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Abstract

This thesis presents a security model, EAC, for monitoring and controlling executable content.
In this model, controlling software is based on its origin and functionality. Software must meet
two criteria; the software must be trusted in order to be executed and it must adhere to pro-
gram specific access rules. The model is described informally as well as formally. The thesis
also describes and compares three existing models and products. These are the Java, ActiveX
and Tripwire model. An implementation specification is given. The implementation takes ad-
vantage of the reference monitor concept which is a common approach for implementing se-
curity models. What sets this model apart from other security model is that the programs are
subjects for security monitoring rather than user processes which is the common approach in
many security models.
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Chapter 1

Introduction

1.1 Background

The traditional UNIX operating system1 implements protection mechanisms using discretionary
access control. This means that users of a system has full access rights to owned objects, such
as files. Processes executed by a user executes on behalf of the user, i.e., the process inherits the
access rights of the user. In essence, the process acts as an extension of the user. This means
that a program may for example delete files, modify contents of files, add new files in the name
of the user. Processes usually do what the user expects it to do. These processes are called
trusted processes, the user can trust that the process does the right thing.

In a perfect world all processes do the right thing, and are thereby trustworthy. However,
since the world is far from perfect, some processes fail to do the right thing. Some processes
fail due to a bug in the program. Some processes fail due to a failure in its environment. Some
processes fail because they were intended to the wrong thing. The latter case is often called
malicious code and are also known as trojans, virii, trap doors, back doors and then some.

A process which fails to do the right thing can cause serious security, privacy and integrity
problems for a user which executes the process. The standard discretionary access control
mechanisms found in UNIX allows this, so there exists no simple remedy for this, unless one
writes the program 100% bug free (never going to happen). My contribution to this problem is
a better protection mechanism model.

1.2 Goal

The goal with this thesis is to define a new model for handling the protection mechanisms in
UNIX. My model which I call Execution Access Control, or EAC, adds a new level of protection.
EAC defines two domains of protection;

• What programs are considered trustworthy?

• What can a trustworthy program do?

Upon execution of any executable code, EAC tests whether the code is trustworthy or not.
This is done using digital signatures and certificates. Before some code can be executed it must
first have been signed by some person and that person must be considered trustworthy. Once

1Meaning all typical flavours of UNIX

1
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a test verifies that the signature is correct and that the signer is trustworthy, the program is
allowed to execute a process.

After a program has been allowed to execute a process, its operations are controlled by a set
of access control rules. These rules define explicitly what the process may do. The rules are
there to protect the user from program bugs.

EAC is a mandatory access control model. This means that the protection mechanisms al-
ways apply for all users and there is no way of changing the protection. No user may add a
new trustworthy signer to the system. No user may change an access control rule for a pro-
gram, except for a special user called the Security Officer. The role of the security officer is to
administrate the access control rules and trustworthy signers.

EAC works in parallel with the ordinary protection mechanisms. For an operation to be
granted, both EAC and the ordinary mechanisms must grant the request.

1.3 A Use Case

BIND (Berkeley Internet Name Domain) is a software package which implements a DNS (Do-
main Name System) server. DNS is used for translating symbolic names such as www.domain.
com to IP addresses which are used for communication over IP (Internet Protocol).

In 1998 a bug was discovered in BIND which allows a remote attacker to execute arbitrary
code on the BIND hosted machine. The attack is based on a technique called buffer overrun.
The effect of this bug was that any remote attacker could execute commands on the server ma-
chine. Since the BIND server executed as root (super user), all commands would be accepted.
In effect, a remote attacker would then have full control of the server host. A technical expla-
nation about the attack can be found at http://www.insecure.org/sploits/bind.multiple.
vuln.html.

This bug could have been avoided if there were some access control rules disallowing BIND
to execute commands. These sort of attacks are quite common which a quick browse through
http://www.cert.org would confirm. Other types of attacks such as worms, trojans and virii
can also limited by having access control rules specifying what a program may do.

1.4 Organization

This thesis is organized as follows:

Chapter 2 discusses some concepts needed to understand the details of the EAC model. Cryp-
tography, hash functions, digital signatures, certificates, reference monitors and security mod-
els are discussed.

Chapter 3 covers three existing models or technologies which are widely used. These models
capture some security aspects which EAC shares or potentiall could share. They are examined
for advantages and disadvantages which aids in creating the EAC model itself.

Chapter 4 describes the EAC model both informally and formally using mathematical nota-
tion. The informal description explains the fundamental ideas behind the model, the methods
of achieving the model and how it works from a practical point of view. The formal description
defines a finite state machine along with its invariants and state transformation functions. No

www.domain.com
www.domain.com
http://www.insecure.org/sploits/bind.multiple.vuln.html
http://www.insecure.org/sploits/bind.multiple.vuln.html
http://www.cert.org
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proof is provided, the description serves more as an exact “recipe” for the model rather than
means for a proof of its correctness. This chapter also compares this model against the three
models or technologies discussed in chapter 3.

Chapter 5 specifies how the model should be implemented in Linux, a UNIX variant. It speci-
fies cryptography schemes (including hashing, encryption, signatures), key and certificate man-
agement, and which operating system objects are to be protected. Operating system objects
may be viewed upon as abstract datatypes whose operations are to be protected by the access
control rules. In short, this chapter is about how the model should be implemented.

1.5 Summary

This thesis describes a model which adds rules and boundaries for programs as opposed to
the approach of setting rules and boundaries for users. The thesis also loosely specify how
the model could be implemented in a traditional UNIX system as well as a specialized UNIX
derivative.





Chapter 2

Concepts

2.1 Cryptography

Cryptography is the practice and study of encryption and decryption of information. Encryp-
tion of information, also known as plaintext, is to transform it into data which cannot be inter-
preted, also known as ciphertext. The reverse transformation, decryption, transforms uninter-
pretable ciphertext into plaintext again. Cryptography is generally used for sharing information
between two or more parties without disclosing the information to an outside party. There ex-
ists many schemes for using cryptography for this purpose. Some of these are RSA, DES, AES,
Blowfish, Twofish, RC4, RC5 and ElGamal. These schemes are divided into two categories; sym-
metric and asymmetric cryptography schemes.

2.1.1 Symmetric Cryptography Schemes

Symmetric cryptography schemes encrypts plaintext and decrypts ciphertext using the same
key or two equivalent keys1. That is; a ciphertext which was encrypted using key k can only
be decrypted into plaintext by using the key k. This is the symmetry property of symmetric
cryptography schemes.

Mathematically, encryption and decryption can be viewed upon as functions:

encrypt : plaintext× key 7→ ciphertext
decrypt : ciphertext× key 7→ plaintext

Figure 2.1: Encryption and decryption in terms of functions

And of course, the following symmetry property must hold:

decrypt(encrypt(plaintext, key), key) = plaintext

Figure 2.2: Symmetry property

It is obvious that a third party should not be able to decrypt encrypted information shared
between two parties. The security of the cryptography scheme used by the two parties depends
on several points:

1It may be possible to deduce the decryption key from the encryption key and vice versa

5
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• The key shared between the two parties must be fully secret. If a third party knows the
key, then it is possible for the third party to decrypt the ciphertext.

• The strength of the encryption algorithm. If an unauthorized third party wants to decrypt
the ciphertext, it should not be an easier way to do so other than trying all possible keys.
A strong encryption algorithm should not make it possible to reduce the key space2 for an
attacker.

• The key length. Generally the longer key length, the better encryption scheme. The longer
the key is, the bigger key space, and the harder it is to try all possible keys.

• Given ciphertext and its corresponding plaintext, it should not be possible to deduce the
key used to encrypt the plaintext.

Symmetric cryptography schemes use one key for both encryption and decryption as ex-
plained above. For each pair of parties which share information, one key is needed. Thus, for
n securely communicating parties within a system, n·(n−1)

2 keys are needed, as can be seen in
figure 2.3. Effectively this means one key per communication channel. This means that if a
key for two communicating parties is compromised, then only that communication channel
is insecure. The other communication channels are not compromised, given that all keys in
the system are unique. A weakness using this scheme however is that if a key has been com-
promised, a new key must be used. In order to setup a new key for a communication channel,
some sort of protocol must be used for the key exchange. It is not possible to just use another
key, since it has to be known in advance prior to communication with the other party. And it is
not wise to just send the key in plaintext to the other side.

2.1.2 Asymmetric Cryptography Schemes

Asymmetric cryptography schemes differs from symmetric cryptography schemes in that key
pairs are used instead of a single key. One key is called the private key and the other is called
the public key. Asymmetric cryptography is also known as public-key cryptography. The public
key is used to encrypt plaintext into ciphertext, which can only be decrypted by the private key.

The encryption and decryption functions are similar to that of symmetric cryptography,
they transform plaintext into ciphertext and vice versa. However the relation between the func-
tions are different:

decrypt(encrypt(plaintext, keypub), keypriv) = plaintext

Figure 2.4: Asymmetry property

It is also important that it is not practically possible3 to deduce the private key by knowing
the public key:

keypub ; keypriv

Figure 2.5: Public and private key relationship

In order for party A to communicate with party B, A must encrypt the information with
B’s public key. B can then decrypt the ciphertext using its private key. Public keys can be

2Key space is the set of all possible keys
3The critiera is that it should be very hard in terms of time complexity
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n1

n2

n3

n4

n5

n6

ni nj

ni njand k (i,j)communicates using key 

Figure 2.3: Six securely communicating parties

distributed openly to any party. An important property of the key pairs is that the private key
cannot practically be deduced by the public key. The private key must always remain secret.
Figure 2.6 shows how two parties communicate securely.

Unlike symmetric cryptography schemes, keys are not bound to a communication channel.
Keys are bound to the communicating party. Therefore among n communicating parties, only
n key pairs are needed. The number of keys have been greatly reduced, but it comes with a
price. If the private key of partyA has been compromised, then no information can be securely
sent toA usingA’s public key. However, ifA’s key has been compromised,A can easily generate
a new key pair.

2.2 Cryptographic One-Way Hash Functions

Cryptographic one-way hash functions are functions that have the following properties

1. maps an infinite domain to a finite range

2. small changes in input yields big changes in result

3. there exists no inverse function

4. it is very hard to find a pair of input data which yields the same result

The first important property is that the one-way hash function maps an infinite domain to
a finite range. This means that the function applied to some data is reduced into a hash code,
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pubc=encrypt(p, A     )

privp=decrypt(c, A     )

1. A sends B public key A pub

2. B encrypts plaintext p using key A pub

3. B sends ciphertext c to A
4. A decrypts ciphertext c using key Apriv

A B

1

3

24

Figure 2.6: A and B communicating using asymmetric cryptography

also known as digest. The function should distribute the digest evenly over the range so that
x 6= y ∧ hash(x) = hash(y) occurs as seldom as possible.

The second property is that small changes in input yields big changes in digest. This is to
ensure that given only digest codes, it should be very hard to deduce the input data.

The third property of a one-way hash function is that there exist no inverse hash funcion. I.e.,
for hash(x) = y there may not exist a function such that hash−1(y) = x.

The fourth property of a hash function is that it should be very hard to find a pair of input
data x1 and x2 such that hash(x1) = hash(x2). If a function fulfills this property, it is said to
withstand birthday attacks. The name birthday attack stems from a statistical paradox called
the birthday paradox. The paradox asks two questions:

1. How many persons are required to be in a room with you so that the probability is fifty
percent or more that anyone in the room has the same birthday as you?

2. How many persons are required to be in the room so that the probability is fifty percent
or more that any two of the persons in the room share the same birthday?

The answer to the first question is 253. The answer to the second question is as low as 23.
The reason for this is that in the first case one is given a fixed starting point. In the latter case
no fixed starting point is given, it is basically the problem of finding a pair of persons which
fulfill the probability criterion. If 253 persons are needed to find another person in the room
with same birthday with a 50 percent probability, how many persons can be paired in 253 com-
binations? The answer is 23 which is roughly the square root of 253. A more mathematical
explanation behind this paradox is available in [Gar00] pp 28 and [BS96]. This paradox is im-
portant not to overlook as we shall see in section 2.3.

2.3 Digital Signatures

A digital signature is used to ensure the integrity and authenticity of some information.
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Generation of signatures are generally done by first creating a digest using some hash func-
tion, of the information that is to be signed. This digest is then encrypted with a private key
using some asymmetric cryptography scheme. Note that the roles of the keys in the key pair
are switched. The public key is used to decrypt ciphertext encrypted using the private key.

Verification of digital signatures is done by decrypting the encrypted digest (the ciphertext).
Then a new digest is generated by applying the same hash function on the information that was
used for the generation of the signature. Then the digests are compared. If the digests are not
equal, then the signature cannot have been generated for the claimed information or it could
not have been signed by the claimed signer. If the digests are equal, then it is possible to say
that the information was signed by the claimed signer and that the information has not been
modified since it was signed.

It must have been the claimed signer who signed the information since it was the public
key of the signer which decrypted the encrypted digest. The digest was encrypted using the
private key of the signer. This makes the document authentic. The document may not have
been modified since it was signed either, since the digest was equal to the decrypted digest.

When generating digital signatures it is important that the hash function used to create di-
gests is not vulnerable to birthday attacks. Suppose that a manager wants to fire someone in
the department he manages. He lets the secretary prepare a document for this. The person
being fired is a friend of the secretary. The secretary does not wish that his friend is to be fired.
Instead the secretary writes two documents which yields the same digest. He writes one doc-
ument which meaning is that his friend is to be fired, while the other document is to be given
a salary raise. The secretary then hands over the first document to his manager so that the
manager can signed the document so that it will be clear that this document is authentic. The
manager then gives the signed document to the secretary for deliverance. The secretary then
copies the signature from the “fired” document and simply places it in the “salary raise” doc-
ument. The secretary does not need the managers private key to do this, since the digests are
equal for the two documents. An encryption of the two equal digests would result in two equal
ciphertexts. The second document is then handed over to the salary division of the firm. The
result is that the friend of the secretary gets a salary raise, since the salary division verified that
the signature was correct.

