

 Computer Science

D-dissertation (10 p)

2004:06

Kjell Olofsson

An investigation into production scheduling

systems

This report is submitted in partial fulfillment of the requirements for the

Master’s degree in Computer Science. All material in this report which is

not my own work has been identified and no material is included for which

a degree has previously been conferred.

Kjell Olofsson

Approved, 2004-12-09

Opponent: Thijs Holleboom

Advisor: Donald Ross

Examiner: Anna Brunström

 iii

 iv

Abstract

Production scheduling consists of the activities performed in manufacturing companies to

manage and control the execution of the production process. The basic task is to perform the

production as planned while at the same time trying to satisfy the overall goals of the

company. This is an important part of the management of a company since it directly affects

the performance of the enterprise. There exists much interest from industry in using software

systems to support the scheduling process but the application of such systems has shown to be

problematic.

This dissertation is an investigation into the area of production scheduling and production

scheduling systems. The purpose of the study is to determine which requirements there are on

a scheduling system and what functionality such a system should provide. The aim has been

to maintain a practical focus and try to find requirements that are important in reality when a

system is used in a company.

The investigation has been performed through literature studies and by performing a case

study in a company that use a scheduling system. From the information gathered in the

investigation, a design of a scheduling system framework has been proposed and a prototype

of the most important parts of this framework has been implemented. The results so far show

that scheduling systems satisfying the requirements elicited from the investigation can be

developed using the proposed framework.

 v

 vi

Contents

1 Introduction ... 1
1.1 Production scheduling, a brief introduction... 2

1.2 ComActivity .. 2

1.3 The scope of this dissertation .. 3

1.4 Dissertation layout ... 3

2 Manufacturing planning and control from a scheduling perspective 5
2.1 Introduction.. 5

2.1.1 The difference between planning and scheduling .. 5
2.2 Material requirements planning... 6

2.2.1 A general model ... 6
2.2.2 The evolution of material requirements planning .. 8
2.2.3 Shortcomings of material requirements planning... 9

2.3 Terminology .. 10

3 Production scheduling .. 13
3.1 Characteristics of production environments .. 14

3.1.1 Production resources .. 14
3.1.2 Orders and operations .. 15
3.1.3 Materials and subparts.. 16

3.2 Scheduling objectives .. 16

3.3 Organization and information flow ... 17

3.4 Schedule evaluation and comparison... 17

3.5 Scheduling methods... 18
3.5.1 Deterministic and stochastic scheduling methods.. 19
3.5.2 Dispatching rules.. 20
3.5.3 Advanced scheduling methods... 21

3.6 Scheduling in practice.. 26
3.6.1 Practical modeling and handling of uncertainties .. 26
3.6.2 Human factors .. 27

4 Scheduling theory.. 29

4.1 The scheduling problem .. 29
4.1.1 A problem formulation... 30

4.2 Solution methods ... 31
4.2.1 Problem solving ... 31

 vii

4.2.2 Dispatching rules.. 33
4.2.3 Bottleneck based methods.. 34
4.2.4 Local search methods... 34
4.2.5 Constraint programming .. 37

4.3 Summary.. 38

5 Software systems for manufacturing planning and control .. 39
5.1 Enterprise Resource Planning systems .. 39

5.2 Scheduling systems.. 39
5.2.1 Complete systems .. 39
5.2.2 Scheduling components ... 40

5.3 Manufacturing execution systems ... 41

6 A Case-Study ... 43
6.1 Production environment... 43

6.1.1 General description .. 43
6.1.2 The job shop and order structure.. 44
6.1.3 Organization... 45

6.2 The scheduling process.. 47
6.2.1 The process for an order... 47
6.2.2 Scheduling.. 48

6.3 Scheduling objectives .. 49

6.4 Scheduling tasks .. 50

6.5 Scheduling algorithm... 51

6.6 Discussion.. 52

7 A scheduling system framework .. 55
7.1 Requirements ... 55

7.1.1 Data access and modeling of production environments ... 56
7.1.2 Algorithms ... 56
7.1.3 User interaction .. 56

7.2 Design .. 57
7.2.1 Data access... 59
7.2.2 Extraction/Transformation/Loading /Updating.. 59
7.2.3 Model ... 59
7.2.4 Algorithms ... 70
7.2.5 Metrics and Reports ... 82
7.2.6 Interface/API.. 83

7.3 The Prototype... 83
7.3.1 Functionality .. 84
7.3.2 Implementation .. 84

8 Results .. 89
8.1 Difficulties in the implementation and use of scheduling systems.......................... 90

8.1.1 Modeling difficulties.. 90
8.1.2 Human aspects ... 92

8.2 Reasons for implementing a scheduling system.. 94

8.3 Application of advanced scheduling methods and theories..................................... 95

 viii

8.4 Requirements on a scheduling system... 96
8.4.1 External requirements .. 96
8.4.2 Internal requirements ... 97
8.4.3 A proposed scheduling system framework .. 97

9 Evaluation of proposed scheduling system framework ... 99
9.1 Validation and comparison of schedules ... 99

9.2 Evaluation of reports and visualization possibilities ... 100

9.3 Summary.. 100

10 Conclusion and future work... 101
10.1 Conclusion ... 101

10.2 Future work.. 104

References ... 105

A Prototype code ... 107

 ix

 x

List of Figures

Figure 2.1. Model for material requirements planning. .. 7

Figure 2.2. Order with operations. .. 10

Figure 2.3. Forward scheduled order. ... 11

Figure 2.4. Backward scheduled order.. 11

Figure 3.1. Scheduling allowing infinite capacity load... 22

Figure 3.2. Scheduling with finite capacity load... 22

Figure 4.1. A graph representation of a scheduling problem. ... 31

Figure 6.1. The customer order and production orders for an object................................ 45

Figure 6.2. The order process for an object. ... 48

Figure 6.3. The scheduling loop.. 49

Figure 7.1 Overview of a scheduling system framework ... 58

Figure 7.2. The Basic Model with extensions for different representations 60

Figure 7.3. Class diagram of production resources... 63

Figure 7.4. Class diagram of shifts.. 64

Figure 7.5. Class diagram of capacity adjustments... 65

Figure 7.6. Operations class diagram.. 66

Figure 7.7. Orders class diagram... 68

Figure 7.8. Class diagram of materials.. 69

Figure 7.9. Algorithm to determine earliest end date/time of an operation when the start

date/time is given. .. 72

Figure 7.10. Algorithm to determine latest start date/time of an operation when the end

date/time is given ... 73

Figure 7.11. Algorithm to determine earliest available date of materials required to

perform a given operation.. 74

Figure 7.12 Operation sequence.. 76

Figure 7.13. Algorithm to backward schedule a sequence of operations.......................... 76

Figure 7.14 Operation sequence as used in Figure 7.13 ... 77

 xi

Figure 7.15. Algorithm to backward schedule customer order lines. 78

Figure 7.16. Algorithm to forward schedule a list of operations 79

Figure 7.17 Operation sequence as used in Figure 7.16 ... 80

Figure 7.18. Algorithm to forward schedule customer order lines 81

Figure 7.19. UML package diagram of top-level packages of the prototype.................... 84

Figure 7.20. The model package. .. 85

Figure 7.21. The algorithm package. .. 86

Figure 7.22. The metrics package. .. 87

Figure 7.23. The util package.. 88

 xii

List of abbreviations

APS Advanced Planning and Scheduling

BOM Bill of Material

CSP Constraint Satisfaction Problem

ERP Enterprise Resource Planning

FCS Finite Capacity Scheduling

J2EE Java 2 Enterprise Edition

MES Manufacturing Execution System

MPC Manufacturing Planning and Control

MPS Master Production Schedule

MRP Material Requirements Planning

RCCP Rough Cut Capacity Planning

SBP Shifting Bottleneck Procedure

TOC Theory of Constraint

 xiii

 xiv

1 Introduction

Production scheduling is the activities performed in manufacturing companies to manage and

control the execution of the production process. The basic task is to perform the production as

planned while at the same time trying to satisfy the overall goals of the company. Since how

production scheduling is performed directly affects a manufacturing company’s goals, such as

customer service level and resource utilization, it ultimately determines the overall

performance of the company. This makes it a very important area in a company’s

management.

Much effort has been put into developing methods and practices for the management and

control of production processes both in industry and in academic disciplines such as industrial

engineering, operational research and artificial intelligence. The management and control

processes encompass activities beginning with demand management, followed by higher level

planning and then production scheduling before performing the actual production. Many of

the methods involve large amounts of information processing and therefore need to be

supported by different kinds of information systems. These systems have proved successful

for the higher levels of planning but when it comes to the scheduling activities, the use of

computerized systems has shown to be more problematic. There are manufacturing companies

that successfully utilize scheduling systems but there also exist many examples of failed

implementations, and it appears to be difficult to apply theoretical scheduling methods in

practice. Still, because the importance of the scheduling activities in a company, there is much

interest from industry in such systems and potentially it should be possible to support and

make the production scheduling process more effective by using appropriate software tools.

This dissertation is an investigation into the area of production scheduling and production

scheduling systems and what functionality a scheduling system should provide. The study has

been performed for a software company called ComActivity [9] which develops systems for

manufacturing industries. The aim has been to find out what functionality that is required

from a scheduling system that can be put to practical use in a production environment.

Because of the apparent difficulties in applying scheduling theories in practice, an important

aspect of the study has been to always maintain a practical focus and from that standpoint

apply a more theoretical approach where it has seemed appropriate.

 1

1.1 Production scheduling, a brief introduction

The basic task in production scheduling is to determine how production should be performed

in a factory. From an aggregated higher level plan, a schedule is constructed that describes in

detail which activities must be performed and how the factory’s resources should be utilized

to satisfy the plan. The resources can for example be machines and personnel that are needed

to perform the activities. The schedule then describes in what order and by which resources

the activities shall be performed.

Production scheduling is often a complex task with many factors to consider. There are

often complicated precedence relationships between the activities and between the activities

and the production resources. The available capacity of the production resources is limited

and must therefore be used as effectively as possible. It is also common that the production

environment contains high levels of uncertainty that adds to the complexity of the problem.

Traditionally, scheduling has been performed manually but in attempts to produce better

schedules and remove tedious manual work, different kind of supporting software systems

have been developed and used. These systems try to, by taking into account the different

constraints that exist in the production environment, produce schedules that are realistic and

satisfy the goals of the company.

1.2 ComActivity

ComActivity develops systems for manufacturing companies and provides software solutions

for process- and workflow centered application development together with a runtime

environment for the deployed solutions. The solutions are built in a J2EE [17] environment

and use a service-oriented architecture. The solution encompasses tools for data-modeling as

well as for design of process flow, workflow and user-interfaces and also includes a graphic

scheduling tool with an interactive Gantt-chart1. The solution deployed is completely web-

based and a service-oriented architecture allows for easy integration with other systems.

1 A Gantt-chart is a diagram that, in its most common form, depicts activities on an x-y grid where the x-axis

represents time and the y-axis resources. An activity is represented by a rectangle on the row representing the
resource that performs the activity. The length of the rectangle along the x-axis corresponds to the time
required to perform the activity.

 2

1.3 The scope of this dissertation

The purpose of this dissertation is to find out what is required from a scheduling system in

practical use and also how ComActivity’s solution can be used to provide this. The first part

of the dissertation, gives background information and investigates what production scheduling

is, what the problems are and what theories that have been developed around it. To keep a

practical focus, this part also includes a case study performed in a company that has used a

scheduling tool for a couple of years. In the second part, a design of a scheduling system

framework is described and a prototype of a component with core scheduling functionality is

implemented.

1.4 Dissertation layout

The first part of the dissertation consists of chapter 2 to chapter 6. This part begins with some

background information necessary to understand what production scheduling is. After that

production scheduling is described in more detail and different aspects of the subject is

investigated. Some scheduling theory is overviewed and different categories of software that

are involved in scheduling activities are described. Part one ends with a description of the

performed case study.

Chapter 2 puts production scheduling into context, by giving a general overview of

production planning and control. Some required terminology is also explained in this chapter.

Chapter 3 describes production scheduling in more detail. The first part of this chapter

describes important characteristics of production environments, scheduling objectives and the

organization and information flow in a scheduling process. The second part begins with a

section on how schedules can be compared and evaluated, followed by a description of

different scheduling methods and finally the important aspect of scheduling in practice is

discussed.

Chapter 4 contains a brief overview of the large research area of scheduling theory. The

purpose of the chapter is to give an overview of the theoretical problem formulation and some

solution methods that can potentially be used in practice.

Chapter 5 is an overview of software systems for manufacturing planning and control as well

as scheduling.

Chapter 6 describes the case study. The case study has been performed in a company that

uses a scheduling system. The chapter begins with descriptions of the studied production

environment, the scheduling process in the environment and the scheduling objectives of the

 3

company. After that the scheduling algorithm applied by the existing scheduling system is

described. The chapter ends with a discussion of the study.

