Department of Computer Science

Henrik Skantz
Mikael Bohm

Evaluation of log data for Wide Area Network
Troubleshooting

Master’s Thesis
2004:01

Evaluation of log data for Wide Area Network
Troubleshooting

Henrik Skantz
Mikael Bohm

(© 2004 The author and Karlstad University

This thesis is submitted in partial fulfillment of the requirements
for the Masters degree in Computer Science. All material in this
thesis which is not my own work has been identified and no mate-

rial is included for which a degree has previously been conferred.

Henrik Skantz

Mikael Bohm

Approved, 2004-02-18

Opponent: Johan Garcia

Advisor: Thijs Holleboom

Advisor KTHNOC: Bengt Gordén

Examiner: Donald F. Ross

il

Abstract

One of the common tasks for network administrators is to monitor routers and their error
logs for abnormal behavior. Network administrators will on a daily basis investigate these
logs for any errors protruding from the every day considered harmless errors. Identifying
and attending to failures are most critical to the efficient operation of large computer net-

works.

In this master thesis troubleshooting assistance for Wide Area Networks was studied.
Extended WAN troubleshooting in the personnel independent area was implemented by
using network error logs. Error information is extracted from the logs that can be of in-
terest in troubleshooting WANs. Investigations and development were made on network
error log deviation, link failure, recurring error sequences, error diffusion and low frequent
errors. With improved analysis on the historical data malfunctioning network components
are easier detected and fixed, thus maintaining high network availability and efficiency.
The development in this thesis produced algorithms that isolated certain network behav-
iors and events. The result is three algorithms that find diffusion, recurring sequences and
low frequent errors in the network log data. A theory for link failure detection is presented

but not implmented.

Contents

1 Introduction 1
1.1 Research network 2
1.2 Framework overview of network surveillance 2
1.3 Thesis overview D
1.4 Summaryo 7

2 Background and Theory 9
2.1 Introduction to WAN troubleshooting 9
2.2 Evaluation of network log data errors 10

221 Basesystem 10
2.2.2 Log data information oL 11
2.2.3 Dataset theoryo 14
224 Related work 15
2.3 Project outlineo 15
2.3.1 Diffusion error detection L. 16
2.3.2 Recurring sequenceso 20
2.3.3 Low frequent errors 26
2.3.4 Network log deviation L. 33
2.3.5 Link failure detection L. 36
2.4 SUMMATY oo e 44

vii

3 Experiment and Implementation

3.1
3.2
3.3

3.4

Implementation objectives
Network environment
Implemented algorithms
3.3.1 Diffusion error detection
3.3.2 Recurring sequences
3.3.3 Low frequency errors

Summary ...

4 Results and Evaluation

4.1
4.2
4.3

4.4
4.5

Algorithm test outline
Test environment
Algorithm result and performance
4.3.1 Diffusion error detection
4.3.2 Recurring sequences
4.3.3 Low frequent errors
Algorithm evaluation

Summary and information

5 Conclusion

5.1 Thesis conclusion and evaluation

5.2 Problem areas

5.3 Future work

5.4 Algorithm results from KTHNOC
References

A Diffusion files

A.1 diffusion.c

45
45
46
47
47
53
61
68

69
69
70
70
70
75
80
87
89

91
91
93
94
95

97

99

A2 diffusion.h 111

Recurring sequence files 115
B.1 rekerr.c. . ..o 115
B.2 rekerr.h . ..o 130
B.3 rekerrMySQL.co 134
B4 rekerrMySQL.ho 136
Low frequent files 137
C.1 lowfreq.c 137
C.2 lowfreq.h o 150
Common files 157
D.1 timeCommon.c 157
D.2 timeCommon.h 157
D.3 readconf.c 157
D.4 readconfh 159
D.5 listCommon.c 160
D.6 listCommon.h 163
D.7 filectrl.e 165
D.8 filectrl.ho 167
D9 mysqlQ.c. 168
D10mysqlQ.h . . o 174
D.1lmakefile o 175
Script files 177
E.1 lowfreq.sh o 177

ix

List of Figures

1.1
1.2

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11

3.1
3.2
3.3
3.4
3.5
3.6

GigaSunet core network logical layout over Sweden 3
Framework overview of network management. 4
Base system schematic overview. 11
Example of one log datarow. o0 0L 13
Network error spreado 19
CPUHOG error diffusion in network 20
Random output cut from mysql router index and error code 23
[llustrated an example of a sequence of error events. 25
Example of low frequent error irregularity. 30
Output from mysql database. 31
Schematic view of connectivity from part of network. 37
Router interface Link State Machine. 39
Output from log database. L. 40
Base system schematic overview with new component 46
Assumed error diffusion in network 48
Error diffusion plot 2003-02-26, 14:40:00 - 14:50:00 49
time-window e e e e o1
New position of the time-window o1
Zoomed time-window. 52

xi

3.7

3.8

3.9

3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13

5.1

The same diffusion detected twice 53

Diffusion overlapping two time-windows 53
A missed diffusion, with a reportlevel set to 5 53
Case A: {1A, 2B, 3B, 4C, 1A} Not managed, Source not reliable. 55
Case B: Managed if 1A is the starting node. 56
Case C: Managed, 1A and 2B can be starting nodes; seqlen 4 or 3. 56
A recurring sequence, a pattern is found.o a7
List in which patterns are found. 58
Three scenarios when searching for patterns. 60
Cut from low frequent algorithm data storage structure. 62
Error frequency areas. Lo 64
Output from the diffusion program. 72
SQL query on the interval 05:28:25 - 05:28:35. 73
SQL output, time-window 05:28:30 - 05:28:40. 74
Diffusion summary window. L. 74
Program output run from a console L. 7
Using the GUI to retrieve more information about an error.. 78
Cut of program output with show all option 79
First occurrence for pattern [1]. 80
Last occurrence for the first pattern. 81
Low frequent entry printout. L. 82
Low frequent time period representation. 84
Low frequent error result graph. L. 85
Low frequent program output summary. 86
Example of a trend graph. oL 95

xii

List of Tables

2.1

2.2

2.3

3.1

4.1
4.2
4.3

Table showing a fictitious database table with necessary data for knowledge
about network link connectivity.o 38

Table showing the probability for link failures for state machines of router

interfaces and their common physical link. 41
Table showing the state machine events for figure 2.11. 42
Diffusion 51
Test results for May, June and July. 71
Recurring sequence test runs results 0oL 75
Low frequent example results. 83

xiil

Chapter 1

Introduction

Network operators face the difficult task of maintaining the network quality and at the
same time introducing new technologies such as software upgrades and new hardware.
Troubleshooting involves a lot of manual work and requires detailed knowledge, and is
often time consuming and difficult to plan. Often the amount of data to analyze is far
too great for human attention. The relevant data for problem detection also is sometimes

scattered and has to be manually gathered.

There are also economical aspects to fault detection. Network links are expensive to
hire! and any detection of a link failure will reduce costs with a fine in an agreement be-
tween the parties. Automated link failure detection is therefore not only of quality but

also of financial interest.

Traffic anomalies such as failures and attacks are commonplace in today’s computer
wide area networks. Identifying, diagnosing and fixing anomalies are essential parts of ev-
ery day network administration, without which networks would neither operate efficiently,

nor reliably. Accurate identification and diagnosis of anomalies depends on robust and

!'Network operators often hire links. Costs are based on the link capacity among other things.

2 CHAPTER 1. INTRODUCTION

accurate data, and further, on established methods for isolating anomalous signals within

that data.

1.1 Research network

The research presented here has been done in cooperation with KTHNOC?. They have been
maintaining the Swedish University Computer Network, called SUNET, since its startup
1980.

The backbone network is called GigaSunet and its structure is shown in figure 1.1. It
is one of the world’s fastest university networks, operating at 10 Gigabit per second. This
network is the base for this research. It has all the needed properties to be a suitable

research object. It is complex, large, modern and has high demands on quality.

To maintain quality in a network surveillance tools are generally used. A lot of the
present network surveillance tools are expensive and still do not perform any diagnosis
based on historical events. There are also free tools released under the GPL [4] license
such as Ntop [6] that are well functioning for realtime surveillance, but require human

attention at operation and are therefore not always cost effective.

1.2 Framework overview of network surveillance

The network surveillance is dependent on well functioning fault detection and diagnosis
methods. Network management can be viewed in a framework overview to distinguish
different troubleshooting areas. Such a layout is shown in figure 1.2. As the figure shows,

most common are parts that involves personnel dependent management.

?Kungliga Tekniska Hogskolan Network Operation Centre (KTH eng: Royal Institute of Technology).
http://www.noc.kth.se

1.2. FRAMEWORK OVERVIEW OF NETWORK SURVEILLANCE

- . Kiruna
GigaSunet
\ Lulesi
@ Fouter 1 T
@ Routsr 2
Bariaage T Sundsyall
Sl Givle
Uppsala
Orehra
Karlstad L) Stockholm
Viisteris
Trollhiiiian
Skivde
Linkfping Vishy
Croteborg Jinkiping
Boriis T
Viinji l Kalmar
Halmstad

Kristianstad Ruonnehy
Malmi

Figure 1.1: GigaSunet core network logical layout over Sweden
The data used in this project are archived log data from the network. This figure is modified
from SUNET web page, http://www.sunet.se.

CHAPTER 1. INTRODUCTION

Personel dependent
-

Personel independent
.
SNMP Real Time Surveilliance |

| Network Log Surveillance

|A|gorithmic Log Data Analysis

Automated
Alarms

A 4
Network Fault
Fault Detection Report
Cell with possible
Basic data for malfunctioning Basic data for
decision-making decision-making
A\ 4
Cell Statistics
;I Diagnosis Creation
Cell Diagnosis
A 4
Discard As Harmless | | Problem Fixing | | Put Under Observation
N
N
N
N
N
A A\ 4
Collect Statistics

Figure 1.2: Framework overview of network management.

The shaded parts shows the extended personnel independent part of network surveillance.

This research will try to extend the entire structure with a new area of troubleshooting
Wide Area Networks and with a minimum of extended staffing requirements. The shaded
part in figure 1.2 shows the extended part of network surveillance in the framework model.

The goal is to produce automated report basis for the network diagnosis process.

As figure 1.2 shows, we have two positive aspects involved extending the quality of
network management:

e Fault detection. Finding unknown malfunctioning cells.

(Algorithmic log data analysis)

1.3. THESIS OVERVIEW 3

e Diagnosis creation. Generated reports with cells and errors.

(Network fault report)

Based on the content analysis from technical expertise, processed events and reports

follow different paths and actions.

1.3 Thesis overview

This thesis cover some research areas as well as implementations of ideas into algorithms

written in C. The structure of this thesis is as follows:

Background and theory Will give background and theory for network log data investi-
gation. Chapter 2.1 introduce some basics in WAN troubleshooting and information
about the network log data and how this data is handled by a database system.

Chapter 2.1 also give information about this project research network, GigaSunet.

The network log data will be formalized in mathematical set theory in chapter 2.2.3.
This will later on be used further for each problem area as a base for developing

theories.

A project outline in chapter 2.3 present an overview of this thesis research areas.
Certain network error states that are hard to discover are outlined for investigation.
Selected areas are diffusion, recurring sequences, low frequent errors, log intensity
deviation and link failures. They are discussed and formalized with data set theory

in chapters 2.3.1, 2.3.2, 2.3.3, 2.3.4 and 2.3.5 for each area respectively.

Experiment and implementation This chapter discuss details about the implemented
problem areas. Some general objectives about implementations ideas are given in
chapter 3. Facts about the network environment and how data is collected for analysis

is given briefly in chapter 3.2.

6 CHAPTER 1. INTRODUCTION

Problem solving algorithms are each presented separately in subareas as in chapter
2.1. Implementation details for the error diffusion algorithm is given in chapter 3.3.1.
Recurring sequences in chapter 3.3.2 and the low frequent implementation in chapter

3.3.3.

All implementations are constructed from the earlier given theory in chapter 2.1. The
implemented algorithms will only show one possible way to find error states in the
network. They all have their flaws but are in first place meant to verify the theory

developed in this thesis.

Results and evaluation The results for implemented areas are discussed and their tech-
nical functioning evaluated. Error diffusion is evaluated in chapter 4.3.1. Found
diffusions are verified and analysed for integrity against the data in the database.
Algorithm reported data is shown and test results are presented in tables with dif-

ferent algorithm input parameters.

Recurring sequences is discussed in chapter 4.3.2 and low frequent errors in chapter
4.3.3. They are evaluated as in the diffusion case. Real cases are shown but no sig-
nificance in their meaning in fault management is performed. This require a network
technicians skill and is not a subject for this thesis. The implemented algorithms
functional behavior, flaws and limitations are discussed in chapter 4.4. This chap-
ter also suggests how these algorithm might be used on a daily basis for optimal

performance.

Conclusion The last chapter 5.1 summarizes the thesis and gives overall project conclu-
sions. The chapter discusses weaknesses and the potential of the different areas of
network log data analysis. Problems evolving in this thesis are specifically gathered
in chapter 5.2. The ideas for future development and use of this work can be found
in chapter 5.3. The chapter focus on the link failure detection problem which does

not have a test implementation. But also how to better handle the algorithm output

1.4. SUMMARY 7

data. The low frequent algorithm has proved some usefulness during tests. Some

details about this concludes this thesis in chapter 5.4.

As described above, this thesis considers areas of pure theory in some parts, but does
also contain more straight forward implementations of known existing error states in the
research network. But a theory has been outlined for all concerned areas, even the more

straight forward implemented ones.

1.4 Summary

This research concentrates on analyzing the errors occurring in networks based on historical
data. Many tools have been developed to automatically generate alerts to failures, but gen-
erally it has been difficult to automate the anomaly identification process. We investigate
new methods for troubleshooting assistance based on the continuous log data generated
from the network components. We present ideas for generating diagnosis reports based
on algorithms performed on this data. To extend the troubleshooting assistance captured
from the data we make several assumptions and investigate if they can produce results of

practical interest.

Chapter 2

Background and Theory

2.1 Introduction to WAN troubleshooting

As a network evolves and becomes larger and more complex the need for extended fault
identification and diagnosing increases. An error in a network can affect the network in
many different ways. For example a single error can propagate and develop into an error
state. By error state we mean that a part or the entire network is non functional. Single
errors can result in a larger number of errors creating redundant information that conceal

the actual error. This research will focus on finding error indications as well as their origin.

In GigaSunet, which we are considering here, log data is constantly generated from
the backbone network routers. All incoming data is archived and saved for future analysis
and scrutinizing. New incoming data is inspected manually for understanding of possible
reasons for malfunctioning in the network. This paper will focus on development of tools
for helping network technicians in their daily work. The expertise of the operators is
still required for drawing conclusions, doing repairs and applying countermeasures before

possible traffic disturbances occur.

10 CHAPTER 2. BACKGROUND AND THEORY

2.2 Evaluation of network log data errors

Our research focuses on extracting more information from the log data generated by the
network routers. In collaboration with the network technicians at KTHNOC we identified
three types of errors that may need a more detailed analysis. These types are rapidly
spreading errors, recurring errors, and low frequent errors. These will be discussed in
section 2.3.

Mathematically we have a large set of elements, each element representing a network
event. All elements in this set are unique, characterized by their different attributes. A
significant amount of those are just to be considered network noise, but they contribute
to the complexity and make human analysis harder. By applying filters, mainly following
mathematical set theory, most errors and their relations can be found, but only if one
knows what to look for. We need to have a tool that can look at some selected attributes
of each element and search the whole set for relations or patterns among those attributes.

If such a match can be found then we can reveal and trace an error state inside the set.

We approach the task by defining algorithms for each problem area that we will inves-
tigate. Selected areas will be evaluated with practical testing. Code is written in the C
programming language to implement the algorithms and ideas for test runs on the research

data.

2.2.1 Base system

In our earlier work [1] we developed the base system making this research possible. Previ-
ous to our system all data was kept in plain text files making it hard to analyse effectively.
The base system parses every incoming log row and inserts it into a relational database
system. The database is organized in third normal form, which provides possibilities to

run algorithms efficiently on the data.

2.2. EVALUATION OF NETWORK LOG DATA ERRORS 11

The graphical user interface (GUI) which is a part of the base system has made it
possible to easily study the data stored in the database. The GUI has some basic features
to make quick selections and filtering of data. A system outline is presented in figure 2.1.
A process running an analyzing algorithm can connect to the database shown in this figure

and select the required data suitable for the required job.

SUNET HQ

Network surveillance GUI/PHP

web server

MySQL DB
Server

Log target host
syslogdgylogd

Figure 2.1: Base system schematic overview.
All error logs are put in a database. The Mylogd host receives all error logs from GigaSunet and
stores them in a database. Data stored in the database is accessed by a web interface.

There are always possibilities to develop more features for the database user interface.
These are not considered in this paper, still these can also facilitate troubleshooting on a
daily basis. But they are limited to being smart filters, adapted user interface etc. For the

interested reader we recommend [1].

2.2.2 Log data information

The network routers log data is the base for this research project. Hence, it is essential

to be familiar with their format and the information they contain since extracting more

12 CHAPTER 2. BACKGROUND AND THEORY

information from this data is the main task. This implies to look for special types of log
rows and locating relations in their mutual appearance in time. Network log timestamps
gives the opportunity to sort events in chronological order. This is essential for most

theories in this thesis as will be shown later on in this chapter.

Log row format

It is necessary to study how the plain text row of log data is formatted and treated as
an element in the database. Basically every event produces one row of data providing the

following information:

Event archiver time

— This represents the time when the data arrived at the host collecting the data.
It is the time stamp set by the syslog daemon. The host running the archiving
daemon is often time synchronized with NTP!.

Event location

— Location of the event. The router is often represented with its hostname or IP
number.

Event errorcode

— All events have defined errorcodes. There are at least six thousand different
codes with error severity from zero to six, six being the lowest.

Event component time stamp

— All routers add a local time stamp to an event. These are also often synchronized
with the NTP system.

Event process identifier

— All processes have as in common UNIX systems a process identifier number
called PID.

e Event message

'Network Time Protocol. See: http://www.ntp.org for more information

2.2. EVALUATION OF NETWORK LOG DATA ERRORS 13

May 15 22:35:58 stockholm4.sunet.se 87814: May 15 22:35:57.098: ¥%BGP-3-NOTIFICATION:
sent to neighbor 194.68.128.26 2/2 (peer in wrong AS) 2 bytes 0758

Figure 2.2: Example of one log data row.

— This part of the row is additional information for an event. On different modes
in the router this could supply memory status, network interface down/up etc.

These are the actual attributes of each element in the set of events. A generated plain
text row containing those attributes is shown in figure 2.2. The row is parsed and inserted
into the database by the base system daemon called mylogd in figure 2.1.

Every event in the network routers generates one row of data. During this research the
GigaSunet network has generated approximately one row of data every two to tree seconds.
This is valid at normal state of operation around the clock. At reconfiguration, or error
states, it could easily rise to thirty rows every second. Hence, manual inspection is hard

work even with UNIX tools such as sed, grep, sort and awk.

Present log data processing

By observing the log data network technicians can draw conclusions about the network
status and locate failures. Still it is not possible to diagnose all failures, or even find them,
since the amount of log data simply is too large.

To investigate the network status the technicians can apply filters and sorting on raw
log data kept in plain text. This is often done with the UNIX tools as mentioned before.
The tools can filter the dataset and pipe a subset to a new filter and so on. But even
with the use of UNIX tools in an intelligent manner, there are limitations to what they
can accomplish on the log data. And further, these tools are not intended for use with a
database system? output.

The standard UNIX tools can in principle be used to look for, e.g a recurring pattern.

This would however require extensive programming in for example the AWK scripting

2The database system referred to was earlier explained in chapter 2.1

14 CHAPTER 2. BACKGROUND AND THEORY

language. This would result in a slow processing of the data. The use of a full fledged and
efficient compiled programming language like C is a more natural solution.

It is also essential to minimize the workload on the database during a network error in-
vestigation. The main task of the database is to store log data and to have this information

at hand, not to be an active component in demanding data processing.

2.2.3 Data set theory

The filtering of log data can be described in terms of mathematical set theory. In this
section we explain this relationship formally, in order to better understand some of the
limitations that are involved.

If we let O represent the set of log data, A is the set of all routers in Karlstad, B is a
specific router in Stockholm, C' is the set of all routers with errorcode X. To inspect all
routers in Karlstad together with a specific router in Stockholm, and further, we do not
want to see any error with type X, a simple filtering procedure for a subset S could be

applied like this:
S=0n(AUB)N-C
It is obvious that all derived sets S are subsets of 0, i.e,
SCo

Often the obtained subset S is far too large for human inspection. Today all subsets
are derived manually or semi-automatic from the user interface by the base system. The
effectiveness of this procedure very much relies on the operator’s skill, experience and
intuition.

Also it could require too much work to be a realistic task for a certain investigation.
For example, it is obvious that the set theory does not provide a tool to give us the least

occurring members in the origin set. It would require counting the members of all possible

2.3. PROJECT OUTLINE 15

subsets derived from filtering for all known errorcodes. And errorcodes are often counted

in thousands.

2.2.4 Related work

Network fault detection methods have become more intensely studied over the years. Net-
work traffic properties have been studied for many years - examples of typical traffic analysis
can be found in [10], [12] and [13].

Our focus is in identifying certain characteristics of archived log data captured from the
network. Prior studies on network fault detection, 2], [3] and [5] use statistical deviations
from normal traffic behavior to identify faults. In [7] and [8] anomalies in the network are

identified and characterized based on SNMP? and IP flow data.

2.3 Project outline

The project outline ideas emerged from interviews with technical staff and by observing
real case error states. The project focus on error states which are hard to find and therefore
might go unnoticed. Some are likely to exist but they are impossible to survey and put in
coherence from the total amount of data produced. This project focus on the data stored

in the database and what possible information it can bring.

The issues of the project can be summarized as follows:

i Detect diffusion errors. Errors that spread rapidly over the network.
ii Detect recurring sequences of errors.

iii Find low frequent errors and their coherence over long periods of time.

3Simple Network Management Protocol

16 CHAPTER 2. BACKGROUND AND THEORY

iv Detect deviations from normal state of network operation, detecting increase or de-
crease of log data.

v Link failure detection.

By studying historical log data carefully, there are reasons to believe that all events
represented by the items above, are more or less likely to occur. As explained in chapter
2.2.2 and 2.2.3, applying filters is not enough to find these relations in the data or an
immense task. More detailed background information will be provided in the following

sections for each area respectively.

2.3.1 Diffusion error detection

If a certain error in one of the network routers instantly causes a chain reaction of the
same error in its neighboring routers, we are facing what we call a diffusion error. That is,
the error will spread within the network in a short period of time. It might pass without
notice since the times involved often are less than five seconds. It might only cause a
short interrupt in the network and therefore not cause any user to react or come to some
technicians attention. Still these errors are considered to be serious and always need to be
analyzed. Such errors can, if they start to repeat in short intervals or change their behavior

to act recursively, cause serious traffic disturbances.

Diffusion set theory

We define network error diffusion as:

One or more identical errors that within a limited period of time are reported from two or

more network components

Formally we define error diffusion when:

2.3. PROJECT OUTLINE 17

the attribute error in a set has the the same value for all routers in the set and the at-
tribute timestamp belongs to a limited period of time, and further, the number of members

i this set exceeds one.

By applying set theory we can define diffusion as follows:
Let S be a certain set of errors, E(e) represent an element error attribute and 7'(e)

represent an element time attribute.

For all error elements e it holds that they all belong to the set of errors, that is
Ve [e € 5]
We let A represent a specific error attribute and 7" a time window as:
T = {t|to < t <ty + lim}

where t; is an observed time and [¢m is a constant.

If the following holds:

D= {elE(e)=ANT(e) €T}
for all e € S and
|D|>1

we have a diffusion.

Diffusion algorithmic variables

There are two numbers to laborate with for adjustment to better suite the operating envi-

ronment. The first is lim, the time to look for diffusion. We can say that this represents

18 CHAPTER 2. BACKGROUND AND THEORY

the time window size. Secondly, we can increase the minimum number of elements in a set
for being defined as diffusion. From the minimum of two elements up to a number equal

to the actual number of routers in the network.

From previous experience in our research network*, the time period lim should reason-
ably be somewhere around ten seconds. This depends on the capacity, size and speed of
the network. For our research environment with about fifty Cisco 12410° core routers, the
time variable lzm set to ten seconds will do as a good reference to start with.

The high speed of the network will let an error spread to all routers within two to three
seconds, but we also have to consider some processing delay at each router depending on

the nature of the error.

The number of routers within the time interval need to be more than two in practice
to be defined as diffusion. The explanation is that there are common irrelevant errors we
consider to be network noise. Those errors will otherwise report false diffusion errors by

coincidence of matching noise.

The algorithm will need to have those numbers as input at startup. They will in practice

be typical in arguments to the program.

Diffusion case study

To see how diffusion could show up in practice we will study a real case. On the 24 of
February 2003 there was an error diffusion in SUNET. Figure 2.3 shows a representative

part of KTHNOC's log capturing system [9] of the two first seconds from the incident.

4The research network layout is shown in figure 1.1 in chapter 1. More information on the on the
GigaSunet network are available at: http://proj.sunet.se/gs/
SFor product information and technical data visit: http://www.cisco.com

Figure 2.3: Network error spread

2.3. PROJECT OUTLINE 19
router name error time date
halmstad2.sunet.se %SYS-3-CPUHOG 10:17:10 2003-02-24
orebrol.sunet.se %SYS-3-CPUHOG 10:17:10 2003-02-24
orebrol.sunet.se %SYS-3-CPUHOG 10:17:10 2003-02-24
uppsalal.sunet.se %SYS-3-CPUHOG 10:17:10 2003-02-24
boras2.sunet.se %SYS-3-CPUHOG 10:17:10 2003-02-24
borlangel.sunet.se %SYS-3-CPUHOG 10:17:10 2003-02-24
gavlel.sunet.se %SYS-3-CPUHOG 10:17:10 2003-02-24
skovde2.sunet.se %SYS-3-CPUHOG 10:17:10 2003-02-24
linkopingl.sunet.se %SYS-3-CPUHOG 10:17:11 2003-02-24
trollhattan2.sunet.se %SYS-3-CPUHOG 10:17:11 2003-02-24
umeal.sunet.se %SYS-3-CPUHOG 10:17:11 2003-02-24
jonkopingl.sunet.se %SYS-3-CPUHOG 10:17:11 2003-02-24
karlstad2.sunet.se %SYS-3-CPUHOG 10:17:11 2003-02-24
orebrol.sunet.se %SYS-3-CPUHOG 10:17:11 2003-02-24
borasl.sunet.se %SYS-3-CPUHOG 10:17:11 2003-02-24
stockholml.sunet.se %SYS-3-CPUHOG 10:17:11 2003-02-24
borlangel.sunet.se %SYS-3-CPUHOG 10:17:11 2003-02-24
borlangel.sunet.se %SYS-3-CPUHOG 10:17:11 2003-02-24
gavlel.sunet.se %SYS-3-CPUHOG 10:17:11 2003-02-24
skovdel.sunet.se %SYS-3-CPUHOG 10:17:11 2003-02-24
skovde2.sunet.se %SYS-3-CPUHOG 10:17:11 2003-02-24

The figure shows fifteen different routers within this time slot. Clearly in this case a
ten seconds time window for this type of WANs will capture all essential diffusion taking

place.

Every row in the figure represents an element in the sets discussed earlier. The four
columns in the table are router name, error, time and date which the error occurred. The
time and date are set by the central syslog daemon shown in figure 2.1 as the messages

arrived at the host.

Figure 2.3 shows how the error %sYs-3-CPUHOG spreads rapidly over the network
routers. That is, the same error is suddenly present in many routers when looking in a
narrow time slot, hence we have diffusion. There could be numerous of different malfunc-

tions causing an error spread, for instance software bugs or malicious attacks on the routers.

20 CHAPTER 2. BACKGROUND AND THEORY

num $SYS-3-CPUHOG
routers/\
20— - -~ <Y - — — — -
10— pF — —— = — — — — —.
N
~ .
start ime
2 seconds

Figure 2.4: cPUHOG error diffusion in network
An expected graphical view of the errors’ simultaneous presence in routers during the incident.

In this specific case the error %sYS-3-CPUHOG indicates that a certain process has run
for a too long time without relinquishing the processor. The process is therefore a "cpPU
HOG”. Before the process was killed by the router operating system, the indata causing
the process to loop was forwarded to a neighboring router in the network and causing the

chain reaction.

If we count the number of unique routers present in a two seconds’ sliding time window
over the incident, it is possible to plot a graphical view from the result. While moving the
window unique routers are counted containing this specific error. An expected graph of

the %SY$-3-CPUHOG incident from figure 2.3 is shown in figure 2.4.

2.3.2 Recurring sequences

The network connectivity will often generate a chain of events, an unwanted scenario seen
in section 2.3.1. As shown before, a malfunctioning component can cause the neighboring

routers to generate new errors. If a chain of errors occurs repeatedly, and if their mutual

2.3. PROJECT OUTLINE 21

appearance are in the same chronological order, the recognition of the pattern can be used
as a method to trace the error cause. The main idea is to find the first error in the repeating
chain. Presuming there is a relation found, a removal of the first error ought to stop the
chain reaction. However, to make a solid appraisal of each situation, it will always require
a network technician’s expertice. Hence, our main goal is to find an event and not draw

any conclusion of its appearance.

One challenge in this area is to separate possible repeating sequences of errors from the
network’s randomized generation of log data. Repeating patterns might be reported by
coincidence and it will unfortunately gain from the always present network message noise.
There can be no guarantees not to report an irrelevant pattern generated by coincidence.
Statistically that ought to happen since there is a limited amount of combinations with a
large amount of data. This calls for the need of algorithm input variables to adjust to the

environment to minimize the risk of reporting irrelevant repeating errors.

