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Abstract

TCP is a reliable transport protocol designed for heterogenous networks. To provide a reliable

service over possibly unreliable networks, retransmission of lost or damaged data is performed.

These retransmissions incur a delay and increases the total transmission time. However, certain

applications can make use of damaged data, while taking advantage of the decreased delay cre-

ated by fewer retransmissions. Currently there is no way to allow the applications to access this

data.

This thesis proposes a modification to TCP which would allow applications to decide when

damaged data can be accepted and not. The idea has been implemented in the Linux operating

system. As errors often occur over wireless links, the implementation has been tested with a

number of emulated wireless links. The experiments showed that there are gains to be made by

letting errors through.
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Chapter 1

Introduction

Since the invention of the telephone by Graham Bell, most communication has been transmitted

over wired networks. The networks were first used for voice communication. When the computer

was invented, people wanted it to communicate as well. Reusing the established infrastructure,

the computers could communicate long distances over the wired networks by using modems.

Dedicated networks were built to be used only by the computers, which lessened the need for

analog modulation of the digital signal and provided higher reliability. As technology progressed,

ways to transmit signals without wires were invented. Thecellular1 phone provided wireless

communication to the general public. As in the case of the wired telephone network, people

wanted their computers to be able to communicate without having to be connected with a wire to

the wall all the time. Solutions for this problem have been developed as well, but some difficulties

still remain. Wireless communication mostly uses radio waves as carrier. The physical properties

of radio waves can be likened to dropping a stone in calm water. The water rings spread in circles,

reflects against rocks and fades in amplitude. The same problems occur with radio waves2. They

are reflected against walls and objects in the environment, and fades in amplitude relative to the

distance from the source. These processes make it hard to distinguish what was sent, i.e. a “1”

1Also calledmobilephone in Europe.
2Assuming lower frequencies. At higher frequencies the waves become more and more directed.
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2 CHAPTER 1. INTRODUCTION

can be interpreted as a “0” and the other way around. These problems have however been worked

around pretty well with techniques such as Forward Error Correction interleaving and adjusting

the encoding of information to the radio environment. Upon this foundation, higher networking

layers have been built. Some errors slip through the lower layer anyway (depending on the signal

quality). This then affects the upper protocols, which receive erroneous data from the link layer.

One protocol affected is TCP (see Section2.1), which is the most used transport layer protocol

on the Internet today. TCP was designed to operate in heterogeneous environments. It adapts to

long round trip times and retransmits lost information. However, the problems described above

with wireless communication can severely degrade TCP performance and utilization of wireless

links. This is because TCP misinterprets the cause of lost packets in a wireless environment,

compared to a wired one. Many ideas have been proposed to solve the problem, but one has yet

to be generally accepted.

More and more of the traffic transmitted over the Internet can be classified as multimedia

data. Usually it means video and sound streams. Compared to “regular data” such as documents

or compressed information, multimedia data has a greater user tolerance for quality degradation.

For example, some incorrect pixels in a picture or an incorrect sound sample is harder to per-

ceive than missing text in a document. Thus, a small degradation in quality can be accepted.

Multimedia data also has real-time like demands, compared to opening a document. A delay in

a sound or video presentation is usually quite noticeable and distracting. The cause of the delay

can depend on different reasons, with the network being one of them. In the case of TCP, it pro-

vides a reliable transmission, meaning that lost or damaged data will be retransmitted. Logically,

a retransmission incurs a delay. Concluding the two discussions above, we find that delays can

be reduced at the cost of reliability. As for the data that needs to be retransmitted; it can either

be lost in the network, or reach the destination, but be corrupted. If the data is lost, there is no

option but to request a retransmission, or accept that it is lost and manage without it. However,

if the data is received but corrupted, this gives us a third option. Instead of discarding it, the

application might make use of the corrupted data.
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The objective of this masters thesis is to examine the possibilities of a TCP/IP stack that

does not discard corrupted packets, but can deliver them anyway if so desired. The application

can then control the communication stack to prioritize either quality or transmission delay. The

modified TCP/IP stack is implemented in the Linux operating system. Emulations3 are performed

to show the gains that can be made in terms of delay versus acceptable loss.

The modified TCP protocol is named “TCP Lite”. The reasoning behind the name is that

the protocol builds on TCP, while providing an option to make it more lightweight by accepting

errors. Hence the suffix “Lite”. Parallels can also be drawn to the UDP Lite protocol (discussed

in Chapter 2), which similarly accepts packets with errors but builds upon UDP. It should be

noted that the TCP version in the 4.4BSD Lite operating system is sometimes referred to as

TCPLite, but the two have no connection whatsoever.

The rest of this thesis is structured as follows. Chapter 2 presents background information on

TCP as well as covering other work done in this area: PRTP, UDP Lite, Leaky ARQ, the Snoop

protocol and robust header compression. Chapter 3 analyzes how the problem of accepting

errors could be solved, and proposes to use a receiver-based modification of the TCP stack.

Chapter 4 describes the implementation. It begins with an overview of Linux, how and where

the modification was done and discusses how the application can control TCP Lite. To test the

implementation, we built an experimental environment, described in Chapter 5. The chapter

motivates the experiment, discusses characteristics of wireless links and defines three profile

links used for the experiment. The software used for emulation and implementation of these

characteristics is also detailed. The chapter concludes with a section on how measurements

are collected for the experiments. Chapter 6 discusses and analyzes the results obtained in the

experiments. Finally, Chapter 7 presents a summary of the work done, a conclusion of the TCP

Lite experiments and areas for the future work.

3There is a fine line between emulation and simulation. Our experiments are however classified as emulations,
because of the mixed hardware and software used.





Chapter 2

Background

This chapter presents background information and details other similar projects. Topics include

TCP, PRTP, UDP Lite, Leaky ARQ, the Snoop protocol and robust checksums. Key points and

differences with TCP Lite are discussed where applicable.

2.1 TCP

The Transmission Control Protocol[Pos81b] is the most used transport protocol on the Internet.

It provides reliable stream communication between two processes, usually via the BSD socket

abstraction[Ste98]. To achieve this, TCP has mechanisms for setting up and closing down con-

nections, detecting lost or damaged packets, and requesting retransmission of the lost or damaged

data. More advanced features include the ability to send out-of-band data, round-trip time calcu-

lation, congestion control and negotiating what features are to be used. Features are negotiated

trough an “option” field in the TCP header, making the protocol extensible while keeping back-

wards compatibility.

TCP’s primary carrier is the Internet Protocol[Pos81a], which delivers packets to the correct

host, as determined by the destination address in the IP header, see Figure2.1. The TCP header

5



6 CHAPTER 2. BACKGROUND

then contains a port number to further distinguish to which stream/process the packet1 belongs, as

depicted in Figure2.2 2. In order to detect missing packets, sequence numbers are used, which

are counters of the number of bytes transmitted. The sequence numbers are sent back to the

sender by the receiver, to acknowledge that the packet has been received. If an acknowledgment

is not received within a certain time-frame, the packet is assumed to be lost and is retransmitted.

� �
� �
� �

� �
� �
� �

�
�
�
�

Fragment offset

Header checksum

D
F

M
F

Version Type of service Total length

Fragment Identification

Time to live Protocol

Source IP address

Destination IP address

Header Options

Header len

Figure 2.1: The IP header

� � � � � �
� � � � � �
� � � � � �
� � � � � �

Source port Destination port

Sequence number

Piggyback acknowledged sequence number

Advertised window size

Urgent pointerChecksum

U
R
G

E R S FA
C
K

O
M

S
T

Y
N

I
N

Header len Unused

Header Options

Figure 2.2: The TCP header

To detect corrupted packets, TCP uses a checksum. When the packet is sent, the checksum

is calculated and set by the sender. When the packet is received, the checksum is checked again,

and if it matches the packet is deemed to be correct. On busy hosts, these calculations can be

performed a significant number of times. Therefore, it is designed to be as efficient as possible,

1Actually TCP segment, however the term ’packet’ is used throughout this thesis.
2The header figures are created by Johan Garcia at Karlstad University, and used with his permission.
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by using 1-complement calculations. The specification [BBP88] also lists a number of assembler

implementations that can be used.

2.1.1 Reliability Achievement Technique

To give a better understanding of the functionality of TCP Lite, TCPs reliability mechanisms

are discussed in more detail. As said in the previous section, each byte sent by TCP is given

a sequence number, which is a counter of the number of bytes that has been transmitted. The

counter does not start at 0, but at an offset called the initial sequence number. The initial sequence

number is chosen randomly in order to provide better security. For each TCP packet constructed,

the packet is marked with the lowest sequence number, that is, the number of the first byte.

When the receiver gets the packet, it sends anacknowledgementpacket back to the sender. The

acknowledgement number field of the reply contains the sum of the received sequence number

and the number of bytes just received. This tells the sender that all bytes up to this number have

been received.