The second part of the dissertation consists of chapter 7 to chapter 10. In this part, the

information gathered in part one is used to find requirements that should be satisfied by a

scheduling system and from this a scheduling system framework is proposed. A prototype

implementation of the most important parts of this framework is described. The proposed

framework is evaluated and the results and conclusions from the investigation are discussed.

Chapter 7 describes the proposed scheduling system framework and the implemented

prototype. The chapter begins with a description of the requirements on a scheduling system

that has been elicited through the literature studies and the performed case study of part one.

Next the design of the proposed framework is described and the chapter ends with a

description of the implemented prototype.

Chapter 8 summarizes the results from the investigation. The chapter contains sections on the

difficulties in the implementation and use of scheduling systems, the reasons for

implementing a scheduling system, the application of advanced scheduling methods and lastly

on the requirements on a scheduling system.

Chapter 9 is an evaluation of the proposed scheduling framework. The evaluation is

performed by comparing the schedules produced by the prototype against the schedules

produced by the system used in the environment described in the case study and by evaluating

how the framework satisfies the requirements derived in part one of the dissertation.

Chapter 10 contains a conclusion and brief summary. The chapter ends with a section on

future work and areas that should be investigated further.

 4

2 Manufacturing planning and control from a scheduling
perspective

Production scheduling is part of a process called manufacturing planning and control (MPC)

which encompasses the activities performed in a company to plan and control its production,

from initial demand management to execution of work on the shop floor. This chapter

describes the role of scheduling in MPC and how that role has evolved and become more and

more complex. Since some special terminology is used in the dissertation, a section

explaining these expressions is included at the end of the chapter.

2.1 Introduction

The purpose of MPC is to determine what should be produced in a company and then to

produce this as effectively as possible. The MPC activities must always be performed in a

way that satisfies the overall goals of the company, typically to maximize profit and minimize

cost, while at the same time making sure the production can be controlled in a practical way.

From some sort of strategic plan at a high level through planning and scheduling activities

a number of what, where and when questions have to be answered which ultimately will result

in a detailed schedule that can be executed by the company’s production resources.

Historically this has of course been done manually but since computers became available for

more widespread use, MPC has been computerized and the evolution of MPC has very much

followed the evolution of computers.

The most widely used method for this is called Material Requirements Planning (MRP). To

put production scheduling in context, MRP is described in section 2.2.

2.1.1 The difference between planning and scheduling

The difference between planning and scheduling is a somewhat blurred area and the definition

to some degree varies between different sources in the literature. The general idea is that

planning is done at a higher, aggregated level over longer time periods and that scheduling

involves more details and is done over shorter time periods. As the MPC activities proceed

from planning to scheduling each step adds more details and brings the initial demands closer

to being executed on the shop floor. Planning uses expected demands and forecasts and

 5

therefore always contains some level of uncertainty. As the plans evolve through the planning

and scheduling process and details are added, that uncertainty is gradually removed.

2.2 Material requirements planning

MRP has its origins in the 1950s and is a method whose initial goal was to enable more

effective material handling [30]. The basic idea is, from demands at an aggregated level both

in time and quantity, to step by step disaggregate and add more details and at last arrive at a

detailed schedule that can be executed in the production environment. MRP was enabled by

the more common availability of computers which made it possible to handle, and perform

calculations on, large amounts of data.

2.2.1 A general model

The general model described here comes from [35] and is also the model used by APICS –

The Educational Society for Resource Management in their certification programs [3]. APICS

sets much of the de facto standards in the area of MPC and most vendors of MPC-software

uses these standards as a basis for their systems.

MRP according to this model is grouped into three phases:

1. creating the overall manufacturing plan
2. detailed planning of material and capacity needs
3. execution of detailed plans

The processes involves developing aggregated plans in the first phase, disaggregating these

plans and adding more details in phase two and finally executing the detailed plans on the

shop floor and in the purchase department in phase three.

Figure 2.1 is adapted from [35] and shows the three phases and the information flow

between them. In the figure, rectangles with continous lines represent activities and rectangles

with broken lines represent the information that is communicated between, or used by,

activities.

 6

Forecast

Phase 1.
Production plan Creating the

overall
manufacturing
plan

Master production scheduling

Master production schedule

Detailed material planning

Figure 2.1. Model for material requirements planning.

Detailed capacity planning

Phase 2.
Material plan

Detailed planning
of material and
capacity needs

Capacity plan

Phase 3.

Execution of plans

Order release Purchasing

Released orders
l

Bill of material

Production scheduling

Scheduled orders
l

Shop floor execution

 7

2.2.1.1 Phase 1, Creating the overall manufacturing plan

The forecast is an estimate of the future demand for the company’s products or services over

some time period, usually 3 – 12 months. The forecast results in a production plan that

contains aggregated information of what the company shall produce. The information in the

production plan is often given on a per month basis. In master production scheduling the

production plan is translated into production terms such as end items that can be used in phase

two.

2.2.1.2 Phase 2, Detailed planning of material and capacity needs

The master production schedule (MPS) is the input to phase two where it is disaggregated into

detailed, time-phased requirements of which items must be manufactured or purchased to

satisfy the expected demands. To do this a list called the Bill of Material (BOM) containing

all the raw materials and sub parts that make up the end items in the MPS is used. The current

inventory status together with the BOM makes it possible to calculate the actual production

and purchasing requirements. The detailed material plan together with routing information,

describing in which order items must be manufactured, is then used to calculate the

production capacity needed to accomplish the material plan. Detailed material and capacity

plans are the output of phase two.

2.2.1.3 Phase 3, Execution of the detailed plans

This phase involves purchasing the raw materials and sub-parts required and releasing

production orders to be scheduled and then executed on the shop-floor. The scheduling

determines in which sequences and in which production resources the released orders should

be executed. Production resources are personnel, machines and other equipment that is used

to perform the production.

2.2.2 The evolution of material requirements planning

MRP has evolved over time into what is now called Enterprise Resource Planning (ERP).

MRP’s focus was initially on materials handling and has some shortcomings when it comes to

actually performing the production. One reason for this is that the detailed capacity planning

in phase 2 (section 2.1.1.2) calculates the capacity required to perform the MPS but does not

consider what capacity is actually available. When then schedules are executed with the actual

capacity available in the production resources of the shop, they are therefore often impossible

to follow [31].

 8

To improve the produced schedules MRP evolved so that information from the shop floor

is fed back to the MPS in what is termed closed loop MRP. This in turn evolved into

Manufacturing Resource Planning (MRP II) which refines the capacity management with

Capacity Requirements Planning (CRP) and also integrates the company’s financial

management into the model. In MRP II the detailed material plans are checked against

available capacity in what is called Rough Cut Capacity Planning (RCCP) to determine if they

are possible to execute. If RCCP shows that it is not possible to perform the planned

production the MPS is changed and a new detailed material plan is produced. The loop from

MPS to detailed material plan to RCCP continues until a feasible plan is developed.

MRP II then has expanded into ERP which also includes, among other things, engineering

and distribution activities but ERP does not contain any major changes in the planning and

scheduling process [31].

2.2.3 Shortcomings of material requirements planning

Despite the improvements of MRP and the evolution into ERP, developing feasible schedules

is still a problem. The capacity check that is performed with RCCP is too coarse to determine

if capacity actually is available when needed and the material and capacity requirements are

not synchronized with each other when making the check. This problem has been termed the

vertical and horizontal separation of materials and resources [26]. The vertical separation

means that planned production is separated from actual production and the horizontal

separation mean that material and resource requirements are not synchronized. The separation

problem means that since the feasibility of the resource and material requirements has been

checked at an aggregated level, the actual detailed requirements of the orders that are released

from phase 2 may well be unsynchronized, making it impossible to develop a feasible

schedule.

Many of the reasons for these shortcomings go back to the initial development of MRP

when computer capacity was scarce and one way to make such systems possible at all was to

reduce details by using aggregated information and to separate problems into smaller parts

that could be more easily processed. As the computer evolution went on more and more

details have been added in MRP systems but the basic structure and methods are still much

the same.

 9

2.3 Terminology

Some terminology that is used in the rest of the dissertation is explained below. To provide

for easier reading, the expressions are explained in a topical order.

Order - an order in this context is an ordered sequence of one or more operations that is

required to be performed to produce some part, product or service. See Figure 2.2.

Job – synonym for order that is often used in scheduling literature

Operation - an operation is an individual activity or task that must be performed to fulfill an

order. The operation must be performed by a specified resource or a set of alternate resources

and requires a specified set of raw materials and/or sub-parts. See Figure 2.2.

Operation setup time – the preparation time needed before an operation can start.

Operation run time – the time it takes to perform the operation.

Due date Order
end

Figure 2.2. Order with operations.

Release date - the earliest date the first operation of the order can start.

Due date - the date when the order is planned to be finished.

Order start and Order end - the current start and end of the order when it is in process.

Lead time - the total time it takes to execute an order and is the time from the first operation is

started to the last operation is finished.

Order slack – The sum of all setup and run times for all remaining operations subtracted from

the time remaining to the due date

Release
date

Order
start Lead time

Operation 1

Operation 2

Operation 3

Resource 1

Resource 2

Resource 3

Operation 4

Resources

Time

 10

Lateness – the difference between an order’s due date and the actual end date of its last

operation. Lateness can be positive or negative, positive if the end date is after due date and

negative if end date is before due date.

Tardiness – a tardy order is one who’s last operations end date is after its due date. Tardiness

is the same as positive lateness.

Forward scheduling - operations of an order are scheduled as early as possible starting from

the release date. See Figure 2.3.

Due date

Figure 2.3. Forward scheduled order.

Backward scheduling – operations of an order are scheduled as late as possible backwards

from the due date. See Figure 2.4.

Figure 2.4. Backward scheduled order.

Operation 4

Release
date

Due date

Operation 1

Operation 2

Operation 3

Resource 1

Resource 2

Resource 3

Resources

Time

Release
date

Operation 1

Operation 2

Operation 3

Resource 1

Resource 2

Resource 3

Operation 4

Resources

Time

 11

Static scheduling – the scheduling is performed on a fixed set of orders. This is the type of

scheduling considered in this dissertation and also in much of the literature on scheduling. It

can be viewed as scheduling a snapshot of a production environment.

Dynamic scheduling – new orders are continuously added during scheduling.

Production resources - personnel and/or machines that performs production in a company.

Work center – a production area consisting of production resources with similar capabilities.

Shift – a time interval describing when production resources are available.

Stock – stored products or parts ready for sale.

 12

3 Production scheduling

As described in chapter 1, production scheduling consists of the activities performed in a

company to determine in detail how work should be executed on the shop floor. How

production scheduling is performed and the scheduling methods used, can vary a great deal

between different production environments, from applying simple rules when choosing the

next job to execute, to the use of advanced optimizing methods that try to maximize the

performance of the given environment.

The scheduling approach suitable for an environment is highly dependent on how much

complexity, uncertainty and randomness there is in the production system. This, together with

the goals of the company, must be considered when choosing a scheduling approach for a

particular environment.

Since scheduling involves prediction of the future, it of course gets more and more difficult

when the level uncertainty and randomness in the system increases. A general rule is that as

the uncertainty increases, the value of scheduling deceases [25]. Trying to predict and

optimize the behavior of a complex system with many uncertainties and high level of

randomness is in most cases a waste of time and resources. On the other hand, for more stable

systems, putting more effort into scheduling often can improve performance and the use of

advanced optimizing methods might in these cases be appropriate.

How scheduling is performed also depends on the management of the company and the

organization around the scheduling function. Some companies may not have an explicit

scheduling method; it is just something that is done implicitly by for instance the workers or

shop floor management, while others have very strict approaches that are decided upon by the

management.

How the schedule is used can also differ between companies and also between different

users in the same company. Besides the obvious use on the shop floor other potential uses are

to determine system capacity for a higher level production planning system, where the

generated schedule is used to determine the feasibility of the production plan or by the sales

department to determine if an order with a given lead time should be accepted [19].

 13

3.1 Characteristics of production environments

Production environments can be characterized in a number of ways such as if the production

is continuous (process industry) or job oriented (discrete manufacturing), if the products are

made to stock or made to order [28]. In this dissertation the focus is on discrete manufacturing

since continuous production involves other kinds of complexities that are outside the scope of

this study.

In discrete manufacturing, shops are generally characterized as either flow shops or job

shops. In a flow shop, orders are performed in a fixed sequence through the machines and

other resources of the work centers in the shop whereas in a job shop, orders go through the

work centers in arbitrary patterns. Scheduling in a job shop is therefore more complex than

scheduling in a flow shop and the job shop is the more general case.

The type of demand that drives the production also affects scheduling. If the demands are

known for a long time into the future, scheduling is easier than if demand is uncertain and

changes must be handled on short notice. Production that is made to stock is often easier to

schedule as the stock can be used as a buffer that gives freedom when scheduling. If the

produced goods are delivered directly to customers, no such buffer exits since the customer

expects that agreed upon delivery times are kept.

