for the supporting hardware
(chip & display), the project was redefined in 1993 to target on interactive TV. The goal
was to supply set-top boxes, programmed in Oak, which were able to handle the vast flow
of images, data and money transactions predicted to be circulating on the information
super-highway. However, Sun lost the tender for supplying set-top boxes for the large
Time Warner interactive TV trials in Florida that year. This caused the project,which
had up till now supported Oak development, to collapse early 1994. At this time the web
started to explode in use and a Sun co-founder, Bill Joy, saw the potential for Oak on the
Internet and funding continued. Late 1994 an early version of the revised language was
released and in January 1995 it was renamed to Java. After a while Java received a lot
of publicity. Netscape licensed the technology in order to include Java into their browsers
and the Java technology began to catch on...

From the above the design goals that sets Java apart from most other languages can be

derived:

e Programs used to control consumer appliances must be stable. An average consumer
will not accept not being able to use his TV because of a program glitch in the control

device.

e Since Java originally was intended for many different devices Java had to be platform

independent.

e Using Java to control set-top boxes on the information super-highway called for good

networkability and security.

e In order to effectively use the network and use as little bandwidth as possible, Java

should be object oriented to facilitate the distribution of classes to the user.

e In order to make the transition for current C++ programmers to Java as easy as

A3. KEY CONCEPTS IN JAVA 91

possible the syntax and semantics of base language constructs is much the same as

C++.

In essence Java is an object-oriented, distributed, network-aware, portable language in-
tended to simplify both programming for the Internet specifically as well as programming

in general.

A.3 Key concepts in Java

Java bears a resemblance to C++ which is intentional as Java was designed to be easy to
use for programmers who are fluent in C++-. Java is, however, not just “a dialect” of C++
but a totally new language environment and a new concept for distributing applications
over a network. The main points of Java will be discussed in the following chapters on
portability, object-orientation, distribution, performance and safety. Further information

can be obtained from multiple sources such as [1, 7, 10, 12, 15, 21].

A.3.1 Portability

Current languages

In languages such as C, C++ and Pascal' the sourcecode is passed through a compiler which
produces machine code runnable on a specific processor running a specific operating system.
This of course creates a problem when used in an environment where a heterogenous
collection of platforms is used and separate versions of the source code/executable code
must be maintained for every platform on which a program should be able to execute. The
largest collection of interconnected computers is the Internet, and the Internet is a very
heterogenous collection of computers which are unable to share code written for another

platform without conversion.

! Although Pascal implementations based on P-code actually used the concept of a virtual machines
long before Java.

92 APPENDIX A. BACKGROUND ON JAVA

Java compilation

Java differs from most current languages in that the execution of a program written in
Java source code encompasses two steps (compilation and interpretation) instead of one
(compilation or interpretation). This is the key to the solution of the above problem, to
produce programs that do not have to be modified in order to run on different platforms.
This is achieved by using a virtual machine as target for the source code compilation
instead of any particular processor/operating system combination as shown in figure A.1.
Nlustrated by the figure is also the fact that the statement that execution of a Java
source code program encompasses two steps, compilation and interpretation, is not
entirely true. Java Virtual Machine implementations that use a compiling scheme for
converting Java bytecodes into native machine instructions promises a considerable gain

in performance as described in section A.3.5.

The result from a Java source code compilation is called a Java .class file and it contains
program information and Java byte code, which in effect are machine code instructions for

the Java virtual machine.

Java bytecode interpretation

The Java virtual machine, being a part of the Java execution system, is implemented on
each platform that wishes to support Java. The .class file is executed by a platform’s
Java execution system. In this manner all the platform specific knowledge is located deep
inside the Java execution system. The programmer writing in Java does not require to
know anything about the processor, operating system or file system layout on the system
where his program is to be run. This means that the compiled Java programs (.class) can
be distributed and run on every platform that has a Java execution system implemented.
The Java execution system loads the bytecodes and transforms them to machine code

instructions for the host processor. This transformation is made either by interpreting the

A3. KEY CONCEPTS IN JAVA 93

Compile Time Eun Timne

Byte Code
YVerifier

Byte Code E}ﬂ:ﬂ_ Code to
Interpreter [77777777 Mative C ode
: Compiler

| Hardware |

Figure A.1: Flow of Java Source

bytecodes or by compiling them as detailed in section A.3.5.