The example above is a simplified version of an example given in [KPS95] chapter 4.

2.4 Certificates

2.4.1 Introduction

Certificate is the digital equivalence of identification tokens such as passport and drivers li-
cense. It constitutes attributes about a subject which have been certified by an authority also
known as certificate authority. Anyone who trusts the certificate authority for a subject, may
trust the authenticity of the subjects certificate. Certificates are digitally signed by the issuing
certificate authority, so the validity of a certificate can be determined.

In the context of cryptographical applications, at least one of the signed attributes is a public
key of the subjects key pairs. This public key can then be used for secure communication with
the subject using some asymmetric cryptography scheme, as well as signing certificates.

There are mainly two ways of organizing certificates and certificate authorities in terms of



10 CHAPTER 2. CONCEPTS

trust. Either the organization is tree like (hierarchical) or graph like (web). Since these organi-
zations are key-centric, they are also known as Public-Key Infrastructures or PKI.

2.4.2 Tree Organization

In a tree organized PKI, any certificate holder may issue a new certificate using its private key
which belongs to the public key of the issuers certificate. Certificate holders which have signed
their own certificates are called root certificate authorities (CA). Any other certificate issuing
entity is called a certificate authority.

The reason for this hierarchical divisioning is delegation. Instead of making the root CA
responsible for all certificates, the root CA may delegate the responsibility to CA’s below itself.
Below means that these CA’s holds certificates signed by the root CA. This way the root CA is
relieved from issuing certificates for “end users”. The CA’s below the root CA may now issue
certificates for “end users”.

The result of this organization is a tree where the root node is the root CA, all internal nodes
are CA’s and the leaves are certificate holders which are not issuing certificates as can be seen
in figure 2.7.

CA CA

CA CA

CA

Root CA

CCCCCCCCC

Figure 2.7: Certificates in tree organization

This is how the certificates are organized in terms of trust. A CA which signs a certificate
assumes the certificate to be correct.

To trust the correctness of a certificate, some CA above the certificate must be trusted. This
means that for each trustworthy certificate there must be a trusted path, or chain of trust, from
a trusted CA to the certificate itself. Trust in this sense basically means that it is possible to verify
the path by some means. If CA itself is trusted, then all certificates below it may be trusted. If
the CA becomes untrusted for some reason4, then no certificate below it can be trusted.

Large companies may for instance create their own tree PKI for internal and external use.
When two companies wish to establish trust with eachother, it is possible to do cross certifi-
cation. The root CA of company X and the root CA of company Y can sign eachothers root

4The CA itself or any CA above it may have been compromised
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CA certificates. This cross certification yielded a forrest (set of graphs). The effect of it is that
employees in company X may trust the certificates from company Y.

A benefit of organizing certificates hierarchical is that verification of a certificate is quite easy.
A drawback is when a CA becomes untrusted for some reason. That means that all certificates
issued by the untrusted CA may no longer be trusted. This is because all certificates below it
was signed using the untrusted CA’s private key. The certificates below the untrusted CA can
then not be reused since their signatures are coupled to a defunct key. The certificate holders
below the untrusted CA must request new certificates from some other trusted CA. This may
be very impractical if the untrusted CA has issued many certificates. The worst case scenario is
when the root CA becomes untrusted. Then the whole PKI must be rebuilt.

An well known implementation of a tree organized PKI is the X.509 standard. For more
information about X.509 see [Sta00] pp 101 – 110 and [CCI89].

2.4.3 Graph Organization

Graph organized PKI’s does not imply a root CA. There is no authority at all. Certificate holders
themselves keep track of which certificate can be trusted or not. The trust is also weighted from
does not trust to trusts all that the certificate holder trusts. Figure 2.8 is an example of graph
organized certificates. This graph is also known as web of trust.

1. Trusts identity of
2. Trusts the whatever other end trusts

0. Does not trust

2

1

1

A

E

D

C

B

1

1

2

1

0

Figure 2.8: Certificates in graph organization
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The example in figure 2.8 shows a simple web of trust. It is easy to see that C trusts the
identity of B and B trusts the identity of C. It is also easy to see that trust relationships are not
bidirectional. One can see that C trusts whatever D trusts, but D trusts only the identity of C.
Also C trusts the identity of B, but B does not trust C. What is less obvious is that A trusts the
identity of E, despite that there exists no edge directly from A to E. A trusts whatever C trusts.
C trusts whatever D trusts. D trusts the identity of E. So A trusts the identity of E transitively.
There are dangers with transitive trust. There may be cases where A trusts the identity of B
both by a direct edge and by transitive trust via C. If C becomes less trustworthy, A can still trust
the identity of B because of the direct edge. However, if B becomes less trustworthy, i.e. not
trustworthy at all, then B is still trustworthy since there is still transitive trust via C! Therefore
“no trust”-edges are needed as can be seen in figure 2.8. Eventhough A trusts B transitively via
C, the direct “no trust”-edge from A to B overrides. If there exist no edge (direct or transitive)
between two nodes in the graph, then the trust between those two nodes is undefined, which
is to be interpreted as “Does not trust”.

This organization is quite complex. It is up to the individual to decide who is more or less
trustworthy.

At the same time, the web of trust is very powerful in the way that a subject must not rely
on a fix point in the organization, such as a root authority as in the hierarchical organization. A
compromised node in the graph will only affect the edges connecting to that node.

An implementation of a graph organization is PGP. For more information about PGP see
[Sta00] pp 118 – 136 and the PGP website [PGP].

2.5 Reference Monitors

2.5.1 Description

A reference monitor is a part of the kernel which control accesses to operating system objects.
It may inspect the process which attempts to access the object, it may inspect the object itself
and the access operation (system call). These parameters are then compared against either a
set of static rules, or a set of dynamic rules, to accept or deny the operation and perhaps log the
operation. Static rules are also known as access control rules and sometimes access control lists.
Dynamic rules are rules that may adapt themselves over time. An Intrusion Detection System
may for instance learn the usage pattern of a particular user and then perform some action
when the user actions does not conform to the expected pattern.

A logical overview is found in figure 2.9.

2.5.2 Criteria

A reference monitor must have the following criteria:

Tamperproofness No process may change the state of the reference monitor in an unautho-
rized way

Always Invoked The reference monitor should be started when the kernel boots, and be active
throughout the entire life time of the kernel

Small and Compact The reference monitor shall be as small and compact as possible
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Reference
Monitor Kernel

Object

Process

Operation

Figure 2.9: Logical overview of a Reference Monitor

2.5.2.1 Tamperproofness

No process may change the state of the reference monitor in an unauthorized way. If such
state changes were possible, then circumvention could be possible. All object accesses must be
monitored by the reference montor, and appropriate action must always be performed. If not,
there would not be any point in having a reference monitor in the first place.

2.5.2.2 Always Invoked

The reference monitor must always be invoked so that all object accesses are monitored. No
object access may be performed without having been monitored.

2.5.2.3 Small and Compact

The reference monitor must be small and compact to reduce the complexity of the reference
monitor. With reduced complexity it becomes easier to analyze and test the reference monitor
to ensure that it is complete to meet the above criteria.
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2.6 State Machine Security Models

2.6.1 Description

A state machine security model is a system model which defines a finite state machine. The
state at any given time is an aggregated state over one or more state variables. State variables
denote sets of elements. These sets have at least one security attribute which plays some role
in the state machine. These state variables may only change in such ways that the aggregated
state is always a secure state. Therefore operations on the state variables are guarded by state
transition functions which make sure that the system never enters an insecure state. The secure
state is defined by one or more invariants which the state transition functions must adhere to.
A state machine model may also include functions which transform some values to some other
values.

A state machine security model must like a reference model be small and compact. It should
be easy to comprehend so that it can be proven, and that it can be implemented with full con-
fidence that the implementation really implements the security model.

It is important to understand that the model does not define any design or implementation
details. While state machine models usually view the state variables as sets, it is not necessary
to implement the state variables using the abstract data type set. For instance a model may
view all available files in a computer system as a set of files. The operating system however (at
implementation level) views all available files as a tree (the directory tree structure). The model
says nothing about the implementation. However, the implementation says everything about
the model.

2.6.2 An Example

I shall now present a very simple state machine security model. I will first give an informal
description and then a formal description. Informal descriptions are good means of presenting
the idea of the model in human language. It helps the reader to get a broad picture of the means
and goals of the model, and it also gives an indication whether the model is sound or not. The
formal description is a more exact rewrite of the informal description. It is commonly written
using some form of formal notation. Formal notations are useful since they usually offer the
ability to prove the correctness of the model.

2.6.2.1 Informal Description

This example will model a simple computer system. A computer system is a computer which
users can log onto. The computer system holds a catalog of all users which are allowed access
to the system. Each entry in the catalog is a tuple consisting of a user id and a hashed password.

When a user logs on, that user must first claim its identity and then a password. The system
then looks up the user in the catalog. If the user does not exist in the catalog, then the login
is rejected. If the user does exist in the catalog, the provided password is hashed and then
compared to the hashed password in the catalog entry. If these two hashed passwords does not
match, the login is rejected. Otherwise, the login is accepted.

An already logged in user may at any time logout without any restrictions.
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Note that this model does not take any action on commands issued by the users after they
have logged in. This example only model the authentication procedure.

At any point in time, all logged in users must be referenced in the catalog of users with access
to the system. This is the system invariant.

2.6.2.2 Formal Description

System state is denoted as Σ = {C,U, uid, hpasswd}

System State Variables

Σ Components
C The set of all authorized users
U The set of all logged in users

Table 2.1: System State Variables

The C variable denotes all authorized users. This set is corresponds to the catalog of users
mentioned in the informal description. Each member of the set is a tuple on the form (uid, hpasswd)
where uid is a unique id for a user and hpasswd is the hashed password for the user.

The U variable denotes all logged in users. All users in this set must have been properly au-
thenticated. Each member is a unique id for a user - uid.

Security Attributes

Security Attributes
uid(c) Unique user id of catalog entry c
hpasswd(c) Hashed password of catalog entry c

Table 2.2: Security Attributes For System Variables

Functions

Functions in the System
hash : p 7→ hp Hashes a clear text password p

into a hashed password hp
isvaliduser : uid 7→ bool Predicate for determining

whether a user with unique id
uid is a member of C

lookupuser : uid 7→ c Looks up a catalog entry for
user with unique user id uid.
The preconditions for this func-
tion is that there must exist
such a user.
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Table 2.3: Functions

The system invariant: ∀u ∈ U : isvaliduser(u)
The system invariant says that for all logged in users, each user must be represented in the

user catalog C.

proc Logon(uid, passwd) ≡
if isvaliduser(uid) ∧ hpasswd (lookupuser(uid)) = hash (passwd)

then
U ← U ∪ {uid}

Figure 2.10: State Transition Function: Login

State transition function Logon In order to logon, a user must exist in the user catalog, and
the password which the user gave in the login process must be equal to the one in the catalog.
Once these criteria are met, the user is considered logged on.



Chapter 3

Existing Models and Technologies

3.1 Overview

This chapter examines models and technologies which are in many ways similar to the model
which this thesis is about.

3.2 Java

3.2.1 Introduction

Java is an application development platform developed by Sun Microsystems. It is comprised
by:

language [GJSB00] the java language and associated compiler

distribution mechanisms special distribution format and tools which allow binding of meta
data to an application

virtual machine [LY00] the java interpreter

set of services class libraries and methods for communication with the outside of the virtual
machine

These points provide the basis for the security mechanism found in the java platform. The
aspects of this security mechanism are of interest for this thesis.

3.2.1.1 The Java Language

The java language is used to describe algorithms and data structures in a formal notation, which
allows execution in an automated environment. The language is an object oriented language -
it has the elements which one would expect from such a language. The most significant element
of the java language is the class concept. Classes are instantiated in run time to form objects,
which is a normal concept in object oriented languages. What is specific to the java language
is that the compiler generates a single class file for each declared class. This means that for an
application which declares X classes, X class files will be generated by the compiler.

17
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3.2.1.2 Distribution Mechanisms

When distributing an application written for the java platform, it is distributed in a special for-
mat. This format is called java archives, or jar for short. A jar is a single file. After an application
has been compiled into class files, these files are then put into the jar file. In common pro-
gramming languages such as C or C++, it is common to compile the individual files into object
files, which are then linked together to form a binary program file. The process of creating a jar
file can be compared to the process of creating a binary program file for C or C++. The main
difference is that the jar file is not a native binary program file.

3.2.1.3 The Virtual Machine

When an application in a jar file is executed, the jar file is read by the java interpreter. The
java interpeter is a native program in the operating system. It runs like an ordinary process in
the operating system. It uses the operating system services to implement a new java specific
environment, in which the java programs are executed.

The java interpeter is given the jar file and a class name which is used for boot strapping
the execution. The java intepreter then unarchives the referenced class and executes a boot
strap method (a method called main()) in that class. From there, the execution continues. The
interpreter acts as an operating system loader. The interpreter also defines a virtual machine,
which the java application executes in.

3.2.1.4 The Services

When an application wishes to communicate with the environment outside the virtual ma-
chine, it must do so through the interpreter. This is achieved by using the services provided
by class library that comes with the java platform. There are java services which allows utiliz-
ing the services provided by the host operating system as well as general programming services
such as abstract data types and etc.

3.2.1.5 The Security Mechanisms

What is interesting within the scope of this thesis, is the security mechanism in the java plat-
form. The security mechanism includes properties such as digital signatures and access con-
trol.

The java platform introduces a concept called Security Manager. The security manager is
however not a new concept. The concept is generally known by the name Reference Monitor
[Sta00] pp 332-33. The role of the security manager is to monitor the requests made by applica-
tions. Such a request may be to read a file, write to a file, establish network connections and so
on. Based on some rule, a request is either accepted or denied. This is exactly what the security
manager in the java platform does. An illustrated example is given in figure 3.1. The figure de-
picts a scenario where the rules are simple; the java application may read the file file.ext, but it
may not write to it.