At a more detailed level, three components must be analyzed to determine viable

scheduling approaches for the production environment. These are the production resources,

the orders and operations, and materials and subparts.

3.1.1 Production resources

Production resources are everything that is required to perform the production. It can be for

example personnel, machines or tools and other equipment. Resources with similar skills and

capabilities are often grouped into work centers. Four characteristics can be used to describe

resources: functionality, capacity, availability and cost.

3.1.1.1 Functionality

The functionality of a resource describes what operations it can perform. This is determined

by for example the skills and competence of the personnel or the capability of the machine

considered.

3.1.1.2 Capacity

The capacity of a resource can be described by how many jobs the resource can perform at the

same time and by how effectively it performs an operation. It is possible that resources have

 14

the same functionality but perform the same operation with different efficiency. For instance,

a specialized resource can often perform an operation suitable for it faster than a general

purpose resource.

3.1.1.3 Availability

This characteristic describes when the resource is available to perform operations. The

availability of a resource to perform an operation is determined by when the resources is open

(which shifts that are applied to the resource) and what other operations that are requiring the

resource’s capacity.

3.1.1.4 Cost

To perform production in a resource always incurs a cost. This cost must often be considered

when scheduling. It is in most cases desirable to perform work where it incurs the least cost.

3.1.2 Orders and operations

Orders and operations describe what should be produced by a production environment and

those activities that must be performed to accomplish this. The structure of orders and

operations is hierarchical; an order contains operations and possibly also depends on other

orders. Both orders and operations have costs associated with them. As the operations of an

order are executed they accumulate cost that is derived from the costs of the production

resources. The costs of the operations are then accumulated in the orders. Orders that are

under execution are called work in process or in-process inventory. It is often desirable to

have as few orders in process as possible and to keep the cost associated with those orders as

low as possible.

3.1.2.1 Orders

Orders can be of different types such as customer orders which are associated with a specific

delivery to a customer and/or a production order that can either satisfy the need of a customer

order or be stored in stock for later use. Orders can have different states such as planned, in

process or finished. Information associated with an order can be for instance release date, due

date, quantity and/or priority.

3.1.2.2 Operations

An operation describes a basic activity or task that should be performed. The operations

contained in an order have precedence relations between them that describe the sequence they

should be performed in. The information associated with an operation varies with the

 15

production environment, but some sort of description; which production resource or work

center that should perform it and the expected processing time and quantity. These last two

attributes are always required. This information can then be extended with information such

as set-up time, post-production time and required tools. During order execution it is also

necessary to keep track of the state of the operation such as not ready, started or finished. In

more advanced production environments other possibilities might exist such as splitting an

operation and performing it in parallel on more than one resource or having alternate

resources that can perform an operation. It can also be possible to interrupt an operation to

start another more important operation, this is called preemption. When the next operation

should start can also vary, for instance after some specified quantity is produced or some

specified time has elapsed on the current operation.

3.1.3 Materials and subparts

Materials and subparts that are required to perform production are specified per operation.

Materials can be raw materials such as steel or wood or goods like nuts and bolts. Subparts

are more refined components that can either be bought from a supplier or manufactured by the

company and then stored for later use. To keep track of materials and subparts and to

determine when operations can be performed information such as available quantity, expected

deliveries and allocations to orders and operations must be maintained.

3.2 Scheduling objectives

At the most basic level, the reason for scheduling is to satisfy the overall goals of the

company [4]. To be useful in the scheduling activity these goals are broken down into more

detailed objectives. Some of the more common objectives are [24]:

- Meet due dates

- Minimize work-in-process inventory

- Minimize the average flow time through the system

- Provide for high machine/worker time utilization

- Provide for accurate job status information

- Reduce set-up times

- Minimize production and worker costs

An aspect that adds to the complexity of scheduling is that some of these objectives are in

conflict with each other. Their origins are often in different departments of the company and

 16

these departments have different goals. For instance meeting due dates is aimed at providing

high customer service and is primarily a goal for the sales department whereas to minimize

production cost and worker cost is primarily a goal for the production department. These two

objectives can be in conflict if for example overtime is needed to keep due-dates. One

important part of scheduling consists of balancing different objectives and to make decisions

on how conflicts should be resolved.

3.3 Organization and information flow

How a company is organized around the scheduling function of course affects how scheduling

is performed. Connected with this is whether the company has an explicit scheduling

approach or not. Even if the company does not have an explicit approach some sort of

scheduling occurs. In such cases scheduling is often performed implicitly by for instance the

workers themselves or shop floor management by using higher level planning information to

choose the next job to execute.

When an explicit approach exists, the scheduling can for instance be performed by a

specific scheduling department or a scheduler that belongs to the production or sales

department. The personnel performing this scheduling often have specialized skills and utilize

more advanced methods.

Regardless of where in the organization scheduling is performed it involves a great deal of

collaboration and information exchange. When a schedule is developed, demand information

from higher level planning must be considered together with information on available

resources and other constraining factors in the shop and information on available materials

and sub parts from the material department. The schedule then has to be communicated to the

shop floor where it is executed. The progress of execution also has to be fed back to the

scheduler and other interested parties so that the outcome of the schedule can be analyzed.

3.4 Schedule evaluation and comparison

Determining the quality of a schedule and comparing different schedules is very important

when choosing a scheduling method [19]. An optimal schedule performs the required

production as effectively as possible and satisfies the overall goals of the company but in

reality it is difficult to determine when this is the case or how far from being optimal a

schedule is. A generalization of the most common goals that affects scheduling is to keep due

dates and to minimize inventory levels [32]. Under these circumstances an optimal schedule is

 17

one where every order is finished on its due date and each operation is performed as late as

possible in the production resources with the lowest costs. This definition of an optimal

schedule can be useful to have as a reference since the goals it satisfies are common in

manufacturing companies.

How schedules should be compared in a particular production environment must be

determined from case to case. To measure the performance of a schedule a set of metrics must

be defined. The metrics must in some way be derived from the goals of the company.

Examples of metrics are number of late orders (orders finished after due date), number of

unavailable materials and subparts or number of resources that cannot provide needed

capacity. The importance of different metrics and the relationships between metrics must be

determined for the particular production environment in question.

3.5 Scheduling methods

The scheduling approach and methods that are suitable for a production environment depends,

as described earlier in this chapter, on the characteristics of the environment, the complexity,

uncertainties and randomness of the production system, the scheduling objectives and the

organization around the scheduling function. Scheduling methods can range from simple rules

for choosing which job to execute next, often called dispatching rules, to sophisticated

optimizing methods. A very important general rule is [25]:

The more randomness there is in a system, the less advisable it is to employ very

sophisticated optimization techniques. Equivalently, the more randomness the

system is subject to, the simpler the scheduling rules should be.

If advanced scheduling methods should be applied in an environment the uncertainties must

as much as possible be reduced and the remaining uncertain factors must be handled in some

way. The production environment must also be possible to represent as a model that can be

used by a software system. This model must describe the properties of the environment in

enough detail to make the developed schedules feasible to execute on the shop floor. The

information in the model must also be updated to reflect the actual conditions in the

production environment. To keep the model updated can require a lot of effort and this must

also be considered when selecting which scheduling method is appropriate for an

environment.

 18

Another aspect is how long into the future the schedule spans, which is called the

scheduling horizon. This is a continuation of the planning process described in chapter 2, it

may not be useful to schedule the production in detail more than a limited time into the future,

after that a more aggregated level is sufficient. What the scheduling horizon should be must

be determined for the particular production environment in question.

The reason for using more advanced methods than just dispatching rules is to improve the

performance of a production environment and to better satisfy the scheduling objectives.

When using dispatching rules, the information used for choosing which job to execute is

mostly local to the work center and this can result in sub-optimizations that do not contribute

to the satisfaction of the scheduling objectives. More advanced methods tries to consider the

global state of the production system to determine what actions should be taken to best satisfy

these objectives. This bigger picture of course requires more information handling and when

done manually relies primarily on the mind of the person doing the scheduling and the use of

tools such as planning boards. It is here that a software system can be put to use to handle the

information processing. To do this the information has to be formalized in some way into a

model as described above. When using a software system for scheduling, the methods used

can be much more complex than what is possible with a manual system.

In this section the two general groups of scheduling methods, deterministic and stochastic,

are described in 3.5.1. Dispatching rules are overviewed in 3.5.2 and advanced scheduling

methods in 3.5.3.

3.5.1 Deterministic and stochastic scheduling methods

The scheduling methods described in the literature can be grouped into the general categories

deterministic or stochastic. In deterministic methods all variables of the model describing the

problem are assumed to be known in advance and no uncertainty exits. Stochastic models

have some, or all, variables defined as random and the methods use probability distribution

when developing schedules. Stochastic scheduling methods used in practice usually involve

some kind of dispatching rule.

Since a production system without any uncertainty does not exist, ways of handling

uncertainty in deterministic models have been developed. Deterministic methods with some

kind of support to handle uncertainty seem to be the most frequent in literature.

 19

3.5.2 Dispatching rules

The most basic scheduling method is to use dispatching rules (also called priority sequencing

rules) to determine which order to run next at a work center. These rules are applied when

jobs arrive at a work center to choose the next task to be executed. Since dispatching rules

only use information that is available at the moment when the next activity shall be selected,

they work equally well in systems with a high degree of uncertainty as in more stable

environments. When there are high levels of randomness and uncertainty in the production

environment, dispatching rules may be the only viable way to schedule the production.

There exist many dispatching rules, some of the most common are [35]:

- First come, first served (FCFS). Jobs are process in the order they arrive at the work
center.

- Shortest processing time (SPT). The job with the shortest processing time is processed
first.

- Earliest due date (EDD). The job with the earliest due date is processed first.

- Critical ratio (CR). A priority index is calculated using (time remaining / work
remaining). A ratio less than 1 means that the job is late. The job with the lowest ratio
is processed first.

- Least work remaining (LWR). Priority based on all processing time remaining until job
is completed.

- Fewest operations remaining (FOR). Priority based on number of remaining
operations.

- Slack time (ST). Jobs run in the order of the smallest amount of slack.

- Slack time per operation (ST/O). Slack time is divided by the number of remaining
operations. Jobs are sequenced in order of smallest value.

- Next queue (NQ). The queues in front of successive work centers are measured (in
hours or number of jobs). The job that is going to the smallest queue is processed first.

- Least setup (LS). The job with the least setup time is processed first.

The general properties of these rules are different [35]. SPT, and its variations LWR and

FOR, reduces work in process inventory, average job completion time and average job

lateness but can cause starvation of jobs with long processing times and thus cause missed

due date. EDD, and its variations ST and ST/O, reduce job lateness but result in higher

average time in the system. NQ and LSU maximize machine utilization. There exist many

other dispatching rules and also variations of the above rules. To combine rules, for instance

using different rules for different work centers is also possible.

 20

Scheduling using these rules can, depending on the scheduling problem, give good results

but there is a risk of sub-optimization since the information used is local and no consideration

is given to the global state of the production system.

3.5.3 Advanced scheduling methods

Advanced scheduling methods use more information when developing schedules than

dispatching rules and try to consider more or less of the global state of the production system.

In industry these methods are categorized as Advanced Planning and Scheduling (APS)

methods. The APS category includes methods for scheduling as well as demand management,

production planning, distribution planning and transportation planning [10].

Advanced scheduling methods require that the production system is represented as a model

that can be used as a good enough approximation of reality to make the developed schedules

executable on the shop floor. The model must describe all the relevant constraints in the

production system and include information such as:

- Orders, operations and precedence relations between these

- Resources required to perform the operations and their available capacity

- Materials required to perform the operations and the availability of these

- Release and due dates of orders

- Priorities among orders

- Real and expected costs incurred by the different activities and decisions

What is a good enough approximation must be determined from case to case, but there

should always be a correspondence between how well the model describes reality and how

advanced the used scheduling method is. The general rule, the more uncertainty the simpler

scheduling method, applies here. If the developed schedule is not feasible to execute on the

shop floor because of missing or faulty information in the model, applying advanced

optimizing methods is a waste of time and resources. Effort should in those cases instead be

put into developing and refining the model in combination with measures to remove

uncertainties from the production system.

3.5.3.1 Finite capacity scheduling

In industry, applying advanced scheduling methods is often called finite capacity scheduling

(FCS). Traditional methods such as MRP consider the capacity of production resources more

or less as infinite. When the constraints imposed by the capacity actually available in the

 21

production resources are considered by the scheduling method this is termed FCS. Scheduling

with and without consideration of capacity constraints is illustrated in figures 3.1 and 3.2.

Resource
utilization

Capacity

Time
periods

Figure 3.1. Scheduling allowing infinite capacity load.

Resource
utilization

Capacity

Time
periods

Figure 3.2. Scheduling with finite capacity load.

 22

In FCS jobs are only scheduled on a resource up to the resource’s capacity limit. This

means that jobs that cannot be performed at the required time are going to be moved forward,

possibly making jobs late. FCS makes it possible to find those resources where available

capacity is not enough to perform the required work load. Such resources are called

bottleneck resources and finding these problem spots is very important when making

schedules. Just that a schedule is considering the constraint imposed by the finite capacity of

the production environment says nothing of how well it satisfies the goals of the company.