Since TCP is often used over unreliable3 networks, packets are sometimes lost. Either the

packet from the sender or the acknowledgement from the receiver could be lost. In both cases

the sender notices that it does not get an acknowledgement for data that has been sent, and starts

a retransmission after a certain timeout period. This is illustrated4 in Figure2.3. In 2.3(a), a

successful transmission is shown. In2.3(b), an acknowledgement is lost at2.3(b.1). This causes

the packet to be retransmitted, since the sender did not receive an acknowledgement of the sent

packet. This retransmission is lost in2.3(b.2), causing another timeout at2.3(b.3). This time

the transmission is successful. However, since the receiver already got the data with the first

transmission, it is discarded this time. From the figure it is easily seen that retransmissions incur

a significant delay, compared to when no packets are lost. In the next section, causes of packet

losses and how TCP Lite reduces the amount of losses in a wireless environment are discussed.

3With no guarantee about packet ordering or integrity.
4Note that this example only gives a simple illustration of a transmission with TCP. Connection setup, piggy-

backed ACKs, advertised windows and exponential back-off have been left out.
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Sender Receiver

ack=1024

1Kb write

1Kb write

ack=2048

seq=1024

seq=0
seq=0

seq=0

seq=0

ack=1024

1

2

3

(a) (b)

ack=1024

ReceiverSender

Retransmission

Retransmission

Figure 2.3: A successful (a) and a problematic (b) transmission

2.1.2 The Problem with Congestion Control

The common cause of lost packets in wired networks are congested routers. In an ideal world, the

bandwidth limitation would consist of the hardware or software limitations of the peers involved

in the communication. However, in order to utilize bandwidth over links as much as possible,

a single link is shared by a number of clients. Looking at Figure2.4, one sees a setup where

clients on two local networks are connected through a shared network, which is assumed to

be slow compared to the speed of the LANs. One can easily see that if many hosts were to

be communicating with the other side, the network cannot deliver the traffic at the maximum

local speed. This state is calledcongestion, and because the buffers in routers are filled to the

maximum, the newly incoming packets are dropped (unless they have a special priority, forcing

a less important packet to be dropped).

Since wired network links seldom cause dropped packets by themselves, packet loss is inter-
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Host

Host

Router

LAN, 10Mbit

Router

LAN, 10Mbit

Shared Network

Figure 2.4: How congestion occurs

preted as a sign of congestion by TCP. This is detected by the lack of acknowledgements from

the receiver. In order to get out of this situation, the sender lowers it transmission rate to ease the

load on the network. However, there is no way to distinguish between a packet dropped due to

congestion in a router and a packet dropped by the receiver due to a bad checksum. Therefore, it

is argued that a TCP stack, like TCP Lite, that can make a difference between those two cases is

more efficient5 than one that does not. The problem of differentiation of loss due to congestion

or errors is also an area of active research, for example the work done in [BV98, BV99].

2.2 PRTP

The Partially Reliable Transport Protocol[AGBS00] is developed by the data communications

research group at Karlstad University. It is an extension to TCP, where the application can

specify which reliability level it requires. PRTP then detects packet losses, and sends a fake

acknowledgement if the packet is not needed to maintain the specified reliability level. This leads

to a reduced total transmission time at the cost of lost packets. In addition to the reliability level

parameter, anaging factordetermines the time locality that will be considered. For example,

with an aging factor of 1, all packet losses from the beginning of the session are considered

when determining whether to send a fake acknowledgement or let it time out. A factor less than

one will make the algorithm pay less attention to the status of older transmissions (both lost and

5While keeping in mind the tradeoff done in TCP Lite.
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received data).

PRTP can be seen as a coarser version of TCP Lite, in the way that it works on a packet basis,

and TCP Lite works on a bit by bit basis. Also, PRTP will not attempt to deliver damaged packets,

either the data in the packet is delivered correctly or not delivered at all (with undetectable gaps

to the application), as where TCP Lite will deliver damaged data. It is easy to see a future

integration of the two ideas, complementing each other.

2.3 UDP Lite

UDP Lite[Lar00] shares many of the goals of TCP Lite, but operates on UDP rather than TCP.

It is developed by researchers at Luleå University, Sweden, and allows an application to divide a

UDP packet into a sensitive and an insensitive part. An error in the sensitive part will cause the

packet to be dropped, while an error in the insensitive part will still be delivered. This is useful

for example if the Real Time Protocol[SCFJ96] (RTP) is used on top of UDP. RTP provides func-

tionality suitable for carrying real-time content, and has mechanisms for synchronizing streams

with timing properties. The RTP header in the beginning of the UDP payload provides, among

other information, a timestamp which needs to be correct. However, the rest of the UDP payload

might be allowed to contain errors.

Comparing UDP Lite to TCP Lite, the formers packet abstraction provides a good starting

point; since the application is aware of the packets it can control them individually. In TCP,

the stack itself splits the byte stream into packets, with no control from the application, and the

data is delivered to the receiving application in the same way, i.e. just a stream of bytes. The

implication of this is that it is hard for the application to specify the level of importance for a

range of bytes. Despite this, TCP Lite could be a better choice than UDP Lite depending on the

needs of the application. This is because TCP (and therefore inherently TCP Lite) guarantees

that data eventually will be delivered, whereas UDP provides no such mechanism in itself. Also,

the inherent differences between the TCP and UDP protocol, such as lack of congestion control
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in UDP, should be taken into consideration.

2.4 Leaky ARQ

Han and Messerschmitt has devised a protocol called Leaky ARQ6[HM99]. It is a progres-

sively reliable transport protocol for interactive wireless multimedia and enables an application

to quickly present a coarse representation7 of the data, and later request retransmission of the

damaged packets in order to progressively refine the data, if needed. The term “leaky” comes

from the idea that the protocol leaks corrupt data to the application, instead of discarding it which

is normally done. The requirements and limitations of an ARQ protocol to make it leaky is out-

lined in [HM99], and the use of TCP and UDP as a base is discussed. UDP could be used to

send the initial data, and then TCP could be used to send the refinements. However, problems

are noted when TCP is involved, because there is no way to cancel retransmissions of stale data.

These retransmissions then incur delays on time-sensitive transmissions with UDP (where band-

width is low). Another option is to use only UDP, but it has problems as well. If checksumming

is enabled, corrupt packets are discarded. With a disabled checksum, the headers can be corrupt

instead. Therefore, a need is seen to separate header and payload error detection. UDP Lite

(discussed above) is listed as an alternative protocol to handle this separation. Another option is

for Leaky ARQ to do header-only error correction by itself.

Relating Leaky ARQ to TCP Lite we see the common behavior of leaking corrupt data to the

application. However, the later has no method of re-requesting corrupt data later, whereas this is

thought of in Leaky ARQ. This can be done since both sides involved in the communication are

aware that Leaky ARQ is used, whereas TCP Lite requires changes only to the recieiver.

6Automatic repeat-request
7Assuming packets are damaged
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2.5 Snoop and Split Connection

In [BSAK95], the design and implementation of a protocol to improve the TCP/IP performance

over wireless networks is described. The protocol is called thesnoopprotocol, and is deployed

at the wireless base station. It listens on the communication to the client without the client

knowing, therefore the namesnoop. Snooped packets are cached and locally retransmitted over

the wireless link, instead of having to be retransmitted over the full path. This means that TCP’s

congestion mechanisms work as intended, and that unnecessary reductions in the links bandwidth

utilization are avoided. Instead of letting the sender assume congestion because of bit errors on

the wireless link, packet loss is detected via ACK snooping and locally retransmitted.

The paper further discusses the desirability of only modifying components of administrative

control, i.e. base stations and mobile hosts. Since it can not be expected of the origin server

(e.g. web or ftp server) to be modified, the modification needs to be done in the other end of the

communication. The evaluation of the protocol via experiments over an AT&T WaveLan showed

performance improvements of up to 20 times over regular, non-snooped, TCP/IP communication.

Snoop tries to compensate for problems over the wireless link at the base station. Another

approach similar to this is calledsplit-connection. Instead of having one connection between the

wired and wireless host, the base station acts as a proxy between the two and resolves problems

locally. An example of this approach isIndirect TCP[BB95].

The development of these approaches confirms that there indeed exists a problem with wire-

less links and bit errors, and that it is interesting to make a distinction between packets dropped

in a router due to congestion and those dropped at the receiver endpoint due to bad checksums.

This distinction-feature is shared with TCP Lite, but the fundamental difference is that the snoop

protocol and split-connection will recover corrupt packets locally, while TCP Lite delivers errors

as is.
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2.6 Robust Checksum-based Header Compression

As traditional tele and data communication converges, the demand to have IP communication to

the end points increases. Having one network protocol used all the way decreases complexity

and costs incurred by using bridges that convert IP to a proprietary protocol. One can envision

future telephony as a subset of data communication, where voice samples are digitized and sent

in packets, in this case IP packets. The packets must be kept small, in order to achieve “real-

time” characteristics; larger packets mean more buffering, leading to delays in communication,

and gives the sense that the other party takes a long time to think before answering.

In wired networks, IP telephony works quite well, but for wireless networks with low band-

width and high delay the overhead incurred by headers is significant, because of the small pay-

load in each packet. This problem is addressed by the IETF ROHC working group, which have

produced an Internet draft for a technique named ROCCO[JDHS00]. Their proposal is to have

a close look at how the header fields are changing over time, and classify them accordingly. For

example, the IP version field, header length, protocol and source and destination address will be

the same in all packets of a packet stream. Hence, they need only be sent once. Values might vary

within certain limits, for example the sequence numbers in TCP varies within a certain amount,

and it is thus unnecessary to use a 32 bit counter when a 16 bit counter would suffice8.