This approach has also been called “the sand box model”. The idea is to execute the appli-
cation in a well defined environment. Communication with the environment outside the sand
box is constrained.

In the java platform, the granularity of the access control rules is very small. It is possible
to apply rules for single applications and single operations. This makes it possible to apply the
principle of least privilege for individual applications.
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A default security manager ships with the Java platform. However, it is possible to write a
new security manager if need be. The default security manager can handle policies for signed
as well as unsigned jar files. When invoking java applets, the default security manager is always
invoked. Applets downloaded and executed directly from the web, are always given the most
restrictive security policy. For instance, it may not open files on the local file system, it may
not communicate with other computers on the Internet, other than the one it was downloaded
from. Applications do not activate the security manager by default.

Virtual Machine

Host Operating System

read("file.ext")

write("file.ext") file.ext

Application

Security Manager

Figure 3.1: An application is denied write access to a file

3.2.2 Security Mechanisms in Detail

3.2.2.1 Signatures

Signatures in the java platform are created using public-key cryptography and one-way hash
functions. The jar files are signed using the private key in the development environment. The
signed jar is then shipped to the receiver. What the receiver needs in order to establish authen-
ticity of the jar file, is the public key associated with the private key which was used for signing
the file. The receiver may have received the public key earlier or it may be delivered inside the
jar file.

3.2.2.2 Certificates

The public key which is used to authenticate jar files are packaged within certificates. In the
java platform the X.509 format is used. The public key associated the certificates are stored
in so called key stores. Before the java interpreter loads the jar file and starts the requested
application, the security manager uses the public key associated with the certificate, found in
the key store to test the integrity and authenticity of the jar file.
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X.509 also standardizes revocation of certificates. This means that the validity of a certifi-
cate may be revoked because of various reasons. For example, a certificate holder accidently
exposes the private key for a certificate, then it is possible to impersonate the certificate holder.

3.2.2.3 Policies

After the java interpreter has authenticated a jar file, and loaded the requested application, the
security manager continously tests whether the application behaves according to predefined
rules - policies. Policies can be specified per signer, operation and target. For instance; Applica-
tions written and signed by signer X, may write to the file Y.

Figure 3.2 shows how certificates, signatures, jar files, key stores, java virtual machines and
security managers work together to establish authenticity and integrity.
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Signature

JAR file

privEncrypt(hash(JAR), K     )

K priv
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Signature

JAR file

Key store

K pub

Certificate
K pub

Certificate

1) Generate key pair (public and private) along with certificate
2) Sign JAR file
3) Distribute certificate
4) Import the certificate into key store if certifcate holder is found

trust worthy

6) Test JAR for authenticity and integrity using the key store and
5) Distribute signed JAR file

attached signature
7) Execute according to security policies

Key pair
Public key imported

Java Interpreter / Virtual Machine

Security Manager

4

6

1

2

3

5

Runtime EnvironmentDevelopment Environment

Figure 3.2: Certificates, signatures, jar files, key stores, java virtual machines, and security man-
agers establishing authenticity and integrity

3.2.3 Advantages

Authenticity The java platform provides the framework for authenticity, which can be used
to establish trust between user of an application and the creator of an application. The
platform makes use of PKI standards such as X.509 which is an open standard, thus it has
been publically scrutinized.

Integrity The java platform ensures that integrity can be tested along with authenticity. Since
the authentication of jar files are based on the contents, the effect is that integrity can be
tested.
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Policies The java platform enforce security policies. It is possible to restrict individual applica-
tions within jar files.

3.2.4 Disadvantages

Security Manager The security manager is not enabled by default for java applications. It is
only enabled by default for java applets.

3.2.5 Summary

The java platform defines an environment where java applications may execute. The defined
environment, also known as the java virtual machine, execute as a program inside a host envi-
ronment. It is possible to restrict execution of java applications by using signatures and policies.

3.3 ActiveX

3.3.1 Introduction

ActiveX is a component object model based on Microsofts COM1 technology. A component is
native code intended for execution within a host program. The Microsoft Internet Explorer is
such a host program. It allows for embedding ActiveX components into HTML pages. Normally
when downloading HTML pages, embedded parts such as images are downloaded automati-
cally without notifying the user. The images are seen as parts of the HTML page, thus it is natu-
ral that the user does not have to request that images shall be transferred. ActiveX components
on the other hand, contain code that is intended to execute within the web browser. There is
an immediate danger in automatically downloading and executing code. A rogue web master
could create ActiveX components which performs some malicious action when executing. Be-
cause of this, Microsoft extended the ActiveX model with a technology called Authenticode. The
role of authenticode is to “label and shrink wrap” software on the Internet. The motivation for
labeling software is to ensure accountability and authenticity. With accountability, Microsoft
means that a user shall be able to hold the vendor accountable for the actions performed by
the component. Authenticity ensures that a component really comes from whom it claims. It
also ensures that no third party has tampered with the component since it was signed by the
vendor.

3.3.2 Authenticode

Authenticode signatures are attached to the file which a component is distributed within. It
can be an executable file (EXE), a dynamically linked library (DLL), object control (OCX), java
class file, cabinet file (CAB). In fact, the authenticode signature does not only cover ActiveX
components exlusively, it can also be used to sign ordinary applications, function libraries and
other codes that can be put into these sorts of files.

Authenticode signed files constitutes three parts:

• Content

• A certificate

• A cryptographic signature

1Component Object Model
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Content can be executable code or resources.

A certificate is a cryptographical identification tag. It contains information about the certifi-
cate holder, e.g. the creator of the signed code. The crypographical signing methods makes
use of assymmetric cryptography involving public key cryptography. In order to verify the sig-
nature, a public key is needed. This key is information contained within the certificate. The
certificate also contains a reference to a certificate authority. This authority has vouched for
the identity of the certificate holder. To protect the certificate itself from tampering, it has been
signed by the certificate authority.

A cryptographic signature is an encrypted digest of the content. The digest has been en-
crypted using the private key of the signer. To decrypt the encrypted digest, the public key
must be used.

When an ActiveX host program is about to download and execute a component, it first looks
at the file at hand to see if it has been signed. If it has not been signed at all, the host program
warns the user that the host program is about to download and execute an unsigned compo-
nent. The user can then choose to accept or reject download and execution. If the component
contains signing information, but it is not properly signed (the file carrying the component was
modified after it was signed), the user is notified. The user can then choose to accept or reject
download and execution. If the signature is valid, then the certificate is presented to the user.
The presentation of the certificate include information about the signer, whether the signer
is a corporation or an individual, when the certificate expires and what certificate authority
vouches for the identity of the signer. The user is not only given the opportunity to reject down-
load and execution of the component, but it is also the opportunity to always accept future
components from the signer and the opportunity to always accept any component created by
any signer vouched for by the certificate authority.

The steps for verifying a signature are as follows:

1. Inspect the certificate - test the certificate against the known certficate authorities. Infor-
mation needed for performing this test comes with the operating system (e.g. Windows
98). The actual testing steps are basically the same as the following steps - a signature on
the certificate is verified using the public key of the certificate authority.

2. Generate a digest of the component code using a one way hash function.

3. Decrypt the signature code using the public key found in the certificate.

4. Compare the digest with the decrypted signature code. If they are equal, then the code
was signed by the certificate holder, and the code has not been modified since.

The steps described above can be seen in figure 3.3.

3.3.3 Advantages

Authenticity Authenticity is possible. It is always possible to determine where the code comes
from.

Integrity It is always possible to determine whether a third party has modified code after sign-
ing.
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Original Code Original Code

Encrypted
Hash

Encrypted
Hash

Hash

Hash

Authenticode−signed Code

1. Verify Certificate

Certificate

3. Retrieve Public Key

4. Decrypt Using Public Key

2. Generate hash digest

5. Compare

Figure 3.3: Authenticode Verification Process

Standards Compliant The technology uses well known standard mechanisms for signatures
and certificates.

3.3.4 Disadvantages

Discretionary Control It is up to the user to accept or reject code. This is not good for any
organization with security policies, since a single user may break the policy by accepting un-
trusted ActiveX components.

Weak Mandatory Control It is possible to apply system policies that rejects downloading exe-
cutable code by any user. However, these policies are weak. Decisions on what is executable or
not is based on the file extension. Furthermore, it is possible to download executable code us-
ing the floppy drive and then execute the code. The system policies only applies to the Internet
Explorer program.

Accountability This model claims that it gives the user accountability. If a vendor creates a
component which is malicious, the user can hold the vendor accountable for the actions per-
formed by the component. This does generally not hold for any piece of software. It is com-
mon that the license which the user must accept for using the software, contains disclaimers
basically saying that the software may or may not cause damage to the users computer or in-
formation therein. Therefore, accountability is as weak as the license for which the software is
distributed under.

3.3.5 Summary

The ActiveX security model, Authenticode, is good for ensuring authenticity and integrity in
software. However, it does not provide any means of access control. There is no way of specify-
ing what an ActiveX control can and cannot do witin the system. For more information about
Authenticode, see [MS96].
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3.4 Tripwire

3.4.1 Introduction

Tripwire is a file system integrity checker program written and maintained by Tripwire Inc. The
main purpose of this product is to monitor file system changes and alarm when such occurs.
Tripwires performs integrity checks on files and directories including special devices, symbolic
links and so on.

Tripwire monitors changes by computing signatures of file system objects. Various ways of
computing signatures are described in [GE94]. The signatures of the monitored objects are then
put into a database which is the main component of the tripwire product. The database serves
as a point of reference for determining file system changes. Obviously this database must be
kept secure at all times to prevent attackers from modifying it to hide their file system changes.
The database is preferably stored in on a read-only device and is updated by other means than
“traditional” file system access. The database contains no information which an attacker can
use for malicious purposes.

Another vital component of the tripwire product is the configuration database. This database
contains directives for the tripwire administration tools on how signatures are to be computed,
which file system objects are to be monitored and so on. Some files in a system changes often,
especially system logs which may change every second. This database must also be kept secure
at all times so that an attacker cannot change it to hide their file system changes.

The administrator of a system uses supplied tools for creating and maintaining the signature
database and for detecting file system changes. These tools must, just like the signature and
configuration database, be kept secured. If an attacker can modify the tools, the tools can no
longer be trusted.

Monitored
File System

Objects

Tools

Signatures

Configuration

File System
Tripwire

Security Administrator

Flow of Information

Figure 3.4: The tripwire product

To maintain a tripwire installation, one must first create a configuration database. Based
on the configuration database, an initial signature database is created using the supplied user
tools. From this point, the file system is now guarded by tripwire. To detect unauthorized
changes in the file system, the tripwire tools can be used to test the file system integrity. If
the system administrator needs to do an authorized file system change, then the signature and
configuration database must be rebuilt to reflect the change.
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3.4.2 Advantages

The advantages and disadvantages discussed here are at the conceptual level, rather than the
technical level. Tripwire as a product, has many technical advantages such as letting the system
security administrator interface with programs for various purposes. E.g. if the signature com-
putation algorithms provided with tripwire are not satisfying, a custom routine can be hooked
into the tripwire product. Tripwire Inc. also provides impressive GUI tools for log acquisition
and such. These features does not add anything to the product at a conceptual level, they are
merely simplified tools.

General file system protection Any file system object can be monitored.

Small overhead The file system integrity check can be performed during low activity periods
thus achieving a small overhead and a small performance impact on the computer sys-
tem.

Self contained Given that the signature database and the administrator tools are immutable,
the tripwire system is self contained. Nor do the tools depend on other libraries or pro-
grams in the operating system, which otherwise could be used to undermine the security
of the tripwire system.

Denial of denial of service If an attacker manages to penetrate a tripwire guarded system and
manages to modify files, the system does not halt or stop functioning.

3.4.3 Disadvantages

Integrity checks are done on command Integrity checks are done periodically on command.
Depending on the period time, the attacker is given an open time window to work in. If
the period time is big, say 24 hours, then the attacker has 24 hours to “do the job”. On the
other hand, making the period too small, say 5 minutes, then there is a high performance
impact on the system - verifying the integrity requires intensive calculations. This is a
trade off which needs careful considerations - higher security of higher performance?

Integrity checks must be done on command The tripwire tools are applications which are run
in user space. This means that tripwire have no access to kernel internal functions and
data structures. Thus it is not possible to perform integrity checks on a monitored file
directly after it has been accessed.

Weak trust The trust model is based on the fact that tripwire will perform its task correctly.
If the files themselves cannot be trusted to begin with, the model fails, even if tripwire
performs its task correctly.

3.4.4 Summary

Tripwire does a great job of monitoring any kind of file system object. However, the system has
a trade off: high security/low performance or low security/high performance.





Chapter 4

Proposed Model

4.1 What does it do?

4.1.1 Overview

This model considers two stages of program execution; before execution and during execution.
Before execution means after a BEC (Binary Executable Content) has been requested to execute
but before it has been loaded into memory by the operating system kernel. During execution
means after the BEC has been loaded into memory. Before execution will later be referred to as
stage 1 and during execution will later be referred to as stage 2.

4.1.1.1 Stage 1 - Before Execution

The standard text editor that comes with the operating system is used to produce text docu-
ments. Users of the operating system know that the text editor edits text and nothing else. It
is considered a known BEC assuming that there is no trojan code in the editor. If a user of the
operating system has second thoughts about the standard text editor, the user may acquire a
different one from the Internet or perhaps from a friend. The newly acquired text editor is not
a known BEC, since it has not been used on a daily basis, in fact it has not been used at all.
Because of that, the BEC is considered unknown.

The terms known and unknown are weak. A user may know of a program in advance, a
friend may have talked about it or the user may have read a good review, but has still not run
it once. The user cannot know in advance how the program is going to execute. Therefore a
stronger term needs to be introduced; trust.

How can the user trust that the program will do what it claims? The user cannot do that,
unless given the source code of the program, which could then be analyzed. But this is seldom
the case, programs are usually distributed in binary form which are much harder to analyze.
It is easy to back this fact up just by visiting the most popular shareware sites on the Internet
or by reviewing the distribution of any proprietary software. To analyze proprietary programs,
it has to be reverse engineered, which is not always legal depending on the laws for which the
user must abide. Because of this, the users trust must be directed to something other than
the program. If the user trusts the vendor which produced the program, then the user can
transitively trust the program.

