
Department of Computer Science

Johan Jorgensen

Embeddable kernel architectures

Master’s Thesis

Masters Thesis 99:xx

Embeddable kernel architectures

Johan Jorgensen

c© 1999 The author and Karlstad University

This thesis is submitted in partial fulfillment of the requirements

for the Masters degree in Computer Science. All material in this

thesis which is not my own work has been identified and no mate-

rial is included for which a degree has previously been conferred.

Johan Jorgensen

Approved, Date of defense

Opponent: NN

Advisor: Donald F. Ross, Ph.D.

Examiner: NN

iii

Abstract

Put the text of your abstract here

v

Contents

1 Introduction 1

2 Background 3

2.1 Introduction . 3

2.1.1 Classification of computer systems 4

2.2 Operating systems . 8

2.2.1 The purpose of the OS . 9

2.3 Abstraction models . 13

2.3.1 Layers in OSes . 13

2.4 OS-performance issues . 23

2.4.1 Context-switch overhead . 24

2.4.2 Interrupt latency . 25

3 Experiment 29

3.1 Computing platform . 29

3.1.1 Inaccuracies . 31

3.2 Experiment requirements . 31

3.3 The experiment . 32

3.3.1 Software model . 33

3.4 Gathering data . 34

vii

3.4.1 Measurement accuracy . 34

3.4.2 Measurement interpretation . 35

3.4.3 Timing constants . 36

4 Results 39

5 Conclusion 41

References 43

A Experiment documentation and comments 45

B EM340 platform documentation and design notes 47

B.1 Features . 48

B.1.1 Changes needed to VCOS . 48

B.2 Schematics . 51

B.3 PAL code documentation . 52

B.4 PCB layout masks . 53

B.5 Design notes: EM340 platform . 53

C Implementation proposal for an embeddable microkernel 55

viii

List of Figures

2.1 The general principle of memory protection 11

2.2 Typical layers of abstraction in a monolithic OS 13

2.3 Possible task states in embedded and desktop OSes 16

2.4 Schematic figure of device driver tables . 18

2.5 Mapping the system-call-number to the internal function. 20

2.6 Two ways to provide high-level services . 21

2.7 The tunneling effect of SPACE . 23

3.1 Schematic figure of the BSVC-based platform 30

3.2 The two different implementation models used to evaluate system performance 33

B.1 Schematic figure of the EM340 platform 49

ix

List of Tables

xi

Chapter 1

Introduction

1

Chapter 2

Background

2.1 Introduction

Operating systems are computer programs that control the basic functionality of a com-

puter. Operating systems have been used in computers for at least the last 31 years1.

Today operating systems are not only found in traditional computers but in systems where

would be unexpected, namely systems in which the computer is used only for control. This

type of computers are usually referred to as embedded systems. Embedded systems are

becoming increasingly common. A few examples of such systems are:

• The Hewlett Packard Deskjet 610C

• The Minolta DImage 1500EX zoom camera.

• The mars pathfinder (NASA Jet Propulsion Laboratory (JPL)).

All of the above systems use an operating system called VxWorks as the basic control

element of their computers. There is a number of reasons to this development. The most

important ones are:

1One of the first monolithic systems was the “THE” multiprogramming system (see [Dijk 68])

3

4 CHAPTER 2. BACKGROUND

• Economic aspects, especially factors such as:

– Time-to-market

– Development costs

• Systems are becoming increasingly more complex, (re)implementing entire network

stacks etc. would be too time consuming

• Standardized components or subsystems delivered by 3rd party manufacturers. In

the case with the HP printer the CPU is an MC683xx CPU (Off-the-shelf CPU

available from Motorola) and the OS is Wind River Systems VxWorks2.

Many of todays common systems utilize micro controllers and advanced software in order

to interact be able to interact with the outside world in an intelligent manner. The ad-

vent of networking capabilities and even cheaper CPUs will accelerate this process while

interconnecting systems. The use of a high-performance embeddable OS that can easily be

customized to a specific, generic, computing platform will decrease the development time.

Careful design and selection of the hardware/OS combination makes it possible to reuse

the specific combination, thus only the application needs to be modified.

2.1.1 Classification of computer systems

In this text computer systems are divided into two different groups. Depending on how

the computers are used.

Embedded systems A computing platform built into a larger system and used to control

the operation/behavior of that system. These systems ranges from cellular phones

to ICBMs.

2See www.wrs.com

2.1. INTRODUCTION 5

Personal Computers Modern PCs/Workstations, Network servers etc. In general any

computing device used for business, leisure or scientific applications. From now on

referred to simply as “PCs”

The two groups have differences both in architecture and software design. From a

hardware point-of-view the main differences between the two categories are:

• PCs usually have some sort of secondary storage.

• PCs generally have better graphical capabilities than embedded systems

• PCs use dynamic memory (S)DRAM

The real difference however is found on the software side. PCs are usually able to run

more than one program, and to run different programs at different times. For instance it is

possible to play a game or write a letter on the standard PC whereas an aircraft navigation-

system seldom are used for anything else except navigation. Embedded systems run the

same code and that code rarely changes throughout the lifetime of the system.

From a hardware point-of-view the electronic devices are similar as are the technologies.

There is however a great difference on the PC side when it comes to peripherals such as

graphics adaptors etc. This is due to the great variety of systems available on the market.

For instance there are a vast number of companies that supplies different graphics adaptors,

which are more or less incompatible with each other and thus require special device drivers

in order to work with the OS.

Embedded systems

An embedded system (ES) is a part of a larger system in which a computing platform is

used to carry out one or more tasks that are crucial to the operation of the system3. Such

3In this text the term “system” refers to the entire system

6 CHAPTER 2. BACKGROUND

a system might be a car, an aircraft or a CAT-scanner 4. Examples range from microwave

ovens to modern cars which typically employ 50 or more processors to monitor or perform

vital functions.