As in the diffusion case, assumptions are made of the existence of chain reactions
between the errors, one error causes another and so on. By observing raw data one can
not say much about the presumptive result and detailed algorithm requirements. This has
to be discussed during testing. However, we can assume that it will be absolutely essential
to construct an algorithm that focuses on the origin of the chain reaction. A network
technician will only need to know the source of a recurring sequence to be able to start an

error state investigation.

Recurring error theory

A recurring sequence is defined as:

when two or more router/error combinations appear in a chronological order, and their

mutual order is repeated one or more times, and the components in that sequence also are

22 CHAPTER 2. BACKGROUND AND THEORY

repeating exactly the same error sequence.

Hence, synchronized time among the network components is absolutely necessary when
searching for a repeating sequence to be able to make conclusions of the result.

In practice the formal definition is too rough to process in an algorithm without further
restrictions. Adjustable input parameters for that purpose will be needed for requiring

more than two components in a sequence and a requirement for more repetitions than one.

Case study

This case study will focus on two attributes from the log row elements. They are the
router name and its corresponding error type. The router name is represented with an
index number® in the relational database. A snapshot from the database with the relevant
attributes is shown in figure 2.5. The figure shows only fifteen rows from GigaSunets March

2003 cisco table from a total amount of 296690 rows available from this month.

It is important to recall that there is a need for synchronized time with NTP to be able
to have the database system to deliver its output data sorted by time to the algorithm.
Otherwise the event order is unknown and patterns become meaningless to study. They
will then only occur by coincidence. If NTP is not available, the event order in the network
is similar to the event arrival at the host providing the syslog daemon. Accuracy will then

depend on the event message transport time in the network from its different components.

If we take a closer look at figure 2.5 we can observe a recurring sequence. Starting
at row tree we find the number sequence {2,1,3,3,7} and a recurrence starting at row
eight. We will only consider it to be valid if all elements in the sequence by definition have

matching error codes with a repeating sequence. In this example they matched and we

6Index number i mapped against a table with router names to avoid redundancy. See [1] for additional
information.

2.3. PROJECT OUTLINE 23

mysql> select rindex,errorcode from ‘cisco-0303¢ limit 15;
Fom - A - +
| rindex | errorcode

Foe gy +
1. | 3 | %TCP-6-BADAUTH
2. | 3 | %TCP-6-BADAUTH
+--> 3. | 2 | %PIM-6-INVALID_RP_JOIN
| 4. | 1 | %PIM-6-INVALID_RP_JOIN
Seqv. (1) 5. | 3 | %TCP-6-BADAUTH
| 6. | 3 | %TCP-6-BADAUTH |
+--> 7. | 7 | %PIM-6-INVALID_RP_JOIN
+--> 8. | 2 | %PIM-6-INVALID_RP_JOIN
I 9. | 1 | %PIM-6-INVALID_RP_JOIN
Seqv. (2) 10. | 3 | %TCP-6-BADAUTH
| 11. | 3 | %TCP-6-BADAUTH |
+--> 12, | 7 | %PIM-6-INVALID_RP_JOIN
13. | 2 | %PIM-6-INVALID_RP_JOIN
14. | 1 | %PIM-6-INVALID_RP_JOIN
15. | 3 | %TCP-6-BADAUTH

+
|
|
|
|
|
|
|
|

o +
15 rows in set (0.00 sec)

Figure 2.5: Random output cut from mysql router index and error code
Note, the two sequences do not need to be connected to each other, noise can exist in between.

24 CHAPTER 2. BACKGROUND AND THEORY

might have a recurring error of some sort.

Algorithm issues

There are some criterions we have to consider before an algorithm triggers a report. We

will need to observe the following:

e How many repetitions of the sequence should be required.
e Minimum length of sequence pattern.

e How to avoid reporting a subset of an error sequence.

In practice the operator will need to laborate with input parameters to narrow the
output to what might be of interest. A technician will always need to experiment from
case to case when processing the data, depending on the network layout and status. Those
input parameters will be the number of repetitions required and the minimum length of a

sequence.

Avoiding subsequences will be equivalent to finding the component (event) that is caus-
ing the error sequence. Earlier showed in figure 2.5, we saw a repetition of an error sequence
in the database table. The graph in figure 2.6 illustrates a sequence chain of ten steps of
this kind, corresponding to ten rows in the database table. This example event sequence
starts at A. But as soon as the first event A is found again, the sequence chain needs to
stop. This will increase the chances of focusing on the chain generator. Hence, we define
this chain to be of length seven stopping at B. The search for equal patterns will be pro-
cessed for the first seven members in this chain starting at A, if seven is in the range of

the operators minimum requirements.

Further, if matching patterns of this sequence are found, it will be necessary to move

forward the sequence length on the next search to avoid reporting subsets of this particular

2.3. PROJECT OUTLINE 25

Figure 2.6: Tllustrated an example of a sequence of error events.
In reality capital letters A - G represent a network component together with a specific error event.

sequence. In the example given in figure 2.6, the next search will once more start with
event A, and continue with G as next and so forth to build up the next pattern. If not,
reports could be generated without the actual cause of the event since subsets are presumed

not to begin with, or even contain, the origin of the sequence.

One must also consider that a sequence can be broken by coincidence from a random
error event. Still, if an error state remains for some time, enough repetitions are likely to

be recorded without disturbance to have enough data intact to trigger a report.

As shown, this part of the research will comprise only to find repeating patterns. No
significance of network connectivity and/or error types are considered. A closer look at
figure 2.6 also reveals two loops. Internal loops are allowed since this research does not
attempt to answer how relevant sequences should be formed. But allowing internal loops

within patterns, as shown at F and C-D in figure 2.6, is an object of further discussion

26 CHAPTER 2. BACKGROUND AND THEORY

and experiment.

2.3.3 Low frequent errors

In a WAN like GigaSunet, error noise is common and KTHNOC usually treats these errors
as not being harmful. Often these errors origin from ISP” networks that are connected
to GigaSunet. Network technicians try to filter out as much noise as possible when they
search for errors in the network log data. Still, they are often left with a lot of data to
observe. What is crucial here is that some errors with importance for fault detection, might
be hidden in the data, if they are rarely reported. We call these errors low frequent errors.

A low frequent error might only occur one to five times a month. This means in practice
for GigaSunet, a rate of once a hundred thousand to once a million, or even less. Under-

standing this, no further explanations are required to realize why they are easily missed.

Low frequent errors could be possible time bombs that in the future might cause major
failures. Especially if the grade of severity is high®, it could be a failure that eventually

shuts down a complete network router when reaching a critical limit or state.

The peak of the error rate may be very low, but this peak could be recurrent over some
period of time. If the number of a specific error increases over a long period of time, and
its increase rate is not high, it is hard to see this increase, or worse, not even notice the
error at all. Hence, a malfunctioning network router might be overlooked until it causes

serious network disturbance.

This provides two interesting aspects of low frequent error detection:

"Internet Service Provider

8If the grade of severity is high, the nature of the error is considered to be more serious by Cisco
technicians. The grades are from 0 to 6 where 0 is the most serious type. The plain text error log
generated by the router provides this data within the message as; AGROUP-[0-6]-TYPE.

2.3. PROJECT OUTLINE 27

e Errors that are rare but that have an increasing trend.

e Overlooked errors of serious nature.

At this point this project will not evaluate trend analysis. In this first phase, while
producing low frequent error data reports, this data will have to be diagnosed by a network

technician. Extended possibilities will be discussed in chapter 5.3.

From discussions with technical staff there are reasons to believe more issues need to
be considered. The appearance in time is also of interest. Generally, if an error recurs
rarely, but shows a regular appearance in time, it is of higher interest. A rare error that
covers only a small amount of time from the total period, might be an isolated incidence.
The reasons might be a normal configuration, hardware exchange or reboot etc. The low
frequent algorithm will apply a technique to constrain only to errors that represent the

time period.

Low frequent error theory

A low frequent error can be defined as:

when selecting a set of errors limited by time, and there is a unique error event
exceptionally rare compared to the total amount of events, and where all other members in

this set are repeatedly iterated commonly, we call this error low frequent.

Therefore it is a subjective judgment to define what is low frequent or not. In practice
an algorithm given constant or input variable will decide where to set the limit in this

matter.

28 CHAPTER 2. BACKGROUND AND THEORY

An introduction of extended restrictions is desirable if we want to concentrate on low
frequent errors that have a regular behavior. Again we apply set theory to formalize the

algorithm requirements. First, let P represent a desired observation time period as:

P = {t|tstart S t S tstop}

where the start and stop time in practice are operator chosen limits. Let e represent

an error and let T'(e) be an error time function for an error event.

We then have a selected set S of errors where:

S ={e|lT(e) € P}

Further, let F(z,y) represent a function counting the number of error repetitions for
an error attributes error and host. Let F(e) represent an element error attribut and let
A represent a specific error attribute. Let R(e) represent an element host attribute and
let H represent a specific host attribute, c is a low frequent definition constant. Define the

set

F(AH)={elee SANE(e) =AANR(e) =H}

which is a function of A and H. Then the set F(A, H) represents a low frequent error if

|F(A,H)| < |S]|x¢ (0<ec<1).

The final selection of errors will have to pass two tests. These are:

e Time period representation.

e Regularity in pattern.

2.3. PROJECT OUTLINE 29

The time period representation is straight forward. The first error and the last must
cover a certain time period out of the total selected period. The found errors must represent
the selected time period to a certain extent, as discussed in the previous section. Again
this is a subjective call and is decided from an algorithm constant. Let p be the constant
for period representation, {t,ts,t3,---,t,} be low frequent error event times where n =
C(e), and {tsart, tstop} be start and stop time of the investigated period. If the following

mathematical condition for an error holds:

(tstop - tstart) Xp< (tn - tl) (0 <p< 1) (n > 1)

(2.1)

the time period representation is valid. An example is shown in figure 2.7. In the
figure we also have {x1, 29,3, -, 2,_1} as time difference between events. These time
values will come into calculation for an error regularity check. First we determine the ideal

regularity A from calculating:

(2.2)

The symbol A now holds the value for a perfect regularity, that is, the average time be-
tween error events. Now we can summarize the differences between A and {xy, o, 23, -+, 1}
to see how much the pattern differs from the ideal regularity that has exactly the same

time (\) between all events. Since x1 =ty —t1, 9 = t3 —t5 and so forth we can summarize

30 CHAPTER 2. BACKGROUND AND THEORY

X X

Y

¥ #
® ®
) t

tstart tl

@
' : time
3 = Cstop

Figure 2.7: Example of low frequent error irregularity.
The dots represent the appearance in time of one low frequent error.

2

the differences as:

n—1
5= |(tiy1 —t:) = Al
i=1
(2.3)
We now have the total sum of irregularity available. All there is left to do, is to check if
the sum s, is small enough referring to what is desired by definition. The limit of maximum
irregularity is controlled by a constant, named r. For the regularity validation, we also

take into consideration the length of the error time period involved. Hence, the maximum

deviation allowed will be proportional to the error presence in time.

This last calculation will eventually decide the low frequent error validity. If the fol-

lowing statement holds:

s<(tp—t1))xr (0<r<1l) (n>1)

(2.4)

the error behavior is of regular nature.

2.3. PROJECT OUTLINE 31

e o e e +
| rname | ltime | localdate | errorcode |
e o o o +
| kthnoc-2.sunet.se | 09:31:24 | 2003-08-28 | %GRPGE-6-GBIC_TX_FAULT |
O O o o +
1 row in set (8.35 sec)

e o e e +
| rname | 1time | localdate | errorcode |
O O o o +
| kthnoc-2.sunet.se | 10:22:38 | 2003-09-22 | %GRPGE-6-GBIC_TX_FAULT |
e o o e +

1 row in set (9.20 sec)

Figure 2.8: Output from mysql database.
Searching for error GRPGE-6-GBIC_TX _FAULT in Aug/Sep - 03. Tables have 933059 and 833936
rows respectively.

As shown, the theory covers the requirements for low frequent error isolation based on
error behavior and appearance in time. The theory leaves room for a lot of experimenting
with constants but also for modifications to the tests for regularity and representation in
time. Only testing in a real environment will tell how well the theory adapts in practice
and if modifications will be necessary.

Also, it is important to realize that the theory has the implication that, if only one
event is found in a search period, it is disregarded. It might be of interest to consider this

special case as a one time incident.

Case study

For a case study a database search for a known low frequent error in August and September
is shown in figure 2.8.

This represents an interesting case, even though this particular error as such is unin-
teresting. It fulfills the criteria as it is rare, regular and is present a relatively large time
of the total period, twenty five days out of sixty one. Also, it has the least possible events

(two) to suite the theory which also has implications for the regularity control.

32 CHAPTER 2. BACKGROUND AND THEORY

We make a brief summary of how these two events in figure 2.8 will be handled and if
they can indicate a suitable value for the constant p in eq 2.1.

The conclusion is that this special case will work satisfying with the low frequent theory.
Comparisons with other cases are hard to produce since low frequent errors are to hard
to find. Hence, from this isolated event we can not make any qualified assumptions for
a suitable constant value for time period representation in eq 2.1 and none for regularity
control in eq 2.4. Regularity test has no meaning with only two errors involved. This

confirms from:

/\:tg—tl

for all cases in the low frequent theory as the sum from eq 2.3 will be zero and conse-
quently eq 2.4 is true for all cases. We can only state that the constant p set to p = 0.4

will approve this case since by insertion into eq 2.1 we have:

61 x 0.4 < 25

and therefore is a valid time period representation.

Algorithm issues

We have presented our theory of how the low frequent calculations depend on constants.
These constants will be provided in the algorithm implementation as definitions after test-
ing. But some extra algorithm variables could be necessary to provide as program argu-

ments for better adaption to the environment, or for the situation at hand. These are:

e Maximum number of events to regard an error as low frequent.

2.3. PROJECT OUTLINE 33

— The algorithm must decide an upper limit for the number of events allowed for
an error to qualify as low frequent. In some cases this number might be too low

and should easily be possible to increase when needed.
e Max grade of error severity to process.

— The operator might want to disregard errors of low severity and should be

allowed to set the level as a program input argument.

Searching for low frequent errors are presumed to take place over a considerably long
time period and will therefore need to handle and process a large amount of data. Hence,
efficiency will be important at implementation time and memory consumption as well as

CPU usage might be limiting factors for longtime period processing.

2.3.4 Network log deviation

On a single point of failure a network component might suddenly generate more data. It
might be an isolated effect or spread to neighbouring parts. Doing regular measurements
on the log generation intensity could reveal if an abnormality occurs. This task would only
be meaningful if intensity checks are performed on a regular basis in small intervals. If a

deviation is found a report could be sent to the network surveillance staff.

Log deviation theory

To register a deviation we first need some reference for comparison. On a regular basis a
value for normal generation could be carried out in the present month. Suppose we are at
the tenth day in a month and we have at present 250000 messages in this month we will

have an approximate average log rate a as:

34 CHAPTER 2. BACKGROUND AND THEORY

250000
= ~ 17.36 [)
a (10 x 24 x 60) 7.36 logs/min

If a comparison of this value is done with the last minute average log generation, re-
peatedly every minute, action can be taken if we reach a predefined critical limit. We can
also adjust the average value dynamically every new day, and start all over again in a new

month, to produce an average that adjusts better to the network behavior.

Since deviations can be of different size, different levels of reports ought to be generated.
Let ¢ represent the last minutes’” average of log generation intensity. Then the following

example could be a possible differentiation and actions performed if:

c<2a
No action required.
or if:

20 < ¢ < 4a
Send: Warning.
or if:
da < ¢ < 8a
Send: High intensity state.
or if:
8a<c¢
Send: Critical state.

These boundaries have to be determined by experience.

If a send level is triggered by the algorithm that generates the warning, it also has

the possibility to count the number of logs generated for all network components involved.

2.3. PROJECT OUTLINE 35

This data could be attached to a warning in descending order to provide a quick overview

of the situation.

Log deviation algorithm issues

It is necessary to realize that this part of extracting information from the log data approach
real time surveillance. It is possible to realize, but has a questionable purpose since other
tools are available using SNMP technology as a base. To use an analogy, there is no point

in reinventing the wheel in an other material.

We have shown that in theory, log deviation detection is possible, but has a questionable
purpose when using network router log data. If information about traffic is needed SNMP
is commonly used. Technicians only need to log in on a router and check router traffic
variables. They can also use a SNMP based tool that retrieves the wanted data from a
router.

Investigation in log deviation has shown that the increase of log data are most often
generated upon configuration changes in the network. These changes are made by techni-
cians at the NOC? and are known to increase log data. A log deviation algorithm would
give information already known to the NOC. Because of these facts log deviation will not

be considered any further in this dissertation.

9Network Operation Centre

36 CHAPTER 2. BACKGROUND AND THEORY

2.3.5 Link failure detection

It is not difficult to detect when the network is down for some reason, but if some part of
or the entire network is only down for a few seconds nobody might notice. One additional
reason that contributes to this fact is that the network architecture often is built redun-
dant. That is, if one link fails, the traffic immediately takes another path in the network
to reach its destination. But still if one link fails, it is considered to be a serious problem.
As mentioned in the introduction chapter, there are often financial aspects involved with

link failures.

There are two approaches towards link failures. One is to generate immediate alerts
on events and the other is to perform analysis on historical data. Detecting link failures
can be done by network monitoring tools that monitor the events in a network, but this
requires additional personnel at the NOC monitoring in realtime. The goal here is to make
this analysis possible from the historical log data to confirm cases and reveal unknown link

failures.

We will discuss the possibilities for creating a state machine of the core network’s state.
It is not only the link itself that could be broken, the interface managing the link could also
be down and must also be considered. To be able to draw any conclusions, full knowledge

of the complete network connectivity is essential.

Network link connectivity information

To analyse the network link status the network connectivity has to be studied and under-
stood. If a link fails and an error message is generated, this has to be confirmed from the
router at the other end of the link. Hence, we must be certain of which additional router

must be involved.

2.3. PROJECT OUTLINE 37

Dest. Gavlel Dest. AS2603
130.242.81.50 193.10.252.182
POS 5/0 POS 6/0
4 Link A
vasterasl 4.&.:" 4.&7’ stockholml
POS 1/0 POS 0/0
30.242.80.10 130.242.80.9

Network 130.242.80.8/30

Figure 2.9: Schematic view of connectivity from part of network.

Showing network 130.242.80.8/30 with netmask 255.255.255.252 defining one specific link. This
link physically joins routers vasterasl and stockholml to exchange data on POS interfaces.

All routers in the network have several interfaces each belonging to some network with
a unique IP-address. Hence, each interface that connects via a link to some other router,
belongs to the same logical network as the interface on the opposite side. This is the key to
find out how the routers are physically connected. This is an inevitable task for analyzing
link status since the interfaces at both sides have to be studied simultaneously to be able to
make correct conclusions. This matter will be discussed further after studying the network

connectivity principles.

In figure 2.9 two routers are shown and how they are connected with some other sur-
rounding neighbours by POS¥ interfaces. If we study the figure we can see that interface
POS 1/0 in wvasteras! is connected with POS 0/0 in stockholml. From only reading the
interface IP-addresses and netmask, we can draw this conclusion by noticing that they

belong to the same defined logical network, namely 130.242.80.8/30.

Before starting to analyse the link status in the network, the required data for all in-

10Packet Over Sonet. The connection is similar to a serial Point-To-Point connection. Other standards
exists, such as SDH - Synchronous Data Hierarchy, commonly used in router technology in European core
networks. The additional information after POS, 0/1 gives information on slot number in router and index
on interface respectively.

38 CHAPTER 2. BACKGROUND AND THEORY

Router Interface | IP Netmask | Network
vasterasl POS 1/0 | 130.242.80.10 30 130.242.80.8
vasterasl POS 5/0 | 130.242.81.50 30 130.242.81.48
stockholm1 | POS 0/0 | 130.242.80.9 30 130.242.80.8
stockholm1 | POS 6/0 | 193.10.252.182 30 193.10.252.180

Table 2.1: Table showing a fictitious database table with necessary data for knowledge
about network link connectivity.

Here [vasterasl POS 1/0] and [stockholm1 POS 0/0] represent one link since they belong to the
same logical network.

terfaces in the network routers has to be collected and made available for an analyzing
algorithm to read. This can be done with SNMP!! to get raw data for insertion into a
database table by some script or program. And by applying this to all involved routers
in the network, the connectivity can logically be determined for all existing links. A ficti-
tious table from collecting information with SNMP is shown in table 2.1 representing the

network part in figure 2.9.

If some interface indicates a link failure, we can with help from this table draw fur-
ther conclusions about true physical link malfunctioning or disregard the event as another
problem. The reasons for a failure could also origin from an interface hardware or software

error.

For example, if vasteras1 POS 1/0 changes state to down and so does stockholm1 POS
0/0, from studying table 2.1 we know a link between those routers might experience some

sort of malfunctioning. It could simply have been cut off by accident.

1T extract this data with SNMP one can read router variables as: [snmpwalk -v 1 -¢ public routername
ifDescr] to get a list with all interfaces and [snmptable -v 1 -¢ public routername ipAddrTable] to get a
table with IP and netmask for all interfaces.

2.3. PROJECT OUTLINE 39

State 4 State 2

Figure 2.10: Router interface Link State Machine.

The LSM shows possible changes of state for interface and line protocol up/down (u/d) at link
failure detection. (I) is router interface and (P) line protocol. Dotted lines represent changes
caused by other failures than link related.

Link failure investigation algorithm theory

To investigate if a link failure has occurred, it is suitable to define a state machine for each
interface involved during an incident. Such a machine is presented in figure 2.10. There are
two objects involved with link failures, the link interface and the line protocol belonging to
the interface. Each of these can have two different states, up or down, but the sequence of
changed states for a link failure are restricted because of technical reasons. E.g., the line
protocol can not change state from up to down until the interface does so, and vice versa.
Else some other internal router problems probably exist irrelevant for link analyzing, e.g,

a broken interface is most likely to cause a link problem.

The analyzing algorithm needs to set up a state machine for both interfaces involved
during a link failure to evaluate link status by analyzing both machines concurrently. If one

interface changes state, the algorithm detects the corresponding interface at the other side

40 CHAPTER 2. BACKGROUND AND THEORY

NR ROUTER NAME ERROR MESSAGE DATA TIME

1) stockholml.sunet.se J%LINK-3-UPDOWN Interface P0S0/0, changed state to down 17:01:19
2) stockholml.sunet.se YLINEPROTO-5-UPDOWN Line protocol on Interface P0S0/0, changed state to down 17:01:22
3) stockholml.sunet.se %LINK-3-UPDOWN Interface P0S0/0, changed state to up 17:03:00
4) stockholml.sunet.se YLINEPROTO-5-UPDOWN Line protocol on Interface P0S0/0, changed state to up 17:03:00
5) vasterasl.sunet.se J}LINK-3-UPDOWN Interface P0S0/0, changed state to down 17:03:16
6) vasterasl.sunet.se YLINEPROTO-5-UPDOWN Line protocol on Interface P0S0/0, changed state to down 17:03:18
7) vasterasl.sunet.se }LINK-3-UPDOWN Interface P0S0/0, changed state to up 17:04:45
8) vasterasl.sunet.se YLINEPROTO-5-UPDOWN Line protocol on Interface P0S0/0, changed state to up 17:04:50
9) vasterasl.sunet.se }LINK-3-UPDOWN Interface P0S1/0, changed state to down 17:09:29
10) vasterasl.sunet.se }LINEPROT0-5-UPDOWN Line protocol on Interface P0S1/0, changed state to down 17:09:30
11) vasterasl.sunet.se JLINK-3-UPDOWN Interface P0S1/0, changed state to up 17:10:48

12) vasterasl.sunet.se }LINEPROTO-5-UPDOWN Line protocol on Interface P0S1/0, changed state to up 17:10:48

Figure 2.11: Output from log database.
The output presents some link failure scenarios from 2003-07-17 with routers stockholml and
vasterasl.

of the link as in the earlier theory for network connectivity. To complement the analysis
in figure 2.10, a table of states need to be consulted with predefined possible states. Note
that one state is considered to be invalid for link failures in figure 2.10 and is therefore
disregarded in this matter as not being a physical link related problem. In theory, only
functions f(1) to f(4) can therefore be involved. If some other movement occurs, one could

disregard this as being irrelevant regarding a physical link failure.

A table of states is shown in table 2.2. Some combined states are considered to be
steady. That is, those states are possible static states with a broken link or with a flawless
link.

To exemplify the use of the table with an algorithm, a snapshot from link associated
log data has been collected from the log database. This data is shown in figure 2.11 where
all data is filtered'? to show only link relevant data from 2003-07-17 from 17:00 to 17:15.

An example of how the algorithm is meant to work with this data begins when row
one is found. First the the algorithm search for stockholm1 POS 0/0 in table 2.1 and the

interface belonging to the same network, vasteras! POS 1/0. For those two interfaces two

12The database query was set to match errors beginning with "LINK” or "LINEPROTO”.

2.3. PROJECT OUTLINE

41

Steady State | Router 1 Router 2 | Link failure
Yes L:u P:u (S1) | Lu P:u (S1) No
No I:u P:u (S1) | Iru P:d (S2) Possible
No I:u P:u (S1) | I.d P:d (S3) Possible
No I:u P:u (S1) | I:d P:u (S4) | Other failure
No L:u P:d (S2) | Iiu P:u (S1) Possible
Yes L:u P:d (S2) | Lu P:d (S2) Likely
Yes L:u P:d (S2) | I.d P:d (S3) Possible
No I:u P:d (S2) | I:d P:u (S4) | Other failure
No I:d P:d (S3) | I:u P:u (S1) Possible
Yes I:d P:d (S3) | I:u P:d (S2) Possible
Yes I:d P:d (S3) | I.d P:d (S3) Possible
No I:d P:d (S3) | I.d P:u (S4) | Other failure
No I:'d P:u (S4) | Iru P:u (S1) | Other failure
No I:'d P:u (S4) | Iru P:d (S2) | Other failure
No I:'d P:u (S4) | I.d P:d (S3) | Other failure
No I:'d P:u (S4) | I.d P:u (S4) | Other failure

Table 2.2: Table showing the probability for link failures for state machines of router
interfaces and their common physical link.

(I:) is interface up/down (u/d) and (P:) is line protocol up/down respectively. No indicates no

link failure, that is, the state presumed normal. Other failure indicates some other reasons for
link related problems such as hardware interface faults etc. Possible is indicating a state that
could be a prestate to an upcoming failure or when leaving a true link failure. A steady state Yes

indicate a static state in which both state machines could stay until external conditions change.

All states that are not steady are considered as a transitions phase of some sort. They should

normally only exist for a short period of time while moving to some other steady state while

considering link status.

42 CHAPTER 2. BACKGROUND AND THEORY

Steady | Event | SM vasterasl | SM stockholml | f() | Time | Link failure
Yes - I:'u P:u I:'u P:u 0 | 00:00:00
No 1 [:u P:u I:d P:u 5 17:01:19 Other
No 2 I:u P:u I.d Pd 6 17:01:22 Possible
No 3 [:u P:u [:u P:d 3 17:03:00 Other
Yes 4 I:'u P:u I:'u P:u 4 17:03:00 No
No 5 I:d P:u I:'u P:u 5 17:03:16 Other
No 6 I:d P:d I:'u P:u 6 17:03:18 Possible
No 7 L:u P:d [:u P:u 3 17:04:45 Possible
Yes 8 I:u P:u I:u P:u 4 17:04:50 No
No 9 I:d P:u [:u P:u 5 17:09:29 Other
No 10 I.d P:d [:u P:u 6 17:09:30 Possible
No 11 [:u P:d I:'u P:u 3 17:09:48 Possible
Yes 12 I:'u P:u I:'u P:u 4 17:09:48 No

Table 2.3: Table showing the state machine events for figure 2.11.

Link failure probability are set from consulting table 2.2. The function f() represents a movement
in the state machine shown in figure 2.10. All steady states are marked with Yes. The transaction
scheme in this table does not revel any steady state with possible or a likely link failure.

state machines are set up as in figure 2.10. The state machine starts initiated as being in
State 1 presuming the link was up and running. We present the result in a new table 2.3 to

show how state events from log data in figure 2.11 are evaluated in a step by step procedure.

For all changes of state, table 2.2 is consulted for possible link failure. This data did
not indicate any probability for a link failure. The state transaction functions f(5) and
f(6) also indicates for other failure involved. This happens because the interface changes
to state down before the line protocol does, and this is not consistent with what to expect
from a link failure. However, this inappropriate order is at present often the case due to an
internal router bug. This means that transition f(5) and f(6) in figure 2.10 also should be
accepted as normal, if the transaction f(6) occurs within approximately five seconds after
f(5). Hence, link failures in table 2.2 need to be updated to accept State 4 [I:d P:u| as

possible to adapt to this internal router fault, if implemented at present situation.

2.3. PROJECT OUTLINE 43

However, adapting to this bug or not is not critical since the State 4 is an unsteady
state for all cases involved. If a link failure should be likely, one must arrive at some steady
state while considering both link state machines, something that is expected to happen if

the link is physically disconnected or broken.

The time period being in a steady state is considered to be the period for the link
failure. In a similar way for a possible failure, but with less fault probability. The time
period together with the probability factor possible or likely will serve as algorithm variables

to investigate for a report generation.

Link failure summary

The task of detecting link failures is not trivial. Several scenarios are possible and one must
also take into consideration that logs might be lost during link failures. Something that
complicates reliable reporting. If an analysis finds a possible link failure, it will always have
to be validated by a network technician in all cases. Other incidents could be summarized
and reported as interface problems, if wanted. Still, the conclusions from the investigations
and the creation of a theory show possible usefulness. Even if limiting factors are present
and algorithm accuracy shows would not be better than about fifty percent, it could still

be worthwhile to realize.