In this model, trust for a BEC is established iff the BEC has been signed by a trusted entity.
A signature in this context is conceptually equal to the old way of sealing documents. After

a document had been written, it was folded up and sealed with a wax mold. This would assure

27



28 CHAPTER 4. PROPOSED MODEL

that no one had read or modified the document before it was opened again. And finally a stamp
was pressed into the wax mold, making the document authentic. A BEC is signed so that its
origin is possible to determine, and if it has been modified since it was signed.

It is important that, after trust has been established with a BEC, the trust is not misused. It
should not be possible to modify the BEC after it has been signed without breaking the seal.
Nor should it be possible to forge a signature to produce a new seal. This model addresses this
by use of cryptographic methods, which makes it very hard to break.

This stage of the model does not make a distinction between programs and other BEC files.
The reasoning is simple; Most operating systems today use dynamic linking and loading. This
means that BEC files such as function libraries are not aggregated with the program file. On
the contrary, such BEC are put into files of their own. These BEC files are then loaded dynami-
cally when the program which uses them starts. Function libraries are not aggregated with the
program BEC until it has been activated - i.e., it has become a process. Since BEC files such as
function libraries are separated from the program, the behaviour of a program may change if
the function library is modified.

What has been described above constitutes the first stage of this model; Only trusted BEC
files are allowed to execute. Stage 1 is depicted in figure 4.1. It acts as a guard against executing
untrusted BEC files.

Proposed Model − Stage 1

Untrusted BEC

Trusted BEC

Non−Executing environment

Executing environment

Figure 4.1: A simple view of the proposed models first stage

4.1.1.2 Stage 2 - During Execution

When a program is executing, it has access to the operating system services. These services
include means of communication with the outside of the computer system, manipulation of
file system objects, execution of other BEC files, interprocess communication and etc. From
a security perspective, all these services should not be available to all programs. Again, the
principle of least privilege rules. A program whose functionality is to count words in a text file,
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should never have the access to open network connections, executing other programs etc. It
should only be given access to open and read files.

Stage 2 of this model restricts a programs access to operating system services. This is achieved
by introducing a concept called access control rule. An access control rule is a rule that grants
access for a program, to an operating system object with an access right. An operating system
object may be a file, process, network connection etc. Access rights may for instance be read,
write or execute. This allows for fine grain access control of programs which promotes the prin-
ciple of least privilege. In short; stage 2 of the model is a reference monitor. Conventional
reference monitors view processes as “extensions” of the user. The programs acts on behalf
on users, thus the subject being monitored is the process using the priveliges specified for the
user who started it. This model views the process as an extension of the program, rather than
the user. Thus the subject being monitored is the process using the priveliges specified by the
program.

Figure 4.2 shows a simple scenario where a program is granted read access to a specific file.

file.ext

Program PExecuting Programs

Access Control Rules

Proposed Model − Stage 2

read write

Provides Information

Operating System Objects

(P, file, "file.ext", read)

Figure 4.2: A simple view of the proposed models second stage

4.1.1.3 Summary

In the conventional user access control model, users must log on, or authenticate themselves,
to the system in order to use it. While being logged on, users are restricted by the access control
mechanisms in the operating system, such as file access bits or access control lists. The pro-
posed model treats BEC files similarly to that of users in the above model. Before BEC files are
allowed to execute in the system, they must first authenticate themselves, i.e. “log on”. During
execution in the system, the BEC’s must adhere to the access control mechanisms. A program
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executed by a user, must not only adhere to the users access rights, but it must also adhere to
the access rights given to the BEC file which constitutes the program.

4.1.2 Facets of Stage 1

There are mainly five facets of stage 1:

• Authenticity

• Integrity

• Trusted signers

• Defence against attackers

• Virus protection

4.1.2.1 Authenticity

Authenticity in this model is important. If the origin of a BEC cannot be established, then trust
cannot be established.

4.1.2.2 Integrity

Integrity is equally important as authenticity. If a BEC has been signed by a trusted signer, then
the BEC is trusted to begin execution. If the BEC is modified by an untrusted entity (attack-
ers, viruses and etc.) after signing, it is important that the model does not establish trust with
the BEC. Trust is established under the premise that the BEC was produced and signed by the
trusted entity.

4.1.2.3 Trusted Signers

In order to enforce denial of execution of untrusted BEC files, the system must maintain a set
of trusted signers. The computer system cannot compute if the signer of a BEC is trustworthy
or not. Trust is a concept based on human factors such as ethics and morals. Therefore the
organization of humans which owns and maintains the system, must decide what signers can
be trusted enough to run their BEC files. When a signer is decided to be trusted, information
about the signer is added to the set of trusted signers.

This model assumes that the decision is ultimately correct - a trusted signer will not act un-
trustworthy. Preferrably, there should be some kind of legal binding with the signer. If a signer
acts in an untrustworthy way, then it should be possible to revoke the trust earlier established.
And then, of course, take some legal action against the signer based upon the “trust agreement”.

4.1.2.4 Defense Against Attackers

This model offers great defense against system attackers. Attackers are individuals who exploit
weaknesses in system software to escalate their privileges to such extent that they can recover
secret information, spread disinformation (modification of information), use the system for
their own purposes, or perform some malicious act upon the system (removal of files, hard disk
corruption and etc.). Attackers are never welcome, whether their actions are benign or not.
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Attackers use tools and techniques to hide their presence, escalating privileges, sniff net-
works for password or install back doors. This involves downloading source codes to the at-
tacked system, or writing source code on the system using the standard text editor. The source
code is then compiled into programs (BEC files). By requiring that BEC files must have been
signed by a trusted signer, the attacker runs into problems. The attacker cannot execute his or
her tools. This makes the “job” for a hacker extremely difficult.

4.1.2.5 Virus Protecion

This model offers minimal defense against computer viruses. Viruses are programs that “in-
fect” other programs. When a program is infected by a virus, it generally performs some sort of
malicious action. The most common is to delete files, alter partition tables, or perhaps perform
a practical joke on the behalf of the program user. In some cases the virus does not perform any
action. What all viruses have in common is that they infect other programs in the system. Even
if a virus does not perform malicious actions, they do degrade the system as a whole. Infection
of a program means that code is injected into a program file, i.e. a modification of the program
file. This gives extra overhead information in the file system, thus the file system is degraded.
The virus is also consuming CPU cycles and primary memory when executing, thus degrading
memory and CPU utilization. Any kind of degradation is not acceptable.

If a BEC is infected with a virus and then signed by a trusted signer, the virus is then part of
the trusted BEC. Thus it is not possible to detect the virus. However, vendors generally do not
release virus infected programs. Programs are scanned for viruses before put on media. Virus
infected code which have been signed may not be detectable by this model, but the model slow
down the spread of the virus. If it infects a BEC in the system, that BEC will not be able to
execute later on. The virus itself may not be detected by the model, but its effects will quickly
be detected when BEC’s start to show up as “defect”.

It could be argued that this minimal virus protection becomes a denial of service weakness.
However, viruses are only given access if they are part of a trusted BEC. Then it is questionable if
one should sign a BEC which has not been cleared by a virus scanning tool. There is a plethora
of anti virus toolkits, which can scan BEC files for viruses. This model does not try to eliminate
the need for these tools. On the contrary, these tools complement the model. Although new
viruses not known by any scanner may go undetected into a BEC, their spread is slowed down
by the model.

4.1.3 Facets of Stage 2

There are mainly three facets of stage 2:

• Software Exploitation Protection

• Trojan Protection

4.1.3.1 Software Exploitation Protection

If access control rules are set up correctly, it becomes harder to exploit program faults. A com-
mon attack on computer systems connected to the internet, is to exploit some fault in a server
program. The goal of the exploit is to change the state of the computer system so that secu-
rity mechanisms, such as authentication, are crippled. A common angle of attack is to make
the server program overrun buffers so that it is forced to execute system calls that it was not
intended to do. These system calls generally operate on operating system objects which the
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server program was not designed to operate upon. If these objects are excluded from the ac-
cess domain of the program, then it becomes considerably harder to exploit the faults in the
server program.

4.1.3.2 Trojan Protection

Programs are restricted to what objects they can access and with what access right. Given cor-
rect access control rules, it is hard for a trojan to perform operations which the program was
not intended to do.

4.2 How Does It Work?

4.2.1 Stage 1

4.2.1.1 Signature Information

Signature information is attached to BEC files as an attribute. The signature information con-
tains information about the signer and information about the BEC files state during signing.
All signed BEC files have this information. Unsigned BEC files do not. Unsigned BEC files are
always considered not trustworthy.

The signature itself must be very hard to forge. There are several techniques for digital sign-
ing and authentication which will be covered in detail in section 5.1.

4.2.1.2 Trusted Signers

The proposed model assumes that all signers are initially not trustworthy. When the organiza-
tion, which owns the system, confirms that a signer entity (individual or organization) is trust-
worthy, information about the trusted signer is added to the system. This means that only BEC
files signed by a trustworthy signer may be allowed to execute in the system. In this respect the
model is very defensive. It could be argued that it should be the other way around, where rules
are rejection rules, or a mix thereof for greater flexibility. This however is in conflict with the
principal rule of secure systems; The principal of least privilege. If there is a need to reject some
signer, the damage may already have been done at the time of revocation of the trust. Therefore
it is better to take a more defensive approach.

Trusted signer information constitutes an identifier for the signer and a public key. The
identifier uniquely identifies a signer. The public key is to be used for signature checking mech-
anisms.

4.2.1.3 Handling of Trusted Signer Information

When information about a trusted signer is transferred to the system, certain measures have
to be taken into account. An arbitrary user of the system may not add new information about
trusted signers. By giving all users in a system the privilege to do so, it becomes harder to restrict
what can be executed or not. Users shall be given minimal privileges to perform their duty - the
principle of least privilege. Therefore it is wise to appoint a single user in the system whose duty
is to maintain the policies, and let all other users perform other duties, such as text editing.

This model assumes that each user has a security class attribute. This attribute can have
two values; Security Officer or Ordinary User. The security officer is the user whose duty is
to maintain the trusted signer information. The security officer role is given to a user by the
organization which owns the computer system. The decisions on what signer is to be trusted
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or not are taken by the organization. When decisions have been made, the security officer is
notified to perform necessary system updates to reflect the decisions. Figure 4.3 gives a more
detailed view of the first stage, showing how information flows from the organization to the
computer system via the security officer.

Untrusted BEC

Trusted BEC

Executing environment

Non−Executing environment

Security Officer

Computer World

Real World

signers
trusted
DB of

Ordinary User

Human Communication

Org. Representative

Trusted Vendor

Tru
sts

Signed

Proposed Model − Stage 1

Administrates

Figure 4.3: A detailed view of the proposed models first stage

4.2.1.4 Execution of BEC files

When a BEC is requested to be executed, the following algorithm must be performed:

1. Test to see if it was signed at all. If not, then the BEC is not trustworthy.

2. Acquire the id of the signer found inside the signed BEC.

3. Lookup signer information in the set of trusted signers, using the id from the BEC file. If
there is no trusted signer with that id, then the BEC is not trustworthy.

4. Use the public key associated with the trusted signer id to decrypt the signature found
inside the BEC.

5. Calculate a digest of the BEC.

6. Compare the decrypted signature with the calculated digest. If equal, then the BEC is
trustworthy.
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4.2.2 Stage 2

4.2.2.1 Processes

Stage 2 of this model is a reference monitor. It monitors and regulates processes in the system.
Processes are BEC files which have been executed. One of the executed BEC which constitutes
a process is called the program BEC, and it is the subject of monitoring. This is the BEC which
was requested to execute. If this BEC also dynamically links and loads BEC files such as function
libraries, the dynamically linked BEC files are also executed. The dynamically linked BECs will
then adhere to the rules defined for the program BEC. The view on a process in this model is a
set of BEC’s where one BEC is distinct from all other BEC’s.

4.2.2.2 Access Control Rules

Access control rules describe what access a program has on a given operating system object. If
there is a rule r for a program BEC p, then all processes initiated by p must adhere to the rule r.

4.2.2.3 Access Control

When a process p requests r access to an operating system object o, the following algorithm is
performed:

1. Acquire a reference to the program BEC b which initiated process p.

2. Find an access control rule which matches b, o and r. If no such rule is found, reject the
request.

3. If the found rule has been revoked, reject the request.

4. Accept the request.

4.3 Comparisons

The main points addressed by the proposed model are:

origin of BEC files Only BEC files with a known and trusted origin may begin execution.

functionality of BEC files Programs shall be constrained based on its intended functionality.

Tripwire is a tool which can monitor any file system object. It is conceivable that it could
be used to monitor BEC files. However, tripwire cannot distinguish between trusted BEC files
and ordinary BEC files. There is no concept of origin in the tripwire model. It can only detect
changes within a file system. Tripwire does not provide any means for access control, only in-
tegrity verification. Another drawback with tripwire is that it is not actively check file modifying
operations on each access. There is always a time window where the system is in an unknown
state. Therefore tripwire does not really address any of the main points.
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ActiveX’s Authenticode is used to determine the origin of a BEC file. However, there is no
concept of trust in the same manner as in the proposed model. Trust in the Authenticode model
is based on identity - is the signers identity trustworthy? Trust in the proposed model is based
on the signer rather than the identity of the signer - is the signer trustworthy?. Based on this
reasoning, Authenticode cannot address the origin of BEC files as is needed. Authenticode does
not attempt to regulate the functionality of BEC files at all. Therefore the Authenticode model
cannot address any of the main points.

Java has the concept of security manager which comes close to the proposed model. How-
ever, there is a major difference in what is done when the origin of a BEC file is not determined
or is not considered trusted; Java continues execution of the BEC within a “default sandbox”.
The proposed model does not allow such execution. Therefore, the java security model is not
compatible with the proposed model and can therefore not adress all of the main points.