In order to handle different types of packets, such as UDP/UDP+RTP/TCP,compression

profileshave been defined. Thanks to the profiles, headers have been compressed to a minimal

size of 1 octet, with an average of 1.25 octets. This compression have been shown to tolerate

severe (10−2) bit error rates. The framework also introduces a CRC checksum to ensure that the

decompressed header is the correct one.

This header compression technique would be quite useful in a protocol like TCP Lite, where,

in the current design, there is no checksum covering the headers. Also, the decreased size of the

header will mean less probability of an error in the header.

Being an Internet draft, it should be noted that [JDHS00] is only valid for a maximum of six

8For a detailed discussion about the header fields, see the appendix of [JDHS00].
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months and may be updated, replaced or obsoleted at any time, and is to be regarded as “work in

progress”.



Chapter 3

Problem Analysis

In this chapter, problematic issues with TCP Lite are discussed and analyzed. The chapter dis-

cusses where the “lite” modification is to be done and how the application can communicate with

the transport layer.

3.1 Modification at the Sender and/or Receiver Side

When a protocol is implemented, it can be divided into a receiver and a sender side (even if the

two are interchangeable roles of the same implementation). However, when a modification is to

be done to a protocol, it might not be necessary to modify both sides, but only the receiving or

sending side may suffice.

Hence, one decision that has to be made is where the “lite” modification is to be done. There

are three options; Either modify only the receiving side, both the sending and receiving side, or

only the sending side. The last option implies that the receiver will request retransmissions for

missing packets in order to reassemble the stream. Since this is in conflict with our goal to accept

packets with bad checksums, we are left with the other two options.

With a sender/receiver based modification, the protocol can be made more robust; partial

checksums can be used to protect important data, such as packet headers. An application where

15
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a server side modification can be deployed quite rapidly is in proxy situations, i.e. a proxy sits

on each side of the erroneous link.

The advantage of only modifying the receiver side is that those wanting the functionality can

install it without having to care about their peers interest in updating their operating systems. For

example, content providers using proprietary or old, unsupported operating systems do not need

to depend on their vendor to implement TCP Lite. The overhead of a proxy is also avoided, but

we are left with the problem of errors in the header. Since bit-errors can occur anywhere in a

packet, it is possible that the port numbers and sequence numbers will be damaged. IP addresses

are protected by the IP header checksum, and if the destination address is damaged it will not

even reach the correct host1, so the issue is only about the TCP headers. This needs to be solved

somehow. Since one can always fall back to discarding a packet (it will be retransmitted when

it is not getting ACKed), it will be the easiest thing to do if the header fields do not make sense.

Headers can also be guessed upon, for example if there is only one TCP connection setup and the

port number does not match, we can be fairly sure where the packet is destined. These heuristic

can be elaborated further, while keeping in mind the risks of passing a packet to the wrong socket.

For example, if aRSTpacket is misjudged, the wrong socket will be closed.

3.2 Application to TCP Stack Communication

The application usually knows when it can and can not accept damaged data, and therefore needs

a way to activate and deactivate this behavior in the underlying communication layer, in this case

TCP. It would also be interesting for the application to know that errors have occurred in the

stream.

The usual way of communicating with the kernel in a POSIX2 compliant operating system is

via system calls. When manipulating file descriptors, three system calls can be used,ioctl() ,

1Depending upon where the damage was inflicted. If it happened on a link connected directly to the receiver, it
would reach the host anyway.

2Portable Operating System based on unIX
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fcntl() andsetsockopt() . These take a file descriptor, a command and arguments used

by the command as arguments. To implement new functionality, the kernel must be modified to

accept the command number (which is defined in a header file). When the actual command is

used, the new function corresponding to the command will be called.

The issue of knowing where errors have occurred is harder because of the stream abstraction.

The TCP stack knows what packets contain errors, because of the broken checksum. However,

the read andrecv system calls have no notion of communicating such information. As the

application uses these systems calls to transfer data, it therefore has no way of knowing when

there is an error or not. An option might be to use OOB (Out Of Band) signalling locally (i.e. the

TCP stack inserts OOB messages that the application can understand), but then the application

would have to poll this information every so often. Packet based communication, like UDP, is

easier to handle because the application is aware of the packet abstraction as discussed earlier.

A solution for this is to keep the application in full control of what is going on. It can

dynamically enable or disable ’lite-mode’ depending on its current error tolerance. This enables

the application to receive a correct HTTP header, notice that the content-type isimage/jpeg ,

for which it can tolerate errors,and enable ’lite-mode’. It would also be possible to tell the stack

that errors can be accepted in the next 23kb of data, so ’lite-mode’ is automatically turned off

after that amount has been received.

However, there are problems with the enable/disable approach as well, most notably buffer-

ing. After the HTTP header has been received, much data might have been buffered in the

network stack and might have been resent without need. This is only an issue of performance,

but disabling lite mode is more serious. For example, if lite-mode has been enabled, data with

errors is likely to have been buffered. When the application has disabled lite-mode, it expects the

data to be correct. But there is no way to get the data already buffered and acknowledged to be

retransmitted without the application knowing about it. In this thesis, this behavior of TCP Lite

is not considered, but is subject to future research.
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3.3 Link-layer Internal Checksum

The wireless links can have their own checksumming, so that the point to point connection is

reliable, i.e. bit errors will not be passed further.

This poses a problem for TCP Lite, since the fundamental idea is to take advantage of bit

errors. This behavior must be controlled somewhere, in order for TCP Lite to be effective. For

example, in the GSM mobile system, the “reliable link protocol” can be enabled or disabled.

This way bit errors can be corrected by the link or delivered to the transport layer.

To have a more flexible and controllable environment (instead of using a real wireless link),

the link is emulated using a PC with two network cards, running appropriate software to introduce

errors. This is discussed further in the chapter about the experiment environment.

Over some links, more than one link layer is used. For example, thepoint to pointprotocol

(PPP) is a common way of encapsulating IP packets between two endpoints. Since PPP has its

own checksum, it would have to be disabled in these situations for TCP Lite to be effective.

Otherwise PPP would detect the broken packets and request retransmission.

3.4 Security Considerations

It could be argued that by relaxing the checksum control, an opportunity for unauthorized alter-

ation of the transmission could be created. That is, it would be easier to get fake packets accepted

by the receiver than it would originally. We do not believe that this is the case when only con-

sidering a broken checksum. Since the checksum can be calculated by any party and does not

have any properties of a cryptographic signature, an attacker could just as well calculate a correct

checksum.

However, there are other implications. To alter a TCP transmission, an attacker needs to

know certain information such as who is communicating and what ports they use. Also, to inject

packets into an existing connection, the actual sequence numbers currently used must be known.

If a packet is injected with the wrong sequence number, it will be rejected by the receiver. This
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is the reason why the initial sequence number should be randomly generated, as discussed in

Section2.1.1. Suppose the initial sequence number always started at a fixed value (or an easily

predictable value, as in earlier versions of the Windows NT operating system). An attacker could

then try the numbers after this value, and eventually inject a packet which gets accepted. With

a randomized initial sequence number, the attacker would have to analyze the network traffic

between the hosts to determine what sequence numbers are used. This is related to TCP Lite in

the following way. To be efficient, TCP Lite should try to reconstruct corrupt headers to deduce

what stream the packet belongs to. Assuming the sequence number was corrupted, it could be3

repaired to fit back into the stream. Therefore, an attacker could more easily inject a packet into a

stream controlled by TCP Lite. The solution for this is to have separate checksums for the header

and the payload.

3.5 Proposed Solution

In the light of the above discussion and to limit the scope of this thesis, the proposed solution

is to use a receiver-based modification with an optimistic approach towards errors in the head-

ers, i.e. headers are assumed to be correct or can be corrected easily. This is achieved by only

modifying the checksum of TCP packets in the experiments. Further development of the pro-

tocol should introduce more intelligent header decoding. Negotiation about checksum coverage

between communicating parties, preferably in combination with a header compression scheme

such as ROCCO to achieve lower overhead should be considered as well. For this thesis, secu-

rity has not been considered, but issues described in the previous section should be kept in mind

during further development.

3Subject to future research





Chapter 4

TCP Lite Implementation

This chapter discusses the method used to implement the theories presented in earlier chapters.

The target platform for the implementation is the Linux kernel. Therefore, the chapter begins

with an overview of the Linux kernel. The chapter continues with a description of what needs

to be modified in order to achieve the “lite” behavior, and ends with a description of how the

application controls the behavior.

4.1 Linux Kernel Overview

Linux[Lin00] is a free[Sta92, Fou91] operating system originally created by Linus Torvalds in the

early 1990s. Since then, numerous volunteers have contributed code and ideas to the project. The

name “Linux” originally only meant the kernel, but is used nowadays to reflect both the kernel

and the applications around it. Some people want to call this “GNU/Linux” instead[Sta97],

because many of the applications belong to the GNU[Sta92] project. The kernel and applications

are bundled by different companies. These bundles are called distributions. The reader might

have heard about Debian, RedHat, Mandrake, SuSE or Slackware. Most of the software is the

same in all the distributions. The differences are in the way it is packaged and in the installation

procedures. Some companies also provide commercial support for their distribution, which is

21
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said to be the primary source of income (as anyone is free to copy the software, money needs to

be made somewhere else).

