
Department of Computer Science

L.J. Holleboom

Some aspects of computing, data security,

and upcoming technologies

Master’s Thesis

2002:01

Some aspects of computing, data security,

and upcoming technologies

L.J. Holleboom

c© 2003 The author and Karlstad University

This thesis is submitted in partial fulfillment of the requirements

for the Masters degree in Computer Science. All material in this

thesis which is not my own work has been identified and no mate-

rial is included for which a degree has previously been conferred.

L.J. Holleboom

Approved, December 6th 2002

Opponent: Christer Andersson

Advisor: Simone Fischer-Hübner

Examiner: Donald Ross

iii

Abstract

A number of concepts from theoretical computer science are discussed. These concepts

allow to decide which problems can be solved and which problems cannot be solved. The

ongoing process of miniaturization, which leads to ever faster computers, will necessarily

come to an end when components approach the size of atoms. Two different technologies

that possibly can play a role in computing in the future are quantum computers and DNA

computers. The principles of these technologies and some of the possible impacts, as for

example in cryptography are discussed.

v

Contents

1 Introduction 1

2 Theory of computation 5

2.1 Introduction . 5

2.2 Finite automata . 5

2.3 Regular expressions . 10

2.4 The pumping lemma . 13

2.5 Pushdown automata . 14

2.6 Context free languages . 17

2.7 Equivalence of PDAs and CFGs . 19

2.8 The pumping lemma for context free languages 21

2.9 Turing machines . 24

2.10 The Church-Turing thesis . 27

2.11 The halting problem . 29

2.12 Hilbert’s tenth problem . 32

2.13 Self-reference . 35

2.14 Complexity classes . 37

2.15 Summary and outlook . 40

3 Quantum computing 43

vii

3.1 Moore’s law . 43

3.2 More physical limitations . 48

3.3 Energy dissipation and reversibility . 49

3.3.1 Logical gates . 49

3.3.2 Universal gates . 49

3.4 How to compute quantum mechanically . 52

3.4.1 The classical bit . 52

3.4.2 The quantum bit . 52

3.4.3 Many qubits . 54

3.5 Quantum computation . 55

3.5.1 Single qubit gates . 55

3.5.2 Multiple qubit gates . 57

3.5.3 Function evaluation and quantum parallelism 59

3.5.4 Deutsch’s algorithm . 62

3.6 The Fourier transform . 64

3.6.1 Mathematical Definition . 64

3.6.2 The Discrete Fourier transform . 64

3.6.3 The Fast Fourier transform . 65

3.6.4 The Quantum Fourier transform . 67

3.6.5 Application of the quantum Fourier transform 77

3.6.6 Factoring on a quantum computer 82

3.7 A fast quantum search algorithm . 85

3.7.1 Closed form expressions for αk and βk 91

3.7.2 Number of iterations . 93

3.8 Summary . 94

4 Cryptography and quantum key distribution 95

4.1 Introduction and terminology . 95

viii

4.2 The Vernam cipher . 96

4.2.1 The security of the Vernam cipher 98

4.3 The key distribution problem . 99

4.3.1 Preliminaries . 99

4.3.2 A solution based on mathematical principles 100

4.3.3 The RSA cryptosystem . 101

4.3.4 A solution based on physical principles 103

4.4 Quantum key distribution . 107

5 Yet another direction: DNA computing 111

6 Conclusion and summary 115

References 117

A 121

A.1 Some details on Deutsch algorithm for parallel function evaluation 121

A.2 The discrete Fourier transform of a periodic function 122

ix

List of Figures

2.1 A simple finite automaton, that checks if the sum of the input digits is a

multiple of 3. 6

2.2 The NFA corresponding to the regular expression {ab, a}∗. 12

2.3 Pushdown automaton with input and stack. 15

2.4 State diagram of the PDA accepting the language A = {0n1n|n ≥ 0}. 17

2.5 Parse tree for the string 000111. 19

2.6 State diagram of a PDA that accepts all strings generated by the CFG given

in 2.2 . 21

2.7 Effect of pumping lemma on the parse tree. 23

2.8 Turing machine. 25

2.9 State diagram of a Turing machine recognizing the language B = {12n |n ≥
0} . 26

2.10 Testing program correctness. 28

2.11 Hierarchy of languages. 32

2.12 Turing machine that writes out its own description 35

2.13 Turing machine that can obtain its own description 36

2.14 Probable relation between complexity classes. 39

2.15 Probable structure of the P and NP complexity classes. 40

3.1 Moore’s law . 45

3.2 Processor clock frequency . 47

xi

3.3 Reversible and irreversible gates . 50

3.4 Toffoli gate: reversible and universal. 51

3.5 Toffoli gate is its own inverse. 51

3.6 qubit . 54

3.7 NOT and Hadamard quantum gates . 57

3.8 The CNOT quantum logic gate. 58

3.9 Function evaluation of a function on 1 bit. 59

3.10 Quantum parallelism. 60

3.11 Circuit determining balanced or constant. 62

3.12 Controlled Rp gate . 74

3.13 Circuit performing the quantum Fourier transform 75

3.14 Swapping two qubits. 75

3.15 Logic circuit swapping two qubits. 76

3.16 Realization of Ix0 by means of Uf . 88

4.1 Wave packet . 104

4.2 Electromagnetic wave . 106

4.3 Encoding of bits . 108

4.4 Decoding of bits . 108

5.1 Graph of seven vertices . 113

xii

List of Tables

2.1 The transition function δ(r, s) for the finite automaton in figure 2.1. 7

2.2 Specification of the transition function for a PDA accepting A = {0n1n|n ≥ 0}. 16

2.3 Some complexity classes. 38

3.1 Transistor count per chip . 44

3.2 Factor in quantum Fourier transform . 73

4.1 The Vernam cipher . 97

4.2 The Vernam cipher, text only . 97

xiii

Chapter 1

Introduction

The past four decades computers have become smaller, faster, and cheaper, a development

which is expected to continue for at least one, possibly a few more decades. The underlying

reason for this development is the miniaturization of electronic components. Computer

industry has managed in sustaining an exponential increase of the number of transistors

per chip, measured as a function of time. The increase has actually been quantified under

what has come to be known as Moore’s law, that the number of transistors per chip doubles

approximately every eighteen months, while the size of the entire chip remains constant.

With exponential decrease in size follows an exponential increase in computational power

in the form of exponentially increased clock frequency. No doubt, the computer industry

has a certain interest in maintaining these exponential trends. Still, it is amazing that such

a tremendous miniaturization is possible at all.

Our understanding of what a computer can do is greatly unaffected by the enormous

improvements resulting in ever faster computers. The foundations of theoretical computer

science were laid in the 1930’s by people like Kurt Gödel, Emil Post, Alonzo Church,

and Alan Turing. The abstract mathematical models of computation that resulted from

the work of these, and other, people well serve the purpose of being general models of

computation that describe what, and what not can be done by a computer.

1

2 CHAPTER 1. INTRODUCTION

Even though computers have become much faster, they have been working according

to the same principles, following the laws of classical physics. When the transistors accu-

mulated on an integrated circuit reach the size of one, or a few atoms, the laws of classical

physics no longer apply, and a further decrease in size requires to construct computers

according to the laws of quantum mechanics. At least two conceivable ways of proceeding

exist. One possibility is to accomplish the basic operations of a conventional computer

within the framework of quantum mechanics. The other possibility is to build an entirely

new computer based on quantum mechanical phenomena. At first it was tried to proceed

according to the first possibility. However, it was soon realized that quantum phenomena

allow for entirely new ways of computing. Not only can certain tasks, in the more narrow

sense of computing as ’number crunching’, be performed with an efficiency unparalleled

by conventional computers. Quantum computers also allow for the detection of eavesdrop-

ping in key exchange, for secure message exchange, and for the generation of truly random

numbers. The field of quantum information and computing is expanding rapidly as an area

of research.

Another rather new research area that has the potential of developing into a new direc-

tion in computing is what is called DNA computing. With the revealing of the double helix

structure of the DNA molecule, storing genetic information using four bases as molecular

building blocks, where the order in which these bases occur encodes all information to build

up an entire living animal, a molecular sized storage medium was discovered. Processing

of the information encoded in a DNA molecule can be done by enzymes, and in 1997 it was

demonstrated for the first time that DNA computing is a realistic possibility, by solving a

small instance of the hamiltonian path problem, using DNA and enzymes only.

People differ grossly in opinion about the possible practical use of these new directions.

Some believe that quantum computers will replace conventional computers within a few

years, others doubt that they ever will be built. It is clear, however, that these new

directions are interesting in itself, are leading to new insights, and may even redefine our

3

principal understanding of computers and computation.

This paper deals with some of the topics described above. The material that is discussed

is based upon books and papers found in the references at the end. Certain aspects are

treated in great detail in order to pinpoint essential ingredients, or fill in gaps in the source

material. Other aspects are treated in a more narrative fashion, in order to emphasize the

context in which the problem is discussed.

Chapter 2 touches upon the three traditionally central areas of the theory of computa-

tion , namely automata, computability, and complexity. These areas are all three involved

in the fundamental question of what the capabilities of computers are. Automata serve as

models of computation that are used in the other two areas. Computability distinguishes

between problems that are solvable and problems that are not solvable by computation,

whereas complexity classifies solvable problems in hard problems, for which no efficient al-

gorithm exists or is known, and easier problems. This chapter also provides the background

and fundamental concepts necessary for the remainder.

Chapter 3 starts with discussing the physical limitations that ultimately will cause

Moore’s law to break down. Next, the fundamental concept of the quantum bit, which

is the quantum equivalent of the classical bit, is introduced. It is in detail explained

how certain computational tasks can be accomplished with quantum logic gates, with an

efficiency much higher than a conventional computer can achieve. A quantum logical circuit

for performing the Fourier transform is presented. This also forms the basis for an efficient

algorithm for factoring integers on a quantum computer.

The integer factoring problem plays an important role in cryptography which is the

subject of chapter 4. Some of the basics of cryptography are discussed, especially public

key cryptography. The RSA public key cryptographic system is discussed in relation to its

dependence on the unproven assumption that no efficient factoring algorithm for factoring

integers on a conventional computer, exists. Furthermore, a protocol, based on quantum

mechanical principles, for establishing a secret key is discussed.

4 CHAPTER 1. INTRODUCTION

Finally, chapter 5 takes up another possibly promising direction in computing, namely

DNA computing. The basic ideas are described together with a description of the first,

experimental, DNA calculation.

Chapter 2

Theory of computation

2.1 Introduction

In most fields of science, problem resolution is based on the use of formal models. A formal

model deals with mathematical objects that represent abstractions of the real entities to

be modelled. Formal models basically require:

1. to formalize the problem, i.e. to choose a language that describes it

2. to solve the formal problem by means of the tools provided by the chosen formalism

Models play an essential role in computer science, computer scientists need models

to represent a computer system at different levels of abstraction, for understanding it,

analyzing it and proving properties, designing it, or even using it. We introduce two

fundamental classes of computer science models, automata and grammars.

2.2 Finite automata

Finite automata can serve as models for a certain class of computations. To be more

specific, finite automata can model computations that do not require the intermediate

5

6 CHAPTER 2. THEORY OF COMPUTATION

storage of data because they lack the capability of storing data. Hence, finite automata

may serve as the computational model for the kind of computations that can be performed

on a computer with not only finite, but also extremely small amount of memory. As an

example consider the following calculation. Given an input string consisting of the digits

{0, 1, 2}, calculate the sum of the digits in the input string modulo 3 and accept the string if

the result equals 0, otherwise reject. In figure 2.1 a graph representing the finite automaton

performing this calculation is given. This graph can be thought of as an abstract machine

that behaves in such a way as to actually perform the individual steps in a computation

that lead to the required result. In the language of finite automata the graph in figure 2.1

is called a state diagram.

0

0

0

1

2

2

1

1

2

q1

q0 q2

Figure 2.1: A simple finite automaton, that checks if the sum of the input digits is a
multiple of 3.

The machine (finite automaton) works as follows. It consists of three states, labeled

q0, q1, q2, and arrows indicating transitions between these states. The digits labeling the

arrows indicate a transition on input of that digit. There is at least one accept state, in

this case q0, indicated by a double circle. The start state is indicated by an arrow pointing

at it from nowhere, here q0. The machine starts in the start state and reads the symbols

2.2. FINITE AUTOMATA 7

from the input string, each of which yield a transition to a new state. If, at the end of

input the machine is in an accept state it outputs accept, otherwise it outputs reject. For

example on input of the string 12021 the finite automaton starts in state q0, reads the digit

1 and changes to state q1, next reads digit 2 and changes to state q0, reads 0 and stays in

q0, reads 2 upon which it changes to state q2, and, finally, reads 1 after which it changes

to q0 and returns accept.

In the example above the characters in the input string were restricted to the digits

0, 1, 2. Such a set is generally called an alphabet. The transitions between the states are

generally described by a transition function δ(r, s), indicating that state r changes to state

δ on input s. Such a function can be represented by a table, as in table 2.1.

0 1 2
q0 q0 q1 q2
q1 q1 q2 q0
q2 q2 q0 q1

Table 2.1: The transition function δ(r, s) for the finite automaton in figure 2.1.

A finite automaton can formally be defined as a 5-tuple (Q,Σ, δ, q0, F) where

1. Q is a finite set called the states

2. Σ is a finite set called the alphabet

3. δ : Q× Σ→ Q is the transition function

4. q0 ∈ Q is the start state

5. F ⊆ Q is the set of accept states

In many cases, but not always, a finite automaton can be depicted in a state diagram.

If the machine contains a parameter, and thus in a way describes a whole class of machines

it is impossible to depict this machine with a single state diagram.

8 CHAPTER 2. THEORY OF COMPUTATION

Given a precise definition of a finite automaton it is possible to give a definition of

computation, as follows. A finite automaton M = (Q,Σ, δ, q0, F) is said to accept the

string w = w1w2 · · ·wn over the alphabet Σ if a sequence of states r0, r1, · · · rn exists in Q,

such that

1. r0 = q0

2. δ(ri, wi+1) = ri+1 i = 0, 1, 2, · · ·n− 1 (2.1)

3. rn ∈ F.

The first condition requires the machine to start in the start state. Condition two

requires the machine to change state from ri to ri+1 upon reading symbol wi+1 ∈ Σ. The

last condition expresses that the machine should be in an accept state when it has read the

last symbol wn and made the accompanying transition. The set A of all strings w accepted

by machine M make up the language of the machine. Hence A = {w|M accepts w}. Not

all sets of strings are accepted by some finite automaton. However, if a set of strings is

accepted by a finite automaton, that language is said to be regular.

The importance of the regular languages becomes clear if one considers operations

on languages that produce new languages. Certain operations have the property that, if

applied on regular languages, the result is again a regular language. These operations are

called regular operations. In such a case it is said that the class of regular languages is

closed under that operation. The following operations are regular: union, concatenation,

star. They are defined as follows.

Union : A ∪ B = {x|x ∈ A ∨ x ∈ B} The resulting language consists of all strings that

are either in language A, or in language B, or in both.

Concatenation : A ◦ B = {xy|x ∈ A ∧ y ∈ B} The resulting language consists of all

strings that result if a string from language A is concatenated with a string from

2.2. FINITE AUTOMATA 9

language B, in that order.

Star : A∗ = {x1x2 · · · xk|k ≥ 0 ∧ xi ∈ A} This is a unary operation on language A, where

an arbitrary number of strings are concatenated into a new string. Note that k = 0

also is allowed, hence the empty string, which is the result of the concatenation of zero

strings and denoted ε, always is in A∗. Furthermore, A∗ usually contains infinitely

many elements, even if A only contains a finite number of elements, in contrast to

the union and concatenation.

As an example consider the languages A = {ab, cd} and B = {ef, gh} over the alphabet
Σ = {a, b, c, d, e, f, g, h}. Then

A ∪B = {ab, cd, ef, gh}

A ◦B = {abef, abgh, cdef, cdgh}

A∗ = {ε, ab, cd, ef, gh, · · · , efcd, efef, · · · , ababab, ababcd, · · · }

The class of finite automata considered so far are usually called deterministic finite

automata, abbreviated as DFA. They are deterministic because for every state and ev-

ery valid input symbol the next state is given by the transition function, and hence is

determined. There also exist more general finite automata like non-deterministic finite

automata, abbreviated as NFA. We will slightly touch upon NFAs for the following reason.

Proving that the class of regular languages is closed under some operation is not so

difficult for the union operation but is much more cumbersome for concatenation and star.

The reason is that, for example in the case of concatenation a given string has to be

accepted by a DFA if it can be broken into two sub-strings that each are accepted by some

given DFA. The process of finding out how to partition a string can be done by trying out

10 CHAPTER 2. THEORY OF COMPUTATION

all possibilities and only accepting those possibilities that yielded valid sub-strings. The

process of finding valid sub-strings can be done with NFAs.

Non-deterministic finite automata differ from DFAs in the following two ways.

1. The transition function of a DFA specifies exactly one transition for each input

symbol. For a NFA there can be zero, one ore more transitions for each input symbol.

The behaviour of the machine is that it spits into multiple copies of itself if more

than one transition exists for a given input symbol, and that it dies if there exists

no transition for that input symbol. The table describing the transition function is

now modified in that the resultant state is no longer a single state, but instead a set

of states.

2. States may also split, and possibly change state, without having read any input.

In the table for the transition function this is accomplished by an extra column

labeled with the symbol ε. If the entry in this column is the empty set ∅ then the

corresponding state cannot split.

Importantly, NFAs and DFAs turn out to be equivalent. That means that for each

language that is accepted by an NFA there exists a DFA that also accepts that language.

Because of this equivalence the proof of closure of the regular languages under the regular

operations can be formulated in terms of NFAs.

The property of an NFA of being able to split in many copies that die if they do not

end in an accept state allow for the construction of a simple NFA that is able to find valid

sub-strings in an efficient way.

2.3 Regular expressions

A regular languages is a languages that is accepted by some DFA. One can construct new

regular languages from existing ones with the help of regular operations. Since regular

2.3. REGULAR EXPRESSIONS 11

operations take languages as arguments and also yield languages as result one can combine

these operations to build more complicated expressions. Such expressions are similar to

arithmetic expressions. One such similarity is that the value of such an expression is unique

because of precedence rules. The star operation has the highest precedence, followed by

concatenation, and finally union which has the lowest precedence. As usual one can change

the meaning of a such an expression by inserting parentheses.

Some examples are in place. The expression {0, 1}∗ describes the set of all strings

made up of zeros and ones. This expression can also be written as Σ∗, or as ({0} ∪ {1})∗.
Though formally incorrect the set symbols { and } are often left out if no confusion can

arise. Hence the last form could be written as (0∪ 1)∗. Also the symbol ε is often taken to

stand for both the empty string and the set containing the empty string only, i.e., ε = {ε}.
Similarly the concatenation symbol ◦ often is left out, like the multiplication symbol in

mathematical expressions. Also note the following equalities:

• A ◦ ∅ = ∅ ◦ A = ∅ The empty set concatenated with any set yields the empty set.

• ∅∗ = {ε} The result of the star operation is a set of strings, where each string is made

up of the concatenation of a number of strings from the operand set. If the operand

set is the empty set only the empty string results.

If R1 and R2 are regular expressions then, as we have seen, R1∪R2, R1◦R2, and R
∗
1 also

are regular expressions. The simplest regular expressions do not contain any operators,

examples are ∅, {ε}, and {a}, where a is in the alphabet Σ. In summary the following

inductive definition completely defines regular expressions.

• R is a regular expression if R = ∅ ∨ R = {ε} ∨ R = {a|a ∈ Σ} ∨ R = R1 ∪ R2 ∨ R =

R1 ◦R2 ∨R = R∗
1, where R1 and R2 are regular expressions.

Regular expressions applied on regular languages yield regular languages because of the

closure property of the regular operations. This rises the question of whether there exist

12 CHAPTER 2. THEORY OF COMPUTATION

other regular languages which are not the result of some regular expression. The answer

to this question is no, all regular languages can be described by some regular expression.

From the definition of a regular expression it is also clear that each regular expression

yields a regular language. In other words, a language is regular if and only if some regular

expression describes it. Finite automata and regular expressions are equivalent in their

ability of describing regular languages. For each regular expression there exists a NFA

that accepts the language described by the regular expression. For example the regular

expression {ab, a}∗ is described by the NFa the state diagram of which is depicted in figure

2.2.

a

a

b

q1 q2

Figure 2.2: The NFA corresponding to the regular expression {ab, a}∗.

Some examples of languages that are not regular are

1. A = {0n1n|n ≥ 0}

2. B = {1n2 |n ≥ 0}

3. {w|w contains an equal number of 0s and 1s}

These languages have the common property that they consist of strings with very special

properties. It is not possible to construct a finite automaton that accepts only strings with

these properties and no others. In other words a language that is regular and contains all

2.4. THE PUMPING LEMMA 13

the strings from the first example above must necessarily also contain other strings, which

can be proven by the pumping lemma.

2.4 The pumping lemma

All infinite regular languages share a certain property known as the pumping lemma [32],

which says the following.

Pumping lemma If A is a regular language then there exists a number n > 0, called the

pumping length, such that if s is a string in A with |s| ≥ n then s may be divided

into three pieces x, y, z with s = xyz, where

1. |y| > 0

2. |xy| ≤ n

and where

3. For all k ≥ 0, xykz ∈ A

The pumping lemma specifies a necessary condition for regular languages. Hence it can

be used to prove that certain languages are not regular, but it can never be used to prove

that a language is regular. Note that the pumping lemma does not say anything about

the language A being finite or infinite. The reason is that the pumping lemma is trivially

true for finite languages. For a finite language one chooses n larger then the length of the

largest string in A in which case the lemma also is satisfied.

The pumping lemmas is a consequence of the fact that a DFA with a finite number of

states is able to accept strings that are much longer than the number of states in the DFA.

