

 Computer Science

Master’s Thesis

2003:02

Jimmy Byström Leo Wentzel

A comparative study of Programming by

Contract and Programming with Exceptions

A comparative study of Programming by

Contract and Programming with Exceptions

Jimmy Byström Leo Wentzel

© 2003 The author(s) and Karlstad University

This report is submitted in partial fulfillment of the requirements for the

Master’s degree in Computer Science. All material in this report which is

not our own work has been identified and no material is included for which

a degree has previously been conferred.

Jimmy Byström Leo Wentzel

Jimmy Byström Leo Wentzel

Approved, Date, File | Properties | User

Advisor: Donald F. Ross

Examiner: Anna Brunström

 iii

Abstract

This thesis is a discussion on and a comparison of two programming techniques used for error

prevention and handling. The two techniques discussed and compared are programming by

contract and programming with exceptions. The two techniques are defined and discussed in

theory, and also evaluated and compared with the help of software metrics gathered from

experiments. Experiments are conducted on two types of programs, a linked list program and

a stack machine interpreter program. The linked list program was created for this specific

thesis, whereas the interpreter program already existed. The linked list program was

constructed in two versions, one according to programming by contract and one according to

programming with exceptions. The interpreter was modified into one contract version and one

exceptions version. Software metrics were collected from each version of the programs;

metrics were also gathered from the original version of the interpreter. At the end of this

thesis an evaluation of the experiments is presented. From the results of the experiments

performed in this thesis no conclusive assessment could be drawn if one of the two

programming techniques shows any significant advantage over the other.

 v

Contents

1 Introduction ... 1

2 Background.. 3
2.1 Object-oriented programming ... 3

2.2 Aspects of Software quality... 4

2.3 Software Metrics.. 6

2.4 Defensive programming .. 10

2.5 Programming by Contract.. 11
2.5.1 Weak contracts
2.5.2 Strong contracts
2.5.3 Advantages and disadvantages of programming by contract

2.6 Programming with Exceptions .. 17
2.6.1 Advantages and disadvantages with the use of exceptions

2.7 Summary.. 21

3 Experiment... 23
3.1 Definitions used in the experiments .. 24

3.2 Software metrics .. 24
3.2.1 Different metrics
3.2.2 Metrics used in the experiments

3.3 Linked list .. 27
3.3.1 Programming by Contract
3.3.2 Programming with Exceptions
3.3.3 Summary

3.4 Interpreter .. 30
3.4.1 Original version
3.4.2 Programming by Contract
3.4.3 Programming with Exceptions
3.4.4 Summary

4 Results .. 34
4.1 Linked list experiment ... 34

4.1.1 Programming by Contract
4.1.2 Programming with Exceptions
4.1.3 Experimental results for the Linked list
4.1.4 Summary

4.2 Interpreter experiment ... 39
4.2.1 Original program

 vi

4.2.2 Programming by Contract
4.2.3 Programming with Exceptions
4.2.4 Experimental results for the Interpreter
4.2.5 Summary

4.3 Summary of the experiments ... 43

5 Conclusion.. 45
5.1 Problems .. 45

5.2 Future work.. 46

5.3 Conclusion and evaluation... 47

References ... 50
Online references .. 50

A Code style ... 51
A.1 Descriptions ... 51

A.2 Contracts .. 51
A.2.1 Preconditions
A.2.2 Postconditions

A.3 Exceptions.. 52

A.4 Other style guidelines .. 52

B Experimental metrics data ... 53
B.1 Linked list .. 53

B.1.1 Programming by Contract
B.1.2 Programming with Exceptions

B.2 Interpreter .. 55
B.2.1 Original program
B.2.2 Programming by Contract
B.2.3 Programming with Exceptions

B.3 Readability metrics .. 57

C Performance... 59

D Metric tools .. 60

E Terminology... 62

 vii

List of Figures

Figure 2.1: Correctness vs. Robustness... 5

Figure 2.2: Common direct measures used in software engineering [9]............................. 7

Figure 2.3: Type groups used in Albrecht’s method... 8

Figure 2.4: Example of a contract ... 11

Figure 2.5: Class correctness... 12

Figure 2.6: Program correctness ... 13

Figure 2.7: Example of weak contracts... 14

Figure 2.8: Example of strong contracts ... 15

Figure 2.9: Definition of exceptions according to [5]... 17

Figure 2.10: Example of program using and not using exceptions [5] 19

Figure 2.11: Accidentally catching an exception [14] .. 20

Figure 2.12: Implicit guaranties of a precondition.. 22

Figure 3.1: Example of a linked list .. 28

Figure 3.2: Stack machine code example calculating 5!... 31

Figure 4.1: Insertion of a new element into a linked list... 35

Figure 4.2: LOC metrics for the two versions of the linked list 37

Figure 4.3: Common metrics for the two version of the linked list 38

Figure 4.4: LOC metrics for the three version of the interpreter 41

Figure 4.5: Metrics for the three versions of the interpreter ... 42

Figure 4.6: Density of comments of the different version in the experiments.................. 43

Figure D.0.1: Metrics calculation example ... 61

 ix

List of tables

Table 2.1: Complexity weight for object points [9] .. 9

Table 3.1: Methods for the linked list ... 29

Table B.0.1: LOC metrics for contract version of linked list experiment......................... 53

Table B.0.2: Other metrics for contract version of linked list experiment........................ 53

Table B.0.3: LOC metrics for exceptions version of linked list experiment 54

Table B.0.4: Other metrics for exceptions version of linked list experiment 54

Table B.0.5: LOC metrics for original version of interpreter experiment 55

Table B.0.6: Metrics for original version of interpreter experiment................................. 55

Table B.0.7: LOC metrics for contract version of interpreter experiment........................ 56

Table B.0.8: Metrics for contract version of interpreter experiment 56

Table B.0.9: LOC metrics for exceptions version of interpreter experiment.................... 57

Table B.0.10: Metrics for exceptions version of interpreter experiment 57

Table B.0.11: Readability metrics for linked list experiment ... 58

Table B.12: Readability metrics for interpreter experiment ... 58

Table C.0.13: Relative time cost for various operations in Java [7] 59

Table E.0.14: Terminology chart .. 62

 x

1 Introduction

Most users and developers of computer software probably agree that a computer program not

only needs to be able to perform its task, but also with adequate performance, without failing

and at a reasonable cost. Developers of software want their programs to be inexpensive to

develop and maintain as well as to be profitable. To satisfy these criteria, methods and

techniques have been developed concerning different aspects of software development, such

as design and implementation. These methods are mostly concerned with efficient

development and construction of well functioning software.

This thesis will present and evaluate two different programming techniques, which deal

with error prevention and error handling. The two different techniques that will be presented

are programming by contract and programming with exceptions. These techniques will be

compared to each other both in theory and in practice through experiments. The reason for

conducting this comparison is to find out whether programming by contract or programming

with exceptions shows any significant differences when applied in software development and

whether one of the programming techniques improves software quality more than the other.

A comparison will also be made with a third technique, defensive programming, that will

briefly be explained in theory in conjunction with the other techniques. This comparison will

be made since programming with exceptions is often used to support the practice of defensive

programming.

In chapter 2 the background and goals for this thesis will be discussed. Software design,

object-oriented programming and the theory behind programming by contract and

programming with exceptions are investigated and discussed. The two programming

techniques are compared in theory; advantages and disadvantages for each technique are

discussed. Furthermore, software metrics is described and discussed.

The software metrics that will be used in the experiment are presented in chapter 2.3.

Software metrics is used in this thesis as a measurement to see the differences between

different programs, written in programming by contract and in programming with exceptions.

The programs used for the comparison are a linked list and an interpreter. The linked list part

of the experiment consists of two list programs created ab initio, one written according to

programming by contract and one according to programming with exceptions. The interpreter

 1

experiment includes an original interpreter program, which is modified into two new versions

written according to the two techniques.

In chapter 3 the programs used in the experiment are discussed and the software metrics

that will be used in the experiment are presented.

In chapter 4 the results from the experiments performed are presented and evaluated. The

implementation and issues of the implementation of the experiment programs are also

discussed. Graphs will be used to illustrate results from the different experiments.

Finally, in chapter 5 the conclusions, problems and future work is discussed. The authors’

views are included in this last chapter of this thesis.

The appendices for this thesis include descriptions of programming code style and software

metrics tools used in the experiments. Also included are all software metrics collected from

the experiments as well as a performance chart of different Java statements. Enclosed with

this thesis is a CD containing the source code for all programs included in the experiments

performed.

After reading this thesis we hope that the reader will have a better knowledge and

understanding of programming by contract and programming with exceptions. Hopefully, the

reader will know when to make use of each of the two techniques.

 2

2 Background

In this chapter the concept of software design is discussed. Software metrics and what can be

defined as “good programming” are also discussed and presented. Three different

programming techniques and approaches to error handling and prevention are defined and

discussed, namely programming by contract, programming with exceptions and defensive

programming. Defensive programming is only discussed briefly, since defensive

programming is not directly included in the scope of this thesis, programming by contract and

programming with exceptions are discussed in more detail. Both advantages and

disadvantages of each technique are examined. Throughout this chapter examples are given to

illustrate differences and similarities between the different techniques.

At the end of this chapter a theoretical comparison and evaluation of the three different

techniques is presented. The definitions for the three programming and error

handling/prevention techniques are based mainly on the ideas and definitions presented by

two of the most well-known and respected computer scientists in software engineering; Prof.

Bertrand Meyer [15] and Prof. Barbara Liskov [14].

2.1 Object-oriented programming

The focus for this project lies in the area of Object-oriented programming, even though the

methods described can be used in other areas of programming. The reasons for focusing on

Object-oriented programming, especially Java, are several. Firstly, Object-oriented

programming has become more and more common and popular for software development

over the last decade. Also, in most Object-oriented languages non-static operations on an

object cannot be accessed if the object has not been created. In section 2.5 we find that

preconditions can be easier to define for an Object-oriented language than for a procedural

language. The reason why preconditions can be easier to write for an Object-oriented

language is because it is impossible to use any method for a nonexistent object, if the methods

are not static, which makes it possible to write contracts that implicitly depend on the fact that

the object exists. In a procedural language that does not support the use of objects, such a

contract cannot be written without an additional precondition that demands that the object

exist.

 3

The reason for choosing Java as the primary language is; firstly, Java is a commonly used

Object-oriented language. Secondly, Java was constructed with exceptions in mind. An

exception in Java is well defined and in most circumstances easy to use.

The concept of state is central to Object-oriented programming. Objects contain both

operations and state. The state of an object is expressed by the current values of the variables

within the object, these variables are also called instance variables. The operations of an

object are used to access or modify the object’s state. The state of an object can either be

changed or not. Objects that can change state are called mutable objects. Objects that cannot

change state are called immutable objects. Only instantiated objects provide a state, since

objects that are not instantiated do not have any instance variables.

In Object-oriented programming, where inheritance plays a big role, contracts should be

monitored closely to prevent that a subclass accidentally violates the rules that are set on how

a contract can be modified. A subclass that overrides methods from a superclass can only

weaken or keep the preconditions and only strengthen or keep the postconditions. A

discussion is found in section 2.7.

2.2 Aspects of Software quality

According to Meyer [15] correctness is the prime software quality, which Meyer defines as

“the ability of software products to exactly perform their tasks, as defined by the requirement

and specification.” Other concerns are the ability to reuse, maintain and to read and

understand existing programs. Execution performance of a program is also often considered

an important factor. Another important quality factor according to Meyer [15] is robustness,

which is the ability of software programs to function in abnormal circumstances. Figure 2.1

illustrates that correctness is well defined in contrast to robustness, which has a more vague

definition. In this thesis discussion both correctness as well as robustness is discussed.

Programming with exceptions is a programming technique that is more focused on robustness

whereas programming with contract deals more with correctness.

 4

Robustness

Specification
Correctness

Figure 2.1: Correctness vs. Robustness

Terms such as reusability, maintainability, correctness and robustness are often

encountered in the context of software quality. All of these terms are commonly called

software metrics and will be further discussed in the next chapter.

According to Meyer [15] a programmer often has to make a tradeoff between different

aspects of software quality. For example, efficiency often stands in conflict with portability.

Meyer also states that the total cost for a project often does not include the cost to maintain

the project, once it has been completed. The cost of maintenance can, however, be a

substantial cost for the total project.

Liskov [14] agrees with Meyer that a good program has to be divided into several smaller

parts. Liskov calls the subdivision of a program a module, and states that each module should

be able to interact with other modules in simple, well-defined ways. Each module should also

be able to execute the task assigned to the module without having to rely on other modules,

the module should be independent as much as possible. For example, if module A has a

connection to module B, by the use of module B’s procedures, that connection can lead to

problem at a later change in the system. A small change in B can lead to an error in A, that

can be hard to find.