A part of this thesis has been to investigate the possibility of link failure detection and
create a foundation for implementation. This has proved to be possible and shows potential
from making further use of the historical log data kept in database. Further discussion and

conclusions will be presented in future work, chapter 5.3.

44 CHAPTER 2. BACKGROUND AND THEORY

2.4 Summary

The project outline ideas have been presented and theories discussed to extract more in-
formation from the network historical log data. If relations in this data can be found and
reported, it can assist the daily network troubleshooting. The hypothesis is to do so by
revealing unknown error states. Some does not instantly cause network disturbance, but

might in the future, if overlooked and not attended to.

Implementation details will follow in the next chapter where selected theories will be

implemented in task specific algorithms that analyse the data and produce reports.

Chapter 3

Experiment and Implementation

3.1 Implementation objectives

In this chapter algorithms from the issues described in the background chapter will be
presented. The goal is to provide information of interest by analysing historical events.
Implementations made should be easy to use and should require a minimum of human
surveillance. Applications written are intended to be run as jobs on a monthly or weekly
basis. They are not surveillance software. These software parts are purely computations
and will not require user input after starting the respective process. No real time analyzing

of the incoming data will be considered.

The design goal has been to cause as little workload as possible on the database since it
also is constantly managing new data and provides other important services. Due to this
it is important to avoid work overload on the database. Preferably, the algorithm process

should not run on the database host for the same reason.

The research is divided into several subareas to provide possibilities to evaluate the

result from each subarea. The main objectives are areas which can be tested and evaluated

45

46 CHAPTER 3. EXPERIMENT AND IMPLEMENTATION

by empirical observations. We know log rows might relate in a chain of events or originate
from a single point of failure. The research will focus on finding relations between log

entries in the database.

3.2 Network environment

The algorithms implemented as programs are intended to work in a networked environ-
ment thus not running on the database host. The programs can be used without a network
connection and run on the same machine as the database host but this is not recommended
as the programs make demanding computation. All programs will connect to the database
once and retrieve data and then disconnect for data processing. A common configuration
file with authentication information for the database connection will be used by all pro-
grams. It is in fact the same file as used in the base system, see [1| for further information.

SUNET HQ

Network surveillance GUI/PHP

webb server

—
MySQL DB '
. Server
Host running
implemented Log target host

alogrithms syslogdeylogd

Figure 3.1: Base system schematic overview with new component

Figure 3.1 depicts the environment the developed algorithms intend to run in. The
outcome of the algorithmic processing will be evaluated for its significance regarding the
network fault detection area in chapter 4. Diagnosing the failures will not be considered

and is up to the network administrator.

3.3. IMPLEMENTED ALGORITHMS 47

3.3 Implemented algorithms

The implemented algorithms from theory are presented here. They represent one possible
implementation and are all first of all meant as tools to test selected theories from chapter

2.1.

3.3.1 Diffusion error detection

Error diffusion has been chosen based on experience by KTHNOC as a possible critical
failure that might go undetected. Evaluation of error diffusion is critical to prevent future
repetition. Automated diffusion detection is the goal for the algorithm in this area, as

discussed in section 2.3.1.

In section 2.3.1 error diffusion was defined as:

One or more errors that within a limited period of time are reported from two or more

network components

That is, an initiated error will spread from one router to neighbouring routers causing
them to report the same error in a chain reaction. Errors observed so far tend to disappear

within only a few seconds, this makes them hard to find by manual inspection.

Figure 3.2 shows how an assumed error diffusion in the network might look. It occurs
when a specific error, in a short period of time, suddenly is present in several routers.

Before defining an algorithm for diffusion two parameters must be defined:

e The minimal number of routers involved to be evaluated as diffusion

e The time interval for error evaluation.

48 CHAPTER 3. EXPERIMENT AND IMPLEMENTATION

num AN\ reportlevel
routers I
found |
R error XxX-n-yyyy
If\!
_
start wingize end

Figure 3.2: Assumed error diffusion in network
reportlevel: The minimal number of routers that have the same error.
winsize: The time slot to search for diffusion.
error xxx-n-yyyy: A specific error

In figure 3.2 the minimal number of routers involved to be evaluated as diffusion is
represented by reportlevel and the time interval for error evaluation as winsize. There is
a reason for this name which will be explained later. These parameters have to be set by
the operator. The values are estimated and have to be adjusted from experience with an

working algorithm.

To verify the impact of network diffusion errors, real data was manually collected from
a typical incident. The diffusion starts at 12:45:03 and ends at 12:45:09. Observing a
period from 14:40:00 to 14:50:00 will capture some of the normal network state. A plotted

graph from the event is shown in figure 3.3.

At this diffusion there was an error spread, BGP-6-NLRI_ MISMATCH. The plotted graph
shows how the error, in a period of ten seconds, is present in fortyfive different routers.
The normal state of network does not give more than three errors of the same type within

a ten second period.

3.3. IMPLEMENTED ALGORITHMS 49

50

T I T T T T
"diffplot1.dat" using 1:2

45

40

35

30

25

|
. |
; I
i
il

Max Num Routers Present

5

o L= | ‘ ‘ | L/\ ~
12:40:00 12:41:00 12:42:00 12:43:00 12:44:00 12:45:00 12:46:00 12:47:00 12:48:00 12:49:00 12:50:0C
Time

Figure 3.3: Error diffusion plot 2003-02-26, 14:40:00 - 14:50:00
Generated with time-window set to 10 seconds.
Error diffusion cause, showing BGP-6-NLRI__ MISMATCH.

Searching manually the database February table reveals a total amount of three diffu-
sion errors with no more than twenty seconds of diffusion state in total. This makes them
hard to detect if they don’t cause any side effects that will call the network technicians’

attention.

To provide automated detection and reporting, an algorithm will be needed. The goal is
to have a flexible and efficient search with small workload on the database. The algorithm

will search for diffusion by moving a time-window over the data to evaluate.

20 CHAPTER 3. EXPERIMENT AND IMPLEMENTATION

Algorithm description

The algorithm will find error diffusions by looking at errors in a small time period. Errors
are collected from the database based on a selected time interval, maximal length of one
month. The list containing retrieved errors will be investigated in small chunks at a time.
These chunks represents a time period of logged errors and are defined as time-windows.

In these time-windows errors will be counted and evaluated.

The number of routers that have the same error type in a time-window are counted
and compared to the parameter reportlevel. The reportlevel parameter determines if the
sequence of error is a possible error diffusion. If the number of errors is greater or equal
to reportlevel further processing is needed. The other conceivable case with less than re-
portlevel will be described later. Figure 3.4 illustrates a time-window with the list of errors
placed on an axle. Every error in the time-window must be checked for its type and its
originator. The type is used to distinct the error, BGP-6-NLRI_MISMATCH and BGP-5-
ADJCHANGE are examples of two different types of error. An error must have at least

reportlevel originators to match as a diffusion.

For example, if five errors appear in the time-window and the reportlevel is set to five,
the type of the errors and their originator must be checked. We define DiffList as: A
list of originators for an error, the originators should all be unique. That is, the network
components that produced the same error is the nodes in DiffList. The size of DiffList (the
number of network components/list nodes) must be greater than or equal to reportlevel to
be a diffusion.

In table 3.1 there are three different scenarios, for some time-window. In the columns
the originators are identified as router A, router B and so on. In the leftmost column there
are three distinct routers and hence a diffusion, if reportlevel is three. The middle column

has only two routers so error Y is not considered as a diffusion. In the rightmost column

3.3. IMPLEMENTED ALGORITHMS 51

Time window Error

| } } } } Time period
Start end

Figure 3.4: time-window
Within the time-window errors are counted for further processing.

- - - T
| ‘ | } } } } Time period
Start A A end
[E . —

new position

Figure 3.5: New position of the time-window
All errors in the time-window have been processed and the
time-window is moved forward half its size in seconds.

there are three routers but one router appears twice, so one router A will be discarded and

only two originators would be place in error Z’s DiffList.

‘ Error X ‘ Error Y ‘ Error Z ‘
router A | router A | router A
router B | router B | router A
router C router D

Table 3.1: Diffusion
Example of processed data in one time-window, reportlevel at 3

In figure 3.6 the time-window is shown enlarged. The routers are named by a number
and the error type by a letter. In this figure a window with five errors has been selected.
The error A is occuring in the routers 1, 3, 5 and 7. If now reportlevel is at most four

this will be caught as a diffusion.

52 CHAPTER 3. EXPERIMENT AND IMPLEMENTATION

Time window

- \ \ \ \

| | | Time period

\ N I
Start L - ~ _ end
\ \\ \\
\ ~
VoD \\\ T
\ \ ~ \\\
N S ~ _
\ = =
\ ~ -
\ >
\ S~
\ ~
1A 7A 2B 3A >~ _ 5A
\ ~
\ >~

Figure 3.6: Zoomed time-window.

If the number of errors is less than reportlevel the time-window must be moved, (inves-
tigate a new chunk of data from the error list). The time-window will move in steps of half
its size to detect any diffusion that starts in one window and ends in the next. Figure 3.4
and 3.5 give a view over the time-window and its movement. One problem that can arise
of this is that the same diffusion can be detected twice. If the time-window is from zero to
ten seconds and a diffusion is detected between the five and ten second interval, the next
position of the time-window between five seconds to fifteen will also detect this diffusion.
This scenario is shown in figure 3.7. Figure 3.8 gives a view of overlapping time-windows
and why it is used. In the implementation the latter time-window is discarded in these
cases. Note, if a diffusion extends the time-window it will be missed.

A scenario that could happen with a time-window that move forward more than one
second is that diffusions can be missed. An example of this is shown in figure 3.9. To
detect all diffusions the time-window must be moved forward one second since the time of
all errors are stored in seconds.

The algorithm will only cause one operation on the database leaving it idle for other

work. This operation involves retrieving data for the selected time interval. The algorithm

3.3. IMPLEMENTED ALGORITHMS 53

0 5 10 15
e] time(s)
e | |
™ ™
T | T |
\ \
New window position

Figure 3.7: The same diffusion detected twice

0 5 10 15
r- - T R time(s)
o ___ ___ 77]
/F
1 ! ? |
\ \
New window position

Figure 3.8: Diffusion overlapping two time-windows
The time-window moves in steps of half its size to detect any diffusion that starts in one window
and ends in the next.

described in this chapter can be studied in appendix A.

3.3.2 Recurring sequences

In this section an algorithm description for recurring sequences will be presented. The

algorithm will be based on the information in chapter 2.3.2. Details about the algorithm

0 5 10 15
oo LT o time(s)
IO BN | N
/’\ | /F |

\

10 sec time-window

Figure 3.9: A missed diffusion, with a reportlevel set to 5
The 10 second time-window will miss the diffusion between 4 and 14.

04 CHAPTER 3. EXPERIMENT AND IMPLEMENTATION

will be given in figures with describing text.

If patterns exist, are the errors in the pattern related to each other? Do they cause
each other? The number of repetitions and length of a sequence should indicate this and
rule out the possibility that the pattern was created haphazardly. The main issue in this
chapter is to develop an algorithm that finds patterns in the archived error logs. A pattern
was defined in chapter 2.3.2 as a repetition of a sequence of routers that are repeatedly

reporting the same error in that sequence. An example of this was shown in figure 2.5

Algorithm description

An important function of the algorithm is to point out the starting router for the sequence.
Common troubleshooting involves locating the problem cause and taking care of it from
there. Cases where the origin for a sequence is doubtful are not managed by the algorithm
but will be discussed in this chapter.

Definitions in recurring sequences considered in chapter 2.3.2:
e The number of repetitions of the sequence, seqrep
e The minimum length of the sequence, seglen

The item "how to avoid reporting a subsequence of a sequence” discussed in chapter

2.3.2 will be discussed in the detailed algorithm information section.

For a sequence to be a valid recurring sequence (pattern) these conditions must be met:

e The length of the sequence must be at least of length seqlen, which is user specified
and would reasonably be at least 10% of the number of routers in the network.
This is very dependent on the type of network and its size. Having seqlen less than
10% of the total number of routers in GigaSunets would give a tremendous amount
of patterns and not be of much use in troubleshooting. These patterns which are

pointed out in chapter 2.3.2 could have been created by mere accident.

3.3. IMPLEMENTED ALGORITHMS %)

e The number of repetitions for the sequence must be greater or equal to seqrep, which
is also user specified. Segrep should be more than 2 to rule out sequences created by
mere accident. This parameter does not rule false sequences totally but minimises

the risk.

The balance between seqrep and seqlen is up to the technicians responsible for trou-
bleshooting the network to investigate further. First we define the number of repetitions

for a sequence as:
*sequence — Number of actual repetitions for a pattern

and we summarize the conditions for a valid pattern in eq 3.1.

|sequence| >= seqlen AND (xsequence) >= seqrep (3.1)

For recurring sequence three main scenarios have been put together to demonstrate
which patterns and how they are managed, A, B and C. The three sequence cases will
show how the algorithm works and the thoughts behind it. Routers are named by numbers
and errors by a letter, e.g. 1A, 2A, 3B; router 1 and 2 have the same error. Circle indicates

start.

AN
R

2

Figure 3.10: Case A: {1A, 2B, 3B, 4C, 1A} Not managed, Source not reliable.

26 CHAPTER 3. EXPERIMENT AND IMPLEMENTATION

The source, i.e. the starting node for the sequence in case A, figure 3.10, can not be
set for sure based on its position. It gives an indication but not a reliable source for the
initiating of the sequence. Based on this argument sequences like in case A is not managed

by the algorithm.

4C

N
SN

2B

Figure 3.11: Case B: Managed if 1A is the starting node.

Case B, in figure 3.11, is similar to A but here the starting node is separate from the
loop {2,3,4}. 1A must be the starting node for the sequence and the terms for a valid

sequence are met.

Figure 3.12: Case C: Managed, 1A and 2B can be starting nodes; seqlen 4 or 3.

In case C, shown in figure 3.12, either node can be the starting node because there are

no loops in the sequence. The terms for a valid sequence must also be met. In figure 3.12

3.3. IMPLEMENTED ALGORITHMS o7

1A and 2B are marked as possible starting node with seqlen 4 or 3, seqrep is not considered

here.

Detailed algorithm information

All data fetched from the database is put into a list for further processing. This list
contains information such as time of the event, router identification (id) and the error code
for the specific error. Based on the router id and error code the algorithm will search for
recurring sequences in the list. The user given parameters seqlen and seqrep specify how
many entries there must be in a sequence and how many times the sequence must exist in
the list. The algorithm uses seglen as the minimum length of a sequence. If a sequence of
length seqlen has been found, the following entry in the list is also compared until no more
match can be made. We define mazlen to be the maximal number of matched entries for
a sequence.

This is demonstrated in figure 3.13 where seglen is equal to three where the algorithm
continues until the compared sequences do not match. In this case 5D is the last equal.

Sequences that begin with a loop, e.g. {1A 2B 3B 1A 4E}, will not be managed as

discussed previously in the case examples.

seglen = 3

—
1A 2B 3C 4D 5D 6D...1A 2B 3C 4D 5D 7D 8E...

T

Figure 3.13: A recurring sequence, a pattern is found.

The focus lies on the triggering router for the sequence, avoiding subsequences gives less
unwanted information and more focus on the triggering fault. Therefore when a matching
sequence is found and no more sequences can be found, the algorithm skips forward mazlen

steps to a new sequence. The reason for moving mazlen steps is that we do not want to

28 CHAPTER 3. EXPERIMENT AND IMPLEMENTATION

search for subsequences. Since the algorithm finds and saves all matching sequences with
> seqlen no wanted sequences will be skipped with this procedure. For a sequence to be a

pattern it must be found at least twice in the retrieved list, a recurring sequence.

Search pattern . Match
1

!

1A 2B 3C 4D 5D 6D 1A 2B 4C 4D 5D 7D 5A 6E 3G 9A 2C| 1A 2B 3C 4D 5D

! .- - - — = f
e ——

Max lenght of matched
sequence

Sequence compared to
search pattern

—
1A 2B 3C 4D 5D 6D 1A 2B 4C 4D 5D 7D 5A 6E 3G 9A 2C 1A 2B 3C 4D 5D

! e !
\

|
1A 2B 3C 4D 5D ?D 1A 2B 4C 4D 5D 7D 5A 6E 3G S9A 2C 1A 2B 3C 4D 5D
\

e [
L

1 step

Figure 3.14: List in which patterns are found.

Figure 3.14 shows a list of router id and error code, with seqlen = 5. This is the initial
search, the sequence that will be tried to match other sequences will be {1A, 2B, 3C, 4D,
5D}. This sequence results in a match at the end of the list. The found sequence is saved
for comparison and as a result, the algorithm will not search for the same pattern twice.
When no more match can be found for the current pattern a new search sequence is set.
Since the {1A, 2B, 3C, 4D, 5D} sequence was found the next sequence will begin at po-
sition directly after the current pattern, as shown in figure 3.14 at line two. If no match
had been found the new search sequence had been set at the next position, i.e. 2B. The
sequence that is compared with the search sequence is changed to its successor which is
the next in the list, row three in the figure. When the compare sequence reaches the end

of the list, the search pattern is changed as shown at row four in the figure.

If the search sequence should be a pattern already matched it will be skipped and the

new sequence will start after the already found pattern. Figure 3.15; (1) shows this case.

3.3. IMPLEMENTED ALGORITHMS 29

After sequence {1A, 2B, 3C} has been matched and no more sequences can be found the
new sequence is set according to (1c) in the figure. The procedure is that the new search
sequence should be set mazxlen steps after the searched sequence. The new sequence is
{1A, 2B, 3C} which is shown in the figure, (1b). But since this sequence already has
been found as a pattern the new sequence will start at the position directly after the found

pattern, as shown in (1c).

(2) in figure 3.15 demonstrates case A with a not reliable source which was discussed
earlier in this chapter. Instead of {1A, 2B, 3C, 4D, 5D, 6D, 1A} being matched only {1A,
2B, 3C, 4D, 5D, 6D} will be matched. When all sequences that match the {1A, 2B, 3C}

sequence a new search sequence is set as shown in (2b).

In (3) a demonstration is given if a search sequence contains a initiating loop. The
algorithm will search for matching sequences but it will fail to get seglen matches. When a
loop is detected the sequence will be discarded, both in (3a) and (3b). In (3c) the search

sequence has moved past the initiating loops and in this case it can be matched.

As described the algorithm only focus on the router id and error, not the time when
the error occurred. This could lead to sequences where the time between events in the
sequence could question the events as related!. These sequences should, however, be elim-
inated with seqrep. If seqrep is relatively large and still a pattern is found with events that

have a big time difference, then this pattern should get attention.

The time of the error event is displayed with the results. Time and date for the pattern’s
first appearance is provided with the results. An overwhelming amount of information

would be displayed if time information should be provided for all matched sequences for

'In GigaSunet there are normally about 30 log entries per minute.

CHAPTER 3. EXPERIMENT AND IMPLEMENTATION

(1a) .
seglen Match Match
—

1A 2B 3C 4D 5D 6D‘1A 2B 3C 4D 5D 6D |5A 6E 3G 9A 2C|1A 2B 3C|5D 5D
(1b) . éz////'#g“\\\\ﬁﬁg Pattern already found

i, =
1A 2B 3C 4D 5D 6D 1A 2B 3C 4D 5D 6D 5A 6E 3G 9A 2C 1A 2B 3C 5D 5D

Move to position
(1c) . after found pattern

Ly '
1A 2B 3C 4D 5D 6D 1A 2B 3C 4D 5D 6D 5A 6E 3G SA 2C 1A 2B 3C 5D 5D

(2a) . m
1
seglen

1A 2B 3C 4D 5D 6D‘1A 2B 3C 4D 5D 6D‘1A 6E 3G 9A 2C|1A 2B 3C 4D 5D
(2b) .

 —
1A 2B 3C 4D 5D 6D 1A 2B 3C 4D 5D 6D 1A 6E 3G 9A 2C 1A 2B 3C 4D 5D

(33{— seglen
'

'y
T
1A 2B 3C 4D 1A 2B 3G 7B 3C‘}A 2B 3C 4D 1A 2B 3G 7B 2C 1A 2B 4D 5D

Sequence contains a loop
with init. error

(3b) .

! !

(3c) . . . Match
1A 2B 3C 4D 1A 2B 3G 7B 3C 1A 2B [3C 4D 1A 2B 3G 7B|2C 1A 2B 4D 5D

B 'y
lATgB73C 4D 1A4g373G’7B 3C 1A &B 3C 4D 1A 2B 3G 7B 2C 1A 2B 4D 5D

Figure 3.15: Three scenarios when searching for patterns.

3.3. IMPLEMENTED ALGORITHMS 61

a pattern. However, the user can change this as program input and all sequences will be

displayed with date and time.

Source code for the recurring sequence algorithm is provided in appendix B for the

interested reader.

3.3.3 Low frequency errors

Finding low frequent network errors will help network operators to locate errors that could
cause serious disturbance in the network traffic, despite from being rare. Experiments and
implementation for a low frequent search algorithm for this purpose is directly connected

to the theory presented in chapter 2.3.3.

Some low frequent errors occur regular in time, while others might report a few times
in a short period of time, and never show again. A low frequent error that has a behavior
of a regular recurring nature is considered to be more important to find and observe by
KTHNOC. One reason is that a normal router reconfiguration might generate a special er-
ror message that is perfectly normal, but low frequent. And further, one isolated incident
during some period is not considered by the algorithm as discussed in the low frequent

theory.

Hence, adapting the algorithm to meet those requirements by providing adjustable
constants and dynamical adaption to the environment was therefore essential for the given
task. As will be shown, the low frequent theory provides possibilities to meet those de-

mands with different solutions in practice.

62 CHAPTER 3. EXPERIMENT AND IMPLEMENTATION

Timestamps Timestamps Timestamps
031105 11:38 031115 01:05 031111 09:01
031125 21:44 031116 20:11 031121 18:15
Counter Counter Counter
0002 0006 1239
ROUTER ROUTER ROUTER
NR:23 NR:12 NR:23
ERROR ERROR ERROR
[YPE: 0008 [YPE:1273 [TYPE:5518
——> NEXT —> NEXT _’ NEXT

Figure 3.16: Cut from low frequent algorithm data storage structure.
Each router and error combined, here identified with numbers, will together represent a unique
fault that is represented by a entry in the list.

Algorithm description

The implemented low frequent search algorithm begins with reading all available data from
the database for the operator given time period. The entries collected from the database
are inserted into a list were all errors are kept unique. That is, every entry in the list

contains one and only one unique error and router combination.

Obtaining this structure is the first major task of the algorithm. This work requires
considerable, but important work, since it provides for a suitable data structure for the
forthcoming low frequent analysis. A schematic view of the data structure is shown in
figure 3.16. The structure is implemented as a linked list and the code can be studied in

appendix C for specific details.

As more elements of the same combination are found, a entry occurrence counter is
incremented and a list of timestamps? is updated that belongs to the specific error com-

bination. If the combination was not already present, a new entry will be created and

2Consequently the number of timestamps always match the value of the entry occurrence counter.

3.3. IMPLEMENTED ALGORITHMS 63

inserted into the list. As a result of this implementation, the processing run time will

increase linearly® with the combinations in list.

The algorithm keeps track of the total number of rows captured from the database
in the query set. From a calculation with this number, a limit is defined for a low fre-
quent definition. This is done from computation with the build in constant LRFQFACT*
as a factor multiplied with the number of rows present in the set. Hence, the error limit
adjusts dynamically to the number of members in the set obtained by the query. One
drawback with this solution is that experimenting with this constant requires a recompile
of the program. However, tests so far have not indicated that fine tuning here is essential.
The occurrence of an error is often very high, or very low. It is just a matter of finding
a constant that separates the two extremes. Figure 3.17 shows how error entries from the

list normally divide into different areas.

Only applying the above computation could be enough to reveal interesting low frequent
errors in certain environments. But since specific conditions were presumed to be of special
interest, this alone was not satisfactory. All entries in the algorithm list have to be examined
for the low frequent definitions according to the theory described in chapter 2.3.3. All error
combinations are evaluated with a boolean function that returns whether it is considered
to be a valid error or not. This specific function, called isValidPost, processes the theory
in practice. That means that all entries in the list shown in figure 3.16 pass through this

function.

3There are other possible ways to solve this task. For example, a router by router query could decrease
algorithm memory consumption, but will cause more SQL-queries on the database. The low frequent
theory does not bind algorithm construction to one possible solution for obtaining and evaluating the
data.

4Appendix C shows the details involved i C code. Built in constants are defined in the low frequent
header file.

64 CHAPTER 3. EXPERIMENT AND IMPLEMENTATION

Error
frequency/
ppm
100000 — — _ _ e e e e o
_ I:I Normal errors
_ [_ _ area
000 B =1 =1} ===t dE{]=]|]} -
|:| Rare errors
area
N~
~
~ I:I Low frequent
SERNRE-0 N) S B b . I I . area

1 2 3 4 5 6 7 8 9 10 11 12 ... Error list

Figure 3.17: Error frequency areas.
Error and router combinations divide into different frequency areas from computing the error
counter divided by the total number of error combinations in the set. The low frequent area is
defined from the constant LRFQFACT. In this example set to 0.000025.

Algorithm details

As shown previously in figure 2.7 (page 30), all low frequent errors have some characteristic
appearance in time. The algorithm needs to test the error regularity and the over all
presence in time.

Two more built in constants are involved during this test. These are named PRESFACT
and IREGFACT, for time period representation and regularity test respectively. Details re-

ferring constants and algorithm input variables will be discussed next.

The algorithm has both built in constants and input variables for algorithm computa-

tions and filtering. These are:

e Built in constants

— Low frequent factor (0 < LFRQFACT < 1): Is used by the algorithm to set

3.3. IMPLEMENTED ALGORITHMS 65

an upper limit level to define what is to be considered as low frequent. This

constant can be overrun from an algorithm input variable.

— Time presence factor (0 < PRESFACT < 1): Involves calculation to determine if

the error is representing the chosen time period to a certain extent.

— Error regularly factor (0 < IREGFACT < 1): Involves calculation if the error

behavior is of regular nature.
e Input variables

— Time period: The algorithm search period start- and stop date.

— Maximum level of errors: The algorithm will define a maximum level of errors
found with the built in constant LFRQFACT. If this input variable is set to a
higher level, the number of errors accepted as low frequent are increased. Hence,

the constant LFRQFACT is overrun.

— Error severity: Is defining the maximum error severity to report.

All built in constants are fixed at compile time. Experimenting will therefore require
a recompile between each test run. Tuning constants for best performance is always a
compromise between reporting irrelevant errors or excluding something important. Only
from running real tests and analyzing the result those values could be set. Implications on

this will be discussed further in chapter 4.3.3 and 5.2.

If the chosen time period exceeds one month, the algorithm must process two or more
queries on the database since each month is represented with one table®. To make the
upcoming computations more effective and to decrease memory consumption, a rough

filtering® is processed for each table involved. All errors that pass this first test will be

®See earlier work|[1] for details.
6This is done for the upper limit for the low frequent definition. That is, the number of rows for each
table is computed with a constant(QURYFACT) setting temporary bounds for low frequent. This number

66 CHAPTER 3. EXPERIMENT AND IMPLEMENTATION

added to the data structure shown in figure 3.16. The algorithm is now ready to test all
members in the list one by one according to the low frequent theory.
Function isValidPost computation

The theory presented in chapter 2.3.3 has been implemented almost straight forward into
the algorithm in the boolean function called isValidPost. Each error combination from the

list shown in figure 3.16 is evaluated in four steps by this function. These are as follows:

1. Error severity test.

e Test the error severity grade compared to the value provided from the operator.

e Involved parameter: Algorithm input argument severity grade.
2. Low frequent definition test.

e Counts the number of error combinations and computes if the entry belongs in

the defined low frequent area.

e Involved parameter: Built in constant LFRQFACT.
3. Interval presence test.

e Computes the representation in time from the operator given overall algorithm
search period. Calculates the difference in time from the first and last appear-

ance of the errors, and compares this value with the entire period.

e Involved parameter: Built in constant PRESFACT.
4. Irregularity test.

e (Calculate if the error behaves in a regular recurring pattern to some extent.

is always set to a higher level than the overall level defined by LFRQFACT. This is needed because the
number of rows differ in tables and the total number of errors is still not known at the time to set the final
limit for low frequent.

3.3. IMPLEMENTED ALGORITHMS 67

e Involved parameter: Built in constant IREGFACT.

As soon as one of the above tests evaluates to false, the processing of the current entry
is interrupted and the function will return false. Only if the entry passes all tests the

function will return true and the entry will subsequently be reported.

The irregularity test has one special case. If the minimum of allowed errors occurs, two
repetitions only, the evaluation is always true since two errors always represent a perfect
regularity. Hence, the two repetitions entry will always pass the test. In practice, this will
not cause any unwanted reports since such a rare combination that passes the previous

tests, is always considered interesting.

Constants default values

All constant default values have been tuned with tests on real data. However, it is not
possible to determine any perfect values. Networks are considered dynamic environments
and repeated tests for constant tuning might be necessary over time as the network topol-

ogy changes.

The following values have been determined as defaults for built in constants:

LFRQFACT — 0.000025

QURYFACT = 0.0003

PRESFACT — (.15

IREGFACT = 0.67

Experimenting in this area will be presented in chapter 4.3.3 where the influence on

error reports is shown.

68 CHAPTER 3. EXPERIMENT AND IMPLEMENTATION

3.4 Summary

In this chapter we have described the algorithms that were outlined in the background
chapter, Diffusion error detection, Recurring sequences and Low frequency errors. All
algorithms are based on analyzing captured network error data retrieved from the base
system, described in 2.2.1. The Diffusion algorithm locates and reports errors that spread
rapidly in networks. The recurring sequence algorithm finds patterns in logged router error
reports. The low frequency error algorithm finds errors that are constantly recurring as an

even stream over a long period of time.