The core of Linux, the kernel, is distributed in source code from[The00] and mirrors, and is

about75Mb unpacked1. The code is divided into many directories, for exampleDocumenta-

tion, arch, drivers, fs, include, kernel, mm andnet . Most of the names

are self-explanatory, butfs means file systems andmmmeans memory management. Since we

are interested in the networking area, the relevant files are found innet/ipv4 , which contains

the IP, TCP, UDP and ICMP functionality.

4.2 The Modification

The modification is done at the point in the TCP stack where checksums of incoming packets

are compared to the calculated checksums. Figure4.1depicts a scenario where a byte stream is

divided into TCP segments (or packets) by the stack, sent over the Internet, and at some point

transmitted over an unreliable wireless link.

This link introduces bit errors at random positions, which are retained by the TCP Lite stack,

so the receiver will experience these in its re-assembled byte stream. The original code looks

something like this:

if (pkt->csum == calc_csum(pkt)) {

/* accept packet */

} else {

/* discard packet */

}

Adding ’lite’ functionality, this code will look like this:
1Valid for the 2.2.x series of the kernel.



4.2. THE MODIFICATION 23

byte stream

xx

Internet

x x

x x

TCP

stack

TCP Lite

stack

Sender

Reciever

Wireless link

Figure 4.1: Biterrors let through

if (pkt->csum == calc_csum(pkt) ||

litecheck(pkt)) {

/* accept packet */

} else {

/* discard packet */

}

where thelitecheck function looks up the socket belonging to the packet, decides whether it

is acceptable and possible to deliver the packet although the checksum is wrong2.

Note that this is a general discussion about where the modification should take place and not

limited to Linux. Other operating systems are expected to have a similar structure and hence be

easy to modify.

2It must be wrong because of C-style short-circuit evaluation of boolean expressions.
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4.3 Kernel Modification

As mentioned in Section4.2, the place to introduce TCP Lite in the kernel is where the check-

sum of the packet is calculated. By enabling the network debug functionality of the Linux ker-

nel and sending a packet with wrong checksum to the machine, a “bad checksum” message is

logged. Searching for where this message is printed from reveals that the checksum is verified in

net/ipv4/tcp_ipv4.c by thetcp_v4_check() function. If this function returns zero,

the checksum is correct, otherwise it is not.

The ’lite’ functionality is added right after this verification. If the ’lite’ flag is set for the

active socket, then the packet is treated as if the checksum had been correct. If the ’lite’ flag is

not set, the packet is discarded as would have been done originally.

4.4 Socket Controlling

To enable/disable ’lite-mode’, the system callsetsockopt is used. ’Lite’-mode is imple-

mented in the following steps, using setsockopt;

• The code to handle socket options is located innet/ipv4/tcp.c . Essentially it is one

big switch/case statement, so the technique to add a new socket option is to define a new

magic number and add acase statement here.

• The socket option magic numbers are defined ininclude/linux/socket.h .

• There must exist a place to keep the ’lite’ flag on a per socket basis. Thesock struct holds

meta information about individual tcp streams, for example the remote/local address and

port, and is chosen to contain the ’lite’ flag.

Setsockopt is used in the following way by the application. First, a socket is opened and

connected as usual. Thensetsockopt() is called:
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int val = 1; /* 1 = on, 0 = off */

setsockopt(socket, SOL_TCP, TCP_LITE, &val, sizeof(val));

A full program which opens a socket, turns on TCP Lite and just discards the data it receives

can be found in AppendixC.





Chapter 5

Experimental Environment

This chapter describes the environment in which the TCP Lite implementation has been tested. It

begins with a motivation for doing the experiments, followed by descriptions of how the wireless

link is emulated. Then the setup and parameters of the emulated network are explained, and the

chapter ends with a description of how measurements on the experiments have been collected.

5.1 Experiment Motivation

As mentioned in earlier chapters, the idea behind TCP Lite is that it should provide better

throughput and delay than unmodified TCP. To support this statement, a number of experiments

has been performed. A prerequisite for the experiments is that the TCP stacks get erroneous

data. This is detected with the use of the TCP checksum field. The checksum is calculated and

set by the sender, and verified by the receiver. If the checksum is wrong it is an indication that

the packet content has changed along the way. With this in mind we find two ways to create false

checksums:

• Change the payload of the packet.

• Change the checksum while keeping the payload intact.

27



28 CHAPTER 5. EXPERIMENTAL ENVIRONMENT

The first approach can be used to measure the user perceived quality loss versus delay time. This

also requires applications that can tolerate erroneous data to an extent. However, this is very ap-

plication dependent, as different applications have varying error tolerance. Therefore the second

approach where only the checksum is modified was chosen. This focuses more on the protocol

behavior than the application, which better fits the scope of this thesis. Its implementation is

described in Section5.4.2.

5.2 Characteristics of a Wireless Link

Compared to a wired connection, a wireless connection can not offer the same bandwidth nor

quality because of the limited frequency band allowed. The physical characteristics of radio

waves are also a source of disruption. Radio waves are not directed1, but spread in circles around

the omnidirectional antenna, like rings on water. One wave will reach the receiver first, followed

by fainter reflections caused by items in the surroundings. This phenomenon is calledmultipath

fading, i.e. the signal reaches the receiver via different paths. Another source of signal degrada-

tion is the natural dampening. Logically, the greater the distance between the sender and receiver,

the harder it is to detect the signal transmitted. This is calledpath loss.

These issues lead to problems for the receiver, if the signal quality is not good enough. A ’1’

might be interpreted as a ’0’ and the other way around. This is called a bit error. The following

subsections discuss how the errors are measured, how they are distributed and what is done to

lessen the impact of errors.

5.2.1 Bit Error Rate

When discussing the behavior of radio based wireless links, the amount of errors occurring are

measured as the number of erroneous bits divided by the total number of bits transmitted over

some time period. This is called theBit Error Rate/Ratio(hereafter written BER), and is usually

1Assuming relatively low frequencies.
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expressed as a power of 10 expression. For example, 5 erroneous bits out of 10,000 transmitted

are 5 out of104, which yields a BER of5 ∗ 10−4. Common BERs for radio based wireless links

are between10−3 to 10−6[BKVP96, KK99]. This corresponds to an erroneous bit approximately

every 0.1 kbyte and 100 kbytes, respectively.

5.2.2 Error Distribution

When emulating a wireless link, the distribution of the errors is important. This is because

they are normally not randomly distributed, but depends on for example fading and interference,

assuming radio based communication. This gives a bursty behavior, which could be emulated

with a finite state machine with probabilities for each transition, also known as a Markov chain.

This technique is used by [EW99, Lar99, WM95, PGLA00], and others to emulate bit errors on

wireless links. Using a Markov model, two states with different BERs are defined. One state has

a low BER, while the other has a high BER. As seen in Figure5.1, the two states are marked G

and B. The state G is the “good” state that represents successful transmissions and therefore has

a low BER. The state B is the “bad” state which represents error bursts and therefore has a high

BER. Two state transitions are then defined, from the good state to the bad, and vice versa. A

transition to the bad state is decided by the probabilityp, and corresponds to the beginning of an

error burst. The probabilityq corresponds to the end of the burst. The parameters,p, q, and the

BERs, are dependent upon the wireless link emulated.

G B

1−p 1−qp

q

Figure 5.1: The error distribution model as a markov chain
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5.2.3 Bit Errors and Interleaving

Radio based wireless links often use forward error correction to be able to correct errors at

the link end-points. In order for the error correction to be as efficient as possible, the data is

interleaved. This means that bits are rearranged in such a way that bursts are distributed over

several frames instead of a single frame. For example, instead of sending ten frames in a row,

one tenth of each frame is constructed into a new one. The loss of one such constructed frame

will result in one tenth loss of each of the ten frames. However, this loss can be recovered with

the error correcting codes. If interleaving had not been performed, one complete frame would

have been lost instead.

5.3 Experimental Parameters

Different links exhibit different characteristics, for example different bandwidth and propagation

delay. To evaluate the behavior of TCP Lite in differing environments, three link profiles repre-

senting low, medium and high bandwidth have been chosen. Note that we are not modeling their

exact behavior, but focuses on the differing features. A number of loss profiles, i.e. different

error burst characteristics, have also been defined. This is introduced in the following sections,

along with a description of the physical network layout and configuration variables.

5.3.1 Selected Link Profiles

GSM

The Global System for Mobile Communications[MP92], GSM, is the most used system for cellu-

lar phones in the world. Normally GSM is used for voice communication, but it can also transmit

data and fax. The data rate is 9.6kbit/s which is very slow compared to a dedicated wired net-

work, which usually delivers 10 to 100Mbit/s. The delay is quite significant because of the low

bandwidth. Internal experiments have shown them to be 150ms on an unloaded link. The delay
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rises sharply as the load increases, and has been measured to be as much as 7 seconds. GSM

has a transparent and non-transparent mode. The non-transparent mode uses an error correction

facility called Radio Link Protocol, RLP, to ensure more robust transmission. The transparent

mode provides no error correction over the air interface. Therefore, disabling RLP may be a

good way to test TCP Lite in a real environment. GSM is used as a profile because of its wide

deployment.