Liskov discusses two different kinds of abstractions, namely abstraction by

parameterization and abstraction by specification:

Liskov defines abstraction by parameterization as; “...abstracts from the identity of the data

by replacing them with parameters” [14]. Abstraction by parameterization should be used to

increase reusability of a module. For example, suppose we are writing a program that needs to

sort an array of integers. We might write the sorting mechanism directly at the place where

the sorting should occur but this approach hinders modularity and maintainability, instead the

sorting mechanism should be encapsulated within a procedure. The use of abstraction by

 5

parameterization makes it easier to reuse the code, later in the same program or in a different

program, even if the array is different in some aspect [14].

 Abstraction by specification is defined as; “…abstracts from the implementation details to

the behavior users can depend on. It isolates modules from one another’s implementations; we

require only that a module’s implementation supports the behavior being relied on” [14]. To

make it possible to abstract by specification one can associate each procedure with a

specification of its intended effect, that is to append a pair of assertions to the procedure. The

assertions should state what the procedure requires, the requires clause (or precondition), and

what the procedure states will happen after a call has been made, the effect clause (or

postcondition). For example, the requires clause for a procedure that calculates an

approximation to the square root of a parameter, could state that the parameter has to be

greater than zero. In return the effect clause guarantees that the return value will hold an

approximation of the square root for that parameter [14]. Abstraction by specification will be

further discussed in section 2.5 Programming by Contract.

Several methods concerned with the aspect of software quality have been developed. Two

of the more popular and widely used methods are eXtreme Programming (XP) [2] and

Unified Process (UP) [12]. Both these methods describe rules that are designed to help the

software developer produce programs, which work better and are more easily maintained.

This thesis will not cover these methods more thoroughly, since they are concerned with more

how a project should be organized rather than which programming style to use.

2.3 Software Metrics

According to Fenton and Neil [8] software metrics is: “… a collective term used to describe

the very wide range of activities concerned with measurement in software engineering.”

Measurement of software is not only useful but critical for any serious project, because how

can you make sure that your projects function correctly and are efficient if you have no way

of measuring this [9].

In this section we will present some metrics that are often encountered during a discussion

about metrics. This section serves as an overview of different metrics. A discussion about

which metrics that will be used in the experiment will be found later in this thesis, see section

3.2.

In a competitive situation, a company may want to be able to prove that the company’s

product is more efficient, faster or maybe just plain better. But how can they measure if their

 6

product really is better in some aspect? This is where metrics would be used; metrics is a

collective term that includes an assortment of different measurements. In software

engineering there are some measurements that are easier to understand and quantify. These

measurements will in this thesis be referred to as direct measures of software engineering. In

Figure 2.2 common direct measures of software design are listed. Other measurements are

more indirect in the sense that the value produced is less objective. Less objective

measurements are harder to use when comparing different techniques, since the measurements

of such values depends on the person conducting the measurement. If more subjective values

are used for comparison in an experiment this could lead to different results if the experiment

is conducted several times, since different persons could interpret how the measurement

should be conducted in different ways. Two examples of such indirect measures are

programmer productivity and time spent on error correction.

• Length of source code
• Duration of testing process
• Number of defects discovered during test process
• Time spent on project

Figure 2.2: Common direct measures used in software engineering [9]

Another less objective factor is the measurement of how much code is reused during a

project. To measure the amount of reuse during a project some limits have to be established.

Fenton [9] states four different stages for reuse, namely:

• Reuse verbatim - No changes has been made to the code reused.

• Slightly modified - At most 25% of the code reused has been modified.

• Extensively modified - More than 25% of the code reused has been modified.

• New - None of the code comes from a previous project

One metric value that has long been used in the area of software engineering is the

calculation of number of lines of code, LOC. It has been defined what LOC should stand for.

The definition, however, has been interpreted in many different ways. Traditionally LOC was

calculated as the physical number of lines of the source code of a program. However, some

lines of code are different from others. For example, many programmers use blank lines to

make their program easier to read [9]. Instead of only using LOC as a value for how “big” a

program is LOC can be divided into several sub-values. For example, by separating actual

code lines from comment lines and blank lines a new value called comment lines of code,

 7

CLOC, can be derived. By dividing CLOC with LOC an approximation of the density of

comments in a program can be calculating [9]. The number of non-comment lines of code,

NCLOC, can be calculated by subtracting CLOC from LOC. However, some software

engineers argue that NCLOC should not include import statements and declarations, since

such lines can be easier to understand and write.

The measuring of LOC and density of comments is argued to be misleading by many

software engineers [9]. Instead these software engineers think that measurement of

functionality would better represent the product. Functionality is a more subjective value than,

for example LOC, since the different methods developed depend on, for example, estimating

costs of different operations. Three attempts at measuring functionality of software products

that have been made are Albrecht’s approach, COCOMO 2.0 and DeMarco’s approach.

Albrecht’s method is based on the notion of function points. Function points are, as the

name implies, concerned with the functionality in a system. To calculate a value according to

Albrecht’s technique is somewhat problematic since before the method can be used, a set of

values has to be calculated. The values that have to be calculated are shown and explained in

Figure 2.3. Problems with Albrecht’s approach lie mostly in that there is a large degree of

subjectivity involved and also that function points require a full software system and therefore

can not be used early in the life-cycle [9].

• External inputs – Items given by the user to describe application data.
• External outputs – Items that generate application specific data
• External inquires – Interactivity with the user that require a response
• External files – Machine to machine interfaces
• Internal files – Logical files within the system

Figure 2.3: Type groups used in Albrecht’s method

The approach based on COCOMO 2.0 is based on object points instead of function points.

To calculate object points an initial size first has to be measured. The initial size is measured

by counting the number of screens, reports and third-generation language components used in

the software. After this all objects are classified as simple, medium or difficult, similar to

Albrecht’s weighting of function points. Guidelines for this classification can be found in

Table 2.1. Object points differs from function points in that an objects reuse is taken into

account, since object points are intended to be used in effort estimation. COCOMO 2.0

suffers from the same problem as Albrecht’s method with subjectivity but can be used earlier

in the life cycle [9].

 8

Object type Simple Medium Difficult

Screen 1 2 3

Report 2 5 8

3GL component - - 10

Table 2.1: Complexity weight for object points [9]

DeMarco’s approach is divided into two different measurements depending if the system is

“function strong” or if the system is more “data strong”. DeMarco’s approach is often referred

to as the bang metrics or specification weight metrics. The function bang metrics is based on

how many functional primitives that exist in the data-flow diagram. The data bang metric is

based on how many entities that exist in the entity-relationship model. The values that are

needed can easily be calculated automatically using a CASE tool. DeMarco’s approach has

not been subjected to any independent validation showing if there exists any graver problem

with this method [9].

Another method to measure complexity by is McCabe’s cyclomatic complexity measure.

McCabe’s method measures the number of possible linear paths through a module; a high

number gives an indication of a high complexity. A result from McCabe’s method greater

than 10 is often regarded as a high value and indicates that the software is too complex and

should, if possible, be simplified [9]. Since McCabe’s cyclomatic complexity does not take

into account the allocation of objects, which is a rather time-consuming operation, one

additional metric measuring the total number of occurrences of object allocation in the source

code can be used. This metrics will be called New throughout this thesis.

There have been some attempts to calculate the readability of software, Gunning-Fog

Index is the most well-known and is calculated using the number of words, sentences and the

percentages of words containing three or more syllables. Code which is harder to read and

understand often requires more effort to maintain. The value of Gunning-Fog Index

corresponds approximately with the number of years of schooling required to read the text

with relative ease and understanding [9]. Gunning-Fog Index is designed to be used on natural

text and not on program source code. Gunning-Fog Index is calculated as (w + s) * 0.4 where

w stands for average words per sentence and s stands for percentage of words with three or

more syllables. There are other readability measures that are more focused to software

products. De Young and Kampen have defined the readability, R, of a program to be: R =

0.295a – 0.499b + 0.13c, where a is the average length of the variables’ names, b is the

number of lines containing statements and c is McCabe’s cyclomatic complexity number for

 9

the program [9]. Yet another readability metrics is the Flesch-Kincaid metrics, the value

gained from Flesch-Kincaid shows the number of years in schooling that is required to

understand the text. Flesch-Kincaid is calculated as 0.39 * w + 11.8 * s – 15.59 where w

stands for the average number of words in sentences and s stands for the average number of

syllables per word. The Flesch reading ease metrics gives a value on how easy a text is to read

on a 100-point scale. A higher value gives an indication that the text is easier to read. A value

between 60 and 70 is recommended for most publications.

In the experiment for this thesis only a part of the metrics discussed in this chapter will be

used. The reason for not using all of the metrics lie in the fact that many of the metrics

described should be used throughout the entire development of a system, and not only at the

end as a measurement. Since the experiment that will be conducted in this thesis is more

concerned with measurement at the end of the development only appropriate metrics will be

used. Which metrics that will be used and why are discussed in section 3.2.

In the area of Object-oriented programming several new metrics have been developed,

such as measuring the inheritance depth and the coupling between object classes. In the

experiments for this thesis such metrics will not yield any differences, since the design and

structure of the different versions of each program is similar.

2.4 Defensive programming

Errors that can occur during program execution can be divided into three main groups;

namely hardware errors, user input errors and programming errors. All of these kinds of errors

have to be taken into consideration when programming. When defensive programming is the

technique used, all procedures have to defend themselves against all errors. Procedures,

written with defensive programming in mind, have to be able to handle all possible input

values. In defensive programming not only the developer of a procedure has to conduct

checking, to see if input is valid, but also the caller has to check if the call was successful or

not. The reason why a caller of a procedure has to perform this kind of checking is that

procedures are able to return a value both as an as error indicator, if an error occurred, or an

“ordinary” value, if no error occurred. This kind of double checking leads to a risk of extra

code if the caller of a procedure cannot be certain which result the procedure will return. The

developer of a procedure always has to control, implicitly or explicitly, that the procedure will

be able to execute the task assigned to the procedure. The need to “reserve” a value as error

indicator also restricts the procedure from returning certain values as a result. This restriction

 10

can be hard to implement if the procedure can, for instance, return all possible values, both

positive and negative. Also the semantic properties of such a procedure are harder to describe

since the result of the procedure can have different meanings. A search operation for a list can

for example, either return a value indicating that the element searched for was found at

position X or return a value indicating that the element searched for was not found. The

semantics for value X are that the element was found and that X is a valid position in the list.

The other value indicates that the element was not found and is not a valid position in the list

and cannot be used as a valid position.

2.5 Programming by Contract

The creator of Eiffel [15], Bertrand Meyer, defines that to develop software according to

programming by contract, rules between the software developer and the client programmer

have to be established. This definition by Meyer has been interpreted in different ways.

Usually these interpretations include both obligations and benefits for the caller and the

developer of a procedure. Figure 2.4 is an example of how Meyer’s definition has been

interpreted.

Precondition: a is sorted in ascending order.
Postcondition: If x is in a, returns position of x in a;

else, returns –1.
int searchSorted(int[] a, int x)

Figure 2.4: Example of a contract

To be able to define these obligations and benefits some definitions are needed. Meyer

calls these definitions preconditions, which expresses the requirements for a procedure,

postconditions, which express what the effects of the procedure call will be, and invariants,

which are assertions that must be satisfied between procedure calls. An invariant need not

hold during the execution of a procedure but must be reestablished before the procedure

terminates.

Examples of preconditions are that a position is valid or that a container contains some

data. Preconditions may also be less obvious, for example that the list is sorted. Examples of

postconditions can state that the size of the list has decreased by one or that the first element

has been returned. A different kind of postcondition can be that all elements of a list have

been written to the screen, which really is a side effect of the procedure. An example of an

 11

invariant in a program can state that the size of a list always has to be greater than or equal to

zero.

If a caller breaks a contract by calling a procedure without fulfilling the preconditions, the

procedure has the right to take any action. This might be to loop forever, terminate the

program or return a random number [15]. If a caller fulfills a contract for a procedure, that

procedure has to make sure that the postcondition will hold after termination and that nothing

that has not been specified by the contracts have occurred.

Meyer states [15], “Preconditions and postconditions can play a crucial role in helping

programmers write correct programs - and know why they are correct.” According to this

statement, Meyer view contracts as a powerful tool that can help to make correct programs.