Chapter 4

Results and Evaluation

4.1 Algorithm test outline

In this chapter results of the analysis of log data according to the algorithms outlined in
the previous chapter will be presented and evaluated. Different time periods containing
different amount of data will be used to measure the time for processing the data. These
processing times are however only an indication, since they are only based on one run of
a program. Several different values for the parameters in an algorithm will be used in
presenting the results. As the research is divided into subareas result presentation and

evaluation will be presented on each separate area.

For the diffusion algorithm, the time-window behaviour is investigated when searching
for error diffusions. In the recurring sequence, patterns found will be matched against
data in the database to verify its existence. For the low frequent algorithm, parameter
adjustment takes place to produce less irrelevant data. Several tests are made on each
algorithm and the results are presented.

This section summarises the results for the three implemented algorithms, Diffusion

error detection, Recurring sequences and Low frequent errors.

69

70 CHAPTER 4. RESULTS AND EVALUATION

4.2 Test environment

The programs were run on the same machine as the MySQL database. The time values
for each area should only be a hint, none of the algorithms are optimized. Time values are

based on one single run made on a Pentium III 600 MHz and 128 Mb ram.

4.3 Algorithm result and performance

All tests where performed on real network log data from the GigaSunet network. Detailed
results from the implemented algorithms are presented separately for each algorithm tables,
figures and diagrams. The main objective is to verify theory in practice but also to evaluate

the overall algorithm performance and correctness at operation.

4.3.1 Diffusion error detection

The diffusion test runs were done month wise on three months, May, June and July. Tests
on the first two months were done to see how much time difference there were on different
amount of data. The result for May will be illustrated to see how the errors are found in a
time-window. Table 4.1 gives a view of number of diffusions found for each selected month
with used parameters.

For July different values for time-window and report-level were tested. At most 50
number of routers within 10 seconds were found twice. To verify this event a SQL query
was made on the time-window for the last of the two known diffusions. This query revealed
a total of 142 log entries in the time-window and 50 of them were %BGP-5-ADJCHANGE
errors on 50 unique routers.

In the cases where the time-window is small the number of diffusions increases. At
first glance this may seem like an error in the diffusion program. If a time-window of

size 2 is chosen the window will move in steps of 1 second. If the window is bigger, say

71

4.3. ALGORITHM RESULT AND PERFORMANCE
Month | Errors in month | time-window | report-level | Diffusions Time
May -03 354861 10 10 17 38 sec
June -03 404169 10 10 95 43 sec
July -03 479025 10 10 975 52 sec
July -03 479025 10 20 633 52 sec
July -03 479025 10 40 146 47 sec
July -03 479025 10 50 2 47 sec
July -03 479025 10 51 n/a 49 sec
July -03 479025 8 10 1080 52 sec
July -03 479025 6 10 1209 1 min
July -03 479025 4 10 1375 1 min 12 sec
July -03 479025 2 10 1493 1 min 48 sec
July -03 479025 2 20 475 1 min 46 sec
July -03 479025 2 30 116 1 min 44 sec
July -03 479025 2 40 44 1 min 43 sec
July -03 479025 2 45 14 1 min 46 sec
July -03 479025 2 46 6 1 min 44 sec
July -03 479025 2 47 1 1 min 45 sec
July -03 479025 2 48 1 1 min 44 sec
July -03 479025 2 49* n/a 1 min 46 sec

Table 4.1: Test results for May, June and July.

n/a : Result not available. * : No result expected

10 seconds these errors would be caught the first time spotted in the window and then

the time-window would move forward past several errors and hence the number of found

diffusions would decrease. Scenarios like this require many errors in a small period of time.

This was discussed in section 3.3.1. As seen in table 4.1 there was one diffusion with 48

routers all within 2 seconds. The reason why the last result outcome was known, marked

with *, is that in the result the number of routers involved in a diffusion is displayed. This

is shown in figure 4.1, Number of routers in list.

As pointed out earlier in chapter 3.3.1 this implementation has a drawback of possible

missed! diffusions. In this implementation the time-window moves in discrete steps. The

risk of missing diffusions are still considered small. Most diffusion cases studied have intense

I This was shown earlier in figure 3.9 (page 53)

72 CHAPTER 4. RESULTS AND EVALUATION

bursts concentrated in a small time gap. Setting a to high algorithm report-level will be
more significant in this matter. However, setting the time-window size to 2 seconds, the
minimum value, will eliminate this phenomenon. This is due to the fact that logs also are
recorded in discrete steps. Running the algorithm with minimum #ime-window size makes

it slower and have the effects described above, but makes it failsafe for missed diffusions.

| Error: %BGP-5-ADJCHANGE
| Diffusion error first at 05:28:34 03-05-13 |
| Number of routers in list 13 |

| Error: %BGP-3-NOTIFICATION
| Diffusion error first at 05:28:35 03-05-13 |
| Number of routers in list 12 |

| Error: %BGP-5-ADJCHANGE
| Diffusion error first at 05:28:36 03-05-13 |
| Number of routers in list 22 |

Figure 4.1: Output from the diffusion program.

Command: ./diffusion 2003-05-01 2003-05-20 10 10 cisco

One diffusion from May will be selected to verify that errors are found correctly in the
time-windows and routers within the time-window are uniquely counted. Figure 4.1 shows
a cut of 3 diffusions of a total of 17, from the diffusion program in the interval 2003-05-01
to 2003-05-31. Window size used was 10 seconds and the minimal number of routers 10.

The information in the program output will tell the error type, time and how many

4.3. ALGORITHM RESULT AND PERFORMANCE 73

mysql> select rindex,ltime,localdate,errorcode from ‘cisco-0305°¢
> where ltime <= "05:28:35" and ltime >= "(05:28:25"
> and errorcode = "¥BGP-5-ADJCHANGE" and localdate = "2003-05-13";

o oo e A +
| rindex | 1ltime | localdate | errorcode |
O SO o o +
I 9 | 05:28:34 | 2003-05-13 | %BGP-5-ADJCHANGE |
o oo e A +

Figure 4.2: SQL query on the interval 05:28:25 - 05:28:35.

rindex : Router index, unique identifier.
Itime : Local time, time when the log row was archived.
localdate: Local date, date when the log row was archived.

routers involved in the diffusion. Number of routers in list provides the number of routers
that had a certain error. This number is compared with report-level and if equal or more it
is matched as a diffusion. Start looking at the first diffusion in the figure, Error: %BGP-
5-ADJCHANGE. The diffusion starts at 05:28:34 2003-05-13 and has a total number of 13
routers in the current time-window. The window size set to 10 seconds gives the intervals
for the time-window: 0-10, 5-15, 10-20 and so on. If the diffusion started at 05:28:34 the
window must be either in the 05:28:25 - 05:28:35 interval or in 05:28:30 - 05:28:40.

To verify in which time-window the errors were found two SQL queries are run on
the database. The first query on the 05:28:25 - 05:28:35 interval and the other 05:28:30 -
05:28:40. In figure 4.2 the SQL query shows that the 05:28:25 - 05:28:35 interval contains
one %BGP-5-ADJCHANGE error. Errors must now belong to the latter time-window,
05:28:30 - 05:28:40. The SQL query and its result is shown in figure 4.3. To match the
diffusion ten routers have to have the same error within the interval. There are thirteen
unique rows in the figure and this verifies that errors were found in the 05:28:30 - 05:28:40

interval.

When the diffusion program has completed the search for diffusions, it displays its given

parameters and summarizes the result, as displayed in figure 4.4.

74

CHAPTER 4. RESULTS AND EVALUATION

mysql> select rindex,ltime,localdate,errorcode from ‘cisco-0305°¢
where ltime >= "05:28:30" and ltime <= "05:28:40" and
localdate = "2003-05-13" and errorcode = "YBGP-5-ADJCHANGE";

Fom e Fom e o o +
| rindex | ltime | localdate | errorcode |
Fom e Fom e o o +
I 9 | 05:28:34 | 2003-05-13 | Y%BGP-5-ADJCHANGE |
I 4 | 05:28:36 | 2003-05-13 | %BGP-5-ADJCHANGE |
I 23 | 05:28:36 | 2003-05-13 | %BGP-5-ADJCHANGE |
I 41 | 05:28:36 | 2003-05-13 | %BGP-5-ADJCHANGE |
I 49 | 05:28:37 | 2003-05-13 | %BGP-5-ADJCHANGE |
I 45 | 05:28:37 | 2003-05-13 | %BGP-5-ADJCHANGE |
I 33 | 05:28:39 | 2003-05-13 | %BGP-5-ADJCHANGE |
I 10 | 05:28:39 | 2003-05-13 | %BGP-5-ADJCHANGE |
I 22 | 05:28:39 | 2003-05-13 | %BGP-5-ADJCHANGE |
I 51 | 05:28:39 | 2003-05-13 | %BGP-5-ADJCHANGE |
I 24 | 05:28:39 | 2003-05-13 | %BGP-5-ADJCHANGE |
I 28 | 05:28:40 | 2003-05-13 | %BGP-5-ADJCHANGE |
I 30 | 05:28:40 | 2003-05-13 | %BGP-5-ADJCHANGE |
Fom e Fom e o o +

| Time period 2003-05-01 - 2003-05-20
| Window size in seconds 10
| Min number of routers in spread 10

Figure 4.4: Diffusion summary window.

4.3. ALGORITHM RESULT AND PERFORMANCE I6)

4.3.2 Recurring sequences

On the basis of results from runs of the recurring sequence program a table has been put

together. Table 4.2 shows the result from the tests.

Row | Time period | Errors | seqlen | seqrep || Found patterns | Max rep. Time
1 Jan -03 209541 10 10 72 36 2h 35m 00s
2 Feb -03 164823 10 10 109 208 1h 25m 00s
3 14-20 Feb -03 | 48856 12 10 n/a n/a Oh 12m 30s
4 14-20 Feb -03 | 48856 11 10 9 19 Oh 11m 44s
5 14-20 Feb -03 | 48856 10 10 13 23 Oh 07m 00s
6 14-20 Feb -03 | 48856 10 23 1 23 Oh 10m 45s
7 14-20 Feb -03 | 48856 10 24%* n/a n/a Oh 10m 45s
8 14-20 Feb -03 | 48856 8 23 31 115 Oh 04m 15s
9 14-20 Feb -03 | 48856 6 115 11 202 Oh 03m 20s
10 14-20 Feb -03 | 48856 4 202 66 1146 Oh 01m 30s
11 14-20 Feb -03 | 48856 100* 10 n/a n/a Oh 10m 00s
12 14-20 Feb -03 | 48856 10 100%* n/a n/a Oh 07m 00s

Table 4.2: Recurring sequence test runs results
Max rep : The maximal number of repetitions for a sequence. seqlen : The length of a sequence.
seqrep : The number of repetitions for a sequence. n/a : Result not available.
* . No result expected with used value.

As the first two rows show, it takes quite some time when the program is run over a hole
month, depending of the amount of data stored for the time period. Runs over a longer
time period could be done as a scheduled job once a month on an appropriate server.

By comparing the first two rows with others one can see that a month takes far more time
than a week. Running the program over months however could reveal more patterns than
week wise, since a sequence can start in an earlier week and continue into the next and so
forth. Monthly runs can reveal less frequent patterns and shorter time periods only high
frequent if the same seqrep parameter is used for the different time periods. Choosing a
smaller seqrep for the shorter time period could produce similar result as a larger seqrep
would on a longer period of time. This however requires that the pattern is recurring and

found in the smaller time period.

76 CHAPTER 4. RESULTS AND EVALUATION

To verify that the algorithm works correctly tests were done with values that should
not produce any result. These are marked with a *. On the seventh row there is a marker
at 24. In the previous runs the maximal number of repetitions for a pattern is 23. To
verify this, test values shown at row five and six were used. As expected no result was

produced for seqrep = 24.

For the week 14-20 in February a pattern with length 10 is found 31 times at the most
in the time interval. Selecting a shorter sequence length for this week would most likely
produce a result with a greater number of repetition. This is confirmed in the table as
seqlen 8, 6 and 4 are chosen. With seqlen 8, 6 and 4 the previous run’s maximal repetition
value is used, it is known that there is at least one sequence that has repeated that many
times. So choosing a shorter seqlen and previous maximal repetitions as seqrep should
produce more or equal number of found patterns as the previous run. To verify that more
patterns should be found, the maximal number of repetitions from the latter test is chosen.
The number of repetitions increase when choosing a smaller sequence length. As seen there
are many found patterns when choosing a small seglen, sequence length. This scenario is
somewhat expected as most of the patterns are random sequences created by mere accident.
Depending on the amount of traffic and the size of the network a balance must be found

between seqlen and seqrep to get reasonable patterns.

At row 5, the time for the week with seglen = 10 and seqrep = 10 is less than the week
with seqlen = 100 and seqrep = 10, row 11. This depends on the number of movements
for the search sequence. As chapter 3.3.2 describes: if a sequence is found for a pattern
the search sequence is moved forward mazxlen steps. When a larger seqlen is chosen less
patterns will be found and the search sequence will only move forward one step when no
sequence can be matched as a pattern. With extreme large seqlen the time should decrease,
but this would be unrealistic. The week with seqgrep = 100 takes just as long as the one

with seqrep — 10. After the algorithm has found patterns these must be evaluated if they

4.3. ALGORITHM RESULT AND PERFORMANCE 7

Pattern [1] beginning with this sequence was repeated 10 times

Router: (7) kthnoc-2.sunet.se %PIM-6-INVALID_RP_JOIN [21:13:00 | 2003-02-19]
Router: (1) luleal.sunet.se %PIM-6-INVALID_RP_JOIN [21:13:16 | 2003-02-19]
Router: (2) lulea2.sunet.se %PIM-6-INVALID_RP_JOIN [21:13:16 | 2003-02-19]
Router: (4) kthnoc-1.sunet.se %PIM-4-DEPRECATED_HELLO_TLV [21:13:24 | 2003-02-19]
Router: (3) stockholm2.sunet.se %TCP-6-BADAUTH [21:13:43 | 2003-02-19]
Router: (3) stockholm2.sunet.se %TCP-6-BADAUTH [21:13:43 | 2003-02-19]
Router: (1) luleal.sunet.se %PIM-6-INVALID_RP_JOIN [21:14:19 | 2003-02-19]
Router: (2) lulea2.sunet.se %PIM-6-INVALID_RP_JOIN [21:14:19 | 2003-02-19]
Router: (4) kthnoc-1.sunet.se %PIM-4-DEPRECATED_HELLO_TLV [21:14:24 | 2003-02-19]
Router: (3) stockholm2.sunet.se %TCP-6-BADAUTH [21:14:47 | 2003-02-19]
Pattern [2] beginning with this sequence was repeated 15 times

Router: (7) kthnoc-2.sunet.se %PIM-6-INVALID_RP_JOIN [18:13:25 | 2003-02-19]
Router: (3) stockholm2.sunet.se %TCP-6-BADAUTH [18:13:26 | 2003-02-19]
Router: (3) stockholm2.sunet.se %TCP-6-BADAUTH [18:13:26 | 2003-02-19]

Figure 4.5: Program output run from a console

match the seqrep criteria. The amount of time in finding the patterns is equal but since in

this case no result is to be displayed it takes less time than if result was to be displayed.

By default the program will only display the first occurrence of a pattern. Since hun-
dreds of pattern can exist the result can be overwhelming. This can however be overridden
by a program parameter and all of the found patterns will be displayed. A cut of a run

with the default mode is shown in figure 4.5.

The first pattern found, Pattern[1], in figure 4.5 begins with the shown sequence. All
ten sequences for pattern|1| have matched to this sequence of length seglen. Why it says:
"begins with” is because as described in chapter 3.3.2 the algorithm will try to match more
than seglen errors. This means that the sequences not shown can be longer or equal to the

shown pattern. An example of this is shown in figure 4.7.

Given the starting time for the pattern one can look up the sequence by either using

78 CHAPTER 4. RESULTS AND EVALUATION

the GUI provided by the base system|1] or using a database client software to get more
information. In figure 4.6 the GUI has been used to look up the sequence to find out more
about the starting router in the sequence. This is just a demonstration, and details about

the actual information are not discussed.

kthnoc-2 sunet.se [%PIM-6-INVALID_RP_JOIN | [|Received (*, 224.2.127.254) Join from 194,71,10.10 for invalid RP 192,108,195.94|Std |21:13:00

Information for PIM-6-INVALID_RP_JOIN

Error PIM-&6-INVALID_RP_JOIN

Explain & downstream PIM router has sent a join message for the
shared tree, which this router does not want to accept.
This behavior indicates that this router will let only
downstream routers join to a specific rendezvous point.

Action Configure all downstream leaf routers (first-hop routers
to multicast sources) to join to the RP that is allowed by
upstream routers toward the validated rendezvous point.

Figure 4.6: Using the GUI to retrieve more information about an error.

Running the algorithm over shorter time periods can result in missed sequences for a
pattern. One day runs are not recommended as seen in figure 4.7 because earlier occur-
rences of a pattern can be missed. This pattern starts the 19:th of February and ends
the 20:th, only the first three are shown in the figure. Running only on the 19:th will not

produce any result.

Figure 4.7 shows three sequences for a pattern. The first sequence is the pattern which
is searched for and the remaining are the sequences that matched to the first sequence.
The output gives information about when the errors in the pattern were produced and
from which routers. Source router and time for each sequence that matched the pattern
gives enough information to look up the sequences in the database. With this information
additional data can be extracted from the database.

Figures 4.8 and 4.9 are SQL queries on the database made on the first and last recurring

2003-02-19

4.3. ALGORITHM RESULT AND PERFORMANCE 79
Pattern [1] beginning with this sequence was repeated 10 times
This is the first occurrence of this pattern.
- The rest are listed in reversed order -
Router: (7) kthnoc-2.sunet.se %PIM-6-INVALID_RP_JOIN [21:13:00 | 2003-02-19]
Router: (1) luleal.sunet.se %PIM-6-INVALID_RP_JOIN [21:13:16 | 2003-02-19]
Router: (2) lulea2.sunet.se %PIM-6-INVALID_RP_JOIN [21:13:16 | 2003-02-19]
Router: (4) kthnoc-1.sunet.se %PIM-4-DEPRECATED_HELLO_TLV [21:13:24 | 2003-02-19]
Router: (3) stockholm2.sunet.se %TCP-6-BADAUTH [21:13:43 | 2003-02-19]
Router: (3) stockholm2.sunet.se %TCP-6-BADAUTH [21:13:43 | 2003-02-19]
Router: (1) luleal.sunet.se %PIM-6-INVALID_RP_JOIN [21:14:19 | 2003-02-19]
Router: (2) lulea2.sunet.se %PIM-6-INVALID_RP_JOIN [21:14:19 | 2003-02-19]
Router: (4) kthnoc-1.sunet.se %PIM-4-DEPRECATED_HELLO_TLV [21:14:24 | 2003-02-19]
Router: (3) stockholm2.sunet.se %TCP-6-BADAUTH [21:14:47 | 2003-02-19]
Router: (7) kthnoc-2.sunet.se %PIM-6-INVALID_RP_JOIN [20:08:57 | 2003-02-20]
Router: (1) luleal.sunet.se %PIM-6-INVALID_RP_JOIN [20:09:05 | 2003-02-20]
Router: (2) lulea2.sunet.se %PIM-6-INVALID_RP_JOIN [20:09:05 | 2003-02-20]
Router: (4) kthnoc-1.sunet.se %PIM-4-DEPRECATED_HELLO_TLV [20:09:10 | 2003-02-20]
Router: (3) stockholm2.sunet.se %TCP-6-BADAUTH [20:09:46 | 2003-02-20]
Router: (3) stockholm2.sunet.se %TCP-6-BADAUTH [20:09:46 | 2003-02-20]
Router: (1) luleal.sunet.se %PIM-6-INVALID_RP_JOIN [20:10:07 | 2003-02-20]
Router: (2) lulea2.sunet.se %PIM-6-INVALID_RP_JOIN [20:10:07 | 2003-02-20]
Router: (4) kthnoc-1.sunet.se %PIM-4-DEPRECATED_HELLO_TLV [20:10:10 | 2003-02-20]
Router: (3) stockholm2.sunet.se %TCP-6-BADAUTH [20:10:50 | 2003-02-20]
Router: (3) stockholm2.sunet.se %TCP-6-BADAUTH [20:10:50 | 2003-02-20]
Router: (7) kthnoc-2.sunet.se %PIM-6-INVALID_RP_JOIN [20:06:58 | 2003-02-20]
Router: (1) luleal.sunet.se %PIM-6-INVALID_RP_JOIN [20:07:00 | 2003-02-20]
Router: (2) lulea2.sunet.se %PIM-6-INVALID_RP_JOIN [20:07:00 | 2003-02-20]
Router: (4) kthnoc-1.sunet.se %PIM-4-DEPRECATED_HELLO_TLV [20:07:10 | 2003-02-20]
Router: (3) stockholm2.sunet.se %TCP-6-BADAUTH [20:07:38 | 2003-02-20]
Router: (3) stockholm2.sunet.se %TCP-6-BADAUTH [20:07:38 | 2003-02-20]
Router: (1) luleal.sunet.se %PIM-6-INVALID_RP_JOIN [20:08:02 | 2003-02-20]
Router: (2) lulea2.sunet.se %PIM-6-INVALID_RP_JOIN [20:08:02 | 2003-02-20]
Router: (4) kthnoc-1.sunet.se %PIM-4-DEPRECATED_HELLO_TLV [20:08:10 | 2003-02-20]
Router: (3) stockholm2.sunet.se %TCP-6-BADAUTH [20:08:42 | 2003-02-20]
Router: (3) stockholm2.sunet.se %TCP-6-BADAUTH [20:08:42 | 2003-02-20]

Figure 4.7: Cut of program output with show all option

|Only three of ten sequences are shown in the figure.|

80 CHAPTER 4. RESULTS AND EVALUATION

mysql> select rindex,errorcode,ltime from ‘cisco-0302°¢
where localdate = "2003-02-19" and ltime <= "21:14:47"
and ltime >= "21:13:00";

o A e o +
| rindex | errorcode | 1time |
O o O +
7	%PIM-6-INVALID_RP_JOIN	21:13:00
1	%PIM-6-INVALID_RP_JOIN	21:13:16
2	%PIM-6-INVALID_RP_JOIN	21:13:16
4	%PIM-4-DEPRECATED_HELLO_TLV	21:13:24
3	%TCP-6-BADAUTH	21:13:43
3	%TCP-6-BADAUTH	21:13:43
1	%PIM-6-INVALID_RP_JOIN	21:14:19
2	%PIM-6-INVALID_RP_JOIN	21:14:19
4	%PIM-4-DEPRECATED_HELLO_TLV	21:14:24
3	%TCP-6-BADAUTH	21:14:47
3	%TCP-6-BADAUTH	21:14:47
O o O +

Figure 4.8: First occurrence for pattern [1].

sequences. Figure 4.8 is pattern/1], first result from the recurring sequence program in figure
4.7. Figure 4.9 is the last sequence found for pattern/1].

When the program has completed its processing and the result has been displayed a
short summary is displayed. In the summary the length of the longest pattern is displayed.
With this information it is not required to increase seqlen in a testing manner to get the

longest pattern, assuming that the same seqrep is used.

4.3.3 Low frequent errors

Running the low frequent algorithm gives room for a lot of experimenting with input pa-
rameters and the built in constants. There will always be a compromise between producing
too much and irrelevant data or to exclude relevant data. While testing has focused on

the algorithm correctness, evaluation has also been carried out in the process.

When studying results from different test runs, it is clear that low frequent errors do

4.3. ALGORITHM RESULT AND PERFORMANCE 81

mysql> select rindex,errorcode,ltime from ‘cisco-0302°¢
where localdate = "2003-02-20" and ltime >= "20:08:57"
and ltime <= "20:10:50";

o A e o +
| rindex | errorcode | 1time |
O o O +
| 7 | %PIM-6-INVALID_RP_JOIN | 20:08:57 |
I 1 | %PIM-6-INVALID_RP_JOIN | 20:09:05 |
I 2 | %PIM-6-INVALID_RP_JOIN | 20:09:05 |
I 4 | Y%PIM-4-DEPRECATED_HELLO_TLV | 20:09:10 |
| 3 | %TCP-6-BADAUTH | 20:09:46 |
| 3 | %TCP-6-BADAUTH | 20:09:46 |
I 1 | %PIM-6-INVALID_RP_JOIN | 20:10:07 |
I 2 | %PIM-6-INVALID_RP_JOIN | 20:10:07 |
I 4 | Y%PIM-4-DEPRECATED_HELLO_TLV | 20:10:10 |
| 3 | %TCP-6-BADAUTH | 20:10:50 |
| 3 | %TCP-6-BADAUTH | 20:10:50 |
O o O +

Figure 4.9: Last occurrence for the first pattern.

exist and can be found. To tune the algorithm built in constants for best performance,

tests were carried out for the period Jan 03 - Aug 03, monthly.

At present the algorithm produces all results on stdout. A typical report from one
month produces about two to twenty entries. Figure 4.10 shows one of the found entries
from the February run as an example of the program output. There were two occurrences
of the error %GRP-3-COREDUMP? in router vasteras?.sunet.se. Along with the above in-

formation the program output?® provides data for the error occasions.

One month of testing at the time seemed to be a reasonable assumption for a normal
low frequent error search. However, running the algorithm over a longer time period does

not necessary increase the number of reports, since the algorithm adapts dynamically. For

2Evaluation on the significance of the incident requires expertise and additional data.

31f the program output in the future is inserted into a database for trend analysis, comparing test runs
might be performed better. At this stage the amount of data to analyze easily gets to large for human
inspection. Further development in this area will be discussed in chapter 5.3, Future work.

82 CHAPTER 4. RESULTS AND EVALUATION

e +
| LOW frequent ERROR |
e +
| Error : %GRP-3-COREDUMP |
| Router nr: 49 |
| Router : vasteras2.sunet.se

| Num hits : 2

e g +
| Foundlist | Timestamps |
o o +
| Num 1 | Sat Feb 15 09:58:30 2003 |
| Num 2 | Sun Feb 23 01:14:38 2003 |
S A +

Figure 4.10: Low frequent entry printout.

For all low frequent error a text window is displayed. The window contains the information error
code, router and time. Foundlist contains a list of each occurrence mapped to the point in time
when the error occurred. The displayed router is the component that reported the error.

example, if one low frequent candidate only showed within two weeks time and the chosen
period is six months, it will not represent the total time period sufficient to pass the time
period representation test. This must be tested and evaluated further in the future and

the existence of the involved test must also be questioned from this reason.

A search extending up to six months or more is not considered to be unrealistic. But
the process memory consumption might become a limiting factor. The memory usage
is somewhat linear to the amount of errors investigated and one error consumes about

100bytes* of memory. E.g., five million errors will consume about 500MB memory and so

forth.

Table 4.3 shows results from experimenting with the values of constants. Note how the

time period representation factor® (PRESFACT) always has a big influence on the result.

“The memory consumption has been observed during test runs.
5See page 29, equation (2.1) for background theory.

4.3. ALGORITHM RESULT AND PERFORMANCE 83
Month | Errors Hits (PRESFACT) IREGFACT | Dyn limit | Severity | Avg. time
0.05 | 0.15 | 0.45 | 0.65
Jan -03 | 209541 24 16 6 3 0.67 5 6 0m25s
Jan -03 | 209541 | 25 16 6 3 0.75 5 6 0m24s
Feb -03 | 164823 36 35 26 1 0.67 4 6 Om16s
Feb -03 | 164823 | 64 63 26 1 0.75 4 6 Om19s
Feb -03 | 164823 22 21 12 0 0.67 2 6 015ms
Feb -03 | 164823 22 21 12 0 0.75 2 6 017ms
Mar -03 | 296690 4 3 2 0 0.67 7 6 0m30s
Mar -03 | 296690 4 3 2 0 0.75 7 6 Om31s
Apr -03 | 439575 | 39 32 25 9 0.67 10 6 0mb7s
Apr -03 | 439575 45 38 29 10 0.75 10 6 1m
Apr -03 | 439575 | 37 30 23 7 0.67 5 6 0m48s
Apr -03 | 439575 43 36 27 8 0.75 5 6 Omb1s
May -03 | 354861 | 18 15 5 3 0.67 8 6 0m33s
May -03 | 354861 19 15 5 3 0.75 8 6 Om34s
Jun -03 | 404169 | 15 | 12 | 8 5 0.67 10 6 Omd42s
Jun -03 | 404169 | 21 | 18 | 14 | 7 0.75 10 6 0m40s
Jul -03 | 479025 10 10 2 0 0.67 12 6 O0m47s
Jul -03 | 479025 | 13 13 5 2 0.75 12 6 O0m46s
Aug -03 | 933059 | 20 19 10 0 0.67 25 6 2m
Aug -03 | 933059 22 20 11 0 0.75 25 6 2m

Table 4.3: Low frequent example results.

Severity: Highest grade of severity for an error. Hits: Found low frequent errors. The lower

values are the PRESFACT constant, for time representation. Dyn limit: Dynamic limit, the

upper limit for errors to define as low frequent. This is calculated from constant LFRQFACT.
IREGFACT: Factor for maximum irregularity of errors. A lower value will give errors of higher

regularity than a higher value, 0 < IREGFACT < 1.

84 CHAPTER 4. RESULTS AND EVALUATION

+ 1 week Test period
New time period
representation

A]

Low frequent error

Time period | |
representation

1T, |
|

| 7 14 21 28 |

|
| Test period 1

< 2

L/ Test period 2

Day

Figure 4.11: Low frequent time period representation.
Depending on the location of the event in time, the error time period representation can change
drastically. In this example, moving the time window forward one week from period one to two

will capture all events and therefore extend the time representation period to pass the test
involving factor PRESFACT. If not, the error is disregarded as an isolated event and is therefore
not reported.

