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Abstract

We have used two known principles in todays software development scene, namely: contract

based programming, advocated by Bertrand Meyer as the creator of Design by ContractTM,

and Defensive Programming, described by Barbara Liskov et al. We compared two com-

pilers implemented by using Programming by Contract, a contract based programming

principle, and Defensive Programming. The size of each compiler is in the region of 4500

lines of code. The comparison is made by performing measurements on the code.

After completion of the experiment we found no discernible difference in the size or

complexity of the source code of the two compilers. We did however come to the con-

clusion that contract based programming should not be used without automated support.

Neither of the two principles could be said to be part of the solution for creating reliable

software systems unless the programmers have the discipline to follow the ideas behind the

principles.
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Chapter 1

Introduction

This dissertation is aimed at comparing two programming concepts which are called Pro-

gramming by Contract and Defensive Programming. The two styles offer two radically

different points of view. While defensive development encourages the programmer to be

suspicious and never trust any input to be correct, the idea behind contracts is that the

programmer states the conditions that must be upheld and then trusts that the client will

ensure that these conditions are satisfied before calling a method. In turn the the pro-

grammer of the module has to ensure that the module performs its task if called correctly.

Chapter 2 will begin with a part on the terminology used by the dissertation. This

will be followed by a description of total and partial procedures. We will then discuss

different models of error signaling, including exceptions. Software contracts and different

types of assertions which are used by the programming techniques are described. We will

also describe different metrics that are used to measure different properties of software

systems. Such properties are for instance complexity and size.

Chapter 3 describes the basis for contract based development, Design by ContractTM,

and defines Programming by Contract and Defensive Programming. Further, we will de-

scribe what the two disciplines have in common and on which points they differ.

In chapter 4, we will develop two versions of a base compiler by using using the two

1



2 CHAPTER 1. INTRODUCTION

styles of programming. As a starting point, we will use a compiler previously developed as

a lab assignment. After completing the compilers we will use some of the metrics of which

we have described, to measure the quality of the compilers.

In chapter 5, we will and use the result of our measurements to compare the two concepts

of programming, and finally in chapter 6 draw some conclusions from this project.



Chapter 2

Background

2.1 Introduction

This chapter will begin with a part on the terminology used by the dissertation. Meyer

claims that reliability is important aspect when designing a software system, which is why

we will define reliability. We will discuss total and partial methods as the distinction

will be used when discussing Programming by Contract and Defensive Programming. We

will then discuss methods of signaling errors since such methods are an important part of

both Programming by Contract and Defensive Programming. We will describe software

contracts and different types of assertions which are used by the programming techniques.

To evaluate the two techniques we will discuss some metrics which can be used for the

measurements.

3



4 CHAPTER 2. BACKGROUND

2.2 Terminology

2.2.1 Reliability

One important factor when designing and implementing software systems is the reliability

of the resulting system. Reliability, with regard to software in particular, contains several

different factors, most notably correctness and robustness [15]. Meyer uses reliability as

the combination of both correctness and robustness.

Reliability may be described as the ability of a program to function in a correct manner.

This can be divided into two partly different areas:

• the program should execute according to the specification

• the program should not behave erratically when confronted with invalid input data

The ability to execute according to the specification is defined as being the correctness

of the program, and the ability to cope with invalid input data is defined as being the

robustness of the program.

Meyer calls these factors “external quality factors”, in order to separate them from

“internal quality factors”, such as readability. Meyer’s definitions of correctness and ro-

bustness can be found in appendix C, along with the other factors concerning software

quality according to Meyer [15].

2.2.2 Taxonomy of defects

When discussing software quality a clear and precise terminology is needed. Fenton and

Pfleeger [4] define software problems at three different levels; error, fault, and failure; thus:

“A fault occurs when a human error1 results in a mistake in some software

product. That is, the fault is the encoding of the human error. . . .

1 Our emphasize
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On the other hand, a failure is the departure of a system from its required

behavior. . . . It is important to note that we are comparing actual system

behavior with required behavior, rather than with specified behavior, because

faults in the requirements documents can result in failures, too.”

2.2.3 Taxonomy of program modules’ relationships

Front end and back end

Front end

Back end

Figure 2.1: Front end and back end

The modules of a program closest to any external entities, such as users and external

systems, constitutes the program’s front end. The back end of a program consists of all

the other modules in the program. This can be seen in figure 2.1.

Client and supplier

Most programming languages in use support abstraction and separation of functionality

through the use of a procedural construct. Examples of this are functions in C and methods

in C++ and Java. The ability to separate certain pieces of code, and be able to call the

pieces, enables and supports abstraction, separation of functionality, reduced redundancy

and increased locality.
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Return

Call

SupplierClient

Figure 2.2: Client-supplier model

The actual names of these language constructs differ between programming languages.

Frequently used names are function, procedure, and method. How the different constructs

may be mapped from several programming languages is shown in table 2.1.

Language
Term C C++ Java Eiffel CLU
Class N/A Class Class Module Cluster
Method Function Method or Function a Method Routine b Procedure

Table 2.1: Mapping of common language constructs

a C++ denotes polymorphic functions as methods
b Two kinds of routines: procedure (affects instance, has no result) and function (has result,

no side effects)

Using Meyer’s definitions [15], the provider of functionality, a function or a method in

a class, is denoted supplier. To use make use of some piece of functionality, a client calls

the supplier of said functionality. The supplier returns control to the client, possibly along

with data (the return value). An example of a call with corresponding return can be seen

in figure 2.2.
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Difference between front end-back end and client-supplier

The terms front end, back end, client, and supplier are somewhat interconnected, as all

four describe where a module is located in a program, the difference being that front end

and back end describe how far from any external entities a module is, while client and

supplier describe how the different modules in a program relate to each other.

2.3 Total and partial methods

How methods relates to their parameters may be divided into two separate cases; either the

method is defined for all possible values in the parameter domain, or the method is only

defined over a subset of that domain. When discussing how procedures in CLU depend

on their definition domain, Liskov [10] denotes these classes of procedures total procedures

and partial procedures, respectively, which are the same terms used in mathematics when

describing how functions relate to their arguments.

A partial method may be transformed into a total method, for example by checking the

values of parameters and handling any values outside of the normal domain as special cases

by returning an error for values not within the currently accepted domain. In a similar

manner, a total method with special cases for singular values, may be transformed into

a partial method by removing the handling of any or all singular values in the definition

domain.

The difference between a partial and a total method can be seen from the following code

examples. The operation get of a list, here implemented in Java as get(ListPosition p),

would return the element on position p in the list. The range of valid positions in the list

is actually an attribute of the list, but an often used practice is to let p be of an unsigned

integer type. As the number of elements in the list at a given time is not necessarily equal

to the largest integer value, only a subset of ListPosition’s definition domain may be

used as a legal parameter to get(). A partial implementation of get() would suppose
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that the parameter p is indeed within the accepted range, here shown in figure 2.3, while

a total implementation would check for that fact before performing the action, as shown

in figure 2.4.

/**

* Returns the element on position p

* @type observer

* @pre isPositionLegal(p)

* @post return == element on position p

* @return the element on position p in the list

* @param p is the position that is to be returned

*/

public Element get(ListPosition p) {

return array[p];

}

Figure 2.3: get as a partial method

/**

* Returns the element on position p

* @type observer

* @pre true

* @post return == element on position p

* @return the element on position p in the list

* @param p is the position that is to be returned

* @throws IllegalPositionException if p is not a legal position

*/

public Element get(ListPosition p) {

if (!isPositionLegal(p))

throw new IllegalPositionException();

return array[p];

}

Figure 2.4: get as a total method

The examples in figures 2.3 and 2.4 also show that there is a strong connection between

the precondition of a partial method and the checking of singular values in a total method,

if both methods implement the same functionality. This is stated in [16] as:

“There is a simple, systematic mapping from the design that uses a contract
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to the implementation that raises an exception: each clause in the precondition

becomes a statement that raises an appropriate exception if the assertion in

the corresponding clause is false.”

2.4 Methods of error detection and signaling

Often the runtime environment of a program or the state of the running program at a

specific point of time is not known at the time of design or implementation. To counter

exceptional events that can occur, programs are written in such a way as to adapt and

handle these types of situations.

When an abnormal event is detected in one location of a program, that part of the

program may either handle the situation itself or propagate the information as an error to

its client.

This section will discuss the different methods of error detection and signaling used

within software today and also what support different programming languages give to the

different models.

The proactive model is used in Programming by Contract, where the properties that

must be ensured before calling a method is defined by the method’s precondition. In

Defensive Programming, both the proactive and reactive error models are applicable.

2.4.1 Background

The possible actions a method may take when detecting an error may be divided into four

classes:

1. Do nothing

Do not take any action or take error concealing actions
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2. Handle the failure

Take error correcting actions

3. Signal the client

Propagate the error

Irrespective of how or where the error gets handled, not taking any action at all, con-

cealing, or ignoring the error is not a good solution.

In most cases, it is preferable to simply signal the client that an error has occurred.

In the interest of separation of functionality, not taking any error handling decision in the

back end is the preferred action [10]. Informing the caller about the error condition defers

the error handling decision, which makes it possible to handle errors where the knowledge

of how to handle the error is situated. A simple example of this is that of writing to a

file. In the event of an error, the back end should not know how to inform the user — this

information should be contained within the front end.

Returning magic values, often one of null, 0, or -1, is not preferable, for two rea-

sons [10]. Firstly, deciding on which particular value should act as the error indicator may

not be easy. The magic value must be a value that is not in the range of proper return

values, but it must at the same time be a member of the method’s value domain, that is,

have the same type as the methods return value. Secondly, the use of magic return values

unnecessarily makes the semantics of the procedure more complex, as also the user of the

procedure must be able to detect and take care of any and all magic return values, and

handle those in a correct manner.

One solution to the problem of mixing normal and exceptional return values is to sepa-

rate the return back to the caller from an exceptional state from the return from a normal

state. The use of exceptions (see 2.4.3), as proposed by Liskov [10] and used in languages

such as C++ and Java, are examples of how this separation has been implemented.
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2.4.2 Proactive versus reactive

The methods of detecting possible error conditions and responding to error situations may

be divided into two disjoint cases:

• Proactive

An action is only performed after having checked for the validity of the action.

• Reactive

The validity of an action is only known after the action has been performed.

As we will describe later, Programming by Contract implies using the proactive model

when checking preconditions, while Defensive Programming is applicable in both models.

The Proactive Model

In the Proactive Model, before performing an action, the caller must ensure that the action

is indeed possible to perform at that point in time.

One example of performing the action of fetching an element from a list using the

proactive model is shown in figure 2.5.

if (isPositionLegal(position)) {

elem = getElement(position);

// use element

} else {

printError("Illegal position");

}

Figure 2.5: Example of proactive error handling

The Reactive Model

In the Reactive Model, checking the outcome of an action is performed after the action

has been completed.
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One common idiom for calling a function and checking whether or not it succeeded is

shown in figure 2.6, where getElement, depending on the validity of the position, returns

either the requested element or empty (null), respectively. This idiom is called “magic

return value”, as, in this case, null is used as a magic return value indicating that an error

has occurred.

if (elem = getElement(position)) {

// use element

} else {

printError("Illegal position");

}

Figure 2.6: Example of reactive error handling

2.4.3 Exceptions

One interpretation of the reactive model is the one modeled by exceptions.

Using the return value of a function in both the role of proper return value and as

an error indicator can cause problems, especially in typed languages where both forms

must be of the same type. Liskov [10] discusses this problem and introduces the language

construct exception as a solution.

The difference between using exceptions and returning magic values in Java can be seen

when comparing figures 2.4 and 2.7. The use of exceptions in Java, makes not catching

the exception a compile error, which is easily noticed and corrected. The error handling

code will also be separated from the normal program logic. In the magic return value case,

no such support may be had from the compiler and program logic and error handling code

can not be separated. If the user of get() is not aware of the semantics concerning the

magic return value null from get() indicating an error, the returned null may propagate,

resulting in a failure in a different module, manifesting itself as a NullPointerException.

As the null value can propagate, there is also a possibility that the resulting failure may not
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easily be traced back to the faulty code, therefore prolonging the time it takes to correct

the error [10].

/*

Returns the element on position p

@pre isPositionLegal(p)

@post return == element on position p

@return the element on position p in the list

*/

public Element get(ListPosition p) {

if (!isPositionLegal(p))

return null;

return array[p];

}

Figure 2.7: get returning a magic return value on error

Exceptions in Java

There are two kinds of exceptions, checked and unchecked, the difference being that meth-

ods containing code that throws any checked exceptions must have that possibility declared

in the method’s signature. For instance, how the signature of the pop() operation of a stack

changes, depending on whether StackIsEmptyException is a checked or an unchecked ex-

ception are shown in figures 2.8 and 2.9, respectively.

/**

* Removes the top most element from this stack

* @throws StackIsEmptyException if this stack is empty

*/

void pop() throws StackIsEmptyException;

Figure 2.8: Method signature using checked exception

Intervention semantics

Intervention semantics are another interpretation of the reactive model.
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/**

* Removes the top most element from this stack

* @throws StackIsEmptyException if this stack is empty

*/

void pop();

Figure 2.9: Method signature using unchecked exception

Using intervention, an error handler is specified before executing a section of code. If

an error occurs in that section of code, the error handler is called and corrective measures

may be taken.

Examples of intervention semantics are the use of signal handlers in POSIX and the

similar approach used in scripting languages such as PHP and Rexx.

As error handler in the front end is called by the back end, the term “call-back” is also

used to describe this model.

The downside to intervention is that the error handling code is separated from the

program logic, and there is no obvious connection between the logic and error handling

code (at least when compared with exceptions, where both separation and locality may be

achieved).

The Termination and Resumption models

Eliëns [3] defines two types of exceptions:

• Termination model

• Resumption model

In Java and C++ exceptions are implemented following the termination model, that

is, the throwing of an exception changes the flow of control and terminates execution of

a section of code at the place where the exception was thrown. Eliëns also describes

exceptions following resumption semantics, whereby, in the event of an exception being
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thrown, corrective measures may be made and the operation retried. Resumption semantics

is natively supported in Eiffel. Figure 2.10 shows how the resumption model may be used

to implement retransmission in Eiffel.

send_message (msg: STRING) is

-- Try to send message; at most NUMBER_OF_RETRIES attempts

-- Gives up after NUMBER_OF_RETRIES attempts

local

failures: INTEGER

do

if failures < 50 then

transmit (msg); result := true

end

rescue

failures := failures + 1; retry

end

Figure 2.10: Example of resumption model

2.4.4 Summary of error detection and handling

The error detection and handling methods discussed in this section can be summarized as

seen in figure 2.11.
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Abort

ReactiveProactive
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Exception

Error detection

Termination Intervention
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Flow of controlMagic value

Error has occuredPrevent error

Call−back

Figure 2.11: Error propagation models
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2.5 Software Contracts and Assertions

Software contracts are used to describe methods’ semantics. Assertions are used both on

their own as well as in conjunction with software contracts.

2.5.1 Software Contracts

The basis for software contracts (henceforth contracts) was introduced by C.A.R Hoare [6]

with his so called “Hoare Triples”. He defines the relationship {P} A {Q} where P and

Q are assertions and A is an operation. The relationship is defined as follows: If P is an

assertion which is evaluated as true, then after the operation A, the assertion Q will be

true.

A contract documents the rights and responsibilities of a supplier and its clients [2, 15].

The contract of a method consists of the documentation of the method’s semantics in

three parts:

1. A description of the functionality of the method

2. Conditions that must hold before entering the method

3. Conditions that must hold when leaving the method

The situation where a customer enters a pub and buys a beer may be used as an analogy

describing a contract. The customer places his order and pays, expecting to get what he

pays for. It is assumed that the innkeeper will uphold his end of the bargain as long as the

customer fulfills his end.

customer innkeeper

pay money receive money
receive pint pour pint and deliver it

Table 2.2: An analogy describing contract programming
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In software, the language used when expressing the contracts may be divided into two

separate cases: a contract may or may not be executable. An executable contract is either

expressed in a language where sentences may be evaluated literally during runtime, or

expressed in a language which can be translated into another language, which in turn may

be evaluated literally during runtime.

Using executable contracts facilitates using the same contract for both documentation

in the code and for deriving runtime assertions from the contract. This also means that

the programmer does not have to perform the translation from the contract language into

runtime assertions.

2.5.2 Assertions

Firesmith [5] defines an assertion as:

“An assertion is a rule in the form of a condition that must be true at certain

times during the execution of the software. An assertion is a Boolean expression

that constrains certain properties of the software.”

In [5], Firesmith classifies assertions according to in which context they are used. Ta-

ble 2.3 contains an augmented version of this classification According to that classification,

two major kinds of assertions exists: protocol and implementation assertions. The protocol

assertions are used in the context of specifying a module’s behavior, while implementation

assertions specifies the behavior of a particular implementation of a specification.

Using Java as an example, when specifying the contract of a class, the protocol asser-

tions are used when specifying the class’s external interface, and implementation assertions

are used to perform assertions internal to that particular implementation of the class.
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Level of abstraction Type of assertion Assertions

Specification Protocol Invarianta

Preconditiona

Postconditiona

Implementation Implementation Ad hoc assertiona

Loop invariantb

Loop variantb

Table 2.3: Levels of assertions according to Firesmith

aClassified by Firesmith
bClassified by the authors

Protocol assertions

Protocol assertions are assertions that must hold for a module or procedure, formulated

on the specification level.

Three kinds of protocol assertions exists:

• Precondition

• Postcondition

• Invariant

Protocol assertions are used to describe conditions that must hold when either entering

or leaving a procedure, or both. An assertion that must hold when entering a procedure is

called a precondition, an assertion that must hold when leaving a procedure, a postcondition,

and an assertion that must hold when both entering and leaving, an invariant.

In the case of invariants, the scope within which these conditions are valid consists of

the whole module the procedure belongs to. The precondition and postcondition assertions

may use conditions belonging to the module, but also introduce new conditions, local to a

particular procedure.

For example, when stating assertions for a stack, one assertion would be that the

number of elements on the stack is never negative. This assertion is an invariant, as it
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must hold at all times. One other possible assertion could be that the stack must not be

empty when invoking pop(). This latter assertion would be a precondition to pop().

Implementation assertions

Implementation assertions are assertions used when describing a particular implementation

of a specification.

There exists three kinds of implementation assertions:

• Ad hoc assertions

• Loop invariant

• Loop variant

Ad hoc assertions can be introduced when the implementation depends upon certain

conditions being true at a certain location.

Loop invariants [15] are used when describing loops, specifying assertions that are true

at the start of every loop iteration and when terminating the loop.

A loop variant [15] is an expression guaranteed to generate a bounded, finite sequence.

As defined, a loop variant is not an assertion, although it may be used to express one, as

follows: the loop variant expression generates a bounded, finite sequence, thus the value of

the expression must decrease after each iteration while also being higher or equal to zero,

that is:

V : loopvariant, Vn+1 < Vn, Vn+1 ≥ 0, n = 0, 1, ...