As a consequence the DFA must loop when parsing such a string. If the substring that was

parsed when executing this loop is repeated more then once, i.e. the loop is executed more

14 CHAPTER 2. THEORY OF COMPUTATION

then once, then that string will also be accepted. In this way an infinite series of strings

that all are part of the language is generated. This is the basic idea of the pumping lemma

which also forms the basis for the proof, which we will not give.

Making use of this property it is however not so difficult to understand why the language

in example 2 above is not regular. The language consists of a series of strings, the lengths

of which form the quadratic series {0, 1, 4, 9, 16, · · · }. Strings that are formed by repeating

a substring once, twice, thrice, etc will form a sequence that grows linearly. Since no subset

of a quadratic growing series grows linearly the language cannot be regular.

Also language A = {0n1n|n ≥ 0} from example 1 can be proven to be not regular with

the pumping lemma. Assume that the pumping length of A is p. Then according to the

pumping lemma string s = 0p1p, which obviously is in A, can be partitioned as s = xyz

such that xyyz also belongs to A. However, no matter how one chooses y, either as a

sequence of zeros, or as a sequence of ones, or as a mixture, if xyz matches the pattern

0n1n then xyyz will not match, hence A is not regular.

2.5 Pushdown automata

Deterministic finite automata are limited in their capability to to serve as a general model

of computation because there exist strings that these machines cannot deal with, as shown

above. In the case of the language A = {0n1n|n ≥ 0}, the reason is that the a DFA cannot

in any way remember how may zeros it has read. Consequently it cannot test whether or

not the number of ones equals the number of zeros.

Pushdown automata are generalizations of NFAs. Basically a pushdown automaton

(PDA) is a NFA complemented with a stack. Apart from the input alphabet Σε = Σ∪{ε}
there is a stack alphabet Γε = Γ∪{ε}, which may be identical to the input alphabet. Both

alphabets are complemented with the empty string in order to allow for non-determinism.

The situation is depicted in figure 2.3.

2.5. PUSHDOWN AUTOMATA 15

PDA

?
1 1 0 1 input

Σε = {0, 1, ε}

Γε = {a, b, ε}

?
a

b
b
a

stack

Figure 2.3: Pushdown automaton with input and stack.

The introduction of a a stack primarily affects the transition function. Previously the

transition function specified a new state depending on the current state and the latest

character read from input. Now the new state also depends on the character on top of

the stack. Moreover, the stack will be modified in a way that also depends on the current

state , the input character and the character on top of the stack. The table specifying the

transition function becomes more complicated and we will discuss its appearance with the

aid of an example, namely a PDA for the language A = {0n1n|n ≥ 0}.

As pointed out before, a NFA has no way to remember the number of characters read

from input so far, at least not for strings of arbitrary length. For a language A′ consisting

of all strings in A up to a certain length it would be possible to construct a NFA that

accepts the language A′. But that is not possible for A. A PDA can, however, put all the

characters it reads on the stack meaning that it has an implicit count of the number of

characters read so far.

Thus we can construct a PDA for language A by letting it reading 0s, which are all put

on the stack, until a 1 is read after which the stack is popped, which is subsequently done

for each next input character, if it is a 1. If at the end of input the stack is empty too then

the string is part of A. The PDA doing just this is specified in table 2.2.

16 CHAPTER 2. THEORY OF COMPUTATION

input 0 1 ε

stack 0 $ ε 0 $ ε 0 $ ε

q1 {(q2, $)}

q2 {(q2, 0)} {(q3, ε)}

q3 {(q3, ε)}

q4 {(q4, ε)}

Table 2.2: Specification of the transition function for a PDA accepting A = {0n1n|n ≥ 0}.

Note: emty entries mean ∅.

Testing for an empty stack can be accomplished by starting with putting a special

symbol, $ in this case, on the stack. Encountering of the $ sign then indicates empty stack.

otherwise only 0s have to be stored on the stack, hence Γ = {0, $}, and Σ = {0, 1}. The

entries in the table correspond to pairs (r, s), where r is the new state and s the value

that replaces the value on top of the stack. Both the new and the old value on top of

stack may be ε, indicating the omission of pushing a new value and popping the old value,

respectively.

The state diagram corresponding to table 2.2 is given in figure 2.4. The notation

a, s → t, accompanying the transitions, means that upon input a the symbol s on top of

the stack is replaced by symbol t. If a = ε the corresponding transition occurs without

reading any input. If s or t equals ε this indicates the omission of popping or pushing,

respectively, as before.

For completeness we also give the formal definition of a PDA. This merely differs from

the definition of a DFA in the addition of the stack and accompanying modification of the

2.6. CONTEXT FREE LANGUAGES 17

q1 q2

q3 q4

ε, ε → $

1, 0 → ε

ε,$→ ε

0, ε → 0

1, 0 → ε

Figure 2.4: State diagram of the PDA accepting the language A = {0n1n|n ≥ 0}.

transition function. A pushdown automaton is a 6-tuple (Q,Σ,Γ, δ, q0, F), where Q, Σ, Γ,

and F are finite sets, and

1. Q is the set of states

2. Σ is the input alphabet

3. Γ is the stack alphabet

4. δ : Q× Σε × Γε → Q is the transition function

5. q0 ∈ Q is the start state

6. F ⊆ Q is the set of accept states

2.6 Context free languages

A non-deterministic finite automaton is equivalent to a pushdown automaton without a

stack. Thus, PDAs accept all languages accepted by a NFA, i.e. PDAs accept all regular

languages. PDAs, however also accept certain non-regular languages, an example of which

has been presented above. It has been shown that any language accepted by a PDA can

18 CHAPTER 2. THEORY OF COMPUTATION

be generated by a context free grammar. The set of strings generated by a certain context

free grammar (CFG) is called a context free language (CFL). Hence the class of languages

accepted by PDAs is the class of context free languages.

A CFG is a set of rules where each rule specifies how a variable can be replaced by

strings consisting of variables and other symbols called terminals. One variable is the start

variable, by convention this variable occurs on the left hand side of the first rule. The

language A = {0n1n|n ≥ 0} is generated by the CFG

S → 0S1 (2.2)

S → ε. (2.3)

This grammar contains only one variable, S, and the alphabet of the strings being

defined is {0, 1}. The right hand sides of the substitution rules are also called productions.

The generation of a certain string requires a sequence of substitutions that together form

a derivation.

The derivation of the string 000111 is

S ⇒ 0S1⇒ 00S11⇒ 000S111⇒ 000111. (2.4)

Note that the arrows used in a derivation are different from those in the rules that

define the grammar. A derivation can equivalently be represented in the form of a parse

tree. For the above string the parse tree looks as depicted in figure 2.5.

When performing a derivation there is a degree of redundancy in which variable to

replace and which rule to choose for that variable. The first redundancy can be dealt with

by doing derivations always in the same way. To be precise, one replaces the leftmost

occurring variable at each step in the derivation. The second redundancy, choice of rule,

will usually yield different strings. If not, there are two different leftmost derivations

2.7. EQUIVALENCE OF PDAS AND CFGS 19

S

²²

¡¡¢¢
¢¢

¢¢
¢¢

¢¢
¢¢

¢¢
¢¢

¢¢
¢¢

¢¢
¢¢

¢¢
¢¢

ÁÁ
==

==
==

==
==

==
==

==
==

==
==

==
==

==

S

²²

¡¡¡¡
¡¡

¡¡
¡¡

¡¡
¡¡

¡¡
¡¡

¡¡

ÁÁ
>>

>>
>>

>>
>>

>>
>>

>>
>>

S

²²ÄÄ¡¡
¡¡

¡¡
¡

ÂÂ
>>

>>
>>

>

0 0 0 ε 1 1 1

Figure 2.5: Parse tree for the string 000111.

yielding the same string in which case the grammar is ambiguous. In that case there also

are two different parse trees for one and the same string.

Summarizing, a CFG consists of a 4-tuple V,Σ, R, S, where V , Σ, and R are finite sets,

and where

1. V contains the variables.

2. Σ, which is disjoint from V , contains the terminals.

3. R contains the rules, which are of the form

< variable >→< variable(s) and/or terminal(s) >

4. S ∈ V is the start variable.

2.7 Equivalence of PDAs and CFGs

The fact that push down automata are equivalent to context free grammar is an important

theorem of computer science. More precisely the theorem states that A language is context

free if and only if some push down automaton recognizes it. In one direction the theorem

states that if a language L is context free, then there exists a push down automaton

20 CHAPTER 2. THEORY OF COMPUTATION

that recognizes language L. This direction of the theorem can also be proven by, for a

general CFG, showing in detail how a PDA that recognizes the language of the CFG can

be constructed.

A PDA recognizing the language of a CFG works as follows. As before it starts by

writing some special symbol, i.e. a $ sign, on the stack in order to be able to recognize

an empty stack. Next it writes the start variable on the stack. Now the topmost symbol

on the stack is a variable and the next step is to non deterministically split into a number

of copies of itself, one for each rule in the grammar that has the start symbol on the left

hand side. Each of these copies writes the substitution symbols on the right hand side of

the rule on the stack in reverse order.

Now the first symbol of the right hand side of the rule is on top of the stack. If this

symbol is a variable the process of splitting and writing the rule on the stack is repeated.

Otherwise the symbol on top of the stack is a terminal. This symbol consequently is the first

symbol in the string generated by the grammar. The PDA has as input one of the strings

of the language of the CFG. By letting the PDA non deterministically generating all the

strings of the grammar, one of the copies of the PDA will generate the input string. Each

time the symbol on top of stack is not a variable this matches the next input symbol. The

symbol is then popped from the stack and the PDA reads the next input symbol. Again

the stack is examined, and if a variable this is substituted for and the process continues in

the same manner.

In figure 2.6 the the state diagram of a PDA that accepts all strings generated by the

CFG given in grammar 2.2 is depicted. Starting at q0 the $ and S symbols are written on

the stack after which the PDA is in state q2. From here there are two loops back two q2,

corresponding to the two rules of the grammar. Note that the loop q2 → q3 → q4 → q2

pushes the symbols of the first rule in the grammar on the stack starting at the end of the

substitution. The other loop, directly back onto q2, corresponds to the emty replacement

rule and also states the transitions that occur when the symbol on top of the stack is a

2.8. THE PUMPING LEMMA FOR CONTEXT FREE LANGUAGES 21

terminal.

q0

q1

q2

q3

q4

q5

ε, ε → $

ε, ε → S

ε,S→ ε
0,0→ ε

1,1→ ε

ε,S→ 1

ε, ε → S

ε, ε → 0

ε,$ → ε

Figure 2.6: State diagram of a PDA that accepts all strings generated by the CFG given in
2.2

The PDA thus has the rules of the grammar built in, and more or less executes these

rules which corresponds to a derivation of a string of the grammar.

2.8 The pumping lemma for context free languages

Also for context free languages there exists a pumping lemma, as is the case for regular

languages. The pumping lemma states the following.

22 CHAPTER 2. THEORY OF COMPUTATION

If A is a context free language then there exists a number n > 0, called the pumping

length, such that if s is a string in A with |s| ≥ n then s may be divided into five

pieces u, v, x, y, z with s = uvxyz, where

1. |vy| > 0

2. |vxy| ≤ n

and where

3. For all k ≥ 0, uvkxykz ∈ A

It is immediately clear that upon taking u = v = ε the above pumping lemma reduces

to the pumping lemma for regular languages, as required, because CFGs are equivalent

with PDAs, which in turn are generalizations od DFAs. Also here the pumping lemma

originates in the fact that automata have a finite number of states but are nevertheless

capable of accepting languages containing strings of arbitrary lengths, hence also strings

of lengths larger than the number of states of the PDA. That means, as before, that the

PDA has at least one state that it assumes more than once, when dealing with strings of

length larger than the number of states. The state that is assumes twice, together with

the sequence of stats that it assumed in between, can be thought of as a loop. Then all

strings that are generated by executing this loop any number of times will also be accepted

by the PDA and hence be part of the language.

Because of the equivalence of PDAs and CFGs the pumping lemma can also be un-

derstood in terms of CFGs. The important observation again is that CFGs consist of

finite sets of variables, terminals, and rules. Because strings of arbitrary length have a

derivation base on a finite number of rules, the derivation of such a string must is obtained

by applying at least one rule more than once. By repeating the sequence of steps that

occurred between the repeated applications of that rule one obtains another string that

2.8. THE PUMPING LEMMA FOR CONTEXT FREE LANGUAGES 23

obviously also is part of the language. This sequence can be repeated any number of times,

generating longer and longer strings that are all part of the language.

The above described process of generating new string in the language can be made

visual by considering the parse tree, as is done in figure 2.7. Here R is the variable in

the rule that was applied at least twice. An extra repetition of the intermediate steps is

equivalent to replacing the sub-tree under the lowest R with the larger sub-tree under the

highest R.

S

¤¤§§
§§

§§
§§

§§
§§

§§
§§

§§
§§

§§

¿¿
88

88
88

88
88

88
88

88
88

88
8

R

¥¥ªª
ªª

ªª
ªª

ªª
ªª

ª

½½
66

66
66

66
66

66
6

R

©©´́
´́
´

¹¹
..

..
.

a · · · b · · · c · · · d · · · e · · · f

u v x y z

→ S

¤¤¨̈
¨̈

¨̈
¨̈

¨̈
¨̈

¨̈
¨̈

¨̈
¨̈

¨

¾¾
88

88
88

88
88

88
88

88
88

88
8

R

¥¥­­
­­

­­
­­

­­
­­

­

½½
55

55
55

55
55

55
5

R

¦¦­­
­­

­­
­­

­­
­­

­

½½
44

44
44

44
44

44
4

a · · · b · · · c R

ªª¶¶
¶¶
¶

¸
,̧,

,,
, d · · · e · · · f

u v v x y y z

Figure 2.7: Effect of pumping lemma on the parse tree.

In the case of the non-regular but context free language A = {0n1n|n ≥ 0} the shortest
string that possibly can satisfy the conditions of the pumping lemma is the string 01. This

string can be partitioned as u = x = z = ε, v = 0, and u = 1. This is a rather special case

where pumping this string generates the whole language.

Because the pumping lemma specifies a necessary condition for a CFL its main benefit

is proving that certain languages are not context free. Examples of non context free

languages are

1. the language consisting of strings of 1s of length a square integer: B = {1n2 |n ≥ 0}.

2. the language consisting of strings of 0s of length a power of 2: C = {02n |n ≥ 0}.

The pumping lemma generates series of strings the lengths of which increase linearly

whereas the above languages generate strings that the lengths of which increase quadrati-

24 CHAPTER 2. THEORY OF COMPUTATION

cally and exponentially, respectively. As a consequence the pumping lemma will generate

strings that cannot be in the language from which it follows that these languages are not

context free.

2.9 Turing machines

Push down automata are generalizations of deterministic finite automata and are conse-

quently more powerful. However, since PDAs do not accept non-context free languages

the concept of a push down automaton cannot serve as a general model of computation.

Examples of languages that are not accepted by PDAs have been presented above.

In 1936 a much more general model of computation was presented by Alan Turing.

The model, which is known under the name of a Turing machine, consists of a control

unit, a tape head, and a tape of infinite length, see figure 2.8. The tape contains symbols

from an alphabet Γ, which can be read and written by the tape-head. The tape-head can

move in both directions over the tape, one symbol at a time, read the symbol and possibly

overwrite it with a new symbol from the alphabet Γ.

The control unit can be in any of a finite number of states. When a symbol is read

from the tape the control unit changes state, where the new state is a function of the newly

read symbol and the current state. Initially the tape contains a string of symbols from

the alphabet Σ, which is identical to Γ, but without the blank symbol. The input string

fills a finite number of positions, starting on the left, and only, boundary of the tape with

symbols from the alphabet Σ, while the rest of the tape is filled with blanks. The blank

symbol will be denoted t, if its occurrence has to be emphasized.

The Turing machine continues processing until it reaches one of the special states accept

or reject, or may continue processing forever. There exists variants of Turing machines

that differ from the one described above. These differences may concern a tape that

is unbounded in both directions, the use of more than one tape, the inclusion of non-

2.9. TURING MACHINES 25

determinism, or the omission of reject states, in which case all non-accept states become

reject states if the machine stops there. The important thing is that all these variants of

Turing machines turn out to be equivalent in the sense that they all accept the same class

of languages.

Finite
state
control ?

1 1 0 1 · · ·

Figure 2.8: Turing machine.

In summary a Turing machine can be formally defined as a 7-tuple,

(Q,Σ,Γ, δ, q0, Qaccept, Qreject), where Q, Σ, and Γ are all finite sets, and

1. Q is the set of states.

2. Σ is the input alphabet, which may not contain the blank symbol t.

3. Γ is the tape alphabet, which is a superset of the input alphabet, Σ ⊂ Γ, and always

contains the blank symbol t.

4. The transition function is δ : Q×Γ→ Q×Γ×{L,R}. The symbols L, and R indicate

the direction in which the tape-head will move after having read a symbol from the

tape.

5. There is one start state q0 ∈ Q.

6. The accepts states Qaccept ∈ Q.

7. The reject states Qreject ∈ Q.

A Turing machine can do everything a real computer can do, this is a consequence of

the Church-Turing thesis which we will discuss later. It is for example possible to design

26 CHAPTER 2. THEORY OF COMPUTATION

a Turing machine that recognizes the language B = {12n |n ≥ 0}. The machine uses the

fact that a number that is a power of two can be divided by two with result always an

even number until the result is the number 1. A number that not satisfies this rule is not

a power of 2.

In figure 2.9 the state diagram of a Turing machine that recognizes the language B =

{12n |n ≥ 0} is depicted. A label of the form a→ b,D on a transition arrow means that the

symbol a on the tape is overwritten by the symbol b, after which the tape head is moved

in the direction D, where D is one of L,R, standing for left and right, respectively. If the

symbol b is left out the symbol a is left on the tape.

q0 q1

q2q3

q4

qr

qa

1 → |_|, R

1 → x, R

1 → R

1 → x, R

|_| → R

|_| → R
x → R

|_| → R

|_| → L

|_| → R

x → R

x → R

x → R

1 → L x → L

Figure 2.9: State diagram of a Turing machine recognizing the language B = {12n |n ≥ 0}

The machine starts by replacing the first 1 with a blank, in this way it can easily test

for the beginning of the string when moving to the left. If the next symbol is a blank the

machine changes to the accept state qa, since 1 also is a power of 2. Otherwise it reads

the next 1, replaces it by a x, and arrives in sate q2. From here the machine starts reading

2.10. THE CHURCH-TURING THESIS 27

the 1s in pairs, crossing off every other 1, while hopping between the states q2 and q3. If

the number of 1 is odd a t will be encountered while in state q3, after which the machine

assumes the reject state qr. At the end of the sweep the machine has to return to the

beginning of the string, which is achieved through the state q4, until the blank marking

the start of the string is encountered and state q1 is assumed again. If the string consists

of xs only the string is accepted and qa is assumed. Otherwise a new sweep is started, with

crossing off every other 1.

2.10 The Church-Turing thesis

The Turing machine is a very general model of computation. It turns out that that every-

thing that can be computed, by any means, can also be computed by a Turing machine.

The implication of this is that problems that cannot be solved by a Turing machine can

not be solved at all. Computers solve problems by executing what is usually called an

algorithm. An algorithm usually is understood to be a set of rules that in detail describe

the individual steps that will lead to a solution of the problem at hand. The question is

what kind of problems can not be solved by a Turing machine. It is currently believed

that for any problem for which one can formulate an algorithm in the sense of the above

description, there exists a Turing machine that can execute that algorithm and hence solve

the problem.

As a consequence Turing machines can be considered to be equivalent to algorithms.

This leads to a conceptual framework for computation where a Turing machine defines an

algorithm. Everything what can be expressed in the form of an algorithm as a set of rules

can also be formulated as a Turing machine, which is called the Church-Turing thesis. This

thesis, which also can be taken as a conjecture, basically says that the intuitive notion of

an algorithm as a kind of recipe is equivalent to a Turing machine.

An implication of the Church Turing thesis is that what cannot be computed by a

28 CHAPTER 2. THEORY OF COMPUTATION

Turing machine cannot be computed at all. In other words, for a problem for which no

Turing machine exists that solves that problem there exists no algorithm that solves that

problem. Such a problem is algorithmically unsolvable. Hence, of all models of computation

considered so far, the Turing machine is the most general, and currently no more general

model seems to be possible at all.

An example of a problem for which no algorithm exists that solves the problem is

the general problem of software verification. More specific, it is not possible to design a

program that, given a program and input to the latter program, tests whether the latter

program produces the correct output. This can be proven by contradiction.

First a class of programs to be tested for correctness is chosen. We chose the programs

P that print out the string no if P is given itself as input, and the string yes for any other

input. Now the existence of a tester H is assumed that tests the correctness of P , i.e.,

tests whether or nor P prints out no if given itself as input. Since P is to be tested for

correctness if given itself as input, H only needs P as input.

H is constructed such that it produces the string yes if P is correct, and the produces

the string no if P is incorrect. Since H can test any program we can feed H itself into H.

yes

P // H

yyyyyyy

FF
FF

FF
FF

no

Figure 2.10: Testing program correctness.

Suppose that H now outputs yes, in that case H states that H is a program that will

output the string no if it reads its own description as input. This is a contradiction because

H outputs yes on assumption. If, on the other hand, it is assumed that H outputs no

then H states about itself that it is a program that will not output no if provided with

its own description as input. But it did output no, this is again in contradiction with the

assumption. Since the assumption of the existence of H always leads to a contradiction

2.11. THE HALTING PROBLEM 29

the conclusion is that H does not exist.

2.11 The halting problem

The non-existence of solutions in the form of an algorithm to certain problems is related to

the way Turing machines work. Given a certain input, the machine may end up in an accept

state, in a reject state, or simply never reach either an accept or a reject state, in which case

the machine will not halt. The above proof of the non-existence of a Turing machine that

tests the correctness of another Turing machine shows that a supposed correctness-tester

will either produce output which differs from the required output, i.e., wrong output, or

will never halt.