With the definition of preconditions, postconditions and invariants we can define what is

meant for a program to be correct. In software, correctness is a notion that is often very fuzzy

and not clearly defined. With the help of assertions we can impose a stronger and more

precise definition of what we mean with correctness. A class is correct if and only if the

implementations of the class are consistent with the definitions given by the assertions. If P

and Q are two assertions and A is a sequence of instructions, the notation {P} A {Q} means,

if the execution of A starts in a state where P is satisfied, A will terminate in a state where Q

is satisfied. For example {x == 2} x = x + 1 {x > 2}. We let C represent a class and J the

invariants for that class. For all procedures R, in that class, PreR denotes the preconditions for

that procedure and PostR denotes the postconditions. The code body of each procedure will be

denoted BR [15].

With these notations, class correctness can be defined as in Figure 2.5.

Definition of class correctness
A class is said to be correct according to given assertion if
and only if for all procedures R the following holds:

{J and PreR} BR {J and PostR}

Figure 2.5: Class correctness

The definitions express the fact that if procedure R is called with the invariant J and its

precondition PreR satisfied, R will ensure that its postcondition PostR and the invariant J are

satisfied once terminated. With the definition of class correctness program correctness is easy

to define. The definition for program correctness can be seen in Figure 2.6.

 12

Definition of program correctness
A program is said to be correct if and only if:
• All classes that are used in that program can be said to

be correct according to the definition for class
correctness.

• All couplings between different classes are correct
according to the definition for class correctness.

Figure 2.6: Program correctness

2.5.1 Weak contracts

Weak contracts imply an uncertainty between the developer and the client programmer. This

uncertainty takes the form that the developer instead of trusting the client programmer to only

call the procedure with correct values allows the procedure to be called with fewer conditions

fulfilled. Because of this lack of trust the developer has to perform tests within the procedure

before the actual code can be executed. This kind of checking before a procedure can execute

the actual code is similar to how defensive programming works, see section 2.4.

The simplest precondition, and one that is often used with weak contracts, is the

precondition true. If the precondition is stated to be true, that means the caller of a function

never has to check any condition before a call is made to the function. The drawback with this

approach lies in the fact that the caller has to check if the function actually managed to

perform the task it was assigned to do or not. Because weak contracts do not state a mutual

agreement about what a procedure needs and a procedure does, weak contracts have a lot of

similarities with defensive programming and inherently the disadvantages and advantages of

defensive programming. See section 2.4 for more information on defensive programming.

Weak contracts can exist for a procedure where the precondition only states some of the

requirements for the procedure to succeed; an example is illustrated in Figure 2.7. In this case

the procedure must be able to handle all cases not specified by the precondition and report

eventual errors to the caller, for example, with the use of reserved return values or exceptions.

If a procedure reserves certain values as error indicator this can lead to problems with the

implementation, since this puts a restriction of the results a procedure can return. Also if the

result from the procedure is due to an error, the returning value has another meaning than an

ordinary result, which could be confusing and possibly lead to errors.

Thus, the specification of the postcondition must always include what happens if an error

occurs, if the error that occurred was not due to a contract violation. In Figure 2.7 two

different weak contracts for procedures that manipulate a list are described. The contract for

 13

the first procedure in the figure is weak because the procedure accepts any possible value for

the position parameter, which means that an internal check of the position parameter has to be

conducted to see whether the insertion is possible or not. The contract for the second

procedure is not as strong as possible because the procedure has to check whether the end of

list is reached or not. If the contract for the second procedure would state that the element has

to be in the list the procedure would not have to conduct this checking. The example is written

in pseudo code and the list is represented according to the object-oriented paradigm.

In the example in Figure 2.7 we use the sentence “shifted one position to the right”, this

sentence means that every element in the list that is affected will after the operation has

terminated have an index that is one higher. The use of the word “shifted” in examples, in this

thesis, will have the same meaning throughout the entire thesis.

Precondition: Element e exists
Postcondition: If pos is valid, e is inserted at position pos in the list and true

is returned,
else, e is not inserted in the list and false is returned.

Postcondition: if pos is valid any elements that already exist in the list at
specified or at a subsequent position are shifted
one position to the right.

boolean insertElement(element e, int pos)

Precondition: Element e exists
Postcondition: If e is in the list, e is removed and true is returned,

else, the list is not altered and false is returned.
Postcondition: if e is in in the list, any subsequent elements are shifted one

position to the left.
boolean removeElement(element e)

Figure 2.7: Example of weak contracts

2.5.2 Strong contracts

In contrast to weak contracts, strong contracts place more obligations on both the caller of a

procedure and the developer of that procedure. The caller has to assure that the precondition is

fulfilled but in return the caller does not have to check afterwards what has happened, the

postcondition gives a clear description on what the result will be. The developer on the other

hand can develop the procedure, without worrying about unfulfilled preconditions but must

ensure that the postcondition will hold once the procedure terminates. In Figure 2.8 an

example of two strong contracts is given, the example is basically the same as in Figure 2.7

but the contracts have been modified. The alteration that has been made in the example is that

 14

the return value no longer has to be of the type Boolean, since no indicator if the call was

successful is required.

Precondition: Element e exists and position pos is valid
Postcondition: e is inserted at position pos in the list object.
Postcondition: any elements at specified or subsequent positions

are shifted one position to the right.
void insertElement(element e, int pos)

Precondition: Element e exists in the list
Postcondition: e is removed from the list object.
Postcondition: any subsequent elements are shifted one position to the left.
void removeElement(element e)

Figure 2.8: Example of strong contracts

The use of strong contracts makes the code that is written for a procedure easier to write

and read, since the values of parameters do not have to be checked, but are assumed to be

legal [4]. “A quite common mistake is not to trust the preconditions and to test it in the

method. This is unnecessary and only takes a lot of time.” [4] The previous quote states one

of the most common problems when using programming by contract as the paradigm. If the

developer of a procedure does not trust the precondition, the preconditions serve no purpose.

Also software where the developer double-checks all preconditions will be less efficient when

execution time is calculated, this happens since more code is needed before a procedure is

completed.

If a developer always chooses to halt the system if the contracts are not fulfilled, the use of

strong contracts can help detect programming errors at an early stage of development. This

approach helps make the system more correct since very few programming errors will be

present in the system at release [3].

2.5.3 Advantages and disadvantages of programming by contract

Contracts, in contrast to other methods of programming, such as defensive programming,

detect most errors before they have a chance of happening, this kind of approach is commonly

called preemptive. Other methods, such as defensive programming, handle errors at some

later point. Programming by contract can be said to be a technique that prevents errors while

for example defensive programming instead detects errors when they occur.

With the use of contracts, the code for a procedure is simplified for the developer, since the

developer of a procedure can assume that the preconditions are satisfied and do not need to be

 15

verified within the procedure [15]. Further, the caller of such a procedure need not check if

the postconditions hold, since the definition of programming by contract states that the

postcondition will be fulfilled if the precondition was fulfilled [15].

Programming by contract helps simplify the documentation of a procedure, since the

documentation is only concerned with what a procedure does when the preconditions are

fulfilled and not for other cases [15].

Another advantage is that the semantic properties of a procedure are kept more distinct,

since the procedure only has to deal with correct results [15]. An example of how the

semantics are kept more distinct is a procedure that is used to search for an object in a list and

return the position of that object. Without contracts the search procedure may be written so

that a value, reserved as a not found value, is returned if the object does not exist in the list. If

a caller for such a procedure wants to use the result, he first has to control that the value gives

a position that is valid, which positions that are valid are depending on the implementation.

With programming by contract a precondition can be stated that prevents using this procedure

if the object does not exist in the list, with such a contract the caller can directly use the result

from the procedure. In the example above the semantics of the search procedure is simplified

since the procedure always, with no exception, returns a position that is valid for that

implementation of the list. Without the contract such an assertion cannot be made since the

procedure can return a result that gives a position that is not valid for the list.

There are some situations where programming by contract has its limits. For example, in a

multiprocessing environment, take a precondition that states that a file must exist and that it

can be opened. You could argue that the caller first has to verify that the file exists and if it

does exist, try to open the file. The problem is, however, not the possibility to test the

precondition, but the fact that during the time difference between the test and the call to the

procedure the file might have been deleted or locked by another process. A method to help

solve this problem is the use of file locks and to state in the precondition that a lock on a file

has to exist for that process. This approach, however, require that it is possible to obtain an

exclusive file lock in the system and is also, in most circumstances, limited to calls to the

same procedure. Without file locks any contracts on files have to be weakened.

Contracts also lack the flexibility that is needed for distributed systems when

communicating between different processes. Even if the caller checks and controls that the

precondition is valid before a call is made, errors may occur during the call to the other

process. For example, another process could have altered what the precondition was

dependent on. To solve the problem with contracts in distributed systems a protocol that

 16

supports retransmissions has to be used. Without the possibility to retransmit, a request cannot

be guaranteed to succeed. Yet another place where programming by contract can be difficult

to use exclusively, is when the program is operating against a database. If the caller has to use

a module for communicating with the database the caller has no means of controlling that an

operation on the database actually will succeed. This makes it almost impossible for the caller

to make sure that some preconditions are valid before calling a procedure. The most common

way to solve the problems with database management, even when not using contracts, is the

use of transactions and locks. Even with the use of transactions and locks writing a strong

contract for interaction with a database can be hard to write, especially if the database itself is

distributed [16].

2.6 Programming with Exceptions

”An exception is an event that occurs during the execution
of a program that disrupts the normal flow of instructions.”

Figure 2.9: Definition of exceptions according to [5]

The ability to use exception handling is for example found in popular object-oriented

programming languages like C++ and Java. Exceptions can occur due to reasons such as

hardware failures or programming errors. When an exception occurs in a procedure, the

procedure terminates and control is transferred to code that handles the exception. For

example, an insert operation is performed on an array at a negative position, which makes the

insert operation throw an array-out-of-bound-exception. The exception is caught in the

invoking procedure and a recovery operation is performed.

One common way to indicate that an error has occurred in a procedure is to return a

predefined value. If procedures in the language used only are able to return one type, this

predefined value has to be part of the domain that a procedure can return. The problems with

the approach described can be divided into two different areas. One area is the semantic

problems caused by allowing a procedure return a value that violates the semantic meaning of

the procedure. For example, a list search operation where the return value indicates the first

occurrence of an element, but returns a negative value to indicate that the element is not in the

list. The specification for a procedure can include the semantics for that procedure by giving a

short description on what happens for all possible calls to the procedure, different values on

 17

the parameters or in a different environment. Another kind of problem lies in the fact that the

developer has to partition the domain for the procedure into two disjoint subsets, one for

“normal” results and one for “abnormal” or erroneous results. Which value should be reserved

as an error indicator for a procedure that can return every positive and negative integer?

The need for encoding information into ordinary results can be eliminated by the use of

exceptions. According to Liskov [14] the use of exceptions makes it easier to distinguish a

successful result from a procedure call from an unsuccessful or erroneous result, since an

error transfers execution of the program to an error recovery section. A find position

procedure, for example, that does not find the requested element can throw an exception

instead of returning a semantically questionable value. Another programming aspect to this

problem is to create a procedure, isMember, which checks if the element exists. The approach

with such a method solves the need to have, to reserve, and return, a semantically

questionable value but suffers from efficiency problems since the container object has to be

searched twice before a position can be returned. To solve the efficiency problem a private

variable could be used that contains the position of where the last element was found, during

checking, or a predefined value if no checking has occurred. The method with using a private

position variable leads, however, to another problem, namely, if the caller calls the find

position procedure twice in a row, for different elements, without first using the isMember

procedure the second time, an erroneous result will occur. To solve this new problem we let

the find position procedure reset the private variable to the predefined value before returning

the result. This “clearing” of the position variable solution leads, however, back to the

beginning of this discussion since we now have a problem if a caller accidentally calls the

find position procedure without first calling the isMember procedure. The discussion above is

purely hypothetical since all problems are pushed to their limit to show on other problems that

occur then.

Figure 2.10 demonstrates how a file might be opened and read into memory using

traditional methods, and with the use of exceptions. The number of lines, in the read file

block, that are needed to check possible errors are fewer with the use of exceptions, in this

example, due to the fact that all error-checking is located at the same point. If all kind of

errors were handled the same way, the code using exceptions could be even shorter, since

only one catch statement would have to be used, although the ability to separate different

kinds of errors would be lost. Another difference worth noticing is that the procedure using

exceptions does not have to return any value if an error occurred, except from possibly

throwing an exception. The “doSomething” statement in the exception version of the example

 18

can possibly lead to an increase in the number of lines that are needed to handle the errors.

Often, however, the error handling simply involves either a return statement or a new

throwing of an exception which takes only one single line. The main point, however, is not to

reduce the number of lines but to separate the main flow of the code from the error handling

code [5].