For example, when searching for a specific element in a linked list, this search may be

implemented as a loop. The loop consists of starting at the head of the list and traversing

the list until the element is found. Example 2.12 would be one possible implementation of

how to perform the search. This implementation depends upon the existence of the required
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element in the list. This assumption simplifies the expression in the while statement, as

the special case of reaching the end of the list and not having found the element cannot

occur.

// the element is somewhere within the list

...

// loopinv: elem != null

Element elem = head;

boolean found = false;

while (!found) {

if (elem->field == key)

found = true;

elem = elem->next;

}

// element in list => element found

assert elem != null: "Element not found in list";

...

// elem is the wanted element

...

Figure 2.12: Example of ad hoc assertion and loop invariant

Runtime assertions

Runtime assertions are assertions that are evaluated during runtime.

One example of runtime assertions is the assert() macro in C [11], which can be

controlled by setting the preprocessor variable DEBUG. If DEBUG is not set, all assert()

statements are removed by the preprocessor. If DEBUG is set, the statement will be expanded

by the preprocessor and included in the source code as an if statement. During runtime

the expression contained in the assert statement will be evaluated, and if the expression

evaluates to a value other than zero an error message will be printed and the program’s

execution stopped (via exit()).
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Advantages of runtime assertions

With proper support from the development and runtime environments, the use of assertions

enables controlling the assertions without editing of the source files.

Also, as discussed by Liskov [10] and Hunt and Thomas [8], when removing assertions,

the resulting system loses a valuable source of debugging information. As practically all

software systems contain faults, the amount and quality of debugging information is of

importance, especially for a system that is in production use. If the fault can be found

using debugging information from the system in production, valuable time is saved, as the

alternative is to either find the fault by inspecting the source code or recreate the failure

on a build of the system with assertions enabled. This debug build may not, as already

discussed, have the same characteristics as the production build, making debugging even

harder.

Hunt and Thomas compare turning assertions off after debugging to “crossing a high

wire without a net because you once made it across in practice.”

Both Liskov and Hunt and Thomas discusses the possibility of disabling assertions only

in time critical sections, if the runtime performance loss due to the evaluations of assertions

is too high.

Disadvantages of runtime assertions

There exist several disadvantages of using assertions, which makes their usage less desirable.

Removing assertions from production programs does change the program, and there

are no guarantees that the new program performs exactly as the old one. For instance, if

an assertion contains an expression with side effects, these side effects would be removed,

and the change could possibly result in a fault in the program. On the other hand, not

removing assertions will increase the program’s runtime requirements.

Evaluating assertions at runtime also brings a performance penalty. According to

Meyer [15], the loss of performance by using runtime evaluation of preconditions and array
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bounds in Eiffel “is on the order of 50%.”

When using protocol assertions combined with a language that does not support such

assertions, assertions written in the code are not inherited [8].

2.6 Metrics

Software metrics are used to describe how to measure and compare measurements of various

software qualities, such as software complexity.

“Metric”, “measure”, and “measurement” are related terms used when discussing soft-

ware metrics; the terms are defined in table 2.4.

Term Definition

Measure To measure
Measurement “Measurement is the process by which numbers or sym-

bols are assigned to attributes of entities in the real
world in such a way as to describe them according to
clearly defined rules.” [4]

Metrics “Software metrics is a term that embraces many activ-
ities, all of which involve some degree of software mea-
surement. . . ” [4]

Table 2.4: Terms used in connection with software metrics

According to Fenton and Pfleeger [4], the best way to measure software size is to have

measurements that are fundamental, which means that each attribute should capture a

key aspect of software size. Fenton and Pfleeger suggests that the attributes of software

size can be described with three such attributes:

• Length

The physical size of the software system

• Functionality

Measurement of the functionality, which is supplied to the user of the system
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• Complexity

The complexity of the system

These attributes are often subjectively defined by the companies and organizations

that perform the measurements, which means that comparing results between companies

is a problem. For example, length of code can have different meanings, one can measure

the number of sequential statements, the number of iterative statements or the number of

control statements.

2.6.1 Software size

Traditional measurements of code includes lines of code, LOC. However, some lines of

code are different than others. On the one hand blank lines do not require as much effort

as some algorithms to implement. On the other hand empty lines of code could increase

the understanding of the code as seen by the programmers, which means that empty rows

also could be important to count.

Thus the readability might be increased by adding empty rows. This kind of readability

is however difficult to measure. When measuring the lines of code one should state how

to deal with blank lines, commented lines, data declarations and lines that contain several

separate instructions.

It is important to define a model of how lines of code is evaluated as there is more

than one way to count lines. The most common way of counting lines, is counting all non

commented lines, NCLOC. The problem with just counting non-commented lines is that

in this model, comments do not add anything in terms of clarification and maintenance. For

instance when looking at Programming by Contract the commented lines are invaluable.

For that reason counting lines of comments, CLOC, could also be an important metric.

This leads to the expressions

LOC = NCLOC + CLOC
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R =
CLOC

LOC

where LOC is the total number of lines, and R is the density of commented lines of

code when looking at the program.

When looking at object oriented languages one measurement is the number of objects

and method calls that are made.

2.6.2 Tree Impurity

The tree impurity metric [4] measures dependencies between modules. What is being

looked at by this metric is actually a graph where a module are represented by a node in

the graph. If dependency between two modules exists then this is shown by the graph as

an edge between the two nodes. A dependency is for instance if a method in one module

is invoked by from another module. A illustration of this is seen in figure 2.13.

The equation for tree impurity is as follows:

m(G) =
2(e − n + 1)

(n − 1)(n − 2)

where G is the graph which we want to measure, e is the number of edges, n is the

number of nodes, and m is the tree impurity. A tree has the tree impurity zero, whereas

a complete graph has the tree impurity one.

2.6.3 McCabe’s cyclomatic complexity metric

McCabe’s cyclomatic complexity metric [12] is often used to calculate the maintainability

and testability of a module.

The equation for calculating the cyclomatic complexity of a module is as follows:

v(G) = e − n + 2
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(a) Cyclic graph (b) Acyclic graph

Figure 2.13: Cyclic dependence, (a), versus acyclic dependence, (b)

where v is the cyclomatic complexity value of the graph G, where G is a graph of the

module’s execution flow, e is the number of edges, and n is the number of nodes. The

cyclomatic complexity describes the number of possible paths through the graph G, which

means that this metric is calculating the number of possible execution paths through a

specific module. According to the book by Fenton [4], McCabe suggests that if v has a

number greater than 10 the module could be problematic to maintain.

2.6.4 Object oriented metrics

In [4], the following methods for measuring the complexity of object oriented software

systems are defined:

• Weighted methods per class (WMC): This metric is used to measure the complexity

of a class. The equation is evaluated as follows:

WMC =
n∑

i=1

ci

where i is the method and c is some complexity metric, for instance v(G) which is

calculated for each method.
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• Number of children (NOC): NOC states the number of subclasses of a class.

• Response for class (RFC): The Response for class metric describes the number of

other methods a class’s methods are dependent on.

“The response set of a class is the set of all methods and constructors that

can be invoked as a result of a message sent to an object of the class.”[1]

2.6.5 Faults and errors

When assessing failures in a system the following aspects are needed according to Fenton

and Pfleeger [4]:

• Location – Where did the failure occur?

The location is usually some sort of description of where the fault resided, for example

on a certain operating system, or a certain hardware model.

• Timing – When did it occur?

Timing has two important values, the actual time that the failure occurred, and the

execution time that had elapsed before the failure occurred.

• Symptom – What was observed?

A description of what was actually observed is written here, for example an error

screen showed some error message or some value was out of range.

• End result – Which consequence resulted?

The result of the fault is described here, for instance it could be one of the following:

– Operating system crash

– Application program aborted

– Service degraded

– Loss of data
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• Mechanism – How did it occur?

As a part of the diagnostics, a description of the events that led to the failure is

written here. For instance, one describes the order in which different functions of the

system was invoked.

• Cause – Why did it occur?

As a part of the diagnostics, here one is concerned with the fault that produced the

failure. The source code that was faulty is described here, and also what kind of fault

that was found.

• Severity – How much was the user affected?

The seriousness of the failure is described.

• Cost – How much did it cost?

The cost is a measurement of the incurred loss due to a fault.

According to Fenton and Pfleeger [4], a standard way of measuring the quality of the

software is to use the equation:

defect density =
number of known defects

product size

where product size is one of the size metrics described earlier and the number of known

defects are either the number of known faults or the number of failures at a certain point

of time.
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2.7 Summary

In the first part of the chapter we described the terminology which is used throughout

the dissertation. According to Meyer’s definitions, correctness is a part of reliability, and

reliability is the most important property of software development. Included in the ter-

minology is also a description of defects and a section where we discuss the relationship

between software modules.

We then moved on to discussing total and partial methods. Total methods does not

have any constraints, instead the method itself will take care of exceptional cases. For

instance, if the dividedby-method is called with a 0 as a parameter the method will throw

an exception. Partial methods are methods which have constraints for using them. For

instance a dividedby-method may not be called with the value 0 as a parameter. Different

models of error signaling, the proactive and reactive error models, were then discussed. The

proactive model advocates preventing error conditions, this by ensuring that clients only

use valid parameter values before calling a method. The reactive model advocates handling

error conditions after they have occurred.

We then described software contracts, the definition of rights and obligations of clients

and suppliers, and assertions used both when expressing contracts and runtime assertions.

The chapter concludes with a discussion of software metrics in general and descriptions

of a number of specific metrics.





Chapter 3

Programming by Contract and

Defensive Programming

3.1 Introduction

We will describe Programming by Contract and Defensive Programming.

Contract based programming has been described by Meyer as Design by ContractTM.

We will give a brief overview of Design by ContractTM, and define an adaption of Design

by ContractTM, Programming by Contract.

Defensive Programming is not clearly defined, which we will show through an overview

of several existing definitions. We will then define Defensive Programming based on the

common parts of the earlier definitions.

We will then compare Programming by Contract and Defensive Programming, both in

principle and practice.

31
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3.2 Programming by Contract

Since many popular programming languages do not directly support Design by ContractTM,

we will define a contract based programming principle, Programming by Contract, suitable

for use in such languages.

We will use the umbrella term Contract based programming when describing the use

of and the consequences of using software contracts in general.

3.2.1 Design by ContractTM

In [15], Meyer uses the relationship defined by Hoare (see 2.5.1) to express contracts.

Meyer [15] defines a concept he calls Design by ContractTM , which is a formal way of

using comments, and if permitted in the language, built-in constructs as in Eiffel [14], to

include parts of a specification into the actual code. Meyer defines Design By ContractTM

as follows:

“. . . viewing the relationship between a class and its clients as a formal agree-

ment, expressing each party’s rights and obligations.”

When introducing Design by ContractTM [15], Meyer states that correctness must be

the “prime directive” when writing code. Meyer gives a inductive definition for class

correctness:

1: For any valid set of arguments xp to a creation procedure p:

{DefaultC and prep(xp)} Bodyp {post(xp) and INV }

2: For every exported routine r and any set of valid arguments xr

{prer(xr) and INV } Bodyr {postr(xr) and INV }
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DefaultC is the assertion expressing that all attributes of the variables in the class C

are set to some default value. xr denotes the possible arguments for routine r.

Rule (1) states that a constructor of an object must initialize the invariant. Rule (2)

states that an invariant that holds before the execution of a method r, must also hold after

the execution. Both rules also states that the precondition must be true before a method

is called and that the postcondition must be true after body has executed.

To make a software system correct one must aim for simplicity in the system. Re-

dundant checks will increase the complexity of the system, and introduce more sources of

errors. And more sources of possible errors require more checks and so on. . .

Meyer [15] defines a non redundancy principle.

“Under no circumstances shall the body of a routine ever test for the routine’s

precondition.”

This principle is one of the cornerstones in contract based programming. If one is used

to the defensive way of programming this statement will be a shocking one. The statement

comes from the “global” view of software engineering. The idea is that a software system

is a large collection of methods and modules. Meyer’s statement which is seen above can

also be extended to include postconditions and invariants; that is, the contract may only

be evaluated by either the client or the supplier.

The language specified by Meyer [14], Eiffel, has a built-in language support for con-

tracts. An example of this is seen in figure 3.1.

The require clause states the precondition for the method. The precondition is eval-

uated at the supplier at runtime. If the precondition is broken the method will throw an

exception indicating that the precondition has been violated. ensure is a built-in con-

struct that is used to state the postcondition of the method, and finally invariant is used

to state the invariant for the class. The last two language constructs could also be checked

at runtime. In his implementation of the Eiffel compiler Meyer [15] has included compiler

options for each of the previously mentioned language constructs to be able to toggle run-
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remove is

-- Remove top element

require

not_empty: not empty -- i.e. count > 0

do

count := count - 1

ensure

not_full: not full

one_fewer: count = old count - 1

end

Figure 3.1: Example of contract written in Eiffel

time checking of these constructs on and off. Meyer defends his decision for having those

as compiler options by stating that for efficiency reasons it may be beneficial to be able

to turn runtime checking off. When turned on, all these assertions are made implicitly by

the runtime environment. The assertions are a part of the supplier specification.

Contracts and object-oriented inheritance

As to describe how redefinition of contracts may be allowed in regards to inheritance, Meyer

defines the “Assertion Redeclaration Rule”, taking Liskov’s principle of substitutability.

Liskov’s principle of substitution

Liskov discusses the notion of types and subtypes. A subtype is a specialization of its

basetype. To define a relationship between the two Liskov introduces her principle of

substitutability [9]:

“If for each object o1 of type S there is an object o2 of type T such that for

all programs P defined in terms of T , the behavior of P is unchanged when o1

is substituted for o2, then S is a subtype of T .”

This principle states that when substituting an object of a basetype in a program with

an object of a subtype then the behaviour of that program will remain unchanged. This
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not only means that a subtype must have all operations of its basetype, the operations

must also perform the same task in the same way. A subtype can however be expanded by

extra operations.

For instance, intuitively the operator + adds two numbers with the sum as the result.

If + is defined in the type Number, and the type Complex represents complex numbers, we

may state that Complex is a subtype of Number, as the operator + behaves in a semantically

similar manner.

Inheritance rules for contracts

The hierarchical structure of object oriented programming adds another level to contract

programming. There must be some consistency between a class and its superclass. It is not

enough to just state preconditions, postconditions and class invariants for a subclass. A

subclass will also inherit the conditions of its superclass as described in Liskov’s principle

of substitution. To ensure these properties, Meyer has defined the dependency regarding

a method and its parent in his Assertion Redeclaration Rule [15] as:

“A routine redeclaration may only replace the original precondition by one

equal or weaker, and the original postcondition by one equal or stronger.”

The relationship between a class and its superclass regarding invariants is declared in

Meyer’s Invariant Inheritance Rule [15] as follows:

“The invariant property of a class is the boolean and of the assertions appearing

in its invariant clause and of the invariant properties of its parents if any.”

The relationship between the possible assertions of a method and the overridden method

in the superclass is shown in figure 3.2.

If a method is already in use by clients, any modification of the method must also

follow the Assertion Redeclaration Rule. The reason for this is because clients which have
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Post

Pre

(a) super ’s assertions

Post

Pre

(b) this’s assertions

Figure 3.2: Class this ’s assertions, (b), in relation to parent class super ’s, (a)

ensured that the original precondition holds and call the method must be able to rely

on the fact that all previously legal parameter values are still legal. The clients must be

able to function correctly without having to modify existing code. Any change to either

precondition or postcondition must then be made as to give a weaker precondition than

original and/or a stronger postcondition than the original.

The effective precondition and postcondition of a method is then defined by both the

original and the redefined assertions. The effective assertions are the ones that the method

must adhere to.

Using Meyer’s notation for describing a method’s precondition and postcondition (prem

and postm, respectively, for method m), with s representing the method r is redefining, and

with Cm representing the class of which method m is a member of, the effective assertions

of r may be described as in table 3.1.

Weak and strong contracts

There are two different types of contracts, called strong and weak contracts [17]. When

writing a strong contract, the programmer identifies all possible conditions that must hold

before entering the method. In the example 3.3, the stack must be non empty for the

pop operation to be applied which is made clear by the predicate isEmpty. If the method
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Method method s method r

Precondition {pres} {prer}

Effective
precondition

{pres} {pres

∨
prer}

Postcondition {posts} {postr}

Effective
postcondition

{posts} {posts
∧

postr}

Invariant {INVCs
} {INVCr

}

Effective
invariant

{INVCs
} {INVCs

∧
INVCr

}

Table 3.1: Inherited assertions

has any other restrictions they will be listed as additional preconditions. In the method,

no checks are allowed to be made to ensure the precondition. The client will be the one

responsible for calling the method properly. The supplier will often supply the client with

helper methods which can be used to ensure the precondition. In the example, isEmpty is a

helper method. When the method has returned, the assertions stated by the postcondition

must be true, as specified by the Hoare triples. The postcondition must not be evaluated by

the caller since the postcondition by definition must hold. This means that the developer

of the supplier method must ensure that the postcondition is fulfilled. The developer must

also make sure that all class invariants still hold after exiting the method. In figure 3.3 is

an example of a strong contract.

When designing modules which are dealing with external sources of error, for instance

graphical user interfaces and network communication modules, there is no way to be sure

that the users of a system will always type in correct values or that a network connection

never breaks, weak contracts must be used. Programming with weak contracts is more of

a defensive approach. What distinguishes the weak contract from the defensive approach

is the fact that the starting point is different. While defensive programming immediately

goes into a protective phase, the weak contract comes from first creating strong contracts
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/**

* The method removes the top element from the stack

* @type mutator

* @pre !isEmpty()

* @post !isFull()

* @post size() == old.size() - 1

*/

public void pop() {

theStack.remove(size() - 1);

}

Figure 3.3: Strong contract for the method pop

and then gradually weakening the contract [17]. This means that you will still benefit from

the thought process of creating the strong contract. When weakening the precondition,

the postcondition will become stronger to deal with the abnormal cases. Nordby et al [17]

state the following:

“When developing a system with external interfaces, start out with strong

contracts for all operations and equip the operations with a contract violation

detection mechanism. Then weaken selectively the contracts of the external in-

terfaces to tolerate external errors and add robustness in the external interface.”

A weak contract can be seen in figure 3.4.

Any modification of the method must follow the Assertion Redeclaration Rule. This

follows from the original contract, as clients conforming to the original precondition are

guaranteed the original postcondition. Any change to either precondition or postcondition

must then be made as to give a weaker precondition than original and/or a stronger

postcondition than the original.

Disciplined Exception Handling Principle

In Eiffel, exceptions using both termination and resumption semantics (see 2.4.3) are sup-

ported.
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/**

* The method removes the top element from the stack

* @type mutator

* @pre true

* @post if (!isEmpty())

* @post !isFull()

* @post size() == old.size() - 1

* @post else

* @post throw StackEmptyException

*/

public void pop(){

if (isEmpty())

throw new StackEmptyException();

else

theStack.remove(size() - 1);

}

Figure 3.4: Weak contract for the method pop

In his “Disciplined Exception Handling Principle”, Meyer [15] states:

“There are only two legitimate responses to an exception that occurs during

the execution of a routine:

1. Retrying: attempt to change the conditions that led to the exception

and to execute the routine again from the start.