The problem of determining whether or not a given Turing machine M will halt on a

given input string w is called the halting problem. This problem has no solution. For a

more precise formulation somewhat more terminology is needed. The set of strings L that

is accepted by a Turing machineM is called the language ofM , and denoted as L(M). If a

string s is not accepted by a Turing machineM , then it is either rejected, orM never halts.

Certain Turing machines halt on every input, i.e., either accept, or reject. Such a Turing

machine is called a decider. If a language L is accepted by a decider then that Turing

machine is said to decide language L, in which case L is called a decidable, or sometimes

Turing-decidable, language. A decider rejects all strings that do not belong to the language.

The proof of the undecidability of the halting problem is by contradiction, following the

same kind of reasoning as used in the proof of the non-existence of an algorithm for software

correctness verification, given above.

Each decidable language is accepted by a Turing machine, namely the decider that

makes the language decidable. There are, however, languages that are accepted by a

Turing machine, but which are not decidable. Hence, for such a language there exists no

decider that decides that language. If the Turing machine that accepts such a language

30 CHAPTER 2. THEORY OF COMPUTATION

is presented a string that does not belong to the language, it may reject or never halt. A

language accepted by a Turing machine is called Turing recognizable, and is also called

a recursively enumerable language, whereas a decidable language also is called a recursive

language.

In order to determine whether or not a given problem has a solution or not the problem

can be reformulated as a decision problem. That means that the reformulated problem

is to find out whether or not a certain language is decidable. For example the problem

of whether or not it is possible to determine whether or not a given DFA accepts a given

string can be reformulated as follows. The DFA has a representation as a string D. This

string, together with the supposed input string s forms a new string denoted as < D, s >.

The original problem can now be stated as to determine whether or not the language

ADFA = {< D, s > |D accepts s} (2.5)

is a decidable language. It can rather easily be proven that ADFA is a decidable

language. In other words, it is always possible to determine whether or not a string

< D, s > belongs to language ADFA. If < D, s >6∈ ADFA then D does not accept s, if

< D, s >∈ ADFA D does accept s.

Similarly it is alway possible to determine whether or not a given push down automaton

accepts a given string. Formulated as a decision problem this means that, in notation

equivalent to the above used notation, ACFG is a decidable language. For Turing machines

the situation is different. It is not always possible to determine whether or not a given

Turing machine will accept a given string. The language

ATM = {< M, s > | Turing machine M accepts s} (2.6)

is not decidable. This means that there are strings for which no Turing machine will be

able to determine whether or not the string belongs to ATM . In other words, there exists,

2.11. THE HALTING PROBLEM 31

according to the Church-Turing thesis, no algorithm that given a Turing machine and a

string, will be able to determine whether or not the string will be accepted. That does not

mean that that it always is impossible to determine whether or not a certain string will

be accepted by a certain Turing machine. But there exists no algorithm that works for all

strings and Turing machines, and an algorithm that only works in special cases is not an

algorithm, especially not if it is not known in advance for which string the algorithm will

work.

The fact that the language ATM is not decidable is closely related to the halting problem

referred to above. Also the halting problem can be formulated as a decision problem.

AHALT = {< M, s > | Turing machine M halts on input s} (2.7)

It can be shown that if AHALT is a decidable language than ATM is a decidable language

which is a contradiction, and therefore AHALT is not decidable. The proof is straightfor-

ward, but will be omitted here. The proof of the undecidability of ATM will also be omitted,

but we will discuss some of the background of the proof. The idea is based upon the obser-

vation that the number of languages over a given alphabet Σ is larger than the number of

strings that can be constructed from Σ. Because a Turing machine can be encoded into a

string, this means that there are more languages than Turing machines. Hence there must

exist languages for which no Turing machine exists that will accept that language. For such

a language certainly no decider exists either. From a finite alphabet an infinite, though

countable, number of strings can be constructed. However, the number of languages that

can be constructed is uncountable, which is the reason why there are more languages than

strings.

Both DFAs and PDAs will always halt, that follows immediately from the way these

machines compute. The last step in the computation is performed when the last symbol

is read from the input, see for example equation 2.1. Because the input string is finite

the machine will always halt. As a consequence the languages these machines accept

32 CHAPTER 2. THEORY OF COMPUTATION

are restricted to belong to certain classes of languages, regular languages, or context free

languages, respectively. Examples of strings not accepted by these machines have been

given. The number of steps in the computation of a Turing machine is not limited, as

in the case of DFAs and PDAs, as a consequence the machine may never halt on certain

inputs.

regular context free decidable Turing acceptable

Figure 2.11: Hierarchy of languages.

2.12 Hilbert’s tenth problem

It was through the work of Turing[1] and a number of other people, among them Alonzo

Church, Kurt Gödel, and Emil Post, that the concept of an algorithm obtained a precise

definition. Only with a precise definition it was possible to prove that certain problems

could not be solved by an algorithm. As a matter of fact the very notion that certain

problems might not have a solution was unknown before the work of the above mentioned

people. A famous example is Hilbert’s tenth problem. This is the tenth problem on a list

of twenty-three problems that David Hilbert proposed as the most important, yet at the

time (1900) unsolved problems.

The tenth problem was on polynomials, with integer coefficients, equated to zero and

reads: (translation from the German) To devise a process according to which it can be

2.12. HILBERT’S TENTH PROBLEM 33

determined by a finite number of operations whether the equation is solvable in integer

numbers. The formulation of the problem strongly suggests that Hilbert did not doubt

the existence of such a process. Note especially that Hilbert required a finite number of

operations for this process.

Even though the word algorithm was not used, the formulation of the problem, coincides

very well with our intuitive notion of an algorithm as a recipe for performing a certain task.

As such, an accurate definition of an algorithm is not necessary, if one can invent the process

envisaged by Hilbert, then that would be the algorithm.

Hilbert’s tenth problem has no solution, the sought algorithm does not exist. Hence,

formulated as a decision problem, Hilbert’s problem is not decidable. In other words, the

set

D = {p|p is a polynomial with integral coefficients and at least one integral root } (2.8)

is not decidable.

Nevertheless, many polynomials with integer coefficients do have zeros at integer argument-

values. But a universal solution to the problem does not exist. Especially, the set of single

variable polynomials is decidable. Also the set D is Turing-recognizable.

The undecidability of the above set D was proven in 1970 by Yury Matiyasevich[2].

Actually Matiyasevich proved the last step required for the proof of the Davis conjecture,

now also known as the DPRM theorem, after Davis, Putnam, Robinson, and Matiyasevic.

The DPRM theorem says that every recursively enumerable set is Diophantine which as a

consequence means that prime numbers are representable by a polynomial formula.

In 1976 such a representation was given by Jones, Sato, Wada, and Wiens[3], see equa-

tion 2.9. P (a, b, c, ..., z) is a polynomial of the 25-th degree in the 26 variables a, b, · · · , z,
which assume positive integer values. The set of positive values of the polynomial is equal

to the set of all prime numbers.

34 CHAPTER 2. THEORY OF COMPUTATION

P (a, b, c, ..., z) = (k + 2)(1 −[wz + h+ j − q]2 (2.9)

−[(gk + 2g + k + 1)(h+ j) + h− z]2

−[2n+ p+ q + z − e]2

−[16(k + 1)3(k + 2)(n+ 1)2 + 1− f 2]2

−[e3(e+ 2)(a+ 1)2 + 1− o2]2

−[(a2 − 1)y2 + 1− x2]2

−[16r2y4(a2 − 1) + 1− u2]2

−[((a+ u2(u2 − a))2 − 1)(n+ 4dy)2 + 1− (x+ cu)2]2

−[n+ l + v − y]2

−[(a2 − 1)l2 + 1−m2]2

−[ai+ k + 1− l − i]2

−[p+ l(a− n− 1) + b(2an+ 2a− n2 − 2n− 2)−m]2

−[q + y(a− p− 1) + s(2ap+ 2a− p2 − 2p− 2)− x]2

−[z + pl(a− p) + t(2ap− p2 − 1)− pm]2)

At first sight the formula seem to contradict the definition of prime numbers since the

righthand side is a term consisting of two factors. The second factor however consist of a

1 minus a sum of squares, which equals 1 if all the squares are zero. Hence, if the variables

a, b, c, · · · , z assume such values were all the squares are zero, and where the resulting value

for P is non-negative, then this value for P is prime. So far, no solutions have been found.

2.13. SELF-REFERENCE 35

2.13 Self-reference

Each Turing machine has a representation as a string over some alphabet. Moreover, Turing

machines can write out and read in strings, and even simulate other Turing machines. A

question with a non-obvious answer is whether or not a Turing machine is able to write

out its own description. Everyday life-experience suggests that a machine that produces

something is more complex than the produced object. From this one would conclude that

a machine cannot print out its own description.

It actually is possible to construct a Turing machine that prints its own description,

such a machine is depicted in figure 2.12. The machine is built up of two parts, A, and B,

that execute one after the other, A handing over control to B.

Â
Â
Â
Â
Â
Â
Â

A //

³´ ¸·

²²

B ¸·

²²
< A > < B >

µ¶ Â
Â
Â

³´_ _ _ _ _ _ _ _ _ _ _ _ _ _

OOÂ
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â

// passing control
// write onto tape
//___ read from tape

Figure 2.12: Turing machine that writes out its own description

The idea is that A prints out a description of B, after which B prints out a description

of A. Part A has the description of B built in, and all that A does is printing out this

string and then halt. From this it follows that B can not have the description of A built

in, because B is not yet defined. However, the description of B is on the tape after A has

36 CHAPTER 2. THEORY OF COMPUTATION

executed. Hence B can obtain its description < B >, and then construct A as the Turing

machine that prints out the string < B >. Now B is defined as the Turing machine that

on input of some string w first constructs a Turing machine P that neglects its input and

next prints out this string, and second prints out the description < P > of P . This latter

description is the description of A, and < P > should be printed in front of the description

of B, in order to make a complete description of a Turing machine printing out its own

description.

The machine in figure 2.12 only prints out its own description and then halts. It is

possible to generalize the machine to one that prints out its own description and then

continues. It can for example read in its own description and compute with it.

Actually every Turing machine can be complemented in such a way that it can write

out and then read in its own description. In other words, for any computational task it is

possible to construct a Turing machine that can obtain its own description.

Â
Â
Â
Â
Â
Â
Â

Â
Â
Â
Â
Â
Â
Â

A //

³´ ¸·

²²

B //

³´ ¸·

²²

T

< A > < BT >

³´Â
Â
Â

µ¶_____

¸·Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â

º¹_ _

²²Â
Â
Â
Â

For the meaning of the arrows see figure 2.12.

Figure 2.13: Turing machine that can obtain its own description

The general design of such a machine is given in figure 2.13, which can almost, but not

quite, be obtained from figure 2.12 by replacing B by BT . The machine now consists of

2.14. COMPLEXITY CLASSES 37

three parts, A, B, and T , that execute in order. As before, B prints out a description of

A, but now A prints out a description of BT . The machine B now hands over control to T

instead of halting, otherwise it is the same as before, even though it now receives < BT >

as input instead of < B >. The part T can be whatever one pleases.

2.14 Complexity classes

Problems that are undecidable have no algorithmic solution. Decidable problems do have

an algorithmic solution and, at least in principle, this solution can be computed. Often

a problem contains a parameter such that different values of the parameter constitute

different problems. Even if the problem has a solution for all values of the parameter, in

practice it is only possible to obtain the solution for a very limited number of values of the

parameter because the computational resources required for obtaining the solution are not

available, or plainly non-existent.

As an example of such a problem consider the travelling salesman problem (TSP) which

is the following. A salesman is supposed to visit a number, say N , of cities, and wants the

shortest way such that each city is visited only once. Normally, many of the N cities have

roads directly to at least some other cities, otherwise there is only one possibility which

then also is the solution. Here, N is the parameter classifying the individual problems.

There is no efficient method known for solving the TSP. The only way is to compute the

lengths of all routes and then picking the smallest. This method of testing all possibilities

is called brute force. For small values of N this can easily be done. However, the number

of possible routes is an exponential function of the number of cities. That means that the

computational time to compute the solution also is an exponential function of N . Hence,

for most values of N obtaining the solution is infeasible. Such a problem is generally called

intractable.

Problems can be classified according to the asymptotic behaviour of the computational

38 CHAPTER 2. THEORY OF COMPUTATION

time as function of the size of the input. This leads to a number of so called complexity

classes, some of which are given in table 2.3.

Class Description Example

P Polynomial time CFL
NP Non-deterministic polynomial time Factoring integers

NP -complete Subset of NP Scheduling
ZPP Polynomial time, PTM

Table 2.3: Some complexity classes.

The class P consists of all problems that are solvable in polynomial time, these problems

are considered tractable. An example is context free languages, which are polynomial time

decidable.

A non-deterministic Turing machine may, in analogy with a non-deterministic finite

automaton, at any point in the computation proceed according to several possibilities.

The input will be accepted if some branch of the computation leads to the accept state.

The class NP consists of all problems that are solvable in polynomial time on a non-

deterministic Turing machine. The acronym NP stands for non-deterministic polynomial

time. An equivalent deterministic Turing machine can be constructed that will need an

exponential amount of time to solve the same problem.

There exist many problems that have the peculiar property that no polynomial time

algorithm for obtaining the solution is known, but given a solution then the proposed

solution can be checked for correctness in polynomial time. An example is the factoring

of integers into prime numbers. No polynomial time algorithm is know for this problem,

despite huge efforts. However, given an integer and its factors, then one can easily check

the correctness by simply multiplying the factors, which can be done in polynomial time.

Hence, the factoring problem can be solved in polynomial time on a non-deterministic

Turing machine by simply letting it check all possibilities. This basically is a parallel

process where only the process that guessed the right factor survives. However, there is

2.14. COMPLEXITY CLASSES 39

the possibility that an efficient, i.e., polynomial time algorithm for the factoring problem

will be found, since the non-existence of such an algorithm has not been proven. Since this

applies to all problems in NP , there is the possibility that P and NP are equal.

The class ZPP contains all problems that can be solved in (average) polynomial time

on a probability Turing machine. Such a machine can be seen as a kind of non-deterministic

Turing machine were the next move is determined by a random process. Hence, the machine

does not execute in parallel, but on different runs the machine will go through different

sequences of states, depending on the outcome of a random generator. Certain problems

are more efficiently solved on a probabilistic Turing machine than on a deterministic Turing

machine, this will not be discussed here. In figure 2.14 the suspected relation between the

classes P , ZPP , and NP is depicted.

P ZPP NP

Figure 2.14: Probable relation between complexity classes.

The class of problems in NP also contains a subset of problems, called NP -complete

problems, which have the property that all problems in NP can be reduced to an NP -

complete problem. Moreover, the reduction-algorithm itself is in P . The existence of

NP -complete problems plays an important role in the P versus NP question. It suffices to

find an efficient solution to just one NP -complete problem in order to prove the equality

of P and NP . Similarly, if one NP -complete problem is proven to not have an efficient

solution, then P and NP will be different. The assumed situation is depicted in figure

2.15.

40 CHAPTER 2. THEORY OF COMPUTATION

P NP

NP-complete problems

Figure 2.15: Probable structure of the P and NP complexity classes.

It is currently widely assumed that P and NP are different and that NP -complete

problems do not have an efficient solution. Consequently, if a problem is proven to be NP -

complete this is taken as strong evidence that the problem cannot be solved in polynomial

time.

2.15 Summary and outlook

In this chapter a number of rather well known aspects of theoretical computer science

have been discussed. It has been shown that there exist problems for which no algorithmic

solution exist. Even if an algorithm for solving a given problem exists, it may be practically

impossible to solve the problem because the number of computational steps is too large.

Factoring integers of more than 200 digits is such a problem, the computational time

required for factoring, using the fastest known algorithm, is an exponential function of the

number of digits.

In the next chapter we will discuss an algorithm for a perceived quantum computer that

2.15. SUMMARY AND OUTLOOK 41

is able to factor integers with polynomial time complexity. This is one of a few currently

known algorithms that achieve a certain task on a quantum computer with an efficiency

higher than can be achieved on a conventional computer.

The integer factoring problem is the basis for the RSA public key cryptographic sys-

tem. Although quantum technology thus is a threat against the RSA system, quantum

technology also provides an alternative solution, this will be discussed in chapter 4.

Another possible future way of tackling NP-complete problems is taken up in chapter 5.

Here the complexity of the algorithm is unchanged, but the computational time is reduced

enormously through what in principle is massive parallelism.

Chapter 3

Quantum computing

3.1 Moore’s law

Modern computers contain a central processing unit (CPU) that consists of a single silicon

chip. This has been made possible by the invention of the transistor in 1947. The first

generation of computers had vacuum tubes, these were replaced by transistors in the second

generation of computers during the 1960s. As a consequence computers became smaller,

more reliable and consumed less power. Next the integrated circuits appeared, which had

more than one logic gate on a single chip. The integrated circuit has evolved, containing

more and more logic gates, nowadays many millions.

The increase of the number of transistors on an integrated circuit over the years is given

in table 3.1, together with the minimum feature size used in the production process, and

the names of certain processors.

Gordon Moore, one of the founders of the Intel company, noticed that the number of

transistors on a single chip approximately doubled every 24 months. This quantitative form

of the increase of the number of transistors has come to be known as Moore’s law. Figure

3.1 presents Moore’s law in a plot, where the vertical axis shows the base 2 logarithm of

the transistor count.

43

44 CHAPTER 3. QUANTUM COMPUTING

Year Processor Count Size (µm)

1971 4004 2300 10
1972 8008 3500 10
1974 8080 6000 6
1976 8085 6500 3
1978 8086 29000 3
1982 80286 134000 1.5
1985 80386 275000 1.5
1989 Intel 486 1.2× 106 1
1993 pentium 3.1× 106 0.8
1995 5.5× 106

1997 pentium II 7.5× 106 0.35
1999 pentium III 28.0× 106 0.180
2001 44.0× 106

2003 95.2× 106

2005 190.0× 106

Source: Science and engineering indicators 2002,
http://www.nsf.gov/sbe/srs/seind02/, table
8-1
Values for the years 2003, and 2005 are projected.

Table 3.1: Transistor count per chip

The open circles correspond to the values from table 3.1, the full line is least square fit

of these points to a straight line. It is impressive to see how well the computer industry has

succeeded in sustaining the trend in miniaturization starting from 1971. The least square

fit resulted in the figure of 25 months for a doubling of the transistor count.

The increase of the transistor count affects both the memory capacity and the speed,

i.e. the clock frequency of the processor. The reason is that the size of chips has stayed

more ore less constant. Hence the individual transistors are packed more tightly. Thus the

distance between components has decreased, which is a prerequisite for faster communica-

tion because the speed of the signals that are exchanged is a constant, namely the speed

of light. Hence the clock frequency at which CPUs operate has increased exponentially

3.1. MOORE’S LAW 45

↑ log2(transistor count)

1970 1975 1980 1985 1990 1995 2000 2005 2010
10

12.5

15.0

17.5

20.0

22.5

25.0

27.5

30.0

��

��

�� ��

��

��

��

��

��

��

��

��

��

��

��

o point
— least square fit to straight line

Figure 3.1: Moore’s law

too, as a direct consequence of the exponential increase of the number of transistors on an

individual chip.

The cost of fabrication of integrated circuits has been more or less constant. As a

consequence, the average consumer computer doubled its performance, both in speed and

memory capacity, at the same cost.

The question is how long the exponential increase of speed and capacity can continue.

There are two important aspects to be considered in connection with this question. These

are

46 CHAPTER 3. QUANTUM COMPUTING

1. The amount of energy dissipated per logical operation.

2. The number of atoms used to store one bit of information.

If the amount of energy dissipated per logical operation would have been constant over

the last thirty years computers would melt themselves by now. The energy dissipation

has fortunately decreased as the number of transistors per chip increased. The energy

dissipation can however not decrease forever, thermal noise will put a limit on the lowest

possible amount of energy dissipated per logical operation. Thermal noise is of the order

of magnitude of 1 kT , where k is the Boltzmann constant, and T absolute temperature.

Extrapolation [9] of the current trend of the decrease of energy dissipation per logical

operation indicates that the 1 kT level will be reached around the year 2020.

As mentioned before, the number of transistors on a single chip has increased exponen-

tially, while at the same time the physical size of these chips has remained almost constant.

As a consequence, the number of atoms used to store one bit of information has decreased

exponentially. It seems that this trend has to come to an end at the level of one atom per

bit of information, but presumably already before this level is reached. Extrapolation of

this trend[9] predicts that the level of one atom per bit of information will be reached in

2020 too.

By extrapolating the exponential increase of the clock frequency to the year 2020 it

is possible to obtain an estimate of the frequency at which no more increase is possible.

Figure 3.2 contains a plot of the base 2 logarithm of the clock frequency of Intels micro-

processors as a function of time. The necessary data has been obtained from Intel, see

http://www.intel.com/pressroom/kits/quickrefyr.htm.

The increase in clock frequency does not follow an exponential law as accurate as was

the case for the increase of the number of transistors per chip in figure 3.1. The dashed

line is again a least square fit to a straight line. Especially there is a hop in the data at

around 1980, shifting from one exponential trend to another. The dotted line is a fit to the

first 5 data points, and the solid line a fit to the last 14 data points. The agreement of the

3.1. MOORE’S LAW 47

data points with these two partial fits is good, especially the second one, applying from

1985, and onwards. The point at 1982, which was excluded from the above two partial fits,

corresponds to the introduction of the 80286 processor.