What can be said is however that the more advanced methods all must be developed against

finite capacity to be feasible and possible to execute on the shop floor. A basic example of

FCS can be a method that applies dispatching rules to all orders planned to be executed over

some time period in a production environment while at the same time considering the

constraints imposed by available capacity.

3.5.3.2 Considering availability of capacity and material together

Most advanced scheduling methods consider available capacity as finite, and thus can be

termed FCS methods. Since production activities often require some kind of material or sub-

parts to be performed, the availability of those must also be considered if feasible schedules

are to be developed. If materials and/or sub-parts are not available, the operation cannot be

performed and must be moved forward to a time when the material/sub-part becomes

available.

A problem in MRP is the separation between material and capacity planning (see section

2.2.3). This is solved in advanced scheduling methods by considering capacity and material

constraints at together when developing the schedule.

3.5.3.3 Characterization of advanced scheduling methods

Advanced scheduling methods can be characterized by the way they decompose the problem

[26][25]. Decomposition approaches to scheduling problems can be grouped into the three

categories job-based, resource-based and event-based. These approaches can also be

combined in different ways to suit different production environments.

 23

Job- based methods

In job based methods scheduling is performed at the job, or order, level. In [35] this is

referred to as horizontal loading. All jobs that are to be scheduled are given a priority. The

priorities can be based on different factors such as due dates or other information determining

the importance of jobs. The schedule is then developed by scheduling the jobs one at time in

priority order, from highest priority to lowest. All operations that belong to a job are

scheduled at the same time and required resource capacity and materials are allocated for

these operations ahead of time. Job-based methods result in schedules that get jobs finished in

priority order. Maintaining a high level of resource utilization is not considered. An effect can

be that a work center is idle waiting for a high priority job to arrive while other, lower

priority, jobs are ready to execute.

Resource-based methods

Resource-based methods decompose the problem by the utilization level of resources and

places focus on bottlenecks in the production system. The methods are therefore often

referred to as bottleneck methods. The bottleneck method that first got attention was

developed by Eli Goldratt who has termed it the theory of constraint (TOC) [15][6]. The basic

idea of TOC is that the constraints of a system determine its overall performance. A constraint

according to Goldratt is “anything that limits the performance of a system relative to its

goals” and the method actually can be applied to more than just scheduling [6]. In the

scheduling part of the theory, the method is to schedule the bottleneck resources very

rigorously and use simple methods to schedule all other, non bottleneck, resources. The

bottleneck resource determines the throughput of the whole system and therefore its

utilization should be maximized. A buffer is put before the bottleneck resource to ensure that

it never has to wait for jobs to execute. The concept is called drum-buffer-rope where the

bottleneck resource is the drum that determines the pace, the rope is the signaling mechanism

that links the other resources to the bottleneck and the buffer insulates the bottleneck from the

rest of the system. The method’s purpose is to maximize the throughput of the system. By

focusing on the bottleneck resource and letting the other resources follow, more effort can be

put into scheduling just the problem resource.

TOC requires that there exist just a few bottleneck resources and that they be well defined.

In reality this is often not the case, it is common that the bottleneck resource shifts over time.

In [1], a procedure for scheduling such cases is described.

 24

Event-based methods

Event-based methods decompose the problem at the operation level. These methods

determine which task to be executed in a resource at the operation level. Instead of scheduling

all operations included in a job at the same time as in job-based methods, the operations are

scheduled separately. The precedence relations between operations in a job must of course be

maintained while doing this. In [35] this type of scheduling is referred to as vertical loading.

In event-based methods time is considered to be moving forward event by event. The

events considered are occurrences that change the state of the system and require some action

to be taken. Such events are for example, operations becoming available for execution at a

work center, operations being finished at a work center (making resource capacity available)

and material becoming available for use by an operation. At each event the current state of the

system is considered and actions are taken, such as starting a new operation in a work center.

By decomposing the problem at the operation level, potentially more possibilities are

available to apply rules that prioritize operations according to different weighted objectives.

An example of such a rule can be to schedule the operations in job priority order but if there is

available capacity at a work center and current demand exists for that capacity by operations

that are not in priority order, then execute those operations even if this makes higher

prioritized operations late. An example of an event-based method is the micro-opportunistic

scheduling described in [32].

3.5.3.4 Knowledge based and decision support systems

Another approach that deserves mention uses knowledge based or decision support systems to

perform scheduling. Knowledge-based systems model the production environment and use

knowledge elicited from existing scheduling experience to find feasible schedules. These

types of system are also called expert systems. The elicited knowledge is formalized as rules

that are applied to the model.

 25

3.6 Scheduling in practice

Despite the potential usefulness of a supporting software tool to aid the scheduling activity,

for instance to process large amounts of information, facilitate communication and ultimately

produce better schedules, the implementation and use of scheduling software in practice has

been found to pose a number of problems [4][22][29][33]. These problems can be grouped

into two basic categories, one that encompasses problems encountered when modeling the

production environment and how to handle the uncertainties that will always exist, and the

other consisting of problems related to human factors when it comes to using the systems.

3.6.1 Practical modeling and handling of uncertainties

As related in section 3.5.3, most production environments are highly dynamic and include

many constraints that have to be described in sufficient detail to produce a model that can be

used for scheduling. This model is an approximation and the production environment always

contains some degree of uncertainty that is not included in the model but still has to be

handled in some way. Some of the more common causes for uncertainties are [33]:

- Actual processing times differ from planned (often the actual time is longer)

- Actual capacity differs from expected (machine breakdowns, absence of personnel)

- Changing priorities (rush orders)

- Insufficient feedback from production (performed work not reported)

When scheduling manually, uncertainties are handled by the experience and intuition of the

scheduler. Manual scheduling also often use dispatching rules which are not affected by

disturbances in the same way as a more advanced method. Every time a dispatching rule is

applied, only the current state of the system is considered whereas advanced methods often

try to consider future events which make them more sensitive to disturbances.

How well a schedule handles uncertainties is termed the robustness of the schedule. The

robustness of a schedule is a measure of how much disturbance that can occur in the

production environment before the scheduling has to be redone. Robustness can be achieved

for example by inserting slack into the schedule and/or by not utilizing production resources

over a certain level (e.g. 80% of actual available capacity). Such measures insert buffer time

into the schedule that can be used to handle unforeseen events.

When to perform rescheduling is something that has to be decided for each particular

environment. Rescheduling can for instance be performed on a daily basis, when new orders

 26

are released for production or when the disturbances have reached such a level that a new

schedule is necessary.

A fact that further complicates this issue is that the data quality in most companies’

information systems is often not sufficient. The information is in many cases faulty, missing

or inconsistent. Since advanced scheduling methods require high quality data to produce

feasible schedules it is often the case that activities to increase data quality is needed before it

is possible to apply such methods.

3.6.2 Human factors

Traditionally scheduling has been done manually and the persons responsible for scheduling

normally have a thorough knowledge of the production environment and use this together

with skill and intuition to develop the schedules. There is often much personal contact

between the scheduler and other interested parties such as production personnel and sales

department and as stated in [16], scheduling in reality is very much a social activity. This is

especially important when the environment contains uncertainty and randomness since

personal contact and the information exchanged through those contacts are crucial when

handling such circumstances. When implementing a scheduling tool it is very important that

the human aspects are considered. The software system must be felt to be an aid in the

scheduling activities and adapted to the particular production environment where it is used.

Experience has shown that many implementations have failed because the tool does not fit the

environment and because the interested parties do not have confidence in the schedules

produced by the system.

It is apparent that a scheduling tool must be suited to the environment and that the

scheduler and other interested parties must feel confident in the schedule produced by the

system. It is therefore important that how the schedule is developed is transparent and

possible to understand. An aspect to consider is also that the more advanced and complicated

the scheduling method gets, the more skill and effort is also required by the scheduler. When

determining a suitable scheduling method for a production environment this must be

considered.

It is also necessary to have reports and other graphical representations that visualize the

information used when developing a schedule. The visualizations should support the human

abilities such as to recognize patterns in data, handle unexpected events and inexact

information as described in [16].

 27

The developed schedule must also be communicated to other interested parties. For

instance, making the schedule understood and followed on the shop floor is an absolute

necessity if a scheduling tool is to be useful and getting feedback from the shop floor is

essential when the produced schedule should be analyzed. Good reports and other

visualization tools are an aid in all these activities.

 28

4 Scheduling theory

Despite the apparent difficulties with applying scheduling theories in practice it is of course

important to investigate the available research to gain further insight into the problem and find

out which solution methods can potentially be applied in reality. As mentioned before a large

amount of research exists in the area of scheduling in different disciplines such as industrial

engineering, operational research, artificial intelligence. In addition to this, there also exists

research on production scheduling in disciplines such as psychology and decision science.

The fact that research is spread across different research communities is actually a problem

since it makes it hard to gain an overview of available research [36]. Much of the information

in this chapter is derived from [5][18][36], which are papers that provide overviews on the

subject.

Production scheduling research as related here goes back at least to the 1950’s and still is a

very active area of interest with new solution methods being developed continuously. The

focus seems to have shifted from operational research to artificial intelligence when it comes

to finding new methods [18][5].

The purpose of this chapter is to give a brief overview of the theoretical problem

formulation and some of the solution methods that can potentially be used in practice. It is

outside the scope of this dissertation to go into the details of the different algorithms and

theories. Since the research area is very broad and spread across different disciplines it also

often requires deep background knowledge from diverse areas. In a chapter like this it is only

possible to present a summary and try to find the areas that seem most relevant when it comes

to practical usage.

4.1 The scheduling problem

Scheduling can be defined as the problem of assigning scarce resources to competing

activities over a given period of time [19]. The problem can be characterized as a

combinatorial optimization problem and it has been shown to be NP-hard2 and also to belong

2 The term NP-hard referes to the theory of NP-completeness. This theory is used to classify problems with

regards to how difficult they are to solve. A problem is NP-complete if there exists no algorithm that solves the
problem in polynomial time. In polynomial time means that the time required by the algorithm to solve the
problem grows polynomially with respect to the size of the problem. A problem is NP-hard if it can be shown
to be at least as hard to solve as a NP-complete problem [14].

 29

to the most intractable problems considered [5]. What make this problem so difficult are the

same reasons which make many other real world problems difficult [23]:

- The number of possible solutions is so large that an exhaustive search to find the best

answer requires far too much time

- The problem is so complicated that just to facilitate any answer at all, the model has to

be simplified to a degree that makes the derived solution difficult to apply in practice

- The possible solutions are so heavily constrained that constructing even one feasible

answer is difficult, let alone searching for an optimum solution

4.1.1 A problem formulation

There exists different problem formulations as related in [5] but a common representation that

was developed in the 1960’s seems to be the most used [1][5][32][18]. In this formulation the

problem is modeled as a disjunctive graph. The graph representation gives a good visual

presentation of the problem.

The basic model consists of a set of orders (or jobs) {J1, …, Jn} which have to be

scheduled on a set of resources {R1, .., Rm}. Each job Ji consists of a set of operations {Oi
1, …,

Oi
p} where (1 <= i <= n). The operations are partially ordered, the most common case in

practice is that an operation can have several predecessors but at most one successor. The

operations order is described by their lower indices (Oi
k must be executed before Oi

k+1). Each

operation has an expected duration and a start time (to be determined).

In the graph each operation is represented by a vertex and precedence relations between

operations as directed edges between vertices. There are also two dummy vertices, 0 and n,

representing the start and end of the schedule. Each vertex representing an operation contains

information on the resource required to perform the operation and the operations duration.

Each pair of operations that require the same resource is connected with an undirected edge.

These edges represent capacity constraints. As an alternative, the undirected edges

representing capacity constraints can be represented as a pair of directed edges. In some cases

the duration is represented as the weights of both the edges representing precedence

constraints and the edges representing capacity constraints [1][5]. Figure 4.1 shows an

example adapted from [32] of such a graph for a scheduling problem with twelve operations

belonging to four orders. The operations should be executed in five resources, R1 – R5. The

 30

first operation of order 1 should be performed in resource 1 and have a duration of 2. In

Figure 4.1, the capacity constraints are represented as undirected edges.

Figure 4.1. A graph representation of a scheduling problem.

Depending on the scheduling objectives the problem can be represented in different ways. For

instance, if the objective is to minimize the total time it takes to perform all operations in the

graph, the problem is to find the direction of the edges representing capacity constraints that

minimizes the length of the longest path from 0 to n.