2. Failure (also known as organized panic): clean up the environment,

terminate the call and report failure to the caller.”

Meyer defines exception cases, during the execution of a routine r as shown in table 3.2.
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1 Attempting a qualified feature call a.f and finding that a is void
2 Attempting to attach a void value to an expanded target
3 Executing an operation that produces an abnormal condition detected

by the hardware or the operating system
4 Calling a routine that fails
5 Finding that the precondition of r does not hold on entry
6 Finding that the postcondition of r does not hold on exit
7 Finding that the class invariant does not hold on entry or exit
8 Finding that the invariant of a loop does not hold after the from clause

or after an iteration of the loop body
9 Finding that an iteration of a loop’s body does not decrease the variant
10 Executing a check instruction and finding that its assertion does not hold
11 Executing an instruction meant explicitly to trigger an exception

Table 3.2: Exception cases
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3.2.2 Definition of Programming by Contract

When Meyer created the concept Design by ContractTM, he based his discussion on

Eiffel [14], a language with built-in constructs that supports the contract based style of

programming.

Since many popular programming languages, do not support the mechanisms for writ-

ing protocol assertions (see 2.5.2), we will use the term Programming by Contract when

describing our definition of contract based development in JavaTM.

Meyer [15] claims that the correctness is the most important property of a software

system. He states:

“If a system does not do what it is supposed to do, everything else about it -

whether it is fast, has a nice user interface. . . - matters little.”

As written in 3.2.1 Meyer has included compiler options to turn precondition postcon-

ditions and invariant checking on or off, respectively. The fact that the possibility to turn

off the built-in assertions exists in Eiffel [14], means that client methods can not rely on

the fact that the precondition holds before calling a supplier method. Hence the built-in

assertion in Eiffel should only be used as a development tool. Test programs for each mod-

ule should always be written and in these programs one can use the language constructs to

assert the pre- and post conditions as well as the class invariants. In other programming

languages that do not directly support Programming by Contract, one could create similar

methods to help ensure the correctness of each module.

When discussing preconditions Meyer [15] states:

“Every feature appearing in the precondition of a routine must be available

to every client to which the routine is available.”

With that statement in mind it is recommended writing preconditions with a formal

approach by using predicates, which are helper methods which return boolean values.
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Predicate methods are often written in the form of “has” or “is”. Predicates are also

an effective way of adding tests for the client to use. The other way of writing protocol

assertions, is to use plain text to describe the preconditions. This is not recommended

because it is often possible to interpret plain text in different ways. One example of a

formalized contract is presented in figure 3.3 and an example the same contract with plain

text is written in figure 3.5.

/**

* This method removes the top element from the stack

* @type mutator

* @pre the stack is not empty

* @post the stack is not full,

* @post the top element has been removed,

* @post the size has been decreased by one

*/

public void pop(){

theStack.remove(size() - 1);

}

Figure 3.5: Example of contract written in plain text

The problem with writing formal contracts is that it sometimes may be difficult to

describe the postcondition formally. There is also a problem if the formal description

becomes too complex, which results in that the client programmer does not understand

the contract correctly, which in turn may introduce bugs or discourage the programmer

from using the supplier method. It may then be better to write a short informal description.

It is often easier to write the preconditions formally, than it is to write the postconditions.

When discussing postconditions, Meyer [15] states:

“It is not an error for some clauses of a postcondition clause to refer to

secret features, or features that are not as broadly exported as the enclosing

routine; this simply means that you are expressing properties of the routine’s

effect that are not directly usable to the clients.”



3.2. PROGRAMMING BY CONTRACT 43

It is justifiable to use a informal way of specifying postconditions, as, according to

Meyer, postconditions do not have to be directly usable by clients and the fact, which is

described earlier, that postconditions may be more difficult to describe formally.

When writing code we used the recommendations of the JavaTM [20] coding standard.

We then extended the style of the documentation to include our own template.

First a short description specifying what the method will do should be written. For

clarification one should also specify the stereotype of the method which is described, in the

documentation. To do this we have specified that all methods are of a certain stereotype,

type, that can have one of the following values:

• constructor - the constructor

• predicate - a predicate is a method that returns a boolean value. The method name

often starts with a verb such as is or has.

• observer - an observer returns some state of the module. The observer may not alter

the state in any way.

• mutator - the mutator changes the state of the system. It is recommended that a

mutator does not return any object or value.

Following the stereotype, the pre-, and postconditions should be specified.

One should also list and write a short description to all of the method’s parameters, by

using the keyword param. One should also include descriptions of possible exceptions, by

using the keyword throws, and specify when these are thrown. Finally a short description

of what the method returns should be stated, using the keyword return.

In observer methods the return-javadoc will contain the postcondition, which is why we

have chosen not to specify postconditions separately in the contracts of observer methods.

Examples of contracts written in javadoc can be seen in figures 3.6 and 3.7, for an

observer method and a mutator method, respectively.
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/**

* Returns the FIRST set of this production

* @type observer

* @pre true

* @return the FIRST set

*/

public Token[] getFirst() {

// ...

}

Figure 3.6: Example of contract for an observer method

/**

* Performs the parsing in a predictive way

* @type mutator

* @pre isFirst()

* @post isParseOk()

* @throws IOException if an I/O error occurs

*/

public void parse() throws IOException {

// ...

}

Figure 3.7: Example of contract for a mutator method
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As a general note, null-references are never accepted as parameter values when invoking

a method.

3.2.3 Comparison of Contract based Programming principles

Both Design by Contract and Programming by Contract are both Contract based pro-

gramming principles, where Design by Contract encompasses several aspects not covered

by Programming by Contract. The most prominent of these differences are:

• Design by Contract is closely connected to the Eiffel programming language, while

Programming by Contract is applicable to most programming languages.

• Programming by Contract presents more loosely defined contracts, as it allows plain

text to be used when describing a contract, while Design by Contract requires exe-

cutable contracts.

3.3 Defensive programming

Defensive programming is a term used in the literature [5, 7, 8, 10, 11, 13, 15, 16] to describe

a style of programming, supporting the implementation of reliable programs. The term

does not specify a particular method or methodology for programming or development.

Defensive programming is used more as an umbrella term, describing different collections

of recommendations and best practices when programming. These guidelines define a

certain style of programming, that, when used, produce programs that are both correct

and robust.

An often used analogy is [13]:

“The idea is based on defensive driving. In defensive driving, you adopt the

mind-set that you’re[sic] never sure what the other drivers are going to do.

That way, you make sure that if they do something dangerous you won’t be
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hurt. You take responsibility for protecting yourself even when it may be the

other driver’s fault.”

Defensive Programming is based on the idea that every program module is solely re-

sponsible for itself. This placement of responsibility on each program module, which in

object-oriented programming is represented by classes and their respective methods, makes

it clear where actions as to achieve and maintain correctness and robustness should be

placed.

As individual methods are solely responsible for themselves, they must contain logic for

asserting their own and the enclosing class’s invariants. Each method must also validate

received parameters and return values, as to maintain its own correctness and robustness,

which leads to the improvement of the whole system’s reliability.

Following Defensive Programming will result in catching errors where they occur, or

rather as soon as it can be established that an error condition has occurred. In practice

the actual checking of conditions is often performed using assertions, as assertions are well

understood and supported in the development environments currently in use, such as C,

Java, and Eiffel. The use and the consequences of using assertions is further discussed in

section 2.5.2.

The actions proposed in the literature includes, but are not limited to:

• Consistent indentation makes the source code easier to read and debug. [7]

• Do not use the default target in a switch-statement to handle a real case. Have cases

for every valid value and throw an exception in the default case. [10]

• “If It Can’t Happen, Use Assertions to Ensure That It Won’t” [8]

• Program modules should be as independent as possible. [5]

• Validate all parameters in methods. [13]
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• Validate all return values from methods and system calls. [13]

• Use assertions to detect impossible conditions. [11]

• Use meaningful error messages. [13]

Even in this brief list, the range of ideas can be seen, from the most basic, very general

(for instance, indentation) to the more abstract (encapsulation).

3.3.1 Interpretations

The term Defensive Programming is used by some authors interchangeably with the term

“programming defensively”. The different sources in the literature are mostly in agreement

when describing Defensive Programming, but some different interpretations do exist (for

instance, Maguire’s [11], which will be described later).

The following sections will summarize some of the definitions of Defensive Program-

ming.

Liskov

Liskov writes [10]:

“. . . defensive programming; that is, writing each procedure to defend itself

against errors.”

Liskov further discusses how defensive programming should be applied as often as pos-

sible [10]:

“In preparing to cope with mistakes, it pays to program defensively. In every

good programmer there is a streak of suspicion. Assume that your program will

be called with incorrect inputs, that files that are supposed to be open may

be closed, that files that are supposed to be closed may be open, and so forth.
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Write your program in a way designed to call these mistakes to your attention

as soon as possible.”

Concepts close to Design by Contract are also mentioned; for instance, when discussing

the type checking and runtime checking of array bounds in CLU, Liskov mentions [10]:

“Two standard defensive programming methods not built into CLU are

checking requirements and rep invariants, . . . ”

(where requirements and rep invariants in CLU corresponds to preconditions and invariants

in Design by Contract, respectively.)

Design by Contract by Example

In their book [16] Mitchell and McKim compare Design by Contract and Defensive Pro-

gramming.

When describing what their discussion about Defensive Programming will focus on,

they state:

“Defensive programming means different things to different people. We

explore these two meanings:

• Defending a program against unwanted user input.

• Defending a routine against being called with bad arguments or when the

state is inappropriate.”

Much like Maguire’s definition, Mitchell and McKim describe one kind of Defensive

Programming, what they call “bulletproofing”, that protects a mutator method from in-

valid parameter values by checking the values and returning immediately if the checks fail.

This is what we called error concealing action in 2.4.1. Mitchell and McKim recommends

“that you avoid writing programs in this style.”
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The other kind of Defensive Programming described by Mitchell and McKim, also con-

cerns protecting a method from invalid parameter value(s). But instead of concealing errors

if invalid values are detected, this kind of Defensive Programming throws an exception.

Mitchell and McKim describes this as an “implemented precondition”, and it is akin to

transforming a partial method into a total (see 2.3).

Maguire

Maguire’s [11] definition of Defensive Programming is the one most different from the

others. He defines Defensive Programming purely as a way of defending a procedure from

crashing, even if this means that the procedure does not perform correctly.

Maguire’s notion of defensive programming is best shown with this quote [11]:

“Surprisingly, programmers, and particularly experienced programmers,

write code every day that quietly fixes problems whenever something unex-

pected happens. They even code that way intentionally. And you probably do

it yourself.

Of course, what I’m driving at is defensive programming.”

Maguire then continues to describe how defensive programming hides bugs, but also

leads towards preventing data loss.

Maguire’s definition of defensive programming contrary to others does not include the

use of assertions in code as defensive programming, although he advocates using assertions

to complement defensive programming:

“When you write defensive code, use assertions to alert you if the “can’t hap-

pen” cases do happen.” [11]

Defensive Development

Defensive Development is described by Firesmith [5] as:
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“Defensive Development is a class-level specification, design, and implementa-

tion approach designed to defend an abstraction from misuse or bugs.”

Apart from the same underlying principle as Defensive Programming — “[Defensive

Development] places all responsibility for ensuring the abstraction of a class on the class

itself” — Defensive Development also stipulates that “Each class and type [should capture]

a single abstraction” and “. . . assertions and their associated exceptions are used to formally

specify the behavior of the abstraction.”

Meyer’s view of Defensive Programming

As this paper compares Design by Contract with Defensive Programming, Meyer’s view of

defensive programming is of particular interest.

In [15], Meyer describes his view of defensive programming.

Meyer’s definition of defensive programming is [15]:

“A technique of fighting potential errors by making every module check for

many possible consistency conditions, even if this causes redundancy of checks

performed by clients and suppliers. Contradicts Design by Contract.”

Meyer describes defensive programming as the antithesis of Design by ContractTM,

mainly based upon whether redundant checks are considered evil – Meyer’s view – or not.

Basically, his opinion is that defensive programming is relevant when interfacing with

hardware, where bits may be changed during transmission and multiple checks are not

redundant as, for instance, messages may be distorted during network transfers.

Meyer then stresses that asserting the same fact in more than one place actually lowers

the system’s reliability, as:

“By adding possibly redundant checks, you add more software; more soft-

ware means more complexity, and in particular more sources of conditions that
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could go wrong; hence the need for more checks, meaning more software; and

so on ad infinitum. If we start on this road only one thing is certain: we will

never obtain reliability. The more we write, the more we will have to write.”

This last point, “The more we write, the more we will have to write”, have been

described as an endless loop; see figure 3.8.

checks
More sourceRedundant Even more

checksof errors

Figure 3.8: Increased complexity with defensive programming [23]

Meyer further contrasts his principles and the reasoning behind Design by ContractTM

with defensive programming’s ad hoc definition [15]:

“Defensive programming appears in contrast to cover up for the lack of a

systematic approach by blindly putting in as many checks as possible, furthering

the problem of reliability rather than addressing it seriously.”

Meyer [15] also makes a minor point about the increased resource usage, stemming from

the redundant checks:

“Another drawback of defensive programming is its costs. Redundant checks

imply a performance penalty — often enough in practice to make developers

wary of defensive programming regardless of what the textbooks say. If they

do make the effort to include these checks, removing some of them later to

improve performance will be tedious. The techniques of this chapter1 will also

leave room for extra checks, but if you choose to enable them you will rely

1 The chapter “Contracting for Software Reliability” introduces Design by ContractTM (our note)
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on the development environment to carry them out for you. To remove them,

once the software has been debugged, it suffices to change a compilation option

(details soon) 2 . The software itself does not contain any redundant elements.”

3.3.2 Defining Defensive Programming

Background

As no definitive definition of Defensive Programming is available in the literature, we have

chosen to create a definition, based upon our interpretation of the intents of the existing

definitions.

Like many of the existing definitions, we have also chosen to focus our definition on prac-

tical guidelines, describing how to perform Defensive Programming. Our definition does

not include basic engineering practices applicable to software development, such as using

a coding standard and performing proper documentation, as these actions differ according

to the used development methodology, company and customer standards, programming

language and many more such factors.

Definition of Defensive Programming

The primary guiding principle behind Defensive Programming is:

Check every assumption.

As we will use the Java language in this project, we have derived the following specific

rules to use as guidelines during development:

1. Use assertions liberally

2. Validate input parameters – do not assume the client follows preconditions

2 Meyer then describes the Eiffel compiler options affecting contract evaluation; we have a similar
description in 3.2.1 (our note)
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3. Validate return values – do not assume the supplier follows postconditions

4. When appropriate, use the else-clause in if-elseif-else statements and the default case

in switch statements, to catch illegal cases – do not assume all possible cases but one

are caught by the non-default case labels

5. Do not rely on manual validation; use tools to automate testing, validation of asser-

tion expressions, versioning of both source and deliverables, and such – any moment

involving manual intervention is subject to human error

6. Use checked exceptions for program error conditions (file not found) – the compiler

will alert the programmer to any exception not caught

7. Use of unchecked exceptions for program logic errors is permitted – possible error

conditions when the program is faulty may be indicated by either using assertions or

unchecked exceptions

8. Use unchecked exceptions for assertions – if any exception due to a failed assertion

is not caught, the program should crash

9. Do use assertions for truly exceptional cases (e.g. logical errors in the program), not

for expected error conditions (e.g. file not found) – do not assume that assertions

are active during runtime

10. When correcting a fault, add corresponding test cases – do not assume that the fault

does not reappear

11. Correct the cause of the problem when correcting a fault, not the symptoms –

workarounds simply hide the real problem, which will still exist

12. Specify usage and assumptions for functions and classes – use contract based docu-

mentation to its advantage, preferably contracts are expressed using simple predicates

so that they more easily may be used when writing assertions
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13. Separation of functionality – depend upon other modules but do not assume that

they perform as expected

14. Use descriptive and unique error and exception messages – otherwise traceability is

lost

3.4 Comparing Programming by Contract and

Defensive Programming

3.4.1 Comparing principles

Both Programming by Contract and Defensive Programming attempt to solve reliability.

The underlying assumption in both principles is that by giving the designers and program-

mers of software a methodology and a development framework to work in, the software

produced when following the prescribed methodology will be more reliable.

According to Meyer [15], the focus in Design by ContractTM on well-defined interactions

between different parts of the program will lead to correct programs. By extension, this

also applies to Programming by Contract.

Defensive programming is built on the assumption that by assuming the worst, both

with regard to input data and program logic, and by constantly verifying any assumptions,

errors and faults may be discovered and rectified. Each part of the program is solely

responsible for its own reliability and should not depend on the reliability of any other

part it interacts with.

In principle, Programming by Contract assumes a macroscopic view of the software

system, where the correctness of the system is ensured by the correct interaction between

the modules in the system. The correctness of each module is ensured by viewing each

module as a separate system, and specifying the correct interactions between the modules in

each subsystem. Defensive Programming assumes the reverse view. That is, by assuming a
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microscopic view of the system, and ensuring the correctness of each module, starting from

methods, the modules may be combined into larger modules. By repeating this grouping

of modules, larger and larger modules will be formed, ending with the complete system.

Programming by Contract focuses only on correctness, while Defensive Programming

attempts to include both correctness and robustness. Programming by Contract’s non-

focus on robustness may seem strange, especially in view of Meyer’s definition of reliability 3

and his statement that reliability is the most important aspect of software development.

Correctness in Programming by Contract may be viewed from two different perspec-

tives. On the one hand, Programming by Contract contradicts reliability as a module is

not obliged to fulfill its postcondition if its precondition is not adhered to, which may

harmfully effect robustness. On the other hand, not fulfilling a postcondition is not the

same as ignoring robustness considerations. That is, by defining appropriate invariants,

robustness may be achieved, even though Programming by Contract does not explicitly

state this.

3.4.2 Similarities

Both Programming by Contract and Defensive Programming use software contracts for

documentational purposes using the same types of protocol assertions.

With regard to robustness, that is the ability to cope with invalid input data, no dis-

cernible differences exist between Programming by Contract and Defensive Programming.

When using Programming by Contract, the system’s front end modules should be devel-

oped using weak contracts. The source code of the front end methods will generally have

the same appearance, independently of the used development principle, as both principles

implies evaluating the preconditions 4 .

3Reliability as Correctness + Robustness (see 2.2.1)
4 Using assertions to check front end input data would have side effects if the assertions are disabled,

namely allowing bad data into the system
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3.4.3 Differences

The defining difference is that in Programming by Contract the client trusts that the

supplier will uphold its end of the contract, and vice versa, while in Defensive Programming

neither party trusts the other.

By properly performing Defensive Programming, faults in a program will be discovered.

The failed assertions due to the faults will contain information of where the fault was

detected and the reason. As redundant checking is used, the failed assertion should be close

to the source of the fault, which narrows the scope of the fault’s possible location. Thus,

traceability is achieved. Also, as the exception thrown as a result of the failed assertion is

easily noticeable, minor failures do not pass undetected, thus fault detectability is achieved.