The general trend today is towards more and more complex systems with networking

capabilities. Secondary storage: such as hard-drives5, and multiple CPUs are also utilized

in some systems depending on complexity.

Embedded systems can be small and simple or large and complex. In any case there

are some fundamental similarities regardless of complexity.

• The Hardware/Software configuration is identical among all instances of a particular

version of a product

• The same software is always executed and is rarely or never updated

• Production volumes can be very high

The next two paragraphs illustrate the differences in complexity that can be found in

embedded systems. One of the most complex systems found on the market to day are Tag

Heuer’s engine-control system used in Formula-1 cars.

Tag Heuer’s on-board computer (OBC) system for F1 engines is a classical example of

an embedded system. This system contains 7 Motorola DSP processors and Ford/Intel

processors. This massive multiprocessor system enables the F1-engines to run at some

18000-20000 RPM which is essentially just on the edge of self destruction, by controlling

the exact time of ignition and the amount of fuel that is to be distributed to each cylin-

der. The system must also compensate for such factors as weight, ambient-air-pressure,

humidity, and temperature. A microwave link is used to transfer data to and from the

4C omputer-Aided Tomography
5For instance in high-speed laser printers

2.1. INTRODUCTION 7

crew in the pit allowing them to analyze the engine’s performance in real-time. It is al-

so possible to reprogram the OBC to, for instance, over-compensate for weather conditions.

Another, not so complex, example of an embedded system is the microwave oven. Most

microwave ovens today have some sort of “sixth sense capabilities”. These ovens are, in

contrast to the Tag Heuer’s computers, manufactured by the thousand. This implies that

the computing platform used to control the microwave oven must be simple and cheap

since it is aimed at private consumers. Making it possible to reuse parts of the software, or

maybe even the entire computing platform will enable manufacturers to get new products

out the door faster, thus decreasing the development costs.

Personal computers

There have been several attempts made to use the traditional PC as an embedded con-

troller. Although the software is relatively easy to port, it does not turn the PC into a

secure embedded or real-time platform for a number of reasons.

• PCs always use dynamic memory. The refresh operation is non-deterministic and

thus makes it impossible to the PC as a hard real-time system.

• PCs are designed using commercial-grade components. This has several negative

side-effects that cannot be ignored:

– Commercial-grade components are more sensitive to variations in temperature

than their industrial and military counterparts.

– Commercial-grade PCBs are not vibration and shock tested as military and

industrial systems are.

– The edge-connectors are particularly sensitive to vibration and humidity

8 CHAPTER 2. BACKGROUND

2.2 Operating systems

There are several different types of operating systems available on the market today. When

most people think about OSes they envision something like Windows, DOS, or maybe a

unix-like system. However there is a class of operating systems that are used in embedded

systems. Any operating system, whether it is aimed at embedded systems or not can be

placed in one or more of the following sub-classes, depending on its design:

• Single-task OS: A single-task operating system only run one task at a time. The

most well-known system is probably DOS

• Multi-tasking OS: A multitasking operating system is capable of dividing the CPU-

time between different tasks. Most modern desktop OSes are multitasking

Embedded systems have additional requirements because they almost always have in-

terfaces to the physical surroundings (the real world).

• Real-time: Real-time capabilities are commonly found in embedded systems while it

is relatively little used in PCs (sound /video) it is common in embedded systems and

primarily involves the issue of time-deterministic behavior

• Reentancy: Desktop systems such as Linux usually cannot be interrupted once it has

started processing a system call i.e. once it has entered the call inside the kernel it

will not return

• Well defined interfaces whose correctness have been proved using a formal method

• Critical error handling. Safety critical systems such as nuclear plants et.c.

Formally verified interfaces, internal as well as at the system-call level are still uncommon.

The idea behind this is to prove that all calls behave according to a formal specification in

2.2. OPERATING SYSTEMS 9

order to minimize errors. As with all formal methods this will only work if the specifica-

tion is correct i.e. it must at least be physically realizable. Correct behavior is crucial in

embedded systems that control vital systems such as nuclear power-plants, life sustaining

equipment used health care, aircraft etc.

2.2.1 The purpose of the OS

The purpose of the operating system is to provide abstractions to the physical system that

makes up the computing platform. The abstraction is in itself desirable because it provides

a “generic CPU”. Apart from providing an abstraction to the CPU, the OS also provides

the following functionality:

• Resource-sharing and -allocation - the OS enables applications to share resources

among each other

• Protection - the OS provides some level of protection against malicious operations

• Abstraction - At the highest level, provides the application programmer with a set

of services

Protection mechanisms

The CPU based protection mechanisms limit access to various resources such as memo-

ry and I/O ports. Almost every modern CPU provides at least two privilege levels, user

and supervisor level. Code executing with user-privileges are not able to access memo-

ry segments that have not been mapped as usable by code running in supervisor mode.

This information is generally stored in registers inside the CPU. Generally the following

information must be stored in order to provide proper protection:

Base address The address where the memory segment begins

10 CHAPTER 2. BACKGROUND

Segment size The size of the segment in bytes

Segment type The type of segment. Generally there are three different types of segments

• Read-only segments. The segment can only be read

• Read-write segments. The segment can be read and written

• Executable. The segment contains code that can be executed

If a process/task tries to perform an illegal operation, such as writing to a read-only seg-

ment, an exception is generated. This exception will switch the CPU to supervisor level

and process the fault, for example by suspending the run-away process and returning all

the reserved resources to the OS-kernel.

Building abstractions around the basic hardware-protection mechanisms provided by

the CPU makes it possible to provide protection against the following types of violations:

• The different tasks are isolated from each other because they cannot access memory

areas used by other tasks

• The kernel data-structures and the kernel code are protected from faulty or malicious

tasks

• The integrity of the I/O subsystems are protected from all tasks. This is important

in order to be able to share resources among tasks

It should be noted however that the tasks running in user-mode are totally unprotected

from any code running in supervisor mode. This means that a faulty kernel is able to

destroy all or some tasks thus stopping the entire system. This makes the correctness

of the OS kernel the most important issue seen from a reliability perspective. The main

reason for this is that code running in supervisor mode (the OS) is able to change the base-

and segment size registers. If the OS were unable to perform this change it would not be

2.2. OPERATING SYSTEMS 11

possible to build multitasking systems since it would be impossible to perform context

switches (switching from one process to another).