4.2 Solution methods

4.2.1 Problem solving

The process of problem solving consists of the two separate general steps, first to create the

model of the problem and then to use the model to solve the problem. Every solution is

derived from the model and how well the solution solves the actual problem depends on how

well the model describes the problem. The difficulties in modeling production environments

are described in section 3.6.1. Every algorithmic approach to problem solving have three

concepts in common that has to be specified, the representation, the objective and the

O1
1 2 R1

0
n

O1
2 5 R2 O1

4 4 R3 O1
5 3 R4

O1
3 2 R5

O2
1 7 R1 O2

2 5 R2

O3
3 3 R2O3

1 1 R3 O3
2 2 R1

O4
2 3 R2O4

1 3 R4

 31

evaluation function. The representation encodes alternative candidate solutions for

manipulation, the objective describes the purpose to be fulfilled and the evaluation function

returns a value that indicates the quality of the solutions [23].

The representation

A scheduling problem representation has to include orders, operations and precedence

relations between these, resources required to perform the operations and their available

capacity, materials required to perform the operations and the availability of these, release and

due dates of orders, priorities among orders and real and expected costs incurred by the

different activities and decisions. (See section 3.5.3). A possible representation is described in

section 4.1.1. The difficulty lies in representing the complexities and constraints of a

production environment in enough detail so that the solution, in this case the schedule,

derived when applying the solution method is useful while still keeping the representation as

simple as possible.

The objective

The objectives to be fulfilled when scheduling, are at the highest level the overall goals of the

company, as described in section 3.2. These goals have to be in some way reflected in the

algorithmic approach used to solve the problem. As described in section 3.2, the goals can

often be in conflict in each other. These conflicts must be either resolved before the algorithm

is applied or handled in the algorithm, for instance by putting weights on the used goals.

The evaluation function

As described in section 3.4, evaluating schedules can be difficult. The metrics that are used to

evaluate the developed schedule must be chosen so that they reflect the quality of the

schedule in a way that that is appropriate for the algorithm used. The evaluation function is

also called the accept–reject criterion.

4.2.1.1 Exact and approximation methods

The space of all possible solutions to a problem is called the search space of the problem.

Among the possible solutions in the search space, the only solutions of interest are those that

are feasible. Feasible solutions satisfy the constraints imposed on the problem. Constraints

 32

can be grouped into hard and soft, hard constraints are those that must be satisfied if the

solution is to be feasible and soft constraints are those that are preferred to be satisfied but can

be relaxed to find a solution. In scheduling, hard constraints are for example precedence

relations between operations and the availability of materials and soft constraints are for

example due dates that need to be relaxed because of missing materials or resource capacity

that has to be increased by working additional shifts or overtime. The search space for a

realistic scheduling problem with its many variables and constraints of course may get very

large. Because of this, for most scheduling situations there exists no efficient algorithms that

solves the problem. An efficient algorithm solves a given problem optimally with a

requirement that increases polynomially with respect to the size of the input. In operational

research, different applications of exact solution methods such as mathematical programming

procedures, like linear programming and dynamic programming, have been applied, but none

of these have successfully solved problems of the large sizes common in practice. It has been

shown that efficient algorithms cannot be found for scheduling problems that encompass

more than three operations and three jobs [18]. In reality, many production environments

work with hundreds of orders and thousands of operations so other solution methods are

required.

The types of solution methods that can be applied to scheduling problems are

approximation procedures. Approximation methods do not guarantee achieving exact

solutions but are able to attain near optimal solutions within moderate computing times [18].

The current trend seems to be methods coming from artificial intelligence like heuristic search

methods, evolutionary algorithms and constraint programming.

4.2.2 Dispatching rules

The dispatching rules described in section 3.5.2 are approximation methods. Much research

has been put into dispatching rules since they are easy to implement and require low

computational effort. The research includes studies on the relative performance of the

different rules in different production environments and how the rules can be combined [18].

Dispatching rules are also often used in other more advanced methods to for example generate

a first solution that is then refined, or to solve smaller decomposed parts of the problem

during the application of an algorithm.

 33

4.2.3 Bottleneck based methods

Bottleneck methods decompose the search space at the resource level as related in section

3.5.3.3. Probably because the Theory of Constraint as developed by Goldratt (see section

3.5.3.3) is a proprietary method, it is not mentioned in the papers overviewing scheduling

theory studied for this dissertation. Instead it is the shifting bottleneck procedure (SBP)

described in [1] that is most often refered to. Since TOC requires one resource to be the

bottleneck, SBP can possibly be seen as a refinement of TOC.

SBP works by decomposing the problem into a series of one resource (or machine)

problems and by that subdividing the search space. Described briefly the procedure works as

follows. The resources are scheduled successively one by one and the resource chosen to be

scheduled is the one identified as the bottleneck resource among those not scheduled. Every

time after a new resource is scheduled the previously scheduled resources are locally

reoptimized. In SBP the problem representation described in section 4.1.1 is used.

 SBP been further developed and refined by others as related in [18]. According to [34], the

performance of bottleneck methods compared to using other methods is good if the difference

in capacity between bottleneck and non bottleneck resources is significant.

4.2.4 Local search methods

Since exhaustingly checking each and every solution in a search space as large as those

associated with scheduling problems is impossible, search methods that find feasible solutions

without an exhaustive search are required. A way to avoid having to search the entire search

space is to use heuristics, or knowledge of the problem domain, to subdivide the search space

and to guide the search for feasible solutions. Heuristic search methods can also be termed

problem space based methods.

Traditional methods that use heuristic guided local search are iterated hill-climbing

methods and it is useful with a brief description of how these works since they are the basis of

how more advanced methods work.

Hill-climbing methods

Hill-climbing methods use an iterative improvement technique that from a chosen current

point in the search space tries to find a point in the neighborhood that provides a better value

in terms of the evaluation function. Neighborhood in this case is intuitively defined as all

points in the search space that are close in some measurable sense from the current point. The

points in the neighborhood are iteratively searched until no improvement is possible or some

other condition is met. Such a method can only find a local optimum that depends on the start

 34

point. The starting point can be chosen at random or by some heuristic and to try to escape

from the local optimum many different starting points can be chosen and the results compared

to find the best solution. Despite starting from different points in the search space it is often

very difficult to find a global optimum with these kinds of methods [23].

In scheduling, local search methods can be termed improvement techniques as they start with

an existing schedule and try to improve it. The initial schedule can for example be developed

by using dispatching rules or by some basic finite capacity scheduling procedure. Local

search procedures for scheduling can be compared by the following four criteria [25]:

- The schedule representation needed for the procedure

- The neighborhood design

- The search process within the neighborhood

- The acceptance – rejection criterion (also referred to as the evaluation function)

The schedule representation can for example be a data structure holding all operations with

information on start and end times and assigned resources. Two schedules can be defined as

neighbors if one can be obtained through a well defined modification of the other. The design

of the neighborhood is a very important aspect of a local search procedure. For most

scheduling problems that exist in reality the neighborhood of a schedule is often complex and

different methods have been developed to determine how these can be designed [25][18]. The

search method determines how the next schedule to be evaluated is chosen and the acceptance

– rejection criteria gives the value by which the schedule is compared.

Three local search algorithms that have shown to be suitable for practical use are simulated

annealing, tabu search and genetic algorithms [25].

4.2.4.1 Simulated annealing

Simulated annealing is a search process that has its origin in the fields of material science and

physics and was first developed as a simulation model for describing the physical annealing

process of condensed matter. The accept–reject function in simulated annealing is based on a

probabilistic process, when a feasible solution is found during the search procedure it is either

accepted or rejected depending on a stochastic variable called temperature. The accepted

solution need not to be better than the current solution, it is sufficient that it is feasible. The

reason for allowing such moves is to give the procedure a chance to move away from a local

optimum and find better solutions later. The temperature variable used in the accept–reject

 35

function is updated as the procedure progresses so that the probability that non-improving

solution are chosen decreases. The stopping criteria for the process can be for example a

predetermined number of iterations or a predetermined number of iterations without

improvement.

4.2.4.2 Tabu search

Tabu search is similar to simulated annealing in that it moves from one schedule to another

with the next schedule being possibly worse than the previous. The basic difference between

the two methods lies in the way a new schedule is accepted or rejected. In tabu search the

process is deterministic rather than probabilistic, and is based on the history of the search.

During the process a list of moves that is not allowed is kept, called the tabu-list. The idea is

that the tabu-list serves as a memory that should force the process to search in new areas of

the search space. Solutions that have been examined recently are stored in the tabu-list and are

not considered when searching for the next solution, they become tabu. Like in simulated

annealing the idea is to give the procedure a chance to escape local optimums and find better

solutions in other areas of the search space.

4.2.4.3 Genetic algorithms

Genetic algorithms are modeled after the theory of evolution in which the fitness of an

individual determines its ability to survive and reproduce. When genetic algorithms are

applied to scheduling, schedules are viewed as individuals in, or members of, a population.

This is one aspect that differs from simulated annealing and tabu search, in those algorithms

only one schedule is carried over to the next step whereas genetic algorithms work with a

population consisting of a number of schedules that are transferred between iterations.

Iterations are called generations in genetic algorithms. The population size often remains

constant between each generation. Each individual in a population is assigned a fitness value

that is derived from the evaluation function. The schedules to be carried over from one

generation to the next can either be transferred as is if their fitness value are good enough, or

generated through reproduction and mutation of schedules in the previous generation.

Schedules with low fitness values are disregarded. The reproduction and mutation procedures

use heuristics from the problem domain and probability to mimic the corresponding processes

that occur in nature. The idea is to arrive at a schedule that is near optimal by letting the

population of schedules undergo the reproduction and mutation transformations from

 36

generation to generation. How genetic algorithms can be applied to practical scheduling

problems is described in [27].

4.2.5 Constraint programming

Scheduling problems can be characterized as constraint satisfaction problems (CSP’s)

[21][12]. A CSP is defined by a set of variables V = {v1, …, vn}, each having a domain D =

{d1, …, dn} and a set of constraints C = {c1, …, cn}. The domain of a variable can have many

different characteristics such as an interval of integers or Boolean true/false values. Two

domains that occur frequently in scheduling problems are the temporal domain which is

infinite and different finite domains which consist of a finite set of values that for example

can describe production resources. A constraint is a m-tuple that specifies a consistent

assignment to the variables that it constrains, mi dddc ××⊆ ...21 . The process of solving a

CSP basically consists of three steps:

1. Select a variable for instantiation.

2. Select a value from the variables domain and assign this to the variable.

3. Determine if the assignment is consistent with all constraints defined for the problems.

If the assignment is not consistent with the constraints backtrack, that is go back to step

1 and either select another value for the variable or select another variable to assign a

value to. If the assignment is consistent with the constraints go to step 1 and select a

new variable.

The process ends when a specified number of solutions is found in which all variables are

assign values and these assignments are consistent with the constraints or it is determined that

no solution exists. How effective this process is depends on how the variable to assign a value

is selected and then what value it is assigned. The goal is to make selections that as fast as

possible minimizes the search space by for each iteration of the procedure be able to remove

as many infeasible values from the domains as possible while at the same time finding a

solution with a minimal amount of backtracking. Much research has been put into finding

heuristics for how this selection process should be performed.

Constraint programming is a programming technique that is used to solve CSP’s.

Constraint programming was first an extension of logic programming languages,

appropriately called constraint logic programming (CLP), but there now exist constraint

programming libraries for other languages as well. To solve scheduling problems it is

 37

common to use constraint programming toolkits together with object-oriented languages. This

gives the possibilities to model the problem using object-oriented design methods and then

solve it using constraint programming.

When using CLP languages or constraint programming extension for other languages the

idea is to state the problem at a high level by specifying variables with their domains and the

constraints that must be maintained, and then leave the solving to mechanisms build into the

language or libraries. The mechanisms that perform this are called solvers and much research

is put into the development and design of solvers for different applications.

Examples of practical use of constraint programming to solve scheduling problems can be

found in [32][20][8].

4.3 Summary

As mentioned in the beginning of this chapter it is only possible to present an overview of the

large area of scheduling theory and the chapter should be seen as an orientation. The methods

and algorithms mentioned in the chapter all seem possible to apply in practice and the listing

can serve as a starting point when searching for methods to tackle scheduling problems that

occur in real production environments. In practice the methods can also be combined in

different ways, for example using combinations of dispatching rules to develop an initial

schedule that is then further improved by a local search method such as simulated annealing

or tabu search [25].

To actually use and implement the methods it is of course necessary to study them more

thoroughly. Sources of information for further studies can be found in the references used for

this dissertation. The references also contain many other methods and algorithms that are not

mentioned in this chapter. Some of these, like neural networks and distributed agent based

scheduling methods, seem to attract a lot of interest in the research communities and may

provide alternative solution methods in the future.

 38

5 Software systems for manufacturing planning and control

This chapter gives a brief overview of the different software systems used to support MPC

and production scheduling.

5.1 Enterprise Resource Planning systems

The software used for MRP often consists of large suites of integrated programs designed to

support most of the activities in MPC plus accounting and other functionality. These systems

are called Enterprise Resource Planning systems (ERP-systems). The systems are usually

built upon a relational database and are deployed in a distributed client-server environment.

The information used for scheduling purposes is for the most part maintained in the database

of the ERP-system. What this information consists of is described in sections 3.1 and 3.5.3.