By using Programming by Contract, which implies not evaluating protocol assertions,

neither detectability nor traceability enhancements due to the use of contracts is achieved.

This makes it risky to use Programming by Contract except for documentational pur-

poses. Using Eiffel, which has built-in language constructs for contracts with Design by

ContractTM, will evaluate assertions during runtime if the proper compiler options are used.

Meyer [15] advocates turning off evaluation of postcondition and invariant assertions for

reasons of efficiency. Doing this will lead to the same risky situation as with Programming

by Contract. Not using assertions to check preconditions in supplier methods will make it

more difficult to detect violations of the documented contract.

3.5 Summary

Our main purpose in this chapter was to define Programming by Contract and Defensive

Programming as well as compare both principles.

Programming by Contract was defined as a modification of Design by ContractTM, as

Design by ContractTMas defined by Meyer is not directly applicable for use with general

programming languages.
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An overview of several existing definitions of Defensive Programming followed. We

defined Defensive Programming based on the common parts of these earlier definitions.

We then compared Programming by Contract and Defensive Programming. The defin-

ing difference is that in Programming by Contract the client trusts that the supplier will

uphold its end of the contract, and vice versa, while in Defensive Programming neither

party trusts the other. In practice, the implementations of a design made following each

principle will be very similar in case of front end methods (as an implementation using a

weak contract and a defensive implementation of a method will practically be the same)

and very different in the case of back end methods (where an implementation using a strong

contract and a defensive implementation of a method will differ).





Chapter 4

Experiment

4.1 Introduction

We will implement two XMPL Compilers — one of the compilers will be developed follow-

ing the principle of Programming by Contract, the other will be developed following the

principle of Defensive Programming.

As a basis for the experiment we will use a XMPL compiler previously developed as

a lab assignment. We will discuss the flaws of the original compiler and why we decided

to redesign the compiler, followed by a detailed description of the new design. We will

then give an overview of the the solution while using Programming by Contract and De-

fensive Programming, respectively. A discussion concerning the similarities and differences

between Programming by Contract and Defensive Programming will then follow, which is

needed to establish a base from which we can choose our metrics. We will then discuss

which aspects we will measure, namely:

• Runtime performance

• Correctness

• Complexity

59
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4.2 The Development of the Compiler

4.2.1 The existing compiler

Lab assignment

A XMPL compiler had been developed as a lab assignment [19] in the course “Compiler

Construction” [18]. The lab specification was as follows

“Using a subset of the language XMPL, write a compiler to parse simple

XMPL programs and generate code for an abstract machine which you will also

implement.

Your parser should also include some error handling and recovery capabili-

ties.”

Also given in the lab assignment was the grammar of XMPL (included in appendix A).

For the work we describe here, only the compiler was used.

Original implementation

The existing compiler, produced for the lab assignment, was implemented in Java as a

recursive descent predictive parser.

When performing the lab assignment the authors, Patrick Jungner and Per Davidsson,

made the following assumptions and changes to the specification:

• An ID was defined as: ID ::= [A-Za-z] [A-Za-z0-9]+

• The productions ADDOP, MULOP, RELOP, and ID were moved into the tokenizer.

• The boolean literals were assumed to be true and false.

• The language was made case insensitive.
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During a review of the original system we found several problems, namely:

• Incomplete specification

The original system was not specified in sufficient detail. For example, during the first

review several incomplete contracts were discovered and assumptions made during

implementation were not documented.

• Unnoticed faults

In the hurry to complete the lab assignment, much of the code was written in haste,

without regard to the existing design, or even basic testing. As a result, several faults

were introduced in the implementation.

• Insufficient testing

The development of the original system did not use any repeatable form of test-

ing. When performing testing, only one XMPL program was used throughout the

development.

The deficiencies in the original compiler were corrected and the two compilers used as

and in the experiment were both based on this corrected version.

4.2.2 Description of compiler

Design of the compiler

Figure 4.1 shows the different parts the compiler is made up from.

In this particular compiler, the Syntax Analyzer, the Semantic Analyzer, and the Code

Generator were combined in one module, the parser. As to simplify the compiler no

intermediate code was generated, instead the stack machine code was generated directly

from the XMPL source code. This sacrifices general applicability, but the ability to retarget

the compiler, either with regard to source or output language, was not prioritized, as

retargability was not part of the specification.
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Figure 4.1: General description of the compiler

Detailed description of the compiler

The different parts of the compiler were implemented as follows:

• Lexical analyzer

The lexical analyzer uses Java’s StreamTokenizer to tokenize the source code. On

top of StreamTokenizer, XmplTokenizer implements the classification of keywords

and operators unique to XMPL. The token stream consists of Tokens.

• Tokens

The tokens are instantiated by XmplTokenizer by request of the different parser

instances. The token classes have instance methods describing what type of token

each instance is a member of, for example ListSeparatorToken and NumberToken.

• Syntax analyzer

The syntax analyzer is implemented in the different Parser classes. Every class of

parser corresponds to one production in the grammar.

• Semantic analyzer

Any applicable semantic rule is implemented in the corresponding Parser class.
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• Code Generator

Any applicable code generating rule is implemented in the corresponding Parser

class. The generated code is held by CodeGenerator and can be fetched as a unit by

the compiler driver. CodeGenerator is also responsible for label generation.

• Symbol table

SymbolTable implements the symbol table, where the other parts of the compiler

may store and request symbols and their properties. The main responsibility of the

symbol table is to support the mapping between a variable’s name and the variable’s

declared type.

Figure 4.2 shows how the parts interact.

Token stream
XmplTokenizer XmplParser

TermParser

CodeGenerator

IfToken

SymbolTableToken

<<instantiates>>

<<instantiates>>

<<uses>><<uses>>

Destination
Code

<<uses>>

Source
Code

Figure 4.2: Overview of the compiler

The compiler driver is implemented in Compiler. Compiler acts as the compiler’s front

end, parsing command line arguments, opening streams for reading source code files and

writing the generated code.
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Java packages

The system is divided into a number of Java packages, where the packages containing the

compiler and the interpreter are further divided into two separate packages - one prefixed

by pbc and one prefixed by dp, containing the Programming by Contract solution and

the Defensive Programming solution, respectively. The packages pbc and dp both contain

similarly named subpackages; these subpackages are described in table 4.1.

Package name Package description

codegenerator Holder for generated code
compiler Compiler driver
interpreter A graphical XMPL interpreter
lexer XMPL specific tokenizer
parser Recursive decent predictive parser for XMPL grammar
symboltable Symbol table and symbol table entries
token XMPL tokens
util Miscellaneous helper classes

Table 4.1: Java packages

There are also a number of miscellaneous packages, containing classes not relevant for

the XMPL system per se, but used within the project. These miscellaneous packages are

described in table 4.2.

Package name Package description

taglets Javadoc extensions for specifying contracts
refacviewer RefactorITTM metrics viewer
util Miscellaneous helper classes

Table 4.2: Miscellaneous Java packages
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4.2.3 Overview of solutions

The two new implementations of the compiler are both based on the revised original im-

plementation.

The following sections contain general descriptions of the differences between the revised

original and the Programming by Contract and the Defensive Programming implementa-

tion, respectively.

Programming by Contract

When implementing the compiler with contract based programming the code from the

lab assignment was used. The original program was not very safe. The program was

written in haste, and as a result, some of the preconditions that were stated had not been

checked before calling a method. Some of the methods were not properly specified using

contracts. The only reason the program worked was because of the inside knowledge of

the programmers. That the program was made in such a way was of course not correct.

To make the program truly contract based, contract specifications and predicate methods

were added to the supplier methods, which in turn could be used properly by the client

methods.

The parser-classes include a predicate method, isFirst, which is the precondition for

calling the parse-method of the corresponding class. This method will ensure that the

current token is in the FIRST set of the production. If the token is not in the FIRST

set of the production, an error message stating that the XMPL source program is not

syntactically correct, is written. In each parser the method getFirst is overloaded to

return the FIRST set of the production implemented by that parser class.

Defensive Programming

When implementing the compiler with Defensive Programming, the code from the lab

assignment was used. The main change was transforming preconditions and postcondition
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into assertions and adding code in the parser classes to throw appropriate exceptions when

detecting either a semantic or a syntactic faults.

The exceptions thrown when detecting semantic or syntactic faults are derived from

the classes SemanticException and SyntaxException, respectively. The inheritance tree

of the various exceptions is shown in figure 4.3.

java.lang

dp.codegenerator dp.parser

RedeclaredVariableException

TypeMismatchException

UndeclaredVariableException

WrongTypeException

ExtraneousInputException

UnexpectedTokenException

UndefinedOpcodeError

SyntacticExceptionSemanticException

ParseException

Error Exception

Figure 4.3: Exceptions used in the Defensive Programming implementation

The method main in Compiler uses a catch-statement to catch all exceptions that reach

it, effectively making all semantic and syntactic faults unrecoverable by default. If a fault

of either type is indeed recoverable, a try-catch-clause may be placed where appropriate

in the parser and the fault handled there.
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As an example of how the ParseExceptions may be used, primitive error handling was

implemented in the StatListParser class. In StatListParser, any ParseException not

caught earlier will be caught and the error message contained in the exception describing

the fault is displayed to the user. As an attempt resynchronization of the token stream and

the parse tree, the token stream pointer will then be moved forward to the next semicolon

or to the end of the stream, whichever occurs first.

4.3 Design of the experiment

The aspects we have chosen to focus on are:

• Run-time performance

• Correctness

• Complexity

We will describe the different parts of the experiment using the following template

(where a number, here represented by X, will be used to denote the specific test case):

X. a Aspect – The aspect of the software measured

b Background – A short description of the reasoning behind this part of the experi-

ment.

c Hypothesis – A short description of what we want to measure and what we expect

to find out.

d Test – States which metric we will use and why we believe that the metric we have

chosen will give us the information that we need.
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4.3.1 Runtime performance

1. a Runtime performance impact of assertions

b Using Defensive Programming entails writing assertions liberally. These assertions

may be either enabled or disabled during runtime. As Programming by Contract

uses non-executable contracts, the use of runtime assertions in Defensive Program-

ming could be a problem if the use of runtime assertions have a great runtime

performance impact.

Meyer argues that assertions should be disabled during production use. Liskov

argues that while assertions may be disabled for extremely time sensitive portions

of the program, disabling assertions should not be done per default.

It would also be interesting to know what, if any, performance penalty the use of

assertions in Java causes. According to Sun [21]:

“Disabling assertions eliminates their performance penalty entirely.”

c We expect assertions to have a detrimental impact on runtime performance as,

even with assertions disabled, the runtime environment has to check whether or

not to evaluate the assertions. With assertions enabled the impact should be even

higher as the evaluation of the assertions has to be done. The degree of the impact

of either disabled or enabled assertions are unknown.

Disabling assertions should ideally result in an unchanged runtime performance

compared to not having any assertions at all. Sun [21] implies that it could have a

small impact on runtime performance as the size of the class files would be greater

with assertions, which would lead to a slight performance penalty in both class

loading and memory consumption during runtime.
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d We will perform compilations on a number of XMPL programs using three setups:

• Defensive Programming with assertions enabled

• Defensive Programming with assertions disabled

• Defensive Programming with assertions removed from the source code

This will show the difference between enabled and disabled assertion evaluation in

the Java runtime environment.

The tests will also show which, if any, impact disabled assertions have compared to

not using any assertions at all. To produce the source without any use of assertions,

we will replace all source code lines containing the assert keyword with empty

lines.

4.3.2 Correctness

Faults will always be a problem when implementing software systems. By improving the

methods used for fault prevention and detection, the number of faults can be lowered and

a lesser number of faults will remain undetected.

2. a Number of faults in the finished implementations

b In Programming by Contract the focus lies on preventing faults, by specifying pre-

conditions which will ensure that methods are only called in a permitted manner.

By using Defensive Programming, asserting assumptions and internal program

logic should improve fault detection and assist fault correction, which in turn

should lower the number of faults in the finished system.

c By comparing the number of faults in the two implementations, that should show

which principle is more successful at lowering the number of faults.

d One possible metric would be to compare the number of faults in either imple-

mentation. However, there are two problems with this simple metric. Firstly, it
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will be difficult, if at all possible, to ensure that all faults are found in both im-

plementations. Secondly, even if all faults are found, the faults may have different

characteristics, which in turn should be reflected in the metric, as the faults may

have different impacts on the system.

Fenton and Pfleeger discuss aspects that we believe should be taken into account

when comparing faults, but we have not found any applicable metric for evaluating

the hypothesis.

3. a Fault detection

b In Defensive Programming the focus lies on fault detection, as it encourages more

assertions. The fault detection mechanism in Defensive Programming should in-

crease the correctness of the software system since the propagation of faults will

be limited.

c If faults reside in the code they should be found quickly by using Defensive Pro-

gramming, as it encourages the use of implementation assertions to complement

the protocol assertions. Compared to Programming by Contract, Defensive Pro-

gramming should also limit the damage caused by faults, as assertions will detect

the faults early.

d We have not found any appropriate metrics for performing measurements on this

topic. Even if an applicable metric would have been found, this metric probably

would have required detailed description of corrected faults, including when the

faults were introduced, discovered, located, and corrected. If indeed, information

of this type is required, we would not have been able to apply any such metric, as

we did not record the fault correction process in sufficient detail.
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4.3.3 Complexity

4. a Source code size and complexity

b Firesmith states [5]:

“Design by Contract simplifies the supplier code [. . . ] at the cost of

increasing the complexity of the code of each customer and increasing the

number of interactions between the customer(s) and the supplier. Because

a single supplier often has multiple customers that must each redundantly

check the preconditions, Design by Contract results in a net increase in

overall complexity.”

c Firesmith’s statement suggests that having the assertions in the clients will increase

redundancy. Redundancy means more code, which will lead us to the hypothesis

that the number of lines of code should be greater in Programming by Contract

than in a system developed by using Defensive Programming.

d We will use the NCLOC and WMC metrics. If one implementation generates

more code than another, this will effect the NCLOC metric. The additional if-

statements due to the proactive model will affect the cyclomatic complexity, thus

V (G) is also of interest. As WMC =
∑

V (G), we will use WMC instead of V (G).

5. a Class interdependency

b Programming by Contract uses the proactive error signaling model, while the De-

fensive Programming implementation uses exceptions. In Programming by Con-

tract, before calling a supplier method, clients have to ensure that calling a method

is permitted. Ensuring that the call is permitted is the same as fulfilling a precon-

dition, which in turn frequently involves calling a predicate method in the same

supplier.
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c We expect that the classes in the Programming by Contract implementation should

have a higher number of method calls, as stated by Firesmith [5], this should also

introduce stronger interdependencies, due to the use of query methods.

d The RFC metric will show if the interdependencies are indeed higher in the Pro-

gramming by Contract implementation.

4.4 Summary

We have implemented two compilers for compiling a subset of the XMPL programming

language. One of the compilers was developed following the principle of Programming by

Contract, the other was developed following the principle of Defensive Programming.

As a basis for the experiment we used an XMPL compiler previously developed as a

lab assignment. Because of flaws in the original compiler, for instance there were several

faults that had gone unnoticed, we performed a redesign and the result of that redesign

was thereafter described.

As both implementations were based on the same compiler, we briefly described the

design of the compiler, which parts the compiler is composed of and how the different

parts interact during compilation of an XMPL program. We then gave an overview of the

solutions implemented while using Programming by Contract and Defensive Programming,

respectively.

We discussed the similarities and differences between Programming by Contract and

Defensive Programming. When discussing the similarities we found that, with regards

to robustness, there are no practical differences between Programming by Contract and

Defensive Programming, which is why we chose not to perform any measurements on the

subject of robustness.

A discussion of which aspects should we measure then followed, namely: runtime per-

formance, correctness and complexity. When measuring runtime performance, the runtime
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performance penalty of using assertions was of particular interest, and we will study how

the runtimes of the compiler differs with runtime assertions enabled, disabled, and removed

from the source code. We then discussed metrics in regards to correctness, followed by a

discussion on measuring complexity.





Chapter 5

Evaluation

5.1 Introduction

We have performed a number of measurements on two different implementations of a XMPL

compiler; one implementation following Programming by Contract and the other following

Defensive Programming. The aim of these measurements is to empirically establish the

validity of our theoretical comparison of the aforementioned development principles and to

investigate which differences, if any, may be seen between the two principles, particularly

with regards to differences that may be show by use of source code metrics.

We have also measured the runtime performance penalty of using assertions in Java.

We will also discuss our impressions of the use of Programming by Contract and De-

fensive Programming.

75
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5.2 Results

The presentation of the results of our experiment is presented as a continuation of the

template used to describe the different parts of the experiment.

X. e Aspect – The aspect of the software measured

f Results – Here the data from the experiment will be presented.

g Evaluation – Here the data will be evaluated in regard to the proposed metric, and

we will state whether our hypothesis was refuted or not.

5.2.1 Runtime performance

1. e Runtime performance impact of assertions

f The results of the runtime measurements are given in appendix G, along with

a description of the computer on which the measurements were made, how the

measurements were made, and the specifics of the execution of the Java programs.

Table 5.1 summarizes the mean values of the measured execution times for each

case of the different sizes of XMPL programs. The table also includes the execution

times of enabled and disabled assertions compared to removed assertions.

LOC DPenabled DPdisabled DPremoved
DPenabled

DPremoved

DPdisabled

DPremoved

27 16.3 13.9 13.7 1.19 1.01
216 129 112 110 1.17 1.02
1056 660 575 531 1.24 1.08
2106 1300 1130 1070 1.21 1.06
4206 2620 2230 2140 1.22 1.04
6306 3810 3440 3190 1.19 1.08
8406 5140 4310 4320 1.19 1.00
10506 6520 5510 5330 1.22 1.04

Table 5.1: Measured and relative runtimes
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Figure 5.1: Runtime performance impact of assertions

g To illustrate the runtime performance penalty of using assertions, the mean value

of the measured time to run of the different compiler runs have been plotted in

figure 5.1.

As can be seen in the graph, the different configurations’ runtimes appear to depend

on the size of the compiled program in a linear fashion.

Enabling assertions caused a runtime performance penalty of about 20% compared

to disabled assertions.

Compared to not using assertions at all, only a small performance penalty was

shown when disabling assertions, which shows that the assertion facility in Java

seems to be implemented in an efficient manner.
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The difference between the measurement runs was higher than we wished, but our

limited knowledge of the how to stabilize the Java runtime between measurement

runs did not allow for better stability. Judging by additional verification runs we

have made, the error is in the region of 5%, which implies that the runtime perfor-

mance penalties of both enabled and disabled assertions are outside the margin of

error (even though the measurements made using disabled assertions are borderline

cases).

5.2.2 Complexity

4. e Source code size and complexity

f The value of the metrics of the parser package are presented in table 5.2. The

measurements were made using the metric tool in RefactorITTM [1]. Descriptions

of RefactorITTM’s versions of the metrics may be found in appendix D.

g A comparative view of the results of the WMC metric are given in figure 5.2.