Figure 4.11 better explains what happens and why the test itself should be questioned
since it might remove interesting cases depending on the program usage. The figure shows
how a single run could give too short time representation if the next event is outside the
current test period. But changing the test period as a moving time window will report the
error when the next event also gets inside. Hence, program usage is at present best suited

for example a weekly job® set to investigate data from the previous thirty days.

The regularity test only has an influence on the result if some events were irregular
to some extent. Due to this a constant change might not produce a different result. For

example as shown in table 4.3 for the Mar -03 test.

6A cron job is well suited for the task. A script example can be studied in Appendix E. It has a time
period of one month and is scheduled to run once a week.

4.3. ALGORITHM RESULT AND PERFORMANCE 85

PRESFACT Graph [IREGFACT =0.67 Suverity = 6]

40 T T T T T
B January —+—
i February (Limit:4) -
37 X February (Limit:2) -]|
\\‘\,\‘\I\\\\ \\\\\\\\\ Mars e
30 - N April (Limit:10) -—=--
e Tl T April (Limit:5) -~ o-
o5 L S § June e |
SN July e
% R N August -
E NN
e 20+ .- SO -
L
15 F e 1
10 + Been A -
5F 4
[
O 1 1 1 1 T ::‘;‘1.,‘,
0.05 0.15 0.3 0.45 0.65

PRESFACT

Figure 4.12: Low frequent error result graph.

The graph shows how the different values for the time period representation factor PRESFACT
affects the number of reported low frequent errors.

Choosing a too low IREGFACT could result in not finding any events at all. Suitable

values have proved to be about 0.6 - 0.7.

The value 0.67 was chosen after extended testing as it often proved to produce rele-
vant data without dismissing any interesting cases found so far. After fixing this constant
repeated tests were done for the time period representation. The graph 4.12 shows how
different values for PRESFACT affect the outcome for low frequent errors found. Notice the
sometimes accelerating effect from 0.45 to 0.65 which results in far less reported errors.

E.g., observe how the February (Limit 4) run drops to one event only for this change of

86 CHAPTER 4. RESULTS AND EVALUATION

Total number of error in set = 164823
Number of low frequent errors found = 36

Upper limit for hits was set to =4

Max grade of severity was set to =6
Lowfreq LFRQFACT is set to = 0.000025
Presens of total time PRESFACT = 0.050000
Factor of max irregularity IREGFACT = 0.670000

Figure 4.13: Low frequent program output summary.

Summary text shows the used values in the session. Upper cased words are built in constants.
These constants are declared in lowfreq.h. Changes on these values require a recompile of the
program. The grade of severity is operator given as a program input argument.

constant value. This means that almost all low frequent candidates occurred within two

weeks time during this month.

The low frequent definition constant LRFQFACT did not require any extended analysis
and experimenting at present. The reason is, as was discussed in theory, that the occurrence
of an error event often is high. In that respect low frequent errors are extreme values.
Setting this constant is therefore a task of approximating a level that is near to the extreme
values. Testing indicated that 25 ppm was a well working limit. For example, in February
-03 the limit will be 0.000025 % 164823 ~ 4. Hence, only four repetitions are allowed to be
considered as a low frequent error. Table 4.3 shows this value in column Dyn limit for the

tested months.

The limit can be adjusted from a number provided in the program argument list. If
this number is greater than the program calculated value it will count. It might not have

any other practical use than to serve as a testing feature.

When the low frequent program completes it also displays a short summary of the

values and results for each session. Figure 4.13 shows the program summary. Its main

4.4. ALGORITHM EVALUATION 87

purpose is to serve as a basis for collecting statistical data for evaluation and tuning of

constants.

4.4 Algorithm evaluation

Evaluation will be on how well the algorithm work against the issues laid out in chapter 2
and the result in the previous section. The impact of the findings given by the algorithms
are not considered in detail in this master thesis and it is up to the responsible at the NOC
to draw further conclusions.

The completion time for each of the program parts was something that never was dis-
cussed in the previous chapters. The recurring sequence algorithm takes much more time
for its calculations compared to the two other programs as seen by test runs. This depends

on its linear search method.

Parameters for each algorithm used in the previous chapter will need to be set more
accurately by experienced network supervisors. The used values are mainly for testing
purpose and should be considered as default values and specific for SUNET. Parameter
values producing too much information as result are not wanted. The result should be a

reasonable amount to handle and not overwhelming.

Diffusion error detection

Error diffusions in the network can be found with the diffusion algorithm as seen in the
previous section. As shown in the previous section errors can spread to many routers within
only a few seconds. In the shown tests, up to 48 different routers reported the same error
within a two second time interval for July 2003. Detecting these events was the goal with

this algorithm and it has proved to work satisfactory.

88 CHAPTER 4. RESULTS AND EVALUATION

To get the most extreme cases of diffusion the time-window should be set for two
seconds and the report level about 40-50 close and up to the maximal number of routers
in the network. Having a time-window higher than two and a report level less than 40 will

produce a result that has too many error diffusions to be manageable .

Recurring sequences

With the developed algorithm recurring sequences of error logs can be found, as shown in
the previous section. The implemented algorithm finds patterns and information is pro-
vided for further investigation of the error data. Some of the found patterns are created
by mere accident, but by setting the condition secrep patterns must be recurring and most

or all of the haphazard patterns can be filtered out.

Having a sequence length of 10, which is about a fifth of all routers in SUNET, for
a week is a reasonable sequence length. Too short sequence length will more likely pro-
duce haphazard patterns. The seqrep parameter, the number of repetitions, should be set

around 10-15, not lower, to produce manageable results.

A drawback with the algorithm is the time for large time intervals as seen in table 4.2.
This is not actually not really a drawback, since it is intended to run at a user selected

time point, preferably after work hours.

Low frequency errors

The algorithm was successfully implemented from theory and is also working as expected.
Its processing effectiveness is satisfactory but it has unexpected high memory consumption,

something that becomes a limiting factor when running on long time periods.

4.5. SUMMARY AND INFORMATION 89

Repeated tests have proved that low frequent errors commonly exist and can be found.
The existence of low frequent errors were known by the NOC, but not to what extent.
The errors have proved to be more common than expected and this often results in too
many errors suitable for human inspection. The majority of the reported errors are also
considered as "not important”. The process of finding important errors has proved to be
a harder task than first assumed, mostly due to the risk of excluding interesting cases if

setting constants too restrictive.

For this case the input argument for severity proved to be useful. Most unwanted
reported errors were of low’ severity grade. This was partly expected but could not be
taken for granted. As shown earlier in table 4.3, the used severity grade was six during
all tests. Changing the minimum severity grade from six to three resulted in a significant

improvement in reporting only relevant® data.

At this stage constants are tuned to not produce too much output since the network
technicians need to read all data output manually. An exception was made for PRESFACT
which needs more evaluation on real tests. If automated insertion into a database was to be
implemented, some constants might prove to be unnecessary since they could be replaced
with selective queries on the database. Extended possibilities as such will be discussed

further in chapter 5.3.

4.5 Summary and information

In this chapter results for the implemented algorithms have been shown and evaluated.

Different parameters for each algorithm have been discussed, and their impact on the result.

"A low grade of severity means a higher figure. The severity is defined from 0 - 6 by Cisco.
8This statement origins from experience at the NOC.

90 CHAPTER 4. RESULTS AND EVALUATION

All algorithms operate according to the theory presented in chapter two and produced
results that could be verified against data in the database. Further conclusions will be

presented in the next chapter.

Chapter 5

Conclusion

5.1 Thesis conclusion and evaluation

In this master thesis we have focused on extended methods of finding troubleshooting in-
formation from the archived network log data. The idea was to search for special types
of logs and log patterns and develop algorithms for locating these patterns. It has proved
to be successful and the log data proved to conceal unknown error states. Uncovering the
error states can be useful in maintaining the network and assists network technicians in

fault detection.

Error diffusion was detected on several occasions. A diffusion is always considered as a
serious fault which requires a network technician’s attention. The diffusion algorithm finds
and reports events recorded in the log data. The algorithm is best suited for daily or hourly
runs since those events could require immediate attention. The algorithm is regarded as a

successful tool for this purpose.

Recurring sequences were found to be related to the diffusion error theory since the

error starting the sequence originates from one router and spreads to others. The algorithm

91

92 CHAPTER 5. CONCLUSION

implemented for this purpose has proved to work, but requires a great deal of CPU during
operation. Pattern searches proved to require extensive work since a lot of comparisons
must be made. Recurring sequences proved to exist in the log data, however their meaning
and significance is still not known. The assumption was that, if the sequence originator
could be located and fixed, the log data generation could be reduced as well as fixing a

presumptive fault. This has not yet been proved.

The program finds patterns of various length but many should be considered as random
sequences constructed by mere accident. To insure a higher level of correctness, i.e. that
the found patterns actually are patterns created from a fault that spread the pattern must
be repeated a reasonably number of times, within the search time period. As the length of
the sequence also is significant, choosing a too short sequence length proved to give many

unwanted false patterns.

Low frequent errors were located and proved to be more common than expected. This
leads to problems in selecting the error types that KTHNOC considers relevant. Setting
hard constrains in for example regular behavior always results in a risk of missing some

interesting cases.

The low frequent program will need to be tuned for the environment it is intended to
run in or else it can give misguiding result. If values for a large network are used in a
smaller one it will result in no low frequent errors. Hence, various parameters must be set

accordingly to the network in hand.

The link failure investigation was not implemented. The reasons were that such a
proposed system would require supplementary data collected with SNMP and would also
require a great deal of work. The area is of both technical and financial interest for WAN
organisations since such a system can reduce their costs in hiring network links. The

conclusion is that such a system might be possible to implement, but it is not trivial and

5.2. PROBLEM AREAS 93

without risk of unknown problem areas appearing in the process.

Solutions by using the error logs to build a state machine for SUNET in link failure
detection have been investigated and discussed. By using state machines link failures could
be more reliably detected. The investigation of state machines showed that the states can
not be constructed and maintained only from using the error logs. SNMP is needed for
constructing state machines for the network connectivity. By reading log data it can then
be possible to make state transitions. As was stated in the link failure chapter using error
logs is not entirely reliable as the link for the error message could be down. The current

base system has no support for this kind of event.

Another investigation in this thesis is made on log deviation, detecting error log in-
crease. It became clear that this can just as well be detected by using SNMP. It has also
been stated by staff members at KTHNOC that large increase in the logging of errors is

often generated by themselves upon network configuration.

We have proved that extended use of WAN log data is possible. By extensive use of
this data troubleshooting assistance can be improved. We have successfully proved that
diffusion, recurring sequences and low frequent errors exist in the log data. By using the
implemented algorithms these errors can be found with a minimal personnel requirement

by the NOC.

5.2 Problem areas

For all implemented algorithms the reports are presented on STDOUT. Running the al-
gorithms on a regular basis will soon give a considerable amount of data to attend to.
The conclusion is that a production system needs to handle the produced data automati-

cally. E.g. automated insertion to a database would work well and open the possibility for

94 CHAPTER 5. CONCLUSION

achieving statistical reports etc.

Built in constants in algorithms were tuned to suit the specific environment in SUNET
network. This is especially critical for the low frequent algorithm where three important
constants are built in the algorithm source code. There are no further tests done on other
environments to verify if constants are properly set or have to be returned for each network.
Hence, there can be no conclusions at this point if this design is satisfactory when moving

to other environments.

The main objective was not to evaluate the log data from algorithm reports in this
thesis. But adjusting constants and improving algorithm functionality presented problems
in the evaluation of relevant data from reports since this requires technical expertise at
hand. Thus, without detailed knowledge of fault management in WANSs, algorithm im-
provements sometimes get problematic. Better understanding of the algorithm output

could have helped to move in the right direction and inspire new ideas.

5.3 Future work

Link failure detection by using error logs and SNMP was described in chapter 2.3.5. To
limit the amount of work in this master thesis this feature has been disregarded. Providing

a system for link failure detection is probably a thesis or bachelor project itself.

One area that has not been considered further in the thesis is trend analysis. Saving
program output from the program parts either in a database or plain text files will give
this possibility. Especially in the low frequent area. With this data it would be possible
to follow the history of certain errors. Graphs for data presentation could be produced for

error reports, as the example shown in figure 5.1.

This kind of graphs could be made by using the same database as the base system for

5.4. ALGORITHM RESULTS FROM KTHNOC 95

History for example error %XXX-Y-XXXX

[EnY
(&)
1

YoXXXK-Y-XXXX —

e e el e
O, N W N
T T T T T

Presence (per 100 000)

LO PN WM OO N O

an Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Time

Figure 5.1: Example of a trend graph.

Fiction history of the error %XXX-Y-XXXX.

storing program output. PHP! could serve as a middle layer for retrieval and logic together
with HTML for data presentation. Creating graphs is possible with PHP and there are

free libraries for PHP when creating more advanced graphs?.

5.4 Algorithm results from KTHNOC

In every day wide area network surveillance and troubleshooting by KTHNOC the low
frequent program has proved to be helpful. KTHNOC has found a failure in one of the
core routers in SUNET. The failure was found in one router and as the failure showed to

be an operating system bug all of SUNET’s core routers are affected as all run the same

'PHP: Hypertext Preprocessor. See http://www.php.net
2JpGraph is an OO class library for graphs using PHP. http://www.aditus.nu/jpgraph/index.php.

96 CHAPTER 5. CONCLUSION

0Ss?.
The failure was found by running the program to process data from the previous week.
Further investigations led to the conclusion that there was a failure in the operation sys-

4. This failure is now reported to Cisco and KTHNOC is waiting for further notice

tem
from Cisco. When or if a bug fix comes from Cisco all of SUNET’s routers will need to be

upgraded.

30S version 12.0(23)s. The platform may differ but the OS is the same.
4Investigation and conclusion were made by KTHNOC

References

1]
2]

13l

[4]
[5]

[6]

17l

18]

19]

[10]

[11]

[12]

A log archiving system for Wide Area Networks Bohm, Skantz KaU: 2003:01

A. Ward , P. Glynn and K. Richardson, Internet service performance failure detection,
Performance Evaluation Review, August 1998.

C.Hood and C.Ji Proactive network fault detection in Proceedings of IEEE INFOCOM
'97, Kobe Japan April 1997.

GPL license http://www.gnu.org/licenses/gpl.html#SEC1

[.LKatzela and M.Schwartz, Schemes for fault identification in communications net-
works, IEEE/ACM Transactions on Networking, vol3(6), pp 753-764, December 1995

NTop Free network surveillance tool. http: //www.ntop.org/

Paul Barford, Jeffery Kline, David Plonka and Amos Ron. A Signal Analysis of Net-
work Traffic Anomalies. In Proceedings of the second ACM SIGCOMM Workshop on
Internet measurment workshop, pages 71-82. ACM Press, 2002.

Paul Barford and David Plonka. Characteristics of Network Traffic Flow Anomalies. In
Proceedings of the first ACM SIGCOMM Workshop on Internet measurment workshop,
pages 69-73. ACM Press, 2001.

PhpMyLog GUI for Mylogd - a log capturing system.
http://iib.pilsnet.sunet.se/phpMyLog/

R. Céceres, Measurements of wide area Internet traffic,Tech.Rep. UCB/CSD 89/550,
Computer Science Department, University of California, Berkeley, 1989.

UNIX Network Management Steve Maxwell, McGraw-Hill, March 1999, ISBN
0079137822

V. Paxson, Measurements and Analysis of End-to-End Internet Dynamics, Ph.D the-
sis, University of California, Berkeley, 1997.

97

98 REFERENCES

[13] V. Paxson, Fast, approzimate synthesis of fractional gaussian noise for generating
self-similar network traffic, Computer Communications Review, vol. 27(5), pp 5-18,
October 1997.

[14] F. Feather, D. Siewiorek and R. Maxion, Fault detection in an ethernet network using
anomaly signature matching in Proceedings of ACM SIGCOMM 93, San Francisco,
CA, September 2000.

Appendix A

Diffusion files

A.1 diffusion.c

/***

diffusion.c - description
----<<0>>--- * Detect error diffusion * ---<<0>>---
begin : Mon Feb 24 16:00:00 CET 2003
copyright : (C) 2003 by Mikael Bif;m & Henrik Skantz
email : micko@linuxmail.org, hesk@linux.se

sk sk s o o o ok ok sk sk o o o o ok sk oo ok sk sk o e ok ks o o ok ks sk o ke sk sk s e sk sk s o ok sk sk o s ok k sk o sk o sk sk ok o sk sk ok o ek sk ok o ek k ok /
// sk s ok ok sk sk sk sk ok s ok sk o ke sk sk sk ok sk skl ok sk sk sk ok sk s ok sk s ok ok sk s ok skskok s ok sk sk o ke ok sk sk ke ok sk sk ok ok
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
sk sk sk s ke ok ok sk s sk ok ok sk sk ke sk sk sk ok sk s ok sk sk sk ok sk ok skskok s ke sk sk o sk sk ke sk sk sk sk ok sk sk skl ok koksk ok k /
#include "header.h"

int main (
int argc,
char *argv[])

{

if (argc !'= 6)

{
printf (USAGEMESS);
exit (1);

}

/%
* Start diffusion
*/

diffusion (argv);

99

100 APPENDIX A. DIFFUSION FILES

return 0;

}

/*
* Detects error diffusion
*/
void diffusion (
char *x*in)
{
char *sqldiffquery;
char *dbtable;
unsigned int listSize = 0;
unsigned int winSize = 0;
unsigned int minDiff = 0;
unsigned short int nrDiffs = 0;
MYSQL_POST *logList = NULL;

Config *C1 = (Config *) malloc (sizeof (Config));
winError *rp_cur = NULL;

/*
* Create the list containing posts inside sliding window
*/

winEhead = mk_winError_post (NULL);

rp_cur = winEhead;

/%
* Read the mylogd config file
*/
readConf (CONFFILE, C1); /* Read config to Cl1 */

winSize = (unsigned) atoi (in[3]);
minDiff = (unsigned) atoi (in[4]);

/%

* Connect to database

*/

if (connectDB (C1) == NULL)

{
fprintf (stderr, "Connection to database failed!\n");
terminator ();

}

/%

* Set time from inargs

*/

initTimeObjs (in[1], in[2]);

/%

A.1. DIFFUSION.C 101

* Set table from the last date from choosen period
*/
if ((dbtable = setdbtable (in[2], in[5])) == NULL)
{
fprintf (stderr, "Could not set dbtable!\n");
terminator ();

}

/*
* Create an sqlquery to get data: (For one table only)
*/
/*
* [rindex, ltime, localtime, errorcode]
*/
if ((sqldiffquery = diffSqlQuery (dbtable)) == NULL)
{
fprintf (stderr, "Could not create SQL-query!\n");
terminator ();
}
/*
* Mysql get complete interval start/end date
*/
loglist = getList (sqldiffquery);
dp = initHackPointer (); /*Pointer for comparing time-window entries */
/*
* Roll until all diffusions are found
*/
while (difftime (mktime (fr_), mktime (to_)) != 0)
{
/*
* Get post inside the timewindow
*/

listSize = sumErrors (winSize, rp_cur);

/%

* Look for diffusion if current list has enough members
*/
if (listSize >= minDiff)
{

nrDiffs += findDiff (winEhead, &minDiff);
}
/%

* Move the window forward half its size
*/
incr_sec (winSize / 2);
/%

* Prepare for next time-window

*/

winFhead = removelist (winEhead);

102 APPENDIX A. DIFFUSION FILES

rp_cur = winEhead;

}

/%

* Remove all entries in the global list of posts
*/

remSQLtable ();

free (dbtable);

free (C1);

free (sqldiffquery);

display_summary (in, winSize, minDiff, nrDiffs);

}

/*
* displays summary window.
*/
void display_summary (
char *x*in,
unsigned int winSize,
unsigned int minDiff,
unsigned short int nrDiffs)

{
printf (“ _______ \n") ;
printf (" | Values used in this session [\n");
printf (" +---mmm +\n") ;
printf (" | Time period %s - %-27s|\n", in[1], in[2]);
printf (" | Window size in seconds %-29d|\n", winSize);
printf (" | Min number of routers in spread %-20d|\n", minDiff);
printf (" +---mmm +\n") ;
printf (" | Summary \n");
printf (M +--m o - +\n") ;
printf (" | Number of diffusions in session %-20d|\n", nrDiffs);
printf (M +--m e - +\n") ;

}

/%
* Put all errors inside a time-window into the winError list.

* toffset is a global reference to the list containing
* retrieved data from the MySQL database.[listCommon.h]
* Returns: the number of errors. Size of winError list.
*/
int sumErrors (

int winSize,

winError * rp_head)
{

MYSQL_POST *cur;

time_t postStart = 0;

time_t winStart = O;

A.1. DIFFUSION.C

103

int listSize = 0;
boolean hasOffset = false;
winError *rp_cur;

cur = toffset;
winStart = mktime

(fr_);

rp_cur = rp_head;

if (cur !'= NULL)

{

postStart = getUTC (cur);

/*

/* Get current offset in list */
/* Get window starttime */

/* Get time of start-post */

* Dont get any post that’s before the time-window

*/
if (postStart <= winStart)
toffset = cur->next_post;

/*

* Roll until current post is outside the time-window

*/
while (postStart <= (winStart + winSize))
{
rp_cur = mk_winError_post (rp_cur);
rp_cur->mysqlPost = cur;
listSizet++;

/*

* Check if end of list, finished
*/

if (cur->next_post == NULL)

/* Add the post to end at list */

break;
/*
* Move on to next post in the MySQL data list
*/
cur = cur->next_post;
/*

* Get the timestamp for next post
*/
postStart = getUTC (cur);

/*
* Set post to start with next time

*/

if ((postStart >= (winStart + (winSize / 2))) && (hasOffset == false))

{

toffset = cur;
hasOffset = true;

104 APPENDIX A. DIFFUSION FILES

else
listSize = 0;

return listSize;

}

* Locate any possible diffusion inside time-window
* If located, error and time is displayed

* Returns: nrDiffs the number of diffusions
*/
int findDiff (
winError * head,
unsigned int *minDiff)
{
difflList *diffHead;
diffList *curDiff;
winError *rp_cur;
rindexList *curlInd;
unsigned short int nrDiffs = 0;
rp_cur = head;

if ((diffHead = mk_diffList_post ()) == NULL)
fprintf (stderr, "Allocation of memory for a new diffListpost failed!\n");

if ((curDiff = mk_diffList_post ()) == NULL)
fprintf (stderr, "Allocation of memory for a new diffListpost failed!\n");

diffHead->next = NULL;
diffHead->ecode = NULL;
diffHead->time = NULL;
diffHead->date = NULL;
diffHead->rindexList = NULL;

if (rp_cur != NULL)

{
do
{
if (rp_cur->mysqlPost != NULL)
{
diffHead = addDiff (diffHead, rp_cur->mysqlPost);
}
}
while ((rp_cur = rp_cur->next_post) != NULL);
}
else

printf ("An empty list\n");

A.1. DIFFUSION.C 105

/%

* Evaluating TESULTS sk %kskskskkok sk 5k %k 5k 5k 5k %k 5k 5 5k % 5 % % 5 %

*/
nrDiffs = printRes (diffHead, minDiff);

/] sk sk sk ok sk ok ok ok sk ok ok sk ok ok ok sk ok sk ok sk ok o ok ok sk ok sk ok ok ok ok ok ok sk ok sk ok ok ko okok ok /
/%

* Return memory

*/
while (diffHead->next != NULL)

{

curDiff = diffHead->next;
diffHead->next = curDiff->next;
while (curDiff->rindexList->next != NULL)

{
curInd = curDiff->rindexList;
curDiff->rindexList = curInd->next;
free (curlnd);

}

free (curDiff->rindexList);
free (curDiff);

}

free (diffHead);

return nrDiffs;

}

/%
* Displays diffList AND saves the last entry that is <= minDiff.
* Returns: the number of diffusions.
*/
int printRes (
diffList * diffHead,
unsigned int *minDiff)
{
unsigned short int nrRouterErr = O;
diffList *cur;
rindexList *curlIndex;
boolean DoubleReport = false;
unsigned short int nrDiffs = 0;
cur = diffHead;

/*
* Hack.
* % Tf the first entry is equal to the last in the previuos window,
* % it will will be discarded, not reported twice.
*/
if ((strcmp (cur->time, dp->time) == 0)
&& (strcmp (cur->date, dp->date) == 0)
&& (strcmp (cur->ecode, dp->ecode) == 0))

106 APPENDIX A. DIFFUSION FILES

DoubleReport = true;
}

while (cur != NULL)
{

curIndex = cur->rindexList;
/*

* Count routers in list

*/
while (curIndex !'= NULL)
{

nrRouterErr += 1;

curIndex = curIndex->next;
}
if ((nrRouterErr >= *minDiff) && (DoubleReport == false))
{

nrDiffs += 1;

printf (“* _______

printf (" | Diffusion [\n");

printf (" |------mmm [\n");

cur->date += 2; /* Skip 220’ in 22003’ */

if (strcmp (cur->ecode, "") == 0)

printf (" | Error: Best guess is that this is a Traceback [\n");
else
printf (" | Error: %-41s|\n", cur->ecode);
printf (" | Diffusion error first at %s %-14s|\n", cur->time,
cur->date) ;
printf (" | Number of routers in list %-22d|\n", nrRouterErr);
printf (“ |________ ___ [\n");

/*

* Since we dont know which one that will be last we must do this:
*/

strcpy (dp->date, "20");

strcpy (dp->ecode, cur->ecode);

strcpy (dp->time, cur->time);

strcat (dp->date, cur->date);

}

nrRouterErr = 0;

cur = cur->next;
DoubleReport = false; /* Only once per time-window */
curIndex = NULL;

}

return nrDiffs;

}

/*

A.1. DIFFUSION.C

107

Adds an error to difflList if

* ¥ X X ¥ ¥

Returns: Head of difflList
*/

diffList *addDiff (

diffList * diffHead,

MYSQL_POST * mp)

boolean inlList =
diffList *cur;
diffList *newpost;
diffHead;

false;

cur =

while (cur !'= NULL)

{
if (cur->ecode != NULL)
{

the error is not

if ((strcmp (cur->ecode, mp->ecode)) == 0)
{
inList = true;
}
}
if (inList || (cur->next == NULL))
break;
cur = cur->next;

if ('inList)
{
if ((newpost =

mk_diffList_post ()) == NULL)

already in diffList. difflList’s rindexlist will be updated
with the router reporting the error, but only if the router doesn’t
already exist in difflList->rindexlist.

fprintf (stderr, "Alloc. of memory for new difflList-post failed!\n");

newpost->ecode = mp->ecode;

newpost->time = mp->time;
newpost->date = mp->date;
newpost->next = NULL;

newpost->rindexList = NULL;

newpost =

if (diffHead->ecode == NULL)
{
diffHead = newpost;
}
else

cur->next = newpost;

/*ref to error
/*ref first seen
/*ref first seen

addDiffRt (newpost, mp->rindex);

/* Its the first

*/
*/
*/

/* Add router if not in list */

post */

108 APPENDIX A. DIFFUSION FILES

}

/%
*
*
*
*
*

di

{

}

else

{ /* Error already saved, wupdate router list for this error */
cur = addDiffRt (cur, mp->rindex); /* Add router to error list */

}

return diffHead;

Adds a router to difflList’s rindexList if
rindex doesn’t exist in rindexList.