Virtual address

0x0000FFFF

0x00000000

0x00000000

0x00000000

0x0000000F

0x00010FFF

0x00001000

0x0000FFFF

0x00001000

0x0001FFFF

0x00030000

0x0004FFFF

0x0001FFFF

0x00030000

Physical address

0x10000000

0x10000000
0x1000000F

Address generator

C
ode-segm

ent
I/O

-segm
ent

D
ata-segm

ent Base

Size

Base

Size

Base

Size
0x0000000F

Figure 2.1: The general principle of memory protection. Each segment is has a base address
and a size. The base address maps the virtual address to the physical address space.

12 CHAPTER 2. BACKGROUND

Abstracting away from hardware

By providing high-level programming primitives the operating system hides the details

of the hardware from the programmer. The OS generally does this through a, for the

OS coherent application programming interface (API), the sys-call-API. The sys-call-API

provides the programmer with a virtual machine that is totally independent of the under-

lying hardware or software layers. The level of abstraction does not say anything about

how the functionality provided by the sys-call-API is implemented, neither is it of any

great importance because the application “sees’ the same sys-call-API regardless of the

OS-implementation.

There are several reasons to do this:

• It enables resources to be shared among different tasks running in user-mode

• It hides the details of the hardware from the application thus providing a virtual

machine allowing any application compiled for the system to run

The second item in the list above is really just an issue in conventional computers since

embedded systems often have identical hardware (For instance: Two microwave ovens of

the same brand and model). The abstractions provided will enable applications to be

ported from one system to another and thus significantly shortens the development cycle.

Managing resources

Protection and Abstraction are vital requirements needed by any operating system in order

to manage resources. The protection mechanisms and abstractions provided by the lower

layers is used by the kernel to maintain the integrity of I/O subsystems. The high-level

system calls provided by the operating system enables the kernel to serialize data to and

from the physical device. Memory is managed much the same way: The OS provides a

single entity.

2.3. ABSTRACTION MODELS 13

2.3 Abstraction models

Basically there are two different versions of abstraction models. The monolithic full-service

kernel that provides a very high level of service and the micro-kernel, or “kernelized struc-

ture”, which hardly provides any service at all. The fundamental difference between the

two different models are that the monolithic kernel is very centralized and has a strong

notion of kernel-space. The micro-kernel or, kernelized structure, offer little more than a

generic interface to the basic operations provided by the CPU. The classic way of increasing

the abstraction level is to use logical layers stacked on top of each other.

2.3.1 Layers in OSes

One of the first layered OSes ever described is the “THE” system described by Dijkstra

in [Dijk 68]. The model is well-known: Layers are placed on top of each other. Commu-

nicating between the layers are done through system calls. The typical layers found in a

monolithic OS is shown in figure 2.2.

task #1
User User

task #2
User
task #3

HAL

Hardware platform

Operating system services

Device drivers Kernel

Hardware

Software

Kernel level

Userlevel

Figure 2.2: Typical layers of abstraction in a monolithic OS

The lowest layer in this model is the hardware platform. The hardware is not covered

14 CHAPTER 2. BACKGROUND

in this text.

The generic CPU - the HAL

The HAL(H ardware Abstraction Layer) implements a virtual CPU. The functionality

placed in this layer are low level operations such as the following:

• Low level I/O operations i.e. functions to read and write one or more bytes from I/O

devices

• Functions to test, set and clear bits in I/O devices

• Low level interrupt and exception management

• Stack management including stack-frames for exception and interrupt processing

• Functions to save and restore the CPU context

• Multiprocessor communication interface (MPCI)

• Synchronization mechanisms such as semaphores, mutexes, and events

This, the lowest level of abstraction, in the software domain will always be CPU- and

platform dependent. The reasons are that different processor architectures are slightly

different. For instance the Motorola MC68xxx architecture does not provide a specific I/O

instruction whereas the i386 related architectures do.

The platform-to-platform differences are dependent on the architecture of the platform

and not the CPU. The reason for this is that the synchronization primitives must be imple-

mented slightly different on multiprocessor platforms than on von-Neumann machines (the

. Dependent on whether the platform is a heterogenous or homogeneous multiprocessor

platform, changes can be required to the MPCI functions as well.

2.3. ABSTRACTION MODELS 15

The kernel and device driver layer

This layer performs two different functions. The part labeled “kernel” provides basic OS

functionality such as:

• task/process management and scheduling

• Interrupt dispatching

• Device-driver interfaces (I/O manager)

Managing and scheduling threads are a complex issue. First and foremost a suitable

scheduling policy must be decided upon. In embedded real-time systems the most fre-

quently used algorithms are earliest deadline first (EDF) and the rate-monotonic schedul-

ing (RMS).

The scheduler uses primitives in the HAL to load and save the CPU context. The scheduler

provides functionality to create,delete, stop and restart tasks. Depending on scheduling

policies a task can be blocked or waiting. Figure 2.3(A) shows the states that an RTEMS

task can be and 2.3(B) shows the states of a Linux-process.

The real difference between the two is that Linux will suspend a task when it enters

the kernel. An RTEMS task on the other hand will execute until its allocated time-quanta

is used up or until a device driver blocks in which case it is marked as blocked.