A.3.2 Object-orientation

Java is intrinsically designed to be an object oriented language. Java supports the key

concepts of the object-oriented paradigm:

e Abstraction - Everything in Java (except primitive types) are seen as objects.
e Encapsulation - Hiding of implementation is done inside of classes.

e Inheritance - New classes can be defined as extensions of existing ones in order to

94 APPENDIX A. BACKGROUND ON JAVA

obtain code re-use and organization into class hierarchies.

e Polymorphism - The same message sent to different classes results in behavior that

is dependent on the receiver’s class.

e Dynamic (late) binding - Dynamic binding in Java provides the ability to send mes-
sages to an object without knowing its specific type at coding time. This provides

for the use of non-local objects.

One point to make that distinguishes Java from C++4 is that Java addresses the fragile
superclass problem (a.k.a the constant recompilations problem). This problems arises as
a consequence of the way C++ is usually implemented with static references to attributes
(variables) and methods inside classes. If an attribute is added to a class it then displaces
the relative location of the following attributes and methods. In order to provide for
this change all classes that reference the class appended to have to be recompiled. This
has proven to be a fault prone system even if a make utility is used to help manage the
dependencies between classes.

Java instead uses symbolic references and resolves the reference once when the classes
are loaded into the Java runtime system. The storage layout of classes in memory is not
decided by the compiler but by the runtime system. This means that classes can grow
incrementally and that adding new attributes and methods to existing classes does not
make them unusable to previous programs. The cost for this is a small time penalty of
a name lookup the first time a name is encountered, but it contributes to make Java a
reliable programming environment.

Another difference is that Java supports only single inheritance between classes in
contrast to C+-+ which also allows multiple inheritance. Multiple inheritance is however a
mechanism that is quite complex and can give complex class hierarchies that are difficult
to understand. Java instead uses the interface construct to provide multiple inheritance

where needed, albeit in a simpler but still powerful way.

A3. KEY CONCEPTS IN JAVA 95

A.3.3 Distribution

Java was originally conceived as a language to be used in a networked environment and
therefore has built in support for networking. Java can even dynamically load supporting
classes to an application over a network at run time. The client/server model is further
enhanced by Java which allows a server to not only supply the data to display, but also
supply a program for displaying the data in the most meaningful way, helping the user to
navigate through the data. The only requirement on the client side is to have a network
connection and a Java execution system. Since large and/or demanding Java applets and
applications can be cached and compiled to achieve a performance thought to be similar to
an ordinary program, the corporate PC networks may in the future change into networks
of cheap, JavaChip(see [6, 33])- based workstations. This could lessen the support costs

and give additional corporate benefits.

A.3.4 Security
Programmer security

Programmer security is defined as the possibility for the programmer to make logical
programming errors, i.e. to produce syntactically correct code that passes through the
compiler without generating any error or warning messages, but still causes the program
to perform in an unwanted way under certain conditions. The number of logical errors
that is possible to produce are partly due to the design of the language. It is very hard
to guarantee the absence of logical errors in a piece of code. Java, being based on C+-+,
has however made some attempts to minimize some of its predecessors sources of logical

errors:

e Pointers have been abolished, this means that it is no longer possible to have seg-

mentation faults produced by incorrect pointers.

96 APPENDIX A. BACKGROUND ON JAVA

e A garbage collection system is used, relieving the programmer from caring about
when to free a particular piece of memory. This means that it is no longer possible
to by mistake free memory that still contains relevant data that is used somewhere

later in the program.
o All references to arrays include bounds checking.

e The source code is made more context-free, i.e. a programmer trying to understand
another programmer’s work does not have to read a collection of header-files, #de-
fines and typedef declarations before he can begin to analyze the actual code. The
preprocessor and header files are removed from Java and the required functionality

is provided by more appropriate means or is present inherently in the language.

e No possibility to mix different programming paradigms. Java forces everything to
be an object, it is not possible to write a standalone function. This is possible in
C++ and is a source for much bewilderment since it allows programs that are a
cocktail of different programming paradigms: the object-oriented, the imperative,
and the functional. In the best case this leads to programs which take the best of

each paradigm, in most cases it probably just leads to confusion.

e Being a strongly typed language, Java compilers have the possibility to perform

extensive compile-time checking.