Returns: dcur

/

ffList *addDiffRt (
diffList * dcur,
int *rindex)

boolean inList = false;
rindexList *newpost;
rindexList *cur;

cur = dcur->rindexList;

while (cur != NULL)
{
if (*cur->rindex == *rindex)
{
inList = true;
}
if (inList || cur->next == NULL)
break;
cur = cur->next;
}
if (!inList)
{
if ((newpost = mk_rindexList_post ()) == NULL)
fprintf (stderr, "Allocation of memory for new rindexpost failed!\n");

newpost->next = NULL;
newpost->rindex = rindex;

if (cur == NULL)
{

dcur->rindexList = newpost;

}

else

{
cur->next = newpost;

}

A.1. DIFFUSION.C

109

}

//else ignore this router, already in list.

return dcur;

}

/*

* Retrieves data from MySQL databas

* sqlquery is a complete sql query

* toffset is a global reference to the list containing

* retrieved data from the MySQL database.[listCommon.h]

* Returns :

* Non-local (MYSQL_POST*) head with the retrived mysql data
*/

MYSQL_POST *getList (
char *sqlquery)
{
MYSQL_POST *current = NULL;
MYSQL_RES *result;
MYSQL_ROW row;
unsigned int num_fields = 0;
unsigned int num_rows = O;
head = mk_MYSQL_post (NULL); /* Create the list */
current = head;
toffset = head; /* Table offset non-local */

if (mysql_query (&connection, sqlquery))
MYSQL_exiterr (1);

if (!(result = mysql_use_result (&connection)))
MYSQL_exiterr (2);

num_fields = mysql_num_fields (result);
if (num_fields > 0)
{

row = mysql_fetch_row (result);
set_tb_val (current, row);

while ((row = mysql_fetch_row (result)))

{
current = mk_MYSQL_post (current);
set_tb_val (current, row);
}
}
else
{

printf ("No hits on your query, please try another time period \n");

110 APPENDIX A. DIFFUSION FILES

}
/%
* mysql_num_rows() will not return the correct value until all
* * the rows in the result set have been retrieved.
* % This is why it’s placed here
*/
num_rows = mysql_num_rows (result);
//printf ("<--- Nr of hits in db = %d --->\n",num_rows);

if (mysql_errno (&connection)) // mysql_fetch_row() failed due to an error
MYSQL_exiterr (3);

mysql_free_result (result);
mysql_close (&connection);

return head;

}

/*
* Saves fetched mysql row (MYSQL_ROW) into (MYSQL_POST*) cur
*/
void set_tb_val (
MYSQL_POST * cur,
MYSQL_ROW r)

{
if (sizeof (r) != 4)
{
printf ("Invalid sql response\n");
terminator ();
}
if (cur == NULL)
{
printf ("List not created or defect (null)\n");
terminator ();
}
cur->rindex = (int *) malloc (sizeof (int));
*cur->rindex = atoi (r[0]);
cur->time = (char *) strdup (r[1]);
cur->date = (char *) strdup (r[2]);
cur->ecode = (char *) strdup (r[3]);
}
/%
* Allocate memory for dp non-local pointer.
*/
difflList *initHackPointer (

)
{

A.2. DIFFUSION.H

111

dp = mk_diffList_post (;

dp->ecode = (char *) calloc (25, 1);
dp->time (char *) calloc (25, 1);
dp->date = (char *) calloc (25, 1);
return dp;

A.2 diffusion.h

/***

diffusion.h - Headerfile *
2 *
* begin : Thu Sep 05 2002 *
* copyright : (C) 2002 by Henrik Skantz & Mikael BAihm *
* Bachelors project - KaU fall 2002 *
* email : hesk@linux.se, micko@linuxmail.org *

sk sk sk s ke ok ok sk s sk ok ok sk sk ke ok sk sk sk ok sk s ok sk sk sk ok sk sk sk ok sk s ke sk sk o sk sk ke sk sk sk sk ok sk sk skl ok koksk ok k /
/K sk sk ok o o ok sk sk sk s o e ok sk sk o o ok ok sk sk e e ks sk s e ok sk sk s o ok sk o o s ok sk sk o o ok sk s o o ok sk sk o o k ok sk o o e ok sk sk o o sk sk s ok ok
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
sk sk sk o o o ok ok ok sk ok o s o ok sk sk o o sk sk s o ok sk o s ok ok sk o sk o ok sk sk o o sk sk ok o ok ksk o o o ok sk sk o e k ks ok ke sk sk sk ke k sk ok sk ek k /
#ifndef DIFFUSION_FILE
#define DIFFUSION_FILE
// sk ks s ok ok sk sk sk o s ok sk s ok ks sk ok ke sk sk skl sk sk skl ok sk ok ok sk ok ok sk ok sk sk s sk sk sk sksk ok sk ok skskok ok ok kok ok /
/%
* Constants
*/
/3K sk sk ok ok ok ok sk sk sk o o ke ok sk s o e ok sk sk o o ok sk sk ke sk sk sk e ok sk o s e ok sk o sk o ok ko sk o ok sk sk sk o ok sk o o ek sk ok o ek sk sk ok e ke kok ok /
// sk ks s ok ok sk sk sk ok s ok sk s ok sk sk ok ke sk sk skl sk sk skl ok sk s ok sk sk ok ok sk sk ok ks sk sk sk ks ok sk ok ks ok ok kok ok /
/%
* Non local variables
*/
/3K sk sk ok o ok ok sk sk sk o o ke ok sk o e ok ks o o ok sk sk ke ok sk sk s e ok sk o s e ok sk o sk o ok ko sk o ok k sk s o o ok sk ok o ok sk ok o e k sk sk o ke ke kok ok /
int logerr;

/3K ok ok sk sk ok ok ok ok ok ok ok sk ok ok sk ok ok ok ok sk s ok sk sk ok sk ok ks ok sk ok s ok sk ok sk s ok sk ok s ok sk ok sk sk ok sk ok sk ok sk sk k sk ok ok sk ok ok ok ok ok /
/*

* Type definitions

*/
[koo ks ok o sk ok o ok oo ok oo ok oK oK o o oK oo o o K o KoK oo R o o K o oK oo K o ok K oo o oK K o ok K ook o o K ok o koK ook R ok o ok
#define DEBUG 0 /* Set true to get degubbing info */

//#define ROUTSIZE 100 /* Max number of routers in network */
#define USAGEMESS "Usage: diffusion <start-day [2003-03-21]1> \
<end-day [2003-03-31]> <windowsize [seconds]> \

<min routers [2 - max availible in network]> <system[cisco]l\n"

112 APPENDIX A. DIFFUSION FILES

#define LOCKFILE "/tmp/mylogd-lock"

#define LF_CLOSE_TEXT "Lockfile not REMOVED, if you started mylogd with the \
-file flag nothing is wrong.\n Else be sure to remove it before starting \
mylogd again\n"

#define LF_ERROR_TEXT "Lockfile exists, mylogd already running, if not \
remove lockfile /tmp/mylogd-lock"

#define MYLOGDFILE "/var/log/mylogd/mylogd.log"

#define MYLOGDMODE "a+"

/3K sk sk ok o ok ok sk sk sk o o ke ok sk o o ok ks o o ok sk sk ok sk sk sk sk e ks o s e ok sk o sk o ok ks s o ok k sk s o ok sk ok o ek sk ok o ek sk sk ok ok sk kok ok /
/*

* Function prototypes

*/
//Hsk ks s ok ok sk sk sk ok s ok sk s ok ks sk ke ke sk sk skok sk sk skl ok sk sk ok sk ok ok sk sk ok ki sk sk sk sksk ok sk ok ki ok ok kok ok /
void diffusion (

char **in);
MYSQL_POST *getList (

)3
void set_tb_val (

MYSQL_POST * cur,

MYSQL_ROW r);
void display_summary (

char *x*in,

unsigned int winSize,

unsigned int minDiff,

unsigned short int nrDiffs);
int findDiff (

winError * rp_cur,

unsigned int *minDiff);
diffList *addDiff (

diffList * diffHead,

MYSQL_POST * mp) ;
diffList *addDiffRt (

diffList * cur,

int *rindex);

int printRes (
diffList * diffHead,
unsigned int *minDiff);
int sumErrors (
int winSize,
winError * rp_cur);
int chkargs (
char **inargs);

/*
* Hack. Previous time-window entry

*/

A.2. DIFFUSION.H 113

diffList *dp;
diffList *initHackPointer (
)

#endif

Appendix B

Recurring sequence files

B.1 rekerr.c

/***

rekerr.c - description
----<<0>>--- * Find recurring errors * ---<<0>>---
begin : Wen Apr 23 12:00:00 CET 2003
copyright : (C) 2003 by Mikael Bif;m & Henrik Skantz
email : micko@linuxmail.org, hesk@linux.se

sk sk s o o o ok sk sk sk ok o o sk o o o sk sk o o ok ks o o ks sk o e sk sk s e sk sk s s ok ok sk o sk o ok sk o sk o sk sk ok ok ok sk o o e ok sk sk o e sk kok ok /
/st ks sk ok ok ok sk sk sk ok s ok ks o ke ks sk ok sk skl ok sk sk sk ok sk s s ok ks ok ki s ok sk s ok sk sk o ke ok sk sk ke ok sk sk ok ok
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
sk sk sk s ke ok ok sk s sk ok ok sk sk ke sk sk sk ok sk s ok sk sk sk ok sk ok skskok s ke sk sk o sk sk ke sk sk sk sk ok sk sk skl ok koksk ok k /
#include "header.h"

int main (
int argc,
char **argv)

{

if (argc !'= 6 && argc !'= 7)
{
printf (USAGEREK) ;
exit (FAIL);
}
else
rekerr (argv);

return 0O;

}

115

116 APPENDIX B. RECURRING SEQUENCE FILES
/*

* Collect uniq sequences of repeting router/errors

*/
void rekerr (

{

char *x*in)

Config *C1 = (Config *) malloc (sizeof (Config));

errlList *elListhead = NULL; /*
Seqlist *seqlisthead = NULL; /*

unsigned int seqrep = 0; /*
unsigned int seqlen = 0; /*

char *show_all = NULL;

/*
* Read the mylogd config file
*/

readConf (CONFFILE, C1); /*

seqlen = (unsigned) atoi (in[3]1);
seqrep = (unsigned) atoi (in[4]);

if (in[6] !'= NULL)
{

show_all = in[6];
}

if (seqlen < MINPLEN)
seqlen = MINPLEN;

/*

* Set time from inargs

*/

initTimeObjs (in[1], in[2]);

data from database */
List for found patterns */

Minimum nr of sequence repetitions */
Minimum sequence length */

Read config to C1 */

/*%%x GET DATA FROM DATABASE skskskskok sk sk sk sk ok s ok s ok ok o ok ke ok sk ok ok sk ok ok ok ok ok k ok ok ok ok ook sk o ok ok ok sk ok /

/*
* Connect to database
*/
if (connectDB (C1) == NULL)
{
fprintf (stderr, SQLCONN) ;
free (C1);
free (elListhead);

B.1. REKERR.C 117

}

/

e

{

terminator ();

}
while (mktime (fr_) <= mktime (to_))
{
elListhead = collect_db_data (in, C1, eListhead);
}

/*%% PROCESS THE DATA skokokokkskokskokokok ok s sk sk skoko o ok ko o o sk ok sk ok o ok ok sk sk ke ke sk sk s ke ok sk sk sk e ok sk ok ok sk ok ok /
/*
* Allocate memory for Lists and variables

*/

seqlisthead = (Seqlist *) malloc (sizeof (Seqlist));
seqlListhead->next = NULL;

seqlListhead->posList = NULL;

/*

* run alg. for pattern detection

*/

seqlisthead = findSeq (seqlisthead, elListhead, seqlen);

/*x% WRITE REPQRT sokkokskokskokokokkokkok skok ok ok ok ok ok ok sk ok ok ok ok ko ok ok sk ook ko ok o sk ook ook ok ok ok ok sk ook ok ook ok /
print_Seqlist (seqlisthead, seqrep, show_all);

printf (SUMPTRN, seqlen);

printf (SUMREP, seqrep);

/*x%k FREE ALL MEMORY ks koo sk o o kst okook ok ok o skeokok ok o skt o s ok stk o sk ok sk o s ok o o ek sk sk sk sk ok ok /
free (to_);
free (fr_);
free (st_);
free (C1);

if (rmerrList (eListhead) !'= NULL)
printf (ELISTERR);

*

* Collect data from database, returns eListhead which is a ref. to
* %% this data.

*/
rrList *collect_db_data (

char *x*in,

Config * C1,

errList * eListhead)

char *dbtable = NULL;
char *sqlquery = NULL;

/%

* List containing result of mysql query

118 APPENDIX B. RECURRING SEQUENCE FILES

x/
MYSQL_POST *logList = NULL;

/%
* Set dbtable from inargument in[1]
*/
if ((dbtable = setdbtable (in[1], in[5])) == NULL)
{
fprintf (stderr, DBTBLERR);
}

if (existTable (dbtable))
{
/*
* Create an sqlquery for data:[rindex, ltime, localtime, errorcode]
*/
if ((sqlquery = rekSqlQuery (dbtable)) == NULL)
{
fprintf (stderr, SQLQRERR);
}
/*
* Mysql get complete interval for valid table
*/
printf (SQLCOL);
loglist = getPosts (sqlquery);
printf (SQLQRDONE);

/*

* Store uniq errors in a list

*/

eListhead = storeErr (logList, eListhead);

/%
* Done with logList, make it empty
*/
logList = rm_SQL_List (logList);
}
else
{
printf (DBTBNF, dbtable);
terminator ();

}

/%

* Move forward to next month
*/

incr_month (1);

*in[1] = set_tablemon (in[1]);

B.1. REKERR.C

119

/*

* ¥ X ¥ ¥

%

/%

* Connect to database

*/

if (connectDB (C1) == NULL)

{

fprintf (stderr, SQLRECON);

if (rmerrList (eListhead)

printf (ELISTERR);

free (C1);
free (elListhead);
terminator ();

free (dbtable);
free (sqlquery);

return eListhead;

!= NULL)

search for patterns (of lenght seqlen) in eListHead based on

*x router id and error .

seqlisthead is return which contains a list

**x with each node containing a list for a certain pattern.

**% Every node in the seqlisthead list contains a number that represent

** the number of times it was found, at least the ’seqlen’ first .

/

SeqList *findSeq (

Seqlist
errlList

* seqlListHead,
* eListhead,

unsigned seqlen)

errList
errList
errList
errList
errList
PosList
Seqlist
boolean

*startSeq = NULL;
*searchSeq = NULL;
*curSeq = NULL;
*curSearchSeq = NULL;
*FirstInStart = NULL;
*PtrnPosList = NULL;
*seqlList = NULL;
ptrnFound = false;

unsigned int patternlen = 0;

unsigned int cur_seqrep

0;

unsigned int stp = 0;
unsigned int maxLen = seqlen;
int seqExistLen = 0;

startSeq = elListhead;
searchSeq = elListhead;

seqlist

= seqlistHead;

/*
/%

/*
/*
/*
/*
/%
/*
/*

Ref. to sequence to search */
Ref. to sequence to compare */

Ref. to start sequence */

List containing a found pattern */
List containing all patterns */
Whether or not pattern is found */
Length of found pattern */

No. of recurrence for a pattern */

steps to next pattern to search for */

120 APPENDIX B. RECURRING SEQUENCE FILES

/%
* printf ("%d %s %s\n",*elListhead->rindex,elListhead->ecode,elisthead->ttime);
*/

printf (REKSTART);

/*
* Set searchSeq which is to be compared with startSeq
*/

searchSeq = setSearchSeqPos (startSeq, searchSeq, seqlen);

/*
* Search until end of elisthead, which is when searchSeq == NULL
*/

while (true)

{
/*
* Look only for new patterns
*/
if ((seqExistLen = seqExist (seqlist, startSeq)) == -1)
{

FirstInStart = startSeq;

while (searchSeq != NULL)

{

/*
* set position for searchSeq to start next time
*/

curSearchSeq = searchSeq->next;

/*
* Compare first node
*/

if (comparePost (startSeq, searchSeq))

{

curSeq = startSeq->next;
patternlen = 1;
/*
* Compare each post until no more match.
* x This can be longer than seqlen
*/
while ((comparePost (curSeq, curSearchSeq) == true) &&
(comparePost (curSeq, FirstInStart) == false))
{
curSeq = curSeq->next;
curSearchSeq = curSearchSeq->next;
patternlen += 1;
}
if (patternlen >= seqlen)

B.1. REKERR.C 121

{
/*
* Save pos for pattern
*/
ptrnFound = true;
PtrnPosList = PtrnIns (PtrnPoslList, searchSeq, patternlLen, 0);
cur_seqrep += 1;
/*
* Set max length of seq in pattern
*/
if (patternlen > maxLen)
maxLen = patternlen;
}
}
/*
* Set new search position
*/
searchSeq = curSearchSeq;
} /* End While(searchSeq != NULL) */

/*
* when search for startSeq in searchseq is complete add patternlist
* * to main list. Then move startSeq to next sequence to be found.

*/
if (ptrnFound == true)
{
/*
* The first pattern(startSeq) is a found pattern
*/
/*

* PtrnIns adds at the beginning of list ->
* *x startSeq comes first in list (PtrnPosList)

*/
PtrnPosList = PtrnIns (PtrnPoslList, startSeq, seqlen, cur_seqrep + 1);
/*

* Insert new patternlist to mainlist

*/

seqlist = seqlns (seqlist, PtrnPosList);
PtrnPosList = NULL;
ptrnFound = false;
/*
* Search for completly new pattern. curSeq > one step
*/
//startSeq = curSeq; /* Move startSeq to next sequence */
/*
* Move forward max length of found sequence to aviod subsequences
*/
for (stp = 0; stp < maxLen; stp++)
startSeq = startSeq->next;

122 APPENDIX B. RECURRING SEQUENCE FILES

cur_seqrep = 0;
}
/*
* Move startSeq only one step:
* **x if pattern was already saved or searchSeq at end (null)

*/
else
{
startSeq = startSeq->next; /* Move startSeq to next sequence */
}
} /*End if (seqExist(seqlist, startSeq) == false) */
/*
* Sequence already matched as a pattern (in seqlist)
*/
/*
* Do not search after subsequences in already searched sequences
*/
else
{

// printf ("Hoppar %d steg\n",seqExistLen);
for (stp = 0; stp < (unsigned) seqExistLen; stp++)
{/* Move startSeq to next sequence, no subsequence */
startSeq = startSeq->next;

}
}
/*
* Set a new SearchSeq position, if NULL search is complete!
*/
if ((searchSeq = setSearchSeqPos (startSeq, searchSeq, seqlen)) == NULL)
break;
}
/*
* Return the head of list containing
* %% repeted errors in different patterns
*/
return seqlist;
3
/*

* Prints the (first, if show_all != show_all, else all)
* xx PosList node in every Seqlist node.
* ** (the pattern)
* %% And the number of times the pattern was found (SeqlList member rep).
*/
void print_SeqList (
Seqlist * cur,
unsigned seqrep,
char *show_all)

{

B.1. REKERR.C 123

Seqlist *Seqtmp;
PosList *Postmp;
boolean sa = false;

int RepCount = 0;
unsigned int Seqlen = O;

boolean longPtrn = false; /* Longeset pattern indicator */
unsigned int SeqReps = 0; /* Repetitions for the longest pattern */
int ptrLen[600]; /* Holds the rep. for the longest patterns */

int ptrC = 0;
Seqtmp = cur;

if (show_all != NULL)
if (strcmp (show_all, "show_all") == 0)

sa = true;

while (Seqtmp != NULL)

{
Postmp = Seqtmp->posList;
SeqReps = 0;
Seqlen = 0;
if (Postmp != NULL)
{
if (Postmp->rep >= seqrep)
{
RepCount++;
printf (PRINTSUM, RepCount, Postmp->rep);
if (sa == true)
{ /*in show_all patterns */
printf (" This is the first occurrence of this pattern.\n \
- The rest are listed in reversed order -\n");
}

print_PosNode (Postmp); /*Always print the first pattern */
//if (sa == true){ /*in show_all patterns*/

//printf (DELIM) ;
while (Postmp != NULL)
{
/*
* Set max length of a pattern
*/
if (Seqlen < Postmp->len)
{

longPtrn = true;
Seqlen = Postmp->len;
SeqReps = 0;
3
/*
* Count repetitions for the longest pattern

*/

124 APPENDIX B. RECURRING SEQUENCE FILES

if (Seqlen == Postmp->len)
SeqReps += 1;

if (sa == true)

{ /*in show_all patterns */
printf (DELIM);
print_PosNode (Postmp);

}

//printf (DELIM) ;

Postmp = Postmp->next;

}

/*
* If the longest pattern was rep. enough times, save it.
*/

if (SeqReps >= seqrep)

{

if (ptrC < 500)

{
ptrLen[ptrC] = Seqlen;
ptrC += 1;

}

}
//%}
}
}
Seqtmp = Seqtmp->next;
}
/*
* Print small summary
*/
printf (DELIM);
printf ("\n -Summary- \n");
Seqlen = MaxLen (ptrLen, ptrC);

printf ("The longest pattern was %d routers long, repeated %d times\n",
Seqlen, seqrep);

}

int MaxLen (
int 1[],
int ptrC)
{
int k;
int max = 0;
for (k = 0; k < ptrC; k++)
{
if (max < 1[k])
max = 1[k];

B.1. REKERR.C 125

}
return max;
}
/*
* Prints all elements in a PosList node
*/

void print_PosNode (
PosList * pNode)
{

errList *seq;
unsigned short int i;
unsigned short int k;

k = pNode->len;
seq = pNode->seqStart;

for (i = 0; i < k; i++4)
{
printf (PRINTPOS,
*seq->rindex, seq->rname, seq->ecode, seq->ttime, seq->date);
seq = seq->next;
}
}

/*
* Allocates and returns memory for a PosList
*/
PosList *mk_PosNode (
)
{

PosList *new_post;

if ((new_post = (PosList *) malloc (sizeof (PosList))) == NULL)
fprintf (stderr, MEMERR);

new_post->next = NULL;
return new_post;
X

/%

* Adds an errList at beginning of PosList.
* *x*x The new PosList is returned

*/

PosList *PtrnIns (

126

APPENDIX B. RECURRING SEQUENCE FILES

}

/*
* Allocates and returns memory for a Seqlist

*/

PosList * PtrnPosHead,

errlList * curPos,
int ptrnlen,
unsigned seqrep)

PosList *PtrnCur = NULL;

PtrnCur = mk_PosNode ();
PtrnCur->next = PtrnPosHead;

PtrnCur->seqStart =

PtrnCur->len = ptrnlen;
PtrnCur->rep = seqrep;

return PtrnCur;

SeqList *mk_SeqgNode (

{

}

/%

* Insert PtrnPosList at first position in seqlist

)

Seqlist *new_post;

//New head

if ((new_post = (SeqlList *) malloc (sizeof (SeqlList))) == NULL)

fprintf (stderr, MEMERR);

new_post->next = NULL;

return new_post;

SeqList *seqlIns (

{

Seqlist * seqlist,

PosList * PtrnPosList)

Seqlist *cur = NULL;

cur = mk_SeqNode ();
cur->next = seqlist;

* **% The new seqlist is returned

*/

B.1. REKERR.C

127

cur->posList = PtrnPosList;

return cur; //New Head

}

/*
* Check if StartSeq is referenced in seqlist->seqStart
* xx Returns the number of entries in the seq.
* xx if StartSeq is referenced in Seqlist
* xx otherwise -1
*/
int seqExist (
Seqlist * seqlist,
errList * StartSeq)
{

Seqlist *cur;
PosList *poscur;

cur = seqlist;

while (cur != NULL)
{
poscur = cur->posList;
while (poscur != NULL)
{
if (poscur->seqStart->ecode == StartSeq->ecode)
return poscur->len;
poscur = poscur->next;
}
cur = cur->next;
}
return -1;

}

/*
* Sets searchSeq to point at startSeq + seqlen.
* %% Reference to searchSeq is returned
*/
errList *setSearchSeqPos (
errlList * startSeq,
errlList * searchSeq,
unsigned seqlen)

unsigned short i;
searchSeq = startSeq;

if (searchSeq == NULL)

128 APPENDIX B. RECURRING SEQUENCE FILES

return NULL;

for (i = 0; i <= seqlen; i++)
if ((searchSeq = searchSeq->next) == NULL)
break;

return searchSeq;

}

/*
* Compares two post, if they are equal true is returned
* *xx else false
*/
boolean comparePost (
errlList * startSeq,
errList * searchSeq)

{

if (startSeq == NULL || searchSeq == NULL)
return false;

if (strcmp (startSeq->ecode, searchSeq->ecode) == 0)
if (strcmp (startSeq->rname, searchSeq->rname) == 0)
return true;

return false;

}

/*
* Returns number of nodes in an errList
*/
int countListLen (
errList * eListhead)

{

int len = 0;
errlList *elListcur;

eListcur = eListhead;

if (eListhead == NULL)
return O;

while (elListcur->next != NULL)
{

lent+;
elListcur = eListcur->next;

B.1. REKERR.C 129

return len;

}

/%
* Remove the list(elListhead) and returns the head of an empty list
*/
errList *rmerrList (
errList * head)

{
errlList *cur;
while (head->next != NULL)
{
cur = head->next;
head->next = cur->next;
free (cur);
}
free (head);
return (head = NULL);
}
/%
* Save errors uniq with statistic data from SQL-query
*/
/*
* List from MYSQL-query must be in accending order of time
*/

errList *storeErr (
MYSQL_POST * logList,
errlList * head)

errList *cur, *newpost;
cur = head;

if (cur !'= NULL)
/*
* Roll to end of list :-p NOT EFFECTIVE AT ALL IF MANY CALLS
*/
while (cur->next != NULL)
cur = cur->next;

newpost = (errList *) malloc (sizeof (errList));
newpost->next = NULL;
/*

130 APPENDIX B. RECURRING SEQUENCE FILES

* If list is empty dont miss filling data to the first ome
*/
if (head == NULL)
{
head = newpost;
cur = head;
}
while (logList != NULL)
{
newpost->ecode = loglist->ecode;
newpost->rindex = logList->rindex;
newpost->rname = loglList->rname;
newpost->ttime = logList->time;
newpost->date = loglList->date;
newpost->time = newpost->time = getUTC (logList);

cur->next = newpost;
cur = cur->next;

if (loglList->next_post == NULL)
break;

loglist = logList->next_post;
/*
* Allocate memory for a new errorList post
*/
newpost = (errList *) malloc (sizeof (errList));
newpost->next = NULL;

return head;

}

B.2 rekerr.h

/***

rekerr.h - Headerfile *
2 *
* begin : Wen Apr 23 2003 *
* copyright : (C) 2003 by Henrik Skantz & Mikael B&hm *
* D-Level Reserch *
* email : hesk@linux.se, micko@linuxmail.org *

sk sk sk s ke ok ok sk s ok ok sk sk ke ok sk sk sk ok sk s ok sk sk sk ok ok sk sk ok skskok s sk sk o sk sk ke ok sk sk sk ok sk sk skl ok koksk ok k /
// sk s ok ok ok sk sk sk ok s ok sk o ok sk sk skl ok sk skl ok sk sk s ok sk s s ok ks ok ok sk s ok sk s ok sk sk o ke ok sk sk ke ok sk sk ok ok
This program is free software; you can redistribute it and/or modify *

* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *

B.2. REKERR.H

131

sk ok ok ok e ok ok ok ok ok ok s ok ok ke ok sk ok ko ok sk ok ke ok ok ok ko sk sk ok ok sk ok ok sk ok sk ok ok sk sk sk ok sk ok sk ok ok ok sk sk ok sk ok sk ok sk ok sk sk ok ke ok sk ok sk ok sk ok ok ok k /
#ifndef REKERR_FILE
#define REKERR_FILE

/***/

/*

* Non local variables

*/

/3% ke sk ke ok sk ok ok s sk e ok sk sk sk e ok K ok sk e ok ke ok ok sk ke ok 3k o sk ok sk ok K o ok ok sk ok ke sk sk ok ke ok 3k ok ok ok k ok ok ok ook K k ok sk ok ok ok /
struct tm *to_; /* Time struct, keeps track of "to" date and time */
struct tm *xfr_; /* Time struct, keeps track of "from" date and time */
struct tm *st_; /* Time struct for "starttime", keep this static */
unsigned int nr_set; /* Number of rows on each query on database */
time_t interval; /* Total time interval of search */

/KK ok sk ok ok ok ok ok ok sk sk o ok ok ok ok o sk sk ok ok ok K ok o sk ok sk ok ok ok K ok o sk ok ok ok ok ok o ok o sk ok ok ok o sk o sk ok K ok ok sk o ok ok Kok ok ok ok ok /
/%

* Constants

*/

/3K ok sk o ok o sk o ok sk sk o ok o K ok o sk R sk o ok o K ok sk o ok o ok ok K oK o ok o ok o ok o o ok o ok o K o o ok o sk o K ok K ok o ok o ok ok ok ok ok ok ok /
#define MINPLEN 3
#define USAGEREK "Usage: rekerr <start-day [2003-03-21]> \

<end-day [2003-05-01]> <min errors [3 - num routers in network] in pattern> \
<sequence repetitions (>2) > <system[cisco]> [show_all * QOptional *]\n"
#define PRINTSUM "\n Pattern [Jd] beginning with this sequence was \
repeated %d times \n"
#define DELIM "---- - - === - - - - o o o - \n"
#define PRINTPOS "Router: (%d) %-20s %-30s [%s | %s]\n"
#define MEMERR "Allocation of memory for new post failed!\n"
#define REKSTART "Searching for patterns...(This can take quite some time)\n"
#define DBTBLERR "Could not set dbtable!\n"
#define DBTBNF "Table %s doesn’t exist\n"
#define SQLQRERR "Could not create SQL-query for this table!\n"
#define SQLCOL "Collecting data from MySQL server...\n"
#define SQLQRDONE "Done collecting\n"
#define SQLRECON "Re-connection to database failed!\n"
#define SQLCONN "Connection to database failed!\n"
#define ELISTERR "List [errorList] was NOT removed from mem\n"
#define SUMPTRN "Shortest pattern to search = %d\n"
#define SUMREP "Minimum repetition for pattern = %d\n"
#define NODAY "No day interval \n"
/K o sk o ok o sk o ok sk sk o ok o K ok o sk R sk o ok o K ok sk o ok o ok ok K oK o ok o ok o o o o oK o ok o K o o ok o ok o K o K ok ok o ok ok ok ok ok ok ok /
/%

* Type definitions

*/
/K ok sk o ok o sk o ok sk sk o ok o K ok o sk R sk o ok o K ok o sk o ok o ok ok K oK o ok o ok o ok o o oK o ok o o o o ok o ok o K ok K ok ok o ok ok ok ok ok ok ok /
/%

* Holds a list of all logs to evaluate

*/

132 APPENDIX B. RECURRING SEQUENCE FILES

struct errlList

{
char *ecode; /* Error */
int *rindex; /* Router (id) */
char *rname; /* Router Name */
time_t time; /* Time found (sec) */
char *date; /* date */
char *ttime; /* readable time */
errlList *next; /* Next post in list */
boolean refIndicator; /* Indicates if post is ref. by rekList */

};

/%

* List of repeting sequences

*/

struct Seqlist

{
PosList *posList;
SeqlList *next;

3

/%

* Holds start and stop positions for sequences

*/

struct PosList

{
unsigned int len;
unsigned int rep;
errlList *seqStart;
PosList *next;

3

/38 ke sk ke ok sk ok ok sk ok e ok ke sk ok s ok sk sk sk e ok ke ok ok ke ok K sk ok ok ok sk e ok k sk ok ok K e ok ks ok ok ks ok k ok ok ok k sk ok k ok ok ook ok ok ok ok k ok /
/%

* Function prototypes

*/
/38 ke sk ke ok sk ok ok sk ok ke ok ke sk ok s ok sk sk sk e ok ke ok ke ok ke ok K sk ok ok ok ok e ok 3k sk ok ok ok e ok k sk ok k ok ke ok k ok ok ok k sk ok k ok ook ok ok k ok k ok /
void rekerr (

char **in);

errList *storeErr (
MYSQL_POST * logList,
errlList * head);

errList *rmerrList (
errList * head);

int MaxLen (
int 1[],
int ptrC);

B.2. REKERR.H 133

int countListLen (
errlList * head);

SeqList *findSeq (
Seqlist * seqlistHead,
errlList * eListhead,
unsigned int seqlen);

errList *setSearchSeqPos (
errlList * startSeq,
errList * searchSeq,
unsigned seqlen);

boolean comparePost (
errlList * startSeq,
errList * searchSeq);
int seqExist (
Seqlist * seqlist,
errList * StartSeq);

PosList *PtrnIns (
PosList * p,
errList * searchSeq,
int ptrnlen,
unsigned seqrep);
SeqlList *seqlIns (
Seqlist * seqlist,
PosList * PtrnPosList);

PosList *mk_PosNode (
)

SeqList *mk_SeqNode (
)

void print_PosNode (
PosList * pNode);

void print_SeqList (
Seqlist * cur,
unsigned seqrep,
char *show_all);

errList *collect_db_data (
char **in,
Config * C1,
errlList * eListhead);
#endif

134 APPENDIX B. RECURRING SEQUENCE FILES

B.3 rekerrMySQL.c

#include "header.h"

/*
* Saves MYSQL_ROW into MYSQL_POST
* Returns: MYSQL_POST
*/
MYSQL_POST *setPostValue (
MYSQL_POST * cur,
MYSQL_ROW row)

{
if ((sizeof (row) != 4) || row == NULL)
{
printf ("Invalid sql response or empty set on query\n");
exit (-1);
}
if (cur == NULL)
{
printf ("List not created or defect (null)\n");
exit (-1);
}
cur->rindex = (int *) malloc (sizeof (int));
*cur->rindex = atoi (rowl[0]);
cur->rname = (char *) strdup (row[1]);
cur->time = (char *) strdup (row[2]);
cur->date = (char *) strdup (row[3]);
cur->ecode = (char *) strdup (row[4]);
return cur;
}
/*

* Get data from MySQL database
* Non-L-E (MYSQL_POST*) head is set to the retrived mysql data.
* Returns: head of MYSQL_POST* containing MySQL data
*/
MYSQL_POST #*getPosts (
char *sqlquery)
{

MYSQL_POST *current = NULL;
MYSQL_RES *result;
MYSQL_ROW row;

unsigned int num_fields = 0;
unsigned int num_rows = O;

head = mk_MYSQL_post (NULL); /* Create the list */

B.3. REKERRMYSQL.C 135

current = head;

/xkkkstart debug kokskskskokkokskoksdokohokskokskdekokok ok ko ok koo sk ek ok /
// printf ("SQL=Y%s\n", sqlquery);

//strcat(sqlquery," limit 10");

printf ("SQL=Y%s\n", sqlquery);

Jxkkkend debing skokokokskoskskok ok sk sk kok sk s sk k ok ook sk sk ok ok ok ook ok sk ok /

if (mysql_query (&connection, sqlquery))
MYSQL_exiterr (1);

if (!(result = mysql_use_result (&connection)))
MYSQL_exiterr (2);

num_fields = mysql_num_fields (result);

if (num_fields > 0)
{
/%
* (no extra post at end of list)
*/
row = mysql_fetch_row (result);
current = setPostValue (current, row);

while ((row = mysql_fetch_row (result)))

{
current = mk_MYSQL_post (current);
current = setPostValue (current, row);
}
}
else
{

printf ("No hits on your query, please try another time period \n");
}
/*

* mysql_num_rows() will not return the correct value until all

* * the rows in the result set have been retrieved.