UMTS

The Universal Mobile Telecommunications System[Mur00] is the third generation telecommu-

nication system. It is supposed to replace GSM within the next decade, and provides both circuit-

and packet-switched data communication. UMTS is also part of the IMT-2000 system. In the

beginning, data rates from 64kbit/s are offered, but the technology supports up to 2Mbit/s. No

figures on UMTS TCP delays have been found, but we have estimated them to half of the GSM

delay. UMTS will presumably be commercially launched later this year (2001). The UMTS

parameters are used as a profile in this experiment because it is believed to be the most widely

deployed mobile system in the following years.

IEEE 802.11b

One of the issues that has slowed down wireless LAN adoption is the limited throughput. This

has changed with the IEEE 802.11b standard[Gro01]. It provides up to 11Mbit/s transmission

rate, and builds upon 802.11 which was limited to 2Mbit/s. The delay for this profile was chosen

to be 10ms. 802.11b is included as a profile because of its wide deployment and to contrast the

lower bandwidth profiles with a much higher bandwidth.

5.3.2 Loss Profile Parameters

In the experiment, the three link profiles mentioned above defines the bandwidth and delay. In

addition to this, different bit error patterns are chosen and tested against each profile. Although
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the BER is an average value calculated over a number of bits, the actual errors occur in bursts.

The error bursts lasts some time, and then stops. The bursts give rise to erroneous bits in the

packet, causing the whole packet to be classified as having a bad checksum. Therefore, instead

of choosing and emulating specific BERs, we specify the average time spent in the “good” and

“bad” state of the markov model, during which individual packets are having their checksum

changed. Also, since there is no difference between the “damage” caused by one wrong bit

compared to some hundred bits (either the checksum is good or bad), the derived BER becomes

somewhat insignificant in this particular case. A discussion about this can be found later in this

section. Table5.1lists the chosen time parameters for the markov model. These are derived from

other work in the wireless emulation field, [EW99, BKVP96, CLM99, KK99] among others. The

table also shows a calculated “bad packet rate”, which is the average percentage of the packets

that will be affected by a burst, assuming a constant packet flow.

Loss profile TB TG Bad Packet Rate
0 0 ∞ 0
1 30ms 2.0s 1.5%
2 30ms 10.0s 0.3%
3 60ms 2.0s 2.9%
4 100ms 2.0s 4.8%
5 100ms 5.0s 2.0%
6 200ms 5.0s 3.8%

Table 5.1: Parameter values used in the experiments

As link errors are normally specified in a number of bits, although we are more focused

on the number of packets with errors, a reflection over the relation between packet error rate

and bit error rate is appropriate. The maximum transmission unit, that is, the maximum size

of each TCP packet was set to 576 bytes. This corresponds to 4608 bits. Assume a 5 percent

packet loss and that one bit caused corruption in these 5 percent. This could then correspond to

0.05/4608 = .0000108506 = 1.1 ∗ 10−5 BER, which is not that much. On the other extreme we

assume that all bits in the packet caused corruption. This leads to a BER of0.05 = 5 ∗ 10−2,

which is quite severe.
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5.3.3 Experiment Network Topology

The network topology used in the experiments can be seen in Figure5.2. The network consists

of a sending host and a receiving host, whose traffic is routed through a FreeBSD “dummynet”

router, carrying the modifications discussed in Section5.4.2.

The packet length (MTU) used in all experiments was set to 576 bytes, as this is de facto used

over slower links, and also specified by [Pos83]. The TCP receiver window at the receiver was

not modified, and defaulted to 32kb. This is more than twice as large as the largest bandwidth-

delay product presented in Table5.2. The table also shows the amount of data transferred in

each profile. It differs from profile to profile, because a common size would be impractical. For

example, if all profiles had used a 60Mb transmission, it would take a very long time for the

GSM profile to complete (about 14 hours). At the other end, the 802.11b profile would process a

50kb transmission in tenths of a second, which would make the results unreliable. That is, small

natural variations would cause big impact compared to the total transmission time. The queue

size in “dummynet” (described in the next section) was not changed, and defaulted to 50 slots.

Receiver using TCP LiteSender Dummynet router

100Mbit/s100Mbit/s

Pentium II Pentium IIIPentiumIII

450Mhz 233Mhz

FreeBSD
4.1.1−REL

Linux
2.4.5

450Mhz

Linux
2.2.17

Ethernet Ethernet

Figure 5.2: The experiment network topology

Profile Bandwidth (kbit/s) Delay (ms) BW*Delay Data transferred
GSM 9.6 150 0.2kb 50kb

UMTS 384 70 3.3kb 3Mb
802.11b 11000 10 13kb 60Mb

Table 5.2: Characteristics of the link profiles
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5.4 Error Emulation Setup

An interesting scenario for the experiments would be to run on real hardware in a realistic en-

vironment. However, when doing initial experiments it is usually better to be able to have close

control over the environment. This enables us to better control the parameters used, and better

understand the implications of modifying parameters. Another reason for doing emulations was

that a real environment was not available to us. Emulation/Simulation can be done purely in

software2, or in a mixture of software and hardware. The software then simulates the wireless

environment. The latter approach was chosen, as this has been used earlier in the data commu-

nications research group at Karlstad University. The research group has most experience from

the network emulation software NIST Net[Gro00]. However, recently thedummynet[Riz97] net-

work emulator included in FreeBSD has been used instead, since it uses a better technique to

achieve bandwidth throttling than NIST Net. This, along with the need to gain more experience

with dummynet, led us to choose it for the experiments. The following subsections introduce

dummynet and how bit errors are is implemented in dummynet.

5.4.1 Introduction to Dummynet

Dummynet[Riz97] is a network emulator, which operates on a physical network. This means

that it will be more accurate than a simulated network (i.e. software only), while being easier to

setup and maintain than a full network. It works by using a concept namedpipeswhere traffic

routed through dummynet enters one or more pipes and is modified according to the rules of

the pipe. A pipe is identified by an order number and parameters to match against incoming

packets. The order number decides the order in which packets are matched against the rules.

For example, a pipe can be configured to a specific delay and bandwidth, to emulate a modem

connection or a congested network. Figure5.3 shows two example pipes; the leftmost pipe has

a long delay and has a constraint on the bandwidth, whereas the rightmost pipe has a shorter

2For example NS, the Network Simulator[MF99].
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delay and greater bandwidth. Since dummynet is deployed on a real network, ordinary traffic

generators and packet inducers can be used. An implementation of the dummynet emulator is

integrated in the FreeBSD[Fre00] operating system kernel, and is used in the experiment setup.

However, the basic functionality does not cover bit errors. Bit errors were implemented in the

dummynet module, as described in the next section.

Bandwidth

D
el

ay

Output

Input Output

Input

Figure 5.3: How dummynet operates

5.4.2 Bit Errors in Dummynet

Without modifications, dummynet provides an ’all or nothing’ approach to losses, in the sense

that it either drops a packet or does not. We want a behavior where instead of dropping the

packet, bit errors would be created in the packet. To implement this, changes need to be made

in the file /sys/netinet/ip_dummynet.c , which provides the dummynet functionality.

The code is quite straightforward to understand and modify, as intended by its author.

Incoming and outgoing packets are sent through thedummynet_io() function, which de-

termines whether it is to be dropped or not. Instead of sending packets to the usualdrop routine,

they are sent to a newbiterror routine. The routine checks the state of the markov model,

and creates an error accordingly. The packet is then passed along. To be able to control the pa-

rameters of the markov model without recompiling the kernel, these can be set via thesysctl
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interface.

The functiondummynet_io() gets access to the packet data via a variable of typestruct

mbuf , defined in/sys/sys/mbuf.h . We will not go into detail about this structure, since it is

very well described in [SW95], but it can be thought of as a general memory buffer.If one buffer

is not enough to hold the data, several memory buffers are linked together and forms a linked

list. Since anmbuf can contain any kind of data, it must be mangled into the right structure.

This type must be known, and in our case we know it is a TCP packet because this is the only

protocol allowed to enter the pipe, as determined when configuring it. The functionmtod , mbuf

to data, does this conversion by essentially casting a pointer to a specified type. So in our case,

to get access to the TCP header, this technique is used:

mytcpheader = mtod(m, struct tcpiphdr*);

mytcpheader->ti_t.th_sum = 0; /* create false checksum */

The TCP header is extracted from the memory buffer, and the checksum in the header is

changed to emulate that an error has occurred in the packet. Further development of the error

generator will do it the real way instead, by modifying the data contained in the mbuf chains.

However, changing just the checksum allows us to test the modification in a controlled manner

and make sure the TCP Lite modification works as intended. This is possible since we are inves-

tigating how the protocol behaves, and not individual applications. In order to test applications

on top of TCP Lite (or to test a more advanced version of TCP Lite), a full implementation that

actually changes the data is needed.

5.4.3 Error Distribution Implementation Problem

In the initial implementation, the packets and their sizes were used to determine when state

transitions in the markov chain should occur, meaning that large packets had a greater chance to

change state than small ones. This had the effect that small packets, used for example in the TCP

connection setup, did not have a high probability to change state. In the case where TCP Lite
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was not used, and assuming we were in the bad state, this led to a retransmission of the packet.

Since the packet was small, it was unlikely to change to the good state. Therefore the packet was

dropped, and the procedure repeated. Due to the binary back-off of TCP to avoid congestion,

this can lead to very long transmission times. Eventually the state changes, packet sizes increase

and also the probability to change state more often. As these fluctuations were not considered

realistic behavior, other approaches were looked into.