Without exceptions:
1 ErrorCodeType readFile {
2 initialize errorCode = 0;
3 open the file;
4 if (theFileIsOpen) {
5 determine the length of the file;
6 if (gotTheFileLength) {
7 allocate that much memory;
8 if (gotEnoughMemory) {
9 read the file into memory;
10 if (readFailed) {
11 errorCode = -1;
12 }
13 }
14 else {
15 errorCode = -2;
16 }
17 }
18 else {
19 errorCode = -3;
20 }
21 close the file;
22 if (theFileDidntClose &&
23 errorCode == 0) {
24 errorCode = -4;
25 }
26 else {
27 errorCode = errorCode and -4;
28 }
29 }
30 else {
31 errorCode = -5;
32 }
33 return errorCode;
34 }

With exceptions
1 readFile {
2 try {
3 open the file;
4 determine its size;
5 allocate that much memory;
6 read the file into memory;
7 close the file;
8 }
9 catch (fileOpenFailed) {
10 doSomething;
11 }
12 catch (sizeDeterminationFailed) {
13 doSomething;
14 }
15 catch (memoryAllocationFailed) {
16 doSomething;
17 }
18 catch (readFailed) {
19 doSomething;
20 }
21 catch (fileCloseFailed) {
22 doSomething;
23 }
24 }

Figure 2.10: Example of program using and not using exceptions [5]

2.6.1 Advantages and disadvantages with the use of exceptions

One possible problem with exceptions is the fact that they disturb the normal flow of the

program. For example, when an exception is thrown this immediately terminates the

procedure and transfers control to the catch statement. The fact that exceptions can propagate

through a system can make the execution path, of a program using exceptions, hard to follow.

The use of exceptions can be seen as a kind of goto technique [15], where throwing

exceptions is used to transfer control out from inside the procedure.

 19

Exceptions can also lead to an inconsistent or erroneous system state, if for an instance a

procedure alters a class-attribute and then throws an exception. For example when inserting

an element in a list, the length of the list could have been updated before checking whether a

specified position of where the element is to be inserted is correct. If the position is incorrect

and an exception is thrown, without restoring the length, the length of the list would be

incorrect. One possible solution for this is to always perform the operations that can generate

an exception first, this approach is recommended by Liskov [14].

Programmers may or may not be forced to handle exceptions by the programming

language. In Java there exist two types of exceptions, one that must be caught or declared

thrown and one that does not need to be caught or declared thrown. One problem that exists

with the latter in Java is that they can accidentally be caught, possibly leading to problems

with the subsequent code. An example of this can be seen in Figure 2.11. A disadvantage with

two different kinds of exceptions is that programmers can be confused as to what is required

when using exceptions, which can lead to inconsistencies in how code is written.

Inconsistencies in how code is written could happen when one programmer thinks that all

kinds of exceptions should be caught and another programmer working in the same project

does not. These inconsistencies could lead to failures that are hard to trace [14].

A benefit of exceptions that do not have to be handled is that code certain not to cause an

exception does not need to handle the exception and thereby possibly improve efficiency [14].

Exceptions that have to be handled by the caller also have both advantages and disadvantages.

An advantage is that the compiler will inform the programmer if any exceptions have not

been declared thrown or caught [14]. One disadvantage is that even if written code is certain

not to generate an exception the caller still has to write code to handle the potential exception.

try {
 x = y[n];
 i = Arrays.search(z, x);
}
catch(IndexOutOfBoundsException e) {
 //handle IndexOutOfBoundsException from use of array y
}
//code here continues assuming problem has been fixed.

Figure 2.11: Accidentally catching an exception [14]

 20

2.7 Summary

It is debatable whether the use of contracts reduces the number of errors in software. Meyer

declares that the use of programming by contract reduces the numbers of errors that occur,

since less code needs to be written [15]. Liskov agrees with Meyer that programming by

contracts has its benefits but wants procedures to be able to handle all possible input. A

procedure that can handle all possible input is total; otherwise the procedure is partial. Liskov

regards total procedures to be safer than partial procedures and argues that partial procedures

should only be used in a limited context or when partial procedures enable a substantial

benefit, such as better performance. Meyer on the other hand states that a procedure should

only be able to handle input that generates a meaningful result, such as values within a

specific bound. This type of partial procedure always has a precondition stronger than true.

If a system in which contracts is modified at a later stage all the contracts have to be taken

into consideration, which could make maintenance more difficult. A procedure’s precondition

can only be replaced by an equal or weaker precondition. A postcondition can only be

replaced with a new postcondition if the new postcondition is equal or stronger [3]. If a

precondition were to be replaced by a stronger precondition this could possibly lead to

problems with the rest of the system since new tests would have to be constructed at each call

to the procedure. If a postcondition for a procedure was replaced by a weaker postcondition, a

new check has to be conducted after the procedure call to control the result from the called

procedure. The above discussion is also valid for inheritance in Object-oriented programming.

If a subclass overrides methods from a superclass the same rules for alterations of the

preconditions and postconditions apply.

The use of exceptions in a system helps solve the problem of specifying some value as

error indicator, which simplifies the semantics of a procedure, explained in chapter 2.6.

Exceptions, however, can disrupt the normal flow of a program, which can be seen as a

problem.

Contracts also eliminate the use of many error indicators, since a procedure that is bound

by a contract never can fail if the precondition is fulfilled. Before a procedure, that has at least

one precondition stronger than true, is called, the preconditions of that procedure have to be

checked. The control of a precondition can, however, be implicit if there is only one execution

path through a program, which guaranties that the precondition will hold once the call to the

procedure is made [4]. Only one execution path exists if there are no decision nodes in the

flow of the program. An example of this can be seen in Figure 2.1.

 21

Pre: position is legal (0 <= pos & pos < length of the list)
Post: element stored a position pos is returned
element getElement(int pos)
{
… //code to featch the element stored a postition pos.
}

Pre: the list exists
Post: the specified element is added to the list
void add(element data)
{
… //code to add specified element to the list
}

…
myList.add(data);
//The list is guarantied to have one element at position 0
//therefore a call to getElement with position 0 can be made.
anElement = myList.getelement(0);

Figure 2.12: Implicit guaranties of a precondition

There have been several attempts at examining whether programming by contract or

programming with exceptions is preferable to other styles of programming, such as defensive

programming [10][14][15]. Most of these attempts only consider few aspects when

conducting the comparisons. By limiting the comparisons to just to a few aspects the

discussion can be easier to follow but also make the results less fair. In [10] Firesmith

proclaims that defensive development, here called programming with exceptions, is superior

to design by contract. Meyer on the other hand prefers contract and views exceptions as a

programming technique that should be avoided as much as possible. Firesmith also states

some similarities between the two styles of programming:

• They are both based on the use of assertions.

• They use the same kinds of assertions.

• They both consider the supplier responsible for ensuring invariants and

postconditions.

• They both allow the raising of exceptions upon assertion violations.

In this thesis we will focus on a number of metrics, discussed in detail in chapter 3.2, to

make the comparisons between the two programming techniques. The use of metrics for the

comparison makes this thesis more focused on how the source code differs when

implemented according to programming by contract and programming with exceptions, rather

than evaluating which programming technique that gives more efficiently executing programs

and/or less error prone code.

 22

3 Experiment

In this chapter the experiments that were performed for this thesis are presented. Two

different types of programs were used to compare the programming and error

handling/prevention techniques. The two programs included in the experiment are an

interpreter and a linked list. The interpreter used in the experiment is a program that interprets

stack machine code generated by an XMPL compiler. The interpreter and the linked list

program will be written in a programming by contract version and a programming with

exception version. The main reason for choosing two different types of programs is to obtain

a fairer and broader comparison between programming by contract and programming with

exceptions. Using these relatively different programs could possibly lead to different

conclusions, about when to use each error handling/prevention technique depending on the

programming problem. Due to the amount of time assigned for this thesis, we have chosen to

make a more qualitative comparison instead of including more programs in the experiments.

The original version of the interpreter is included in the experiment as a reference. The

linked list experiment, however, will not include an original version, since the linked lists will

be created ab initio. Because of the fact that we have one program that we modify and one

that we created, we might be able to see if there exist any differences between the two

techniques when applied on a new project or when modifying an existing project.

A description of the definitions that were used in the experiment is included in the first

section of this chapter. The definitions describe how the contracts were written in the

experiment and which exceptions will be used. A description of how the documentation of the

code was written is also included.

To be able to make a comparison between programming by contract and programming

with exceptions, metrics will be collected from both versions of each program. The metrics

collected will then be used as a basis for the comparison and the conclusions. The different

metrics used for the experiment, and why we have chosen to include those metrics is also

included in this chapter.

Section 3.3 in this chapter includes a description of the linked list programs that were

created in the experiment. The description of the linked list includes a short description on

how the two versions of the linked list were implemented and in what way these two versions

differ from each other. The following section includes a description of the interpreter program

 23

used in the experiment. The interpreter description explains what the interpreter is used for,

how the interpreter is constructed and in what ways the interpreter program was modified into

one version written according to programming by contract and one written according to

programming with exceptions.

3.1 Definitions used in the experiments

To make it easier to conduct the experiments we defined how programming by contract and

programming with exceptions would be used and implemented. In our opinion these

definitions are necessary to make the comparisons fairer and give the reader a better

understanding of our interpretation of the two different error handling/prevention techniques.

These definitions and style guidelines include that each method should have a brief

description and how these descriptions should be written. Guidelines for how contracts and

exceptions should be used are also included. In appendix A more details on the code-style that

was used in the experiments is defined and discussed.

3.2 Software metrics

Software metrics were gathered from the experiments, which were subsequently used to

compare the different programming techniques with each other. All data collected from the

experiments can be seen in appendix B. A discussion of which metrics that can be used for

software can be found in chapter 2.3.

At the end of the chapter a comparison is made between the different experiments, the

linked lists programs and the interpreter programs, to see if there exists a difference when

modifying an existing program in contrast to creating a new program ab initio.

3.2.1 Different metrics

An assortment of different metrics exists that can be used to measure different software

aspects. To make a comparison between the different programs we used metrics that are as

objective as possible. We evaluated the programs with metrics that measure different aspects

of the software, to better cover all possible differences that can exist between the different

programming styles, for example, number of lines in the source code and number of

statements. We primarily focused on metrics that measures aspects of the software, such as

size and functionality. We did not use metrics that are more focused on specification, since

the specifications for the programming by contract and programming with exceptions

 24

versions for the programs in the experiment do not differ. Algorithm complexity metrics were

not calculated due to the same reasons as why specification metrics were not used.

To be able to gather the metrics needed from each program different tools were used. The

different tools that were used are a JavaCC Java parser and the two Unix tools grep and wc.

Readability has been measured using a tool found at the Juicy Studio homepage [19]. A more

informative description on how these tools are used and what they measure can be found in

Appendix D.

3.2.2 Metrics used in the experiments

All metrics used in the experiments were gathered for the whole program as well as for the

different classes. We gathered information on each class, which helped us to see if there were

single classes where differences were greater than over the entire program. All metrics that

used are presented below with a short description of each metric, a motivation why each

metric is included and all restrictions and/or definitions that we have made for each specific

metric. For a more thorough discussion about metrics see chapter 2.3.

3.2.2.1 Lines of code – LOC

LOC measures the number of lines there is in a program. This metric was used since the

size of a program often gives an indication of how complex a program is. Historically LOC

have been used as an important metric to measure and see if a program is complex or not.

LOC has, however, lost some of its importance since a program can be more or less complex

due to other criteria such as algorithm complexity and graphical interface construction [9].

3.2.2.2 Comment lines of code – CLOC

The CLOC metric was used to give a value to how many comment lines there are in a

program. We calculated the number of comment lines as actual comments plus blank lines.

We made the choice of including blank lines as comment lines since we feel that blank lines

help make a program easier to read.

3.2.2.3 Non comment lines of code – NCLOC

In contrast to CLOC the NCLOC metric calculates the number of lines in the program that

are not comment lines. We decided to calculate NCLOC as the number of lines that were not

already calculated by CLOC, in other words as the number of lines that are not comment lines

or blank lines. NCLOC can therefore be calculated by subtracting CLOC from LOC. If a

comment follows a statement, on the same line, this line will be calculated as a NCLOC.

 25

There exists a discussion in the literature on what to include in NCLOC. Should statements

and definition statements be included in NCLOC and should a weight be applied to different

kind of lines? [9]

3.2.2.4 Density of comments – DOC

DOC is calculated as the ratio between NCLOC and LOC and gives a value of how

“dense” a class is. We used this metric to see if the density of a program is higher when using

either programming style, both compared with each other and the original programs. A

program with more comments is often easier to read and understand than a program with

fewer comments. However, a program with lots of comments can still be harder to understand

since the complexity of a program also depends on the complexity of the problem that is to be

solved [9].