1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020 2025
−5

−2.5

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

10−1

100

101

102

103

104

105

106

→
lo

g
2
(c
lo
ck

fr
eq
u
en
cy

in
M
H
z)

↑ f (MHz)

→ year

��

��

��

��

��
��

��
��

��

��

��

��

��

��

��

��

��

��

��

��

o clock frequency of processor
· · · least square fit to straight line first 5 points
- - - least square fit to straight line all points
— least square fit to straight line last 14 points

Figure 3.2: Processor clock frequency

If the trend from 1985 to 2002 (solid line) is extrapolated to the year 2020, it is found

that processors by that time will operate at a clock speed of 570 GHz. Extrapolating expo-

nential trends is however delicate because small changes in the data give enormous changes

in the extrapolated values. Other predictions[9] say that in the year 2020 computers will

48 CHAPTER 3. QUANTUM COMPUTING

operate at a clock speed of approximately 40 GHz, have 160 Gbyte of memory, and have

a power consumption of 40 W.

It is difficult to say something about the accuracies of the above mentioned figures.

Certainly computers will continue to increase their clock speed and amount of memory for

a while. But in the not too distant future these trends have to stop on physical grounds.

3.2 More physical limitations

The Turing machine provides for a general and universal model of computation. By means

of the Turing machine it is possible to give a precise definition of an algorithm and assess

the question of which problems are solvable by means of a computer and which problems

are not. The Turing machine is however a mathematical abstraction and does not take

physical reality into account.

Computers consist of material components, and the fact that the number of particles in

the universe, although large, is finite means that there is a limit to what can be computed.

For example, the infinite tape that is used in the Turing machine has no counterpart in

the real world because of the finite number of particles in the universe. Even though

such considerations have no immediate consequences for practical computing they do have

consequences for the Turing machine as a model of computation.

In section 3.1 it has been shown that the current trend of miniaturization of integrated

circuits will come to an end within a few decennia, because the way computers are con-

structed do not allow the individual components to be smaller than approximately the size

of a Si-atom. Moreover, at the atomic level physical reality can only be understood in terms

of a physical theory called quantum mechanics. The quantum theory, the foundations of

were laid in the first half of the twentieth century, is the most accurate model of reality

that exists. Hence, any model of computation should ultimately be based upon quantum

mechanics. In other words a valid theory of computation must take into account what is

3.3. ENERGY DISSIPATION AND REVERSIBILITY 49

physically realizable, and cannot only be based upon what is mathematically feasible.

It has for example been proposed that the Church Turing thesis should be replaced,

such that quantum mechanics is taken into account [25]. This issue will not be considered

here, but a number of consequences of quantum mechanics for computing will be considered

later.

3.3 Energy dissipation and reversibility

3.3.1 Logical gates

In section 3.1 it was already mentioned that the energy dissipation per logical operation had

to decrease in order to sustain further miniaturization of components, otherwise the ICs

would simply melt. This has raised the question whether or not energy has to be dissipated

on logical operations. The answer was given in 1961 by R. Landauer [23], who showed that

energy has to be dissipated if and only if information is lost during the operation. Moreover,

the amount of dissipated energy is at least kT per bit of lost information.

If information gets lost during a logical operation, then the operation is irreversible.

The AND operation is an example of an irreversible logical operation because the output 0

corresponds to three possible inputs. Because of the loss of information it is not possible to

determine from which of these three inputs the output 0 resulted. The NOT operation, on

the other hand, is reversible, because the input can always be determined from the output

by negating the output. The NAND-gate, which logically is an AND-gate followed by a

NOT-gate also is irreversible.

3.3.2 Universal gates

The NAND-gate is a universal gate, meaning that any function on bits can be computed

by a circuit consisting of NAND-gates only. Another way of saying this is that all logical

50 CHAPTER 3. QUANTUM COMPUTING

x LLL
LL

rrr
rr©²ª±­°®̄ ¬x ©²ª±­°®̄x

y ¬(x ∧ y)

NOT-gate, reversible NAND-gate, irreversible

Figure 3.3: Reversible and irreversible gates

circuits can be built out of NAND-gates only. The NAND-gate is however not reversible.

Three different inputs all yield the output 1, which make it generally impossible to infer

the input from the output. As a consequence the NAND-gate, and all logical circuits

constructed out of them, must dissipate energy.

At this point the question is: does a logical gate exist that is both universal and

reversible. This question is not only interesting in its own right, but also is related to the

question what computers can achieve and what they can not achieve, which was taken

up in chapter 2. Logical circuits, being an abstraction of real computers, comprise an

alternative model of computation, that allow to model and analyze the properties of real

computers. As a matter of fact logical circuits, as a model of computation, have been

shown to be equivalent to Turing machines, see for example reference [26]. Hence, for any

Turing machine there exists a logical circuit that can perform the same computation as

the Turing machine.

In 1982 Fredkin and Toffoli showed that the laws of (classical) physics do permit for a

logical gate that is both universal and reversible [24]. They also constructed such gates,

one of them is the Toffoli gate, see figure 3.4

The input bits are denoted a, b, and c, and the output bits x, y, z. The input bits a,

and b are copied to output unchanged, whereas the output bit z = c ⊕ ab. The product

ab is identical to the logical operation a AND b. The symbol ⊕ denotes the exclusive

or operation. In words, the z-output bit is obtained by taking the exclusive or of c with

the result of the and-operation on a and b. The bits a, and b are also called control bits,

3.3. ENERGY DISSIPATION AND REVERSIBILITY 51

a b c x y z
0 0 0 0 0 0
0 0 1 0 0 1
0 1 0 0 1 0
0 1 1 0 1 1
1 0 0 1 0 0
1 0 1 1 0 1
1 1 0 1 1 1
1 1 1 1 1 0

u

u

j

a

b

c

x = a

y = b

z = c⊕ ab

Figure 3.4: Toffoli gate: reversible and universal.

because they do affect the result of the entire gate but are unchanged themselves. The

main function of theses control bits is that these allow for the reversibility of the logical

operation. Table 3.5 illustrates that given ab and c⊕ ab the input value of c can uniquely

be inferred. For example, if ab = 1, and c⊕ ab = 0, then there is only one row in the table

matching these values, the last one in this case, giving c = 1.

ab c c⊕ ab (c⊕ ab)⊕ ab
0 0 0 0
0 1 1 1
1 0 1 0
1 1 0 1

Figure 3.5: Toffoli gate is its own inverse.

The table also illustrates that the Toffoli gate is its own inverse. The input bits a and

b are unchanged anyway. The input bit c results in c⊕ ab after the first Toffoli gate, and

in c = (c ⊕ ab) ⊕ ab after the second Toffoli gate. The second and fourth columns in the

table show that c = (c ⊕ ab) ⊕ ab, and hence two Toffoli gates in a row produces output

bits identical to the input bits.

52 CHAPTER 3. QUANTUM COMPUTING

3.4 How to compute quantum mechanically

3.4.1 The classical bit

The all important entity in computing is the concept of a bit. The word itself came into

existence as a short form for the the two word notion of a binary digit. Usually with a bit

is meant the physical realization of a binary digit in hardware. The binary number system

is in a way the simplest number system, because it contains only two tokens, the 0, and

the 1. Nevertheless, all numbers and strings of characters, and hence all information can

be represented in the binary number system. In other words, each piece of information can

be translated into a sequence of zeros and ones. Turing machines are usually designed to

handle information in the binary number system, although this is not essential.

In real computers binary digits are represented by magnetic poles, or by voltage-levels

of electronic components, and termed bits. These bits are the fundamental units to be

processed in a logical electronic circuit. As already mentioned are logical circuits equivalent

to Turing machines as models of computation.

3.4.2 The quantum bit

Fundamental to quantum computing is the two state quantum system. Examples of two

state quantum systems are the polarization direction of a photon and the spin state of an

electron. A two state quantum system, as part of a quantum computer, is called a quantum

bit, or a qubit.

Quantum systems behave fundamentally different from classical systems. A two state

system has only two states that can be measured, but before the measurement is done the

system can be in what is called a superposition of these two states. Mathematically this

means that the state |ψ〉 of a two state system is a linear combination of the two states

3.4. HOW TO COMPUTE QUANTUM MECHANICALLY 53

|ψ0〉, and |ψ1〉. These latter two states are termed eigenstates. Thus

|ψ〉 = c0|ψ0〉+ c1|ψ1〉 (3.1)

The numbers c0, and c1 are generally complex numbers. The notation | 〉 is called Dirac

notation and states such as |ψ〉 can be thought of as abstract states or as mathematical

functions. All these functions should be normalized to 1. As a consequence the numbers

c0, and c1 must satisfy

c0
2 + c1

2 = 1. (3.2)

Since multiplication of a complex number z with a phase factor eiφ does not change the

modulus of that number, i.e.,

|z| = |eiφz| (3.3)

the state |ψ〉 from equation 3.1 may be multiplied by such a phase factor without

changing its physical meaning. This property can be used to eliminate one more degree

of freedom of the parameters c0, and c1. For example, one can choose a factor eiφ such

that eiφc0 is a real number. This requirement, together with the normalization condition

in equation 3.2 eliminates two of the four degrees of freedom of the system of two complex

numbers c0 and c1, leaving two degrees of freedom.

The system |ψ〉, representing a qubit can be visualized as a unit vector in a three-

dimensional real space, see figure 3.6.

Whereas a classical two-state system really has two states only, a quantum two-state

system can be in any out of an infinite number of states, even though only two of them

can be measured, namely the states |ψ0〉, and |ψ1〉. On measurement, the probability of

finding the system in state |ψ0〉 is |c0|2, and the probability of finding the system in state

|ψ1〉 is |c1|2.

54 CHAPTER 3. QUANTUM COMPUTING

φ

θ

Figure 3.6: qubit

The two parameters characterizing the state of the qubit can be chosen as the angles θ

and φ, shown in figure 3.6. If the states |ψ0〉, and |ψ1〉 are denoted |0〉, and |1〉, for brevity,
then the state |ψ〉 can be written as

|ψ〉 = cos(
θ

2
)|0〉+ eiφsin(

θ

2
)|1〉 (3.4)

The state |0〉 corresponds to θ = 0, in which case the arrow in the sphere points

upwards. The state |1〉 corresponds to the value θ = 180◦, corresponding to a downwards

pointing arrow. The parameter θ determines the relative proportions of |0〉 and |1〉 in the

the state |ψ〉, whereas the parameter φ determines their relative phases. For a fixed value

of θ different phases correspond to different arrows, ending on the same dotted circle in

figure 3.6. This amounts to rotation about the z-axis.

3.4.3 Many qubits

A system consisting of two qubits has 2 × 2 = 4 measurable states. These are the states

|00〉, |01〉, |10〉, and |11〉. Here |00〉 is the same as |0〉|0〉, etcetera. These states, now form

3.5. QUANTUM COMPUTATION 55

the basis states for forming the total state |ψ〉 of the system reading

|ψ〉 = c00|00〉+ c01|01〉+ c10|10〉+ c11|11〉. (3.5)

It is seen that the state of a system of two qubits is specified by the four complex

numbers c00, c10, c01, and c11. The state |ψ〉 is a superposition of the states |00〉, |01〉, |10〉,
and |11〉. For a system consisting of n qubits the state |ψ〉 will be a superposition of the

states |q1q2 · · · qn〉 which are 2n in number because each of the qubits qi, i = 1, · · ·n can

assume the values 0 and 1.

Hence, 2n numbers are needed to specify the state of the system. In other words, a

system of n qubits stores an amount of information of the size of 2n complex numbers. This

amount is an exponential function of the number of qubits, in contrast to the non-quantum

case, where the amount of information is linear in the number of bits. For n = 500 the

number 2n is larger than the number of particles in the universe.

In summary, a quantum memory is capable of storing a exponential amount of infor-

mation in a polynomial number of qubits. So far, little is known of how to make use of

this potentially vast computational power. It is the challenge of quantum computing to

find ways of exploiting this potential.

3.5 Quantum computation

3.5.1 Single qubit gates

In a classical logic circuit the only non-trivial gate that acts on a single bit is the NOT-gate.

The NOT-gate simply flips a bit. The quantum analogue to this is to flip a qubit. For a

state in an arbitrary superposition this means that

56 CHAPTER 3. QUANTUM COMPUTING

NOT|ψ〉 = NOT(c0|0〉+ c1|1〉)

= c0NOT|0〉+ c1NOT|1〉 =

= c0|1〉+ c1|0〉 (3.6)

The quantum NOT interchanges the states |0〉 and |1〉, but the same result is obtained

by interchanging the coefficients c0, and c1, as can be seen from equation 3.6.

If theses two coefficients are collected in a column vector the interchange can be ac-

complished by a matrix-vector multiplication, as follows. Denote the vector representing

the state |ψ〉 as

c =





c0

c1



 . (3.7)

Then

NOT c =





c1

c0



 =





0 1

1 0









c0

c1



 (3.8)

Is is clear that there are many more possible matrix operations acting on a single

qubit. Which transformations are allowed and which are not? The answer is that unitary

transformations are allowed. Unitary transformations are such that they do not affect the

normalization of the coefficients: c20 + c21 = 1 both before and after the transformation.

There are infinitely many unitary 2 by 2 matrices, and hence infinitely many logical

single qubit gates. Another important one, apart from the NOT gate, is the Hadamard

gate, characterized by the matrix

H =
1√
2





1 1

1 −1



 (3.9)

3.5. QUANTUM COMPUTATION 57

The Hadamard gate is such that if acting on a qubit in the state |0〉 the qubit will

afterwards be in a state with equal contributions from the states |0〉, and |1〉. Hence,

H





1

0



 =
1√
2





1

1



 (3.10)

The Hadamard gate is important because it allows to prepare a qubit, originally in the

eigenstate |0〉, to end up in a superposition with equal contributions from both eigenstates.

Such a preparation plays an important role in quantum algorithms, in the form of so called

quantum parallelism. The logic circuit symbols for the quantum NOT and Hadamard gates

are given in figure 3.7.

X quantum NOT gate

Z Hadamard gate

Figure 3.7: NOT and Hadamard quantum gates

3.5.2 Multiple qubit gates

It has been pointed out in section 3.3 that the classical AND, OR, and NAND gates are not

reversible due to loss of information: the gate throws away information. For a quantum

gate to be physically realizable is is absolutely necessary that the gate does not violate

the principles of quantum mechanics. In quantum mechanics all evolution, that is, all

changes with time, are accomplished through unitary transformations, which are reversible.

Therefore only reversible quantum gates are candidates for being physically realized some

time in the future. Only reversible quantum gates will therefore be considered.

The most important two-qubit quantum logic gate is the controlled NOT gate, abbrevi-

ated CNOT gate1, shown in figure 3.8. The control qubit, marked a, is always unchanged

1By the time of writing of this paper an experimental realization of the quantum CNOT-gate is reported
in the october issue of Nature, reference [30]

58 CHAPTER 3. QUANTUM COMPUTING

but affects the action on the target qubit, here marked b. If the control qubit equals 0 the

target qubit also is unchanged. If the control qubit is 1 the target qubit is inverted. By

explicitly writing out one can easily check that the effect on b can be written as the a XOR

b, which equals addition modulo 2, a⊕ b.

u

j

a

b

a

a⊕ b

Figure 3.8: The CNOT quantum logic gate.

If the first qubit signifies the control qubit, and the second qubit the target qubit, then

|00〉, and |01〉, will be unchanged by the action of the CNOT gate, whereas |10〉, and |11〉,
will be interchanged. A system of two qubits generally has a state given in equation 3.5.

Acting on that state will interchange |10〉 and |11〉, which is the same as interchanging the

coefficients c10 and c11, and leaving the first two coefficients unchanged. The action of the

CNOT gate can therefore equally well be described by a matrix acting on the vector of

coefficient, as follows

CNOT c =

















1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

































c00

c01

c10

c11

















=

















c00

c01

c11

c10

















(3.11)

Single qubit gates, together with the two qubit CNOT gate form a universal set. That

is, each valid, i.e., unitary operation on n qubits can be achieved by a quantum logic

circuit consisting of single qubit gates and CNOT gates only. Gates involving more than

two qubits can be constructed from single qubit gates and CNOT gates. Mathematically

3.5. QUANTUM COMPUTATION 59

this can be proven by proving that the 2n × 2n unitary matrix describing the action on

the coefficient vector can be decomposed into the 2× 2 unitary matrices acting on a single

qubit, and 4× 4 CNOT matrices acting on two qubits.

3.5.3 Function evaluation and quantum parallelism

A function on n qubits can be evaluated with a quantum circuit consisting of CNOT and

single qubit gates. Making use of superposition it is actually possible to simultaneously

evaluate the function for different values of the argument. Consider a function of one bit,

f(x) : {0, 1} → {0, 1}. In order to be able to reversibly evaluate the function the following

scheme usually is adopted.

A system containing two qubits is needed, because the value of the argument has to be

carried through for the system to be reversible. The function evaluation is accomplished

by an appropriate circuit of quantum logic gates, and can be done such that the system

state |x, y〉 is transformed into |x, y ⊕ f(x)〉. The y qubit has to be in the output as well,

in order to be able to infer the input from the output. If y = 0 on input one obtains

|x, 0〉 → |x, f(x)〉. The unitary evaluation corresponding to the evaluation of f is denoted

Uf , and the corresponding circuit symbol is given in figure 3.9.

|x〉

|y〉

|x〉

|y ⊕ f(x)〉

Uf

Figure 3.9: Function evaluation of a function on 1 bit.

If f(x) is the identity function, i.e., f(0) = 0, and f(1) = 1, the function evaluation

can be accomplished by a CNOT gate. This can be verified by explicitly by writing out

a table, or by comparing figure 3.9 for function evaluation with figure 3.8 for the CNOT

60 CHAPTER 3. QUANTUM COMPUTING

gate.

The qubit containing the argument x can be prepared in the state 1√
2
(|0〉+ |1〉), which

can be done by the acton of the Hadamard gate on |0〉. If the target bit y = 0 then the

application of Uf results in the state 1√
2
(|0, f(0)〉+|1, f(1)〉) for the entire system consisting

of two qubits. The operation is depicted in figure 3.10.

|0〉+|1〉√
2

|0〉
|ψ〉 = |0,f(0)〉+|1,f(1)〉√

2
Uf

Figure 3.10: Quantum parallelism.

It can be seen that the resultant state contains the function values for both values of

the argument. The function has, however, been evaluated only once. Thus, both argument

values have been evaluated in parallel. This phenomenon is called quantum parallelism.

The resultant state is a linear combination, which is such that no single qubit can be

factored out, such a state is called an entangled state. The linearity of quantum mechanics

plays a crucial role in obtaining the resultant entangled state which can be seen as follows.

The operator Uf evaluating the function is defined as

Uf |x, y〉 = |x, y ⊕ f(x). (3.12)

3.5. QUANTUM COMPUTATION 61

The operation of Uf on the state 1√
2
(|0〉+ |1〉) can be written as

Uf
1√
2

1
∑

x=0

|x, 0〉 = 1√
2

1
∑

x=0

Uf |x, 0〉

=
1√
2

1
∑

x=0

|x, 0⊕ f(x)〉

=
1√
2

1
∑

x=0

|x, f(x)〉

=
|0, f(0)〉+ |1, f(1)〉√

2

(3.13)

The linearity of quantum mechanics allowed to interchange the action of Uf and the

summation in the first step. In the next step the definition of Uf was applied after which

the result could be rewritten in the same form as in figure 3.10.

Although the function f has been evaluated for both values of the argument in parallel,

not both function values can be simultaneously obtained. The reason is that upon reading

off the quantum register it will assume one of the two eigenstates that the entangled state is

made up of. The observer has no way of affecting this process. Hence, quantum parallelism

will have to be complemented in some way in order to become useful. Only a function of

one qubit was discussed here, but quantum parallelism also shows up for functions of n

qubits. However, also for n qubits, although all n argument values can be evaluated in

parallel, only one of them can subsequently be obtained through reading off the qubits.

This is a direct consequence of the laws of quantum mechanics that make it impossible to

extract more than state from a superposition of states. After the observation of one state,

all information about the other states does not exist anymore.

62 CHAPTER 3. QUANTUM COMPUTING

3.5.4 Deutsch’s algorithm

At this point the obvious question is how to make use of quantum parallelism, if at all

possible. As explained above it is not possible to gain access to more than one of the

simultaneously evaluated function values. Instead of function values there might be other,

perhaps more global, information about the function, that a quantum computer is able to

compute more efficient than a classical computer.

In 1984 David Deutsch [25] demonstrated such a property, see also [27]. Of the functions

of one bit f(x) : 0, 1 → 0, 1, there are four different ones. These can be classified as

constant, or balanced. The two constant functions are f(x) = 0, and f(x) = 1. The

remaining two are balanced in the sense that the values 0, and 1 appear equally often as

function values. These functions are f(0) = 0, f(0) = 1, and f(0) = 1, f(0) = 0.

In order to determine whether or not a one bit function is constant or not two function

evaluations are necessary. The property itself is, however, a one-bit property in the sense

that there are only two possible values: constant or balanced. A quantum computer can

evaluate the function in parallel for the two different argument values. The problem is to

further process the information in such a way that once the value of the qubit is read off

this will give relevant information about the function being constant or balanced.

Uf

H

H H

NOT

|0〉

|0〉

¡¡µ

@@R

|0〉 constant f

|1〉 balanced f

Figure 3.11: Circuit determining balanced or constant.

A quantum logic circuit solving the problem is given in figure 3.11. The input is a two

qubit system |x, y〉, where both x, and y are 0. First y is set to 1 through an inverter, after

3.5. QUANTUM COMPUTATION 63

which a Hadamard transformation is applied to both x, and y.

The Hadamard transformation turns |0〉 into 1√
2
(|0〉 + |1〉, and |1〉 into 1√

2
(|0〉 − |1〉.

Thus before being processed by Uf the state of the two qubits is 1
2

∑1
x=0 |x〉(|0〉 − |1〉). It

can be verified that the application of Uf results in the state 1
2

∑1
x=0(−1)f(x)|x〉 (|0〉 − |1〉),

see appendix A.1 for details. Thus the application of Uf has left the qubit y untouched.