4.4 Formal Model

4.4.1 State Variables

4.4.1.1 System State Σ

The system state is denoted as Σ = {E,B,D,U, sign, role, origin, id, pkey, deleted}

Σ Components
B The set of available BEC files
D The set of trusted signer information
E The set of BEC’s in execution
U The set of users in the system
A The set of access control rules
P The set of processes
CA The set of current accesses
R The set of access rights
BR The set of removed BEC files

Table 4.1: System State Variables

4.4.1.2 B Variable

B is a set variable which represents all available BEC files.

4.4.1.3 D Variable

D is a set variable which represents trusted signers. A trusted signer is represented with a triple
containing: an id, a public key and a revocation flag - (id, pkey, flag). The id identifies the
trusted signer. The public key is the signers public key. The revocation flag tells if the signers
trust has been revoked.

4.4.1.4 E Variable

E is a set variable which represents activated BEC’s.
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4.4.1.5 U Variable

U is a set variable which represents the users in the system.

4.4.1.6 A Variable

A is a set variable which represents access control rules. Each rule is represented with a quadru-
ple containing a BEC reference, an object reference, a set of access rights and a revocation flag -
(b, o, r, f lag). Note that r ∈ R.

The meaning of the quadruple is; An executing instance of a BEC (BEC reference) may ac-
cess an object (object reference) with a given access right.

The revocation flag indicates that the access rule has been revoked.

4.4.1.7 P Variable

P is a set variable which represents the processes in the system. A process is a tuple of execut-
ing BECs - (e0, ..., en). One of the executing BECs within a process tuple, e0, originates from a
program BEC. Remaining executing BECs, e1...en, are function libraries. Any access to an object
from any of the executing BECs must adhere to the access control rule defined for e0.

4.4.1.8 CA Variable

CA is the set of current accesses, or currently accepted accesses. Each CA element is a triple
(p, o, r) where p is a process, o is an object and r is a set of access rights. Its meaning is p has
access rights r to object o.

4.4.1.9 R Variable

R is a set variable which represents available access rights for any object in the system. These
values are:

Access Right Values
r Read access
w Write access
a Append access
e Execute access

Table 4.2: Access Rights

4.4.1.10 BR Variable

BR is a set of removed BEC files. Whenever a BEC is removed from the system, it is moved from
the B set to the BR set. The use of this set is important as we shall see in section 4.4.5.3.

4.4.2 Security Attributes

Security Attributes
sign(b) Signature of BEC b
role(u) The role of the user u.
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origin(e) The origin of an executing BEC e which
is a BEC. The BEC may originate from ei-
ther the B set or the BR set.

id(b) The signers id of a BEC
revoked(d) Revocation flag value of a signer infor-

mation triple
pkey(d) The public key of a signer information

triple
program(p) The program BEC file of process p
access right(a) The access right of an access control rule

Table 4.3: Security Attributes For System Variables - Stage 1

4.4.3 Functions
Functions in the System

digest : b 7→ dig Calculates a digest dig of a BEC
b

decrypt : k × d 7→ d′ Decrypts data d using key k
activate : b 7→ e Axiomatic function which

transforms a BEC b to an
executing BEC e.

lookup : id 7→ d Looks up signer information
triples based on the signer id.
Lookup is performed over the D
set. It is assumed that id is valid.

Table 4.4: Functions

4.4.4 System Invariants

A BEC is properly signed if it follows the rule

properly signed(b) = b ∈ B ∧ decrypt(pkey(lookup(id(b))), sign(b)) = digest(b) (4.1)

The signature found in a BEC file is a digest of the BEC, encrypted using the private key of
the signer. If a decryption of the signature using the signers public key results in a digest that is
equal to a recalculated digest, then the following can be concluded;

authenticity The private key was used to encrypt the signature. The private key is only known
by the signer, thus the signer and no one else must have encrypted the signature.

integrity The signature is an encrypted digest of the BEC file. If the decryption of the signa-
ture yields a digest equal to a digest recomputation, then the BEC file cannot have been
changed after it was signed.

Further more, a properly signed BEC must have been signed by a trusted signer who is rep-
resented in the D set. The function lookup() ensures that the public key used comes from the D
set.

At any given point in time, the following invariant must hold for the system

System Invariant: ∀e ∈ E : properly signed(origin(e)) (4.2)



38 CHAPTER 4. PROPOSED MODEL

The system invariant says that for all executing BECs, the origin of the executing BEC must
be properly signed. The origin of an executing BEC is a BEC file.

Another invariant in the system is that no process shall have more accesses than what is
allowed by the set of access control rules. Therefore, the CA must adhere to the following in-
variant:

Access Invariant: (p, o, r) ∈ CA⇒ (program(p), o, r, T rue ∨ False) ∈ A (4.3)

As one can see is that the access invariant does not respect the revocation flag for a particular
access control rule. This means that a process will not be affected by a access control rule
revocation while it is running. A revocation will only affect new processes which are executed
after the revocation. This is to ensure that data integrity is preserved for any process. If a process
is holding a access rights to an object and the access control rule has been revoked, the process
must be terminated in order to release the access rights. Preferably such a process should be
gracefully terminated so that it can preserve data integrity.

4.4.5 State Transition Functions

4.4.5.1 System Variable D

Since the system invariant indirectly depends on the set of trusted signers, the D set, all mod-
ifying operations on the set must be constrained. Operations are requested by users. Not all
users may be granted requests to modify the set of trusted signers. Only trusted users may do
so. In this context, a trusted user is a user which have been appointed the Security Officer role.
All users have a role attribute. The attribute may have one of two values:

SecOfficer The user has the Security Officer role

OrdUser The user has the Ordinary User role

To accept a new signer as a trusted signer, the user issuing the request must have been ap-
pointed the security officer role.

proc accept signer(u, i, pk) ≡
if role(u) = SecOfficer

then
D ← D ∪ {(i, pk, False)}

Figure 4.4: State Transition Function: accept signer

Note that the revocation flag is false by default.
To revoke a trusted signer, the user issuing the request must be a security officer.

proc revoke signer(i, u) ≡
if role(u) = SecOfficer

then
entry = lookup(i)
D ← (D − {entry}) ∪ {(i,pkey(entry),True)}

Figure 4.5: State Transition Function: revoke signer

Note that the effect of this state transition rule has only changed the revocation flag in the
signer information. Also note that the id i must be a valid signer id.
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4.4.5.2 System Variable E

Before a BEC can be activated, it must be properly signed. The trust for the signer of the BEC
must also not have been revoked.

proc add to execution(b) ≡
if properly signed (b) ∧ ¬revoked (lookup(id (b)))

then
E ← E ∪ {activate(b)}

Figure 4.6: State Transition Function: add to execution

To remove an active BEC from memory, there are no constraints. Removing an active BEC
from memory could not break the system invariant.

4.4.5.3 System Variable B

When removing a BEC it must be done so that the system invariant is preserved. The only way
to do so is by removing the BEC from the B set and put it in the RB set (the set of deleted BEC
files). Also, when adding a BEC file to the system, there may not be a BEC file in both B and
BR, because this would violate the semantics of these sets. Therefore there is a constraint on
adding and removing BEC files to and from the B set.

proc add BEC (b) ≡
B ← B ∪ {b}
BR← BR− {b}

Figure 4.7: State Transition Function: add BEC

proc rem BEC (b) ≡
B ← B − {b}
BR← BR ∪ {b}

Figure 4.8: State Transition Function: rem BEC

4.4.5.4 System Variable U

Ordinary users shall not be able to escalate its privileges by changing its role. Therefore only
security officers may change the role attribute of a user.

proc set role(u, targ u, r) ≡
if role(u) = SecOfficer

then
role(targ u)← r

Figure 4.9: State Transition Function: set role

4.4.5.5 System Variable CA

When a process requests access to an object, the following state transition rule must be ad-
hered:
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proc get access(p, o, r) ≡
if (program(b), o, r,False) ∈ A)

then
CA← CA ∪ (p, o, r)

Figure 4.10: State Transition Function: get access

This rule protects the access invariant and it also considers whether the access rule has been
revoked or not. If the rule is satisfied, then the access rights r on object o for process p is added
to the set of current access rights CA.

4.4.5.6 System Variable A

Access control rules may only be manipulated by the security officer.

proc add rule(u, b, o, r) ≡
if role(u) = SecOfficer

then
A← A ∪ {(b, o, r,False)}

Figure 4.11: System Transition Function: add rule

Note that the revocation flag is initially false.

proc revoke rule(u, b, o, r) ≡
if role(u) = SecOfficer ∧ (b, o, r,False) ∈ A

then
A← (A− {(b, o, r, False)}) ∪ {(b, o, r, T rue)}

Figure 4.12: System Transition Function: revoke rule

Note that the effect of this state transition rule is that the access control rule has only changed
its revocation flag. This means that currently executing processes are not affected, only pro-
cesses started after this transition.

4.4.6 Initial Secure State Σ0

The initial state, denoted Σ0, must be a secure state - i.e., it must fulfill the invariants.

Variable Value
P ∅
B ∅
D ∅
E ∅
U {u}, role(u) = SecOfficer
A ∅
CA ∅
R read,write, execute
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BR ∅

Table 4.5: Initial Secure System State Σ0

Of course, if the invariants are fulfilled, then all succeeding states are also secure.





Chapter 5

Implementation Issues

5.1 Signature Cryptography

Digital signatures can be devised in primarily two ways;

• by the use of an explicit digital signature scheme

• by the use of a public-key encryption scheme combined with a secure hash algorithm

In [BS96] several schemes for digital signatures are presented. These are listed in table 5.1.
One of the listed scheme will be selected for the implementation of the proposed model.

Public-Key Crypto Schemes
Scheme Patent
RSA no
Pohlig-Hellman yes
Rabin no
ElGamal no
McEliece no
LUC yes

Public-Key Signature Schemes
DSA yes - royalty free
GOST R 34.10-94 no
Ong-Schnorr-Shamir yes
ESIGN yes
ElGamal no

Table 5.1: Digital Signature and Public-Key Crypto Schemes

Patented technology should not, in the authors oppinion, be used in academic research for
mainly one reason: research results should be available and usable to and by anyone pursuing
knowledge. Based on this statement, all patented algorithms listed above are disregarded for
use in an implementation of this model.

43
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5.1.1 Encryption Schemes

RSA is a public-key encryption scheme developed by Rivest, Shamir, Adleman [RSA78], hence
the name RSA. This scheme used to be protected by a patent in the USA, but expired the 20th
of september 2000.

The RSA scheme includes algorithms for creation of keys, decryption and encryption of
data. What is interesting for the implementation of the proposed model is the decryption algo-
rithm which is used during authentication of BEC files.

The security of the scheme is based on the problem of factoring large numbers into prime
factors. The problem of factoring large numbers into primes is a hard problem and is thus
not computationally feasible. The large numbers referred to are the three components in the
scheme; public key, private key and a modulo. The modulo component is the component which
determines the hardness of the factoring problem. This modulo component is generally a num-
ber of size 2512 and larger. This number determines the key-length in bits for the scheme. It is
the exponent, 512 in this case, which is called the key-length.

The security of the RSA scheme depends on the speed of todays computers. It has been
shown that the RSA scheme using key-length of less than 768 bits, is not secure [RSA] because it
can be broken by very fast computers. As computers become faster and faster, larger problems
can be solved within shorter times. In essence, the scheme is as secure as the key-lengths used
in combination with available computing power. Since the scheme does not put an upper limit
on the key-length, the scheme scales well as computing power increase.

The scheme has received great acceptance, and is one of the most widely used public-key
cryptography scheme, it is the de facto standard [RSA]. It has undergone major scrutiny since
it was first introduced. So far, breaking the RSA scheme is not feasible for strong keys. Strong
keys are such keys that fulfill certain criterias listed in [BS96], [Moo92]. Considering that the
weaknesses of RSA are well known, it is relatively fast compared to other public-key schemes
[BS96], and that RSA scales, RSA is a strong candidate for the implementation of the proposed
model.

A mathematical description on the RSA scheme is given in [BS96] pp 466 - 474, [Gar00] pp
161 - 171 as well as the original paper [RSA78].

Rabin [Rab79] is a public-key cryptography scheme which is based on the problem of finding
square roots modulo of a composite number. According to [BS96], this problem is equivalent
to factoring (RSA problem).

Just like RSA, the scheme includes algorithms for creation of keys (public and private) as
well as encryption and decryption of messages. What is interesting for the implementation of
the proposed model is the decryption algorithm which is used during authentication of BEC
files.

This scheme has one shortcoming in the respect on how decryption works. The decryption
algorithm gives four distinct messages, where only one is the original message. As stated in
[BS96], this becomes a problem if the message is not in a structured format such as English text.
One solution to the problem is to add a message marker to each message which is known by the
decrypting party. The scheme has since it was published, been redefined [Wil80], [Moo85],
[Moo86], so that the “four messages shortcoming” has been solved. However, as pointed out
in [BS96], these redefinitions have made the scheme vulnerable by chosen ciphertext attacks.
Therefore Rabin is not a very strong candidate for the implementation of the proposed model.

A mathematical description of Rabin is given in [BS96] pp 475 as well as in the original paper
[Rab79].
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ElGamal is a scheme which can do both encryption and digital signatures without the need
of hashing. The scheme [ElG86] is based on the problem of calculating discrete logarithms in a
finite field.

The scheme specifies how keys should be generated and how encryption, decryption and
signing is performed. What is interesting for the implementation of the proposed model is the
decryption algorithm which is used during authentication of BEC files.

When using the ElGamal scheme for signatures and encryption/decryption, signatures and
ciphertext expand to twice the size of the original message due to the nature of the scheme.
This adds much overhead to storage needed for encrypted messages and signatures.

When messages are signed, a random value k is picked. This k makes the scheme work.
However, it is also the weakness of the scheme. The value k may never be reused. If two mes-
sages have been signed using the same k, it is possible to deduce the private key used for ci-
phertext. If the value k is recovered by a third party, then the private key may be recovered.
Thus, k must be chosen carefully and carefully discarded.