The value of the WMC metric of the Programming by Contract implementation is

indeed higher. The difference is mainly the additional if-statements due to precon-

dition evaluation. Examples of these additional if-statements may be seen in the

code of SimpleExprParser (figures 5.3 and 5.4), on lines 106–110 in the Program-

ming by Contract implementation versus 205 in the Defensive Programming imple-

mentation, and likewise on lines 127-131 versus 223, and lines 133–137 versus 225.

The isFirst-method of TypeClauseParser in the Programming by Contract

implementation guarantees that the current token is of the type IntToken or

BoolToken. As the contract is assumed to be adhered to, this means that an

explicit evaluation of the current token in the supplier method is not necessary,

hence the value of the WMC metric is lower than that of the Defensive Pro-

gramming implementation’s of TypeClauseParser. The additional method calls
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LOC NCLOC WMC
Class PbC DP PbC DP PbC DP

AbstractParser 260 221 97 69 23 17
AssignmentStatementParser 48 36 38 28 7 5
ConstantParser 34 27 27 21 6 5
ExpressionParser 57 38 43 26 11 7
FactorParser 64 39 48 29 9 6
IfStatParser 76 58 55 39 11 8
LoopStatParser 86 67 62 44 13 9
ProgramParser 71 52 54 39 11 9
SimpleExprParser 57 40 45 29 11 7
StatListParser 33 31 24 23 8 8
StatPartParser 42 23 32 16 9 4
StatementParser 49 22 43 17 9 5
TermParser 51 36 41 28 10 7
Type 74 93 38 40 9 9
TypeClauseParser 20 23 14 18 3 7
VarDeclParser 66 58 51 43 10 9
VarPartParser 39 29 29 21 8 6
XmplProgramParser 19 7 16 6 4 2

Table 5.2: LOC, NCLOC, and WMC metrics of parser packages
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Figure 5.2: WMC metrics for packages pbc.parser and dp.parser
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100 public void parse() throws java.io.IOException {

101 // term (ADDOP term)*

102

103 Debug.printEnteringInfo("simple expression", getToken());

104

105 XmplParser termParse = new TermParser(getTokenizer());

106 if (termParse.isFirst()) {

107 termParse.parse();

108 } else {

109 error(termParse.getFirst(), getToken());

110 }

111

112 setType(termParse.getType());

113

114 Token token = getToken();

115 while (token.isAddop()) {

116 if (token.isOrOp()) {

117 if (!Type.BOOL.equals(getType())) {

118 error("Type mismatch");

119 }

120 } else {

121 if (!Type.INT.equals(getType())) {

122 error("Type mismatch");

123 }

124 }

125 consumeToken();

126

127 if (termParse.isFirst()) {

128 termParse.parse();

129 } else {

130 error(termParse.getFirst(), getToken());

131 }

132

133 if (StackMachineCode.isMember(token.getLexeme())) {

134 emitCode(token.getLexeme());

135 } else {

136 Debug.error(this);

137 }

138

139 token = getToken();

140

141 if (!termParse.getType().equals(getType())) {

142 error("Type mismatch");

143 }

144 }

145

146 Debug.printLeavingInfo("simple expression", this);

147 }

Figure 5.3: Programming by Contract; method parse() in SimpleExprParser
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200 public void parse() throws java.io.IOException, ParseException {

201 // term (ADDOP term)*

202

203 Debug.printEnteringInfo("simple expression", getToken());

204

205 XmplParser termParse = new TermParser(getTokenizer());

206

207 setType(termParse.getType());

208 assert getType().isValid(): "expression of not valid type";

209

210 Token token = getToken();

211 while (token.isAddop()) {

212 if (token.isOrOp()) {

213 if (!Type.BOOL.equals(getType())) {

214 throw new WrongTypeException(Type.BOOL, termParse.getType());

215 }

216 } else {

217 if (!Type.INT.equals(getType())) {

218 throw new WrongTypeException(Type.INT, termParse.getType());

219 }

220 }

221 consumeToken();

222

223 termParse = new TermParser(getTokenizer());

224

225 emitCode(token.getLexeme());

226

227 token = getToken();

228

229 if (!termParse.getType().equals(getType())) {

230 throw new TypeMismatchException(getType(), termParse.getType());

231 }

232 }

233

234 Debug.printLeavingInfo("simple expression", this);

235 }

Figure 5.4: Defensive Programming; method parse() in SimpleExprParser
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to check if the current token is either a IntToken or a BoolToken (line 406) in

the Defensive Programming implementation also increases the value of the RFC-

metric. The parse-methods of TypeClauseParser in Programming by Contract

and in Defensive Programming can be seen in figures 5.5 and 5.6, respectively.

300 public void parse() throws java.io.IOException {

301 // (’int’ | ’bool’)

302

303 Debug.printEnteringInfo("type clause", getToken());

304

305 Debug.println("inserting type");

306 setType(Type.fromString(getLexeme()));

307 consumeToken();

308

309 Debug.printLeavingInfo("type clause", this);

310 }

Figure 5.5: Programming by Contract; method parse() in TypeClauseParser

400 public void parse() throws java.io.IOException, ParseException {

401 // (’int’ | ’bool’)

402

403 Debug.printEnteringInfo("type clause", getToken());

404

405 Token token = getToken();

406 if (token.isInt() || token.isBool()) {

407 Type t = Type.fromString(getLexeme());

408 assert token.isInt() && Type.INT.equals(t) ||

409 token.isBool() && Type.BOOL.equals(t):

410 "Wrong type from lexeme; t="+t+", lexeme="+getLexeme();

411 setType(t);

412 } else {

413 throw new UnexpectedTokenException("int or bool", token);

414 }

415 consumeToken();

416

417 Debug.printLeavingInfo("type clause", this);

418 }

Figure 5.6: Defensive Programming; method parse() in TypeClauseParser
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5. e Class interdependency

f The value of the metrics of the parser package are presented in table 5.3. The

measurements were made using the metric tool in RefactorITTM [1]. Description

of RefactorITTM’s version of the metric may be found in appendix D.

RFC
Class PbC DP

AbstractParser 22 21
AssignmentStatementParser 25 20
ConstantParser 17 12
ExpressionParser 23 17
FactorParser 34 20
IfStatParser 25 20
LoopStatParser 26 21
ProgramParser 22 20
SimpleExprParser 22 17
StatListParser 18 15
StatPartParser 19 10
StatementParser 24 12
TermParser 20 16
Type 8 9
TypeClauseParser 11 14
VarDeclParser 27 22
VarPartParser 17 11
XmplProgramParser 9 3

Table 5.3: RFC metric of parser packages

g One view of the results of the RFC metric is the one shown in figure 5.7.

The values of the RFC metric of the Programming by Contract implementation

are higher due to the evaluation of preconditions. This indicates that maintenance

of the Programming by Contract implementation is harder than that of the Defen-

sive Programming implementation, as the number of inter-method dependencies

between classes are higher. This difference is however somewhat illusionary, as the

number of classes involved is the same, or even higher due to the use of exceptions

in the Defensive Programming implementation.
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Figure 5.7: RFC metrics for packages pbc.parser and dp.parser
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5.3 Evaluation

5.3.1 Runtime performance

Our measurements showed that Java’s built-in assertion support seems to implemented

in an efficient manner, as the runtime performance penalty of disabled assertions was

negligible, approximately 5%. Enabling assertion evaluation during runtime leads to a

performance penalty of approximately 20%.

When comparing the benefits of using assertions to the runtime performance penalty,

we consider the benefits to outweigh the performance loss. Considering that disabled as-

sertions do not cause any performance loss, a project could be written using assertions and

if the performance loss due to the use of assertions were to be found to be too high, asser-

tion evaluation could be disabled in time-critical sections without any further detrimental

impact (apart from the loss of the benefits of assertions in those sections, of course) on

runtime performance.

5.3.2 Complexity

We noticed a slight increase of the complexity in the Programming by Contract implemen-

tation. This increase is mainly caused by ensuring the precondition, which is required by

the proactive error detection model.

We also measured an increased inter-dependency between classes in the Programming

by Contract implementation. This is mostly due to the invocations of query methods,

which leads to an increase in the number of methods in supplier classes that client classes

are required to have knowledge about. However, in our opinion this increase does not

actually make the solution more complex, as the number of classes involved is the same,

the distinguishing difference is only the number of methods involved.
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5.4 Further discussion

5.4.1 Undetected faults

During the development of the compiler following Defensive Development several errors

were detected that had slipped through the development of the compiler following Pro-

gramming by Contract, namely:

1. The classes AndOpToken and OrOpToken were not derived from KeywordToken, but

from MulOpToken and AddOpToken, respectively. Still, instances of these two classes

were instantiated in the method makeKeyword in XmplTokenizer.

2. end was not defined as a valid opcode in the code generator. This was detected when

the unchecked exception UndefinedOpcodeError was thrown in the method emit in

StackMachineCode.

Disregarding the severity of the different faults, introducing even a small amount of

assertions in the code base led to both noticeable and traceable1 failures.

5.4.2 Deficiencies in Java’s assertion support

The new assertion support in Java was easy to use but we would like to be able to classify

assertions, as to be able to separate protocol and implementation assertions. This would

enable disabling only selected assertions in a class, for instance evaluating preconditions

while not evaluating postconditions.

The current Java runtime (1.4.1 at the time of writing), does not permit enabling or

disabling only some of the assertions – either all assertions in a class are enabled or disabled,

or none. Introducing classification of assertions would enable a level of control of protocol

assertions equaling that of Eiffel.

1 the compiler crashed with a stack trace, pinpointing the exact location of the fault
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5.4.3 Defensive Programming

The inclusion and location of asserts are made in an completely arbitrary manner, and

the effectiveness of defensive programming, in regard to both the correctness and the

robustness, are at the mercy of the programmers’ skill and inclination. For instance, if the

programmer forgets to assert the value of a parameter of a method, this is only noticeable

when inspecting the actual code (or when a failure occurs due to this, but also this only

after inspecting the code).

5.5 Summary

We have presented, summarized, and evaluated the results of the measurements on the

two different implementations of a XMPL compiler. The discussion concerned both source

code and runtime performance metrics. The results of the source code metrics showed that

the implementation following Programming by Contract generally had a higher degree of

complexity, both with regard to internal class complexity and to dependencies between

classes.

We have also discussed our impressions of the use of Programming by Contract and

Defensive Programming principles. We found both to be non-optimal, especially with

regard to correctness, as Programming by Contract does not enforce the contracts and

Defensive Programming does not establish a connection between the contracts and the

assertions enforcing the contracts.



Chapter 6

Conclusion

6.1 Conclusion and evaluation

Neither Programming by Contract nor Defensive Programming uses the contract directly

for runtime evaluation of the contract. The contracts can not be evaluated at runtime unless

translated by the programmer both when applying the principles and when controlling the

application of it. It would be preferable if either one, application or control, could be

performed by a tool, such as a preprocessor, the compiler, or the runtime system.

From this point of view, Programming by Contract is the least preferable of the two, as

contracts only serve as documentation, while, in Defensive Programming, the contracts are

also used when writing assertions, thus a stronger connection between documentation and

implementation exists. As the Programming by Contract implementation depends on the

contracts, but does not enforce them, a dangerous middle ground is created, since clients

and suppliers rely on the contracts but neither party enforces the contracts. In Defensive

Programming the contracts are specified but not trusted (although Defensive Programming

depends on the programmer to actually implement the aforementioned enforcement).

89
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6.2 Problems

A source of many problems during the development of the compilers was the original

compiler. Using a better source as the starting point, and realizing from the start the

importance of the source’s quality, would undoubtedly have shortened the development

work. We estimate that more than half of the development effort was spend on fixing

flaws, of both design and implementation kinds.

We made the mistake of working on metrics after the development was almost finished.

That meant any metric that included counting bugs was not an option. We consider this a

serious flaw since one of the aims of Programming by Contract is to increase the correctness,

which means that the system should work correctly according to the specification, which

in turn means that the number of bugs should be lower than if one use the Defensive

Programming technique. As a result we were unable to check whether this hypothesis was

true. We should have defined which metrics we intended to use before starting on the

compiler.

6.3 Future work

Measurements of correctness and robustness should be made to further show which, if any,

principles succeeds in improving software quality in regards to these aspects.

Methods of handling the dependency between contracts and source code are needed to

further bind the two closer to each other, as tools for managing the binding have not been

a part of this experiment.

The empirical data would be of better quality, if the execution of the experiment,

including the development of software, were to be done using several, separate development

teams. These groups should be given a finished detailed specification, as to lessen the

influence of different knowledge of requirements and specifications management. This

would focus the development effort on application of the used development principle.
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Appendix A

XMPL grammar

The grammar of XMPL using EBNF notation.

program ::= ’program’ ID ’;’ var_part stat_part ID ’.’

var_part ::= ( ’var’ (var_decl ’;’)+ )?

var_decl ::= ID (’,’ ID)* ’:’ type_clause

type_clause ::= ( ’int’ | ’bool’ )

stat_part ::= ’begin’ (statement ’;’ )* ’end’

statement ::= assign_stat | if_stat | loop_stat

assign_stat ::= variable ’:=’ expression

if_stat ::= ’if’ expression ’then’ stat_list ( ’else’ stat_list )? ’end’ ’if’

loop_stat ::= ’loop’ stat_list ’when’ expression ’exit’ ’;’

stat_list ’end’ ’loop’

stat_list ::= (statement ’;’ )*

expression ::= simple_expr ( RELOP simple_expr )?

simple_expr ::= term (ADDOP term)*

term ::= factor (MULOP factor)*

factor ::= ’(’ expression ’)’ | variable | constant

variable ::= ID
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constant ::= int_literal | boolean_literal

int_literal ::= digit+

digit ::= [0-9]

boolean_literal ::= TRUE | FALSE

RELOP ::= ’=<’ | ’<’ | ’>’ | ’=>’ | ’=’ | ’<>’

ADDOP ::= ’+’ | ’-’ | ’or’

MULOP ::= ’*’ | ’/’ | ’and’



Appendix B

XMPL program

A simple XMPL program, included in the lab assignment background material [19].

program prog1;

VAR

a,b,c: int;

d,e: BOOL;

BEGIN

a := (12 + 4);

b := a - 6;

c := 1+2+3+4+5+6+7+8+9;

d := FALSE;

IF a=16 THEN d := TRUE; END IF;

IF b > 0 THEN e := TRUE; END IF;

IF e = d THEN

e := TRUE;

a := 1;

LOOP WHEN a > 10 EXIT;

IF e = d THEN

IF a = 5 THEN e := FALSE; END IF;

ELSE

IF a = 5 THEN e := FALSE; END IF;

END IF;

b := b + a;

a := a +1;

END LOOP;

END IF;

a := a + b + c;

END prog1.

Figure B.1: XMPL program
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Appendix C

External quality factors

These are the external quality factors, as defined by Meyer [15].

Factor Definition

correctness Correctness is the ability of software products to perform their exact

tasks, as defined by their specification.

robustness Robustness is the ability of software products to react appropriately

to abnormal conditions.

extendability Extendability is the ease of adapting software products to changes

of specification.

reusability Reusability is the ability of software elements to serve for the con-

struction of many different applications.

compatibility Compatibility is the ease of combining software elements with oth-

ers.

efficiency Efficiency is the ability of a software system to place as few de-

mands as possible on hardware resources, such as processor time,

space occupied in internal and external memories, bandwidth used

in communication devices.

portability Portability is the ease of transferring software products to various

hardware and software environments.

continues
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continued

Factor Definition

ease of use Ease of use is the ease with which people of various backgrounds and

qualifications can learn to use software products and apply them

to solve problems. It also covers the ease of installation, operation

and monitoring.

functionality Functionality is the extent of possibilities provided by a system.

timeliness Timeliness is the ability of a software system to be released when

or before its users want it.

Table C.1: External quality factors

Factor Definition

verifiability Verifiability is the ease of preparing acceptance procedures, espe-

cially test data, and procedures for detecting failures and tracing

them back to errors during the validation and operations phases.

integrity Integrity is the ability of software systems to protect their vari-

ous components (programs, data) against unauthorized access and

modification.

repairability Repairability is the ability to facilitate the repair of defects.

economy Economy, the companion of timeliness, is the ability of a system to

be completed on or below its assigned budget.

Table C.2: Other external quality factors



Appendix D

Description of metrics in

RefactorITTM

The following definitions and descriptions of various metrics are excerpts from

RefactorITTM’s [1] on-line help, version 1.2.2 dated November 25, 2002.

• Total Lines of Code (LOC)

Total Lines of Code (LOC), or Source Lines of Code (SLOC), counts the number of

all lines, regardless of whether they contain code, comments, or are blank lines. Note

that RefactorIT calculates LOC as follows: method body lines only are counted for

method; class and interface body lines only are counted for class/interface; lines of all

source files belonging to package are counted for package. The implications are that:

– Method declarations and javadocs are not counted on method level – they are

taken in account on class/interface and package levels.

– Class or interface declarations and javadocs are not counted on class/interface

level – they are taken in account on package level.

• Non-Comment Lines of Code (NCLOC)

Non-Comment Lines of Code (NCLOC), or Non-Comment Source Lines (NCSL), or
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Effective Lines of Code (ELOC), counts the number of all lines which are not regular

comments or javadocs. Blank lines are not taken in account either.

Note that RefactorIT calculates NCLOC as follows: only non-comment method body

lines are counted for method; only non-comment class/interface body lines are counted

for classes/interface; non-comment lines of all source files belonging to package are

counted for package. The implications are that:

– Method declarations are not counted on method level – they are taken in account

on class/interface and package levels.

– Class or interface declarations are not counted on class/interface level – they

are taken in account on package level.

• Comment Lines of Code (CLOC)

Comment Lines of Code (CLOC) counts the number of all lines which contain com-

ments or javadocs. Empty lines within comments and javadocs are also counted.

Note that RefactorIT calculates CLOC as follows: only comments inside method

body are counted for method; only comments and javadocs inside class/interface body

are counted for classes/interface; comments and javadocs of all source files belonging

to package are counted for package. The implications are that:

– Javadocs of method are not counted on method level – they are taken in account

on class/interface and package levels.

– Javadocs of class or interface are not counted on class/interface level – they are

taken in account on package level.

• Density of Comments (DC 1 )

Density of Comments (DC) provides ratio of comment lines to all lines. Thus, DC =

CLOC / LOC.

1 DC is the same metric as Fenton and Pfleeger’s R (our note)
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Note that RefactorIT calculates CLOC as follows: only comments inside method

body are counted for method; only comments and javadocs inside class/interface body

are counted for class/interface; comments and javadocs of all source files belonging

to package are counted for package. The implications are that:

– Javadocs of method are not counted on method level – they are taken in account

on class/interface and package levels. Thus, a method with javadoc but without

any comments in body will have DC of 0.

– Javadocs of class or interface are not counted on class/interface level – they are

taken in account on package level. Thus, a class or interface with javadoc but

without any comments or javadocs in body will have DC of 0.

• Executable Statements (EXEC)

Counts number of executable statements.

Executable statement is a statement specifying an explicit action to be taken. Also

known as imperative statement.