The interesting part is the x qubit, the state of which depends on the function f . If f is

constant x contains 1√
2
(|0〉+ |1〉), and if f is balanced x contains 1√

2
(|0〉−|1〉). If now again

a Hadamard transformation is applied on x the content of x is |0〉 for a constant function

f , and |1〉 for a balanced function f .

The procedure can readily be generalized to functions of n bits, with only the values

0 and 1 as the allowed function values. In that case a function is not necessarily either

constant or balanced, there exist also other possibilities, these are not considered. It can

be shown that for these functions of n bits the property balanced or constant can be

determined with one parallel quantum evaluation of the function, thereby achieving an

exponential speedup as compared to determining this property classically, which requires

more than 2n−1 function evaluations, and which obviously is exponential in the size of the

input.

So far only few problems have been demonstrated to be able to profit, in the sense of

speed up of execution, from quantum parallelism. The above described problem by Deutsch

was the first one. Although the practical usefulness is questionable, the problem does show

that there exist problems that would gain from being executed on a quantum computer.

We will discuss three more interesting problems that would profit from being executed on

a quantum computer, these are the Fourier transform [21], the integer factoring problem

[21], and the search in a database [22]. The Fourier transform plays a rather central role in

the relatively few existing quantum algorithms that solve problems with a time complexity

that compares favourable to algorithms that solve the same problem on a conventional

computer.

64 CHAPTER 3. QUANTUM COMPUTING

3.6 The Fourier transform

3.6.1 Mathematical Definition

The Fourier transform is a mathematical operation that transforms a function into another

function, and can be done for most functions that behave ’reasonable’. Here, the Fourier

transform of functions of one variable will be considered. The Fourier transform has ap-

plications in many different fields, often using their own specific notation. If the function

to be transformed is a function of time, denoted t, the transformed function is a function

of frequency, denoted f . The transformed function, denoted H(f), can be considered as

a decomposition of the original function, denoted h(t), into frequency components, where

the transformed function gives the amplitude of each frequency component. The relation

between H(f) and h(t) is

H(f) =

∫ ∞

−∞
h(t)e2πiftdt (3.14)

3.6.2 The Discrete Fourier transform

The discrete Fourier transform is obtained if the continuous integral in equation 3.14 is re-

placed by a discrete sum, and can be viewed as an approximation to the Fourier transform.

The discrete Fourier transform is especially useful if the function to be transformed con-

sists of a set of discrete data hk, k = 1 · · ·N , obtained by, for example, some measurement.

The transformed function consists in that case of a discrete set of data as well, denoted as

Hn, n = 1, · · ·N , containing as many, N , elements, as the original set. The two sets are

related by

Hn =
1√
N

N−1
∑

k=0

hke
k 2πi
N
n. (3.15)

Note that in equation 3.15 the data is numbered from 0 · · ·N − 1, instead of 1 · · ·N .

3.6. THE FOURIER TRANSFORM 65

For a discrete set of data the discrete Fourier transform can just as well be considered

as a transformation in its own right, without being viewed as an approximation of the

continuous Fourier transform.

Often the data to be transformed is a large set of sampled data, therefore it is of interest

to consider the time complexity of the discrete Fourier transform. From equation 3.15 it

can be deduced that N numbers Hn have to be calculated, and for each number one has

to sum N terms where for each term a multiplication has to be performed. This is seen

most easily by defining

W = e
2πi
N (3.16)

and rewriting 3.15 as

Hn =
1√
N

N−1
∑

k=0

W nkhk. (3.17)

The complexity of the discrete Fourier transform, if performed according to formula

3.17, i.e, a matrix times vector multiplication, is therefore O(N 2).

For a general matrix times vector operation the time complexity cannot be reduced

below O(N 2). The form of the matrix used in the discrete Fourier transform, W nk, is such

that it actually is possible to do much better than O(N 2).

3.6.3 The Fast Fourier transform

The fast Fourier transform is an algorithm for performing the discrete Fourier transform,

which utilizes the special structure of the transformation coefficientsW nk, see formula 3.17.

This results in an algorithm with time complexity O(N log2(N)) instead of O(N 2).

Not seldom, if a complexity factor N is replaced by a factor log2(N), this is the result

of rephrasing the problem from an iterative into a recursive fashion. Examples are the

binary search algorithm, and the quicksort algorithm. Also the fast Fourier transform can

66 CHAPTER 3. QUANTUM COMPUTING

be phrased in a recursive manner, as follows. The set of N points hk can be partitioned

into two subsets of size N/2, one subset containing the even numbered data points, and

the other one containing the odd numbered points. Assuming for simplicity that N is a

power of 2, the discrete Fourier transform can be written as,

Hn =
1√
N

N−1
∑

k=0

en
2πi
N
khk (3.18)

=
1√
N

N/2−1
∑

k=0

en
2πi
N

2kh2k +
1√
N

N/2−1
∑

k=0

en
2πi
N

(2k+1)h2k+1 (3.19)

=
1√
N

N/2−1
∑

k=0

en(2πi
N/2

)kh2k +W n 1√
N

N/2−1
∑

k=0

en(2πi
N/2

)kh2k+1 (3.20)

=
1√
N

N/2−1
∑

k=0

(W 2)nkh2k +W n 1√
N

N/2−1
∑

k=0

(W 2)nkh2k+1 (3.21)

In equation 3.19 the summation has been split into a summation over even, 2k, and

odd, 2k + 1 values for the summation index. In 3.20 a factor W n has been taken out

of the second summation, and the extra factor 2 results in N being replaced by N/2 in

the exponential factors. Hence, both summations are nothing else than a discrete Fourier

transform of length N/2, which also can be written in the form of 3.21. Note that W has

periodicity N , meaning that WN = 1, and W 2 has periodicity N/2, as required.

Having reduced the discrete Fourier transform to two discrete Fourier transforms of half

the length, the same procedure can be applied to both these transforms of half the length.

After log2(N) divisions one arrives at a discrete Fourier transform of length 1, which is the

identity operation.

From equation 3.21 is is deduced that obtaining the discrete Fourier transform from

the two transforms of half the length requires 1 addition, and 1 multiplication for each Hn,

apart form the calculation of the factor W k, which has to be done once. This procedure

has to be repeated log2(N) times, resulting in an overall complexity of O(N log2(N)).

3.6. THE FOURIER TRANSFORM 67

There is a hook, though, for in order to make the procedure practical the transform

is carried out in the opposite direction: first performing transforms of length 2, followed

by transforms of length 4, and so on, up to transforms of length N . The hk that are

combined at each level of transformation are spread out through the whole array. It is of

course possible to look up the appropriate hk at each transformation. It is also possible to

reorder the hk once and for all by for each hk writing the bits of k in reversed order, and

putting the original value of hk at the position of the corresponding number. For example,

for N = 16, the number h13 = h1101 will be put at position h1011 = h11. Fortunately, the

procedure of reordering the hk in bit reversed order has time complexity no greater than

O(N log2(N), making the overall complexity O(N log2(N) as well.

The assumption made above that N should be a power of 2 is no limitation, because a

discrete Fourier transform of arbitrary length can be padded with zeros up to the nearest,

larger, power of 2. This affects the computational time with a multiplicative factor less

than 2 and does therefore not affect the computational complexity.

3.6.4 The Quantum Fourier transform

The discrete Fourier transform replaces each number out of a set by a linear combination

of all the numbers in the set. The transformation as defined in equation 3.15 is in fact

unitary. The inverse is given by the same transformation, except that the complex factor

i is replaced by −i. Because the transformation is obviously symmetric this means that

the inverse transformation matrix is equal to the complex conjugate of the transposed

transformation, which is the definition of a unitary matrix.

In order to explicitly show the unitarity of the discrete Fourier transform we calculate

the product of the transformation matrix with its inverse and show that the result equals

unity.

68 CHAPTER 3. QUANTUM COMPUTING

1√
N

N−1
∑

k=0

ej
2πi
N
k 1√

N
ek

−2πi
N

l =
1

N

N−1
∑

k=0

ek
2πi
N

(j−l) (3.22)

=











1
N

∑N−1
k=0 e

0 = 1, if j = l

1−e
2πi
N

(j−l)N

1−e
2πi
N

(j−l)
= 0, if j 6= l

(3.23)

=δjl (3.24)

In equation 3.23 the closed form expression of the summation of a geometric series

has been used, see also appendix A.2. The unitarity of the discrete Fourier transform

is important because that is a precondition for being able to implement this transforma-

tion as a quantum logic circuit, because such a circuit always has to implement unitary

transformations.

The discrete Fourier transform as an approximation of the full, continuous transform,

is a one-dimensional transform since it transforms a function of one variable into another

function of one variable. Fourier transforms of functions of more than one variable can

also be defined, these are sometimes called many-dimensional Fourier transforms.

However, as is clear from equation 3.22, already the one-dimensional discrete Fourier

transform is a unitary transformation in an N-dimensional space. A transformation of a

vector is equivalent to the transposed transformation on the basis vectors. In the case of

the discrete Fourier transform, which is symmetric, this means that a transformation on a

vector is equivalent to the same transformation on the basis.

Mathematically this can be expressed as follows. If the basis is denoted |0〉, . . . , |N −1〉
then the transformation of the basis is given by

DFTN : |j〉 = 1√
N

N−1
∑

k=0

ej
2πi
N
k|k〉 (3.25)

where DFTN : |j〉 stands for the transformed basis vector |j〉 as a result of the operator

3.6. THE FOURIER TRANSFORM 69

DFTN .

If now DFTN : acts on
∑N−1

j=0 f(j)|j〉, which is a vector in the space spanned by the

given basis, one obtains

DFTN :
N−1
∑

j=0

f(j)|j〉 =
N−1
∑

j=0

f(j) DFTN : |j〉 (3.26)

=
N−1
∑

j=0

f(j)
1√
N

N−1
∑

k=0

ej
2πi
N
k|k〉 (3.27)

=
N−1
∑

k=0

1√
N

N−1
∑

j=0

ek
2πi
N
jf(j)|k〉 (3.28)

=
N−1
∑

k=0

f̃(k)|k〉 (3.29)

where 1√
N

∑N−1
j=0 ek

2πi
N
jf(j) = f̃(k) is the discrete Fourier transform of the function f(j)

in the interval 0 . . . N − 1. The f(k) are what was called hk, and the f̃(k) what was called

Hk.

Equation 3.29 has the same form as the state of a quantum register as described in

section 3.4.3 for two qubits. Hence, equation 3.29 also shows that by performing a discrete

Fourier transform on the qubits of a quantum register one effectively performs a discrete

on the whole vector f(k), in one sweep. It has already been shown that the discrete Fourier

transform is unitary. Therefore, a quantum circuit that performs such a transform on the

qubits can be constructed. For the quantum Fourier transform to be useful, this circuit

must consist of a number of logic gates, that is polynomial in N . It will be shown that

this condition can be fulfilled by explicitly constructing such a circuit.

The starting point for the construction is equation 3.25 which describes how a basis

state transforms. The index k, numbering the basis states, is made up of n qubits, hence

k ranges from 0 . . . N − 1 = 0 . . . 2n − 1. The bits of the number k are ordered with the

70 CHAPTER 3. QUANTUM COMPUTING

least significant bit on the right, and the least significant bit on the left. This still leaves

many possible ways of numbering the bits, one possibility is

k = (kn−1kn−2 . . . k1k0)2 = k02
0 + k12

1 + . . .+ kn−12
n−1 =

n−1
∑

l=0

kl2
l (3.30)

where the notation k = (kn−1kn−2 . . . k1k0)r stands for the number k written in the

the positional number system with base, or radix, r. It is the position of the digit that

determines to which power of r it is the coefficient, where the rightmost digit always is the

coefficient of r0. By numbering the digits as in equation 3.30 the power of r is identical to

the index of the digit.

The suffix r indicating the radix will be left out because the base-2 number system will

be used throughout. Here it is more convenient to use a different numbering of the digits,

namely

k = (k1k2 . . . kn) = k12
n−1 + k22

n−2 + . . .+ kn2
0 =

n
∑

l=1

kl2
n−l (3.31)

Note that still the position decides the significance of a bit: kn, appearing as the

rightmost digit is the least significant.

A quantum register containing the number k can be written in each of four equivalent

ways

|k〉 = |k1k2 . . . kn〉 = |k1〉|k2〉 · · · |kn〉 =
n
⊗

l=1

|kl〉 (3.32)

These notational issues being established the discrete Fourier transform can be written

as, writing k in binary form and using that N = 2n,

3.6. THE FOURIER TRANSFORM 71

DFTN : |j〉 = 1√
N

N−1
∑

k=0

ej
2πi
N
k|k〉 (3.33)

=
1√
N

1
∑

k1=0

1
∑

k2=0

· · ·
1
∑

kn=0

ej
2πi
N

∑n
l=1 kl2

n−l |k1k2 . . . kn〉 (3.34)

=
1√
N

1
∑

k1=0

1
∑

k2=0

· · ·
1
∑

kn=0

n
⊗

l=1

ej2πikl2
−l |kl〉 (3.35)

=
1√
N

n
⊗

l=1

[

1
∑

k1=0

ej2πikl2
−l |kl〉

]

(3.36)

=
1√
N

n
⊗

l=1

[

|0〉+ ej2πi2
−l |1〉

]

(3.37)

First the summation over k in equation 3.33 has been rewritten as a repetitive summa-

tion over the individual bits of k, using the representation of equation 3.31 in the exponent,

after which equation 3.34 has been obtained. Note that the summation over l in the ex-

ponent is a formal expansion, whereas the outer summations sum over values, 0 and 1, of

the individual kl. Now the divisor N cancels the factor 2n, and the exponent of a sum

of terms can be rewritten as a product of individual exponents, at the same time using

3.32, which gives equation 3.35. Exchanging sums and the direct product gives equation

3.36, and explicitly performing the summation over kl gives equation 3.37. In doing this

last summation, it is only |1〉 that obtains a pre-factor different from 1. It is actually this

fact that is responsible for the N log2(N) complexity of the fast Fourier transform, because

in each of the n = log2(N) factors in equation 3.37 there now is 1 multiplication. If the

factor of |0〉 was different from 1, there would be 2log2(N) = N multiplications for each j,

producing N 2 overall complexity.

The product in equation 3.37 can be written out explicitly, where the fraction j/2l is

72 CHAPTER 3. QUANTUM COMPUTING

rewritten as

j

2l
=
j12

n−1 + j22
n−2 . . . jn2

0

2l
. (3.38)

For each value of l only those bits of j where the final exponent of 2 is smaller than 0,

i.e., negative, are relevant, because e2πi2p = 1 for p ≥ 0. Thus, for the n = 1 factor, only

the jn bit contributes, for n = 2, the jn, and jn−1 bit contribute, and so on. Hence,

DFTN : |j〉 = |0〉+ e2πi jn
2 |1〉√

2

|0〉+ e2πi(
jn−1

2
+ jn

4
)|1〉√

2
· · · |0〉+ e2πi(

j1
2

+
j2
4

+··· jn
2n

)|1〉√
2

(3.39)

Expression 3.39 is the form which lends itself for translation into a quantum circuit.

For the first factor, it holds that

|0〉+ e2πi jn
2 |1〉√

2
=











|0〉+|1〉√
2

, if jn = 0

|0〉−|1〉√
2

, if jn = 1

(3.40)

which is exactly what a Hadamard transformation does on a qubit |jn〉 for the two

possible cases |jn = 0〉, and |jn = 1〉.
The value of the second factor depends on the values of the bits jn−1 and jn, and is

given in table 3.2. If jn = 0, the effect is a Hadamard transformation on the bit jn−1, just

as in the case of the first factor, but now on the bit jn−1 instead of jn. The effect of the

bit jn now is an extra factor i, but, firstly only if jn = 1, and secondly, only on the state

|1〉, as can be seen from the table.

All of the following factors in equation 3.39 are now obtained in a similar way. The

p-th factor follows from a Hadamard transformation on qubit n− p+ 1 plus extra factors

e2πi
jn−p+q

2q for q = 2 . . . p on the |1〉 component of the result. Each extra factor only applies

if the corresponding bit jn−p+q = 1. In a logic circuit the conditional multiplication with

these factors can be achieved through controlled single qubit gates, as follows.

3.6. THE FOURIER TRANSFORM 73

jn−1 jn
|0〉+e2πi(

jn−1
2 +

jn
4)|1〉√

2

0 0 |0〉+|1〉√
2

0 1 |0〉+i|1〉√
2

1 0 |0〉−|1〉√
2

1 1 |0〉−i|1〉√
2

Table 3.2: Factor in quantum Fourier transform

The unitary transformation

Rq =





1 0

0 e
2πi
2q



 (3.41)

is a single qubit transformation that multiplies the |1〉 component of a single qubit state

with the factor e
2πi
2q . In analogy with the controlled NOT gate the controlled Rq gate Rpq,

acting on two qubits, can be defined as

Rpq =

















1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 e
2πi
2q

















(3.42)

which applies the Rq operation if jp = 1. The symbol for the controlled Rq gate is given

in figure 3.12.

The controlled Rpq-gate exactly performs the conditional multiplication as required in

74 CHAPTER 3. QUANTUM COMPUTING

Rq

•
Figure 3.12: Controlled Rp gate

the discrete Fourier transform.

A circuit performing the quantum Fourier transform on a set of n qubits is given in

figure 3.13. This circuit is a quantum logic implementation of equation 3.39, but not a

complete implementation, because the result is in bit reversed order. Hence, elements for

performing the qubit-reversion have to be added, these have been left out for conciseness.

A circuit for swapping two qubits will be given below.

The input qubits |j1〉 · · · jn〉 in figure 3.13 are given in the order according to equation

3.31, with the least significant qubit jn on the right. The Hadamard transformation on

|jn〉 produces the first, i.e., leftmost, factor on the right hand side of equation 3.39, and

shows up on the rightmost side below in figure 3.13.

The second factor in equation 3.39 involves the qubits jn−1, and jn, and shows up as the

one but rightmost factor on the output side in figure 3.13, and is the result of a Hadamard

transformation and a controlled R2 operation, as explained above.

The input qubit |jp〉, p+1 . . . n−1 is acted on by a Hadamard transformation, followed

by n−p controlled Rq operations for q = 2 . . . n−p+1, where operation Rq is controlled by

jp+q−1. Note that, because the set of transformations done on |j1〉 is dependent on qubits

|j2〉 · · · jn, first all operations on |j1〉 are done, then all operations on |j2〉, and so on, the

Hadamard transformation on |jn〉 being done last.

In order to reverse the qubits that result from the circuit in figure 3.13 some more

circuitry is needed. Figure 3.14 shows how two qubits can be swapped, by the repeated

application of the CNOT-gate. Recall that a ⊕ b is binary addition modulo 2, which is

equivalent to the XOR operation, hence, (a⊕ b)⊕ a = b.

3.6. THE FOURIER TRANSFORM 75

|j1〉 |j2〉 · · · |jn−1〉 |jn〉

H

R2 •
· · ·

Rn−1 •

Rn •

H

· · ·

Rn−2 •

Rn−1 •
· · ·

H

R2 •

H

|0〉+e2πi(
j1
2 +

j2
4 +···

jn
2n

)|1〉√
2

|0〉+e2πi(
j2
2 +

j3
4 +···

jn
2n−1)|1〉√

2
· · · |0〉+e2πi(

jn−1
2 +

jn
4)|1〉√

2

|0〉+e2πi
jn
2 |1〉√

2

Figure 3.13: Circuit performing the quantum Fourier transform

u

j

a

b

a

a⊕ b u

j (a⊕ b)⊕ a = b

a⊕ b

u

j

b

a

Figure 3.14: Swapping two qubits.

If the three operations shown in figure 3.14 are done immediately after each other the

circuit shown in figure 3.15 is obtained.

76 CHAPTER 3. QUANTUM COMPUTING

u u

uj j

ja

b

b

a

Figure 3.15: Logic circuit swapping two qubits.

The number of components needed in a circuit to perform the quantum Fourier trans-

form is polynomial in the number of qubits, n. This can easily be established by counting

the number of gates.

There are n Hadamard gates. Then there are n − 1 + n − 2 + . . . + 1 = n(n − 1)/2

conditional Rq gates. Furthermore there are n/2 swap-gates of the type shown in figure

3.15 needed, in order to perform the final bit reversion. Since all of these are polynomials

in n the size of the final circuit also is polynomial in n.

As a consequence the quantum Fourier transform has a computational complexity of

poly(log2(N)), in contrast to the fast Fourier transform, which has a computational com-

plexity poly(N log2(N)). Since N = 2n, the fast Fourier transform is exponential in the

size of the input, whereas the quantum Fourier transform is polynomial in the size of the

input, as far as computational time is considered.

At this point one may wonder why the fast Fourier transform, with its exponential

time complexity, is called fast. The reason is that, although strictly speaking the size of

the input is given by the number of bits n = log2(N), in many applications the size of

input does not grow that fast. Instead, it is N , which is the size of the input, making the

fast Fourier transform almost linear in N , which is an enormous improvement over the N 2

complexity of the matrix-multiplication-based Fourier transform.

3.6. THE FOURIER TRANSFORM 77

3.6.5 Application of the quantum Fourier transform

Even though a quantum computer is able to efficiently perform a discrete Fourier transform

this is not immediately useful. The Fourier transform is contained in the quantum register

as a superposition of states. Upon observation of the quantum register containing the

Fourier transformed function, the superposition collapses to a single component out of the

superposition. The merit of the quantum Fourier transform is that it can perform the

discrete Fourier transform for all components in parallel.

There exist, however, situations in which it is possible to take advantage of the Fourier

transform by making use of specific properties of the Fourier transform. One such a

property is that the discrete Fourier transform of a function fj, with period r, is a function

f̄k which only is nonzero for values k = mN
r
with m = 0, 1, . . . , r − 1, and where N is the

length of the transform. This property, which is proven in appendix A.2, can be utilized

to efficiently determine the period r of the original function.