Interrupt dispatching does not necessarily need to be placed in this layer. It could

also be managed by the HAL. The hardware support for interrupt processing is fairly easy

to abstract in the HAL. It is a little more difficult to implement interrupt priority levels

(IPLs) just above the hardware. The number of hardware IPLs (HIPLs) and the logical

IPLs (LIPLs) as seen by the OS may cause problems across platforms. As long as the

number of LIPLs required are less-than-or-equal to the number of HIPLs provided by the

processor the LIPLs can just be mapped to the HIPLs. Should the number of LIPLs be

greater than the HIPLs the mapping becomes more difficult to implement because the

16 CHAPTER 2. BACKGROUND

Zombie

Blocking
ReadyingYielding

Disp
atch

ing

Deletin
g

Creating

S
tarting

D
eleting

Blocking
BlockedExecuting

Non-existent

Dormant

Ready

Non-existent

Executing

Suspended

Ready

Stopped

Yeilding

Dispatching

S
ig

na
l S

ignal

I/O

C
reating

E
nd

 o
f I

/O

minating
Ter-

(A) (B)
Figure 2.3: (A) The possible states of an RTEMS-task. (B) The possible states of a Linux
process

HIPLs are discrete and atomic i.e. integer values, usually ranging from 0-7.

The conclusion would be that the interrupt dispatcher would be placed in the kernel-

layer for portability reasons, but if the optimization goal is performance (low interrupt

latency) the interrupt management should be placed in the HAL. The ideal solution is

to be able to pick either or both at compile-time and thus let device drivers register an

ISR according to their own preferences. In order to make this design clean, the interrupt

dispatcher would have to register itself with the HAL.

Device-drivers abstracts the operations of hardware devices. The reason that this layer

is not placed above and not at the same level as the HAL is that a device does not affect the

Processors ability to read and write data to and from I/O ports and memory positions6.

6In fact the HAL could be seen as the device driver in control of the CPU. The author of this text
prefers to see the CPU as a synchronized data-operation device (SDOD) i.e. a device that is able to
perform operations on data

2.3. ABSTRACTION MODELS 17

Device-drivers must at least export the at least the following:

• An interrupt service routine (ISR)

• A device-initialization routine

• Routines for reading and writing data

• Routines for opening and closing the device

• I/O control routines

Operating systems sometimes divide device drivers into block and character devices. A

block device is generally a device that supports a file system. Block devices usually exports

the same set of routines as character devices but they also export a set of routines used to

read and write file blocks. A third set of function can be used to control the behavior of

the device. To recapitulate the following three groups of functions can be exported from a

device driver:

• Character oriented I/O routines

• Block oriented I/O

• Routines used to configure and control the device

These three groups of functions are usually stored in a specific structure that holds the

entry-points to the various functions in the device driver. The structures are in turn stored

in a device address table, a table that stores information about all device drivers in the

OS. This table is used by the I/O manager (part of kernel) to access the devices on behalf

of the service layer. The principle is shown in figure 2.4

18 CHAPTER 2. BACKGROUND

Devicetable

NOTES:

1:

2:

Pointers to corresponding functions are placed in the correct device structure. These structures constitute the "exported interface"

Each of the devicestructures are placed in a devicetable entry

1

1

1

1

1

1

char_init(...)
char_isr(...)
char_open(...)
char_close(...)
char_write(...)
char_read(...)
char_ioctl(...)

block_init(...)
block_isr(...)
block_open(...)
block_close(...)
block_write(...)
block_read(...)
block_ioctl(...)

Devicedriver module

2

2

2

Entrypoints (Block dev.)Entrypoints (Char dev.) Entrypoints (device ctl)

Devicedriver
code (Character I/O)

Exported functions

Exported functions
(Blockbased I/O)

Exported functions
(Device Control)

Figure 2.4: Schematic figure of the relations between the data structures that are placed
in the device table and a device driver

2.3. ABSTRACTION MODELS 19

The OS service layer

The highest level of abstraction in figure 2.2 is the OS service layer. This layer could be

divided into two different parts:

System-call interface constitutes the application programming interface (sys-call API).

This is the virtual machine that the OS provides to the applications running in user

space

High-level services services provided by the OS. These services are used by applications

and accessed through the sys-call API

The sys-call API is divided into two parts according to the following:

• A collection of functions linked with the applications. This code is executing in

user-space

• An entry point in the kernel, usually an interrupt (trap) handler

The library code is partially CPU-dependent and uses either the HAL or HAL-macros in

order to abstract away from the CPU-dependent trap mechanisms. Apart from providing a

way to enter the kernel the library code must also make sure that the necessary parameters

are passed to the kernel as well as a function-call code7. Multitasking OSes also require the

library to be reentrant i.e. a process must be preemptable while it is executing library-code.

The trap-handler is responsible for finding the correct system call in the kernel. The

mapping can be done through table lookup. The principle of the system call demultiplexing

is shown in figure 2.5. This monolithic kernel structure has several benefits and a few

drawbacks too. The most obvious ones are:

7POSIX uses a standardized encoding of all function calls. Calls are encoded as integers and passed in
a register or on the stack

20 CHAPTER 2. BACKGROUND

Application code

Trap-
handler

Kernel

Figure 2.5: Mapping the system-call-number to the internal function.

+ A monolithic kernel is easy to implement since all the functionality of the operating

system is placed in one instance executing at the same privilege level

+ Integrity is easy to maintain since all OS primitives are implemented inside the kernel

+ The application programmer is insulated from hardware/software. This makes it

easy to reach a high level of abstraction

- Context switch overhead is significant.