• Cyclomatic Complexity (V(G))

V(G) is a measure of the control flow complexity of a method or constructor. It

counts the number of branches in the body of the method, defined as:

– while statements

– if statements

– for statements

– conditions such as && and ||

This metric is computed as follows: each function has a base complexity of 1; each

atomic condition adds 1; each case block of switch adds 1.
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... // in the beginning: V(g) = 1

// +2 conditions, V(g) = 3:

if ((i > 13) || (i < 15)) {

System.out.println("Hello, there!");

// +3 conditions, V(g) = 6:

while ((i > 0) || ((i > 100) && (i < 999))) {

...

}

}

// +1 condition, V(g) = 7

i = (i == 10) ? 0 : 1;

switch(a) {

case 1: // +1, V(g) = 8

break;

case 2: // +1, V(g) = 9

case 3: // +1, V(g) = 10

break;

default:

throw new RuntimeException("a = " + a);

}

Figure D.1: Example
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• Weighted Methods per Class (WMC)

RefactorIT sums the V(G) of all declared methods and constructors of class to cal-

culate WMC.

• Response for Class (RFC)

The response set of a class is the set of all methods and constructors that can be

invoked as a result of a message sent to an object of the class. This includes methods

in the class’s inheritance hierarchy and methods that can be invoked on other objects.

The Response For Class metric is defined to be size of the response set for the class.





Appendix E

Source code

Source code available at request.

Email addresses:

Roger Andersson roger@lysator.liu.se

Patrick Jungner patrick.jungner@hotmail.com
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Appendix F

Source code metrics data
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Entity V(G) LOC NCLOC CLOC DC EXEC WMC RFC

pbc.codegenerator 209 106 78 0.373 8

CodeEntry 40 13 23 0.575 1 4 1

CodeEntry(String) 1 1 1 0 0.0 1

getString() 1 1 1 0 0.0 0

hasValue() 1 1 1 0 0.0 0

toString() 1 1 1 0 0.0 0

CodeEntryValue 30 14 12 0.4 1 4 4

CodeEntryValue(String, String) 1 2 2 0 0.0 1

getValue() 1 1 1 0 0.0 0

hasValue() 1 1 1 0 0.0 0

toString() 1 1 1 0 0.0 0

StackMachineCode 127 70 43 0.339 6 29 9

isMember(String) 23 24 24 0 0.0 0

toString() 2 7 5 0 0.0 2

StackMachineCode() 1 2 2 0 0.0 2

emit(String) 1 1 1 0 0.0 1

emit(String, String) 1 1 1 0 0.0 1

newLabel() 1 1 1 0 0.0 0

Table F.1: Metrics of package pbc.codegenerator
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Entity V(G) LOC NCLOC CLOC DC EXEC WMC RFC

pbc.compiler 107 93 0 0.0 24

Compiler 80 70 0 0.0 24 13 27

main(String[]) 3 27 27 0 0.0 12

parse() 2 8 8 0 0.0 4

Compiler(String) 1 3 3 0 0.0 3

displayError(String) 1 1 1 0 0.0 1

displayError(String, int) 1 1 1 0 0.0 1

displayMessage(String) 1 1 1 0 0.0 1

displayWarning(String) 1 1 1 0 0.0 1

displayWarning(String, int) 1 1 1 0 0.0 1

getStackMachineCode() 1 1 1 0 0.0 0

getSymbolTable() 1 1 1 0 0.0 0

ErrorDisplayer 5 5 0 0.0

displayError(String) 0 0 0 0.0

displayError(String, int) 0 0 0 0.0

displayMessage(String) 0 0 0 0.0

displayWarning(String) 0 0 0 0.0

displayWarning(String, int) 0 0 0 0.0

Table F.2: Metrics of package pbc.compiler
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Entity V(G) LOC NCLOC CLOC DC EXEC WMC RFC

pbc.lexer 434 231 164 0.378 72

Bundle 26 21 0 0.0 2 6 3

equals(Object) 2 4 4 0 0.0 0

Bundle(String) 1 1 1 0 0.0 0

Bundle(String, Class) 1 2 2 0 0.0 2

getLexeme() 1 1 1 0 0.0 0

getTheClass() 1 1 1 0 0.0 0

Reserved 45 14 27 0.6 1 4 9

Reserved() 1 0 0 0 0.0 0

add(String, Class) 1 2 2 0 0.0 1

contains(String) 1 1 1 0 0.0 0

getClassFromLexeme(String) 1 2 2 0 0.0 0

XmplKeywords 23 18 5 0.217 16 1 1

XmplKeywords() 1 16 16 0 0.0 16

XmplOperators 24 19 5 0.208 17 1 1

XmplOperators() 1 17 17 0 0.0 17

continues
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continued

Entity V(G) LOC NCLOC CLOC DC EXEC WMC RFC

XmplTokenizer 256 130 109 0.426 36 25 37

nextToken() 11 51 47 2 0.039 15

consumeToken() 2 2 2 0 0.0 1

XmplTokenizer(ErrorDisplayer, Reader,

SymbolTable, StackMachineCode)

1 25 17 11 0.44 17

getErrorDisplayer() 1 1 1 0 0.0 0

getKeywords() 1 1 1 0 0.0 0

getLineNumber() 1 1 1 0 0.0 0

getMachineCode() 1 1 1 0 0.0 0

getNumberOfErrors() 1 1 1 0 0.0 0

getOperators() 1 1 1 0 0.0 0

getSymbolTable() 1 1 1 0 0.0 0

getToken() 1 1 1 0 0.0 0

getTokenizer() 1 1 1 0 0.0 0

incrementErrors() 1 1 1 0 0.0 1

makeInstance(Reserved, String) 1 14 13 1 0.071 2

Table F.3: Metrics of package pbc.lexer
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Entity V(G) LOC NCLOC CLOC DC EXEC WMC RFC

pbc.parser 1334 897 225 0.169 247

AbstractParser 260 97 142 0.546 26 23 22

isFirst() 3 7 7 0 0.0 1

error(Token[], Token) 2 13 13 0 0.0 8

AbstractParser(ErrorDisplayer, Reader,

SymbolTable, StackMachineCode)

1 3 3 0 0.0 3

AbstractParser(XmplTokenizer) 1 2 2 0 0.0 2

consumeToken() 1 1 1 0 0.0 1

emitCode(String) 1 1 1 0 0.0 1

emitCode(String, String) 1 1 1 0 0.0 1

error(String) 1 11 11 0 0.0 7

getErrorDisplayer() 1 1 1 0 0.0 0

getFirst() 1 2 2 0 0.0 0

getLexeme() 1 1 1 0 0.0 0

getMachineCode() 1 1 1 0 0.0 0

getNewLabel() 1 1 1 0 0.0 0

getSymbolTable() 1 1 1 0 0.0 0

getToken() 1 1 1 0 0.0 0

getTokenizer() 1 1 1 0 0.0 0

getType() 1 1 1 0 0.0 0

continues
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continued

Entity V(G) LOC NCLOC CLOC DC EXEC WMC RFC

isParseOk() 1 1 1 0 0.0 0

setParseOk(boolean) 1 1 1 0 0.0 1

setType(Type) 1 1 1 0 0.0 1

parse() 0 0 0 0.0

AssignmentStatementParser 48 38 1 0.021 15 7 25

parse() 5 37 29 1 0.027 15

AssignmentStatementParser(XmplTokenizer) 1 1 1 0 0.0 0

getFirst() 1 2 2 0 0.0 0

ConstantParser 34 27 2 0.059 10 6 17

parse() 4 23 18 2 0.087 10

ConstantParser(XmplTokenizer) 1 1 1 0 0.0 0

getFirst() 1 2 2 0 0.0 0

ExpressionParser 57 43 3 0.053 14 11 23

parse() 9 46 34 3 0.065 14

ExpressionParser(XmplTokenizer) 1 1 1 0 0.0 0

getFirst() 1 2 2 0 0.0 0

FactorParser 64 48 3 0.047 18 9 34

parse() 7 47 35 3 0.064 15

FactorParser(XmplTokenizer) 1 1 1 0 0.0 0

getFirst() 1 8 6 0 0.0 3

continues
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continued

Entity V(G) LOC NCLOC CLOC DC EXEC WMC RFC

IfStatParser 76 55 6 0.079 22 11 25

parse() 9 65 46 6 0.092 22

IfStatParser(XmplTokenizer) 1 1 1 0 0.0 0

getFirst() 1 2 2 0 0.0 0

LoopStatParser 86 62 5 0.058 26 13 26

parse() 11 75 53 5 0.067 26

LoopStatParser(XmplTokenizer) 1 1 1 0 0.0 0

getFirst() 1 2 2 0 0.0 0

ProgramParser 71 54 6 0.085 21 11 22

parse() 9 60 45 6 0.1 21

ProgramParser(XmplTokenizer) 1 1 1 0 0.0 0

getFirst() 1 2 2 0 0.0 0

SimpleExprParser 57 45 1 0.018 14 11 22

parse() 9 46 36 1 0.022 14

SimpleExprParser(XmplTokenizer) 1 1 1 0 0.0 0

getFirst() 1 2 2 0 0.0 0

StatListParser 33 24 1 0.03 7 8 18

parse() 6 23 16 1 0.043 7

StatListParser(XmplTokenizer) 1 1 1 0 0.0 0

isFirst() 1 1 1 0 0.0 0

continues
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continued

Entity V(G) LOC NCLOC CLOC DC EXEC WMC RFC

StatPartParser 42 32 3 0.071 11 9 19

parse() 7 31 23 3 0.097 11

StatPartParser(XmplTokenizer) 1 1 1 0 0.0 0

getFirst() 1 2 2 0 0.0 0

StatementParser 49 43 1 0.02 12 9 24

parse() 7 32 28 1 0.031 9

StatementParser(XmplTokenizer) 1 1 1 0 0.0 0

getFirst() 1 8 8 0 0.0 3

TermParser 51 41 2 0.039 13 10 20

parse() 8 40 32 2 0.05 13

TermParser(XmplTokenizer) 1 1 1 0 0.0 0

getFirst() 1 2 2 0 0.0 0

Type 74 38 31 0.419 5 9 8

fromString(String) 3 7 7 0 0.0 1

Type(String, boolean) 2 5 5 0 0.0 4

equals(Object) 2 4 4 0 0.0 0

isValid() 1 1 1 0 0.0 0

toString() 1 1 1 0 0.0 0

continues
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continued

Entity V(G) LOC NCLOC CLOC DC EXEC WMC RFC

TypeClauseParser 20 14 1 0.05 5 3 11

TypeClauseParser(XmplTokenizer) 1 1 1 0 0.0 0

getFirst() 1 2 2 0 0.0 0

parse() 1 9 5 1 0.111 5

VarDeclParser 66 51 8 0.121 18 10 27

parse() 8 55 42 8 0.145 18

VarDeclParser(XmplTokenizer) 1 1 1 0 0.0 0

getFirst() 1 2 2 0 0.0 0

VarPartParser 39 29 6 0.154 8 8 17

parse() 6 29 21 5 0.172 8

VarPartParser(XmplTokenizer) 1 1 1 0 0.0 0

isFirst() 1 1 1 1 0.0 0

XmplProgramParser 19 16 0 0.0 2 4 9

parse() 2 8 7 0 0.0 2

XmplProgramParser(XmplTokenizer) 1 1 1 0 0.0 0

getFirst() 1 2 2 0 0.0 0

Table F.4: Metrics of package pbc.parser
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Entity V(G) LOC NCLOC CLOC DC EXEC WMC RFC

pbc.symboltable 139 72 46 0.331 6

SymbolEntry 30 24 0 0.0 2 7 6

equals(Object) 2 4 4 0 0.0 0

SymbolEntry(String, Type) 1 2 2 0 0.0 2

getLexeme() 1 1 1 0 0.0 0

getType() 1 1 1 0 0.0 0

hashCode() 1 1 1 0 0.0 0

toString() 1 1 1 0 0.0 0

SymbolList 19 12 6 0.316 3 4 8

toString() 2 7 7 0 0.0 3

SymbolList() 1 0 0 0 0.0 0

getEntry(int) 1 1 1 0 0.0 0

SymbolTable 71 24 40 0.563 1 7 12

SymbolTable() 1 0 0 0 0.0 0

contains(String) 1 2 2 0 0.0 0

getSize() 1 1 1 0 0.0 0

getType(String) 1 1 1 0 0.0 0

insert(String, Type) 1 1 1 0 0.0 1

lookup(String) 1 2 2 0 0.0 0

toString() 1 2 2 0 0.0 0

Table F.5: Metrics of package pbc.symboltable
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Entity V(G) LOC NCLOC CLOC DC EXEC WMC RFC