Given that keys are generated carefully, ElGamal is a strong candidate for the implementa-
tion of the proposed model.

A mathematical description of ElGamal is available in [BS96] pp 476 - 477 as well as the
original paper [ElG86].

McEliece is a public-key cryptography scheme which is based on algebraic coding theory
[McE78].

Despite the fact that the scheme has withstood cryptanalytic examination and is quite fast
compared to other successful schemes such as RSA, it has not gained acceptance. This is mainly
because of the fact that encrypted messages are double the size of the original messages, and
that the public key grows very large (219 bits long!). Eventhough this scheme is efficient in terms
of time, it has major drawbacks in storage efficiency which renders the scheme as a weak can-
didate for the implementation of the proposed model.

A mathematical description of McEliece is available in [BS96] pp 479 as well as the original
paper [McE78].

5.1.2 Digital Signature Schemes

DSA is a scheme explicitly tailored for digital signatures [NIS91]. DSA is an acronym for Dig-
ital Signature Algorithm. It is patented royalty free by NIST in the USA. Because DSA is royalty
free, it has not been disregarded.

DSA is not an atomic algorithm as the name implies, it is composed by variants of Schnorr
and ElGamal signature algorithms and SHA1 hashing.

DSA has been highly criticized since it was published by NIST. The main arguments against
DSA is that signature verification is slower than RSA (by a magnitude 10-40), the key sizes spec-
ified by the standard are too small [BS96] to guarantee security for the future. Key sizes are not
scalable either, so this scheme does not scale well in the future, unless it is revised. Therefore,
this scheme makes it a weak candidate for the implementation of the proposed model.

A mathematical description of DSA is available in [BS96] pp 486 - 487 as well as the original
paper [NIS91].

GOST R 34.10-94 is the digital signature algorithm defined by the former USSR [Fed94a].
GOST is according to [BS96] very similar to DSA. It is not easy to read the standards since

they are published in russian. Given that the source of information for this scheme is very
limited, this scheme is a weak candidate for the implementation of the proposed model.
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A mathematical description of DSA is available in [BS96] pp 495 - 496 as well as the original
paper [Fed94a].

5.1.3 Summary of Signature Algorithms

McEliece suffers from great storage expansions, it is not feasible for an implementation of the
proposed model. The data base of n trusted signers would be approximately n · 219

8 = n · 216

bytes large! This is unmanagable in terms of primary and secondary memory capacity.

Rabin in its original form has the “four messages shortcoming” thus it is less managable. Re-
definitions of Rabin has led to weaknesses against chosen ciphertext attacks which is not man-
agable from a security point of view. Therefore Rabin is not chosen for an implementation.

DSA is a scheme which does not scale, it has an upper limit on key size. It may be secure
today, but may not necessarily be secure in the future. It is also very slow compared to other
solutions, e.g. RSA + hashing. Therefore DSA is not chosen for an implementation.

GOST R 34.10-94 is a scheme which little is known about. The algorithms used are well
known, but it has not been scrutinized like other algorithms, e.g. ElGamal and RSA. Therefore
GOST R 34.10-94 is not chosen for an implementation.

ElGamal and RSA are the algorithms remaining to chose from. Both algorithms are well
known, and have been scrutinized. Many of the schemes weaknesses have been revealed and
can thus be avoided. The choice is not easy, both schemes scales well into the future in terms of
security. However, ElGamal seems to be the least efficient one - see [BS96] table 19.4 and 19.7.
Therefore, based on efficiency, RSA is chosen for the implementation.

Since RSA is chosen for the implementation, a hashing algorithm is needed since “pure” RSA
cannot be used to produce digital signatures, see section 5.1.4.

5.1.4 Hashing Algorithms

The hash algorithm which this model shall use in an implementation must fulfill two criterias;
it has to be efficient and secure. The efficiency of an algorithm is measured by the time needed
to compute a hash value over a given data size. In this thesis, several hash algorithms have
been evaluated based on efficiency. No security evaluations have been performed, since that is
beyond the scope of this thesis.

The evaluated algorithms are as follows:

SHA-1 Secure Hash Algorithm 1 [NIS92]

GOST GOST R 34.11-94 [Fed94b]

RIPEMD-160 Hashing algorithm developed in the EU RIPE framework [RAC92]

HAVAL 3/160 A one-way hashing algorithm with variable length of output, using 3 rounds and
160 bit digest output [ZPS93]

HAVAL 4/160 Using 4 rounds and 160 bit digest output

HAVAL 5/160 Using 5 rounds and 160 bit digest output
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These algorithms were chosen primarily based on available implementations. The used
implementations of these algorithms come from a software package called Mhash [MS].

The evaluation tests were conducted as follows:

• Each algorithm was tested 20 times. The experiments were conducted on a machine
which only ran the absolutely necessary processes. These processes are idle processes
and only request CPU time when a user is interacting with the computer. Since no user
had access to the machine during the tests, there was a minimum of interference with the
testing process.

• Each algorithm test computed a hash value upon several different data sizes. The test
algorithm is described in figure 5.2.

• The data sizes were [1000, 2500, 5000, 7500, 10000, 25000, 50000, ..., 1000000000] bytes.
The range may seem quite large as the maximum data size is one billion bytes. The size
of BEC files on a Linux system typically range from around 3 kilobytes upto 10 megabytes.
The reasoning behind the large test sizes is to put a bigger perspective on the algorithms.
It may also predict the scalability of the algorithms as BEC file sizes may increase in the
future.

The results of the conducted experiment are somewhat interesting. The diagram in fig-
ure 5.1 shows a non-linear curve for each algorithm for data sizes less than approximately 100
kilobytes, and linear for data sizes larger than 100 kilobytes. It was anticipated that the graphs
would be linear for all data sizes, thus this result is a bit surprising. It seems as if the algorithms
are more effective for small data sizes than large data sizes. The reasons for this lies probably
in the hardware architecture such as CPU caching. It is possible that this curve depends on the
buffer size used in the testing algorithm presented in figure 5.2. However, since the curve does
not affect the effectiveness in a negative way, no further investigations were pursued.

The diagram in figure 5.1 shows that RIPEMD-160 is the most efficient hashing algorithm.
For one gigabyte of data, RIPEMD-160 has a mean time of approximately 53.9 seconds while
the runner up algorithm, HAVAL 3/160 has a mean time of approximately 71.0 seconds which
is approximately 31.7 percent slower. Based on these experiments and observations, RIPEMD-
160 should be used as the hashing algorithm for the implementation of this model.

5.2 BEC File Format

5.2.1 BEC files

The layout of a BEC file is very straightforward; signature information is simply appended at
the end of the file, see figure 5.3. The major BEC file formats used on the Linux platform are
the ELF - Executable and Linkable Format [TIS93], [Hau98] and the a.out file format. These file
formats do accept arbitrary data at the end of the file. These types of files are parsed based on
the syntactic rules defined for the file type. When the parser is finished, it has parsed the file up
to its logical end, it pays no respect to arbitrary data at the end.

By simply appending the signature information to a BEC, the internal structure of the BEC
file does not have to be addressed. This makes it easy to extend the system whenever a new BEC
file format becomes available. In special cases where a new BEC file format does not accept
arbitrary data appended, then the system needs to be extended to care of the format. In such
cases, the signature information must be carried within some syntactically and semantically
correct construct of the BEC file format.
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Figure 5.1: Hash Algorithm Efficiency Chart / Mean Values
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proc test hash (size) ≡
buffer = allocate bytes(10000); Allocate a scratchpad
hash init(); Initialize hash function
sum = 0;
while sum < size do Hash buffer until size bytes have been processed

length = MIN(10000, size − sum); Test for boundary condition
hash accumulate(buffer, length ); Accumulate hash
sum = sum + length ;

od
end size bytes have now been hashed

Figure 5.2: Generic Algorithm Test Procedure

Signature

Information

BEC File

Beginning of file

Logical end of file

End of file

Figure 5.3: BEC File Format Layout
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5.3 Signatures and Key Handling

5.3.1 Signatures

Signatures shall be computed over the whole BEC file. The signature is then appended to the
file.

5.3.2 Key Handling

The data base of trusted signers contains identifying information and the public key associated
with the signer. X.509 version 3 [CCI89], [Sta00] pp 101-110, [Pfl97] pp 135-140, is to be used
for holding this information. From the models point of view, the tuple (id, pubkey) is an X.509
certificate.

The main motivation for this choice is:

Suitable X.509 version 3 can hold enough information which the model requires

Open Standard X.509 is an open standard

Certificate Authorities are trusted organizations which issue certificates

Revocation It is possible to use the revocation mechanism found in the X.509 standard.

Open Standard is clearly defined in standard texts and has been scrutinized. It does not leak
information which could jeopardize the security.

Certificate Authority When the organization receives a certificate from a signer and the cer-
tificate was issued by a certificate authority, then the certificate is correct.

Revocation of a certificate is possible if the certificate has become invalid after it has been
issued for some reason. It is thus possible to see if a certificate has been revoked since it was
issued and it is possible to remove the signer associated with the certificate from the data base
of trusted signers. This revocation shall not be confused with the revocation of a trusted signer.
The revocation of a certificate is equal to not trusting the identity of the signer while revocation
of a trusted signer is equal to not trusting the signer. In mathematical terms: revocation(certificate)⇒
revocation(trustedsigner).

5.4 System Environment

5.4.1 Operating System Objects

This section lists and describes the operating system objects which programs may manipulate.
These operating system objects were found after reviewing the operating system directly and
after research in [Fis01].

The operating system objects which the implementation shall regard are as follows:
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Object, Target and Access Table
Target Class Object Ref Access Rights
Clock - Write
Device type:major:minor Create, Remove, Read, Write
Directory /a/directory Read, Write, Execute
File /a/file Read, Write, Execute
FS Object Attribute /an/fs/obj/path Read, Write
FS Mount Point /dev/dev:/mnt Add, Remove
Kernel Module /a/module Add, Remove
Process /a/program[:sig] Signal, Trace
Socket IPC protocol:address Connect, Listen, Read, Write
System - Reboot, Halt, HWAccess
SysV IPC key Create, Remove, Read, Write
SysV IPC Attribute key Write
Swap /dev/dev:prio Add, Remove

5.4.1.1 Clock

The system clock is a resource which many processes in the system may depend on. Therefore
modifications of the system clock must be restricted.

A program may be given the following access rights:

Write The program may modify the system clock

5.4.1.2 Device

A device is a communication channel with a peripheral unit or some kernel service. A device
is named by two numbers; the major and minor number. Since devices may be communica-
tion channels with hard disks and other sensitive peripherals, modification of devices must be
protected.

A program can be given the following device access rights:

Create The program may create a device of given type, major and minor number

Remove The program may remove a device of given type, major and minor number

Read The program may read from a device of given type, major and minor number

Write The program may write to a device of given type, major and minor number

5.4.1.3 Directory

A directory object is named using its absolute path which is unique for any file system object.
A program can be given the following directory access rights:

Read The program may search the directory

Write The program may add or remove entries in the directory

Execute The program may enter the directory

The access right semantics mimic those which already exist for the user access control mech-
anism.
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5.4.1.4 File

A file object is named using its absolute path which is unique for any file system object. A
program can be given the following file access rights:

Read The program may read the contents of the file /a/file

Write The program may modify the contents of the file /a/file

Execute The program may execute the file /a/file as a program file

The access right semantics mimic those which already exist for the use access control mech-
anism.

5.4.1.5 File System Object Attribute

File system object attributes are meta information. They describe any file system object. Such
information may be ownership, time of creation, user access control information etc.

The reason for separating the access control on file system object contents and attributes
is that there are scenarios where a program is allowed to modify the contents of a file, but may
not change the user access control information. Such a program could be an user editor. It may
need to update the database of user information, but it may not change attributes of the file
such as file owner.

A program can be given the following file access rights:

Read The program may read the file system object attributes for object /an/fs/obj/path

Write The program may modify the file system object attributes for object /an/fs/obj/path

5.4.1.6 File System Mount Point

The UNIX file system allows “merging” of file systems into a single file system. When a file
system is merged into the file system tree, it is mounted onto a mount point. A mount point in
a file system is a node in the file system tree. When mounted, the tree is extended by the tree
structure provided by the mounted file system. Figure 5.4 shows how file systems is merged
when a new file system is mounted on a mount point.

A file system mount point is referred to as a file system device and a mount point. A file
system device may be a UNIX block device or a file containing a file system image. The mount
point is a path to where the file system tree is to be merged. A program may be given the fol-
lowing access rights:

Add The program may mount the file system tree contained in device/file /dev/dev on the
mount point /mnt

Remove The program may unmount the file system mounted on the mount point /mnt given
that the mounted file system is contained in /dev/dev

5.4.1.7 Kernel Module

A kernel module is a Linux specific feature. It is based on the “plugin” concept. Certain drivers
such as the floppy driver need not be loaded all the time. The floppy is not used very often.
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/

/usr /dev

/hda2 /

/lib /bin /sbin

Containing
Device

/

/usr /dev

/hda2/lib /bin /sbin

mount /dev/hda2 /usr

Figure 5.4: Mounting Device /dev/hda2 Onto Mount Point /usr

When not used, there is no reason to keep the floppy driver in memory all the time using valu-
able memory. The kernel module feature allows the system to be optimized at all times regard-
ing memory. As a short summary, a kernel module can be thought of as a program running in
kernel space and is invoked by the kernel or user space programs depending on its implemen-
tation.

The name of the file which contains the kernel module is the name of the kernel module.
A program may be given the following access rights:

Add The program may add the kernel module contained in /a/module

Remove The program may remove the kernel which was loaded from the file /a/module

5.4.1.8 Process

Process signals are notification signals sent from either the kernel or other processes. What is
unique for a process signal is its destination and signal name. The destination is referred to as
the program name which is a file path. The signal name tells the semantics of the signal. It may
be a TERMINATE signal which causes the process to terminate, or it may be a CHILD signal
which notifies the process that one of its child processes has terminated.