- If the kernel fails the system fails and are not easily restarted

- The overhead induced by I/O operations is significant. This means that applications

that are I/O bound execute slower

High-level services are provided in two different ways depending on the implementation

model. In a monolithic OS all services are part of the kernel. The micro-kernel provides

services through tasks running in user-space. The two different modes are shown in figure

2.6

2.3. ABSTRACTION MODELS 21

1

task
Application

task
Application

2
3 3

2

���
�

���
�

���
�

HAL

File
system

Network
stack

#1 #n
Device

services
KernelDevice

GDI
subsystem

System-call interface

1

task
Application

stack
Network GDI

subsystem

3 3
2 2 2

4 4

5 5

���
�

��	
	

�
�

HAL

#1 #n
Device

services
KernelDevice

System-call interface

(A) (B)

NOTES:
1:

2:

3:

4:

5:

System call (Call to function inside kernel)

Entrypoint to kernel

Data returned from system call

Call to user level service through DPC, messagepassing, or procedure call

Data returned from call to user-level service

Figure 2.6: Two different ways to provide high-level services: a monolithic kernel (A) and
in a micro-kernel (B)

22 CHAPTER 2. BACKGROUND

The kernelless OS

In recent years research has been turning to that of kernel-less OS:es. These operating

systems usually have some sort of “kernelized structure” or a nano/micro-kernel that are

used for initialization and task switching. All other operations such as memory manage-

ment etc. are done by user level processes. Due to the low level of service provided by

kernel itself, communication primitives are needed to provide service to applications since

it is not possible to access services in the kernel. These communication primitives can be

divided into a number of categories. The most interesting ones are:

• Message passing. Messages are passed to, and-from, tasks. This method has some

really intriguing features:

– It enables event-based processing

– It supports distributed computing

– Isolates the private data of shared memory area from the tasks

• DPC - Deferred procedure calls. I.e. the call returns immediately but a synchroniza-

tion point is placed further “down-stream” in the calling thread.

• Shared memory. Tasks that wish to communicate with each other read and write

special memory areas. There is always a certain risk of data-inconsistency with this

approach. This risk should not be ignored as it could have severe ramifications.

SPACE is another example of providing IPC. This approach has the following features:

• It uses a generalized exception mechanism X(E,V) where E is the exception number

and V is the associated vector

• A minimal “Portal” is provided together with X(E,V). This portal is used to check

validity as well as authorization.

2.4. OS-PERFORMANCE ISSUES 23

The effect reminds a bit of tunneling8. Experiments have shown that substantial perfor-

mance gains (5-7 times) can be reached with this method. Figure 2.7 shows the general

principle of space.

Figure 2.7: The tunneling effect of SPACE

2.4 OS-performance issues

The critical goal in operating systems is performance. It can be summarized in a sim-

ple paradox. It is impossible to obtain a high level of abstraction without degrading the

performance. The reason is that more code is introduced and executed every time a new

abstraction layer is added. This means that operating systems are generally undesirable

with regard to performance because an application executing on bare hardware will always

perform better than it would if it were assisted by an operating system. Other important

issues such as portability, correctness, complexity and economic efficiency is not associated

with assembly-language programming.

As operating systems have become more and more complex and thus able to provide

a higher level of abstraction their performance have decayed. This fact have largely been

ignored due to the rapid development of the CPU:s that have become more and more

powerful, thus effectively hiding the decline in OS performance that has taken place during

the last five-to-ten years.

8Quantum physics electron tunneling, that is

24 CHAPTER 2. BACKGROUND

2.4.1 Context-switch overhead

There is a certain overhead involved in performing a context switch. This overhead is

induced by the following:

• Execution of the trap or software interrupt forces the program counter and some

other registers to be pushed to the stack

• Changing the privilege level of the CPU usually takes a few microseconds. The exact

number is dependent on the CPU architecture

• Saving the CPU state involves saving all registers access by the code which performed

the system call

• Execution of the demultiplex code in the trap-handler.

It is, in most cases, not possible to perform a direct call to the desired function in the

kernel mainly because too little is known at the higher levels of a system. A resolver or

demultiplexer is needed to map system calls to the correct device. This overhead can be

substantial. An example provided by [Prop 95.1] regarding a read operation from a UNIX

file-system in System 5 Release 4 was found manage the following operations:

trap, sys-call, vnode, ufs-read, inode, uio, trap, page-fault, address-space-fault,

vnode-segfault, ufs-pagein, buffer-cache-read, raw-device-switch, and device driver

The above example suggests that seemingly simple operations can have a very high

overhead associated with it. This will naturally be smaller in simpler system but the de-

mands on these systems are more stringent.

Another problem that arises when estimating the time spent to perform a context

switch is architecture. Different processors provide different mechanisms and may perform

certain operations by themselves such as register saving etc. Also the number of registers

2.4. OS-PERFORMANCE ISSUES 25

varies between different families of CPU:s. RISC CPUs usually have a large number of

registers compared with their CISC counterparts. This makes the context-switch in a RISC

CPU a more expensive operation because more registers are to be saved in main memory.

External buses always run a lot slower (1/5th of the CPU-core) than the CPU-core making

the CPU sit idle for some 80% of time required by the context switch.

Another performance problem issue is the processor’s cache memory. A level-1 cache

running at the same speed as the CPU-core suffers the same performance loss when it is

flushed to memory. If

2.4.2 Interrupt latency

Interrupts in a modern processor can usually be divided into two different categories:

synchronous and asynchronous. The synchronous interrupts are software interrupts or ex-

ceptions and the asynchronous interrupt is usually generated by hardware.

The interrupt latency is the response-time for the particular interrupt. In short it can

be said to be the amount of time that passes from the interrupt is generated until the

correct service routine begins to execute. This

Synchronous interrupts The synchronous interrupt or exception usually does not have

a high overhead associated with them. The latency basically consists of the time it takes

to save the program counter and any registers used by the interrupt-handler. If the pro-

cessor’s privilege level remain unchanged the overhead is further lowered. This means that

the minimal state to be saved in a context switch is smaller which in turn increases the

performance of the context switch.

26 CHAPTER 2. BACKGROUND

Asynchronous interrupts Asynchronous interrupts are generated by hardware to sig-

nal a need for service. Upon receipt of an interrupt the processor must save minimal state

and jump to the interrupt manager. The effect is the same as that seen during a context

switch. Long waiting times may result in loss of data or missed deadlines in real-time

systems.

Delayed I/O operations

The basic raw I/O operations are sometimes delayed for several different reasons.