So, how should the error distribution be implemented? To decide this, we need to knowwhy

errors occur. One possible cause is mobility, which gives radio interference and fading. Even if

the device is in a fixed position, changes in the surroundings such as moving cars, can be a source

of problems. This means that the error distribution does not depend upon the amount of data

transmitted, but is a function of time. Hence, depending upon when packets are sent, different

BERs can be experienced. Figure5.4shows a scenario where all the packets are unaffected, while

in the second scenario, many packets gets errors, because the first packet was sent somewhat later.

Unaffected packets

Time

Errors

Packets with the same distribution,
but with a small delay in the
beginning

Figure 5.4: Differences in error distribution depending upon time

To emulate the time dependency approach, the probability of changing state must be calcu-

lated continuously at discrete time intervals. This gives an overhead, especially if few packets

are being transmitted. It is therefore desirable to calculate the current state at the arrival of each

packet. The time of the last state transition and time of the packet arrival could be used to deter-

mine if a transition should take place or not. We thought this calculation would be too complex.

For example, if a long time period has passed between two packets, how can the number of tran-

sitions be estimated? Should we keep the last state, and calculate a probability to change state,

depending upon the last state and elapsed time? Instead, the first approach was chosen, despite

the overhead. A periodic calculation is performed at each timer interrupt in the kernel. This



38 CHAPTER 5. EXPERIMENTAL ENVIRONMENT

interval defaults to 100hz, i.e. every 10ms.

5.4.4 Bandwidth Limitation Issues

One thing to consider when introducing errors and bandwidth limitations within the same ma-

chine is to be careful on which “side” (input or output) the errors are induced. Assuming the

errors are dependent on time, the scenario in figure5.5 can occur. The error burst length is the

same, but if errors are generated on the input side with high bandwidth, more packets will be

affected compared to if errors were generated on the output side.

Error Burst Error Burst

Bandwidth limitiation

Figure 5.5: Bandwidth limitation problem

This issue arises because a high-bandwidth link can deliver more packets during a time period

than a low-bandwidth link. The solution is to make sure that errors are not generated until after

the bandwidth limitation has taken place. This can be done by separating the error generation

and bandwidth limitation into different physical machines, as illustrated in Figure5.6.

Dummynet
Error generation

DummynetDummynet

Host Host

Bandwidth limitation Bandwidth limitation

Figure 5.6: One solution to the bandwidth limitation problem
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A second option is to set up the software to explicitly limit the bandwidth first, and then apply

error generation. For example, dummynet has an option to let a packet pass through more than

one matching pipe. Using this approach, we first create a pipe whose only purpose is to incur

bandwidth limitation. Then, the pipe which induces the errors is created with a higher order

number. Finally, dummynet is told to use all matching pipes by setting thesysctl variable

net.inet.ip.fw.one_pass to zero.

A third option is to differentiate the pipes, by determining incoming and outgoing traffic.

The qualifiersin andout can be appended onto any rule. This way, the bandwidth limit rule is

applied to incoming traffic, and the error inducing rule is applied to outgoing traffic. This method

was chosen for the setup, as it was deemed the easiest to configure and maintain.

5.5 Measurement Collection

When doing experiments of any kind, measurements must be taken to examine the outcome.

Otherwise, there would be no point in doing the experiment in the first place. In our case, we

are interested in measures related to the transmission of data over the TCP protocol. One idea

is to measure the time to transmit a fixed amount of data at the sender side. Another idea is to

use a network analyzer to examine the traffic sent over the network. This would provide a better

measurement compared to the timing method, because buffering in the network stack makes it

hard for the application to know exactly when all data has been received after the connection has

been closed.

We have decided to use thetcpdump utility to capture the traffic at the receiving host. This

collection is later analyzed with thetcptrace utility[ Ost01] that provides thorough informa-

tion about captured traffic. An example of a tcptrace analysis can be found in AppendixD.

These analyzes are then processed by custom written scripts and fed to a plotting utility to create

graphs.





Chapter 6

Experimental Results

This chapter presents the results obtained from the experiments. First, the expected results are

stated. Following this is a description of how the experiments were carried out in a more technical

sense. Then the results are presented and discussed in the form of graphs. Finally the conclusions

are drawn.

6.1 Expected Results

The results of the experiment are expected to show that connections utilizing TCP Lite will have

fewer retransmissions than unmodified TCP. It is further expected that the throughput will be

higher because the sender does not reduce its sending rate in response to bit errors, when talking

to a TCP Lite enabled receiver.

6.2 Experiment Execution

As mentioned in the earlier chapter, the network topology consists of a sender, an error inducer

and a receiver. The sender is in control of setting the various parameters by logging on to the

other machines. The error inducer has ten scripts: three which control the link profile, and seven

41
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that control the error model parameters. The receiver runs an application1 that is able to enable

or disable TCP Lite in the TCP stack. The purpose of the application is to wait for connections

on a socket, and to read and discard data sent to it. The receiver also runs the network packet

capturertcpdump for logging of the traffic.

Set error model parameters in order

Start packet capture at receiver

Transmit data to the receiver

Stop packet capture at receiver

Set link profiles in order

Figure 6.1: Visual view of the experiment execution at the sender

As seen in Figure6.1, the experiment execution consists of a script with two loops running

on the sender. In the outer loop, the link profile is set by logging onto the error inducer and

executing the corresponding script. The link profile contains the parameters shown in Table5.2.

In the inner loop, the loss profile parameters (Table5.1) are set on the error inducer, and the

packet capturer is started on the receiver. Depending on the link profile, a given amount2 of data

is transmitted to the application. This transmission is repeated 30 times to collect data on more

than one transmission, in order to get a better statistical measure. The packet capturer is then

stopped, and the loop continues. To be able to compare TCP Lite to regular TCP, two runs of the

process described above is performed. One with TCP Lite enabled in the application, and one

with TCP Lite disabled. When the process is finished, there is a set of packet capture logs. The

1The applications can be found in AppendixC.
2See Table5.2for the specific numbers.



6.3. EXPERIMENT ANALYSIS 43

logs are then examined and the results are presented in the sections below. To show that the TCP

Lite modification does not affect TCP if it is disabled, experiments comparing TCP Lite disabled

to an unmodified kernel has been conducted as well. They can be found in AppendixA.

6.3 Experiment Analysis

Usually when comparing two experiments, a number of runs are made of each experiment which

yields different values,samples. The mean value of each experiment can then be compared, and

conclusions drawn. However, this technique does not reveal anything about the distribution of the

samples. Are perhaps all equal to the mean value, or are they spread out? Therefore, we wanted a

better way to present the data. We think that showing all samples provides a better understanding

of the distribution, but lots of dots can be hard to perceive. Instead, we use thequartile concept

from descriptive statistics. This means that all the samples are ordered and partitioned into four

quartiles. The first quartile contains the lower 25 percent of the samples, the second quartile

is the median value, and the third quartile contains 75 percent of the samples. This gives a

better understanding of how the samples are distributed, compared to the mean value. As seen in

Figure6.2, the line at the bottom represents the first quartile (marked 25%), the “box” represents

25-75 percent of the samples, and the upper line represents the third quartile (also marked 25%).

The median and mean values are also indicated in the graph. With this representation, lines and

boxes centered around the median reveals that the variance of the samples is small. A small box

and a long line indicates that a few (or even one) experiment run differed a lot from the other,

which in turn had a low variance.

The x-axis in Figure6.2 is numbered from 0 to 6. These numbers correspond to the loss

profiles in Table5.1. Within each loss profile there are two bars that correspond to the description

in the title. In this example, the leftmost bar within each loss profile corresponds to measurements

with TCP Lite enabled. The rightmost bar corresponds to measurements with TCP Lite disabled.

As mentioned in the measurement collection section above, the traffic of each experiment was
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Figure 6.2: Example graph with explanations

captured at the receiver. Each of these logs were then analyzed with thetcptrace utility. The

output was processed with custom written scripts to produce the basis for the graphs presented

below.

6.3.1 Throughput Graphs

This subsection presents an analysis from a throughput perspective.

GSM Profile The throughput graph of the GSM profile experiments can be found in Figure6.3.

We see that for loss profile 0, the results are the same whether TCP Lite is enabled or not.

This is the expected result, as this profile should generate zero errors. This shows that TCP

Lite behaves like unmodified TCP when there are no errors. Looking at the graph we note

that the mean/median degradation varies from about 1 to 6 percent. Further, the performance

degradations can be seen proportional to the “bad packet rate” presented in Table5.1. A final

observation is that the results with TCP Lite enabled shows no variance, while the throughput

degradation of original TCP varies a lot. For example, in loss profile 4 it varies from 3 to 15
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percent.

As a side note, in the initial experiments we experienced a case where the retransmission

endured an exceptionally long time, but it has not been reproduced since. For reference, a dis-

cussion about this can be found in AppendixB.
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Figure 6.3: Throughput results for the GSM profile

UMTS Profile The throughput graph for the UMTS profile is displayed in Figure6.4. As for

the GSM profile, enabled TCP Lite delivers constant throughput and no variance. When disabled,

the throughput degradation varies from 3 to 17 percent3. As in the GSM profile, we also note

that the variance is large in this case. For example, a throughput degradation between 6 to 26

percent is seen in loss profile 4.