Classically there is no better algorithm for determining the period than by trial and

error: calculate the function for arbitrary values of the argument, if two identical values are

obtained then these are one or more periods apart. Repeating this proces allows to obtain

the period in O(N) function evaluations. On the other hand, on a quantum computer,

exploiting quantum parallelism and the quantum Fourier transform, the period can be

obtained in one function evaluations plus O(log2(N) operations for the Fourier transform.

The algorithm that determines the period of a function is as follows. A quantum

computer consisting of 2n qubits is supposed to be at disposal. The first n qubits make

up the input register and the last n qubits make up the output register. Initially both

the input, and the output register are set to zero. The state of the entire register will be

denoted ψ, with an appropriate subscript. The initial state denoted ψ0 is

78 CHAPTER 3. QUANTUM COMPUTING

ψ0 =|0〉1 |0〉2 . . . |0〉n |0〉1|0〉2 . . . |0〉n (3.43)

=|0〉|0〉 (3.44)

where, again, the same notation is used for the state of a single qubit, |0〉
i
for the i-th

qubit, and for the state |0〉 of a whole input or output register. In the next step the input

register is prepared in a superposition of all possible inputs, i.e., a superposition of the

numbers 0, 1, . . . 2n−1. This can be done by applying a Hadamard transformation on each

of the individual qubits of the input register. As always is 2n = N . This gives the state

ψstart that reads

ψstart =
1√
N

N−1
∑

j=0

|j〉|0〉. (3.45)

The next step is to evaluate the function f(x), in parallel for all possible inputs, by

an appropriate circuit of logic gates. Because the output register contains zero before

the evaluation it will contain the function after the evaluation, not the function exclusive

or:ed with its argument, see also section 3.5.3. Also, the output will be in the form of a

superposition of function values for all values of the argument, in a so called entangled

form. The entire register will now be in state ψfunc reading

ψfunc =
1√
N

N−1
∑

j=0

|j〉|f(j)〉. (3.46)

The function f has the unknown period r, meaning that f(x) = f(x + r), which is

assumed to be a divisor of N , i.e., N/r = K, with all of N, r,K, x, and f integer numbers.

The summation over j in equation 3.46 can be partitioned into a summation over one

3.6. THE FOURIER TRANSFORM 79

period and a summation over all periods, in a way similar to appendix A.2 giving.

ψfunc =
1√
r

r−1
∑

j=0

1√
K

K−1
∑

q=0

1√
K
|j + qr〉|f(j)〉 (3.47)

Note that the summation over q only affects the input register, since the function in the

output register does not contain q because of the periodicity f(j+qr) = f(j). The next step

is to observe the output register, returning a single function value out of the superposition,

and leaving this function value in the output register. Because of the periodicity of f there

are, at most, r different function values possible. The input register was prepared such

that all input values occurred with equal amplitude in the superposition, therefore each

of the r function values f(j) have equal probability of being the result of the observation.

Say one obtains f(j0), then after observation the state of the entire register is

ψobs =
1√
K

K−1
∑

q=0

1√
K
|j0 + qr〉|f(j0)〉. (3.48)

The input register still contains a superposition of all values of the argument that

produce f(j0). Measuring the input register will return j0 + qr for some, unknown value

of q, which does not give information about the period r.

At this point the quantum Fourier transform is applied to the input register only,

producing

80 CHAPTER 3. QUANTUM COMPUTING

DFTN : ψobs =
1√
K

K−1
∑

q=0

[

DFTN : |j0 + qr〉
]

|f(j0)〉 (3.49)

=
1√
K

K−1
∑

q=0

[

1√
N

N−1
∑

k=0

e(j0+qr)
2πi
N
k|k〉

]

|f(j0)〉 (3.50)

=
1√
N

N−1
∑

k=0

[

1√
K

K−1
∑

q=0

eqr
2πi
N
k

]

ej0
2πi
N
k|k〉|f(j0)〉. (3.51)

The factor in square brackets in equation 3.51 can be evaluated in a way similar to as

is done in appendix A.2.

1√
K

K−1
∑

q=0

eqr
2πi
N
k =

1√
K

K−1
∑

q=0

eq
2πi
K
k (3.52)

=











√
K k = mK,m = 0, 1, . . . r − 1

0 k 6= mK

(3.53)

The result in equation 3.53 allows to reduce the sum over k in equation 3.49 to include

only the nonzero terms k = mK, giving

DFTN : ψobs =
1√
r

r−1
∑

m=0

ej0
2πi
N
mK |mK〉|f(j0)〉 (3.54)

=
1√
r

r−1
∑

m=0

ej0
2πi
r
m|mK〉|f(j0)〉 (3.55)

If now the input register is measured, a value m = λK = λN
r

is returned, for some,

unknown, value of λ, in the range 0 . . . r− 1. In other words, one obtains some multiple of

N
r
, without knowing exactly what multiple. The numbers m and N are known, and λ and

3.6. THE FOURIER TRANSFORM 81

r are unknown, and there is one equation connecting these numbers. Hence, in general one

cannot solve r form this equation, but under certain circumstances one actually can solve

for r.

In particular, if gcd(λ, r) = 1, and writing

λ

r
=
m

N
(3.56)

one can obtain both λ, and r by cancelling all common factors of m, and N , after which

λ equals the numerator of the result, and r the denominator of the result.

As a small example, suppose N = 16, the unknown period r = 4, the observation of the

input register resulted in a multiple λ = 3, meaning m = 12 was obtained. These values

satisfy m = λN
r
, and gcd(λ, r) = 1. Cancelling common factors in m

N
produces

m

N
=

12

16
=

3

4
(3.57)

after which no further reduction is possible, and one can correctly deduce that λ = 3,

and r = 4. The problem is that it is not possible to know in advance whether or not

gcd(λ, r) = 1, and if this condition is not fulfilled one will cancel common factors of λ, and

r as well, resulting in a too small value for r.

The saving grace is that the probability that gcd(λ, r) = 1 is rather high, actually at

least as high as 1/log(N). This implies that, on average, repeating the whole procedure

log(N) times will, with certainty, produce a correct value for the period r.

The fact that the probability that gcd(λ, r) = 1 is larger than 1/log(N) can be deduced

from the prime number theorem. If π(x) denotes the number of primes less than or equal

to x, then the prime number theorem states that

lim
x→∞

π(x)

x/log(x)
= 1. (3.58)

In words the prime number theorem says that for large enough x the number of prime

82 CHAPTER 3. QUANTUM COMPUTING

numbers less than, or equal to x is x

log(x)
. Thus, on picking the value λ arbitrarily in the

range 0 . . . r − 1 the probability that λ is prime is 1

log(r)
. Because the set of primes less

than r is a subset of the set of numbers less than r that is coprime to r the probability

that gcd(λ, r) = 1, meaning that λ is coprime to r, is larger than 1

log(r)
. Also, because

N > r, and 1

log(r)
is a decreasing function the probability that an arbitrary number λ in

the range 0 . . . r − 1 is coprime to r is larger than 1

log(r)
.

The assumption that r divides N exactly is of course not realistic. This assumption

has been made to simplify the description of the whole procedure. This assumption is not

crucial though, because for large enough N the spoiling effects of r not dividing N are

small enough to not affect the procedure, we will not discuss this further.

In summary, the period of a function can be determined in O(log3(N)) operations. The

quantum Fourier transform requires O(log2(N)) operations, and the whole procedure has

to be repeated O(log(N)) times resulting in an overall O(log3(N)) complexity.

3.6.6 Factoring on a quantum computer

An algorithm for the efficient determination of the period of a function has an important

application: the integer factoring problem can be reduced to determining the period of a

specific integer function. Given w, consider the equation

v2 ≡ 1 mod w (3.59)

in the unknown v. If w is prime the only, trivial, solutions are v = 1 mod w, and

v = −1 mod w. This can be seen by rewriting the equation as

(v − 1)(v + 1) = 0 mod w or (v − 1)(v + 1) = kw (3.60)

If w is composite, w = pq, with p, and q prime numbers, then also pairs of non-trivial

solutions exist. This can be clarified in the following way. Consider the equations

3.6. THE FOURIER TRANSFORM 83











v1 ≡ 1 mod p

v1 ≡ −1 mod q

(3.61)











v2 ≡ −1 mod p

v2 ≡ 1 mod q

(3.62)

v1, and v2 in the sets of equations 3.61 and 3.62 both satisfy equation 3.59 because,

for example, v1 ≡ 1 mod p implies v2
1 ≡ 1 mod p, which implies v2

1 ≡ 1 mod pq. A

solution to each of these sets also is a solution to equation 3.59. Such a a solution can be

constructed with the help of the so called Chinese remainder theorem. For the case under

consideration the theorem says that if gcd(p, q) = 1 then the set of equations











x ≡ a mod p

x ≡ b mod q

(3.63)

has a unique solution x, 1 ≤ x ≤ pq given by

x ≡ (auq + bvp) mod (pq) (3.64)

where uq ≡ 1 mod p, and vp ≡ 1 mod q, saying that u is the modular inverse of q

modulo p, and v is the modular inverse of p modulo q. In our case p and q are primes so

that the condition gcd(p, q) = 1 is fulfilled. From equations 3.64, 3.61, and 3.62 it follows

that v1 = uq − vp mod w, and v2 = −uq + vp mod w. Writing d = uq − vp, it follows

that v1 = d mod w, and v2 = −d mod w.

Now we have constructed the nontrivial solution d –the trivial solution also still exists–

84 CHAPTER 3. QUANTUM COMPUTING

to equation 3.59, thus d satisfies

(d− 1)(d+ 1) = 0 mod w (3.65)

and d 6= ±1. Hence (d−1)(d+1) is a multiple of w, or w divides (d−1)(d+1). Because

d ± 1 mod w 6= 0, it holds that d 6= w − 1, and because d ≤ w it holds that d 6= w + 1,

therefore w must have a nontrivial factor in common with d− 1, or with d+ 1. Therefore

a factor of w can be found by calculating gcd(d + 1, w) and gcd(d − 1, w). The greatest

common divisor of two numbers a and b can be calculated with Euclid’s algorithm, which

has a time complexity O((log(a))2) [17], where a is the larger of the two numbers.

Now it has been shown that it is possible to factor the number w, provided one can

set up an equation of the form 3.59. Given w, a v satisfying equation 3.59 is needed, after

which a factor of w may be found by calculating gcd(v − 1, w), and gcd(v − 1, w). One

may also obtain a trivial solution from which no factor of w can be deduced.

It remains to show that such an equation can be set up, as follows. The starting point

is Eulers theorem which asserts that if n and m are relatively prime then

mφ(n) ≡ 1 mod n (3.66)

where φ(n) is Eulers totient function that is defined as the number of positive integers

less than n which are coprime to n. Furthermore is φ(1) = 1 by definition. For prime

numbers p one has φ(p) = p− 1. Equation 3.66 shows that if n and m are relatively prime

then there exists a power of m that is equal to 1 modulo n. Equation 3.66 does not exclude

the possibility that there are other powers of m with the same property, it only says that

there exists at least one such a power. Now call r the least power of m that equals 1

modulo n, then r is the order of m modulo n. That, in turn, means that ms mod n, as a

function of s, is periodic, and has period r.

If y is coprime to w then, with the aid of Eulers theorem, v in equation 3.59 can be

3.7. A FAST QUANTUM SEARCH ALGORITHM 85

replaced by yr, giving

yr = 1 mod w (3.67)

or, provided r is even,

(yr/2 − 1)(yr/2 − 1) = 1 mod w (3.68)

One can choose y coprime to w. If the period also is known, a factor of w may now be

found, as described above, by calculating gcd(yr/2−1, w), and gcd(yr/2+1, w). No classical

algorithm that efficiently determines the period of a function is known, but this can be

done efficiently on a quantum computer with the quantum Fourier transform procedure.

Two assumptions have been made in the description of the algorithm that finds a factor

of w, namely that the period r is even, and that a non-trivial solution of the equation yr ≡ 1

mod w is obtained for yr/2. None of these assumptions is justified, because one may obtain

an odd r or a trivial solution. This makes the algorithm a probabilistic algorithm. If the

algorithm fails in case one of the assumptions turns out not to be justified, one picks a

new y and starts all over. It can be shown[28] that the probability that for an arbitrary

integer y satisfying gcd(y, w) = 1, the probability that r is even and that at the same time

a non-trivial solution for yr/2 is obtained, is larger than or equal to 0.5.

3.7 A fast quantum search algorithm

The time complexity of algorithms that search a database depends much on the state of

the database. There are basically two kinds of states: ordered and unordered, also called

sorted and unsorted.

The optimal search algorithm for a an ordered database consisting of N items is the

binary search algorithm. The time complexity of this algorithm is O(log2(N)), hence

86 CHAPTER 3. QUANTUM COMPUTING

searching can be done fast. The time complexity of sorting the database, on the other

hand, is, at best, O(N log2(N)).

In the case of an unordered database the only known algorithm for finding a certain

item is to examine all items until the requested item is found. On average, half of the

items will have to be examined, leading to a time complexity of O(N).

It is assumed that the database consists of N = 2n items, this is not a restriction but

simplifies the analysis. The process of looking up an item can be modelled by a function

f(x) that returns zero for all, but one, values of the argument,

f(x) =











1 x = x0

0 x 6= x0

. (3.69)

where x0 plays the role of the searched for item.

Searching the database means that one is given a function, more or less like a black

box, and one can evaluate the function for values x of the argument, continuing until the

function returns 1 after which the value of the argument that yielded 1 is the requested

item. The function is a black box, in the sense that one cannot examine the internals of

the function and resolve the requested value x0 that way. One can only calculate function

values.

The idea of the quantum search is as follows. First the input register is prepared in a

superposition of all possible inputs, all with equal coefficient, that is, amplitude. Quantum

parallel evaluation of the function, though possible, does not lead anywhere since no way

of extracting the result is known. Instead, a series of operations, O(
√
N) in number, is

applied that affects the coefficients of the individual terms in the superposition in such

a way as to relatively decrease the magnitude of the coefficients of |x 6= x0〉 and, hence,
relatively increase the magnitude of the coefficient of |x0〉. It can then be shown that for

N approaching infinity the coefficient of |x0〉 will be 1, meaning that measurement of the

register will, with certainty, return the requested value x0. For finite N , this probability

3.7. A FAST QUANTUM SEARCH ALGORITHM 87

will be smaller than, though close to 1.

The following discussion of the algorithm is inspired by reference [27] which in turn is

based on the original paper [22] from 1996 by L.K. Grover, the discoverer of the algorithm.

Our discussion is in certain respects more detailed though.

Grover introduced the following two unitary operations.

1. The operator Ix0 that inverts the amplitude of |x0〉 and leaves all other states unal-

tered. The formal definition is

Ix0|x〉 =







|x〉 x 6= x0

−|x〉 x = x0

(3.70)

2. The operator

D = −HnI0Hn (3.71)

where Hn is the direct product of n two by two Hadamard transformations H ⊗H ⊗
· · · ⊗ H and I0 is Ix0 with x0 = 0, i.e. the operator that inverts the amplitude of

|0〉1 |0〉2 · · · |0〉n , and leaves all other computational basis states unaltered.

The operator Ix0 can be implemented in the following way. As usual a quantum register

is partitioned into two parts, called input register and output register, but these are just

names and do not restrict the use of these registers otherwise. In this case the input register

consists of n qubits, and the output register consists of 1 qubit, which is in agreement with

the function f(x) returning a binary value.

In section 3.5.4 and appendix A.1 it was explained how the input state |x〉 could be

transformed into (−1)f(x)|x〉 through the operator Uf . Although the analysis applied to a

single qubit the result is valid for n qubits as well. Since f(x) = 1 for x = x0, and zero

88 CHAPTER 3. QUANTUM COMPUTING

otherwise, this procedure will exactly implement the operator Ix0 , see figure 3.16. With

I0, and H, now also D can be implemented.

Uf

|0〉 − |1〉

|x〉 (−1)f(x)|x〉 = Ix0|x〉

|0〉 − |1〉

Figure 3.16: Realization of Ix0 by means of Uf .

Since the state of the output is unchanged through the whole procedure, as also seen

from figure 3.16, it will be omitted from now on. The n qubits are first all prepared in

the state |0〉, after which a Hadamard transformation is applied to each qubit in order to

obtain a superposition with equal amplitudes, after which the state of the quantum register

can be written as

|ψ0〉 =
1

N

N−1
∑

x=0

|x〉 (3.72)

The procedure of finding the value x0 now consists of repeatedly applying the operator

DIx0 which generates the sequence of states |ψ1〉, |ψ2〉, . . . , |ψk〉, . . . , given by

|ψk〉 = [DIx0]
k|ψ0〉 (3.73)

which also can be written as a recurrence relation,

|ψk+1〉 = DIx0|ψk〉 (3.74)

It now remains to show that these transformations increase the amplitude of |x0〉 relative
to all other amplitudes. To that end we first obtain a more explicit form for the matrix D.

3.7. A FAST QUANTUM SEARCH ALGORITHM 89

The direct product of n Hadamard transformations acting on the state |00 . . . 0〉 produces
the sum of all possible states divided by the square root of N ,

Hn|00 . . . 0〉 = H ⊗H ⊗ · · · ⊗H|00 . . . 0〉 = 1√
N

N−1
∑

x=0

|x〉 (3.75)

The crucial observation is that the operator Hn acting on an arbitrary state |x〉 will,
apart from a pre-factor 1√

N
, produce some sum of all kinds of terms, always containing the

term |00 . . . 0〉, with only zeros, only once. Therefore will
√
NHn|x〉− |00 . . . 0〉 not contain

the term |00 . . . 0〉, and will be unaffected by I0. Using this, one obtains,

D|x〉 = −HnI0Hn|x〉 (3.76)

= −HnI0
1√
N

[

(
√
NHn|x〉 − |00 . . . 0〉) + |00 . . . 0〉

]

(3.77)

= −Hn
1√
N

[

(
√
NHn|x〉 − |00 . . . 0〉)− |00 . . . 0〉

]

(3.78)

= −Hn
1√
N

[√
NHn|x〉 − 2|00 . . . 0〉

]

(3.79)

= −HnHn|x〉+ 2
1√
N
Hn|00 . . . 0〉 (3.80)

= −I|x〉+ 2

N

N−1
∑

y=0

|y〉 (3.81)

where also equation 3.75 has been used, as well as that Hn is its own inverse.

From definition 3.70 for I0 it is clear that under the action of I0 the amplitudes of all

|x〉 with x 6= x0 will remain equal to each other. The same applies to D, as can be inferred

from the explicit form 3.81, and hence for their product.

The state |ψk〉 from 3.73 can therefore be written as

90 CHAPTER 3. QUANTUM COMPUTING

|ψk〉 = αk
∑

x6=x0

|x〉+ βk|x0〉 (3.82)

The coefficients αk, and βk can be determined by deriving a recurrence relation using

equation 3.74

|ψk+1〉 = αk+1

∑

x6=x0

|x〉+ βk+1|x0〉 = DIx0|ψk〉 (3.83)

= DIx0αk
∑

x6=x0

|x〉+ βk|x0〉 (3.84)

= αk
∑

x6=x0

DIx0|x〉+ βkDIx0|x0〉 (3.85)

= αk
∑

x6=x0

D|x〉 − βkD|x0〉 (3.86)

= αk
∑

x6=x0

[

−|x〉+ 2

N

N−1
∑

y=0

|y〉
]

− βk

[

−|x0〉+
2

N

N−1
∑

z=0

|z〉
]

(3.87)

= −αk
∑

x6=x0

|x〉+ αk(N − 1)
2

N

N−1
∑

y=0

|y〉+ βk|x0〉 − βk
2

N

N−1
∑

z=0

|z〉 (3.88)

= −αk
∑

x6=x0

|x〉+ αk
2(N − 1)

N

∑

x6=x0

|x〉+ αk
2(N − 1)

N
|x0〉+ βk|x0〉 (3.89)

− βk
2

N
|x0〉 − βk

2

N

∑

x6=x0

|x〉 (3.90)

=

(

(1− 2

N
)αk −

2

N
βk

)

∑

x6=x0

|x〉+
(

(1− 2

N
)βk + (N − 1)

2

N
αk

)

|x0〉 (3.91)

where it has been used that a double sum over a quantity with one variable to be

summed over reduces to a single sum times the number of terms in the outer summation.

From equations 3.83 and 3.91 the recurrence relations follow, and the initial values for

3.7. A FAST QUANTUM SEARCH ALGORITHM 91

αk and βk follow from equation 3.72, giving, together with a normalization condition that

follows directly from 3.82, leading to

α0 = β0 =
1√
N

(3.92)

αk+1 = (1− 2

N
)αk −

2

N
βk (3.93)

βk+1 = (1− 2

N
)βk + (N − 1)

2

N
αk (3.94)

β2
k + (N − 1)α2

k = 1 (3.95)

3.7.1 Closed form expressions for αk and βk

Although αk and βk are completely determined by equations 3.92 through 3.95, it is, for

further analysis, preferable to have closed form expressions for αk and βk. These can be

obtained as follows. The normalization condition 3.95 shows that αk and βk are related.

As a matter of fact they can both be expressed as a function of the single variable θk,

αk =
1√

N − 1
cos(θk) (3.96)

βk = sin(θk) (3.97)

which satisfy the normalization condition. Now the unknown θk has to be solved for.

We will show that the solution is given by

θk = (2k + 1) arcsin(
1√
N

) = (2k + 1)θ (3.98)

where the variable θ, defined by sin(θ) = 1√
N

has been introduced. Hence, the final

92 CHAPTER 3. QUANTUM COMPUTING

form for αk and βk is

αk =
1√

N − 1
cos((2k + 1)θ) (3.99)

βk = sin((2k + 1)θ) (3.100)

In order to show that equations 3.99 and 3.100 satisfy the recursion relations some

elementary equalities are useful.

1. Using cos(x) =
√

1− sin2(x) with x = arcsin(y) it follows that cos(arcsin(y)) =
√

1− y2 which implies, on arcsin(1√
N
) = θ, that cos(θ) =

√

N−1
N

.