Some ERP-vendors also integrate third-party scheduling components into their systems or

provide an interface to some external scheduling program.

5.2 Scheduling systems

There exists a lot of different scheduling software or Advanced Planning and Scheduling

(APS) -systems as they are often called in industry. The scheduling system can either be a

complete free standing system or a scheduling component that is integrated with the ERP-

system.

5.2.1 Complete systems

The basic architecture of a scheduling system consists of the following modules [25][37]:

- Database access module to communicate with the ERP-system and other data sources

to retrieve and update scheduling data.

- A scheduling module to generate and manipulate schedules. This is also called the

scheduling engine. This part of the systems contains the scheduling algorithms.

- A user interface module which allows the user to interact with the system.

 39

5.2.1.1 Database access and communication

Database access is most commonly performed via SQL and the standard interfaces that are

available for this. This part of the architecture is probably the least complicated and should be

straightforward to implement. Most data sources support SQL and via this it is possible to

have flexible interaction with different data sources.

5.2.1.2 Scheduling module

In the scheduling module the data must in some way be transformed into a representation that

is appropriate to use when applying the scheduling algorithm. To do this the module must

have flexible modeling capabilities to be adaptable to different production environments. The

algorithms used in the module are often possible to extend and modify by the user. It is

common that that some simpler algorithms are provided, such as basic finite capacity

algorithms using dispatching rules, and that these then can be modified to suit the particular

environment.

5.2.1.3 User interface

The user interface part of the system is very important since it is often this that determines if

the system is going to be used or not. The user interface should be as simple and intuitive as

possible so that the user can concentrate on the scheduling task. Some types of interfaces that

are typically available in a scheduling system are an interactive Gantt-chart to view and

manipulate the schedule, graphical representation of load profiles like those in Figure 3.1 and

Figure 3.2 (possibly with possibilities to manipulate resource capacity) and interactive

dispatch lists. There must also be interfaces for controlling loading and updating data to and

from the ERP-system and other data sources as well as for controlling scheduling parameters.

5.2.2 Scheduling components

Scheduling components contain the functionality available in the scheduling module

described in section 5.2.1.2. The component can be integrated into ERP-systems and can also

be used by scheduling system providers that do not want to implement this module

themselves. Using a scheduling component can offer more flexibility since it should be

possible to integrate different kind of components depending on the scheduling requirements.

One common type of scheduling component is constraint programming based solvers that is

possible to integrate into object oriented frameworks [20][8].

 40

5.3 Manufacturing execution systems

Manufacturing execution system (MES) is a category of system that is intended to be used on

the shop floor. They include for example process controllers and other systems to control

machines and equipment but from a scheduling perspective what is important is the

possibility to communicate and get feedback on the schedule using these systems.

 41

 42

6 A Case-Study

To obtain some experience of the requirements that might exist on a scheduling system in

reality, a case study has been performed. The study has been done in a job-shop that maintains

and repairs electrical equipment (motors, transformers etc.) where a finite capacity scheduling

system is in use. The scheduling system is free standing program that is integrated with the

company’s ERP-system. By performing the study in an environment where a scheduling

system is already in use, the requirements come from the user’s experience of using such a

system in their daily work and also the framework around the system is in place and can be

used as a base when testing and evaluating the developed prototype. The current scheduling

system has been in use for about 3 years and has solved some of the shop’s scheduling

problems but it is felt that there are still a number of improvements that can be made.

The purpose of the study is not to evaluate the current system but to investigate what

requirements there are on a scheduling system through all steps in the production process in

this shop. Of course, to some extent, the user’s views are based on the features, and also the

shortcomings, of the current system but the aim has been to focus on the general scheduling

process.

6.1 Production environment

6.1.1 General description

The job-shop studied maintains and repairs electrical equipment for a number of different

customers. The customers send their equipment to the shop where it is maintained and/or

repaired and then sent back. Since the equipment is often critical for the customer, keeping

due-dates and having short lead-times are very important. Maintenance and repair differs from

manufacturing of new products in that the production is much harder to predict, maintenance

can to some extent be planned in advance but equipment which breaks down and needs repair

cannot. The scope of work of every object is also more or less unique and hard to define in

advance and lead-times of orders can vary from a couple of days to several months. It is also

quite common that additional work on an object is discovered during job execution which

means that the original scope of work is changed. This of course affects scheduling in that

uncertainty and unpredictability must be handled to a greater extent than perhaps is usual and,

 43

since each object is unique, no batches of objects on the same order are considered. Normally

there are between 150 – 200 objects with about 2500 operations in process so to manually

schedule the shop in detail is in practice impossible. Some kind of scheduling support system

is therefore needed and by implementing the current scheduling system the goal was to

improve the scheduling in the shop by:

- Obtain a global view of the current production situation that is shared among all
participants in the scheduling process.

- Take informed scheduling decisions that satisfy the overall objectives of the shop and
consequently minimize local, potentially sub-optimizing, decisions.

- Execute, and provide feedback on, the schedule decided on the shop floor

- Reduce lead-time and improve the accuracy in the due dates that are promised to
customers

- Solve problems early, hopefully before they disturb the production and affects
deliveries.

6.1.2 The job shop and order structure

Work centers and resources

The job-shop consists of 15 work-centers that handle different types of tasks and each work

center consists of a number of resources. The resources are all production personnel, no

machines are scheduled since it is the operator using it that is the constraining factor. To

handle uncertainties, the possible utilization rate of most work centers is set to less than

100%. This means for instance that if the utilization rate of a work center is set to 80%, and if

the planned duration of an operation is planed to be 1 hour, it is actually scheduled to take 1.2

hours to perform in this work center. This inserts time buffers into the schedule that can be

used to handle uncertainties.

Orders and operations

All production is customer-order based so that each object in the shop has a customer order

with which production orders are associated. The customer order contains information such as

release date and due date. The equipment that is maintained in the shop often consists of

different parts that are worked on in parallel. Each part has its own production order and the

operations of these orders then form a network with precedence relations that describe the

work that shall be performed on the object. In most cases the operations on a production order

depend on each other and must be performed in a specified order, but exceptions exist where

it is possible to perform some operations on the same order independently of each other. Each

 44

operation must be performed in a specified work center and also requires specified materials.

See Figure 6.1.

Figure 6.1. The customer order and production orders for an object.

In Figure 6.1, Object 1 has a customer order and consists of two sub-objects. Operation 1

on the production order for Object 1 is an assembly operation that uses Sub-object 1 and Sub-

object 2.

All information concerning work centers, resources, orders and operations are described in

the ERP system and are loaded into the freestanding scheduling system. The scheduling is

performed in the freestanding system and then the produced schedule information updates the

ERP system.

6.1.3 Organization

The organization consists of six main roles that collaborate in the scheduling process. These

are sales department, scheduler, purchasing department, job shop manager, work center

managers and production personnel. Sales support and the scheduler belong to the sales

support department and job shop manager, work center managers and production personnel

belongs to the production department. The tasks and responsibilities of the roles are as

follows:

Op. 3, w/c 1

Op. 2, w/c 1

Op. 1, w/c 2

P/O Sub-object 2

Orders

P/O Sub-object 1

P/O Object 1

Time

Op. 3, w/c 2 Op. 2, w/c 3

Op. 1, w/c 4

Op. 2, w/c 3 Op. 1, w/c 4

Customer order C/O Object 1

 45

Sales department

The sales department issues the customer orders and initializes work on objects by releasing

production orders. This is done in the ERP system. The sales department is the link between

planning and scheduling.

Scheduler

The scheduler performs the actual scheduling and has the global overview of the production.

The scheduler loads information into the scheduling system, performs the scheduling and

updates the ERP system.

Job shop manager

The job shop manager is responsible for all production personnel in the shop and maintains

the resource capacity information and also provides feedback on schedule execution to sales

support and scheduler as well as performing some manual detailed scheduling. The job shop

manager mainly works in the ERP system and views reports in the freestanding scheduling

system.

Work center manager

Each work center has a manager that organizes the production and also performs the

production together with the production personnel. The work center manager provides

feedback on schedule execution to the job shop manager and sometimes direct to the sales

department and scheduler. Some detailed manual scheduling is also performed by this role.

Production personnel

The production personnel execute the operations as determined by the schedule. They also

provide feedback on schedule execution to the job shop manager and sometimes direct to

sales support and scheduler. The production personnel reports performed work in the ERP

system.

Purchasing department

The purchasing department purchases material required by the production orders and

maintains information on available materials. The purchasing department works mainly in the

ERP system and views reports in the freestanding scheduling system.

 46

6.2 The scheduling process

6.2.1 The process for an order

The process for a specific object starts when sales support issues a customer order in the ERP

system which initializes work on the object. Because some initial work is needed to determine

the scope of work on the object a production order with just a few operations to do this is

released. When the scope of work is determined the required production orders are prepared

to describe the work to be performed. The production orders can now be used to determine

the due date by simulating them into the current schedule. This also involves contacts with

vendors of spare parts and negotiation with the customer. The simulation is performed by the

scheduler. When the due date is set in agreement with the customer the production orders are

released and execution of operations is started. As the work progresses operations are reported

as finished and information on deviation from the schedule are reported by the production

personnel through work center managers and job shop manager to the scheduler and sales

support. Depending on the deviations, actions may be needed. This can involve further

investigations and renewed contacts with the customer and result in added operations and/or

materials. If the due date can not be kept the customer must be informed by the sales

department and a new due date must be negotiated. When all operations are finished the

production and customer orders are reported as finished and the object is delivered to the

customer. See Figure 6.2.

 47

1 2 3 4

Time

1. Sales department initializes customer order and releases production orders to determine scope
of work. The scheduler adds the production orders to the current schedule.

2. The operations on the production orders are executed and the scope of work is determined.

3. The production orders are prepared to reflect the scope of work. A due date is determined by
simulating the order in the current schedule. The sales department negotiates with the customer
and firms the due date.

4. Operations are executed and deviations from the schedule are reported. Actions to handle
deviations are taken in the form of added operations and materials. When all operations are
finished the object is delivered to the customer.

Figure 6.2. The order process for an object.

6.2.2 Scheduling

The scheduler makes a new schedule every day. This involves monitoring the progress of

operations against the last schedule and reacting to the feedback from the shop floor and to

information from the purchasing and sales departments. Events that affect scheduling takes

place continuously. Such events are for example operations that take more time than

expected, material that is expected to arrive but does not, and objects that have to be rushed to

satisfy changing customer needs. The gathered information is then used to create a feasible

schedule while also trying to satisfy the scheduling objectives of the shop. See Figure 6.3.

 48

Initiate production on object.
Sales
department Keep information on customer

requirements updated

Customer information

Create schedule

Figure 6.3. The scheduling loop.

Some manual scheduling is also performed on the shop floor by the job shop and work

center managers to cope with all the constraining details that cannot be handled by the

scheduling system. Since this type of production always involves uncertainties, some

scheduling decisions are left to the shop floor. This can for example be that all resources in a

work center do not have the same skills and therefore some operations have to be assigned

specific resources. The aim is that all resources in a work center shall be interchangeable but

this is not always possible due to the diversity of work that has to be performed.

6.3 Scheduling objectives

The most important scheduling objective in this job shop is to keep due dates. Since the

objects that are maintained and/or repaired are often critical equipment for the customer,

timely deliveries are very important. Secondary objectives are to minimize work in progress

and to utilize resources effectively but this should never be at the expense of missing due

dates.

Shop floor

Scheduler

Execute schedule

Schedule Feedback

 49

6.4 Scheduling tasks

To develop a more general and flexible description, the scheduling process is divided into

tasks that are independent of the roles that currently perform them. The task can then wholly

or in part be performed by any role. This makes it possible to change the process

independently of the system framework. In the following the tasks and what is required to

perform them are described. These tasks can also been seen as requirements on a scheduling

system for this production environment. Such a system should support these tasks.

6.4.1.1 Generate schedule

The initial schedule should be generated using information from the ERP-system.

6.4.1.2 Manipulate scheduling data during development of schedules

During the development of the schedule it should be possible to manipulate for instance work

center capacities and due dates of orders.

6.4.1.3 Prioritize an object, or groups of objects

Priorities should be possible to set for an individual object or groups of objects. Objects

should be possible to group by for instance type or customer.

6.4.1.4 Find required, unavailable materials

Materials that are not available when needed for an operation, and thus making it late, must be

easily found. This can be accomplished with reports listing those materials.

6.4.1.5 Find over utilized work centers

Work centers that do not have the required capacity to satisfy the needs of operations must be

found. It is important to have a way to determine what time periods the work centers are over

utilized and how much capacity that is missing.

6.4.1.6 Finding operations that are not executed as scheduled

If an operation is not executed as scheduled it should be possible to easily find this operation.

6.4.1.7 Simulate different scheduling scenarios

Simulating different scheduling scenarios involves for instance changing due dates and

priorities of orders and to change available capacity in work centers and available materials.