3.2.2.5 Cyclomatic complexity – CC

Cyclomatic complexity is defined as the total number of decision nodes that exist in a

program. We gathered this value from the experiments to be able to see if either programming

technique gives a higher amount of decisions in the program, compared to each other or the

original programs. A high value, greater than 10 for this metric, is an indication that the

class/program is complex and should, if possible, be simplified.

CC is calculated simply by counting the number of if-statements that exist in a program.

However, CC also depends on whether the if-statement contains only one condition or

whether the if-statement is more complex and contains more than one condition. If the if-

statement is simple the CC is increased by one but if the if-statement is more complex the CC

is increased by the total amount of conditions in the if-statement.

3.2.2.6 Total number of object allocations – New

The New metrics measures the total number of occurrences of object allocation that occur

in the source code. Since object allocation is rather time-consuming, program execution

efficiency could be affected negatively with a large number of object allocations. In appendix

C a performance chart of different Java statements shows the time object allocation requires

relative to other statements.

3.2.2.7 Total number of methods – TNM

The TNM metric gives a value on how many methods that exist in the measured object,

program or module. TNM can be used as an indication of how complex the system is; a

 26

higher value indicates higher complexity. If this metric yields a high value, greater than 20,

the programmer should consider dividing the class into several smaller classes. If the value is

low, less than 5, the possibility of merging several classes into one should be considered [9].

3.2.2.8 Total number of assignments – TNA

TNA measures the total number of assignments that exist in the source code for a class. A

high value, greater than 30 in one class, indicates that there are many places in the class where

an error can occur, since each assignment introduces a new place where an error to occur [9].

A program that contains more assignments than another program has more places where

errors can exist due to higher complexity.

3.2.2.9 Gunning-Fog Index

Gunning-Fog index is a rough measure of how many years of schooling it would take a

person to understand the content of a text syntactically. The lower the number, the more

understandable the content is. Gunning-Fog index will only be calculated over the written

comments in each version since this metric is meant to be used for normal text and not

program source code.

3.2.2.10 Flesch-Kincaid Grade

The value calculated according to Flesch-Kincaid grade is an approximate measurement of

how many years of schooling it would take before a person can understand the content of the

measured text. Flesch-Kincaid grade will only be calculated over the written comments due to

the same reasons that apply to Gunning-Fog index.

3.2.2.11 Flesch Reading Ease

Flesch reading ease is a 100-point scale where a higher score indicates that the text is easier to

understand and read. Flesch reading ease will be measured in the experiment to see if either

programming technique yields more easily understood comments.

3.3 Linked list

A common abstraction that is found in most programming languages and used widely in

different projects is the linked list. A linked list can be seen as a sequence of elements that are

defined by a successor relation, where each element contains a value. The value for each node

can range from a simple digit to a more complex structure, such as a new linked list.

 27

The list in this experiment was constructed as a main class that represents the entire list.

The list class has a reference to the first node. Every node has a reference to the next node in

the list. The last node in the list has a null reference. Each existing node always contains a

value. Figure 3.1 describes our conceptual view of the linked list that was created in the

experiment.

List Listnode Listnode

Value

Listnode

Value Value

Figure 3.1: Example of a linked list

 28

The methods that were implemented for the list are listed below in Table 3.1:

Method Description

Insert at position Inserts a new element at specified position in the list.

Append to list Appends a new element to the end of the list.

Remove by value Removes the first occurrence of the specified value from the list.

Remove by position Removes the value currently stored at the specified position in the list.

Search by value Returns the position of the first occurrence of a specified value in the list.

Search by position Returns the value stored at the specified position in the list.

Size of list Returns the number of nodes in the list.

Table 3.1: Methods for the linked list

3.3.1 Programming by Contract

All contracts for the list were written as strongly as possible. To keep the semantics for all

methods simple, new methods were added in some cases. For example, the search by value

method was simplified by a precondition that states that the value searched for has to exist in

the list. The precondition can be verified by calling a method, isMember(), that checks if the

value is in the list and returns true or false depending on the result.

The preconditions and postconditions for all methods in the list were included in the Java

documentation. By only looking at the generated Java documentation an understanding of

what is required for each method call should be obvious. The Java documentation does not

include which actions a method takes when a contract violation occurs. Such information

could be used to weaken the contracts, since the caller of a method would know what happens

if a contract violation occurs, which is not the point of contracts. See chapter 2.5 for a

discussion on programming by contract.

3.3.2 Programming with Exceptions

The programming with exceptions version of the list uses exceptions for all cases where

methods will not be able to complete execution because of, for example, errors in parameters.

Exceptions were also used when, for example, a search method fails to find the value searched

for. We used exceptions that, to the greatest extent, give better information about what went

wrong. For example, when a caller tries to access an illegal position in a list an “illegal

position” exception will be thrown. All programming generated errors will throw a runtime

Exception. Since an error, which is due to a programming error, needs to be found as soon as

possible, any procedure that catches a runtime Exception will indicate this to the user.

 29

The Java documentation of the exception version of the list does not include any

preconditions or postconditions. However, a description was included for each method along

with a description of parameters, return value and which exceptions that can be thrown.

3.3.3 Summary

The linked list experiment is an addition to the interpreter experiment described in next

chapter. The reasons for choosing to include the linked list are that linked lists are a standard

example in computer science, relatively simple compared to other programs and provides a

good prototype for the test methods. We also wanted a to cover more aspects of error

handling/prevention than just those covered by the interpreter. By including the linked list we

are also able to make a comparison between a modified project and project that is created ab

initio.

One possible problem with the contract version of the list is that adding more methods to

keep semantics simple may make the program execution less efficient. An example of this

problem is that a call to a procedure that ensures that an element is in the list has to precede a

call to search by value, which actually means that two searches of the list has to be performed.

A similar problem with the exception version also exists, since the creation of an exception

takes more processing power than returning a value. Another problem with exceptions lies in

the fact that we catch and throw a new exception if the first exception does not fully

document the reason behind the throwing of the exception, which could lead to lower

performance.

3.4 Interpreter

In this experiment we modified an interpreter which was a part of a compiler project written

by two students in a Compiler construction course given at Karlstad University autumn 2002.

The compiler in that project compiles programs written in a subset of a language called

XMPL into stack machine code. The stack machine code generated by the compiler can then

be executed with the use of the interpreter that was created alongside the compiler. We

constructed two versions of the interpreter, one according to programming by contract and

one according to programming with exception, which both will be compared with each other

and the original version.

An interpreter is a program that reads and executes code. As for Java, the interpreter that

was used in this experiment runs the intermediate code in a virtual machine, here constructed

as a graphical user interface. “A Java virtual machine instruction consists of an opcode

 30

specifying the operation to be performed, followed by zero or more operands embodying

values to be operated upon.” [13] The interpreter that was used in our experiment works

similar to the Java Virtual Machine, JVM, where operators and operands are used to describe

the operations and the flow of the program execution. A short stack machine code example

for the interpreter is illustrated in Figure 3.2.

lValue n
push 1
:=
lValue i
push 5
:=
label test0
rValue i
push 1
<
goTrue out1
lValue n
rValue n
rValue i
*
:=
lValue i
rValue i
push 1
-
:=
gotoUn test0
label out1

Figure 3.2: Stack machine code example calculating 5!

The two main reasons for choosing to include this interpreter in the experiment is that the

interpreter represents a significantly sized application program and that the interpreter is

written in Java, which makes the implementation using exceptions easier.

The changes made to the original interpreter mainly include a transition to the two types of

error handling/prevention techniques discussed in this thesis. However, some of the

modifications made also include other aspects of the implementation, such as removing

unnecessary methods or adding new ones. The two resulting programs are still able to run

stack machine code generated by an XMPL compiler.

3.4.1 Original version

The original version of the interpreter is a graphical program, which shows the flow of the

execution and the operations performed. The interpreter is not implemented using any

particular programming technique. Some contracts exist in the source code but hardly any

 31

exceptions and many of the contracts that do exist are never checked. The implementation of

the original version is discussed in more detail in section 4.2.1.

The interpreter program is started with the name and path to the source program to execute

as an argument. If the name and path is correct a window is displayed on the screen,

otherwise an uncaught exception, that terminated the execution of the program, occurs. The

user can then either chose to execute one command at a time, so the user can follow the flow

of the program in more detail, or execute the program automatically. The two modified

versions of the interpreter are of course able to perform the same task as the original

interpreter.

3.4.2 Programming by Contract

The programming by contract version of the interpreter was implemented according to the

definition of contracts in chapter 2.5. Because there is little user input in the interpreter

programs, contract violations will not frequently occur due to user interaction. The possible

causes of contract violations will therefore mostly be programming errors. When a procedure

detects that a call to another procedure will violate a contract, the calling procedure will

instead take necessary actions. In many cases there is no other possible action for the

procedure to take than to throw a runtime exception that will subsequently lead to the

termination of the interpreter. In the interpreter, for example, contract violations could be due

to modifications to the input code for the interpreter, which the interpreter cannot handle in

any other way than to end execution with an error message.

3.4.3 Programming with Exceptions

The programming with exceptions version of the interpreter uses exceptions that gives an

indication of what went wrong. Since there is little user input in the interpreter most of the

errors that can generate an exception, is due to alteration in the code that the interpreter works

on or in a programming error. In some places an exception can be raised but where the

exception does not indicate an error but rather as a response if an operation was successful or

not.

3.4.4 Summary

All contracts that were written in the contract version of the interpreter in the experiment were

written as strongly as possible. Writing all contracts as strongly as possible may lead to a less

efficient execution of the program, since in some cases more method calls have to be made to

verify the preconditions. However, we did not measure any metrics that depend on execution

 32

efficiency. The version of the interpreter that were written according to programming with

exceptions use exceptions as a control for all preconditions that were introduced in the

contract version. The reason why we chose to implement the two versions in the ways

described was to create a simple way to indicate if there were any noticeable differences

between the two programming techniques when used to their limits.

 33

4 Results

This chapter includes a presentation of the metrics data collected in the experiment and

descriptions of the implementation of the programs created.

Firstly the implementation of the linked lists is described. Choices and compromises,

regarding the implementation that we had to consider when implementing the list are also

discussed. After the description of those parts of the list that are common for both versions of

the list, each version using the different error handling/prevention techniques will be

described further. The differences between these two versions will also be discussed and

compared with help of the metrics values that were collected.

The following section includes a brief description of the implementation of the interpreter.

Further, a more detailed description of the version written according to programming by

contract and the version written according to programming by exceptions is included together

with the modifications that were needed to create each version. The metrics data collected

from the three versions of the interpreter program are also discussed and compared.

This chapter ends with a summary and comparison of the two experiments conducted. This

comparison is mostly a discussion of the differences and similarities between the two

programming techniques when modifying and creating new programs.

4.1 Linked list experiment

The linked list programs that are used in the experiment in this thesis were both implemented

in Java. The design of both of the list programs includes two classes, one that serves as the

interface to the list and one that serves as the internal functionality of each node. This

implementation was chosen since we think that this implementation represents the lists better

and contains fewer semantic problems. This representation encapsulates the list nodes and

hides details from the user of the list. One of the semantic problems eliminated with this

representation of the list is definition of an empty list compared to a non-existent list. An

empty list according to this representation is represented with an existing list with zero nodes.

When a new list is created the list can either be created with a new node directly or be

created empty. If a request for the length of the list is made to a list containing no nodes zero

will be returned. As soon as an element is added to the list a new node is created and set as an

attribute to the list and the length of the list will increase by one. A user of the linked list can

 34

only directly use the interface class and can only reach the nodes of the list by using the

methods created.

Every node in the list is capable of holding a reference to one other node, which actually

means that each node is capable of holding a sequence of nodes. Each node in the list will

also hold a value and in the implementation of the list we choose to let that value be of the

type object. In Java the type object is the supertype of each created type that is not a low-level

type, like a boolean or int. To test the list programs two user interfaces were created to

function as front ends, one for each list. The complete source code for the list programs that

were created can be found the attached CD.

Figure 4.1 illustrates how the insertion of a new element is made in the linked list

programs. Observe that node A and B can be the only two nodes in the list or part of a larger

list, containing an arbitrary number of nodes preceding node A and following node B. The

number of nodes preceding node A and following node B do not affect how the insertion is

made.

1. Value Z is to be inserted at the position where value Y is currently located.

2. Node A creates a new node called C and assigns value Z as node C’s value.

3. Node A sets node C to refer to node B.

4. Node A sets itself to refer to node C instead of node B. The insertion of value Z in the

list is completed.