2. From sin(2θ) = 2 sin(θ) cos(θ) it follows that sin(2θ) = 2
N

√
N − 1, and from cos(2θ) =

cos2(θ)− sin2(θ) it follows that cos(2θ) = 1− 2
N

3. The standard geometrical equalities

(a) cos(φ1) cos(φ2)− sin(φ1) sin(φ2) = cos(φ1 + φ2)

(b) sin(φ1) cos(φ2) + cos(φ1) sin(φ2) = sin(φ1 + φ2)

We shall now finally show that equations 3.99 and 3.100 are solutions to recursion

relations 3.93 and 3.94 by deriving these recursion relations from the expressions for αk,

and βk. From equation 3.99, substituting k + 1 for k, one obtains

αk+1 =
1√

N − 1
cos [(2k + 1)θ + 2θ] (3.101)

=
1√

N − 1
{cos [(2k + 1)θ] cos(2θ)− sin [(2k + 1)θ] sin(2θ)} (3.102)

=
1√

N − 1

{

cos [(2k + 1)θ] (1− 2

N
)− sin [(2k + 1)θ]

√
N − 1

2

N

}

(3.103)

= (1− 2

N
)αk −

2

N
βk (3.104)

3.7. A FAST QUANTUM SEARCH ALGORITHM 93

which is the recursion relation for αk. Similarly from equation 3.100, substituting k+1

for k, one obtains

βk+1 = sin [(2k + 1)θ + 2θ] (3.105)

= sin [(2k + 1)θ] cos(2θ) + cos [(2k + 1)θ] sin(2θ) (3.106)

= sin [(2k + 1)θ] (1− 2

N
) + cos [(2k + 1)θ]

√
N − 1

2

N
(3.107)

= (1− 2

N
)βk + (N − 1)

2

N
αk (3.108)

which is the recursion relation for βk

3.7.2 Number of iterations

Having established the procedure in detail, the question is how many times the unitary

operator [DIx0] in equation 3.73 has to be applied. In other words, how many iterations

are required, or for what value of k is the problem solved? The answer follows immediately

from equation 3.82: the problem is solved when αk = 0, and βk = 1, because then a

measurement of the input register will with certainty return the value x0. The values

αk = 0 and βk = 1 are assumed if (2k = 1)θ = π
2
. The variable θ is related to N through

sin(θ) = 1√
N

which for small values of θ, i.e., large values of N implies that θ = 1√
N
. The

sought value for k, for large values of N , is therefore

k =
π

4

√
N − 1

2
. (3.109)

One can conclude that the time complexity of Grover’s algorithm for finding an item in

an unordered database is O(
√
N), in contrast to the O(N) complexity of a classical search.

The number of iterations k is of course a whole number, while the value k = π
4

√
N − 1

2

normally not will be a whole number. Then the value for θ where βk equals exactly 1 can

94 CHAPTER 3. QUANTUM COMPUTING

not be attained. By choosing the closest possible whole number value of k βk will be close

to 1, and αk will be close to 0, and the value x0 will be extracted with high probability.

These considerations do not affect the time complexity O(
√
N) of the algorithm, since one

has to repeat the whole procedure at most a small number of times, independent of the

value of N .

3.8 Summary

Three algorithms have been discussed that would run on a quantum computer, if con-

structed. These algorithms solve certain problems with an efficiency much higher than the

efficiency of the best known algorithms, solving the same problems, running on a conven-

tional computer. Algorithms can be analyzed in different ways, for example by analyzing

the Turing machine equivalent of the algorithm, as shown in chapter 2, or by analyzing

the logical circuit that implements the algorithm, as done in this chapter.

Especially the efficient solution of the integer factoring problem on a quantum computer

has consequences for public key cryptography, discussed in the next chapter.

Chapter 4

Cryptography and quantum key

distribution

4.1 Introduction and terminology

This chapter takes up the key distribution problem in cryptography. The purpose of

cryptography is to provide the means for hiding the contents of a message from non-

authorized persons. The usual procedure is to use a known method to encrypt the message,

but keeping secret an essential ingredient necessary to perform both the encryption and

decryption. This secret ingredient is called the key.

There exist provably unbreakable, and hence 100% secure methods, using a single key

for both encryption and decryption. Such methods require that both the receiver and

the sender have access to this otherwise secret key. This immediately leads to the key

distribution problem. Two parties need a secret way of communication in order to establish

a secret key that is needed for establishing a secure way of communicating.

The catch 22[20] situation that arises in connection with the key distribution problem

is solved by public key cryptography, also called asymmetric cryptography, where the keys

for encryption and decryption differ. Moreover, only the decryption key is kept secret.

95

96 CHAPTER 4. CRYPTOGRAPHY AND QUANTUM KEY DISTRIBUTION

Implementations of public key cryptography are based upon mathematical operations

that are difficult to invert. This can be considered a mathematical solution to the key

distribution problem. We also describe an entirely different method based upon physical

principles that provides 100% security.

We summarize some terminology. Original, not encrypted, and therefore generally

understandable message text is called plaintext whereas encrypted text is called ciphertext.

Furthermore one distinguishes between stream ciphers that process a message bit for bit,

and block ciphers, that break a message in blocks of certain length which are processed in

turn, and return ciphertext blocks of the same length. As a matter of fact, the majority

of currently used ciphers consists of block ciphers.

4.2 The Vernam cipher

In 1917 G.S. Vernam[4] invented a cipher that in 1949 by C.E. Shannon[5, 6, 7] was proven

to be perfectly secure. With perfectly secure is meant that the cipher as such is unbreakable.

The Vernam cipher is a stream cipher and is also known as the one-time pad cipher. The

principle of the cipher is best illustrated with the help of a small example.

Suppose one uses the English alphabet consisting of 26 letters, uppercase only, and

the space, in total 27 characters. In order to encrypt the phrase ‘ONE TIME PAD’,

which consists of 12 tokens, first each token is replaced by its number in the alphabet,

i.e., a number in the range 0 · · · 26. Then the key is added and the result is taken modulo

27. The resulting number is the encrypted character in its numerical form. Because the

resulting number also lies in the range 0 · · · 26, the encrypted text can either be kept in

numerical form, or in textual form.

The procedure is illustrated in table 4.1. The key consists of a row of truly random

numbers in the range 0 · · · 26, i.e., the same range as the letters in the alphabet. Hence,

the key is made up from the same alphabet as the plain text message, and both has a

4.2. THE VERNAM CIPHER 97

Plain text O N E T I M E P A D
Plain text numeric 14 13 4 26 19 8 12 4 26 15 0 3
Encryption Key F S M Y B W Y P W H T N
Encryption Key numeric 5 18 12 24 1 22 24 15 26 7 19 13
cipher text numeric 19 4 16 23 20 3 9 19 25 22 19 16
cipher text T E Q X U D J T Z W T Q
cipher text numeric 19 4 16 23 20 3 9 19 25 22 19 16
Decryption Key F S M Y B W Y P W H T N
Decryption Key numeric 5 18 12 24 1 22 24 15 26 7 19 13
Plain text numeric 14 13 4 26 19 8 12 4 26 15 0 3
Plain text O N E T I M E P A D

Table 4.1: The Vernam cipher

textual and a numerical form. This means that the key can be constructed by randomly

picking characters from the same alphabet as the message is made up of. Then both the

plain text and the key are translated into a numeric equivalent after which the encrypted

text, also called cipher text, is calculated.

The reverse procedure of translating the cipher text back into the original plain text

message is almost identical to the encryption procedure. The only difference is that the key

now is subtracted from, modulo 27 in this example, instead of added to the corresponding

character of the message. Note that the same key is used for encryption and decryption.

The operations of encryption and decryption can, equivalently, be done bit for bit by

letting each encrypted bit be the result of the exclusive or operation (XOR) of the plain

text bit and the key bit. The XOR operation, at the binary level, is the same as binary

Plain text O N E T I M E P A D
Encryption Key F S M Y B W Y P W H T N
cipher text T E Q X U D J T Z W T Q
Decryption Key F S M Y B W Y P W H T N
Plain text O N E T I M E P A D

Table 4.2: The Vernam cipher, text only

98 CHAPTER 4. CRYPTOGRAPHY AND QUANTUM KEY DISTRIBUTION

addition modulo 2. The encryption process then amounts to translating the plain text

message in a bit pattern, then choosing a random bit pattern of the same length, after

which the encrypted tex is obtained as the result of the exclusive or operation on these two

bit patterns. The original plain text message is retrieved by again applying the exclusive or

operation, this time on the cipher text, but using the same key. It can easily be verified that

this procedure results in the original plain text message. In this way both the encryption,

and the decryption process can be done by bit by bit processing, which makes the Vernam

cipher a stream cipher.

4.2.1 The security of the Vernam cipher

Shannon proved that the Vernam cipher is unbreakable if the key satisfies the following

conditions.

1. The key has at least the same length as the message.

2. The key is never reused.

3. The key is truly random.

The first and the second condition can relatively easy be fulfilled. Generating a truly

random key is not as easy but is in principle possible if, for example, a random number

generator based on truly random processes, such as radio active decay, is used.

If the key is never reused and also is truly random the Vernam cipher also is called a

one time pad, for obvious reasons. Under the conditions stated above the Vernam cipher is

unconditionally secure. This means that the occurrence of patterns, or more generally, sta-

tistical dependencies, in the plain text, do not affect the security of the encrypted message.

The reason for this is the following.

A secret system provides perfect secrecy against against cipher-text only attacks if the

message and its encrypted form are statistically unrelated, according to Shannon. Since the

4.3. THE KEY DISTRIBUTION PROBLEM 99

key is truly random the message and the key (which has the same length) are statistically

unrelated. The result of the XOR operation on the message and the key produces another

truly random sequence of bits which henceforth also is statistically unrelated to the original

message.

It should be stressed that the one time pad only provides unconditional security if the

key has the same length as the plain text message. This requirements may result in very

long keys and may therefore sometimes be an undesirable feature. It is however possible

to generate pseudo random sequences of arbitrary length that are based on a so called

seed of much shorter length. In that case the system does no longer provide unconditional

security, but still may provide computational security, i.e., even though the system can in

principle be defeated, the required resources are supposed to be unavailable to anyone.

There is however another problem which puts limits on the practical usability of the

Vernam cipher and that is that both the sender and the receiver of the message must have

access to the same key. This constitutes the so called key distribution problem, which will

be discussed in 4.3. However, given two persons that have access to a common key that

fulfills the requirements above the Vernam cipher is unbreakable.

4.3 The key distribution problem

4.3.1 Preliminaries

Data encryption lets two people, Alice and Bob, secretly communicate over an insecure

communication channel. However, in order for Bob to be able to decrypt what Alice writes

it is necessary to agree upon what cryptographic system to use and also agree upon the

values of the parameters in the chosen cryptographic system. Hence Alice and Bob must

communicate before they have established a secure way of communicating with each other.

Most cryptographic systems are composed of an algorithm and a key. The algorithm is

publicly known and the key is to be kept secret. It is a value for the key that Alice and

100 CHAPTER 4. CRYPTOGRAPHY AND QUANTUM KEY DISTRIBUTION

Bob have to agree upon. Since Alice and Bob have not yet established a secure way of

communicating with each other they have to find another way of establishing a secret key,

for example meet. The paradoxical situation where Alice and Bob already need a secure

communication channel in order to establish a secure communication channel is called the

key distribution problem. in the following we will describe two different solutions to the

problem.

4.3.2 A solution based on mathematical principles

A solution to the key distribution problem was presented in 1976 by Diffie and Hellman.[15]

Their solution builds upon the observation that Alice only has to be able to encrypt a

message, she does not have to be able to decrypt the messages that she is sending to Bob.

Hence, by using two different keys, one for encryption and another one for decryption, the

key distribution problem can be solved if Bob makes the encryption key publicly known

but keeps the decryption key secret. Now everybody, including Alice can send encrypted

messages to Bob, that only Bob can decrypt.

Because the system contains two keys, one secret decryption key, called the private

key, and one publicly known encryption key, called the public key, such a cryptographic

system is called a public key cryptographic system. Sometimes these systems are also called

asymmetric cryptographic systems, as opposed to symmetric key cryptographic systems.

The following analogy can be used to describe public key cryptography. Bob supplies

everyone who wants to send secret messages to him with an unlocked padlock. Bob keeps

the key for opening the padlocks, this may be the same key that fits in all padlocks. Now

Alice can supply Bob with a secret message by writing it on paper and putting the paper

into a box which she locks with the padlock, which can be done without any key because

of the normal construction of a padlock. The locked box is sent to Bob by the ordinary

postal system. Since only Bob has the key to the locks it is only he who can open the

boxes and read the messages. In this analogy, the set of unlocked padlocks is the public

4.3. THE KEY DISTRIBUTION PROBLEM 101

key, the key to the padlocks is the private key.

The public key cryptographic system requires two keys, moreover it may not be possible

to derive the decryption key from the encryption key. It is not clear from the outset whether

or not algorithms that have the required properties exist. It turns out, however, that such

algorithms do exist. These algorithms all have the common property of making use of

a mathematical operation which is very difficult to invert. The most widespread public

key cryptographic system currently is the so called RSA[14] system1. Here the operation

which is difficult to invert is the multiplication of two large, e.g. 150 digits, prime numbers.

Obtaining the product by multiplying the two primes is easy, but finding the factors given

the product is computationally infeasible.

4.3.3 The RSA cryptosystem

In this section the RSA public key cryptographic system will be summarized. Multiply-

ing together two large, i.e., 200 digits, prime numbers is an operation that is difficult to

invert, since the inverse operation amounts to factoring integers. The fastest known algo-

rithm for factoring integers is the so called number field sieve [18], that has a complexity

e1.9+O(1)
3
√
log(n)×(log(log(n)))2 , where n is the number to factor. This is a super-polynomial

complexity, and a very fast growing function of the size of the input log(n), even though

the function grows sub-exponential because of the cubic root in the exponential.

For given computational resources there will be a largest input size L, beyond which

factoring becomes infeasible. By choosing a number b of a size that exceeds L by just 1

digit, the factoring of b constitutes an infeasible problem for the given resources. Currently

numbers of sizes in the range 1024 to 2048 bits are considered impossible to factor using

currently known methods and current technology.

The RSA cryptosystem incorporates the factoring problem via the totient function,

1The acronym RSA stands for Rivest Shamir Adleman, which are the names of the originators of the
method

102 CHAPTER 4. CRYPTOGRAPHY AND QUANTUM KEY DISTRIBUTION

already discussed in section 3.6.6, that satisfies Euler’s theorem, given in equation 3.66. If

n is a prime number, Euler’s theorem can be written in a slightly different form, see for

example reference [8], reading

mkφ(n)+1 mod n = m (4.1)

where 0 < m < n, and k a positive integer. Equation 4.1 shows that the number m

after modular exponentiation to the power kφ(n) + 1, with modulus n, reproduces the

number m. This reproduction is exactly what is required by an encryption followed by a

decryption.

If both encryption and decryption are done by exponentiation modulo n, using different

exponents, e for encryption, and d for decryption, then

C =M e mod n (4.2)

M = Cd mod n =M ed mod n (4.3)

In other words, if

ed = kφ(n) + 1 (4.4)

the exponents e, and d are such that exponentiation modulo n with exponent e will

encrypt a plain text message M , that can be decrypted by exponentiation modulo n with

exponent d. In this way the key for decryption, consisting of the pair {d, n} is different

from the key for decryption, consisting of the pair {e, n}, yet does reproduce the original

plain text message.

The secret decryption exponent d is related to the publicly known encryption exponent

4.3. THE KEY DISTRIBUTION PROBLEM 103

e through equation 4.4, which mathematically expresses that e, and d are modular inverses,

with respect to the not publicly known modulus φ(n). In principle φ(n) can be calculated,

since it is a well defined function, and n is publicly known. There is however no known

algorithm that efficiently calculates φ(n) for non-prime numbers n. In fact, the fastest

known way to calculate φ(n) is to first factor n, in this case in the two prime factors p,

and q, and then calculate φ(n) using that φ(pq) = (p − 1)(q − 1), for p and q prime.

Since, as explained above, it is believed that factoring numbers of sufficiently large size is

infeasible, it also is believed to be impossible to decrypt without knowing φ(n). However,

a polynomial time algorithm for factoring integers on a quantum computer already exists,

see chapter 3.

4.3.4 A solution based on physical principles

The above solution of the key distribution is based on mathematical principles. It is also

possible, at least in principle, to arrive at a solution for the key distribution problem based

on physical principles. This solution is based upon the fact that certain physical phe-

nomena can be accurately described only by quantum mechanics. This especially applies

to phenomena that happen on a small, i.e., atomic, length scale. A very important con-

sequence of a quantum mechanical description of a phenomenon is that the outcome of

measurements has a probabilistic character.

Historically, matter was attributed a particle-like character, whereas other phenomena,

like light, were attributed a wave-like character. One of the revolutionary new ideas in

quantum mechanics was that, on the one hand waves were needed for a proper description

of particles, and, on the other hand, wave like phenomena like light, in certain respects

showed a particle like behaviour. This dual behaviour is called the wave-particle duality.

One of the consequences of the wave-like character of particles is uncertainty in either

the position or the velocity of the particle. In a classical, i.e. non quantum mechanical

description of a particle, the position and velocity of a particle are always fully determined.

104 CHAPTER 4. CRYPTOGRAPHY AND QUANTUM KEY DISTRIBUTION

One may not know either the position or the velocity, or both but then one can measure

the unknown quantities.

A pure wave, however cannot be attributed a position. A wave is dislocated over, in

principle, entire space. Hence, the location in space of a pure, sinus formed, wave is fully

undetermined. The momentum of such a wave is, on the other hand, exactly determined,

and is given by

p =
~

λ
, (4.5)

where λ is the wavelength, and ~ = 1.054610−34, which is Planck’s constant divided by

2π . A superposition of a number of pure sinus waves behaves entirely different. In figure

4.1 a) a pure sine wave is plotted, and in figure 4.1 b) a superposition of 7 sinewaves that

differ a small amount in wavelenght from the original wave is plotted. As a consequence of

interference the resulting wave has different amplitudes in different areas. As a matter of

fact the amplitude only has a significant value in a limited area and is almost zero elswhere.

If the superpostion would consist of all possible wavelength, then the result would be a

function that is zero everywhere, except at the origin, where it approaches infinity.

a) A pure sine wave b) A superposition of 7
sines

Figure 4.1: Wave packet

In this limiting case the resulting superposition is no longer distributed over entire space

4.3. THE KEY DISTRIBUTION PROBLEM 105

but is, on the contrary, localized into a single point in space, like an idealized particle.

However, this superposition of waves can no longer be attributed a unique momentum,

since each component in the superposition has a different wavelength, and hence a different

momentum.

A pure sine wave has fully determined momentum but completely undetermined po-

sition. A superposition of a number of waves with different wavelengths is no longer dis-

tributed over entire space, but the momentum of the superposition is no longer determined.

The upshot is that by attributing a wave-like character to a particle it is no longer possible

to simultaneously exactly determine position and momentum. Quantum mechanically this

is expressed as

∆p×∆x ≥ ~

2
(4.6)

which is called Heisenberg’s uncertainty relation, after the German physicist Werner

Heisenberg. The symbol ∆p stands for the uncertainty in momentum, and ∆x for the

uncertainty in position. The uncertainties ∆x and and ∆p can be given exact definitions in

terms of expectation values which we will refrain from here. The name uncertainty relation

is somewhat misleading, because it might suggest that there only exist uncertainty in the

measurements and that one can determine both position and momentum simultaneously

to arbitrary accuracy by refining the measurements. This is however not the case, the

outcome of measurements of, for example, position is uncertain because the position is to

a certain degree undetermined, and there is a certain probability to get a certain position

as the outcome of the measurement.

Above it has been illustrated that as a consequence of the wave-particle duality measur-

ing the position of a particle may give different results, even if the experiment is repeated

under identical conditions. A probabilistic outcome of measurements is not limited to po-

sition but applies to all measurable quantities. Due to the extremely small size of Planck’s

constant, the probability distribution of the outcome of the measurements only deviates

106 CHAPTER 4. CRYPTOGRAPHY AND QUANTUM KEY DISTRIBUTION

significantly from what one would classically expect for measurements on phenomena that

take place on an atomic scale.

The property that is used in quantum cryptography is the polarization plane of light.

Light consists of electromagnetic waves. These waves, in turn, consist of an electric and

a magnetic component. Because the direction of oscillation, for both the electric and the

magnetic component, is at right angles to the direction of propagation, light is a so called

transverse electromagnetic wave. Moreover, the electric and magnetic components oscillate

in planes that are oriented at right angles with respect to each other, see figure 4.2.

Figure 4.2: Electromagnetic wave

For our purposes it is sufficient to consider the electric component only. If the electric

component always oscillates in the same direction, the light is called linearly polarized. In

that case the electric component and the direction of propagation always form the same

plane. Other polarizations also exist, for example circularly polarized light, where the

directions in which the electric and magnetic components of the wave oscillate, rotate

about the direction of propagation of the wave.

4.4. QUANTUM KEY DISTRIBUTION 107

4.4 Quantum key distribution

Based on the principles described above, Alice and Bob can establish a secret key, i.e., a

key only known to them, over an insecure communication channel. This procedure will

involve two reference systems for the polarization of the photons. Given some reference

direction, photons can be created with a polarization direction at an angle of either 0◦,

or 90◦ with respect to the reference direction. Photons polarized in the 0◦ direction will

encode a binary 0, and photons encoded in the 90◦ direction will encode a binary 1. The

second reference system is rotated 45◦ with respect to the first system, meaning that the

45◦ direction also will encode a binary zero, but now in the rotated system, which will be

called the diagonal system. Similarly a photon polarized in the 135◦ will encode a binary

one in the diagonal system. The original, non-rotated system will be referred to as the

rectilinear system.