A process may connect to another process p, tracing the different system calls performed by
p. This is useful in debugging purposes, but may provide a security problem. Therefore tracing
processes needs to be regulated.

A program may be given the following access rights:
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Signal The program is allowed to send a signal named sig to any process originating from pro-
gram file /a/program

Trace The program is allowed to trace system calls made by any process originating from pro-
gram file /a/program

5.4.1.9 Socket

Sockets are means of communication with other processes. These processes may be on the
same host machine (UNIX sockets) or they be on a different host machine (TCP, UDP, Raw IP
etc.). Sockets are named by a protocol, e.g. TCP, and an address, e.g. myhost.com:3454.

When establishing a socket connection, one of two access rights is needed. If the program
tries to initiate a connection it needs the right to connect. If the program is passive and awaits
an incoming connection call, it needs the right to listen for the incoming call.

Connectionless protocols such as UDP do not need an explicit connection, therefore reads
and writes to a socket must also be monitored.

A program may be given the following access rights:

Connect The program is allowed to connection to a particular address using a particular pro-
tocol

Listen The program is allowed to listen for an incoming connection call from a particular ad-
dress using a particular protocol

Read The program is allowed to receive data eminating from address using a particular protocol

Write The program is allowed to write data to address using a particular protocol

5.4.1.10 System

The system object is not really an object. It represents an interface to the system rather.
A program may be given the following access rights:

Reboot The program is allowed to reboot the system

Halt The program is allowed to halt the system

HWAccess The program may request access for hardware resources

5.4.1.11 SysV IPC

SysV IPC objects such as memory segments, messages and semaphores are initiated by some
program. Such objects are created by specifying a key which uniquely identifies the object sys-
tem wide. When creating such an object for the first time, the object is marked as owned by the
process requesting the object. The object is also given a set of access rights. These rights are the
same as for files, read, write or execute for user, group and others. Subsequent requests for cre-
ation of objects with the same key yields a handle for the same object, if the process requesting
the object matches the access rights specified for the object.

A program may be given the following access rights:

Create The program may create the SysV IPC object identified by key

Remove The program may remove the SysV IPC object identified by key
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Read The program may read from SysV IPC objects identified by key

Write The program may write to SysV IPC objects identified by key

5.4.1.12 SysV IPC Attribute

SysV IPC objects as mentioned in section 5.4.1.11, has attributes associated with itself.

Write The program may write attributes to SysV IPC objects identified by key

5.4.1.13 Swap

UNIX-like operating system uses a special file system for swapping and paging. These file sys-
tems are added by referring to the device which holds the file system. A priority is also given to
each swap file system, so that the load can be balanced over file systems with different speed
and size capabilities.

A program may be given the following access rights:

Add Adds a swap file system located in device /dev/dev to the kernel. Associated priority is prio

Remove Removes a swap file system located in device /dev/dev

5.4.2 Implementation Environments

5.4.2.1 The Choice of Operating System Environment

Linux The operating system used for the implementation is Linux. Linux was started by its
creator Linus Torvalds in the early 1990’s. Linux has since then grown into a fully functional
POSIX compliant UNIX flavoured operating system.

What is unique with Linux as compared to other operating systems such as Solaris, Mi-
crosoft Windows etc., is that it is totally free. It is not only available free of charge, it is also
free in a more strict definition as per the GNU Public License which Linux is licensed under.
This license says that if anyone makes any modification of Linux, and redistributes Linux with
these changes, then the source code must also be freely available. This ensures that any work
done using the Linux operating system, will remain free and open for all.

There exists a security framework for Linux, also known as RSBAC Linux. This framework is
discussed in section 5.4.2.5.

BSD Another viable operating system would be one of the free BSD variants. However, these
are licensed under the Berkeley Software Distribution License which is not as strict as the GNU
Public License. The BSD license allows anybody to make modifications to the operating system,
and make it a non-open, non-free of charge version. There are also, to the authors knowledge,
no known security framework available for any of the free BSD variants.

GNU/Hurd A third operating system is the GNU/Hurd operating system. It is a micro kernel
based operating system which is in its infancy. Since it is a micro kernel based operating system,
it is very modularized and thus very easy to work with. Modules, also known as servers, can be
inserted and removed in the operating system at runtime. These servers execute in user space,
thus a crash does not bring down the entire operating system, and debugging is a lot easier.
This is ideal for a development environment. But as mentioned, GNU/Hurd is only in its infacy,
and is therefore not as stable as Linux.
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5.4.2.2 Standard Linux Kernel Space Implementation - General Considerations

Security Officer Standard Linux does not provide a security officer user, it only provides the
super user (also known as root) and ordinary users. Therefore the security officer user must
be implemented. Linux must be modified so that the data base of trusted signers may not be
accessible by any other user for modification purposes.

The security officer user must also be a very restricted user. It shall not be possible to login
as security officer in any other way than via the console - i.e., the security officer may only log
in physically at the computer. This means that the user is physically secured. Also, it must not
be possible to change the security officers password as a non-security officer such as root.

Kernel Execution Since the protection mechanisms reside in the kernel, the correct kernel
must be executed at boot time. The installation of a new kernel which does not provide these
protection mechanisms, must be prohibited. Therefore only the security officer may install a
new kernel or modify a running kernel in any way.

5.4.2.3 Standard Linux Kernel Space Implementation for Stage 1

In order to prevent loading untrusted BEC’s into memory, two system calls need to be ad-
dressed:

execve() Called for program BEC’s

mmap() Called for arbitrary files which are to be mapped into memory

execve() The system call in the Linux operating system which loads and executes program
BEC’s is the execve() call. To test a programs authenticity, this system call is intercepted for
testing the signature. If the program BEC is authentic and may be executed according to the
database of trusted signers, then execve() may continue its execution. Otherwise the calling
process is signalled “permission denied”.

mmap() When function libraries and other non-program BEC files are loaded into memory,
there is no single load bec() system call which takes care of this. In fact, function libraries for
instance, are not taken care of in kernel space. When the kernel executes a dynamically linked
program BEC, it looks up a user space interpreter. For example programs using the ELF file for-
mat, a special ELF interpreter is invoked. The interpreters responsibility is to map the function
libraries needed by the program into memory. The actual loading of the function library (and
any other non-program BEC files) is done using the system call mmap(). mmap() maps a file
into memory. This means that the file is accessed via memory pages. These pages are given
access rights. The access rights are read, write and execute. In the BEC file case, the files are
mapped as with the execute access right. If there are any attempts to map a file into memory
with the access right execute, then it has to be tested for authenticity. In this case, mmap() is
intercepted. If the BEC is properly signed, then mmap() is allowed to continue execution as
normal. If not, the calling process is signalled “permission denied”.

Data Base of Trusted Signers To implement the data base of trusted signers, the security offi-
cer user is needed.
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5.4.2.4 Standard Linux Kernel Space Implementation for Stage 2

The operating system object as defined in section 5.4.1 can be manipulated via a limited subset
of system calls. These system calls must be monitored and tested against the access control
rules. These system calls mapping against the access requests are defined in table 5.2.

Object Access Request System Calls
Clock Write stime
Device Create mknod
Device Remove unlink
Device Read open, read
Device Write open, write
Directory Read open, read, getdents, opendir,

readdir
Directory Write open, write, mkdir, creat, un-

link, mknod, link
Directory Execute chdir, fchdir
File Read open, read
File Write open, write, truncate, ftruncate
File Execute execve, mmap
FS Object Attribute Read stat, fstat
FS Object Attribute Write chown, fchown, lchown,

chmod, rename
FS Mount Point Add mount
FS Mount Point Remove umount
Kernel Module Add create module
Kernel Module Remove delete module
Process Signal kill
Process Trace ptrace
Socket IPC Connect socket, connect
Socket IPC Listen bind
Socket IPC Read read, recvfrom, recvmsg, recv
Socket IPC Write write, sendto, sendmsg, send
System Reboot reboot
System HWAccess iopl, ioperm
System Halt reboot
SysV IPC Create shmget, semget, msgget
SysV IPC Remove shmctl, semctl, msgctl
SysV IPC Read semop, msgrcv, shmat
SysV IPC Write semop, msgsnd, shmat
SysV IPC Attribute Write semctl, shmctl, msgctl
Swap Add swapon
Swap Remove swapoff

Table 5.2: Access Request - System Call Mapping

Access Control Rules Data Base This data base must also be protected so that only the secu-
rity officer may modify it.
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5.4.2.5 RSBAC Linux Implementation - General Considerations

RSBAC for Linux is Rule Set Based Access Control for Linux [Ott97], [OF00], [Ott]. It is a frame-
work for implementing access control security models. It is based on the Generalized Frame-
work for Access Control by Abrams and LaPadula et al [Abr90].

RSBAC Linux has several security models implemented such as Bell-La Padula MAC (Manda-
tory Access Control) [BL73], FC (Functional Control), RC (Role Compability), FF (File Flags), Si-
mone Fischer-Hübner PM (Privacy Model), SIM (Security Information Modification) and more.
The system can be configured to use one or more of these models. The models can coexist
alongside each other. A great benefit by using this framework for the implementation of the
proposed model is that it can coexist with these other models - i.e. any subset of the imple-
mented models can function in parallel independently of each other. This allows for a very
secure system. This framework is thus quite capable. RSBAC Linux also has the security officer
user and the infrastructure to support it.

RSBAC is divided into three major components; Access Enforcement Control Facility (AEF),
Access Decision Control Facility (ADF) and Access Control Information (ACI). All system call re-
quests are dispatched through the AEF. The AEF will then query the ADF for a decision whether
the system call request should be granted or not. The ADF will in turn test the request against
all models. If all models grant the request (or the model does not care about the system call),
then the system call request is granted, and the calling process may access the object which
the system call refers to. If any model does not grant the system call request, then a “permis-
sion denied” signal is sent back to the calling process. Figure 5.5 gives a schematic overview of
RSBAC.

AEF and possibly ADF makes use of ACI for storing persistant security attributes. The ACI
is a set of files that resides on a file system. The ACI is protected by the kernel, so that unau-
thorized access is denied. It may only be manipulated by AEF, ADF and possibly system calls
provided by the RSBAC framework.

Future work is to implement EAC as two ADF modules. One ADF module will handle access
control rules, and the other other module will handle verification of signed BEC’s.

The communication between the AEF and the ADF uses a well defined protocol. The pro-
tocol is based on a function call with a specified set of parameters. This function call is then
dispatched to the various ADF policy modules for a decision. The function is named rsbac-adf-
request. The parameters passed to it are as defined in table 5.3.

Parameter Meaning
Request Type Informs the ADF module what the request is. It may for instance

be execute when the ADF modules are asked for a decision on exe-
cution of a program.

Process ID All requests originates from a system call issued by a process. This
parameter specifies the calling process.

Target Type A system call always affect a target operating system object. This
parameter specifies the type of the target, i.e. file.

Target ID This parameter is a handle or reference to the target so that all
properties of the target object may be examined by the deciding
ADF module.
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Attribute Type Targets have a set of security attributes associated. These attributes
may be modified by a system call. If such an attribute is about to
change with as a result of the called system call, the type of the
attribute is passed with this parameter.

Attribute Value The new attribute value set by the calling system call is passed with
this parameter.

Table 5.3: rsbac-adf-request parameters

RSBAC Linux defines a number of request and target types. These can be found in table 5.5.
The table consists of two columns. The first column describes the request type. Also in column
one, the target types which the target request applies to are listed. These target requests are
described in table 5.4. The second column describes the meaning of the target request applied
to the target types.

Target Type Description
FILE Files, including device files
DIR Directories
DEV Devices
IPC Interprocess Communication; SysV IPC and sockets
SCD System Control Data; Objects affecting the whole system. I.e. sys-

tem clock
USER Users
PROCESS Processes
NONE No target

Table 5.4: RSBAC Target Types

Request Type and Valid Targets Description
ADD-TO-KERNEL (NONE) Add a kernel module to the kernel
ALTER (IPC) Modify control data of an ipc-type object
APPEND-OPEN (FILE, IPC) Open a file or ipc-object to append data
CHANGE-GROUP (PROCESS, FILE, IPC,
DIR)

Change the group of a file, directory, ipc-
object or process

CHANGE-OWNER (PROCESS, FILE, IPC,
DIR)

Change the owner of a file, directory, ipc-
object or process

CHDIR (DIR) Change current directory
CLONE (PROCESS) Clone a process
CLOSE (FILE, DIR, IPC) Close an open file, directory or ipc-object
CREATE (FILE, DIR, SCD, IPC) Create a new object
DELETE (FILE, DIR, SCD, IPC) Delete an object
EXECUTE (FILE) Execute a file
GET-PERMISSION-DATA (FILE, DIR,
SCD, IPC)

Read discretionary access permissions
from the an object

GET-STATUS-DATA (FILE, DIR, SCD, IPC) Read object status data
LINK-HARD (FILE) Create a hard link (alias) for the file
MODIFY-ACCESS (FILE, DIR) Modify access information for the object



60 CHAPTER 5. IMPLEMENTATION ISSUES

MODIFY-ATTRIBUTE (USER, PROCESS,
FILE, DIR, IPC)

Modify an attribute of the object

MODIFY-PERMISSION-DATA (SCD) Change discrete access rights
MODIFY-SYSTEM-DATA (SCD) Modify system data (e.g. time)
MOUNT (DEV, DIR) Mount file system to specified mount

point
READ (DIR) Read data from directory
READ-ATTRIBUTE (USER, PROCESS,
FILE, DIR, IPC)

Read attribute of the object

READ&WRITE-OPEN (FILE, DEV, IPC) Open object for reading and writing
READ-OPEN (FILE, IPC, DIR, DEV) Open object for reading
REMOVE-FROM-KERNEL(NONE) Remove kernel module
RENAME (FILE, DIR) Rename file or directory
SEARCH (DIR) Read directory requested by AEF (kernel

internal request)
SEND-SIGNAL (PROCESS) Send signal to process
SHUTDOWN Shuts down the system
SWITCH-LOG Switch logging for ADF module (kernel

internal request)
SWITCH-MODULE Switch ADF module on or off (kernel in-

ternal request)
TERMINATE Inform ADF that the system has termi-

nated the process
TRACE (PROCESS) Trace the process system calls
TRUNCATE (FILE) Delete all data in file
UMOUNT (DIR, DEV) Unmount mountpoint or device
WRITE (DIR) Write data to directory
WRITE-OPEN (FILE, DEV) Opens file or device for writing

Table 5.5: RSBAC Linux requests from AEF to ADF

By using the RSBAC ADF protocol, it is possible to provide access control for the defined
operating system objects. It is also possible to provide verification of signed BEC files.