I/O operations are sometimes scheduled. This is the case in for instance Windows NT. All

I/O operations in NT are delivered to a device driver as an I/O-request packet (IORP).

This packet is buffered by the device driver and the operation can thus be serviced at a

later point in time.

Another, similar problem, is the overhead associated with I/O operations. Because all

operations are associated with the execution of instructions the

Maximizing the performance

As indicated earlier it is very easy to maximize the performance in an embedded system.

The general rule is:

Do not use any abstractions at all. Execute on the bare hardware.

Following the above rule makes the application very sensitive to changes in hardware. If the

base address of a hardware device is moved the application will have to be changed. Major

changes to hardware devices such as the introduction of interrupts or DMA operations

for data transfers cannot easily be achieved because such changes have a serious affect

on application software design. All solutions must be a tradeoff between performance,

complexity and ease of implementation. The general rules for maximizing the performance

in an embedded system is:

2.4. OS-PERFORMANCE ISSUES 27

• Use a small decentralized kernel or “kernelized” structures

• Use a simple mid-level language such as C

• Do not rely on dynamic information such function calls et.c.

• Minimize the number of instructions required to read and write I/O (Maximizes I/O

bandwidth). Make sure the I/O code is written in assembler and is in-lined by the

compiler, thus omitting the need for unnecessary call or jump instructions.

• Minimize the number of registers used and the amount of data that is to be saved

during interrupt processing. If possible process as many interrupts as possible at the

same time to further lower the overhead

• Minimize the number of changes in privilege-level

Using the optimizing features of the compiler further improves the performance of the

code. However the optimizing compiler is useless if part of the code is written in assembly-

language. Generally the code generated by a good, optimizing, C-compiler will match the

code produced by an average assembler programmer. There are a few exceptions: Architec-

tures with special instruction sets. The most notable example are the SIMD instructions

found in DSP processors (Intels MMX is example of SIMD instructions). Many of the

DSP-algorithms can benefit from the use of these instructions. It is however not trivial

to get a compiler to recognize a certain algorithm (for instance the implementation of a

FIR-filter) and thus to generate optimal code for that algorithm.

Further more, the efficiency of the generated code is higly language dependent. The

fastest “high” level language is C and there is little doubt that the slowest is Ada. The

reason for this has to do with Ada’s strong typing, extensive run-time constraint checking,

and exception processing just to mention a few reasons.

Chapter 3

Experiment

The purpose of this experiment is to measure the amount of time used to perform various

housekeeping chores inside a typical operating system.

3.1 Computing platform

The platform required to execute the experiment should be based on a MC683XX processor.

In the absence of such a platform a simulator called BSVC will be used instead. The

simulator has the following properties:

• It simulates the a CPU32+ core i.e. a MC68030 CPU. The peripheral devices found

in the MC683XX are not simulated.

• UARTs (U niversal Asynchronous Receiver T ransmitter) are simulated through a

virtual MC68681 DUART (dual UART)

• Timers are simulated through a MC68230 PIT (Programmable I nterval T imer) de-

vice

• Memory is supported through a RAM-device

29

30 CHAPTER 3. EXPERIMENT

BSVC allows various “virtual platforms” to be built. A virtual platform may consist of

any number of the simulated devices (SD). Each SD is mapped into the 32-bit memory-

space provided by the CPU32+ architecture. The computing platform used to execute the

experiment is depicted in figure 3.1

Dual-channel UART

Dual-channel UART

Timer

Data channel

Data in

Input

Output #2

RAM
Memory

Output #1

output
Measurement Data in

Data outputData output

(Simulated CPU 32+ CORE)
MC68360

Figure 3.1: Schematic figure of the BSVC-based platform

3.2. EXPERIMENT REQUIREMENTS 31

3.1.1 Inaccuracies

The simulator introduces a few inaccuracies. These are:

• The hardware is ideal. There are no interference or other sources of disturbance.

• Bus errors and double bus-faults are not simulated

• The simulator does not run the software in real time. It keeps its own internal time

The most serious problems are the timing of instructions. This problem is solved by

making sure that the load of the machine running the simulator is constant. The exact

clock frequency of the CPU is measured by executing a small delay loop and reporting the

number of times the loop is executed during a one-second time period. Another serious

problem is the fact that bus errors are not simulated correctly. However this is easily solved

by not using any of the MC68360 CPUs additional devices such as built in UARTs etc.

since these devices are not simulated and are unused there cannot be any bus-errors.

3.2 Experiment requirements

The implementation of the experiment must meet the following requirements:

Req. 1 Generate asynchronous interrupts i.e hardware interrupts

Req. 2 Be I/O bound (measures I/O delays)

Req. 3 Use synchronous interrupts to switch from user-mode to supervisor-mode

Req. 4 It should have some real-time requirements although they should not be too strin-

gent

32 CHAPTER 3. EXPERIMENT

These requirements are necessary in order to be able to measure the synchronous- and

asynchronous interrupt latencies as well as the I/O delays introduced by the HAL. The

motivation for using multiple threads are that most systems today are multiprocessing

systems and measuring on a single-process system would not be representative because it

would not take the overhead caused by the scheduler into consideration simply because a

scheduler would not be needed.

It should be noted that multiprocessing is not a requirement in this case. The reason is

that the overhead added by multiprocessing would be placed in kernel space in both cases

and would thus just increase CPU-load, i.e. load it down. Not implementing a scheduler

and multiprocessing capabilities simplifies the design and can be considered a reasonable

tradeoff due to the “kernel-time-only implications”.

3.3 The experiment

The test-application was chosen so that it would meet all of the requirements set forth in

section 3.2.

The task used for the experiment is that of a small router-like system. Data packets

enter the system through one UART and are placed in output queues for transmission on

channel 1 or channel 2 of the other UART.