1

A B

X Y

A B

X Y

C

Z

A B

X Y

C

Z

A B

X Y

C

Z

Z

2

3 4

Figure 4.1: Insertion of a new element into a linked list

 35

4.1.1 Programming by Contract

In this section we will present how the list was implemented according to programming by

contract. We will also present why and how the contracts were specified as they were and

what happens if the contracts are broken.

The list created according to programming by contract was constructed so that every

contract on the list was set as strong as possible. The choice to make every contract as strong

as possible forced us to create additional methods used for verifying preconditions. This

choice, however, also made the construction of some methods easier, since the methods only

have to function when the preconditions are fulfilled. See chapter 2.5 for more details

regarding programming by contract.

 One of the drawbacks of using strong contracts can be seen when we want to search for a

position to an element. To search for a position, the calling procedure first needs to make sure

that the element exists in the list which requires one traversal through the list, then the calling

procedure can search for the position for that element which requires yet another traversal

through the list. A discussion about this problem with two traversals through the list and

alternative solutions can be found in section 2.6.

To make it possible to search for an element the method equals is used. The implication of

the usage of the equals method is that any procedure that creates an instance of our list and

uses a user-created class, as the value for the nodes, should override the equals method so that

the equals method works the intended way.

If a contract is violated, the program might continue to function correctly but more likely

the program will terminate since Java will throw a runtime exception. The program does not,

however, explicitly test the contract and throws an exception in case of a contract violation,

since programming by contract states that a procedure does not to take a specific action when

a contract is violated. The reason why exceptions are thrown in the contract version is due to

that Java automatically throws an exception when a runtime error occurs.

4.1.2 Programming with Exceptions

The version of the linked list that was implemented according to programming with

exceptions became a bit shorter than the contract version since a couple of methods could be

removed, for example, the isMember methods in the list class and in the list node class. With

exceptions all tests are conducted internally in the methods that are being called, if an error is

detected the procedure throws an exception. Each exception that can be thrown by a method is

declared in the Java documentation for that method. If an exception is not self-explanatory we

 36

have added a short message to the exception to further make it possible to understand what

went wrong.

No method that is written in the exceptions version can return a value, or throw an

exception that has not been included in the documentation for that method. The problem with

exceptions lies in the fact that even if the caller is certain that an exception will not be thrown

by a method the caller still has to enclose the call to that method within a try-catch clause. A

try-catch clause always imposes a certain loss in efficiency no matter if an exception really

gets thrown or not, see appendix C for a discussion about performance aspects when using

different Java statements, such as assignments and if-else statements.

4.1.3 Experimental results for the Linked list

In this section all the metrics results that were collected from the two versions of the linked

list will be presented. In Figure 4.2 a graphic representation of how the lines of code metrics

differ between the two programming techniques for the linked list. The number of actual code

lines is quite a bit lower for the contract version than for the exceptions version, but the total

amount of lines in each program is about the same. The amount of comment lines needed for

the contract version is more than those needed for the exception version, which can be seen in

Figure 4.2.

0

50

100

150

200

250

300

350

400

450

LOC CLOC NCLOC

Contracts

Exceptions

Figure 4.2: LOC metrics for the two versions of the linked list

Some other metrics were also gathered from the linked list experiment and the result from

these metrics can be seen in Figure 4.3. All results from the experiment can also be seen in

appendix B.1. The total number of assignments, TNA, is identical in both versions of the

linked list programs. The exceptions version of the linked list has fewer methods, TNM, than

the contract version, which is due to the semantic aspects discussed in the introduction of this

 37

chapter. The cyclomatic complexity is a bit higher for the contract version compared to the

exceptions version. The amount of object allocations is more than 60% higher for the

exception version than the contract version of the list program, which could indicate lower

execution efficiency for the exceptions version than for the contract version. The higher

amount of object allocations for the exceptions version could also indicate higher memory

usage.

0

5

10

15

20

25

30

TNA TNM Cyclomatic New

Contracts
Exceptions

Figure 4.3: Common metrics for the two version of the linked list

4.1.4 Summary

To make the comparison between the two programming techniques more clear, the programs

were implemented strictly according to each technique. The exceptions version was

implemented with a minimum amount of if-clauses, which are more suited for contracts, and

instead try-catch clauses were used. The contract version was implemented with more if-

clauses and explicit throwing of exceptions was avoided.

The documentation for each method, in the two versions, includes a short description of

what the method does and what each parameter means. For the contract version pre- and

postconditions are included and for the exceptions version a documentation of each method’s

return value is included, if a return statement exists in a method. The difference between what

is included in the documentation makes an obvious difference between how many comment

lines that are needed for the different versions. The fact that more comment lines are included

in the contract version, however, does not directly mean that the contract version is easier to

read. Due to inconsistencies with the results from the readability measurements those results

are not presented in this section. In section 4.3, a brief discussion is included about the

 38

measurements with readability metrics and why we think that those metrics are unsuited for

measuring how easy, or hard, a description of a program, class or method is.

4.2 Interpreter experiment

In this section we will present and discuss the XMPL interpreter program experiment results.

We will present implementation issues, regarding the transition from the original interpreter

program to the programming by contract and programming with exception versions. The

programming by contract and the programming with exception versions of the interpreter

program are similar in structure. The main difference lies in the fact that all methods in the

exceptions version are total, which means that the methods can handle all possible inputs,

whereas methods in the contract version are in more cases partial, which means that they use

preconditions that are stronger than true. In the contract version all preconditions for a method

have to be verified by the calling method before a call can be made. In the exceptions version

this verification is conducted internally in each method. How this checking and how the

contracts are constructed are discussed later in this section. We will also present any problems

that occurred during the transition to the two types of programming, for instance if the

contracts had to be weakened.

We start this section by explaining how the original version of the interpreter was

constructed and which techniques the original interpreter was created according to.

4.2.1 Original program

The original version of the interpreter program was constructed by two students in a course in

compiler construction, as mentioned earlier in this thesis, which was given at Karlstad

University the autumn of 2002. The code of the original interpreter program includes some

attempts to include informal contracts. However, contracts are missing for most class methods

and those contracts that are included are in few cases checked, which possibly means that the

developer assumed that those contracts written, but not checked, were fulfilled. Some of the

classes contain unused methods, which do not seem to serve any purpose. Another detail

worth noticing is that the programming style is not consistent throughout the program, shorter

simpler methods are for example written on one line in some cases but in other cases written

in the “normal” style using one line per statement. Most likely such programming style

variations have affected the results from the experiment, which could have made the

comparison with the original version somewhat unjust. Lines of code is one of the metrics that

 39

are affected by such style variations. The source code for the original version can be studied

in details on the attached CD.

4.2.2 Programming by Contract

The original version of the interpreter was modified in several ways when writing the

programming by contract version, unnecessary methods were removed and new methods were

added. For example, a method was added for checking if a label exists in the symbol table,

which is included in the precondition for the method that are used to retrieve the position of

an element in the symbol table. Contracts were defined for all methods in all classes in the

interpreter. The contracts that were written are in most cases strong. However, compromises

were made when we rewrote the class used for file handling, since we found no relatively

simple way to define contracts, which could guarantee that a file, for example, could be

opened for writing. In those cases where contracts are not able to guarantee that an operation

will succeed, for example file operations, exceptions are used. Exceptions are also used when

unexpected errors occur such as changes to the compiled code. When, for example, an

unexpected error occurs or when a file operation fails the interpreter will terminate, since

there is no easy way to correct such errors during runtime.

4.2.3 Programming with Exceptions

The construction of the programming with exceptions version and the programming by

contract version of the interpreter program was constructed in a similar manner. The

construction included identifying under which circumstances normal execution will occur and

under which cases an exception should be thrown. Exceptions are in many cases included

implicitly by the Java API and language, which subsequently leads to that in some cases

exceptions do not need to be thrown explicitly, thus reducing the total amount of lines of

code. In those cases where exceptions are not given implicitly a check is done in the

beginning of each method, which determines if an exception should be thrown or if execution

can continue. If an exception is to be thrown a new exception is created and thrown. All

exceptions that are thrown in the interpreter are descriptive, either by the name of the

exception or by an included description of the exception. When exceptions occur due to

changes of the source code or that a file could not be read or written the interpreter terminates,

since these errors can not be corrected during runtime.

 40

4.2.4 Experimental results for the Interpreter

In this section we will present and discuss the metrics gathered from the three interpreter

programs. The metrics results from this experiment can be studied in detail in appendix B.

In Figure 4.4 three different LOC metrics for the interpreters are presented. As can be seen

there exist some differences between the three versions. The code for the contract version

contains the highest number of lines and comments, but just about the same number of actual

code lines as the exception version. The original interpreter program contains the least

number of comment lines; however, the original interpreter contains more non-comment lines

than the other versions of the interpreter. The reason why the original version contains more

non-comment lines of code is that the source code of the original program was not as clean

and optimized as the two modified versions. Source code containing many lines of code and

few lines of comments are said to be more dense than code with more comment lines relative

to the total number of lines. The density calculated for each program is presented in appendix

B.

0

200

400

600

800

1000

1200

1400

1600

LOC CLOC NCLOC

Contracts

Exceptions

Original

Figure 4.4: LOC metrics for the three version of the interpreter

In addition to the LOC metrics collected, other metrics were collected. A selection of these

other metrics is presented in Figure 4.5. As we can see the total number of assignments, TNA,

and methods, TNM, have been reduced in both the contract and the exceptions version of the

interpreter when compared to the original version. The cyclomatic complexity, however, does

not differ as much between the original and the two modified versions. Because of the

semantic aspects discussed in chapter 3.4.2 the contract version contains more methods than

the exception version. The New metrics yields a higher number in the exceptions version than

in the other two versions of the interpreter, which is due to the number of the exception

 41

objects created. The contract version contains more places where objects are created than the

original version. The reason that the original version of the interpreter contains fewer New

statements is because the original version lacks some of the error handling capabilities added

to the modified versions.

0

20

40

60

80

100

120

TNA TNM Cyclomatic New

Contracts
Exceptions
Original

Figure 4.5: Metrics for the three versions of the interpreter

4.2.5 Summary

The results from the interpreter experiment do not show a great difference between

programming by contract and programming with exceptions. The two modified versions

shows results that are more equal when compared to each other than compared with the

original version. We get some indications, however, that the number of comment lines is

larger with programming by contract than with programming by exceptions, which is

probably because the preconditions are added to the contract version whereas no such

corresponding documentation is needed for the exceptions version. The execution efficiency

of the contract version might be better than the exceptions version since the two versions

show very similar metrics except that object initialization occurs more frequently in the

exceptions version, which is a rather time consuming task. Unfortunately we do not have any

data to verify that the contract version executes more efficiently. Due to time constraints and

complexity of measuring execution efficiency, such measurements have not been conducted.

The original version of the interpreter has the least occurrence of object initialization but does

instead contain more code.

 42

The readability of the original program is probably lower than in the modified versions,

since the code is much denser and contains fewer comments. How much the readability

differs between the two modified versions is harder to say. Measurements that were made

with Gunning’s Fog index, Flesch-Kincaid grade and Flesch reading ease gave no meaningful

results. A discussion about the problems with the readability metrics is included in section

4.3.

4.3 Summary of the experiments

To be able to compare the two different experiments we used metrics values that can be

represented as percentage values. All LOC metrics can be converted this way so the only

comparison that we are able to do is between those metrics. The only LOC metrics that can be

used as a comparison between different programs are the DOC metric since the rest of the

LOC metrics depends on how big the program that is being measured is. A graphical

presentation of the DOC metrics comparison can be seen in Figure 4.6. Since there exists no

original version of the linked list we only present the contract and exception versions for the

two experiments.

Density of comments

0%

10%

20%

30%

40%

50%

60%

Contracts Exceptions

Linked lists
Interpreter

Figure 4.6: Density of comments of the different version in the experiments

From Figure 4.6 we can see that the linked list contains fewer comments in both versions

than the interpreter does. The extra number of comments in the interpreter are, however, not

significant enough to prove, or disprove, that an extra number of comments are required when

modifying an existing program than what is needed when creating a new program ab initio.

We can see that the number of comments that are required when programming by contract is

 43

used as a technique is more constant, when viewed over an entire program, than when

programming with exceptions is used.