User security

Java is also designed with user security in mind. Since Java is designed to run programs
that can be downloaded from anywhere on the Internet, the user must be protected against
malicious programs trying to do damage. This is achieved by several means, some of
the most significant being implemented in the bytecode verifier, the class loader and the

networking package.

A3. KEY CONCEPTS IN JAVA 97

Buytecode verifier

The bytecode verifier checks every piece of code that is to be run against illicit behavior

such as:

e Forging references.
e Violation of access restrictions.

e Accessing objects in a way that is non-compliant with their type.

The bytecode verifier also performs checks to ensure program consistency. These checks
include crosschecking type state information and bytecode operator analysis. When the
checks are finished, the program is known to have no operand stack over- or under-flow,
have correct types for all bytecode parameters and to only have legal object field accesses.
Having performed these checks at load time relieves the bytecode interpreter /compiler from

doing any such checks at runtime which will speed up its code execution.

Class loader

An executing Java program can dynamically load a required class, either from the lo-
cal class storage or over a network. The class loader partitions the classes into different
namespaces that are given different privileges. The class loader must guarantee that a class

loaded externally cannot pass as being one of the locally stored trusted classes.

Networking package

The networking package handles all Java accesses using network protocols such as FTP and

98 APPENDIX A. BACKGROUND ON JAVA

HTTP. The networking package is configurable in order to comply with the users safety
requirements. It can be set to disallow all network traffic, allow network access only to the
host that the imported code came from, allow access only outside of a firewall or to allow

all network access.

Another property of Java that renders intentional harmful programming more difficult is
the fact that Java increases the level of abstraction for the programmer. The execution
system hides all low-level detail and the programmer cannot make use of security
deficiencies in an operating system or file system implementation because he has no access
to them (and they may not be present on the users platform). Since Java is designed to
be platform independent, Java programs have no way of using platform-specific security
loop-holes. This said, it can be questioned if present implementations are totally secure.
However, as Java implementations mature they have a increased potential for using the

built-in provisions for security to provide the safest possible applications.

A.3.5 Performance

A Java program is first compiled by the Java sourcecode to bytecode compiler. This is
normally done by the programmer. The bytecode is then distributed by a network or by
other means to the user. The user then runs the bytecodes on his computer using an
implementation of the Java execution system.

The execution system can be implemented either in a browser for running applets in
a browser window, or as a standalone program for running standalone Java applications.
In both cases the runtime system may use either an interpreter or a compiler to transform

the bytecodes to machine code executable by the host processor.

Compiler variants

A3. KEY CONCEPTS IN JAVA 99

There are different approaches to the constructions of native machine code generators for

Java. The below categorization is partly based on Yellin [36].

e Ahead-of-time compilers: A compiler that converts the Java source code into a ”fat”
class file, which contains both the Java byte codes and one or more native machine-
code definitions for some of the methods. This compilation has to be done by the

programmer because it requires access to the Java source code.

e Ahead-of-time recompilers: A compiler that converts the .class file containing the

Java bytecodes to a ”fat” class file as above.

e Just-in-time code generators: A JIT code generator generates native machine code
for methods as they are running on the virtual machine. After the first call to a
method processed in this manner, it will be executed by native machine code instead

of Java byte code being interpreted.

e Flash (downloading) compilers: compilers that converts all bytecodes to native ma-
chine code instructions when they are loaded into the runtime system (either from
local storage or across a network). The main difference between the JIT and a down-
loading compiler is that in a JIT system the virtual machine is still based on an
interpreter, which calls a JIT compiler for the appropriate classes/methods. This
leads to some overhead in the interpreted/ compiled code transitions as well as pre-

venting global code optimization.

e Way ahead of time (WAT) compilers: This term first appears in Proebsting, et al.
[20] and signifies a compiler that processes java class files and produces output in
some intermediate language. Most common are to use C as an intermediate language

as this allows for a high degree of optimization to be done by optimizing C-compilers.

To be noted is that the first and to some extent the second and last approach are con-

tradictory to the Java vision: To create small, portable applications. Depending on the

100 APPENDIX A. BACKGROUND ON JAVA

demand of a particular application the most appropriate method may be chosen, but it
is pointed out in the Java documentation that many applets which serve to enhance the
interactivity are not speed-critical and therefore do not need any kind of compiling scheme.
The question of which technique offers the best balance between speed of execution, time
for start-up and download time is an aspect that differs for different applications/uses of

Java.