• A-kernel based system i.e it uses an operating system (Figure 3.2B)

• A kernel-less system i.e the application runs directly on top of the hardware (Figure

3.2A)

A schematic figure of the two different implementations are shown in figure 3.2. The

principal difference is that there are that the system-call interface and the device-driver

3.3. THE EXPERIMENT 33

Input-
thread

ldr
Boot

thread #1
Output-

Interrupt and I/O management

thread #2
Output- Memory-

mgmt

Memory management

Process
Scheduler &

Mgmt

Kernelless application

HAL

Kernel mode

User mode

Hardware

(A) (B)

Memory managementInterrupt and I/O management
Boot
ldr

driver #1
Device

Scheduler &
Process
Mgmt

System-call interfaces

System-call dispatcher

Application and library

HAL

User mode

Kernel mode

Hardware

Device
driver n

Device driver abstraction layer

Memory
Mgmt

Figure 3.2: The two different implementation models used to evaluate system performance

abstraction layer is only present in figure 3.2B. The goal of the experiment is to measure

the amount of time spent executing the code in the two modules.

3.3.1 Software model

Figure 3.2 shows two possible ways of designing a system. The software needed to control

the behavior of the test platform fulfills the five requirements described earlier according

to the following:

The UARTs generate interrupts when the receive buffer is filled. This interrupt is gen-

erated by a hardware device and is thus asynchronous. A high interrupt latency will cause

data to be lost because the receive buffer will overflow (Req. 1 & Req. 4).

Transmission and reception of data requires the software to access I/O devices. Two

Universal Asynchronous Receiver/Transmitters (UARTs) are used for receiving and trans-

mitting data. Receipt and transmission are essentially just a primitive I/O-operation(Req.

2).

34 CHAPTER 3. EXPERIMENT

Data from the input channel should be placed in the input queues for the two trans-

mitters (Req. 3).

3.4 Gathering data

Data is returned from the simulator using a the output of serial channel 1. The data

returned by this port is parsed by a Linux application and can then be graphed. These

graphs are used to evaluate the overhead in the system. There are three different time-

quantities to be measured:

• The time spent in user mode. This measurement is initiated every time code running

in user mode is executed (denoted tu)

• The time spent in I/O functions or device-drivers. This is the time that passes from

entry to exit of a device read and write function (denoted tio)

• The time spent in the operating system. This is the elapsed spent in supervisor mode

(denoted tk)

The kernel-less application will not be able to measure the time spent in user-mode simply

because there is no user mode code to execute.

The collected data is transmitted to the evaluation process in chunks. This transmission

is triggered by a certain software trap from the application. All timers are reset before a

new cycle is initiated.

3.4.1 Measurement accuracy

There are a few inaccuracies in the collected data. These inaccuracies have two different

sources:

3.4. GATHERING DATA 35

• There is a small quantization error introduced by the counter. The smallest amount

of time that can be measured are ≈ 1 µSec

• Preparation for reading is not identical in all cases. This is due to the compiler-

generated prolog- and epilogue code.

• Inaccuracies in the measurement system

In order to compensate for the third entry in the system the measurement system will have

to add or subtract a certain amount of time from each sample in order to compensate for

the time required to obtain the timing values. This is done in the following steps:

• A processor calibration routine is run at initialization. The results are transmitted

and used to calculate the equivalent clock-frequency of the CPU.

• The number of cycles required to start and stop timers are calculated based on the

assembly-code that constitutes the timing mechanisms.

• A global compensation value is used to compensate for time spent in the interrupt

manager.

This protocol easily be implemented on a single-task system. When a timer is started

the compensation value is preset to value representing the number of clock-cycles spent

to setup the timer. Every timer-interrupt updates the compensation value by adding

the number of CPU-cycles required to completely return to the main thread. Finally the

stop routine adds its own compensation value. The compensation value is recorded and

transmitted to the analyzing task which can then calculate a fixed compensation value

based on the frequency found by the CPU-calibration.

3.4.2 Measurement interpretation

The entire goal of this experiment is to measure the overhead introduced by an operating

system. The data is interpreted according to the following rules: (Accumulated time for a

36 CHAPTER 3. EXPERIMENT

chunk is represented by a capital “T”)

Rule 1: The total execution time for a thread is t = tu + tk where tu = 0 if there is no

kernel

Rule 2: The overhead of the kernel based system is toh = tk − tio

Rule 3: The equivalent of tu in the kernel-less system is teq = tk − tio 6= toh

Rule 4: Total execution time for the kernel based system is T =
∑n
i=0 ti where n is the

number of chunks of returned data

Rule 5: Total execution time for the kernel-less system is T =
∑n
i=0 tki

Rule 6: Performance gain for a kernel-less system is given by G = T
T

3.4.3 Timing constants

As mentioned earlier the constants to be used to compensate for the overhead of the

measurement system must be calculated by hand once the code is written. This is easily

done by simply adding up the number of CPU-cycles required to execute each instruction

in corresponding functions. The following three constants are calculated:

• The overhead required to execute a timer setup() function (denoted cstart)

• The overhead required to execute a timer stop() function (denoted cstop)

• The overhead required to execute the timer-ISR routine (denoted cisr)

The timers are essentially just global variables stored in the timing modules. These

values are updated according to the following rules:

Setup: Tnow =< TIMER > +csetup where<TIMER> is the value read from the hardware

timer and csetup the estimated time it will take to return to the next function in the

calling process

3.4. GATHERING DATA 37

Stop: Tacc =< TIMER > −Tnow − cstop where cstop is the estimated time to it took to

call and calculate the current value

Chapter 4

Results

39

Chapter 5

Conclusion

41

References

[And 91] Anderson, Thomas E. et al: The Interaction of architecture and operating system
design, ASPLOS IV, pages 108-120, April 1991

[Bara 96] Barabanow, Michael & Yodaiken, Victor: Real-time Linux, New Mexico institute
of technology, 1996

[Bers 94] Bershad, Brian N et. al: SPIN - An Extensible Microkernel for application-
specific Operating System Services, Dept. of Computer science and Engineering, Uni-
versity of Washington, Seattle, Feb 1994

[Bers 96] Bershad, Brian N. et. al: Dynamic Binding for an Extensible System, Dept. of
computer science and engineering, University of Washington, Seattle, 1996?