Measurements with the metrics Gunning’s Fog index, Flesch-Kincaid grade and Flesch

reading ease were collected over the comments during the experiment. We consider the

results from the readability measurements to be inconsistent and non-representative for how

well each method and class in the experiments programs is described. The comments for the

original interpreter program, for example, is according to these readability measurements the

easiest to understand but those comments are in many circumstances insufficient, or missing,

to give a good understanding of the methods and classes described. The data collected with

the readability metrics can be studied in appendix B.3. To measure how easy a written

program is to understand some measurements over the source code as well as the comments

would have to be conducted. We have however not found any metrics that is applicable for

such measurements and thus have been unable to collect such data.

 44

5 Conclusion

The evaluation of the comparison between programming by contract and programming with

exceptions was not an easy task, because the metrics collected were relatively simple and only

showed small differences between the different techniques. If metrics measuring readability,

maintainability and usability would have been collected, the comparison between the two

programming techniques might have been improved. Since such metrics are often less

objective and harder to collect, such metrics were not included.

There are clearly some aspects of these two programming techniques that should be

studied further, such as software quality and performance. In this chapter we will summarize

and discuss this thesis and the experiments performed. We will also present our perspective

on programming by contract and programming with exceptions. The problems encountered

during the experiments and what can be done to extend the work of this thesis are also

presented.

5.1 Problems

During the experiments several problems were experienced. Most of the problems were due to

programming errors. One problem was how to define what action to take when an external

error occurs that was not due to user input or programming error. In many circumstances the

only possible action to take was to end the execution of the program with an error message. In

the programming with exceptions version of the linked list and interpreter programs, we also

had to define when to throw a runtime exception and when to throw an ordinary exception.

Read more about how exceptions work and when they should be used in chapter 2.6.

Due to limitation of time we have not conducted measurements regarding how the

performance was affected when using either of the two programming techniques. Such

measurements could have been conducted measuring CPU and/or execution time for the

different programs. We have also not been able to measure how the quality of software is

affected when using programming by contract compared to programming with exceptions,

since such a measurement requires much more material and time.

When we chose to include a linked list program in the experiments we soon realized that

the semantics for different operations on a linked list can be hard to define in a clear and

precise way. For example, adding a new element to a list can be defined in different ways;

 45

either an insertion of a new element can be made between the specified position and the

position before the specified position. Another possible way is to shift all subsequent elements

including the one at the specified position, so that their indices are increased by one and

thereafter insert the new element at the specified position. Yet another way to create a list is to

define the list recursively, an insertion of an element would then involve the deconstruction

and reconstruction of the list.

The collecting of metrics was fairly easy but since we found no tool that was able to

calculate any readability metrics, we chose not to include such metrics. Therefore, an

objective evaluation, of how easy each program is to read and understand, was not possible.

Without an evaluation on how the readability differ, between programs implemented

according to programming by contract and programs implemented according to programming

with exceptions, we have no means of determining if either technique makes the final code

easier to maintain and understand.

5.2 Future work

This thesis has evaluated the experiments conducted from a metrics point of view. However,

the experiments conducted have also given us experience when creating programs written

according to programming by contract and programming with exceptions. In our opinion both

of these techniques has its advantages as well as disadvantages. We feel that using each

technique too strictly is somewhat cumbersome, for example, when using strong contracts for

a search operation. We think that it is good to follow one technique, since following one

technique probably reduces confusion and helps development of software, but that sometimes

some compromises have to be acceptable to reduce complexity and increase productivity.

Before any final conclusion can be drawn whether programming by contract or

programming with exceptions is to be preferred more extensive studies need to be conducted.

Both programs that were constructed for the experiment in this thesis have little user input

and therefore are subject to the same advantages and disadvantages. To be able to gather

enough material that yields a statistically valid comparison between the two programming

techniques a larger number of programs needs to be constructed, according to both

programming techniques, by several groups of programmers. Before any such experiment is

conducted, only preliminary conclusions can be drawn based on simpler experiments and

experience.

 46

Due to limited resources, money or time for example, compromises might be necessary

when constructing software. Compromises that can be necessary can affect aspects such as

fault tolerance and execution efficiency. Compromises made in a project depend on what kind

of software that is developed. In a software system that controls a nuclear power plant, for

example, errors and faults must be eliminated, but in a software system that automatically

gathers new information from peripheral inputs, where execution performance on the other

hand could be more critical, some faulty readings might be acceptable. To be able to

determine if one of the two techniques is more suited for a certain project many different

aspects, such as time and functionality requirements, have to be considered. This thesis has

not evaluated how the time that is needed to construct a software program is affected when

using either programming technique, such an evaluation could possibly be made if more

projects were constructed according to the two techniques.

To measure if either of the two techniques reduces the number of bugs in software more

extensive studies have to be conducted. One method, of measuring how bug prone a technique

is, is to construct a program according to the technique and then “inject” a certain amount of

errors into the program. Then you execute the program and measure how many of the errors

that are detected during execution. If a higher number of errors are detected it means that the

program is less likely to contain additional bugs whereas if many of the errors are left

undetected the program might contain additional bugs. [18]

To measure the performance efficiency of a program, extensive tests need to be conducted

several times on the program under different circumstances, such as high workload or when

using unreliable network connections. To measure such an intense usage of a program a lot of

time is required, since the tests need to run for quite some time before any variations due to

the environment are removed or reduced to a degree where the variations no longer affect the

final result. [11]

Another area of future work could be conducted in the area of project cost, to measure

whether either of the two techniques are more cost efficient for a complete project.

5.3 Conclusion and evaluation

In this thesis we have performed a comparative experiment between programming by contract

and programming with exceptions. The experiment included a linked list program and an

interpreter for XMPL programs. The interpreter was chosen because the interpreter was a

significantly sized Java program. The linked list programs were included because linked lists

 47

are relatively simple, standard examples in computer science and provide a good prototype for

the test methods.

In the interpreter experiment we modified an existing program and measured both the

original version as well as the two new versions that were created. The linked list programs

were created for this experiment and therefore no original version exists for this experiment.

Since we performed two experiments, one that was created specifically for this experiment

and one that was based on an original version, we were able to see if there were any

differences between the two techniques, when used to modify an existing program compared

to creating a new program.

To create a linked list program that executes more efficiently than either of the two

versions that were created for this experiment, each of the techniques could be used less

strictly. For example, a linked list program written with contracts could use an exception in a

search operation instead of specifying, in the precondition, that the element to be searched for

has to exist in the list, which could in some cases require two traversals through the whole

list. Also, by including contracts in an exceptions based program, some performance can be

gained by avoiding an exception to being triggered [14].

There are some relatively important aspects of how software engineering is affected by

programming by contract and programming with exceptions that are not included in this

thesis. For example, how bug-free, execution efficient, reliable and maintainable software is

when constructed according to each programming technique.

From the metrics data that were collected from the experiment we have seen few

indications that either programming technique would be better than the other one. By

examining and comparing the metrics from the two experiments conducted we have detected

that the result from the two programming techniques can vary depending how and under

which circumstances they are used.

The work conducted for this thesis has given us valuable experience on how software is

affected when implemented according to different programming techniques. We feel that

when constructing a program it is not the technique used that is the most important factor but

rather how the technique is used. Both of the techniques investigated and evaluated in this

thesis have their advantages as well as disadvantages. We argue that, programming by

contract can simplify backend procedures, since such procedures do not have to verify that

parameters contain valid values. The programming language chosen for the implementation is

also an important factor when deciding which technique to use. Since there are many

predefined exception classes in the Java API, it is very easy to implement a program that uses

 48

exceptions. We argue that exceptions should not be misused in a program, for example using

exceptions instead of verifying that an index is correct before a call is made to a search

procedure. To verify if a valid index is supplied is fairly simple and such test takes far less

time than the throwing of an exception, see appendix C for a performance list for some

common Java statements. However, exceptions are very helpful when performing operations

where strong contracts are hard to apply, such as file access and search operations. We think

that either has its benefits but either technique should not be used too strictly. If

implementation of software, according to one technique, becomes too complicated, we think

that compromises regarding the technique should be considered. This paragraph concludes

this thesis.

 49

References

[1] Aho, A. & Sethi, R. & Ullman J. D. Compilers: Principles, Techniques and Tools.
Addison-Wesley, 1986.

[2] Beck, K. Extreme Programming Explained. Addison-Wesley, 1999.
[3] Blom M. & Brunström A. & Nordby, E. J. Error Management with Design Contracts.

Department of Computer Science at Karlstad University, 2000.
[4] Blom M. & Brunström A. & Nordby, E. J. Method Description for Semla. Department

of Computer Science at Karlstad University & Ericsson Infotech AB, 2000.
[5] Campione, M. The Java Tutorial. Addison-Wesley, 3rd edition, 2000.
[6] Deitel H. M. & Deitel P. J. Java How to program. Prentice Hall, 4th edition, 2001.
[7] Eckel, B. Thinking in Java. Prentice Hall, 1st edition, 1998.
[8] Fenton, N. E. & Neil, M. Proceedings of the conference on the future of software

engineering. 2000.
[9] Fenton, N. E. & Pfleeger. Software Metrics. PWS Publishing Company, 2nd edition,

1997.
[10] Firesmith, D. G. A comparision of Defensive Development and Design by Contract.

Paper discussing assertions in different programming styles, FiresmitD@AOL.com,
1999.

[11] Hackman, M. & Höglund, M. Jämförelse av exekveringstider vid
kontraktsprogrammering i Java. Karlstad University, 2002.

[12] Kruchten, P. The Rational Unified Process. Addison-Wesley, 2nd edition, 2000.
[13] Lindholm, T. & Yellin, F. The JavaTM Virtual Machine Specification. Addison-

Wesley, 2nd edition, 1999.
[14] Liskov, B. & Guttag, J. Program development in Java. Addison-Wesley, 2000.
[15] Meyer, B. Object-oriented Software Construction. Prentice Hall, 1988.
[16] Ramez, E. & Shamkant, B. N. Fundamentals of Database Systems. Addison-Wesley,

2nd edition, 1994.

Online references

[17] Java Live | Java Compiler Compiler, August 18 1997,
http://developer.java.sun.com/developer/community/chat/JavaLive/1997/jl0819.html.
Online access 2003-05-05.

[18] Soft-error detection through software fault-tolerance techniques,
http://elite.polito.it/pap/db/dft99a.pdf. Online access 2003-05-07

[19] Juicy Studio: Gunning’s-Fog Readability Test, http://www.juicystudio.com/fog/. Online
access 2003-06-23.

 50

mailto:FiresmitD@AOL.com
http://developer.java.sun.com/developer/community/chat/JavaLive/1997/jl0819.html
http://elite.polito.it/pap/db/dft99a.pdf
http://www.juicystudio.com/fog/

A Code style

To make it possible to compare the different programs that will be written, as experiments, in

this thesis we set up the rules in this appendix as to the code style to use. If all programs were

created in a way that was decided by the programmer any comparison between programs

would have to take into account the fact that similar statements might be written in different

ways.

A.1 Descriptions

Each method should be preceded by a short description of what the method does. This

description should hold more information than the method name already does. The

description should be included in the Java documentation of the method. Each class should

also be preceded by a short description of what the class is used for. In the implementation

details of the class a short comment about any invariants for the class should be included, this

comment should not, however, be included in the Java documentation.

A.2 Contracts

In the following two sections the definitions used for contracts in the experiment are listed.

A.2.1 Preconditions

• Every method should have at least one precondition.

• The preconditions should be as strong as possible.

• If a method always can be called the precondition should state true.

• Each precondition for a method should be written at a separate line.

• Preconditions should be written in a structured and simple way. Where it is reasonable

simple, a predicate should be used otherwise plain text should describe the preconditions.

A.2.2 Postconditions

• Every method should have at least one postcondition.

• Each postcondition for a method should be written at a separate line.

 51

• The postcondition for a method should state all effects of a method, including side effects

if any exists. Side effects in a method should be avoided if possible since a side effect

only make the code harder to understand and maintain.

• If an effect of a method alters some state, or attribute, in the system the previous state will

be refer to as old.state.

A.3 Exceptions

All exceptions that can be generated and thrown should give an indication of what led to the

exception. For example, if a nullpointer exception is raised during execution of a search

operation since no element in the list was found to match the nullpointer exception should be

caught and a noelementfound exception should be thrown instead.

• Runtime exceptions should be used when unexpected exceptions occur. For example, a

runtime exception will occur if the generated source code from the compiler is

manipulated and that source code is later used as input to the interpreter.

• When using programming by contract only unexpected exceptions should be thrown. We

made the decision to only use exception on unexpected errors to keep the two techniques

separate as much as possible.

• If an exception is not self-explanatory a short description should be added.

A.4 Other style guidelines

• All right curly brackets, ‘}’, should be written on a separate line, except in a do-while

statement where the bracket should be written on the same line as while.

• All left curly brackets, ‘{‘, should be written on the same line as the starting statement.