* * This is why mysql_num_rows() is placed here

*/
nr_set = num_rows = mysql_num_rows (result);
printf ("<--- Nr of hits in db = %d --->\n", num_rows);

if (mysql_errno (&connection))// mysql_fetch_row() failed due to an error
MYSQL_exiterr (3);

mysql_free_result (result);
mysql_close (&connection);

return head;

136 APPENDIX B. RECURRING SEQUENCE FILES

B.4 rekerrMySQL.h

/***

rekerr.h - Headerfile *
* e *
* begin : Wen Apr 23 2003 *
* copyright : (C) 2003 by Henrik Skantz & Mikael B&hm *
* D-Level Reserch *
* email : hesk@linux.se, micko@linuxmail.org *

sk sk sk o o o ok ok ok sk sk o s o ok sk sk o o sk sk s o ok sk o s ok ok sk o s o sk sk s o sk sk o o ok ksk o o o ok sk sk o e k ks ok ok sk sk sk ke k sk ok sk ek k /
/3K sk sk ok ok ok ok sk sk sk s ok e ok sk s o o ok sk sk e ks sk e ok sk sk s o ok sk s o s o ks o o ok sk s o o sk sk ok o ok ok sk o o ks sk o ok sk sk s ok ok
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
sk sk sk o o o ok ok ok sk sk o s o ok sk sk o o sk sk s o sk sk o s ok ok sk o s o sk sk o o sk sk o o ok ok sk o o ok sk sk o o k ks sk ke sk sk sk ke k sk ok sk ek k /
#ifndef REKERR_MYSQL_FILE
#define REKERR_MYSQL_FILE

MYSQL_POST #*getPosts (
char *sqlquery);

MYSQL_POST *setPostValue (
MYSQL_POST * cur,
MYSQL_ROW row) ;

#endif

Appendix C

Low frequent files

C.1 lowfreq.c

/***

lowfreq.c - description
----<<0>>--- * Find low frequency errors * ---<<0>>---
begin : Mon Apr 09 11:00:00 CET 2003
copyright : (C) 2003 by Mikael Béhm & Henrik Skantz
email : micko@linuxmail.org, hesk@linux.se

sk sk s o o o ok ok sk sk o o o o ok sk oo ok sk sk o e ok ks o o ok ks sk o ke sk sk s e sk sk s o ok sk sk o s ok k sk o sk o sk sk ok o sk sk ok o ek sk ok o ek k ok /
// sk ks s ok ok sk sk sk ok s ok sk s o ok sk sk sk ke ok sk skl ok sk sk s ok sk s s ok ks ok ok sk s ok skskok s ok sk sk o ke ok sk sk ke ok sk sk ok ok
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
sk sk sk s s ke ok ok sk s sk ok ok sk sk ke sk sk sk ok sk s ok sk sk sk ok ok sk ok skskok s ke sk sk o sk sk ke ok sk sk sk ok sk sk skl ok koksk ok k /
#include "header.h"

int main (

int argc,

char **argv)
{

/*

* argv -<<>>- Start/slut datum, min antal fel, systemtyp
*/
if (argc !'= 6)
{
printf (USAGELOW);
exit (FAIL);
}
else
lowfreq (argv);

137

138 APPENDIX C. LOW FREQUENT FILES

return 0;

}

/*
* Collect errors uniq and count them to find lowfreqvency errors
*/
void lowfreq (
char *x*in)
{
char *fromdate = NULL;
unsigned int numberr = atoi (in[3]);
unsigned int maxgrad = atoi (in[4]);
unsigned int errorcounter = 0;
unsigned int erlimit = 0;
Config *C1 = (Config *) malloc (sizeof (Config));

/%

* List of uniq errors to count
*/

errorList *eListhead = NULL;

/%
* Allocate memory for errorList with uniq errors
*/
if ((elListhead = (errorList *) malloc (sizeof (errorList))) == NULL)
{
fprintf (stderr, "Allocation of memory for errorList failed!\n");
terminator ();

3
/%
* Make sure list is empty
*/
eListhead->next = NULL;
/%
* Read the mylogd config file
*/
readConf (CONFFILE, C1); /* Read config to Cl1 */
/%
* Set a static from date to sql-query
*/

fromdate = getArrayPos (in, 1);

/*
* Set time period objekts
*/

C.1. LOWFREQ.C

139

}

/

setTimePeriod (in[1], in[2]);

/%

* Connect to database
*/

connectToDB (C1);

/*
* Collect all errors in time period
*/

eListhead = getErrors (in, fromdate, elListhead, numberr, C1);

/*
* Count the number of errors in list
*/

errorcounter = countErrors (elListhead);

/*
* Set upper limit to display for total set
*/

erlimit = setLFErrorLim (LFRQFACT, errorcounter, numberr) ;

/*
* Evaluate errors and print report

*/

printLFReport (elListhead, erlimit, maxgrad, errorcounter, fromdate, in);

/%
* Time to set all memory free
*/

free (to_);

free (fr_);

free (st_);

free (C1);

free (fromdate);

/%
* Remove all entries in the errorlist
*/
if (rmeList (eListhead) == NULL)
printf ("List [errorList] is removed from mem\n");

*
* Allocates new memory for array at pos and return as char

*/

char *getArrayPos (

char *x*in,
int pos)

140 APPENDIX C. LOW FREQUENT FILES

char *str = NULL;
str = (char *) malloc (sizeof (in[pos]));
return strcpy (str, in[pos]);

}

/*
* Setting the global time objekts values
*/
void setTimePeriod (
char *fr,
char *to)
{
/*
* Set time from inargs
*/
initTimeObjs (fr, to);
interval = mktime (to_) - mktime (fr_);

if (interval < 0)
{
fprintf (stderr, "Lowfreq:Invalid time period input!\n");
terminator ();
}
}

/*
* Connect to database with user/pass in C1
*/
void connectToDB (
Config * C1)

{
if (connectDB (C1) == NULL)
{
fprintf (stderr, "Connection to database failed!\n");
terminator ();
}
}
/%
* Builds a SQL-query for low freqvent error search
*/

char *buildLFQuerySQL (
char *x*in,
char *fromdate)

char *dbtable = NULL;
char *sqlquery = NULL;

C.1. LOWFREQ.C 141

}

/

e

{

/%
* Set dbtable from inargument in[1]
*/
if ((dbtable = setdbtable (in[1], in[5])) == NULL)
{
fprintf (stderr, "Could not set dbtable!\n");
}
if (existTable (dbtable))
{
/*

* Create an sqlquery for data: [rindex, ltime, localtime, errorcode]
*/
if ((sqlquery = lowfSqlQuery (dbtable, fromdate, in[2])) == NULL)
{
fprintf (stderr, "Could not create SQL-query for this table!\n");
}
}
free (dbtable);
return sqlquery;

*
* Collects all potential low freqvent errors in given timeperiod
*/
rrorList *getErrors (

char **in,

char *fromdate,

errorList * eListhead,

int numberr,

Config * C1)

char *sqlquery = NULL;
char time[9];
int terlimit = 0;

/*
* List containing result of mysql query
*/

MYSQL_POST *logList = NULL;

for (53)

{

sqlquery = buildLFQuerySQL (in, fromdate);

/*

142 APPENDIX C. LOW FREQUENT FILES

* Mysql get complete interval for valid table
*/
loglist = getPosts (sqlquery);

/*

* Set upper limit to count timestamps for

*/
terlimit = setLFErrorLim (QURYFACT, nr_set, numberr);
/*

* Store uniq errors in a list and count them as we go
*/

eListhead = errUniq (loglList, eListhead, terlimit);
/*

* Make logList empty again

*/
loglist = rm_SQL_List (logList);
/*

* Check if time to stop getting more data from database
*/

strftime (time, 9, "%Y-Ym", fr_);
if (mktime (fr_) >= mktime (to_))

break;

if ((strncmp (time, in[2], 7)) == 0)
break;

/%

* Move forward to next month

*/

incr_month (1);
*in[1] = set_tablemon (in[1]);

/*

* Connect to database again
*/

connectToDB (C1);

free (sqlquery);
return eListhead;

}

/%
* Count the number of members in an errorList
*/
int countErrors (
errorList * eListhead)

C.1. LOWFREQ.C 143

int errorcounter = 0;
errorlList *eListcur = NULL;
eListcur = elListhead;

while (eListcur->ecode !'= NULL)
{
errorcounter += elListcur->hits;
if (eListcur->next == NULL)
break;

elListcur = eListcur->next;

}

return errorcounter;

}

/*
* Set upper limit to display for total set
*/
int setLFErrorLim (
float FACTOR,
int errorcounter,
int numberr)

float 1lim = 0;

lim = (FACTOR * errorcounter);
if (1lim < numberr)
lim = numberr;

return (int) lim;

}

/*

* Print a low freqvency report
*/

void printLFReport (
errorlList * elListcur,
unsigned erlimit,
unsigned short maxgrad,
unsigned errorcounter,
char *from,
char **inarg)

char reprow[50];
unsigned int lowfqcounter = O;
short int idx;

144 APPENDIX C. LOW FREQUENT FILES

printf (M+-—--mm - +\n") ;
printf ("] LOW FREQUENT ERROR REPORT \n") ;
printf (M+-—---mm e +\n") ;
printf ("| From %s | To %s | \n", from, inarg[2]);
printf (M+--—---—--mmmem o e +\n\n") ;

while (elListcur->ecode !'= NULL)

{
if (isValidPost (elListcur, erlimit, maxgrad))
{
printf (M+-—--m - +\n") ;
printf ("] LOW FREQUENT ERROR \n");
printf (M+-—--omm - +\n") ;
snprintf
(reprow, 45, "| Error : %s%hs", elListcur->ecode, ESTRING);
printf ("%s |\n", reprow);
snprintf
(reprow, 45, "| Router nr: %d’%s", *eListcur->rindex, ESTRING);
printf ("%s |\n", reprow);
snprintf
(reprow, 45, "| Router : %s%hs", elListcur->rname, ESTRING);
printf ("%s |\n", reprow);
snprintf

(reprow, 45, "| Num hits : %dJ)s", elListcur->hits, ESTRING);
printf ("%s |\n", reprow);

printf (M+-----—-ommm - R +\n") ;
printf ("] Foundlist | Timestamps \n");
printf ("+-—----o - T +\n") ;
idx = 1;

while (eListcur->timeList != NULL)
{
snprintf (reprow, 45, "| Num %d | %s %s", idx,
ctime (&elistcur->timeList->time), ESTRING) ;
printf ("%s |\n", reprow);
idx++;
eListcur->timelList = elListcur->timelList->next;

}
printf (M+-—----m - - +\n\n") ;
lowfqcounter++;
}
if (elistcur->next == NULL)
break;
elListcur = eListcur->next;

printf ("Total number of error in set = %d\n", errorcounter);

C.1. LOWFREQ.C 145
printf ("Number of low frequency errors found = %d\n", lowfqcounter);
printf ("Upper limit for hits was set to = %d\n", erlimit);
printf ("Max grade of severity was set to = %d\n\n", maxgrad);
printf ("Lowfreq LFRGFACT is set to = %f\n", LFRQFACT);
printf ("Presens of total time PRESFACT = %f\n", PRESFACT);
printf ("Factor of max irregularity IREGFACT = %f\n\n", IREGFACT);

}

/

*
* Detects if a post is valid to be reported as

*/

int isValidPost (

}

/

/

errorList * post,
unsigned int erlimit,
unsigned short maxgrad)

int isvalid = O;
int diff = 0;
int dsum = 0;
int idel = 0;

time_t timelen;
timelList *timecur;

timecur = post->timelist;
timelen = post->1time - post->ftime;

idel = (int) timelen / (post->hits - 1);

if ((post->hits <= erlimit) && (post->hits > 1))

if (post->grade <= maxgrad)
if (interval * PRESFACT < timelen)
{
while (timecur->next != NULL)
{
diff
dsum += abs (diff - idel);
timecur timecur->next;
}
if (dsum < timelen * IREGFACT)
isvalid = 1;

low freq error

/* First time in list */
/* Timesp. last found - first found */

/* Calutate ideal regularity */

(timecur->next->time) - (timecur->time);

3
return isvalid;
*
* Save errors uniq with statistic data from SQL-query
*/
*

* List from MYSQL-query must be in accending order of time

*/

146

APPENDIX C. LOW FREQUENT FILES

errorList *errUniq (

MYSQL_POST * logList,
errorList * head,
unsigned int 1lim)

char *tmp;

int inList = 0;
MYSQL_POST *MYcur;
errorlList *cur, *newpost;
timelList *timehead = NULL;
timelist *timetemp = NULL;
timelList *newtime = NULL;

MYcur = logList;
cur = head;

while (MYcur != NULL)
{

while (cur->next != NULL ||

{

cur->ecode !'= NULL)

if ((strcmp (MYcur->ecode, cur->ecode) == 0) &&
(*MYcur->rindex == *cur->rindex))

{
inList = 1;
cur->hits += 1;

cur->datelast = MYcur->date;
cur->timeLast = MYcur->time;
cur->ltime = getUTC (MYcur);

if (cur->hits <= 1lim)
{
/%

/* Dont add to many already */

* Add a timestamp for this hit

*/

timetemp = cur->timelist;
while (cur->timeList->next != NULL) /* Move to end of timeList */
cur->timelList = cur->timelList->next;

newtime = (timelList *) malloc (sizeof (timeList));
newtime->next = NULL;
newtime->time = getUTC (MYcur);

cur->timelList->next

newtime;

cur->timelist = timetemp;

}

}

if (inList)
break;

if (cur->next == NULL)
break;

/* Just a bit more effective algorithm */

C.1. LOWFREQ.C 147

cur = cur->next;
}
if (!'inList)
{
while (cur->next !'= NULL) /* Move to end of list */
cur = cur->next;

/*
* Allocate memory for errorList with uniq errors
*/
newpost = (errorList *) malloc (sizeof (errorList));
newpost->next = NULL;
newpost->ecode = MYcur->ecode;
newpost->rindex = MYcur->rindex;
newpost->rname = MYcur->rname;
newpost->hits = 1;
newpost->ftime = newpost->ltime = getUTC (MYcur);

/*
* Time settings for algorithm
*/
timehead = (timelList *) malloc (sizeof (timeList));
timehead->next = NULL;
timehead->time = getUTC (MYcur);
newpost->timelList = timehead;

/*

* Set grade of error suverity

*/
tmp = strdup (MYcur->ecode);
if (strtok (tmp, "-") != NULL)

newpost->grade = (unsigned short) atoi (strtok (NULL, "-"));
else

newpost->grade = 7; /* If no errorcode, set to WHAT? */
free (tmp);
/*

* This values are only "for your information"

*/

newpost->dateFirst = MYcur->date;
newpost->timeFirst
newpost->datelast = MYcur->date;
newpost->timeLast = MYcur->time;

MYcur->time;

/*
* Set time values

*/

148 APPENDIX C. LOW FREQUENT FILES

newpost->ftime = newpost->1ltime = getUTC (MYcur);

/*
* Check if this is the first post
*/
if (head->ecode == NULL)
head = newpost;

else
cur->next = newpost;
}
inlist = 0; /* Reset indikator */
cur = head; /* Start all over with list of uniqlist */

MYcur = MYcur->next_post; /* Move to the next post from database */
X

return head;

}

/*
* Remove the list(eListhead) and returns the head of an empty list
*/
errorList *rmeList (
errorList * head)
{
errorList *cur;
timelList *tcur, *thead;

while (head->next '= NULL)
{
thead = head->timelList;
if (thead != NULL)
while (thead->next !'= NULL)
{
tcur = thead->next;
thead->next = tcur->next;
free (tcur);
}
free (thead);
cur = head->next;
head->next = cur->next;
free (cur);
}
free (head);

return (head = NULL);
}

/%
* Saves fetched row into the list

*/

C.1. LOWFREQ.C 149

/*
* In somewhat nerdy way but it works
*/
MYSQL_POST *setPostValue (
MYSQL_POST * cur,
MYSQL_ROW row)

{
if (sizeof (row) != 4)
{
printf ("Invalid sql response\n");
exit (-1);
}
if (cur == NULL)
{
printf ("List not created or defect (null)\n");
exit (-1);
}
cur->rindex = (int *) malloc (sizeof (int));
*cur->rindex = atoi (rowl[0]);
cur->rname = (char *) strdup (row[1]);
cur->time = (char *) strdup (row[2]);
cur->date = (char *) strdup (row[3]);
cur->ecode = (char *) strdup (row[4]);
return cur;
}
/%

* Get all data from MySQL
* * Pre: sqlquery is a complete sql query
* * Post: Local (MYSQL_POST*) head is set to the retrived mysql data
*/
MYSQL_POST #*getPosts (
char *sqlquery)
{
MYSQL_POST *current = NULL;
MYSQL_RES *result;
MYSQL_ROW row;
unsigned int num_fields = 0;
unsigned int num_rows = O;
head = mk_MYSQL_post (NULL); /* Create the list */
current = head;

if (mysql_query (&connection, sqlquery))
MYSQL_exiterr (1);

150 APPENDIX C. LOW FREQUENT FILES

if (!(result = mysql_use_result (&connection)))
MYSQL_exiterr (2);

num_fields = mysql_num_fields (result);

if (num_fields > 0)

{ /* Like this, no extra post at end of list */
row = mysql_fetch_row (result);

current = setPostValue (current, row);

while ((row = mysql_fetch_row (result)))

{
current = mk_MYSQL_post (current);
current = setPostValue (current, row);
}
}
else
{

printf ("No hits on your query, please try another time period \n");
printf ("The version of MySQL used by this program is 3 and not 4, \n \
in version 4 the UNION function is implemented and no extra \
manual work has been done on this by us\n");

}
/%

* mysql_num_rows() will not return the correct value until all
* * the rows in the result set have been retrieved.

* % This is why it’s placed here

*/

nr_set = num_rows = mysql_num_rows (result);

if (mysql_errno (&connection))// mysql_fetch_row() failed due to an error
MYSQL_exiterr (3);

mysql_free_result (result);
mysql_close (&connection);

return head;

C.2 lowfreq.h

/***

* lowferq.h - Headerfile *
x

* begin : Thu Apr 09 2003

* copyright : (C) 2003 by Henrik Skantz & Mikael B&hm

C.2. LOWFREQ.H 151

* D-Level Reserch *
* email : hesk@linux.se, micko@linuxmail.org *
sk sk sk s ke ok ok sk s sk ok ok sk sk ke ok sk sk sk ok sk s ok sk sk sk ok sk sk sk ok sk s ke sk sk o sk sk ke sk sk sk sk ok sk sk skl ok koksk ok k /
/st s ok ok ok sk sk sk s ok sk o ok sk sk sk ok sk skl ok sk sk sk ok sk s ok ks s sk ok sk s ok skskok s ok sk sk o ke ok sk sk ke ok sk sk ok ok
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
sk sk sk s ke ok ok sk s sk ok ok sk sk ke ok sk sk sk ok sk s ok sk sk sk ok sk sk sk ok sk s ke sk sk o sk sk ke sk sk sk sk ok sk sk skl ok koksk ok k /

#ifndef LOWFREQ_FILE

#define LOWFREQ_FILE

/***/

/%

* Non local variables

*/

/KK ok ok ok ok ok sk ok ok ok ok ok sk ok e ok ok sk ok ok ok sk ok o ok ok sk ok ok sk sk ok o ok ok sk s ok sk sk ok s ok sk ok s ok ok sk ok ok ok sk ok sk ok sk ok ok skok ok sk ok ok ok ok ok ok /
struct tm *to_; /* Time struct, keeps track of "to" date and time */
struct tm *xfr_; /* Time struct, keeps track of "from" date and time */
struct tm *st_; /* Time struct for "starttime", keep this static */
unsigned int nr_set; /* Number of rows on each query on database */
time_t interval; /* Total time interval of search */

/3K ok ok sk sk ok ok ok ok ok ok ok sk ok e ok sk ok ok ok sk sk s ok sk ok ok sk ok sk s ok sk ok s ok sk ok sk s ok sk ok s ok sk sk sk sk ok sk ok sk ok sk ok k sk ok ok sk ok ok sk ok ok /
/%

* Constants

*/

/***/

/%
* Algorithm filtering specific constants sk skokkkokokoskokokodkokodkfkokokkokkokkokok
*/
/%
* Hogre vdrde ger hogre antal som O6vre gréns foér lagfrekvent
*/
#define LFRQFACT 0.000025 /* Sets upper limit of whats lowfrekvency */

/*
* For varje tabell begrdnsande védrde, ska matcha LFRQFACT
*/
#define QURYFACT 0.0003 /* Sets upper limit for table lowfreq.limit x*/

/*
* Hur mycket av den totala tidsperioden som maste vara representerad
*/
/*
* Max 1, ger O trdffar, Min O, ger inga begrénsningar
*/
#define PRESFACT 0.15 /* Part of total period to be represented */

152 APPENDIX C. LOW FREQUENT FILES

/*
* Anger hur felens spridning ska sallas
*/
/*
* 0 ger inga trdffa, 1 medfdr inga begrédnsningar
*/
#define IREGFACT 0.66 /* Factor for maximum irregularity of errors */
[/ koo ok o ok ok sk koo o ok ok sk ok ok ok skok ok o ok sk ok o ok sk ko o ok koo o sk ok o ok skok ok o ksk sk ok skoko ok ok skok ok ok ok skok ok ok ok ok /

#define USAGELOW "Usage: lowfreq <start-day [2003-03-21]> \
<end-day [2003-03-31]> <min reported errors [1 - inf]l> \
<max grade to report[0 -7] <system[cisco]l>\n"

#define RMARG 15 /* Right margin prints */
#define ESTRING " " /* For prints */

/KK ok ok ok ok ok sk ok sk ok ok ok sk ok sk ok ok sk ok ok ok sk ok o ok ok sk ok ok ok sk ok o ok ok sk s ok ok sk ok s ok sk sk s ok ok sk ok sk ok sk sk sk ok sk ko skok sk sk ok ok ok ok ok ok /
/%

* Type definitions

*/

/KK ok sk ok ok ok sk ok ok ok ok ok ok sk ok ke ok ok sk ok ok ok sk ok o ok ok sk ok ok ok sk ok o ok ok sk s ok ok sk ok s ok sk sk s ok ok sk ok ok ok sk ok sk ok sk ok ok sk ok ok sk ok ok ok ok ok ok /
struct errorList

{
char *ecode; /* Error */
int *rindex; /* Router */
char *rname; /* Router name */
unsigned int hits; /* Times found */
unsigned short grade; /* Suverity */
char *dateFirst; /* Date first found *//* Youst Info */
char *timeFirst; /* Time first found *//* Youst Info */
char *datelast; /* Date last found *//* Youst Info */
char *timelast; /* Time last found *//* Youst Info */
time_t ftime; /* First time found */
time_t ltime; /* Last time found */
timelList *timeList; /* List of timestamps */
errorList *next; /* Next post in list */
};
struct timeList
{
time_t time; /* Time for error/rt =*/
timelList *next; /* Next pos in list */
}s

/st ks s ok ok sk sk sk ok s ok sk s ok ks sk ke ke sk sk skl sk sk skl ok sk s ok sk ok ok sk ok ki sk sk sk sksk ok sk ki ok ok ksk ok /
/*
* Function prototypes

*/

C.2. LOWFREQ.H 153

/% 3 ok ke ok sk ok ok sk ok s ok ke ok ok ok sk ok ok ke ok ke ok K ok ok ok K s ok ok ok ok 3 ok K s ok 3 ok ok ok K s ok k ok k ok ok ok ok 3 ok ok sk ok sk ok ok 3 ok k ok ok ok ok ok /
/%

* Process flow ctrl function

*/
void lowfreq (

char **in);

/*
* Allocates new memory for array at pos and return as char
*/
char *getArrayPos (
char **in,
int pos);

/%
* Setting the global time objekts values
*/
void setTimePeriod (
char *fr,
char *to);

/*

* Connect to database with user/pass in C1
*/

void connectToDB (
Config * C1);

/*
* Collects all potential low freqvent errors in given timeperiod
*/
errorList *getErrors (
char **in,
char *fromdate,
errorlList * eListhead,
int numberr,
Config * C1);

/*
* Count the number of members in an errorList
*/
int countErrors (
errorlList * eListhead);

/*
* Set upper limit to display for total set
*/
int setLFErrorLim (
float FACTOR,
int errorcounter,

154 APPENDIX C. LOW FREQUENT FILES

int numberr);

char *buildLFQuerySQL (
char *x*in,
char *fromdate);

/*
* Detects if a post is valid to be reported as a low freq error
*/
int isValidPost (
errorlList * post,
unsigned int erlimit,
unsigned short maxgrad) ;

/*
* Print a low freqvency report
*/
void printLFReport (
errorList * elListcur,
unsigned erlimit,
unsigned short maxgrad,
unsigned errorcounter,
char *from,
char *x*inargs);

/*
* Save errors uniq with statistic data from SQL-query
*/
errorList *errUniq (
MYSQL_POST * logL,
errorList * h,
unsigned int lim);

/*

* Remover of errorList
*/

errorList *rmeList (
errorlList * head);

/*

* Fetch posts fr. query
*/

MYSQL_POST *getPosts (
char *sqlquery);

/%

* Set values

*/
MYSQL_POST *setPostValue (

C.2. LOWFREQ.H

155

MYSQL_POST * cur,
MYSQL_ROW row) ;

/%

* Terminate the process
*/

void terminator (

)

#endif

Appendix D

Common files

D.1 timeCommon.c
D.2 timeCommon.h

D.3 readconf.c

/***

mylogconf.c - description
begin : Sat Nov 9 2002
copyright : (C) 2002 by Mikael Bif;m & Henrik Skantz
email : micko@linuxmail.org, hesk@linux.se

***/
/***

*
This program is free software; you can redistribute it and/or modify *
it under the terms of the GNU General Public License as published by *
the Free Software Foundation; either version 2 of the License, or *
(at your option) any later version. *

*

*

* X X ¥ ¥

sk sk ok sk ook ok ok ok ok ok ook ok ok ok K 3 ook ok ko ok ok ok ok ok ok o ok ok ok sk sk ok ok ok sk ok ok sk ok ok sk ok ks ok sk ok s ok ok ok ks ok ok ok ook ok ok sk ok k /
#include "header.h"

/*

* Retrives system parameters from given configuration file.
* String cfile. This will be put in the struct lc.