Notable is that loss profile 2 has a small degradation and variance, and does not deviate much

from the throughput of an enabled TCP Lite stack. This means that this bandwidth/delay/loss

profile would not benefit much by using TCP Lite4.
3Considering the mean/median values.
4It is hard to tell how valid this statement is in a real environment, since many more factors could have an effect
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Figure 6.4: Throughput results for the UMTS profile

802.11b Profile Figure6.5shows the results for the 802.11b profile. As before, loss profile 0

is the same for TCP Lite enabled and disabled, as it should. Using TCP Lite gives a constant

throughput with almost no variance5. When TCP Lite is not used, we see a general throughput

degradation in the range of 20 to 56 percent. This means that in some cases, enabling TCP Lite

yields a 100% throughput increase. This is surprisingly high, and is further analyzed in a later

section.

These observations must be put in relation to how many retransmissions that have actually

occurred. For example, a 100 percent throughput increase would not be much of a revolution

if at the same time 50 percent of the packets were retransmitted (in this case equal to being

corrupted). In the next subsection we will examine just how many retransmissions are being

made when these improvements are achieved.

upon the result.
5Compared to the other link profiles, there is some variation. This is believed to occur because of the much

higher throughput which is more sensitive to other traffic on the path between the machines.
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Figure 6.5: Throughput results for the 802.11b profile



48 CHAPTER 6. EXPERIMENTAL RESULTS

6.3.2 Retransmission Graphs

This subsection presents an analysis of the experiments based upon the number of retransmis-

sions performed. Reflections are made to the discussion about throughput above.

GSM Profile Figure6.6 shows the number of retransmissions, i.e. the number of corrupted

packets, for the GSM profile. By design, when TCP Lite is enabled there should be no packet

retransmissions6, and this is verified in the graph. In the other loss profiles, the packet loss ranges

from about 0 to 5 percent. The mean and median values can be clearly correlated to the packet

error rate presented in Table5.1. Relating this graph to the corresponding throughput graph,

Figure6.3, we find that by accepting 0 to 5 percent packet loss, a throughput degradation of 1 to

6 percent is avoided.
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Figure 6.6: Retransmission results for the GSM profile

6Packet losses can of course occur from other causes in other parts of the network, for example due to congestion.
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UMTS Profile The retransmission graph of the UMTS profile is shown in Figure6.7. When

TCP Lite is enabled, there are no retransmissions. When TCP Lite is disabled, the relation to

the packet error rates are also clearly visible, as in the GSM profile. However as discussed in

the throughput analysis for the UMTS profile, the throughput degradation ranges between 6 to

26 percent. The difference in degradation between the GSM and this profile has been found to

be that due to the higher bandwidth, sometimes a whole window (congestion/receiver window)

is lost, causing TCP to use the slow start mechanism. When a low bandwidth is used, not many

packets are affected by an error burst, and the packet is resent with selective acknowledgements.

As seen in the next paragraph, 802.11b is even more affected by the lost window phenomena.
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Figure 6.7: Retransmission results for the UMTS profile

802.11b Profile In the previous section, we concluded that the throughput in the 802.11b pro-

file was severely degraded. We questioned how many retransmissions that would cause such a

degradation. As seen in the retransmission graph for the 802.11b profile, Figure6.8, we have

about 0.2 to 1.0 percent packet losses. This should be compared to 0 to 5 percent for GSM
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and UMTS. However a bit surprising, the conclusion is therefore that in this profile, TCP Lite

would be quite useful, as a low percentage of packet loss causes a large degradation in through-

put. It should be noted however that when TCP Lite is enabled, higher packet losses will be

experienced7, because the losses contribute to their own reduction. Analysis in a later subsection

explains this behavior.
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Figure 6.8: Retransmission results for the 802.11b profile

7Probably 0 to 5 percent.
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6.3.3 Throughput vs Retransmission Graphs

In this subsection, the throughput and the number of retransmissions (equal to the packet loss)

are plotted against each other. This gives a better view of how throughput is degraded when more

and more packets are lost. For reference, the dots are marked with their respective loss profile,

but since the discussion is on a more general level this is not further analyzed. The graphs do not

include TCP Lite enabled transmissions, as they are independent of the packet loss. This can be

seen in the previous retransmission graphs, or thought of as belonging to the highest throughput.

GSM Profile Figure6.9shows the throughput versus the number of retransmissions for GSM.

We note that there seems to be discrete intervals on the percentage axis. This is found to result

from the relatively low number of packets transmitted (about 400). This means that a packet loss

percentage can only occur in quarters of percent, hence the feeling of discrete intervals. Further

examining the graph, we see that throughput is not affected much by packet loss. At about 5

percent packet loss, we have 6-7 percent decrease in throughput. Another interesting phenomena

is the vertical spread. For example, at 4.5 percent packet loss we have a span from 4 to 11 percent

in throughput degradation (counting extremes).

UMTS Profile Figure6.10, showing the throughput and retransmissions for the UMTS pro-

file, again confirms that throughput decreases as packet loss increases. Compared to the GSM

discussion above, this profile is more sensitive to packet loss, with about 23 percent decrease in

throughput at 5 percent packet loss (extrapolated value).
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Figure 6.9: Throughput vs. retransmissions results for the GSM profile
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Figure 6.10: Throughput vs. retransmissions results for the UMTS profile
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Figure 6.11: Throughput vs. retransmissions results for the 802.11b profile

802.11b Profile In Figure6.11, which shows the throughput and retransmissions for the 802.11b

profile, we see that already at 1 percent packet loss, regular TCP has half the throughput of TCP

Lite. Compared to the other two profiles, this means that the throughput in this profile is very

sensitive to packet losses. Again worth noting is the spread of the throughput at the same packet

loss. For example, at 1 percent packet loss the degradation in throughput ranges from about 28

to 64 percent. As previously stated, the major degradation with low retransmissions was a bit

surprising, and is analyzed in the next section.
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6.3.4 General Analysis

A general conclusion when examining the graphs is that TCP Lite performs optimally in every

loss profile. This is not so strange, since TCP Lite never performs retransmissions or lowers

its throughput if the packet is corrupt. We can also see that higher bandwidth is more sensitive

to packet losses than lower bandwidth. For example, the throughput in the highest bandwidth

profile is halved at around 1 percent packet loss, which was a bit surprising. To explain this

behavior, the dump files have been examined, to see what happened with the transmission when

an error burst occurred.
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Figure 6.12: Examination of errors in the GSM profile transmission

In Figure 6.12, the xplot graph of a GSM profile transmission is shown. The capture

was done locally at the receiver, and the selected time frame shown in the figure is about 20

seconds. The vertical bars with arrows represents a segment received, and the “stairs” represent

an acknowledgement sent for all segments up to a specific sequence number. The “S” marking

represents a selective acknowledgement, that is, information about a missing segment at the

receiver. The segment marked with an “R” is a retransmitted segment. Even though we see no
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reason for a retransmission from the graph, it still takes place. This is because thetcpdump

tool captures the packets from the ethernet device. The packet has instead been discarded at the

TCP layer, due to an erroneous checksum. This cannot be seen directly, but is understood from

the selective acknowledgements sent and the later retransmission.

From the discussion above, we conclude that the error burst in relation to the bandwidth

causes one packet to be corrupted and retransmitted. As can be seen in the figure, this single

retransmission does not really affect the throughput, because of selective acknowledgements.
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Figure 6.13: Examination of errors in the 802.11b profile transmission

On the other hand we have the 802.11b profile, seen in Figure6.13. The time frame shown,

about 1.5 seconds is shorter than in the other example, which should be taken into consideration

when looking at the figures. Because of the high throughput, many packets are hit by the error

burst. This causes a whole window (receiver or congestion window) to be lost, and the sender

stops transmitting because no acknowledgements are sent back. After a timeout, the sender be-

gins a “slow start” phase, which causes a delay in the transmission, and therefore lowers the

total throughput. Therefore, the distribution of the errors cause the throughput of the higher

bandwidth profile to degrade more than the low bandwidth profile, despite having fewer retrans-
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missions. It could be argued whether the combination of this high bandwidth and these types of

errors are a realistic combination, so care should be taken if the results are to be interpreted in a

real environment.

Looking at the throughput graphs, we see that there generally is a large spread of the samples.

The quartiles are about the same size, which indicates that samples are very spread out in the

interval, rather than centered around the mean or median value.

What also needs to be kept in mind is that we are dealing withpacket losses. As discussed

earlier, even one single bit error will lose the whole packet. Therefore, perspective should be

kept when relating the above percentages to actual bit error rates. See also the discussion in

section5.3.2.

6.4 Conclusion

Based on the analysis in the earlier section, we conclude that that our expectations set out in the

first section have been met. TCP Lite achieves higher throughput in all the selected profiles, and

is generally more efficient at higher bandwidths. However, it was a bit surprising that a lower

bandwidth had a higher tolerance towards packet loss compared to a higher bandwidth, as this

had not been thought of before performing the experiments. As found in the analysis, the cause

of this was that a whole window was lost, which forced the sender to initiate a slow start. If part

of the window was delivered, we believe that the result could have turned out a bit different, due

to the feedback of selective acknowledgements.