[Card 98] Card, Remy et. al. The linux kernel book. Chichester, England: John Wiley &
Sons Ltd 1998

[Dijk 68] Dijkstra, Edsger W: The structure of the “THE”-multiprogramming system, Com-
munications of the ACM, Vol 11, pages 341-346, May 1968

[Eppl 98] Epplin, Jerry: Linux as an embedded operating system, Embedded systems Pro-
gramming, Miller Freeman Inc., October 1997

[Humm 92] Hummel, Robert L. The Processor and coprocessor. Emeryville, California:
Ziff-Davis Press 1992

[Moto 96] Motorola Semiconductors, CPU 32 reference manual, Motorola Inc 1996

[OAR 98:1] OAR Corporation: RTEMS C user’s guide Edition 4.0.0 , On-line Application
Reasearch Corporation 1998

[Prop 95.1] Propert, Dave et. al: Building fundamentally extensible application specific
operating systems in SPACE, University of California, Samta Barbara, Ca 93106,
1995

43

44 REFERENCES

[Prop 95.2] Propert, Dave et. al: Impementing Operating systems without kernels, Univer-
sity of California, Santa Barbara, Ca 93106, 1995

[Silb 9x] Silberschatz, avi & Galvin, Peter: Operating system Concepts, 5th edition , Ad-
dison wesley 199x

[Solo 98] Solomon, David A: Inside Windows NT, 2nd edition, Microsoft Press 1998

[Thek 94] Thekkath, Chandramohan A.& Levy, Henry M: Hardware and software support
for efficient exception handling, University of Washington Seattle, 1994

Appendix A

Experiment documentation and

comments

TODO: Go through all the code (≈ 220 files) and write this section.

45

Appendix B

EM340 platform documentation and

design notes

This is a design proposal for an embedded platform suitable to run VCOS or any other

embedded OS that can be ported to Motorola’s CPU32 architecture.

47

48 APPENDIX B. EM340 PLATFORM DOCUMENTATION AND DESIGN NOTES

B.1 Features

The proposed hardware platform is based on the Motorola 68340 CPU. It is an extensible

design. The main features are:

• 1 MC68340 CPU

• 1M word flash ROM

• 512K word static ram

• 2 on-board serial interfaces (EIA-232)

• 2 8-bit ports for keyboard interfaces

• 1 Standard DMC-LCD1 suitable for displays based on the standard Hitachi chipset

and interface

• 1 extension I/O port

• 1 BDM2 port

• 1 JTAG3 port

The basic platform provides the necessary hardware capabilities to run advanced embedded

applications. A schematic figure of the platform is shown in figure B.1

B.1.1 Changes needed to VCOS

In order to run VCOS on the EM340 platform the following changes to VCOS are needed:

• New initialization and boot code is needed to boot and initialize the MC68340 CPU.

1DMC/LCD=Dot Matrix Character Liquid Crystal Display
2Background Debugging Module
3Joint Test Action Group. A hardware specification used to test and program Programmable logic that

has already been soldered to a circuit board

B.1. FEATURES 49

MC68340
CPU

OSC

C
T

S

R
xD

T
X

D

R
T

S

R
xD

C
T

S

R
T

S

T
xD

RS232
Ch #1 Ch #2

RS232

digital Input
2x8bitLCD

Port
Config

Registers

I/O Address decoder
Internal Memory address

decoder buffers
Data

bank #2
Onboard SRAM

Flash ROM
Onboard

memory
EPROM

bank #1
Onboard SRAM

I/O address
buffers

I/O data
buffers bus buffers

I/O system-

External I/O connector

Figure B.1: Schematic figure of the EM340 platform

50 APPENDIX B. EM340 PLATFORM DOCUMENTATION AND DESIGN NOTES

• The RS232 device-driver needs to be changed in order to support the MC68340s

built-in UART.

• Addition of exception handlers for Bus-errors and the double-bus faults.

Apart from the changes to VCOS a few changes are needed to the linker scripts:

• The base address and the size of the ROM-region must be specified

• The base address and the size of the RAM-region must be changed

B.2. SCHEMATICS 51

B.2 Schematics

The rest of this appendix shows the schematics for the EM340 system. A brief description

of each page is given below: (Referenced by drawing #)

EM340-9901-01 This is the MC68340 CPU, the oscillator and the core CPU subsystems

EM340-9901-02 Buffers for the memory and I/O databuses

EM340-9901-03 Flash ROM bank #0

EM340-9901-04 Flash ROM bank #1

EM340-9901-05 Address decoding for the memory system

EM340-9901-06 RS232 interface (signal conversion)

EM340-9901-07 SRAM bank #0 (Todo)

EM340-9901-08 SRAM bank #1 (todo)

EM340-9901-09 SRAM bank #2 (todo)

EM340-9901-10 SRAM bank #4 (todo)

52 APPENDIX B. EM340 PLATFORM DOCUMENTATION AND DESIGN NOTES

B.3 PAL code documentation

This section contains the code needed to program the two PAL4 ICs placed on the

EM340 testboard.

Code note included yet, will be soon

4Programmable Array Logic

B.4. PCB LAYOUT MASKS 53

B.4 PCB layout masks

This section contains the PCB-layouts for the 4-layer printed-circuit board on which

the EM340 system is assembled ≈30 hours work when once the platform design is

finished!

B.5 Design notes: EM340 platform

This section contains the design notes for the EM340 platform. These notes are needed in

order to be able to write any code at all.

TODO: Write the rest of this document. It should include documentation of all bits

in hardware registers, addresses of the on-board I/O devices etc.

Appendix C

Implementation proposal for an

embeddable microkernel

55