* Returns:

* Read parameters are put in a record lc which is returned.
* Opon failures with file, errormessage is displayed and the
* program is terminated

*/

157

158

Config *readConf (

{

String cfile,
Config * lc)

int fd; /* File descriptor */
char row[CONF_ROW]; /* Read row from file */
struct stat file_info; /* File info */
unsigned int offset = 0; /* File offset */
unsigned int vconfl = 0; /* Counter for vaild lines */
String str; /* Pointer to parameter */

fd = OpenFile (cfile, O0_RDONLY);

/*

* Get information about the file.(fsize)
x/

if (fstat (fd, &file_info) == FAIL)

{

perror ("fstat");
CloseFile (fd, cfile);
terminator ();

}

while (file_info.st_size > (int) offset)
{
GetRow (fd, row, &offset);
if ((str = strstr (row, "mysqlhost=")) != NULL)
strcpy (lc->dbhost, str);
else if ((str = strstr (row, "db=")) != NULL)
strcpy (lc->db, str);
else if ((str = strstr (row, "dbuser=")) != NULL)
strcpy (lc->dbuser, str);
else if ((str = strstr (row, "dbpass=")) != NULL)
strcpy (lc->dbpass, str);
else if ((str = strstr (row, "pipefile=")) != NULL)
strcpy (lc->pipe, str);
else
continue;

vconfl += 1;

}
CloseFile (fd, cfile);

if (vconfl != NCONF_OPTIONS)

{
perror ("No valid config file");
terminator ();

}

APPENDIX D. COMMON FILES

D.4. READCONF.H

159

/%

* Remove infront text

*/

strcpy (lc->dbhost, strtok (strstr (lc->dbhost, "="), "="));
strcpy (lc->db, strtok (strstr (lc->db, "="), "="));

strcpy (lc->dbuser, strtok (strstr (lc->dbuser, "="), "="));
strcpy (lc->dbpass, strtok (strstr (lc->dbpass, "="), "="));
strcpy (lc->pipe, strtok (strstr (lc->pipe, "="), "="));

return lc;

D.4 readconf.h

/***

readconf.h - Headerfile *
x
* begin : Thu Sep 05 2002
* copyright : (C) 2002 by Henrik Skantz & Mikael BAihm *
* Bachelors project - KaU fall 2002 *
* email : hesk@linux.se, micko@linuxmail.org *

sk sk sk s s ke ok ok sk s s ok ok sk sk ke sk sk sk ok sk s ok sk sk sk ok sk sk sk ok sk s ke sk sk o sk sk ke ok sk sk sk ok sk sk skl ok koksk ok k /
/K sk sk ok ok o ok ok sk sk s ok e ok sk sk o o ok sk sk ke ks sk s e ok sk sk s o ok sk o o s ok ks o ok sk s o o sk sk o o ok ok sk o o ok sk sk o o sk sk sk ok ok
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
sk sk sk s s ke ok ok sk s sk ok ok sk sk ke sk sk sk ok sk s ok ok sk sk ok sk sk sk ok sk s ke sk sk o sk sk ke sk sk sk sk ok sk sk skl ok koksk ok k /

#ifndef READCONF_FILE

#define READCONF_FILE

/] 3 3k 3k sk sk sk sk ok ok ok sk K Kk ko o ok ok ok sk sk 3k K K R o o ok ok ok sk ok 3 K K K K o o ok o ok ok sk kK K K K o e o o ok ok ok K sk 3 K K Kk o ok ok ok ok ok k kK K/
/%
* Constants
*/
/] 3 3k sk sk ok ok sk ok ok sk sk ok Kk ok o ok ok ok ok ok ok K Kk 3 o o o ok ok ok sk ok K K Kk 3k o o ok ok sk ok sk kK K K K o o ok ok ok ok ok Kk kK k k ok ok ok ok ok ok ok kK K/
#define NCONF_OPTIONS 5
#define CONF_ROW 300
#define DBNAME_LEN 30
#define TABLENAME_LEN 30
#define HOSTNAME_LEN 50

#define PATH_LEN 50
#define USER_LEN 30
#define PASS_LEN 30
#define SYSTEM_LEN 20

/***/

/%

160 APPENDIX D. COMMON FILES

* Type definitions
x/
/38K o ks o ok o sk o ok sk sk o ok o K ok o sk R sk o ok o K ok o sk o ok o ok ok o oK o ok o ok o ok o o oK o ok o K o o ok o sk o K ok K ok ok o ok ok K ok ok ok ok ok /
struct Config
{
char dbhost [HOSTNAME_LEN] ;
char db[DBNAME_LEN] ;
char dbtable[TABLENAME_LEN];
char dbuser [USER_LEN] ;
char dbpass[PASS_LEN];
char system[SYSTEM_LEN];
char pipe[PATH_LEN];
3

[/ sk ks s ok ok sk sk sk ok sk sk s ok ks sk ok ke sk sk skl sk sk skl ok sk ok sk ok ok sk ok ki sk sk sk sk ok sk ok ks ok ok ksk ok /
/%

* Function prototypes

*/
// sk ks s ok ok sk sk sk ok s ok sk s ok ks sk ke ke sk sk skok sk ksl ok sk s ok sk ok ok sk sk ok sk sk sk sk sk sksk ok sk ok ki ok ok kok ok /
Config *readConf (

String cfile,

Config * 1lc);

#endif

D.5 listCommon.c

/***

listCommon.c - description
----<<0>>--- * List functions for diffusion * ---<<0>>---
begin : Wen Apr 10 12:00:00 CET 2003
copyright : (C) 2003 by Mikael Bdhm & Henrik Skantz
email : micko@linuxmail.org, hesk@linux.se

sk sk s o o o ok ok ok sk o o o o ok sk o o o sk sk o o ok ks o o ok ks sk o ke ks sk s e sk sk s o ok sk sk o s ok k sk o sk o sk sk ok o sk sk ok o ok sk ok o sk k ok /
/K sk sk ok ok o ok ok sk sk s ok e ok sk sk o o ok sk sk ke ks sk s e ok sk sk s o ok sk o o s ok ks o ok sk s o o sk sk o o ok ok sk o o ok sk sk o o sk sk sk ok ok
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *

* (at your option) any later version. *
Sk o o o ko koo Kook o KK oK R ok o ko KK oK ok o o o ko kK oK ok o o ko ok ook ok o ok ok ook ook sk ok ok ok ok ok ok sk ok kK ok ko ok /

#include '"header.h"

/*
* Make a new tail for the list
*/
/%

D.5. LISTCOMMON.C 161

* Use NULL as argument when creating a new list.
*/
MYSQL_POST *mk_MYSQL_post (

MYSQL_POST * current_post)

{
MYSQL_POST *new_post;
if ((new_post = (MYSQL_POST *) malloc (sizeof (MYSQL_PQOST))) == NULL)
fprintf (stderr, "Allocation of memory for new MYSQL_POST failed!\n");
if (current_post != NULL)
current_post->next_post = new_post;
new_post->next_post = NULL; /* the new node will be the tail */
return new_post;
}
/%
* Make a new tail for the list
*/
/%
* Use NULL as argument when creating a new list.
*/

winError *mk_winError_post (
winError * current_post)

{
winError *new_post;
if ((new_post = (winError *) malloc (sizeof (winError))) == NULL)
fprintf (stderr, "Allocation of memory for new MYSQL_POST failed!\n");
if (current_post != NULL)
current_post->next_post = new_post;
new_post->next_post = NULL; /* the new node will be the tail */
return new_post;
}
/*
* Returns a allocated diffList post or NULL
*/
difflList *mk_diffList_post (
)
{

diffList *new_post;
return (new_post = (difflList *) malloc (sizeof (diffList)));
}

162 APPENDIX D. COMMON FILES

/*
* Returns a allocated rindexList post or NULL
*/
rindexList *mk_rindexList_post (
)
{
rindexList *new_post;
return (new_post = (rindexList *) malloc (sizeof (rindexList)));

}

/*
* Remove the entire SQL-result table, head is in non-local-env
*/
void remSQLtable (
)
{
MYSQL_POST *cur;
while (head !'= NULL)
{
cur = head->next_post;
free (head);
head = cur;
}
}

/*
* Remove the list (MYSQL_POST*) and returns the head of an empty list
*/
/*
* This is a variant for non global lists
*/
MYSQL_POST *rm_SQL_List (
MYSQL_POST * head)
{
MYSQL_POST *cur;

while (head->next_post != NULL)

{
cur = head->next_post;
head->next_post = cur->next_post;
free (cur);

}
head = NULL;
return head;
}
/*

* Remove the list (winError*) and returns the head of an empty list

D.6. LISTCOMMON.H

163

*/
winError *removelList (
winError * head)
{
winError *cur;
while (head->next_post != NULL)
{
cur = head->next_post;
head->next_post = cur->next_post;
free (cur);

}
return head;
}
/%
* Prints one (MYSQL_POST*) post ref. by cur
*/

void print_post (
MYSQL_POST * cur)

{
if (cur != NULL)
{
printf (M---mmm e \n|");
printf (" %d |", *cur->rindex);
fflush (stdout);
printf (" %s |", cur->time);
fflush (stdout);
printf (" %s |", cur->date);
fflush (stdout);
printf (" %s \n", cur->ecode);
}
}
/%

* Returns next (MYSQL_POST#*) post in the list ref. by ’current_post’
*/
MYSQL_POST *next_post (
MYSQL_POST * current_post)
{
return current_post->next_post;

}

D.6 listCommon.h

/K sk sk ok ok ok ok sk sk sk s o e ok sk sk o o ok ok sk sk ke ke ks sk s e ok sk sk s o ok sk s o s ok ks o ok sk s o o sk sk o e ok ok sk o o ok sk sk o o sk sk s ok ok
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *

164 APPENDIX D. COMMON FILES

* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
sk ok ok sk ook ok ok ok ok ook ok ok ok K 3 ook ok ke ok ok ok ok ok ok ko ok ok ok sk sk sk o ok sk ok s ok sk ok ok sk ok ks ok sk ok s ok sk ok ks ok ok ok ook ok ok sk ok k /

#ifndef LISTC_FILE
#define LISTC_FILE
/] sk sk sk sk sk sk ke ok sk sk sk sk sk ok s ok ok sk ok sk sk k ok sk ke ok sk s sk ok sk sk sk ok k k ks ke ok sk sk sk sk sk ok ke k sk ke ke sk ok ok sk sk sk ok sk k ok k sk ke sk sk ok sk ok k ki k k /

/*
* Non local variables
*/
/33 ok ok ok ok ok o ok ok ok ok ok ok ok ok ok sk sk ok sk s oo o o o o o ok ok ok ok sk sk sk sk sk ok ok o ok ok o o ok o ok ok ok sk sk sk sk sk sk sk o o o o o o o ok ok ok ok sk sk sk ok ok /
MYSQL_POST *head; /* Head of SQL table query */
winError *winEhead; /* Head of window list */
MYSQL_ERROR *err_head; /* Head of a potential error spread */
MYSQL_POST xtoffset; /* Table offset , where to start in next search */

/% 3k ok ke ok sk ok ok sk ok s ok ke ok ok ok K ok ok e ok ke ok ok sk ok K sk ok ok ok ok 3 ok K ook 3 ok K e ok sk s ok K ok ok ok K ok ok 3 ok K sk ok sk ok ok 3 ok k ok ok ok ok ok /
/*

* Type definitions

*/
/3% e ok ke ok sk ok ok s sk ke ok ke sk sk ok K ok sk e ok ke ok ko sk ok 3k s sk ok sk ok K o ok ok sk ok ko sk ok ok sk ok 3k ok ok e ok k s ok ok ok ook Kk ok ok ok ok /
struct diffList
{

char *ecode;

char *time;

char *date;

rindexList *rindexList;

diffList *next;
};
struct rindexList
{

int *rindex;

rindexList *next;
};
struct MYSQL_ERROR
{

char *error;

MYSQL_ERROR *next_post;
};
struct winError
{

MYSQL_POST *mysqlPost;

winError *next_post;
};
struct MYSQL_POST
{

int *rindex;

char *time;

char *date;

char *ecode;

D.7. FILECTRL.C 165

char *rname;
MYSQL_POST *next_post;
};

//kkkok otk ok ok ok ok ok ok kok ok ok ok sk sk sk sk sk s sk sk s s s e ok ok ok ok ok sk ks sk sk sk sk s s s s sk ok ke ok ok sk sk sk sk sk sk sk sk s sk s sk ok keok ok ok ok sk sk ok sk ok /
/*

* Function prototypes

*/

/***/

MYSQL_POST *mk_MYSQL_post (
MYSQL_POST * current_post);

MYSQL_POST *next_post (
MYSQL_POST * current_post);

MYSQL_POST *rm_SQL_List (
MYSQL_POST * head);

winError *removelList (
winError * head);

winError *mk_winError_post (
winError * current_post);

difflList *mk_diffList_post (
)3

rindexList *mk_rindexList_post (
)3

void print_post (
MYSQL_POST %) ;

void remSQLtable (
)3

#endif

D.7 filectrl.c

/***

filectrl.c - description
begin : Thu Sep 12 2002
copyright : (C) 2002 by Mikael Bif;m & Henrik Skantz
email : micko@linuxmail.org, hesk@linux.se

sk sk sk s s ke ok ok sk s sk ok ok sk sk ke sk sk sk ok sk s ok ok sk sk ok sk sk sk ok sk s ke sk sk o sk sk ke ok sk sk sk ok sk sk skl ok koksk ok k /
/st sk ok ok ok sk sk sk ok s ok sk o ok sk sk skl ok sk skl ok sk sk s ok sk s s ok ks ok ok sk s ok sk sk sk sk o ke ok sk sk ke ok sk sk ok ok
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
sk sk sk s s ke ok ok sk s sk ok ok sk sk ke sk sk sk ok sk s ok sk sk sk ok ok sk ok skskok s ke sk sk o sk sk ke ok sk sk sk ok sk sk skl ok koksk ok k /

166 APPENDIX D. COMMON FILES

#include "header.h"

/%
* Reads from fd until \n or EQF.
* Returns:
* Read data from fd is returned and the offset
* is advanced with the number of bytes read.
* On read error row is set to be empty.
*/
String GetRow (
int fd,

char *row,
unsigned int *offset)

{

int nread;

char c[1];

bzero (row, strlen (row));

if (1lseek (fd, *offset, SEEK_SET) == FAIL)

{

fprintf (stderr, "line %3d : lseek error\n", __LINE__);
exit (FAIL);

}

while ((nread = read (fd, c, 1) > 0) && (*c !'= ’\n?’))

{

strncat (row, c, 1);
*offset += 1;

}

/%

* Advance to pass \n for next ev. read

*/

*offset += 1;

if (nread == FAIL)

{

fprintf (stderr, "line %3d : read error\n", __LINE__);
bzero (row, strlen (row));

}

return row;
}
/%

* Closes the file fname on filedesc. fd.
* Filename should be provided for better information
* to the user.

D.8. FILECTRL.H

167

void CloseFile (
int fd,
String fname)
{
if (close (fd) == FAIL)
fprintf (stderr, "line %3d : Could not close %s\n", __LINE__, fname);
}

/*
* Opens file "fname" in mode '"mode".
* Returns: On success a filedescriptor fd is returned,
* else errormessage and termination
*/
int OpenFile (
String fname,

int mode)
{
int fd;
if ((fd = open (fname, mode)) == FAIL)
{
fprintf
(stderr, "line %3d : No valid fileref from inputfile : %s\n",
__LINE__, fname);
terminator ();
}
return fd;
}

D.8 filectrl.h

/***

filectrl.h - description
begin : Thu Sep 12 2002
copyright : (C) 2002 by Mikael Béhm & Henrik Skantz
email : micko@linuxmail.org, hesk@linux.se

sk sk sk s ke ok ok sk s sk ok ok sk sk ke ki sk sk ok sk s ok sk sk sk ok sk sk s sk sk o sk sk ke sk sksk sk ok sk sk skl ok koksk ok k /
// sk s ok ok ok sk sk sk ok s ok sk o ok sk sk sk ok sk skl ok sk sk s ok sk s s ok ks sk ok sk s ok sk s ok sk sk o ke ok sk sk ke ok sk sk ok ok
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
sk sk sk s ke ok ok sk s sk ok ok sk sk ke ki sk sk ok sk s ok sk sk sk ok ok sk ok sk s ke sk sk o sk sk ke ok sk sk sk ok sk sk skl ok koksk ok k /

#ifndef FILE_HEADER

#define FILE_HEADER

/***/

/%

168 APPENDIX D. COMMON FILES

* Function prototypes
*/
/oo o ok ok sk ok ok ok ok ok ok Kok ok o ok sk ok o sk sk ok ok ok ok ok o ks ok ok o ok ok ok o koK ok o koK ok ok ok Kok ok ok Kok ok ok ok ok /
String GetRow (
int fd,
char *row,
unsigned int *offset);
void CloseFile (
int fd,
char *fname) ;
int OpenFile (
String fname,
int mode);

#endif

D.9 mysqlQ.c

/***

mysqlQ.c - MySQL backend
begin : Thu Sep 12 2002
copyright : (C) 2002 by Mikael Bif;m & Henrik Skantz
email : micko@linuxmail.org, hesk@linux.se

sk sk sk o o o ok ok ok sk sk o s o ok ok sk o o sk sk sk o ok sk o s ok ok sk o sk o sk sk ok o sk sk o o ok ok sk o o e ok sk sk o o k ok sk sk e sk sk sk ke ok sk ok sk ek k /
/st s ok ok ok sk sk sk ok s ok sk o ok sk sk skl ok sk skl ok sk sk s ok sk s s ok ks ok ki s ok sk s ok sk sk o ke ok sk sk ke ok sk sk ok ok

* This program is free software; you can redistribute it and/or modify *

* it under the terms of the GNU General Public License as published by *

* the Free Software Foundation; either version 2 of the License, or *

* (at your option) any later version. *

sk sk sk s s ke ok ok sk s sk ok ok sk sk ke sk sk sk ok sk s ok ok sk sk ok sk sk sk ok sk s ke sk sk o sk sk ke sk sk sk sk ok sk sk skl ok koksk ok k /
#include "header.h"

/*
* Standard sql-query for low fregency analycis
* Returns : sql query string
*/
String lowfSqlQuery (
char *dbtable,
char *lowdate,
char *highdate)

char *querystr;

/*

* Allocate memory for SQL-query

*/

if ((querystr = (char *) malloc (350)) == NULL)

D.9. MYSQLQ.C 169

{

fprintf (stderr, "Allocation of memory failed!\n");
terminator ();

}

sprintf
(querystr, "SELECT rindex,routers.name as rname,ltime,localdate,errorcode \
FROM ‘s inner join routers on ‘Js‘.rindex = routers.routernr \
where localdate >= \"%s\" and localdate <= \"%s\" \
order by localdate, ltime", dbtable, dbtable, lowdate,
highdate) ;

return querystr;

}

/*
* Creates a SQL query for diffusion.
* Returns: The SQL query string.
*/
String diffSqlQuery (
char *dbtable)
{
char *querystr;
char time[12], time2[12];

/*

* Allcate memory for SQL-query

*/

if ((querystr = (char *) malloc (350)) == NULL)
{

fprintf (stderr, "Allocation of memory failed!\n");
terminator ();

}

strftime (time, 12, "%Y-Y%m-%d", fr_);
strftime (time2, 12, "%Y-%m-%d", to_);

sprintf (querystr, "SELECT rindex,ltime,localdate,errorcode \
FROM ‘%s‘ where localdate >= \"%s\" and localdate <= \"%s\" \
order by localdate, ltime", dbtable, time, time2);

return querystr;

}

/*

* Creates a SQL query for rekerr.
* Returns: The SQL query string.
*/

String rekSqlQuery (

170 APPENDIX D. COMMON FILES

char *dbtable)

char *querystr;
char time[12], time2[12];
int diff = -1;

/*

* Allcate memory for SQL-query

*/

if ((querystr = (char *) malloc (350)) == NULL)
{

fprintf (stderr, "Allocation of memory failed!\n");
terminator ();

}
diff = mktime (to_) - mktime (fr_);

strftime (time, 12, "%Y-Ym-%d", fr_);
strftime (time2, 12, "%Y-%m-%d", to_);

if (diff !'= 0)
{
sprintf
(querystr, "SELECT rindex,routers.name as rname,ltime,localdate,errorcode \
FROM ¢Ys‘ inner join routers on ‘Js‘.rindex = routers.routernr where \
localdate >= \"%s\" and localdate <= \"}s\" order by localdate, ltime",
dbtable, dbtable, time, time2);
}
else
{
sprintf
(querystr, "SELECT rindex,routers.name as rname,ltime,localdate,errorcode \
FROM ‘Ys¢ inner join routers on ‘Js‘.rindex = routers.routernr \
where localdate = \"%s\" order by localdate, ltime", dbtable,
dbtable, time);

}
return querystr;
}
/*
* Sets up a safe SSL connection to a local or remote database.
* The connection is establised from data read from config file.
* Returns:
* If connection to db is successful the connection returns else the
* the program will terminate with errormessage
*/

MYSQL *connectDB (
Config * conf)

{

D.9. MYSQLQ.C 171

MYSQL *comn;

/*
* Setup a the mysql connection with SSL
*/

con = mysql_init (&connection);

mysql_real_connect (&connection, conf->dbhost, conf->dbuser, conf->dbpass,
conf->db, 0, NULL, CLIENT_SSL);

if (con == NULL)
printf (mysql_error (&connection));

return con;

}
/*
* Close connection to db
*/
void closeDB (
)
{
mysql_close (&connection);
}
/%

* Runs a SQL query on selected database connection
* A connection must exist to a db
*/
void InsToDb (
String sqlquery,
Config * conf)
{
int state;
int retries = 0;

state = mysql_query (&connection, sqlquery);

/*
* Query failed (timedout?)=> retry connection then try again
*/
while ((state != 0) && (retries < MAXRETRIES))
{
retriest++;
connectDB (conf);
sleep (1)
state = mysql_query (&connection, sqlquery);
}

172 APPENDIX D. COMMON FILES

* Connection has dropped or server outage
*/

if (state != 0)

{
printf (mysql_error (&connection));

terminator ();
}
}

/*
* Checks if a table exsists in the db
* A connection must exist to a db
* Returns :
* If the table match the simple regular expression in [table] the
* function returns true, else false
*/
boolean existTable (
String table)
{
MYSQL_RES *result;
boolean boolval;

if ((result = mysql_list_fields (&connection, table, NULL)) == NULL)
boolval = false;

else
boolval = true;

/*
* Must free memory according to MySQL API
*/

mysql_free_result (result);

return boolval;

}

/%
* Defines which dbtable to use, returns it
* memory is allocated for it !
*/
char *setdbtable (
char *in_a,
char *in_b)
{
char *table;
char *yymm = NULL;

if ((table = (char *) malloc (30)) == NULL)
fprintf (stderr, "Allocation of memory failed!\n");

yymm = (char *) malloc (sizeof (in_a) + 1);

D.9. MYSQLQ.C 173

strcpy (yymm, in_a) /* Table date */ ;
strcpy (table, in_b); /* System, e.g. cisco */
strcat (table, SEPARATOR);

/%

* Valid to 2099 HOWTO DO THIS SMART?
*/

if ((yymm = strtok (yymm, "-")) == NULL)
{

free (table);
printf ("Invalid date format\n");

exit (-1);

}

else

{
yymm += 2; //yymm++; yymm++;
strcat (table, yymm);

}

if ((yymm = strtok (NULL, "-")) == NULL)

{

free (table);
printf ("Invalid date format\n");
exit (-1);
}
else
strcat (table, yymm);

return table;

}

/%

* A helping tool for mysql errors

*/
void MYSQL_exiterr (

int exitcode)

{

fprintf (stderr, "%s\n", mysql_error (&connection));

exit (exitcode);

}

/*
* Upon defined signals this function will
* take closing and cleaning actions.

*/

void terminator (
)
{

174 APPENDIX D. COMMON FILES

time_t Epoch;

struct tm *t;

Epoch = time (NULL);

t = localtime (&Epoch);

printf ("Terminating %d:%d:%d\n", t->tm_hour, t->tm_min, t->tm_sec);

closeDB ();
exit (0);

D.10 mysqlQ.h

/***

mysqlQ.h - Headerfile *
x
* begin : Thu Sep 05 2002
* copyright : (C) 2002 by Henrik Skantz & Mikael BAihm *
* Bachelors project - KaU fall 2002 *
* email : hesk@linux.se, micko@linuxmail.org *

sk sk sk o o o ok ok sk sk o s o ok sk sk o o sk sk s e ok sk o s ok ok sk o sk o sk sk s o sk sk o o ok ok sk o o e ok sk sk o e k ks sk ke sk sk sk ke k sk ok sk ek k /
// sk s ok ok sk sk sk sk ok s ok sk o ok sk sk sk ok sk skl ok sk sk sk ok sk s ok ks sk ok sk s ok sk s ok sk sk o ke ok sk sk ke ok sk sk o ok
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
sk sk sk s s ke ok ok sk s sk ke ok sk sk ke sk sk sk ok sk s ok sk sk sk ok sk sk sk ok sk s ke sk sk o sk sk ke ok sksk sk ok sk sk skl ok koksk ok k /

#ifndef MYSQLQ_FILE

#define MYSQLQ_FILE

/***/

#define ROUTERTAB "routers" /* Must be predefined in mysql db */
#define FIELDRNR "routernr" /* Fieldname for index in routertable */
#define FIELDN "name" /* Fieldname for name in routertable */

/%3 ok ke ok sk ok ok s ok s ok ke ok ok ok K ok ok e ok k ok K ok sk ok K s ok K ok ok 3 ok K ok 3 ok K e ok K s ok sk ok k ok K ok ok 3 ok K sk ok k ok ok 3 ok k ok ok ok ok ok /
/*

* Constants

*/

/% 3 ok ke ok sk ok ok sk ok s ok ke ok ok e ok sk ok ok e ok ke ok K ok sk ok K s ok K ok ok 3 ok k ook 3 ok K e ok K s ok K ok k ok K ok ok 3 ok K sk ok ok ok 3 ok ok 3 ok k ok ok ok /
#define MAXRETRIES 3
#define QSIZE 1000

// sk ks s ok ok sk sk sk ok s ok sk s ok ks sk ok ke sk sk skl sk skskok ok sk ok sk ok ok sk sk ok ki sk sk sk sk sksk ok sk ok ks ok ok ksk ok /
/*

* Function prototypes

*/

/3K sk sk ok o ok ok sk sk sk o o ke ok sk o e ok sk sk o o ks sk ok sk sk sk ke e ok sk o s e ok sk o sk o ok ks sk o ok k sk sk ok sk ok o ek sk ok o e ok sk sk ok ke sk kok ok /
String lowfSqlQuery (

D.11. MAKEFILE

175

char *dbtable,
char *lowdate,
char *highdate);
String diffSqlQuery (
char *dbtable);
String rekSqlQuery (
char *dbtable);
MYSQL *connectDB (
Config * conf);
void closeDB (
);
void terminator (
);
void InsToDb (
char sqlqueryl[],
Config * conf);
boolean existTable (
String table);
char *setdbtable (
char *in_a,
char *in_b);
void MYSQL_exiterr (
int exitcode);
#endif

D.11 makefile

HH R R
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

HH R S

.PHONY will run the commands regardless of whether there is a file
named ’clean’ or ’all’.

.PHONY: all clean

##4# NO ’/° AT END OF PATH ####tt##ttt#tststtitstsitsts

Binary install dest.
BINDEST= /usr/bin

Extra includes and libs
MYSQLINC= /usr/include/mysql
MYSQLLIB= /usr/lib/mysql

Compiler
CXX= gcc

176 APPENDIX D. COMMON FILES

CXXFLAGS= -02 -g3 -W -Wall -Wundef -Wpointer-arith -Wsign-compare -Wmissing-declarations
For ANSI C: Lagg till -pedantic

Link
LIBS= -1z -Imysqlclient

INCDIR= -I$(MYSQLINC)
LIBDIR= -L$(MYSQLLIB)

INCALL = mysqlQ.o readconf.o filectrl.o listCommon.o timeCommon.o

#objects = $(patsubst %.c,%.0,$(wildcard *.c))
objectsl = diffusion.o $(INCALL)

objects2 = lowfreq.o $(INCALL)

objects3 = rekerr.o rekerrMySQL.o $(INCALL)

all: diffusion lowfreq rekerr dist

%.0: %.c
$(CXX) -c $(CXXFLAGS) $(INCDIR) -o $@ $<

diffusion: $(objectsl)
$(CXX) -o diffusion $(objects1) $(LIBDIR) $(LIBS)

lowfreq: $(objects?2)
$(CXX) -o lowfreq $(objects2) $(LIBDIR) $(LIBS)

rekerr: $(objects3)
$(CXX) -o rekerr $(objects3) $(LIBDIR) $(LIBS)

install:

cp diffusion rekerr lowfreq $(BINDEST)

uninstall:

rm -f $(BINDEST)/diffusion $(BINDEST)/rekerr $(BINDEST)/lowfreq

dist:

rm -f $(objectsl) $(objects2) $(objects3) *~

clean:

rm -f $(objectsl) $(objects2) $(objects3) *~ diffusion lowfreq rekerr

Appendix E

Script files

E.1 lowfreq.sh
#!/bin/sh

datel=‘date +}Y’-’/m’-’%d --date=’30 days ago’‘
date2=‘date +}Y’-’/m’>-’%d4°¢

#echo $datel
#echo $date2

/usr/bin/lowfreq $datel $date2 5 6 cisco

177