Chapter 7

Conclusion and Future Work

This thesis has introduced a new approach to enhance the performance of TCP over wireless

links. The technique is based upon breaking TCP semantics by allowing data that has been

damaged while in transit between a sender and receiver to be delivered from the transport layer

to the application layer. Since this can be seen as a more lightweight version of TCP, the protocol

has been named “TCP Lite”. The requirements and limitations of TCP Lite have been analyzed.

A receiver based approach was decided upon, since this has less impact on the other participants

of the network compared to a full sender/receiver solution. TCP Lite has been implemented in

the Linux operating system kernel. To test the implementation, an experimental environment

was built, consisting of a physical network and a modified network emulator. The environment

emulated wireless links with different bandwidth and delay parameters. A number of link and

packet loss profile combinations were defined and tested in the environment. The results have

been analyzed and suggests that TCP Lite gives higher throughput and fewer retransmissions

than regular TCP. However it should be kept in mind that these improvements are at the cost of

accepting damaged data.

During the work on this thesis, some issues have come up that would be good to investigate

further. First off, extended measurements examining the behavior of bit errors in combination

with congestion losses is needed, since a wireless receiver often talks to the sender over a wired
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network. As discussed in the background chapter, an integration of TCP Lite and PRTP is a

natural evolution of both protocols, complementing each other. Emulations using a demo ap-

plication would be a logical next step. This could for example be done with a JPEG image

transcoder[GB00] that was used in the PRTP experiments[Gar00]. A solution to the problem

with errors occurring in the header must also be found. Two paths are seen. The first is to try

to correct the headers at the receiver, which could prove tricky depending on the location of the

errors. The second is to use two checksums, one for the payload and one for the header. This

would however require a modification at both ends of the communication channel.
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Appendix A

Experiment Comparisons

A.1 Disabled TCP Lite versus Unmodified TCP Stack

To show that the TCP Lite modification does not change the behavior of TCP when it is turned

off, reference emulations were performed. They were carried out in the same way as the original

experiments, but with one difference. A TCP Lite enabled TCP stack versus an unmodified TCP

stack were compared, instead of comparing with TCP Lite enabled and disabled. As seen in

FiguresA.1, A.2 andA.3, both measures in each profile resembles the other. As can be expected,

since the errors are randomly generated, there are some minor differences.
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Figure A.2: Throughput comparison for the UMTS profile
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A.2 Two Runs of TCP Lite Disabled

This section presents comparisons of runs with TCP Lite disabled. This is done to show how the

randomness incurs small differences in the comparisons. This serves to justify the differences in

the previous section.
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Figure A.4: Throughput comparisons for the GSM profile
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Appendix B

Experiment Anomaly Discussion

In an earlier experiment (using the same setup) we found an anomaly that could not be repro-

duced. However it is worth discussing if it should occur again. We saw a major deviation of the

minimum value of loss profile 3 (GSM profile), and decided to examine more closely why it had

occurred. We found that it was caused by one sample with a very low throughput. If it is removed,

the new minimum value would consistent with the other profiles. To determine the cause of the

low throughput, we used the graphing functionality oftcptrace . Along with the textual infor-

mation found in AppendixD, graphs of the communication can also be made with tcptrace, for

exampletime-sequencegraphs which show the relation of time and sequence numbers. Consider

FigureB.1, which shows the initial phase of the deviating experiment. After the initial three-way

handshake, a packet with data is received. However, no acknowledgement is sent, indicating that

the packet was corrupted. This is further evident by the retransmission received seven seconds

later. Meanwhile, packets are continued to be received, which are acknowledged with Selective

ACKnowlegements[MMFR96], SACK, to indicate that not all packets have been received. Note

thattcptrace detects a triple dupack with the third SACK acknowledgement. This should nor-

mally trigger afast retransmit, but this is not the case. Later, the eleventh packet also becomes

corrupted, as seen by the lack of an acknowledgement and by a later retransmission. Eventually,

the sender will time out waiting for an acknowledgement for the first packet and retransmit it.
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What is believed to happen next is that the sender reduces its congestion window in response to

the retransmission, as congestion is believed to have occurred. Since packet eleven still has not

been acknowledged, the senders window is full and therefore no more packets can be sent until

the window “opens up”. This happens when an acknowledgment is received. But the receiver

can not send any acknowledgement since it still awaits one packet. After about 32 seconds, the

senders retransmission time out triggers a retransmission, packet 14 is acknowledged, and the

transmission continues.

The cause of the low throughput is the very long retransmission timeout. Its cause is not fully

understood, but some reasons have been thought of:

• The round-trip time estimation have not had time to calibrate since the first data packet

was lost.

• The trace is from the receiver. This means that there could be additional retransmissions

that have disappeared earlier in the network. Note that errors induced by dummynet are

still visible, as evident of the two packets not acknowledged.

• The TCP implementation could contain bugs.

If the reader has any ideas about the cause of this, the author would like to hear them.
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Appendix C

Example Application Program

This is an example of how an application would use TCP Lite. This program was also used in

the experiments, on the receiver.

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/ip.h>
#include <netinet/tcp.h>

#define TCP_LITE 4 /* should be defined in tcp.h */

#define ON 1
#define OFF 0

int create_socket() {

struct sockaddr_in my_addr;
int sockfd;

if((sockfd = socket(AF_INET, SOCK_STREAM, 0)) < 0) {
perror("socket");

}

my_addr.sin_family = AF_INET; /* host byte order */
my_addr.sin_port = htons(12345); /* short, network byte order */
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my_addr.sin_addr.s_addr = htonl(INADDR_ANY);
bzero(&(my_addr.sin_zero), 8); /* zero the rest of the struct */

if (bind(sockfd,
(struct sockaddr *)&my_addr,

sizeof(struct sockaddr)) < 0)
perror("bind");

if (listen(sockfd, 0) < 0)
perror("listen");

return sockfd;
}

void lite(int socket, int val) {
if (setsockopt(socket, SOL_TCP, TCP_LITE,

&val, sizeof(val)) < 0) {
perror("setsockopt failed");

}
}

int lite_status(int socket) {
int val=0, len;
if (getsockopt(socket, SOL_TCP, TCP_LITE,

&val, &len) < 0) {
perror("getsockopt failed");

}
return val;

}

int main(int argc, char **argv) {
int s, cs, len;
struct sockaddr addr;

s = create_socket();
if (s < 0) {

perror("socket");
/* exit(-1); */

}
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if (argc < 2) {
printf("Turning lite-mode off.\n");
lite(s, OFF);

}
else {

printf("Turning lite-mode on.\n");
lite(s, ON);

}

printf("lite-mode is now %d\n", lite_status(s));

while (cs = accept(s, &addr, &len)) {
char buf[4096];
int count;
printf("Koppel startat.\n");
while( (count = read(cs, buf, 4096)) > 0);
close(cs);

}

return 0;
}





Appendix D

Tcptrace Example Output

This shows what information that can be produced with the tcptrace utility.

TCP connection info:
30 TCP connections traced:
TCP connection 1:
host a: sa-pc.cs.kau.se:33440
host b: dv-srv.cs.kau.se:12345
complete conn: yes
first packet: Tue Apr 24 23:10:41.854876 2001
last packet: Tue Apr 24 23:11:32.282353 2001
elapsed time: 0:00:50.427476
total packets: 200
filename: exp15_dv-srv_100mbit_30_iter/dump-gsm-m0-off.pcap

a->b: b->a:
total packets: 101 total packets: 99
ack pkts sent: 100 ack pkts sent: 99
pure acks sent: 2 pure acks sent: 97
unique bytes sent: 51200 unique bytes sent: 0
actual data pkts: 98 actual data pkts: 0
actual data bytes: 51200 actual data bytes: 0
rexmt data pkts: 0 rexmt data pkts: 0
rexmt data bytes: 0 rexmt data bytes: 0
outoforder pkts: 0 outoforder pkts: 0
pushed data pkts: 7 pushed data pkts: 0
SYN/FIN pkts sent: 1/1 SYN/FIN pkts sent: 1/1
req 1323 ws/ts: Y/Y req 1323 ws/ts: Y/Y
adv wind scale: 0 adv wind scale: 0
req sack: Y req sack: Y
sacks sent: 0 sacks sent: 0
mss requested: 536 bytes mss requested: 536 bytes
max segm size: 524 bytes max segm size: 0 bytes
min segm size: 372 bytes min segm size: 0 bytes
avg segm size: 522 bytes avg segm size: 0 bytes
max win adv: 2144 bytes max win adv: 32696 bytes
min win adv: 2144 bytes min win adv: 31964 bytes
zero win adv: 0 times zero win adv: 0 times
avg win adv: 2165 bytes avg win adv: 32681 bytes
initial window: 524 bytes initial window: 0 bytes
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initial window: 1 pkts initial window: 0 pkts
ttl stream length: 51200 bytes ttl stream length: 0 bytes
missed data: 0 bytes missed data: 0 bytes
truncated data: 48260 bytes truncated data: 0 bytes
truncated packets: 98 pkts truncated packets: 0 pkts
data xmit time: 49.527 secs data xmit time: 0.000 secs
idletime max: 522.3 ms idletime max: 1002.9 ms
throughput: 1015 Bps throughput: 0 Bps

================================
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