• Other styles should, as far as possible, follow the guidelines set up according to the

standard set up by Sun [5].

 52

B Experimental metrics data

This chapter includes the different metrics data collected from the experiments performed.

B.1 Linked list

This section includes the metrics data collected from the two versions of the linked list.

B.1.1 Programming by Contract

Class LOC CLOC NCLOC DOC

List.java 164 99 65 60%

ListNode.java 169 90 79 53%

ListGUI.java 85 16 69 19%

Total 418 205 213 49%

Table B.0.1: LOC metrics for contract version of linked list experiment

Class TNA Decisions Try Throw TNM Cyclomatic New

List.java 9 4 0 0 10 4 3

ListNode.java 7 8 0 0 10 8 1

ListGUI.java 9 2 0 0 5 3 11

Total 25 14 0 0 25 15 15

Table B.0.2: Other metrics for contract version of linked list experiment

 53

B.1.2 Programming with Exceptions

Class LOC CLOC NCLOC DOC

List.java 161 73 88 45%

ListNode.java 161 68 93 42%

ListGUI.java 93 19 74 20%

Total 415 160 255 39%

Table B.0.3: LOC metrics for exceptions version of linked list experiment

Class TNA Decisions Try Throw TNM Cyclomatic New

List.java 9 4 5 5 9 4 8

ListNode.java 7 6 5 5 9 6 6

ListGUI.java 9 0 2 0 5 1 11

Total 25 10 12 10 23 11 25

Table B.0.4: Other metrics for exceptions version of linked list experiment

 54

B.2 Interpreter

This section includes the metrics data collected from the original version and the two

modified versions of the interpreter.

B.2.1 Original program

Class LOC CLOC NCLOC DOC

Entry 113 76 37 67%

IdToken 26 19 7 73%

Interpreter 337 84 253 25%

InterpreterMain 23 13 10 57%

MyFileHandler 147 83 64 56%

StackMachineFrame 184 90 94 49%

SymbolTable 281 144 137 51%

Token 127 89 38 70%

Type 140 95 45 68%

Total 1378 693 685 50%

Table B.0.5: LOC metrics for original version of interpreter experiment

Class TNA Decisions Try Throw TNM Cyclomatic New

Entry 6 0 0 0 9 0 0

IdToken 0 0 0 0 1 0 0

Interpreter 42 41 0 5 9 43 26

InterpreterMain 1 1 0 0 1 1 3

MyFileHandler 9 1 1 0 8 1 7

StackMachineFrame 9 4 0 0 10 4 8

SymbolTable 26 7 2 4 16 7 17

Token 1 0 0 0 11 0 0

Type 3 7 0 0 6 10 0

Total 97 61 3 9 71 66 61

Table B.0.6: Metrics for original version of interpreter experiment

 55

B.2.2 Programming by Contract

Class LOC CLOC NCLOC DOC

Entry 113 76 37 67%

IdToken 26 19 7 73%

Interpreter 337 84 253 25%

InterpreterMain 23 13 10 57%

MyFileHandler 147 83 64 56%

StackMachineFrame 184 90 94 49%

SymbolTable 281 144 137 51%

Token 127 89 38 70%

Type 140 95 45 68%

Total 1378 693 685 50%

Table B.0.7: LOC metrics for contract version of interpreter experiment

Class TNA Decisions Try Throw TNM Cyclomatic New

Entry 6 0 0 0 9 0 0

IdToken 0 0 0 0 1 0 0

Interpreter 42 41 0 5 9 43 26

InterpreterMain 1 1 0 0 1 1 3

MyFileHandler 9 1 1 0 8 1 7

StackMachineFrame 9 4 0 0 10 4 8

SymbolTable 26 7 2 4 16 7 17

Token 1 0 0 0 11 0 0

Type 3 7 0 0 6 10 0

Total 97 61 3 9 71 66 61

Table B.0.8: Metrics for contract version of interpreter experiment

 56

B.2.3 Programming with Exceptions

Class LOC CLOC NCLOC DOC

Entry 97 60 37 62%

IdToken 22 13 9 59%

Interpreter 302 69 233 23%

InterpreterMain 26 13 13 50%

MyFileHandler 144 68 76 47%

StackMachineFrame 168 70 98 42%

SymbolTable 261 126 135 48%

Token 105 67 38 64%

Type 110 59 51 54%

Total 1235 545 690 44%

Table B.0.9: LOC metrics for exceptions version of interpreter experiment

Class TNA Decisions Try Throw TNM Cyclomatic New

Entry 6 0 0 0 9 0 0

IdToken 0 0 0 0 1 0 0

Interpreter 40 36 2 5 8 38 26

InterpreterMain 1 0 1 0 1 0 3

MyFileHandler 9 5 1 4 8 5 11

StackMachineFrame 9 4 1 1 10 4 9

SymbolTable 26 10 1 6 16 10 19

Token 1 0 0 0 11 0 0

Type 3 7 0 1 4 10 1

Total 95 62 6 17 68 67 69

Table B.0.10: Metrics for exceptions version of interpreter experiment

B.3 Readability metrics

Metrics Contract Exceptions

Gunning Fog Index 12.61 13.69

 57

Flesch-Kincaid Grade 8.22 9.19

Flesch Reading Ease 50.93 52.25

Table B.0.11: Readability metrics for linked list experiment

Metrics Contract Exceptions Original

Gunning Fog Index 13.01 11.13 9.34

Flesch-Kincaid Grade 9.11 8.19 5.39

Flesch Reading Ease 50.14 61.2 76.09

Table B.12: Readability metrics for interpreter experiment

 58

C Performance

Table C.0.13 below shows the time it takes to perform various operations in Java. The table is

taken from Bruce Eckel’s Thinking in Java [7].

Operation Example Normalized time

Local assignment i = n; 1.0

Instance assignment this.i = n; 1.2

Int increment i++; 1.5

Byte increment b++; 2.0

Short increment s++; 2.0

Float increment f++; 2.0

Double increment d++; 2.0

Empty loop while(true) n++; 2.0

Ternary expression (x<0) ? –x : x 2.2

Math call Math.abs(x); 2.5

Array assignment a[0] = n; 2.7

Long increment l++; 3.5

Method call funct(); 5.9

Throw and catch exception try{ throw e; } catch(e){} 320

Synchronized method call synchMethod(); 570

New Object new Object(); 980

New array new int[10]; 3100

Table C.0.13: Relative time cost for various operations in Java [7]

 59

D Metric tools

To be able to measure the metrics, which were needed for the comparison between the

different programs, we used several different programs. We used independent programs, to

measure the metrics, to avoid as much subjectivity as possible. Care should be taken when the

results are interpreted since many of the values depend directly on how the source code is

written and in what style comments are used. All data that was gathered from the experiment

can be viewed in appendix B and is discussed in more detail in chapter 4.

The primary software used for measuring the software is JavaCC, which is a tool that is

able to measure many different aspects, such as the number of statements or methods, of a

program that is written in Java. With JavaCC it is also possible to create a parser or a

compiler for Java that can parse a program according to a given grammar. JavaCC is a parser

generator for Java, much like LEX and YACC are for C/C++. “Traditionally, a parser

generator and its companion lexical analyzer generator are used to build compilers. Today

they are used for all kinds of purposes beyond compilers. We have people building HTML

parsers to manipulate HTML files, MIME parsers for mail files, and the list just goes on.

JavaCC is going to be useful for any project where you have a requirement to parse input

strings into something more meaningful. [17]”.

In the experiments we have used JavaCC to measure the most of the metrics. We have used

JavaCC to calculate the amount of decision statements, the number of method declarations,

total number of assignments operations and also the number of allocations using the reserved

name new. JavaCC has also been used when we wanted to measure the different LOC metrics

but here in conjunction with wc since JavaCC added empty lines to NCLOC instead of

CLOC.

Wc is a standard Unix command that can be used to calculate the amount of characters,

words and lines in a file. By using wc in conjunction with grep you can calculate the number

of lines that match a given regular expression. In our experiment we used wc to calculate the

number of blank lines in the source code. Together with JavaCC the information about how

many blank lines there were in each class gave us the information needed to calculate the

number of comment lines in the class.

Grep is another standard Unix command that is able to search a file for a certain pattern of

characters. Grep can also be used to search a group of files for all the lines that match a

 60

regular expression or all the lines that do not match that expression. Together with wc grep

was used to find and calculate the amount of blank lines in each class. Grep was also used

together with JavaCC to calculate the cyclomatic complexity metrics. The cyclomatic

complexity metrics is calculated as the total amount of decision nodes, for example if

statements. If an if statement consists of more than one comparison the cyclomatic complexity

should be increased by a number that equals the number of comparisons instead of just one.

An example of how the cyclomatic complexity and the LOC metrics can be seen in Figure

D.0.1: Metrics calculation example. The example is kept simple to better explain how the

metrics are calculated and the program is only intended as an example for metrics calculation.

if(a > 3) {
 t = a – 5;
}
//Did t become negative or was a higher than 6?
//if so multiply a t

if(a > 6 || t < 0) {
 a = t * a;
}

In the example above the following metrics can be
calculated:
LOC: 9
CLOC: 3
NCLOC: 9 – 3 = 6
Cyclomatic complexity: 3 (two if statements where one
consists of two comparisons and therefore increases the
cyclomatic complexity with two instead of one.)

Figure D.0.1: Metrics calculation example

 61

E Terminology

The terminology that is used in this thesis is in most places simple, but as always some words

require an explanation. In this appendix a brief explanation of the terminology is be

presented.

Word/Sentence Explanation

Try-catch clause Every ordinary, not runtime, exception in

Java has to be enclosed by a try-catch clause

that is able to catch that exception. If such a

clause is missing a compile error will occur

during compilation.

Exception An exception is an event in program that is

triggered by a certain action. When an

exception is thrown the execution of the

method is terminated and execution is

transferred to corresponding try-catch clause.

Precondition A precondition is a condition for a method

that has to be fulfilled before a call is made to

that method. If the precondition is not

fulfilled execution of the method is undefined.

Postcondition A postcondition is the state that the method

guarantees that the system will be in after

execution of the method is done.

Invariant An invariant for a system is a state that

always has to be fulfilled. Within a method

call invariants may be broken but all

invariants have to be reestablished before the

method returns.

Table E.0.14: Terminology chart

 62

	Introduction
	Background
	Object-oriented programming
	Aspects of Software quality
	Software Metrics
	Object type
	Simple
	Medium
	Difficult

	Defensive programming
	Programming by Contract
	Weak contracts
	Strong contracts
	Advantages and disadvantages of programming by contract

	Programming with Exceptions
	Advantages and disadvantages with the use of exceptions

	Summary

	Experiment
	Definitions used in the experiments
	Software metrics
	Different metrics
	Metrics used in the experiments
	Lines of code – LOC
	Comment lines of code – CLOC
	Non comment lines of code – NCLOC
	Density of comments – DOC
	Cyclomatic complexity – CC
	Total number of object allocations – New
	Total number of methods – TNM
	Total number of assignments – TNA
	Gunning-Fog Index
	Flesch-Kincaid Grade
	Flesch Reading Ease

	Linked list
	Method
	Description

	Programming by Contract
	Programming with Exceptions
	Summary

	Interpreter
	Original version
	Programming by Contract
	Programming with Exceptions
	Summary

	Results
	Linked list experiment
	Programming by Contract
	Programming with Exceptions
	Experimental results for the Linked list
	Summary

	Interpreter experiment
	Original program
	Programming by Contract
	Programming with Exceptions
	Experimental results for the Interpreter
	Summary

	Summary of the experiments

	Conclusion
	Problems
	Future work
	Conclusion and evaluation

	References
	Online references
	Class
	LOC
	CLOC
	NCLOC
	DOC
	Class
	TNA
	Decisions
	Try
	Throw
	TNM
	Cyclomatic
	New
	Class
	LOC
	CLOC
	NCLOC
	DOC
	Class
	TNA
	Decisions
	Try
	Throw
	TNM
	Cyclomatic
	New
	Class
	LOC
	CLOC
	NCLOC
	DOC
	Class
	TNA
	Decisions
	Try
	Throw
	TNM
	Cyclomatic
	New
	Class
	LOC
	CLOC
	NCLOC
	DOC
	Class
	TNA
	Decisions
	Try
	Throw
	TNM
	Cyclomatic
	New
	Class
	LOC
	CLOC
	NCLOC
	DOC
	Class
	TNA
	Decisions
	Try
	Throw
	TNM
	Cyclomatic
	New
	Metrics
	Contract
	Exceptions
	Metrics
	Contract
	Exceptions
	Original
	Operation
	Example
	Normalized time