pbc.token 897 511 254 0.283 1

AddopToken 7 6 0 0.0 0 2 1

AddopToken(String) 1 1 1 0 0.0 0

isAddop() 1 1 1 0 0.0 0

AndOpToken 7 6 0 0.0 0 2 1

AndOpToken() 1 1 1 0 0.0 0

isAndOp() 1 1 1 0 0.0 0

AssignmentToken 7 6 0 0.0 0 2 1

AssignmentToken() 1 1 1 0 0.0 0

isAssignment() 1 1 1 0 0.0 0

BeginToken 7 6 0 0.0 0 2 1

BeginToken() 1 1 1 0 0.0 0

isBegin() 1 1 1 0 0.0 0

BoolToken 7 6 0 0.0 0 2 1

BoolToken() 1 1 1 0 0.0 0

isBool() 1 1 1 0 0.0 0

DivideOpToken 7 6 0 0.0 0 2 1

DivideOpToken() 1 1 1 0 0.0 0

isDivideOp() 1 1 1 0 0.0 0

ElseToken 7 6 0 0.0 0 2 1

ElseToken() 1 1 1 0 0.0 0

isElse() 1 1 1 0 0.0 0

continues
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continued

Entity V(G) LOC NCLOC CLOC DC EXEC WMC RFC

EmptyToken 7 6 0 0.0 0 2 1

EmptyToken() 1 1 1 0 0.0 0

isEmpty() 1 1 1 0 0.0 0

EndOfProgramToken 7 6 0 0.0 0 2 1

EndOfProgramToken() 1 1 1 0 0.0 0

isEndOfProgram() 1 1 1 0 0.0 0

EndToken 7 6 0 0.0 0 2 1

EndToken() 1 1 1 0 0.0 0

isEnd() 1 1 1 0 0.0 0

EofToken 7 6 0 0.0 0 2 1

EofToken() 1 1 1 0 0.0 0

isEof() 1 1 1 0 0.0 0

EqualsOpToken 7 6 0 0.0 0 2 1

EqualsOpToken() 1 1 1 0 0.0 0

isEqualsOp() 1 1 1 0 0.0 0

ExitToken 7 6 0 0.0 0 2 1

ExitToken() 1 1 1 0 0.0 0

isExit() 1 1 1 0 0.0 0

FalseToken 7 6 0 0.0 0 2 1

FalseToken() 1 1 1 0 0.0 0

isFalse() 1 1 1 0 0.0 0

continues
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continued

Entity V(G) LOC NCLOC CLOC DC EXEC WMC RFC

GreaterEqualOpToken 3 3 0 0.0 0 1 1

GreaterEqualOpToken() 1 1 1 0 0.0 0

GreaterOpToken 3 3 0 0.0 0 1 1

GreaterOpToken() 1 1 1 0 0.0 0

IdToken 11 9 0 0.0 0 3 1

IdToken(String) 1 1 1 0 0.0 0

equals(Object) 1 1 1 0 0.0 0

isId() 1 1 1 0 0.0 0

IfToken 7 6 0 0.0 0 2 1

IfToken() 1 1 1 0 0.0 0

isIf() 1 1 1 0 0.0 0

IntToken 7 6 0 0.0 0 2 1

IntToken() 1 1 1 0 0.0 0

isInt() 1 1 1 0 0.0 0

KeywordToken 7 6 0 0.0 0 2 1

KeywordToken(String) 1 1 1 0 0.0 0

isKeyword() 1 1 1 0 0.0 0

LeftParenthesisToken 7 6 0 0.0 0 2 1

LeftParenthesisToken() 1 1 1 0 0.0 0

isLeftParenthesis() 1 1 1 0 0.0 0

continues
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continued

Entity V(G) LOC NCLOC CLOC DC EXEC WMC RFC

LesserEqualOpToken 3 3 0 0.0 0 1 1

LesserEqualOpToken() 1 1 1 0 0.0 0

LesserOpToken 3 3 0 0.0 0 1 1

LesserOpToken() 1 1 1 0 0.0 0

ListSeparatorToken 7 6 0 0.0 0 2 1

ListSeparatorToken() 1 1 1 0 0.0 0

isListSeparator() 1 1 1 0 0.0 0

LoopToken 7 6 0 0.0 0 2 1

LoopToken() 1 1 1 0 0.0 0

isLoop() 1 1 1 0 0.0 0

MinusOpToken 7 6 0 0.0 0 2 1

MinusOpToken() 1 1 1 0 0.0 0

isMinusOp() 1 1 1 0 0.0 0

MulopToken 7 6 0 0.0 0 2 1

MulopToken(String) 1 1 1 0 0.0 0

isMulop() 1 1 1 0 0.0 0

NotEqualsOpToken 7 6 0 0.0 0 2 1

NotEqualsOpToken() 1 1 1 0 0.0 0

isNotEqualsOp() 1 1 1 0 0.0 0

continues
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continued

Entity V(G) LOC NCLOC CLOC DC EXEC WMC RFC

NumberToken 15 12 1 0.067 0 4 1

NumberToken() 1 1 1 1 0.0 0

NumberToken(String) 1 1 1 0 0.0 0

equals(Object) 1 1 1 0 0.0 0

isNumber() 1 1 1 0 0.0 0

OrOpToken 7 6 0 0.0 0 2 1

OrOpToken() 1 1 1 0 0.0 0

isOrOp() 1 1 1 0 0.0 0

PlusOpToken 7 6 0 0.0 0 2 1

PlusOpToken() 1 1 1 0 0.0 0

isPlusOp() 1 1 1 0 0.0 0

ProgramToken 7 6 0 0.0 0 2 1

ProgramToken() 1 1 1 0 0.0 0

isProgram() 1 1 1 0 0.0 0

RelopToken 7 6 0 0.0 0 2 1

RelopToken(String) 1 1 1 0 0.0 0

isRelop() 1 1 1 0 0.0 0

RightParenthesisToken 7 6 0 0.0 0 2 1

RightParenthesisToken() 1 1 1 0 0.0 0

isRightParenthesis() 1 1 1 0 0.0 0

continues
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continued

Entity V(G) LOC NCLOC CLOC DC EXEC WMC RFC

SeparatorToken 7 6 0 0.0 0 2 1

SeparatorToken() 1 1 1 0 0.0 0

isSeparator() 1 1 1 0 0.0 0

StringToken 11 9 0 0.0 0 3 1

StringToken(String, int) 1 1 1 0 0.0 0

getQuoteCharacter() 1 1 1 0 0.0 0

isQuote() 1 1 1 0 0.0 0

ThenToken 7 6 0 0.0 0 2 1

ThenToken() 1 1 1 0 0.0 0

isThen() 1 1 1 0 0.0 0

TimesOpToken 7 6 0 0.0 0 2 1

TimesOpToken() 1 1 1 0 0.0 0

isTimesOp() 1 1 1 0 0.0 0

Token 425 130 253 0.595 1 43 2

equals(Object) 2 4 4 0 0.0 0

Token(String) 1 1 1 0 0.0 1

getLexeme() 1 1 1 0 0.0 0

isAddop() 1 1 1 0 0.0 0

isAndOp() 1 1 1 0 0.0 0

isAssignment() 1 1 1 0 0.0 0

isBegin() 1 1 1 0 0.0 0

isBool() 1 1 1 0 0.0 0

continues
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continued

Entity V(G) LOC NCLOC CLOC DC EXEC WMC RFC

isDivideOp() 1 1 1 0 0.0 0

isElse() 1 1 1 0 0.0 0

isEnd() 1 1 1 0 0.0 0

isEndOfProgram() 1 1 1 0 0.0 0

isEof() 1 1 1 0 0.0 0

isEqualsOp() 1 1 1 0 0.0 0

isExit() 1 1 1 0 0.0 0

isFalse() 1 1 1 0 0.0 0

isId() 1 1 1 0 0.0 0

isIf() 1 1 1 0 0.0 0

isInt() 1 1 1 0 0.0 0

isKeyword() 1 1 1 0 0.0 0

isLeftParenthesis() 1 1 1 0 0.0 0

isListSeparator() 1 1 1 0 0.0 0

isLoop() 1 1 1 0 0.0 0

isMinusOp() 1 1 1 0 0.0 0

isMulop() 1 1 1 0 0.0 0

isNotEqualsOp() 1 1 1 0 0.0 0

isNumber() 1 1 1 0 0.0 0

isOr() 1 1 1 0 0.0 0

isOrOp() 1 1 1 0 0.0 0

isPlusOp() 1 1 1 0 0.0 0

continues
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continued

Entity V(G) LOC NCLOC CLOC DC EXEC WMC RFC

isProgram() 1 1 1 0 0.0 0

isQuote() 1 1 1 0 0.0 0

isRelop() 1 1 1 0 0.0 0

isRightParenthesis() 1 1 1 0 0.0 0

isSeparator() 1 1 1 0 0.0 0

isThen() 1 1 1 0 0.0 0

isTimesOp() 1 1 1 0 0.0 0

isTrue() 1 1 1 0 0.0 0

isTypeDeclaration() 1 1 1 0 0.0 0

isVar() 1 1 1 0 0.0 0

isWhen() 1 1 1 0 0.0 0

toString() 1 1 1 0 0.0 0

TrueToken 7 6 0 0.0 0 2 1

TrueToken() 1 1 1 0 0.0 0

isTrue() 1 1 1 0 0.0 0

TypeDeclarationToken 7 6 0 0.0 0 2 1

TypeDeclarationToken() 1 1 1 0 0.0 0

isTypeDeclaration() 1 1 1 0 0.0 0

VarToken 7 6 0 0.0 0 2 1

VarToken() 1 1 1 0 0.0 0

isVar() 1 1 1 0 0.0 0

continues
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continued

Entity V(G) LOC NCLOC CLOC DC EXEC WMC RFC

WhenToken 7 6 0 0.0 0 2 1

WhenToken() 1 1 1 0 0.0 0

isWhen() 1 1 1 0 0.0 0

Table F.6: Metrics of package pbc.token
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Entity V(G) LOC NCLOC CLOC DC EXEC WMC RFC

pbc.util 80 61 7 0.088 19

Debug 71 55 7 0.099 19 16 13

printEnteringInfo(String, Token) 3 8 8 0 0.0 4

printLeavingInfo(String, AbstractParser) 3 10 9 0 0.0 5

printLeavingInfo(String, Token) 3 9 8 0 0.0 4

Debug() 2 2 2 0 0.0 1

printGetFirst(Token[]) 2 4 4 0 0.0 3

println(String) 2 2 2 0 0.0 1

error(Object) 1 2 2 0 0.0 1

Table F.7: Metrics of package pbc.util



128
A

P
P

E
N

D
IX

F
.

S
O

U
R

C
E

C
O

D
E

M
E

T
R

IC
S

D
A
T
A

Entity V(G) LOC NCLOC CLOC DC EXEC WMC RFC

dp.codegenerator 249 120 100 0.402 8

CodeEntry 44 13 27 0.614 1 4 1

CodeEntry(String) 1 1 1 0 0.0 1

getString() 1 1 1 0 0.0 0

hasValue() 1 1 1 0 0.0 0

toString() 1 1 1 0 0.0 0

CodeEntryValue 33 14 15 0.455 1 4 4

CodeEntryValue(String, String) 1 2 2 0 0.0 1

getValue() 1 1 1 0 0.0 0

hasValue() 1 1 1 0 0.0 0

toString() 1 1 1 0 0.0 0

StackMachineCode 139 76 50 0.36 6 31 11

isValidOpCode(String) 23 24 24 0 0.0 0

emit(String) 2 4 4 0 0.0 1

emit(String, String) 2 4 4 0 0.0 1

toString() 2 7 5 0 0.0 2

StackMachineCode() 1 2 2 0 0.0 2

getNewLabel() 1 1 1 0 0.0 0

UndefinedOpcodeError 8 3 5 0.625 0 1 2

UndefinedOpcodeError(String) 1 1 1 0 0.0 0

Table F.8: Metrics of package dp.codegenerator
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Entity V(G) LOC NCLOC CLOC DC EXEC WMC RFC

dp.compiler 126 108 0 0.0 23

Compiler 94 81 0 0.0 23 15 26

main(String[]) 3 17 17 0 0.0 6

Compiler(Reader) 1 18 18 0 0.0 8

displayError(String) 1 1 1 0 0.0 1

displayError(String, int) 1 1 1 0 0.0 1

displayMessage(String) 1 1 1 0 0.0 1

displayWarning(String) 1 1 1 0 0.0 1

displayWarning(String, int) 1 1 1 0 0.0 1

getLineNumber() 1 1 1 0 0.0 0

getNumberOfErrors() 1 1 1 0 0.0 0

getStackMachineCode() 1 1 1 0 0.0 0

getSymbolTable() 1 1 1 0 0.0 0

getTokenizer() 1 1 1 0 0.0 0

writeFiles(String, Compiler) 1 6 6 0 0.0 4

ErrorDisplayer 5 5 0 0.0

displayError(String) 0 0 0 0.0

displayError(String, int) 0 0 0 0.0

displayMessage(String) 0 0 0 0.0

displayWarning(String) 0 0 0 0.0

displayWarning(String, int) 0 0 0 0.0

Table F.9: Metrics of package dp.compiler
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Entity V(G) LOC NCLOC CLOC DC EXEC WMC RFC

dp.lexer 447 238 169 0.378 71

Bundle 26 21 0 0.0 2 6 3

equals(Object) 2 4 4 0 0.0 0

Bundle(String) 1 1 1 0 0.0 0

Bundle(String, Class) 1 2 2 0 0.0 2

getLexeme() 1 1 1 0 0.0 0

getTheClass() 1 1 1 0 0.0 0

Reserved 45 14 27 0.6 1 4 9

Reserved() 1 0 0 0 0.0 0

add(String, Class) 1 2 2 0 0.0 1

contains(String) 1 1 1 0 0.0 0

getClassFromLexeme(String) 1 2 2 0 0.0 0

XmplKeywords 23 18 5 0.217 16 1 1

XmplKeywords() 1 16 16 0 0.0 16

XmplOperators 24 19 5 0.208 17 1 1

XmplOperators() 1 17 17 0 0.0 17

continues
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continued

Entity V(G) LOC NCLOC CLOC DC EXEC WMC RFC

XmplTokenizer 268 138 112 0.418 35 25 36

nextToken() 11 53 48 2 0.038 14

consumeToken() 2 4 4 0 0.0 1

XmplTokenizer(ErrorDisplayer, Reader,

SymbolTable, StackMachineCode)

1 32 22 11 0.344 17

getErrorDisplayer() 1 1 1 0 0.0 0

getKeywords() 1 1 1 0 0.0 0

getLineNumber() 1 1 1 0 0.0 0

getMachineCode() 1 1 1 0 0.0 0

getNumberOfErrors() 1 1 1 0 0.0 0

getOperators() 1 1 1 0 0.0 0

getSymbolTable() 1 1 1 0 0.0 0

getToken() 1 2 2 0 0.0 0

getTokenizer() 1 1 1 0 0.0 0

incrementErrors() 1 1 1 0 0.0 1

makeInstance(Reserved, String) 1 14 13 1 0.071 2

Table F.10: Metrics of package dp.lexer
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Entity V(G) LOC NCLOC CLOC DC EXEC WMC RFC

dp.parser 1281 712 342 0.267 139

AbstractParser 221 69 132 0.597 15 17 21

AbstractParser(XmplTokenizer) 1 6 4 0 0.0 3

consumeToken() 1 1 1 0 0.0 1

displayError(String) 1 7 7 0 0.0 4

displayWarning(String) 1 6 6 0 0.0 3

emitCode(String) 1 1 1 0 0.0 1

emitCode(String, String) 1 1 1 0 0.0 1

getErrorDisplayer() 1 1 1 0 0.0 0

getLexeme() 1 1 1 0 0.0 0

getMachineCode() 1 1 1 0 0.0 0

getNewLabel() 1 1 1 0 0.0 0

getSymbolTable() 1 1 1 0 0.0 0

getToken() 1 1 1 0 0.0 0

getTokenizer() 1 1 1 0 0.0 0

getType() 1 1 1 0 0.0 0

isParseOk() 1 1 1 0 0.0 0

setParseOk(boolean) 1 1 1 0 0.0 1

setType(Type) 1 1 1 0 0.0 1

parse() 0 0 0 0.0

continues
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continued

Entity V(G) LOC NCLOC CLOC DC EXEC WMC RFC

AssignmentStatementParser 36 28 1 0.028 10 5 20

parse() 4 30 23 1 0.033 10

AssignmentStatementParser(XmplTokenizer) 1 1 1 0 0.0 0

ConstantParser 27 21 2 0.074 9 5 12

parse() 4 21 16 2 0.095 9

ConstantParser(XmplTokenizer) 1 1 1 0 0.0 0

ExpressionParser 38 26 3 0.079 7 7 17

parse() 6 32 21 3 0.094 7

ExpressionParser(XmplTokenizer) 1 1 1 0 0.0 0

ExtraneousInputException 8 3 5 0.625 0 1 1

ExtraneousInputException() 1 1 1 0 0.0 0

FactorParser 39 29 2 0.051 9 6 20

parse() 5 33 24 2 0.061 9

FactorParser(XmplTokenizer) 1 1 1 0 0.0 0

IfStatParser 58 39 4 0.069 12 8 20

parse() 7 52 34 4 0.077 12

IfStatParser(XmplTokenizer) 1 1 1 0 0.0 0

LoopStatParser 67 44 5 0.075 14 9 21

parse() 8 61 39 5 0.082 14

LoopStatParser(XmplTokenizer) 1 1 1 0 0.0 0

continues
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continued

Entity V(G) LOC NCLOC CLOC DC EXEC WMC RFC

ParseException 17 6 10 0.588 0 2 2

ParseException() 1 1 1 0 0.0 0

ParseException(String) 1 1 1 0 0.0 0

ProgramParser 52 39 3 0.058 11 9 20

parse() 8 46 34 3 0.065 11

ProgramParser(XmplTokenizer) 1 1 1 0 0.0 0

RedeclaredVariableException 8 3 5 0.625 0 1 2

RedeclaredVariableException(String) 1 1 1 0 0.0 0

SemanticException 17 6 10 0.588 0 2 2

SemanticException() 1 1 1 0 0.0 0

SemanticException(String) 1 1 1 0 0.0 0

SimpleExprParser 40 29 1 0.025 7 7 17

parse() 6 34 24 1 0.029 7

SimpleExprParser(XmplTokenizer) 1 1 1 0 0.0 0

StatListParser 31 23 2 0.065 6 8 15

parse() 7 25 18 2 0.08 6

StatListParser(XmplTokenizer) 1 1 1 0 0.0 0

StatPartParser 23 16 1 0.043 4 4 10

parse() 3 17 11 1 0.059 4

StatPartParser(XmplTokenizer) 1 1 1 0 0.0 0

continues
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continued

Entity V(G) LOC NCLOC CLOC DC EXEC WMC RFC

StatementParser 22 17 1 0.045 2 5 12

parse() 4 16 12 1 0.062 2

StatementParser(XmplTokenizer) 1 1 1 0 0.0 0

SyntacticException 17 6 10 0.588 0 2 2

SyntacticException() 1 1 1 0 0.0 0

SyntacticException(String) 1 1 1 0 0.0 0

TermParser 36 28 2 0.056 7 7 16

parse() 6 30 23 2 0.067 7

TermParser(XmplTokenizer) 1 1 1 0 0.0 0

Type 93 40 47 0.505 6 9 9

fromString(String) 3 8 8 1 0.125 2

Type(String, boolean) 2 6 6 0 0.0 4

equals(Object) 2 4 4 0 0.0 0

isValid() 1 1 1 0 0.0 0

toString() 1 1 1 0 0.0 0

TypeClauseParser 23 18 1 0.045 4 7 14

parse() 6 17 13 1 0.062 4

TypeClauseParser(XmplTokenizer) 1 1 1 0 0.0 0

TypeMismatchException 9 3 6 0.667 0 1 3

TypeMismatchException(Type, Type) 1 1 1 0 0.0 0

continues
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continued

Entity V(G) LOC NCLOC CLOC DC EXEC WMC RFC

UndeclaredVariableException 8 3 5 0.625 0 1 2

UndeclaredVariableException(String) 1 1 1 0 0.0 0

UnexpectedTokenException 9 3 6 0.667 0 1 3

UnexpectedTokenException(String, Token) 1 1 1 0 0.0 0

VarDeclParser 58 43 7 0.121 12 9 22

parse() 8 52 38 7 0.135 12

VarDeclParser(XmplTokenizer) 1 1 1 0 0.0 0

VarPartParser 29 21 2 0.069 4 6 11

parse() 5 23 16 2 0.087 4

VarPartParser(XmplTokenizer) 1 1 1 0 0.0 0

WrongTypeException 9 3 6 0.667 0 1 3

WrongTypeException(Type, Type) 1 1 1 0 0.0 0

XmplProgramParser 7 6 0 0.0 0 2 3

XmplProgramParser(XmplTokenizer) 1 1 1 0 0.0 0

parse() 1 1 1 0 0.0 0

Table F.11: Metrics of package dp.parser
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Entity V(G) LOC NCLOC CLOC DC EXEC WMC RFC

dp.symboltable 268 93 148 0.552 7

SymbolEntry 80 26 48 0.6 2 7 7

equals(Object) 2 4 4 0 0.0 0

SymbolEntry(String, Type) 1 4 4 0 0.0 2

getLexeme() 1 1 1 0 0.0 0

getType() 1 1 1 0 0.0 0

hashCode() 1 1 1 0 0.0 0

toString() 1 1 1 0 0.0 0

SymbolList 33 14 18 0.545 3 4 8

toString() 2 7 7 0 0.0 3

SymbolList() 1 0 0 0 0.0 0

getEntry(int) 1 3 3 0 0.0 0

SymbolTable 108 41 54 0.5 2 7 19

SymbolTable() 1 0 0 0 0.0 0

contains(String) 1 4 3 1 0.25 0

getSize() 1 3 3 0 0.0 0

getType(String) 1 5 5 0 0.0 0

insert(String, Type) 1 11 7 1 0.091 1

lookup(String) 1 10 6 1 0.1 1

toString() 1 2 2 0 0.0 0

Table F.12: Metrics of package dp.symboltable
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Entity V(G) LOC NCLOC CLOC DC EXEC WMC RFC