5.4.2.6 RSBAC Linux Implementation for Stage 1

Stage 1 is implemented in an ADF module of its own. The only request type which is of inter-
est for this module is the EXECUTE request. When such a request is issued, the target file is
then verified against its signature and against the trusted signers. If the verification passes, the
request is accepted, otherwise rejected.

Trusted signer information is stored within the ACI. Adding and removing trusted signer
information is handled by the ADF module. The ADF module will do this by registering a virtual
device to which the security officer may send add- and remove commands. One can argue that
this could be solved by adding extra system calls to the kernel. The decision was made mainly
because of flexibility. A device can be operated using text-based commands which in theory
allows configuration using only common UNIX tools such as the shell. A system call is only
available for compiled programs, while a device is available both for compiled programs as
well as simple shell commands and scripts.
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5.4.2.7 RSBAC Linux Implementation for Stage 2

Stage 2 is also implemented in an ADF module of its own. Since RSBAC works on a lower level
of abstraction, there is not always a one-to-one mapping between RSBAC targets and requests
to this models operating system objects and access requests. Therefore the implementation
has to map the RSBAC targets and requests to identified operating system objects and access
requests. This mapping is shown in table 5.6. There are some mappings which are ambigous,
and will be resolved by looking at the attributes passed to the ADF. Any other ADF request-target
combination is ignored by the implementation, since such mappings have no meaning for this
implementation.

RSBAC Request RSBAC
Target

OS Object Access Re-
quest

GET-STATUS-DATA SCD Clock Write
CREATE DEV Device Create
DELETE FILE Device Remove
READ-OPEN DEV Device Read
READ&WRITE-OPEN DEV Device Read
APPEND-OPEN DEV Device Write
WRITE-OPEN DEV Device Write
READ&WRITE-OPEN DEV Device Write
CREATE DIR Directory Create
DELETE DIR Directory Remove
READ DIR Directory Read
WRITE DIR Directory Write
RENAME FILE Directory Write
RENAME DIR Directory Write
DELETE FILE Directory Write
CHDIR DIR Directory Execute
READ-OPEN FILE File Read
READ&WRITE-OPEN FILE File Read
WRITE-OPEN FILE File Write
READ&WRITE-OPEN FILE File Write
TRUNCATE FILE File Write
GET-STATUS-DATA FILE FS Object Attribute Read
GET-STATUS-DATA DIR FS Object Attribute Read
GET-PERMISSIONS-DATA FILE FS Object Attribute Read
GET-PERMISSIONS-DATA DIR FS Object Attribute Read
CHANGE-GROUP FILE FS Object Attribute Write
CHANGE-GROUP DIR FS Object Attribute Write
CHANGE-OWNER FILE FS Object Attribute Write
CHANGE-OWNER DIR FS Object Attribute Write
MODIFY-ACCESS-DATA FILE FS Object Attribute Write
MODIFY-ACCESS-DATA DIR FS Object Attribute Write
MODIFY-PERMISSIONS-
DATA

FILE FS Object Attribute Write
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MODIFY-PERMISSIONS-
DATA

DIR FS Object Attribute Write

MOUNT DIR FS Mount Point Add
MOUNT DEV FS Mount Point Add
UMOUNT DIR FS Mount Point Remove
UMOUNT DEV FS Mount Point Remove
ADD-TO-KERNEL NONE Kernel Module Add
REMOVE-FROM-KERNEL NONE Kernel Module Remove
SEND-SIGNAL PROCESS Process Signal
TRACE PROCESS Process Trace
CREATE IPC Socket IPC Connect
READ&WRITE-OPEN IPC Socket IPC Connect
READ&WRITE-OPEN IPC Socket IPC Listen
READ IPC Socket IPC Read
APPEND-OPEN IPC Socket IPC Write
SHUTDOWN NONE System Reboot
MODIFY-PERMISSIONS-
DATA

SCD System HWAccess

SHUTDOWN NONE System Halt
CREATE IPC SysV IPC Create
DELETE IPC SysV IPC Remove
READ-OPEN IPC SysV IPC Read
READ-WRITE-OPEN IPC SysV IPC Read
APPEND-OPEN IPC SysV IPC Write
WRITE-OPEN IPC SysV IPC Write
READ-WRITE-OPEN IPC SysV IPC Write
CHANGE-GROUP IPC SysV IPC Attribute Write
CHANGE-OWNER IPC SysV IPC Attribute Write
ALTER IPC SysV IPC Attribute Write
MODIFY-SYSTEM-DATA SCD Swap Add
MODIFY-SYSTEM-DATA SCD Swap Remove

Table 5.6: RSBAC Request & Target Mapping to OS Objects & Access Requests

After RSBAC targets and requests have been mapped into identified operating system ob-
jects and access requests, the objects and access requests are tested against the access control
rules. If there is no access control rule which accepts the request or there any access control
rule which denies the access request to the operating system object, the access request is de-
nied. Otherwise the access request is accepted. The pseudo-code for this is relatively simple as
can be seen in figure 5.6.

Access control rules are kept within the ACI. Modifications to the access control rules are
done via a virtual device registered by the ADF module. The security officer may then add and
remove access control rules by issuing commands to the device.
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Figure 5.5: RSBAC Overview
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proc process request(rsbac target , rsbac request) ≡
(os object , access request) = map rsbac request(rsbac target , rsbac request);
if ¬exists rule for(os object) ∨ is denied (os object , access request)

then
result = DENIED ;

else
result = ACCEPTED ;

fi
end

Figure 5.6: Pseudo-Code for Access Control Rules



Chapter 6

Conclusion

6.1 Future Work

6.1.1 Implementation

As this thesis only specifies a security model and suggests some guidelines for the implementa-
tion, an implementation still remains. An implementation is important to show that the model
works in practice. It is also important to measure it for security, functionality, efficiency and
usability.

6.1.1.1 Security Measure

The security can be roughly measured by trying to exploit well known vulnerabilities and see
if the exploitation works or not. The measure is not very scientific, but it gives an indication
if the security is good enough. Of course, the system must have been configured correctly to
withstand these exploits, so the result depends greatly on the competence of the security officer.
The configuration should preferably be done by me or someone else with an expertise in this
implementation.

6.1.1.2 Functionaliy Measure

It is important that all software can function in a safe manner using this implementation with-
out having to be rewritten. It would be ideal if this implementation could be “dropped into” a
system and then work out of the box when configured properly.

6.1.1.3 Efficiency Measure

If the implementation degrades the efficiency of the system too much, the cause must be inves-
tigated. It may turn out that the implementation could have been better, or that the efficiency
degradation is inevitable.

6.1.1.4 Usability Measure

Usability is important from a security perspective. It should be easily configured, and easy to
comprehend. If not, the likelihood of making an erroneous configuration is bigger, and conse-
quently the likelihood of a security breach is bigger. Usability could be measured by repeating
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the security measuring techniques on several sites with several security officers who have never
used the implementation before. If the results are identical to the measured results described
in 6.1.1.1 are identical, then the usability of the implementation is high.

6.2 Problems

During the writing of this thesis, one problem arised above all other problems1 - the lack of
memory protection in contemporary architectures. The Intel [Int] platform has limited mem-
ory protection capabilities.

6.2.1 Definition of the Problem

The problem lies in how the access control bits work for memory access. There are three de-
fined protection modes for memory access: read, write and execute. Logically, reading from
memory involves fetching data from memory, writing involves updating data in memory, and
execute involves fetching code from memory. Since the Intel architecture does not differentiate
between code and data, the execute access right is equivalent to the read access right. From a
CPU point of view, there is no difference between code and data until it reaches the CPU - there
it is either put in a register or it is put in the instruction queue.

In the implementation of EAC, interception of code execution is done via two system calls:
exec(), mmap(). By controlling these two “code entry points”, all code execution can be con-
trolled. If one tries to execute code in a data buffer, the architecture would deny it because it
would not have sufficient access rights - execute. Only these two system calls can enable the
execute access rights for any type of memory area.

However, since the Intel platform (and possibly other platforms) does not really differentiate
between execute and read access rights - i.e. read implies execute, and execute implies read,
these two system calls are not the only code entry points. In fact, the number of code entry
points are close to infinite. It is for example possible to read data from a file into a data buffer,
and then simply execute it by issuing a lowlevel CPU jump instruction - effectively bypassing
the two entry points.

6.2.2 Workarounds

There are possibly three workarounds for this problem:

• Issue a trouble report to Intel to rectify the problem

• Accept the problem by not controlling execution of non-programs2

• Assume that the kernel always sets the memory access bits so that at least function li-
braries can be controlled

It is not likely that Intel will fix the problem in a near future. Such a fix would require a
significant change of the architecture which would in turn cost Intel money for research and
development. Also, many systems may rely on this “feature” so that a fix could potentially ren-
der many systems non-functional. Therefore Intel would be very reluctant.

1Problems such as defining, explaining, researching and any other normal research problems
2Function libraries etc.
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Simply accepting the problem by not controlling execution of non-programs is not the solu-
tion that I am willing to do. Half of the work presented in this thesis is based on the fact that
exection of code is and must be controlled.

I am however willing to rely on the Linux kernel code base. All programs must be loaded
through the exec() system call, so for program BEC’s, this problem is not an issue. Function
libraries and other BEC’s are different. They are normally loaded into memory by using the
mmap() system call. On an architecture which honours the memory access rights, it would be
possible to force all non-program BEC’s to enter memory via this system call. However, a rogue
program on an Intel architecture may bypass this by just reading the BEC into a data buffer and
then execute it. Since the semantics of the system call read() it is not possible to determine
whether a file is read into memory for data processesing or execution. Under normal operation
this scheme would work well. Rogue programs are not “normal” in this sense.

The security is of course degraded by this architecture deficiency. Stage 1 of EAC can be
compromised by this. Stage 2 however will still continue to function since access control rules
apply to the program BEC, not the function libraries it may have loaded. Program BEC’s must
have been loaded into memory through the exec() system call.

On architectures which honour the memory access rights will of course not degrade the se-
curity of stage 1.





Appendix A

Glossary

A.1 Acronyms

Acronym Explanation
BEC Binary Executable Content
COM Component Object Model
PKCS Public-Key Cryptography Standards
PKI Public-Key Infrastructure
TBD To Be Determined
SysV System V UNIX - a UNIX specification
X.509 CCITT Recommendation for Directory Authentication

Table A.1: Acronyms

A.2 Concepts

Binary Executable Content are files which contain code designed to run natively in the op-
erating system. Examples of such files are program files, function libraries, class libraries, pro-
gram modules etc.

Certificates are digital identification codes. These contain information about some entity, the
certificate holder. They also contain public keys used for encrypted communication between
the certificate holder and some other party. Certficates are also signed, or certified, by certificate
authorities which are organizations which can vouch for the correctness of the certificates. For
more information about digital certificates, see [Pfl97] pp 135-140, [Sta00] pp 73, [CCI89].

Component Object Model is a model invented by Microsoft. It is a model which specifies the
binary layout of objects. Since the binary layout of the objects follows specification rules, any
language can be extended to support COM objects. This means that any language, OO-enabled
or not, can be used to implement or use COM objects.

Computer Viruses are programs whose main purpose is to replicate themselves. Viruses may
be destructive in varying degrees such that they destroy data in the host machine. A more de-
tailed description can be found in [Pfl97] pp 176-195.
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Covert Channels are information channels which leak information. These channels may re-
veal secret information, or information which may lead to a possible system compromise. More
information can be found in [Pfl97] pp 199-207.

Digest is the name of the result when applying a one way hash function over some data.

Digital Signature is meta information about some information, devised using cryptographic
methods. The purpose of digital signatures is to ensure authenticity and integrity of the infor-
mation being signed. For more information see [Sta00] pp 72, [Pfl97] pp 96-97 and [RSA78].

Exploit Script is a program designed to exploit weaknesses in a computer system to escalate
privileges, bypass security mechanisms etc.

Hash Functions are functions which calculate a fixed sized code for any input data. A good
hash function yields major difference in result for small differences in input data. See [Pfl97]
pp 97-99 for more information.

Operating System Objects are entities such as files, directories, IPC facilities and other means
for communication outside the process scope. They are also viewed upon as abstract data
types.

Public Key Cryptography is an assymmetric cryptography scheme. The scheme makes use
of mathematical properties to define a pair of keys for encryption and decryption. One key of
the pair is considered private and may only be known by the key pair owner. The other key is
considered public and may be distributed to anybody. It should not be possible to derive the
private key by knowing the public key. The keys are used for two separate purposes; one key de-
crypts the data, the other encrypts the data. For more information on public key cryptography
see [Pfl97] pp 82-96 and [Sta00] pp 62-72.

Reference Monitor is the part of an operating system which monitors and regulates access to
operating system objects. Its two main properties are 1) it is tamperproof - no rogue process
may circumvent it, and 2) is always invoked - it may never let anything pass by unhandled. For
more information see [Pfl97] pp 293.

SysV IPC is the name of the IPC mechanisms as specified by SysV UNIX. These mechanisms
include support for shared memory, semaphores and message queues.

Trojans are programs which contains hidden functionality. An example of such a program
could be a mail reader application, which not only fetches email and displays them nicely, but
also forwards them to a third party without the consent of the user of the application. A more
detailed description can be found in [Sta00] pp 305-306.
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