A binary zero encoded in the rectilinear system will show up as a binary zero if it also is

measured in the rectilinear system. If it is encoded in the rectilinear system but measured

in the diagonal system there is a 50% probability of measuring a binary zero and a 50%

probability of measuring a binary 1. Thus, if a random bit stream is encoded in either the

rectilinear or the diagonal reference system, and the receiver does not know which of the

system has been used, the receiver will obtain half of the bits correctly, but does not know

which ones are correct. If the sent message is not random, the receiver might be able to

recognize the correct bits and guess the rest of the message.

A protocol for establishing a key over a publicly accessible channel can be set up as

follows. Alice randomly chooses the values for a number of bits. The key will be constructed

from a subset out of these bits. For each chosen bit she also chooses at random a reference

system to encode the bit in: either polarized in the rectilinear system, denoted as ⊕,
or polarized in the diagonal system, denoted as ⊗. Furthermore, a binary zero in the

rectilinear system is denoted as −, and a binary one as |. A binary zero in the diagonal

system is denoted as /and a binary one as \.

108 CHAPTER 4. CRYPTOGRAPHY AND QUANTUM KEY DISTRIBUTION

bit 1 1 0 0 1 0 1 0 0 0 0 1 0 0 0 0
Ref. sys. ⊗ ⊗ ⊗ ⊗ ⊕ ⊗ ⊗ ⊕ ⊕ ⊕ ⊕ ⊗ ⊗ ⊕ ⊕ ⊗
photon \ \ / / − / \ | | | | \ / | | /

Figure 4.3: Encoding of bits

Figure 4.3 exemplifies this step in the protocol. The first row contains 16 randomly

chosen bits, the second row contains randomly chosen reference systems, and the third row

contains the result of the encoding in the notation specified above.

Bob receives the polarized photons sent by Alice and randomly chooses a reference

system for each photon, performs a measurement of the polarization which produces either

a 0, or a 1. In those cases where Bob choses the same reference system as Alice had chosen

to encode the bit Bob will obtain the correct value of the bit with 100% probability. If he

chooses the wrong reference system there still is a 50% probability of obtaining the correct

value for the bit, but, more importantly, there also is a 50% probability of obtaining the

wrong value.

photon \ \ / / − / \ | | | | \ / | | /
Ref. sys. ⊕ ⊗ ⊗ ⊕ ⊗ ⊕ ⊗ ⊕ ⊕ ⊗ ⊗ ⊕ ⊗ ⊗ ⊕ ⊗
obtained bit 1 1 0 0 0 1 1 0 0 0 1 0 0 0 0 0
send bit 1 1 0 0 1 0 1 0 0 0 0 1 0 0 0 0

Figure 4.4: Decoding of bits

Alice and Bob now proceed in two steps. Firstly they establish whether Bob has

received the the stream of bits from Alice without being eavesdropped. If eavesdropping has

taken place Alice and Bob end their communication, otherwise they proceed in establishing

a common, secret key. Both these steps can be done over a classic, i.e. non-quantum,

public, i.e., insecure, communication channel, because the bits from which the key will be

constructed have already been transmitted.

The first step, detecting eavesdropping, is done as follows. Alice and Bob choose a

4.4. QUANTUM KEY DISTRIBUTION 109

subset of the bits for which they tell each other what reference system each of them used.

Moreover, Alice tells Bob the values of the bits that Bob ought to have observed for those

cases where they used the same reference system. Without eavesdropping this would be

unnecessary because then there is a 100% probability that Bob will observe the same bit

value as Alice sent. An eavesdropper will however, after measuring, transmit the polarized

photons to Bob but has to guess a polarization, i.e., a reference system. Out of the four

possibilities −, |, /, \there is only one correct and the eavesdropper has a chance of 3 out

of 4 to make the wrong choice. Therefore the probability of detecting eavesdropping as a

function of the number t of tested bits is 1−
(

3
4

)t
. If 16 bits are tested the probability of

detecting eavesdropping is already 99%. By adding more bits one can obtain a probability

arbitrary close to 1.

If Alice and Bob detect eavesdropping they will end their communication, otherwise

they continue as follows. Alice tells Bob the reference systems she used for each bit. Bob

compares Alice’s reference systems with the ones he used and tells Alice for which bits he

used the same reference as Alice. In these cases, where the used the same reference system,

i.e. polarization, they both know the value for that bit. Thus these bits form a sequence

that only is known to Alice and Bob.

Note that it is the aspect of true randomness that is at the root of the above sketched

protocol. Even if both channels, the quantum optical, and the conventional communication

channel are eavesdropped this will not help the eavesdropper. Alice told Bob what he

should have measured, but the eavesdropper does not know what he actually measured.

Neither can Alice prepare a message and determine in advance what Bob will measure.

Thus Bob will always detect if eavesdropping has taken place.

It is some kind of strange coincidence that quantum technology at the same time may

obsolete certain implementations of public key cryptography, namely those based upon the

integer factoring problem, and provide for an entirely different solution of the key distri-

bution problem. The RSA public key cryptographic system relies on the computational

110 CHAPTER 4. CRYPTOGRAPHY AND QUANTUM KEY DISTRIBUTION

infeasibility of factoring integers on a conventional computer. Using a perceived quantum

computer, integers can be factored with polynomial time complexity, as shown in chapter

3, thereby breaking the RSA cryptographic system. However, as shown in this chapter,

quantum technology allows two parties to establish a secret key, which subsequently can be

used in a conventional, i.e., symmetric encryption system, thereby providing an alternative

solution to the key distribution problem.

Chapter 5

Yet another direction: DNA

computing

The digital electronic computer can exist because processes in nature follow physical laws

in the form of mathematical prescriptions. A one to one correspondence between, on the

one hand, physical processes, in the form of changes of electronic states in integrated cir-

cuits, and, on the other hand, mathematical operations forms the foundation of electronic

computing. This correspondence allows for the electronic computation of functions. In-

terestingly, since the connection is bidirectional, electronic computers can subsequently

simulate physical processes, through the computation of functions.

There also are other ways of mapping the computation of a mathematical function

onto some process in nature, electronic devices do not comprise the only possible way.

Two basic requirements need to be satisfied, firstly the possibility to represent, or store

data, and secondly the possibility to act on and change the data, i.e., process the data. In

1994 L. Adleman[29] showed how an instance of the so called directed hamiltonian path

problem, which is a NP-complete problem, could be solved by manipulating strings of

DNA.

DNA, desoxyribonucleic acid, is the medium in which, or on which, the genetic code

111

112 CHAPTER 5. YET ANOTHER DIRECTION: DNA COMPUTING

of living organisms is stored. It is built up of four different bases, denoted A, G, C,

and T , which are abbreviations for adenine, guanine, cytosine, and thymine, and which

are collectively called nucleotides. Information can thus be stored in DNA using the four

letter alphabet {A, T, C,G}.
The base pairs A, and T are complementary, as are the pairs C, and G. A strand of

DNA can form a double strand with a complementary strand of DNA, assuming the famous

double helix structure. The sequence of bases in DNA can be transformed into another

sequence by enzymes. Certain enzymes can cut a DNA strand at a specific location, which

is specified by some specific, usually short, sequence of bases. Other enzymes, called ligates,

can bond together two strands of DNA. Replication of DNA is possible with the use of a

substance called polymerase, whereas exonuclease can destroy DNA.

The possibility to encode information in strands of DNA, together with bio-operations

of the type listed above allow, at least in principle, to perform certain computations. The

feasibility of such computations was shown, for the first time, in reference [29], by solving

the hamiltonian path problem for the graph shown in figure 5.1 by means of biological

operations on DNA molecules. A hamiltonian path is a path that starts at a given vertex

vin, ends at a given vertex vout, and enters every other vertex only once. The biological

operations mentioned above were used to implement the following algorithm, that solves

the hamiltonian path algorithm, for a graph of n vertices.

1. Generate random paths through the graph.

2. Keep only those paths that begin at vin, and end at vout.

3. Keep only those paths that visit exactly n vertices.

4. Keep only those paths that enter all of the vertices of the graph at least once.

5. If any paths remain say “Yes”, otherwise say “No”.

113

?>=<89:;3
OO

²²

// ?>=<89:;4

$$IIIIII

²²

?>=<89:;1

jjTTTTTTTTTTTTTT
::

zzuuuuuuuuuuuuuuuuuu

?>=<89:;0

CC©©©©©©©©©©

33fffffffffffffffffffffff

++XXXXXXXXXXXXXXXXXXXXXXX

?>=<89:;6

?>=<89:;2 ?>=<89:;5oo

::uuuuuu

Figure 5.1: Graph of seven vertices

Step 1 was implemented as follows. Vertices were encoded in 20 nucleotide long strands

of DNA, and oriented edges were encoded by bonding together two vertex-encoding 20

nucleotide strands. Subsequently, sequences of arbitrary length, containing compatible

edges in arbitrary order, were formed. Edges are compatible if the target vertex j of the

first edge (i, j) is the same as the source vertex of the second edge (j, k).

Step 2 was implemented by amplification of those molecules that started with vin = 0

and ended with vout = 6.

Step 3 was implemented by sorting the DNA strands by length, which separates out

molecules consisting of the right number of vertices. This was done by gel-electrophoresis,

a process where molecules travel through a wet gel, and where longer molecules travel more

slowly than shorter ones.

Step 4 was implemented by means of affine purification, a process that filters out

molecules containing a given sequence of nucleotides. By repeating the process all molecules

containing each vertex at least once could be filtered out.

Step 5 was implemented by amplification of the result of step 4 followed by the deter-

mination of the DNA sequence of the amplified molecules.

The algorithm has a time complexity O(n), where n is the number of vertices in the

graph. On a classical, electronic computer, the problem belongs to the class of NP-complete

114 CHAPTER 5. YET ANOTHER DIRECTION: DNA COMPUTING

problems, hence the amount of time to solve the problem increases faster than any poly-

nomial in n. Thus, Adleman’s experiment not only showed that biological computation is

possible, but also that in this way problems might be tackled that are intractable on an

electronic computer.

The underlying reason for the efficiency of the algorithm above ismassive parallelism, all

molecules in the solution are processed simultaneously. The time complexity is determined

by those steps that cannot be done in parallel, namely building up molecules that represent

paths in the graph, where for n vertices there are n steps in the process.

Even though the generation of all possible paths is done in parallel, it is done, and

each one requires its own small DNA computer. Hence, instead of being exponential in

time the algorithm is exponential in the number of DNA-based processors, and therefore

exponential in the mass of the amount of DNA. It is estimated that the amount of DNA

needed to solve a 200 vertex hamiltonian path problem would have a mass exceeding the

mass of the earth.

Two important questions concerning DNA computing are:

i) What kind of problems can be solved by DNA computing?

ii) Is it possible to design a programmable DNA computer?

In order to answer these questions a model of biological computation is needed. There

exists a model called the splicing system model, in which the answers to these questions

turn out to be affirmative[31]. These matters will not be pursued any further here.

The experiment done by Adleman really was a demonstration that DNA computing

is in principle possible, but there are still many experimental problems, even reproducing

Adlemans demonstration is difficult. At this point it is very difficult to speculate in what

the possible applications, if any, of DNA techniques will be.

Chapter 6

Conclusion and summary

A number of aspects of computing have been considered, starting with the most important

concepts from theoretical computer science. It has been shown that certain problems have

no algorithmic solution. An example of such a problem is the general problem of software

verification.

There exist many problems that have a time complexity such that, for most inputs, it

is practically impossible to solve these problems on todays electronic computers. Some of

these problems can be efficiently computed on a quantum computer or a DNA computer.

No algorithm is known that factors composite integers in polynomial time, a fact that

leads to the classification of this problem as intractable. It is not known whether or not

an efficient solution to the integer factoring problem exists at all.

However, it has been theoretically shown that quantum mechanical phenomena allow

for the possibility of simultaneously processing huge amounts of information, using an

effect called quantum parallelism. In this way a polynomial time solution to the integer

factoring problem could be obtained if a quantum computer can be built.

This would challenge the RSA public key cryptographic system, which relies entirely

on the presumed computational intractability of the integer factoring problem. Quantum

optical technology, however, also is capable of providing a 100% secure solution to the key

115

116 CHAPTER 6. CONCLUSION AND SUMMARY

distribution problem.

Another intractable problem, the hamiltonian path problem, also has been attacked

from an entirely new direction, called DNA computing. DNA molecules in a solution

containing enzymes are all processed at the same time. Using this fact together with the

possibility to encode information in DNA strands, as with genetic information, it is possible

to achieve massively parallel processing of information. It has been demonstrated that this

procedure works by solving a small instance of the hamiltonian path problem.

Although these new technologies in principle have a large potential it is currently not

clear whether they ever will be practicable. Furthermore, it is not known how generally

applicable these technologies are. Their usability may be limited to very specific applica-

tions.

References

[1] A.M. Turing, “On computable numbers with an application to the Entscheidungsprob-
lem”, Proc. London Math. Society, Vol. 2:42, pp.230-265, 1936. Ibid. 2:43, pp.544-546.

[2] Yury Matiyasevich, “Enumeable sets are diophantine”, Doklady Akademii Nauk
SSSR,191 (1970), 279-282. English translation with addendum, Soviet Math.: Dok-
lady, 11 (1970), 354-357.

[3] J. P. Jones, D. Sato, H. Wada, D. Wiens, “Diophantine representation of the set of
prime numbers”, The American Mathematical Monthly, 83(6):449-464,1976.

[4] G.S. Vernam, “Cipher printing telegraph systems for secret wire and radio telegraphic
communications”, Journal of the American Institute for Electrical Engineers, Vol. 55,
pp. 109-115, 1926.

[5] C.E. Shannon, “A mathematical theory of communication”, Bell System Technical
Journal, Vol. 27, Oct 1948, pp 379-423, 623-656.

[6] C.E. Shannon, “Communication Theory of Secrecy Systems”, Bell System Technical
Journal, Vol 28, Oct 1949, pp 656-715.

[7] C.E. Shannon, “Prediction and Entropy of printed English”, Bell System Technical
Journal, Vol 30, Jan 1951, pp 50-64.

[8] W. Stallings, “Cryptography and Network Security”, Prentice Hall, 1998.

[9] P. Williams, Scott H. Clearwater, “Explorations in Quantum Computing”, Springer
Verlag, New York, 1998.

[10] A.J. Menezes, P.C. van Oorschot, S.A. Vanstone, “Handbook of applied cryptogra-
phy”, Alfred J. Menezes, Paul C. van Oorschot, Scott A. Vanstone CRC Press LLC,
1997.

[11] B. Schneier, “Applied Cryptography”, John Wiley & Sons, Inc. , 1996, 2nd. ed.

[12] P. Garret, “Making Breaking Codes”, Prentice Hall, 2001.

117

118 REFERENCES

[13] Ch. Kaufman, R. Perlman, M. Speciner, “Network security”, , Prentice Hall, 1995.

[14] R. Rivest, A. Shamir, L. Adleman, “A method for Obtaining Digital Signatures and
Public Key Cryptosystems”, Communications of the ACM,February 1978.

[15] W. Diffie, M. Hellman, “New directions in Cryptography”, IEEE Transactions on
Information Theory, November 1976.

[16] T. ElGamal, “A Public Key Cryptosystem and a Signature Scheme Based on Discrete
Logarithms”, IEEE Transactions on Information Theory, vol. IT-31(4), pp.469-472,
July 1985.

[17] D.E. Knuth, “The Art of Computer programming” Vol. 2, Addison-Wesley, 1981, 2nd
ed.

[18] A. K. Lenstra, H. W. Lenstra, Jr., M. S. Manasse, and J. M. Pollard, “The number

field sieve”, Proc. 22ndACM Symp. Theory of Computing (1990), 564-572.

[19] C. Pomerance, “A tale of two sieves”, Notices of the American Mathematical Society,
43, (1996), No 12, 1473-1485.

[20] J. Heller, “Catch 22”, 1961. In this book Heller describes the impossible situation
of pilots in the second world war where the fear for flying and possibly not returning
made them crazy. A pilot that applied for not having to fly anymore because the flying
made him crazy got the answer that, referring to regulation 22, ’ ..if you don’t want to
fly because flying makes you crazy then you are not crazy and you keep flying.’ The
expression of a catch 22 situation has been incorporated into the english language to
describe paradoxical situations.

[21] P. Shor, “Algorithms for quantum computation: Discrete Logarithms and Factoring”,
Proceedings 35th Annual Symposium on Foundations of Computer Science (1994), pp.
124-134.

[22] L. Grover, “A fast Quantum Mechanical Algorithm for Database Search”, Proceedings
of the 28th Annual ACM Symposium on the Theory of Computing (1996), pp. 212-219

[23] R. Landauer, “Irreversibility and heat generation in the computing process”, IBM J.
Res. Dev., 5:183, 1961.

[24] E. Fredkin, T. Toffoli, “Conservative Logic”, Int. J. Theor. Phys. , 21 (1982) 219-253.

[25] D. Deutsch, “Quantum Theory, The Church Turing Principle, and the Universal Quan-
tum Computer”, Proc. Royal Soc. London, A400 (1985) 97-117.

REFERENCES 119

[26] M.A. Nielsen, I.L. Chuang, “Quantum Computation and Quantum Information”,
Cambridge University Press, 2000.

[27] D. Bouwmeester, A. Ekert, A. Zeilinger, “The Physics of Quantum Information”,
Springer, 2000.

[28] A. Ekert, R. Jozsa, “Quantum computation and Shor’s factoring algorithm”, Rev.
Mod. Phys. 68 (1996) 733

[29] L. Adleman, “Molecular computation of solutions to combinatorial problems”, Science,
v.266, Nov.1994, 1021-1024.

[30] F. De Martini, V. Buzek, F. Sciarrino, C. Sias, “Experimental realization of the quan-
tum universal NOT gate”, Nature, 419, october 24, 815-818 (2002).

[31] L. Kari, “DNA computing: the arrival of biological mathematics”, The mathematical
intelligencer, 19, 2 (1997) 9-22

[32] Y. Bar-Hillel, M. Perles, E. Shamir, “On formal properties of simple phase-structure
grammars”, Z. Phonetik. Sprachwiss. Kommunikationsforsch. 14 (1961), pp. 143-172.

Appendix A

A.1 Some details on Deutsch algorithm for parallel

function evaluation

After being processed by the inverter and Hadamard gates, but before the processing by

Uf , the state of the two-qubit system is

(
1√
2
(|0〉+ |1〉)(1√

2
(|0〉 − |1〉) = 1

2

1
∑

x=0

|x〉(|0〉 − |1〉) (A.1)

In order to obtain the effect of Uf on the right hand side of equation A.1 use the

definition

Uf : |x〉|y〉 = |x〉|x⊕ f(x)〉 (A.2)

and momentarily omit the summation over x. Then

121

122 APPENDIX A.

Uf : |x〉(0〉 − |1〉) =|x〉(|0⊕ f(x)〉 − |1⊕ f(x)〉) (A.3)

=











|x〉|0〉 − |x〉|1〉 f(x) = 0

|x〉|1〉 − |x〉|0〉 f(x) = 1

(A.4)

=











|x〉(|0〉 − |1〉) f(x) = 0

−|x〉(|0〉 − |1〉) f(x) = 1

(A.5)

=(−1)f(x)|x〉(|0〉 − |1〉) (A.6)

Now add the summation over x and normalization factors giving,

Uf
1

2

1
∑

x=0

|x〉(|0〉 − |1〉) = 1

2

1
∑

x=0

(−1)f(x)|x〉(|0〉 − |1〉) (A.7)

Note that the factor (−1)f(x) cannot be put in front of the summation because the

value of f(x) depends, naturally, on x.

A.2 The discrete Fourier transform of a periodic func-

tion

In this section we prove a general property of periodic functions in relation with the discrete

Fourier transform. Consider a discretized function fj, k = 0 . . . N−1. The discrete Fourier

transform f̄j, j = 0 . . . N − 1 is defined as

f̄j =
1√
N

N−1
∑

k=0

ej
2πi
N
kfk (A.8)

The form of the transform is such that the transformed function f̄ always is periodic

A.2. THE DISCRETE FOURIER TRANSFORM OF A PERIODIC FUNCTION 123

with period N , which is a consequence of the the fact that the original function f contains

N function values. Now consider a function that is periodic with period r < N , i.e.,

fk+r = fk. When computing the discrete Fourier transform one consider a whole number,

say K of such periods, meaning that N = Kr, meaning that N = Kr.

The sum over k in equation A.8 can be rewritten as a sum ranging over one period, the

first, and a sum over all linear transformations that map the first period on all the other

periods. This means that the index k is rewritten as k = p + qr, where p ranges from 0

to r − 1, and q ranges from 0 to K − 1. For the function f it then holds that fp+qr = fp.

Equation A.8 can now be rewritten as

f̄j =
1√
N

r−1
∑

p=0

K−1
∑

q=0

ej
2πi
N

(p+qr)fp+qr (A.9)

=
1√
N

r−1
∑

p=0

ej
2πi
N
p

K−1
∑

q=0

ej
2πi
N
qrfp+qr (A.10)

=
1√
N

r−1
∑

p=0

ej
2πi
N
pfp

K−1
∑

q=0

ej
2πi
N
qr (A.11)

The second summation in equation A.11 can be evaluated as

K−1
∑

q=0

ej
2πi
N
qr =

K−1
∑

q=0

ej
2πi
K
q =











∑K−1
q=0 e0 = K j = 0, K, 2K, . . .

1−ej
2πi
K

K

1−ej
2πi
K

= 0 j 6= 0, K, 2K, . . .
(A.12)

where the closed form formula for the summation of a geometric series, i.e.,

1 + r + r2 + r3 + · · ·+ rn−1 =
m−1
∑

m=0

rm =
1− rn

1− r
(A.13)

with r = ej
2πi
K , and which holds if r 6= 1, has been used. Equation A.12 expresses the

124 APPENDIX A.

fact that the Fourier transformed function fj is nonzero only for values j = mK = mN
r
,

with m = 0, 1, 2,