 50

6.4.1.8 Determine feasible due date for new objects

When a new object is being added to the schedule, it should be possible to put it into the

current schedule to determine a feasible due date. When doing this it should also be possible

simulate different scheduling scenarios.

6.4.1.9 Compare different schedules

To determine what effects changes to for instance available capacity of work centers have,

some way of comparing schedules is required.

6.5 Scheduling algorithm

The scheduling algorithm employed by the scheduling system is a job-based finite capacity

method (See 3.5.3.3) that makes no attempt at any optimization of the developed schedule.

The basis for the algorithm is a dispatching rule that uses due dates of customer orders

together with priorities that are manually set (see section 3.5.2, Earliest Due Date rule). The

manual priorities are also set per customer order. The dispatching rule, due date and possible

manual priority, impose a priority order on the customer orders and this ordering is strictly

followed when developing the schedule. The customer orders are scheduled one by one in the

imposed order and the algorithm works by letting the operations belonging to the currently

scheduled order allocate capacity in the required work centers and allocate required material.

The system maintains two schedules, the finite capacity schedule to be executed on the shop

floor and, as a reference, a backwards scheduled infinite capacity schedule. The infinite

capacity backwards schedule is the optimal schedule in this environment. In this schedule the

latest start and end for each order and operation are maintained and these are used for

comparing how far the finite capacity schedule deviates from this optimum.

The system allows for many parameters to be set that affect the way the schedule is

developed. The most important are if the algorithm uses forward or backward scheduling.

This can be set both as overall parameters for late and non late orders and also for each

individual order. It is also possible to, for each work center, set if capacity should be seen as

infinite or finite.

In the job shop studied, by experimentation and experience gathered, the parameters have

been set so that the developed schedule is forward scheduled and all work centers have finite

capacity. This results in a schedule that should be feasible and where every operation is

scheduled as early as possible. The decision that operations should be performed as early as

possible is a way to cope with the uncertainties in the environment. The reasoning behind this

 51

is that there is greater chance of handling problems occurring during execution of orders

without affecting delivery if those problems are detected as early as possible. As described in

section 6.1.1, it is common that additional work on an object is discovered during execution.

6.6 Discussion

What makes this environment different from many others is that the work performed is

maintenance, not manufacturing of new products. Since this type of production is more

unpredictable, the uncertainties caused by this must be handled when developing the

schedules. This is accomplished by using a forward schedule where every operation is

performed as early as possible, as described in section 6.5, and by setting the utilization rate

of work centers to less than 100% as described in section 6.1.2.

When comparing the information gathered in this case study with the background given in

chapter 3, it is apparent that production scheduling as performed in this shop, and the

problems encountered when doing it, are fairly general. Two important aspects that have been

central when implementing the scheduling system in this environment are to make sure the

information in the ERP-system is correct and to get sufficient feedback from the shop floor.

Since the information used by the scheduling system comes from the ERP-system, this

information must be correct and always maintained to reflect the state of the environment.

Because the level of detail and correctness in the information required when developing finite

capacity schedules is much greater than what is mostly the case in ordinary ERP-system use,

developing this is something that requires much effort when a scheduling system is

implemented. This also involves the organization of the company since it is central that all

relevant information that is required to develop the schedules is updated in the ERP-system.

Getting sufficient feedback from the shop floor is very important to be able to monitor the

progress of schedule execution and also to react to disturbances that occur and to find

problem areas. Connected with this is the requirement that the schedules are actually followed

in the shop. Getting the shop floor both to follow the determined schedule and to give

feedback on it must be considered when implementing a scheduling system. This involves

education of the staff and also to make the schedule available on the shop floor and to

facilitate feedback by for instance making computers readily available.

The algorithm used in this environment is relatively simple but considering the level of

uncertainty that exists it seems appropriate and also in accordance with the rule related in

section 3.5. The primary reason for using the system is to get better overview of the

 52

production and to find problem areas, any optimization of the production using more

advanced scheduling algorithms can only occur after this is accomplished.

Some functionality that is missing from the current system or could be improved upon has

been found during the study. Two of them concern the scheduling tasks in section 6.4. These

are the possibility to find operations that have not been executed as scheduled and finding

over utilized work centers. Finding operations that have not been executed as scheduled is

today manual work; no support exists for this in the scheduling system. Some sort of report

that lists those operations should exist. Reports for finding over-utilized work centers exist in

the system but it is felt that the granularity of these is not sufficient, since finding the exact

work center that causes trouble requires some manual work. Another aspect that could be

improved upon is the reports available at the shop floor. These are in the form of dispatching

lists, but it would also be useful with more pictorial representations like Gantt-charts to aid in

the communication of the schedule.

 53

 54

7 A scheduling system framework

The purpose of this chapter is to propose a scheduling system framework that primarily

satisfies the needs of the production environment investigated in the case study, but which can

also be more generally used. A prototype including the most important parts of this

framework is implemented.

The reason for focusing primarily on satisfying the needs of the production environment in

the case study is to keep a manageable scope and to maintain a practical focus and actually be

able to implement a prototype that can be tested in reality. The approach will be to first look

at the general requirements and then to focus on those requirements that concern the

production environment in the case study. The design is object-oriented and the prototype is

implemented in Java.

7.1 Requirements

From the information in chapters 2 – 5 and with the architecture described in section 5.2 as a

base, requirements for a scheduling system has been gathered. The requirements are grouped

into three categories as follows:

Data access and modeling of production environments (see section 7.1.1)

- Possibility to interact with different data sources

- Flexible and adaptable modeling of production environments

Algorithms (see section 7.1.2)

- Possibility to implement and apply different scheduling algorithms

User interaction (see section 7.1.3)

- Possibilities for the user to control the scheduling algorithm and to manipulate the

schedule

- Visualization possibilities via reports and other graphical representations

- Evaluation and comparisons of schedules through metrics

 55

In the following three sections these requirements are described in more detail and compared

to the specific requirements from the case study in chapter 6.

7.1.1 Data access and modeling of production environments

The interaction with different data sources and modeling of production environments are

related. It must be possible to load data from different sources (such as ERP and MES

systems) and then to transform the data for use in the model. When the schedule has been

developed and the model contains this schedule, the relevant information in the model must

be transformed back so that it can update the data sources.

The model must reflect the production environment in enough detail so that it is possible to

use the model to develop a schedule that is feasible to execute in reality. The system should

have modeling capabilities to do this in a flexible way. How the model is represented is

highly dependent on which scheduling algorithms that are going to be used.

7.1.1.1 Requirements from the case study

All production data in the case study comes from the ERP-system and accessing this should

not pose any problems. The model must contain the information described in section 6.1.2.

This also corresponds to the general description in section 3.1. What must be considered in

the model is the information needed for the required reports as described in section 6.4.

7.1.2 Algorithms

The framework should make it possible to implement and apply algorithms that are

appropriate for the production environment. The algorithms may come as components or as

libraries from other sources and be integrated into the framework.

7.1.2.1 Requirements from the case study

The scheduling algorithm that will be required is one similar to that described in section 6.5.

This is basically an Earliest Due Date dispatching rule combined with finite capacity

scheduling.

7.1.3 User interaction

The requirements possibilities for the user to control the scheduling algorithm and to

manipulate the schedule, visualization via reports and other graphical representations and

evaluation and comparisons of schedules through metrics are grouped together as user

interaction. These requirements are those described in section 5.2.1.3.

 56

7.1.3.1 Requirements from the case study

These requirements are the following (see section 6.4):

- Generate initial schedule. This involves loading data from the ERP-system and

applying the scheduling algorithm.

- Manipulate scheduling data during development of schedules. Scheduling data to be

manipulated are work center capacities and due dates of orders.

- Prioritize an object, or groups of objects. Functionality to set priorities must exist.

- Find required, unavailable materials, over utilized work centers and operations that

are not executed as scheduled. Appropriate reports for this must exist.

- Simulate different scheduling scenarios and compare different schedules. This is

performed by manipulating scheduling data, applying the algorithm and storing the

schedule in the scheduling database. Reports where information and metrics from

different schedules is shown must exist.

- Determine feasible due date for new objects. To do this it must be possible to identify

new objects, for instance via timestamps. By using information on which objects are

new, manipulation of scheduling data and application of the algorithms, due dates can

be determined.

7.2 Design

From the requirements in section 7.1, a structure for a scheduling system framework is shown

in Figure 7.1. This basically correspond to the architectures described in [25][37] . The

framework has a layered architecture and the objective is to have these layers as loosely

coupled and as independent of each other as possible with well defined interfaces and

responsibilities. From the bottom up the layers are: Data Access,

Extraction/Transformation/Loading/Updating, Scheduling Core and Interfaces/API. The

modules grouped together in the Scheduling Core layer, Model, Algorithms, Metrics and

Reports, are the ones that perform the actual scheduling and these modules are the focus of

the prototype. To make the Scheduling core layer as loosely coupled to the underlying layers

as possible it is important that it has no knowledge of how the model is loaded with data or

how the data is transferred back to the data sources after scheduling, all this should be

provided transparently by the Extraction/Transformation/Loading/Updating layer. At the

 57

other end, the Interfaces/API should insulate the Scheduling core layer by providing a

consistent interface for higher layers.

Since the scheduling framework is intended to be used in ComActivity’s solution (see

section 1.2), the Data Access layer and parts of the

Extraction/Transformation/Loading/Updating layer can be provided by that solution. This is

also the case with user interfaces for controlling the scheduling application and giving

feedback via reports etcetera. The details of this are left outside this dissertation since it is

mostly standard procedures that are general and not specific to this application.

Interface/API

 Scheduling Core

Figure 7.1 Overview of a scheduling system framework

Data access

Extraction/Transformation/Loading/Updating

Model

Algorithms

ERP
Database

Scheduler
Database

Metrics Reports

 58

Figure 7.1 an ERP-system database is shown as an example since this is the most common,

other data sources can be added as required.

To be able to store data that is used by the system, such as parameters and different

versions of the schedule, a database is required. In

Figure 7.1 this is called Scheduler Database.

In the following sections each module of the framework is described.

7.2.1 Data access

Data access should pose no problem. Connecting to, and accessing data from, databases are

standard procedures.

7.2.2 Extraction/Transformation/Loading /Updating

The production data must be extracted from the data sources, transformed into a suitable

format and then loaded into the model. When updating the data sources with information from

the developed schedule, the data in the model must be transformed back to an appropriate

format that can be used to update the data sources.

The extraction involves executing queries against the appropriate tables in the source

databases to retrieve the required information. The data models in these data sources and the

model used in the scheduling system are not the same; therefore a transformation must be

performed. This transformation also makes the model and the data sources independent of

each other. The design of the model and the design of the data sources can vary

independently as long as the transformation is changed accordingly to provide the required

mappings between these.

Updating the data sources with transformed scheduled data from the model, like the

extraction, involves executing queries against the appropriate tables.

The details of this layer are not further related in this dissertation since those details are

highly dependent on the data sources used.

7.2.3 Model

The model is arguably the most important module of the framework. The first criterion it must

fulfill is to be a sufficiently detailed representation of the production environment to make a

schedule that is feasible in the model also feasible in reality. It must also be possible to apply

different algorithms to the model. In addition to this the model must be able to provide

 59

information that makes it possible to develop metrics and reports that satisfy the different

requirements described in section 7.1.3.

The approach taken in this framework is to provide a base model that is as simple as

possible and consists of the parts described in section 3.1, production resources, orders and

operations and materials and subparts. This basic model is primarily a data structure that

stores information and contains as little logic as possible. By keeping the model passive and

putting all logic in the upper layers, such as algorithms, metrics and reports, the framework

can provide flexibility and support different scheduling requirements.

Since different types of algorithms require different model representations as described in

section 4.2 there must be some way to extend the model to provide for this. For instance a

genetic algorithm requires some lightweight representation of the model to store the

population of schedules while a constraint programming approach needs a model that can be

utilized by a constraint programming toolkit. Figure 7.2 shows a way to allow for different

model representations. The basic model is extended with modules in which the model’s

information is transformed into the representations that are required for the particular

algorithms used. An application of this can be for example the combination described in

section 4.3 where dispatching rules are used to develop an initial schedule that is then refined

by simulated annealing. Except for the algorithms no part of the framework should have to

access the representations directly, only via the basic model. This makes the algorithms, and

their required representation, transparent to the rest of the framework. In Figure 7.2, the

metrics and reports modules use the basic model to get their required information.

Figure 7.2. The Basic Model with extensions for different representations

Representation 1 Representation 2

Basic Model

Algorithm 1 Metrics Reports Algorithm 2

 60

It is also possible to use the scheduling components described in section 5.2.2 this way.

The scheduling components only need to interact with the basic model and thus are

transparent to the rest of the framework. The representation can either be part of the

scheduling component and just fed from the basic model or fully provided by an extension of

the basic model. For the algorithm required for the prototype, the basic model is sufficient, no

extension is needed.

In the following sections the different parts of the model are described, UML class

diagrams [11] are used to describe class structures when this is required. These diagrams are

kept as simple as possible and are not complete descriptions of the classes.