dp.token 946 506 274 0.29 2

AddopToken 7 6 0 0.0 0 2 1

AddopToken(String) 1 1 1 0 0.0 0

isAddop() 1 1 1 0 0.0 0

AndOpToken 7 6 0 0.0 0 2 1

AndOpToken() 1 1 1 0 0.0 0

isAndOp() 1 1 1 0 0.0 0

AssignmentToken 7 6 0 0.0 0 2 1

AssignmentToken() 1 1 1 0 0.0 0

isAssignment() 1 1 1 0 0.0 0

BeginToken 7 6 0 0.0 0 2 1

BeginToken() 1 1 1 0 0.0 0

isBegin() 1 1 1 0 0.0 0

BoolToken 7 6 0 0.0 0 2 1

BoolToken() 1 1 1 0 0.0 0

isBool() 1 1 1 0 0.0 0

DivideOpToken 7 6 0 0.0 0 2 1

DivideOpToken() 1 1 1 0 0.0 0

isDivideOp() 1 1 1 0 0.0 0

ElseToken 7 6 0 0.0 0 2 1

ElseToken() 1 1 1 0 0.0 0

isElse() 1 1 1 0 0.0 0

continues
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continued

Entity V(G) LOC NCLOC CLOC DC EXEC WMC RFC

EmptyToken 7 6 0 0.0 0 2 1

EmptyToken() 1 1 1 0 0.0 0

isEmpty() 1 1 1 0 0.0 0

EndOfProgramToken 7 6 0 0.0 0 2 1

EndOfProgramToken() 1 1 1 0 0.0 0

isEndOfProgram() 1 1 1 0 0.0 0

EndToken 7 6 0 0.0 0 2 1

EndToken() 1 1 1 0 0.0 0

isEnd() 1 1 1 0 0.0 0

EofToken 7 6 0 0.0 0 2 1

EofToken() 1 1 1 0 0.0 0

isEof() 1 1 1 0 0.0 0

EqualsOpToken 7 6 0 0.0 0 2 1

EqualsOpToken() 1 1 1 0 0.0 0

isEqualsOp() 1 1 1 0 0.0 0

ExitToken 7 6 0 0.0 0 2 1

ExitToken() 1 1 1 0 0.0 0

isExit() 1 1 1 0 0.0 0

FalseToken 7 6 0 0.0 0 2 1

FalseToken() 1 1 1 0 0.0 0

isFalse() 1 1 1 0 0.0 0

continues
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continued

Entity V(G) LOC NCLOC CLOC DC EXEC WMC RFC

GreaterEqualOpToken 3 3 0 0.0 0 1 1

GreaterEqualOpToken() 1 1 1 0 0.0 0

GreaterOpToken 3 3 0 0.0 0 1 1

GreaterOpToken() 1 1 1 0 0.0 0

IdToken 14 9 3 0.214 0 3 1

IdToken(String) 1 1 1 0 0.0 0

equals(Object) 1 1 1 0 0.0 0

isId() 1 1 1 0 0.0 0

IfToken 7 6 0 0.0 0 2 1

IfToken() 1 1 1 0 0.0 0

isIf() 1 1 1 0 0.0 0

IntToken 7 6 0 0.0 0 2 1

IntToken() 1 1 1 0 0.0 0

isInt() 1 1 1 0 0.0 0

KeywordToken 7 6 0 0.0 0 2 1

KeywordToken(String) 1 1 1 0 0.0 0

isKeyword() 1 1 1 0 0.0 0

LeftParenthesisToken 7 6 0 0.0 0 2 1

LeftParenthesisToken() 1 1 1 0 0.0 0

isLeftParenthesis() 1 1 1 0 0.0 0

continues
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continued

Entity V(G) LOC NCLOC CLOC DC EXEC WMC RFC

LesserEqualOpToken 3 3 0 0.0 0 1 1

LesserEqualOpToken() 1 1 1 0 0.0 0

LesserOpToken 3 3 0 0.0 0 1 1

LesserOpToken() 1 1 1 0 0.0 0

ListSeparatorToken 7 6 0 0.0 0 2 1

ListSeparatorToken() 1 1 1 0 0.0 0

isListSeparator() 1 1 1 0 0.0 0

LoopToken 7 6 0 0.0 0 2 1

LoopToken() 1 1 1 0 0.0 0

isLoop() 1 1 1 0 0.0 0

MinusOpToken 7 6 0 0.0 0 2 1

MinusOpToken() 1 1 1 0 0.0 0

isMinusOp() 1 1 1 0 0.0 0

MulopToken 7 6 0 0.0 0 2 1

MulopToken(String) 1 1 1 0 0.0 0

isMulop() 1 1 1 0 0.0 0

NotEqualsOpToken 7 6 0 0.0 0 2 1

NotEqualsOpToken() 1 1 1 0 0.0 0

isNotEqualsOp() 1 1 1 0 0.0 0

continues
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continued

Entity V(G) LOC NCLOC CLOC DC EXEC WMC RFC

NumberToken 11 9 0 0.0 0 3 1

NumberToken(String) 1 1 1 0 0.0 0

equals(Object) 1 1 1 0 0.0 0

isNumber() 1 1 1 0 0.0 0

OrOpToken 7 6 0 0.0 0 2 1

OrOpToken() 1 1 1 0 0.0 0

isOrOp() 1 1 1 0 0.0 0

PlusOpToken 7 6 0 0.0 0 2 1

PlusOpToken() 1 1 1 0 0.0 0

isPlusOp() 1 1 1 0 0.0 0

ProgramToken 7 6 0 0.0 0 2 1

ProgramToken() 1 1 1 0 0.0 0

isProgram() 1 1 1 0 0.0 0

RelopToken 7 6 0 0.0 0 2 1

RelopToken(String) 1 1 1 0 0.0 0

isRelop() 1 1 1 0 0.0 0

RightParenthesisToken 7 6 0 0.0 0 2 1

RightParenthesisToken() 1 1 1 0 0.0 0

isRightParenthesis() 1 1 1 0 0.0 0

continues
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continued

Entity V(G) LOC NCLOC CLOC DC EXEC WMC RFC

SeparatorToken 7 6 0 0.0 0 2 1

SeparatorToken() 1 1 1 0 0.0 0

isSeparator() 1 1 1 0 0.0 0

ThenToken 7 6 0 0.0 0 2 1

ThenToken() 1 1 1 0 0.0 0

isThen() 1 1 1 0 0.0 0

TimesOpToken 7 6 0 0.0 0 2 1

TimesOpToken() 1 1 1 0 0.0 0

isTimesOp() 1 1 1 0 0.0 0

Token 455 140 271 0.596 2 45 5

equals(Object) 2 4 4 0 0.0 0

Token(String) 1 1 1 0 0.0 0

Token(String, String) 1 4 4 0 0.0 2

getLexeme() 1 1 1 0 0.0 0

getName() 1 1 1 0 0.0 0

isAddop() 1 1 1 0 0.0 0

isAndOp() 1 1 1 0 0.0 0

isAssignment() 1 1 1 0 0.0 0

isBegin() 1 1 1 0 0.0 0

isBool() 1 1 1 0 0.0 0

isDivideOp() 1 1 1 0 0.0 0

isElse() 1 1 1 0 0.0 0

continues
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continued

Entity V(G) LOC NCLOC CLOC DC EXEC WMC RFC

isEnd() 1 1 1 0 0.0 0

isEndOfProgram() 1 1 1 0 0.0 0

isEof() 1 1 1 0 0.0 0

isEqualsOp() 1 1 1 0 0.0 0

isExit() 1 1 1 0 0.0 0

isFalse() 1 1 1 0 0.0 0

isId() 1 1 1 0 0.0 0

isIf() 1 1 1 0 0.0 0

isInt() 1 1 1 0 0.0 0

isKeyword() 1 1 1 0 0.0 0

isLeftParenthesis() 1 1 1 0 0.0 0

isListSeparator() 1 1 1 0 0.0 0

isLoop() 1 1 1 0 0.0 0

isMinusOp() 1 1 1 0 0.0 0

isMulop() 1 1 1 0 0.0 0

isNotEqualsOp() 1 1 1 0 0.0 0

isNumber() 1 1 1 0 0.0 0

isOr() 1 1 1 0 0.0 0

isOrOp() 1 1 1 0 0.0 0

isPlusOp() 1 1 1 0 0.0 0

isProgram() 1 1 1 0 0.0 0

isQuote() 1 1 1 0 0.0 0

continues
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continued

Entity V(G) LOC NCLOC CLOC DC EXEC WMC RFC

isRelop() 1 1 1 0 0.0 0

isRightParenthesis() 1 1 1 0 0.0 0

isSeparator() 1 1 1 0 0.0 0

isThen() 1 1 1 0 0.0 0

isTimesOp() 1 1 1 0 0.0 0

isTrue() 1 1 1 0 0.0 0

isTypeDeclaration() 1 1 1 0 0.0 0

isVar() 1 1 1 0 0.0 0

isWhen() 1 1 1 0 0.0 0

toString() 1 1 1 0 0.0 0

TrueToken 7 6 0 0.0 0 2 1

TrueToken() 1 1 1 0 0.0 0

isTrue() 1 1 1 0 0.0 0

TypeDeclarationToken 7 6 0 0.0 0 2 1

TypeDeclarationToken() 1 1 1 0 0.0 0

isTypeDeclaration() 1 1 1 0 0.0 0

VarToken 7 6 0 0.0 0 2 1

VarToken() 1 1 1 0 0.0 0

isVar() 1 1 1 0 0.0 0

continues
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continued

Entity V(G) LOC NCLOC CLOC DC EXEC WMC RFC

WhenToken 7 6 0 0.0 0 2 1

WhenToken() 1 1 1 0 0.0 0

isWhen() 1 1 1 0 0.0 0

Table F.13: Metrics of package dp.token
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Entity V(G) LOC NCLOC CLOC DC EXEC WMC RFC

dp.util 69 51 8 0.116 15

Debug 52 45 0 0.0 15 13 11

printEnteringInfo(String, Token) 3 8 8 0 0.0 4

printLeavingInfo(String, AbstractParser) 3 10 9 0 0.0 5

printLeavingInfo(String, Token) 3 9 8 0 0.0 4

Debug() 2 2 2 0 0.0 1

println(String) 2 2 2 0 0.0 1

Table F.14: Metrics of package dp.util





Appendix G

Run time metrics data

G.1 Overview

All Java programs were compiled with full debugging information (by using the argument

-g:lines,vars,source when invoking javac) and with assert-statement support en-

abled (the -source 1.4 switch of javac).

All measurements were made on an idle computer and all measurements have been

verified by repeating the tests at a later date without the measured times differing by more

than approximately 5%. All measurements were repeated ten times in quick succession

(using a for loop), and the mean value of the ten measurements was used as the measured

time.

All measurements were made using the java command and run without Just-In-Time

compilation (the -Xint switch of java). As to further reduce any impact of unknown

factors within the Java virtual machine, all tests were performed two times where only the

second time counted; in pseudo code, the timing measurement code looked like figure G.1.

149
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for i := 1 to 10 do

perform parse

end

for i := 1 to 10 do

perform garbage collection

start := current_time

perform parse

stop := current_time

time[i] := stop - start

end

Figure G.1: Timing pseudo code

G.2 Command invocation

As to minimize any impact of the Java runtime on the measurements, the size of the initial

and the maximum heap size were set equal and the Just-In-Time (JIT) compiler disabled.

One example of an actual command line was:

java -ea -Xint -Xms376M -Xmx376M -classpath build util.Time

dp.compiler.Compiler XmplTest100.txt /tmp/ . temp

-inner=1 -loop=10 -setup=10

where the Defensive Programming implementation (dp.compiler.Compiler), with as-

sertions enabled (-ea), was used to compile the file XmplTest100.txt, the XMPL program

having 100 body repetitions (LOC = 2106). The resulting object code and symbol table

were written to /tmp/ . temp.code and /tmp/ . temp.symtab, respectively.

G.2.1 Garbage collection

Even when using a large heap size and performing garbage collection before each compiler

run, Java’s garbage collector was invoked during compiler runs, according to the garbage

collection log produced when invoking java with the -Xloggc option. As to remove the

additional garbage collections, the initial heap size was raised until no additional garbage
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collection was logged during measurement on the largest XMPL program with assertions

enabled. The heap size where no additional garbage collection was logged, apart from the

one forced before each compiler run, was found to be 376 MBytes.

G.3 Test data

The XMPL program compiled was the example XMPL program given in appendix B, with

the body repeated until the required source code size was reached. Every body repetition

added 21 lines of code.

Body repetitions Lines of code [LOC]

1 27
10 216
50 1056
100 2106
200 4206
300 6306
400 8406
500 10506

Table G.1: Lines of code of runtime measurement program

G.4 Computer information

• CPU – Pentium 4 1800MHz

• RAM – 512 MBytes

• OS – Red Hat Linux 7.1, kernel 2.4.9

• Java 1.4.1 – Output of java -Xint -version:
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java version "1.4.1_02"

Java(TM) 2 Runtime Environment, Standard Edition (build 1.4.1_02-b06)

Java HotSpot(TM) Client VM (build 1.4.1_02-b06, interpreted mode)

G.5 Runtime metrics data

Table key • DPenabled, DPdisabled, and DPremoved are the Defensive Programming

implementation with assertions enabled, disabled, and removed,

respectively.

• xn is the nth measurement, x̄ is the mean value of the ten mea-

surements, calculated with a precision of three digits. All measured

values are shown in milliseconds.

• The numbers on the second row of each measurement are the values

captured during the verification run.

System x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x̄

DPenabled 16 16 16 16 17 16 17 17 16 16 16.3

16 15 16 16 16 16 16 16 15 16 15.8

DPdisabled 14 14 14 14 13 14 14 14 14 14 13.9

14 14 13 13 14 14 13 14 14 13 13.6

DPremoved 13 14 14 13 14 14 14 14 13 14 13.7

13 13 14 13 13 13 13 14 13 13 13.2

Table G.2: Runtime measurements; LOC = 27
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System x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x̄

DPenabled 129 129 129 129 129 129 129 129 130 130 129

135 134 134 136 136 137 136 137 136 136 136

DPdisabled 113 112 112 113 112 112 112 112 112 112 112

113 113 113 113 113 113 113 112 113 113 113

DPremoved 111 110 110 110 110 110 111 110 110 110 110

110 110 110 112 112 112 111 112 112 112 111

Table G.3: Runtime measurements; LOC = 216

System x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x̄

DPenabled 651 650 650 660 682 660 661 661 661 661 660

635 632 632 634 634 634 633 634 657 633 636

DPdisabled 571 597 570 572 572 572 573 573 572 573 575

548 548 548 544 569 543 544 544 543 543 547

DPremoved 532 533 532 531 530 531 530 531 531 531 531

557 557 556 555 555 554 554 555 554 555 555

Table G.4: Runtime measurements; LOC = 1056

System x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x̄

DPenabled 1292 1292 1292 1305 1304 1306 1306 1306 1305 1306 1300

1292 1292 1293 1297 1297 1298 1297 1297 1297 1296 1300

DPdisabled 1119 1119 1119 1129 1137 1128 1130 1129 1137 1129 1130

1072 1071 1070 1077 1075 1076 1076 1093 1077 1076 1080

DPremoved 1067 1066 1066 1073 1073 1073 1072 1072 1072 1073 1070

1059 1059 1059 1072 1072 1072 1072 1072 1072 1073 1070

Table G.5: Runtime measurements; LOC = 2106
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System x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x̄

DPenabled 2626 2626 2656 2608 2608 2609 2609 2609 2610 2608 2620

2586 2585 2617 2571 2573 2573 2573 2571 2586 2571 2580

DPdisabled 2212 2211 2210 2228 2259 2229 2230 2228 2228 2230 2230

2186 2183 2186 2198 2224 2200 2205 2197 2199 2198 2200

DPremoved 2128 2127 2127 2149 2177 2146 2145 2145 2145 2145 2140

2210 2211 2211 2206 2205 2237 2204 2206 2204 2207 2210

Table G.6: Runtime measurements; LOC = 4206

System x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x̄

DPenabled 3810 3811 3811 3806 3806 3807 3806 3807 3808 3807 3810

3890 3889 3887 3926 3927 3926 3925 3927 3925 3924 3910

DPdisabled 3423 3424 3423 3450 3450 3449 3448 3449 3448 3450 3440

3337 3329 3326 3319 3318 3318 3332 3318 3319 3319 3320

DPremoved 3192 3146 3146 3202 3199 3197 3198 3197 3198 3199 3190

3190 3144 3145 3177 3176 3174 3171 3173 3171 3172 3170

Table G.7: Runtime measurements; LOC = 6306

System x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x̄

DPenabled 5122 5122 5130 5142 5142 5141 5145 5141 5143 5145 5140

5034 5033 5035 5147 5148 5150 5147 5146 5145 5146 5110

DPdisabled 4289 4288 4290 4319 4319 4319 4319 4321 4322 4319 4310

4408 4409 4408 4440 4439 4436 4432 4440 4437 4437 4430

DPremoved 4350 4353 4349 4314 4312 4314 4313 4316 4312 4311 4320

4248 4254 4250 4268 4268 4268 4267 4272 4269 4265 4260

Table G.8: Runtime measurements; LOC = 8406



System x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x̄

DPenabled 6482 6483 6483 6537 6537 6534 6534 6530 6528 6534 6520

6353 6350 6352 6456 6458 6457 6455 6456 6453 6451 6420

DPdisabled 5455 5456 5455 5532 5531 5532 5530 5531 5534 5529 5510

5389 5395 5391 5409 5408 5411 5408 5410 5409 5408 5400

DPremoved 5329 5332 5326 5333 5324 5336 5340 5338 5340 5335 5330

5252 5250 5255 5291 5291 5291 5293 5291 5291 5293 5280

Table G.9: Runtime measurements; LOC = 10506





Appendix H

Acronyms and glossary

Ad hoc assertion A condition that must hold at a certain point in time. (see 2.5.2)

Assertion A boolean expression that constrains certain properties of a software system.

(see 2.5.2)

Back end The modules in a program that are not in the front end. (see 2.2.3)

Call-back Used to describe the error handler when using interventional error handling.

(see 2.4.3)

Checked exception An exception that methods that may throw it must have declared

in the method’s signature. (see 2.4.3)

Class Encapsulation of data and operations on that data.

Client The user of functionality, a function or a method in a class. (see 2.2.3)

CLOC The number of commented lines of code. (see 2.6.1)

Contract based programming A software development principle aiming to increase

software quality, by the use of protocol assertions. (see 3.2)
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Correctness The ability of a software system to execute according to the specification.

(see 2.2.1)

Defensive Programming A software development principle aiming to increase software

quality, by making every method responsible for its own quality. (see 3.3)

Design by Contract Meyer’s definition of contract based programming as applied in

Eiffel. (see 3.2.1)

Error A cause leading to a fault. (see 2.2.2)

Exception A mechanism for transferring the flow of control in the case of an exceptional

event. (see 2.4.3)

Failure The manifestation of a fault. (see 2.2.2)

Fault A defect in a software system. (see 2.2.2)

Front end The modules in a program closest to any external entities. (see 2.2.3)

Function A unit of functional decomposition. (see 2.2.3, table 2.1)

Implementation assertion An assertion used to describe a particular implementation

of a specification. (see 2.5.2)

Invariant A condition that must hold when a class is in a stable state, that is, the

condition may be temporarily broken during the execution of a method but must

then be reestablished before leaving the method. (see 2.5.2)

Java An object oriented language, developed by Sun Microsystems. [22]

Javadoc Documentation included in the source code in Java; also the tool that generates

HTML documentation from the source code. (see 3.2.2)

LOC The number of lines of code. (see 2.6.1)
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Loop invariant A condition that must hold upon the start of every loop iteration and

when terminating the loop. (see 2.5.2)

Loop variant An arithmetic expression, generating a bounded, finite sequence. (see 2.5.2)

McCabe’s complexity metric The number of possible execution paths through a spe-

cific method. (see 2.6.3)

Measure To measure (see 2.6, table 2.4)

Measurement “Measurement is the process by which numbers or symbols are assigned

to attributes of entities in the real world in such a way as to describe them according

to clearly defined rules.” [4] (see 2.6, table 2.4)

Method A unit of functional decomposition. (see 2.2.3, table 2.1)

Metric A measurable aspect of the software development process. [13] (see 2.6)

Module One or more software units, which presents an unified view to other modules.

Mutator A method which changes the state of its object. (see 3.2.2)

NCLOC The number of non-commented lines of code. (see 2.6.1)

Observer A method which returns some state of its object. (see 3.2.2)

Partial method also partial procedure, partial function. A method that is not defined

for all possible values of its parameters. (see 2.3)

Postcondition A condition that must hole upon leaving a method. (see 2.5.2)

Precondition A condition that must hold upon entering a method. (see 2.5.2)

Predicate A method which returns some state of its object as a boolean values. (see 3.2.2)
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Proactive error detection An action is only performed after having checked for the

validity of the action. (see 2.4.2)

Procedure A unit of functional decomposition. (see 2.2.3, table 2.1)

Programming by Contract Our definition of contract based programming, applied us-

ing Java. (see 3.2)

Reactive error detection The validity of an action is only known after the action has

been performed. (see 2.4.2)

RefactorIT A refactoring tool for Java source code. Includes a metric tool. [1]

Reliability According to Meyer, the composition of correctness and robustness. (see 2.2.1)

RFC Response for class; the size of the set of methods that can be invoked as a result of

an invocation of any of the methods in a class. (see 2.6.4)

Robustness The ability of a software system to cope with invalid input data. (see 2.2.1)

Runtime assertion An assertion that is evaluated during runtime. (see 2.5.2)

Software quality factors The different factors concerning software quality. (see 2.2.1)

Strong contract All possible conditions that must hold before entering a method are

specified as preconditions. (see 3.2.1)

Supplier The provider of functionality, a function or a method in a class. (see 2.2.3)

Total method also total procedure, total function. A method that is defined for all

possible values of its parameters. (see 2.3)

Weak contract A contract where at least one expression of the precondition is evaluated

in the body of the supplier method. (see 3.2.1)
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WMC Weighted methods per class; the sum of a class’ methods’ complexity. (see 2.6.4)

Unchecked exception An exception that do not have to be declared by methods that

may throw it in the method’s signature. (see 2.4.3)

XMPL A simple, PASCAL-like language. [19]
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