7.2.3.1 Handling of dates and times

Much of the information that is handled when scheduling involves dates and times, it is

therefore important to provide for this in the model. The information that must be possible to

handle are date and time of day (e.g. start date and time of an order), time duration (e.g.

duration of an operation) and date/time intervals (e.g. available time in a production resource).

Time duration

Durations in this system are measured in hours and minutes. In manufacturing systems, such

as the one described in the case study, it is common to use time periods that are 1/100 of an

hour instead of minutes. Since time durations are used to manipulate date/time values it is

much more convenient to use an hour minute representation. Therefore the

Extraction/Transformation/Loading/Updating layer (see section 7.2.2) must perform

necessary conversions so that the model is loaded whit durations represented as hours and

minutes.

A class called TimeUnit is used to represent duration. TimeUnit provides methods for

addition, subtraction and multiplication of time durations as well as for adjusting durations by

the utilization rate of resources.

Date/time

Date/time is handled by a class called DateTime which represents a point in time by year,

month, day, hour and minute. DateTime provides methods to add and subtract TimeUnit’s

from the represented date/time as well as other necessary date/time manipulations.

 61

Date/Time interval

The representation of a time interval is useful when manipulating schedules. This is provided

by a TimeInterval class. This class contains start and end DateTimes and methods to

determine the relation to other TimeIntervals (such as before, inside or after). A useful

discussion of time intervals that is often referenced in papers concerning scheduling is [2].

7.2.3.2 Production resources

Production resources in the case study consist of work centers and work center resources. The

available capacity in those resources is described by a calendar, shifts and capacity

adjustments. The calendar describes which dates production is performed, for example that no

production is performed on the Christmas holiday. Shift describes which days and hours a

resource is open, for example Monday to Friday from 7:00 to 16:00. Capacity adjustments

describe temporary adjustments to the capacity described by the calendar and shifts, for

example that a particular resource is working overtime a certain date.

Work centers and work center resources

The class structure of work centers and work center resource is shown in Figure 7.3. The class

WorkCenters is a collection containing all work centers and it is through this class the work

centers are accessed by other classes. The WorkCenter class represents a particular work

center and this in turn contains a collection of WorkCenterResource’s. Both WorkCenter’s

and WorkCenterResource’s are identified by their names.

The class UtilizationRecord is used to store information on how a work center resource is

utilized and also to describe when a work center cannot provide the required capacity. The

latter is referred to as overload intervals. An UtilizationRecord can store information about

which time interval it concerns, which operation that is performed during the interval and a

collection of TimePerDayRecords that describes how much time that is utilized each day. The

collections of UtilizationRecord’s are intended to be used by algorithms to store information,

both for internal use in the algorithms and for later use by the report module.

 62

WorkCenters

getWorkCenter(String)

1

Figure 7.3. Class diagram of production resources

Shifts

The class structure of shifts is described in Figure 7.4. Shifts contain a collection of shifts. A

Shift is identified by its name. Each Shift contains ShiftDay’s which in turn contains

ShiftDayPart’s. A typical shift is seven shift day’s describing Monday to Sunday where

Monday to Friday are production days and Saturday and Sunday are non-production days.

Each production day contains shift day parts which describe open hours of the day, for

instance one part from 7:00 to 12:00 and another from 13:00 to 16:00 which implies a one

hour lunch break between 12:00 and 13:00.

*

WorkCenter 1
description:String

getWorkCenterResource(String)
addOverloadInterval(UtilizationRecord)

WorkCenterResource
description:String
utilization:int
shift:String
numberOfWorkers:int

getInterval(String)
addInterval(UtilizationRecord)

1

**
TimePerDayRecord UtilizationRecord 1 1

interval:DateTimeInterval
operation:Operation
occupied:boolean

* *
date:DateTime
startTime:TimeUnit
endTime:TimeUnit
producedTime:TimeUnit

 63

Shifts

getShift(String)

1

*

Shift
name:String

getDay(int)

1

*

ShiftDay

dayNo:int
productionDay:boolean

getShiftDayParts()

1

*
ShiftDayPart

start:TimeUnit
end:TimeUnit

Figure 7.4. Class diagram of shifts.

Calendar

Since most dates are production days the calendar only has to be represented by a list

containing the dates of non-production days.

Capacity adjustments

Figure 7.5 shows the structure of the classes describing capacity adjustments. If a capacity

adjustment exists for a certain date the information in the adjustment should be used instead

of the information described by the calendar and shifts. A capacity adjustment is identified by

the combination of which work center resource and what date/time interval it concerns. The

capacity adjustments for a particular work center resource cannot have overlapping date/time

intervals. A capacity adjustment for a work center resource concerning a specific date must be

unique.

 64

CapacityAdjustments

getCapacityAdjustment(String, DateTime)

1

*

CapacityAdjustment

workCenterResource:String
interval:DateTimeInterval
shift:String
numberOfWorkers:int
utilization:int

Figure 7.5. Class diagram of capacity adjustments

7.2.3.3 Orders and operations

Operations

The basic entities that describe the work to be performed are the operations. An operation

contains information such as in what work center it should be performed, the expected time

required to perform it (its duration) and the operations adjacent to it (see Figure 4.1).

 Depending on the production environment and the used scheduling method, the

requirements on the information contained in an operation can differ. From the case study,

required additional information is: required materials, pre- and post operation times, operation

status (e.g. started or not started), production time already performed as well as storage of

scheduled start and end and scheduled work center resource.

Figure 7.6 shows a class diagram of the operation structure. An Operation is identified by

internalOpId which is a synthetic id produced by the

Extraction/Transformation/Loading/Updating layer. The reason for this synthetic id is to

provide for easier indexing and sorting of operations. An operation’s material requirements

are represented by the class OperationMaterialRequirement. During the run of the scheduling

algorithm, encountered shortages of material can be stored in a list of

MaterialShortageRecord’s. Different dates for an Operation that are encountered during

scheduling, such as unconstrained and constrained start and end, can be stored as key-value

pairs in a list called scheduling dates.

The class Operations provides access to a collection of operations.

 65

Operations

getOperation(int)

1

*

Operation

internalOpId:int
lastOperationOnOrder:boolean
firstOperationOnOrder:boolean
productionOrder:int
operationNumber:int
description:String
requiredWorkCenter:String
priority:int
productionTime:TimeUnit
setUpTime:TimeUnit
preOperationTime:TimeUnit
postOperationTime:TimeUnit
perfProductionTime:TimeUnit
perfSetUpTime:TimeUnit
numberOfWorkers:int
operationStatus:int
forcedResource:String
forcedStart:DateTime
actualResources:String [1..*]
scheduledDates:DateTime [1..*]
latenessDays:int

getRemaningTime()
addScheduledDate(String, DateTime)
getScheduledDate(String)
getNextOperations()
getPreviousOperations()

Figure 7.6. Operations class diagram

addActualResource()
getActualResources()

1 1

* *

Previous operations Next operations

OperationMaterialRequirement

itemNumber:int
requiredQuantity:float
deliveredQuantity:float
materialStatus:int

*

1 1

*

MaterialShortageRecord

itemNumber:int
internalOpId:float
interval:DateTimeInterval
shortageQuantity:int

 66

Orders

Orders can be seen, at least in the context of scheduling algorithms, as groupings of

operations. The hierarchy of customer order, customer order line, production orders and

operations are shown in Figure 7.7. This can be compared with Figure 6.1. The customer

order in Figure 6.1 actually consists of a customer order and a customer order line.

For scheduling as it is performed in the environment described in the case study, the most

important entities are customer order line, production orders and operations. The customer

order line is associated with one production order representing an object that is to be repaired

in the shop. This order can then be associated with sub production orders representing sub

objects (see Figure 6.1). The production order associated with the customer order line is

called the top production order. One of the operations contained in this order is an assembly

operation that requires the sub objects represented by the sub production orders. Sub

production orders contain information on the top order and the assembly operation in this

order that they are associated with in the nextLevelOrder and nextLevelOperation attributes.

As in the Operation class the order classes also can store key-value pairs of scheduling dates.

 67

CustomerOrders

getOrder(String)

1

*

CustomerOrder
orderNumber:String
productNumber:String
customerNumber:int
customerName:String

Figure 7.7. Orders class diagram

1

*

getOrderLines()
getOrderLine(int)

CustomerOrderLine
orderNumber:String
orderLine:int
productNumber:String
topProductionOrder:int
plannedArrivalDate:DateTime
prelDueDate:DateTime
agreedDueDate:DateTime
scheduledDates:DateTime [1..*]
latenessDays:int

1

*

ProductionOrder
orderNumber:int
orderStatus:int
productNumber:String
priority:int
nextLevelOrder:int
nextLevelOperation:int
scheduledDates:DateTime [1..*]
latenessDays:int

isTopLevelOrder()
getOperations(int)

1

1 *

Sub orders

*

Operation

 68

7.2.3.4 Materials and subparts

Materials and sub-parts are handled the same way in this model, both are described as

materials. The class structure for materials is shown in Figure 7.8. A specific material is

identified by its item number. Initially a material has an on hands balance, which is the

quantity available in stock, and possibly pending deliveries from the supplier. The attribute

leadTimeDays is the number of days required to get the material in stock either when ordered

from a supplier or manufactured in the company. The class MaterialRequirement is intended

to be used by algorithms to keep track of which operations that require the material and by

which date it is required.

Materials

getMaterial(String)

1

*

Material
itemNumber:String
description:String
onHandsBalance:Float
leadTimeDays:int
orderQuantity:Float

Figure 7.8. Class diagram of materials

* *

1 1

MaterialRequirement MaterialDelivery
productionOrder:int deliveryDate:DateTime
operationNumber:int description:String
sequenceNumber:int orderQuantity:Float
quantity:Float availableQuantity:Float
scheduledRequirementDate:DateTime

 69

7.2.4 Algorithms

The algorithms required for the prototype should utilize a dispatching rule using the due dates

of customer order lines to determine priority, in combination with considering the constraints

imposed by work center capacities and available materials. The developed schedule should be

forward scheduled, that is every operation is to be executed as early as possible.

In this section pseudo-code with some java-like constructs is used to describe the

algorithms.

7.2.4.1 Algorithm primitives

To provide for modularity and easier implementation of algorithms, a set of algorithm

primitives is defined. This set contains methods for getting the earliest end of a list of

operations given a start date/time, for getting the latest start of a list of operations given an

end date/time and for getting the earliest available date for a list of materials. It is in these

algorithm primitives the actual finite capacity scheduling is performed since they operate on

the lowest level and therefore in detail must consider all constraints imposed on the

production environment.

Getting earliest end of an operation given a start date/time

When forward scheduling, a start date/time is known and an end date/time is to be

determined. An operation has a duration time, pre- and post operation times and a required

work center it should be performed in. The work center consists of a number of similar work

center resources that can perform the operation. Each work center resource has a utilization

rate, a shift associated with it, possibly capacity adjustments and a list of utilization records

describing available and occupied intervals of the resource. Given this information the

problem is to determine in which of the work center’s resources the operation should be

performed to get the earliest end date/time. An algorithm to do this is shown in Figure 7.9.

For each work center resource the intervals describing the time available to perform work are

used to determine when the operation can be performed. This is done by checking the

calendar, the shift associated with the resource and possible capacity adjustments of the

resource. The start and end of the operation that is derived from the work center’s resources

are compared and the operations actual resource is set to the resource giving the earliest end.

 70

ALGORITHM TO DETERMINE END OF AN OPERATION WITH GIVEN START

function getEarliestOperationEnd(start, operation)

begin

 resources = operation.workCenter.getWorkCenterResources

 for each resource in resources do

 requiredOpTime = operation.duration/resource.utilization

 availableIntervals = the resources utilization intervals

 that are not occupied

 order availableIntervals using start, from earliest to latest

 while availableIntervals.hasMoreElements do

 availableInterval = availableIntervals.getNextInList

 if availableInterval.end after start and requiredOpTime can

 be performed in availableInterval then

 if start after availableInterval.start then

 tempStart = start

 else

 tempStart = availableInterval.start

 end if

 tempEnd = operation end calculated using requiredOpTime

 end if

 end

 if currentEarliestEnd is set then

 if tempEnd before currentEarliestEnd then

 currentStart = tempStart

 currentEarliestEnd = tempEnd

 currentEarliestResource = resource

 end if

 else

 currentStart = tempStart

 currentEarliestEnd = tempEnd

 currentEarliestResource = resource

 end if

 end
 operation.start = currentStart

 operation.end = currentEarliestEnd

 71

 operation.actualResource = currentEarliestResource

 return

end

Figure 7.9. Algorithm to determine earliest end date/time of an operation when the start

date/time is given.

Getting latest start of an operation given a end date/time

Backwards scheduling of an operation is performed by from a given end date/time and

determining the latest start date/time of the operation. An algorithm for this is shown in

Figure 7.10. The basic structure of the algorithm is like the one in Figure 7.9 but the available

intervals are searched from the latest end to the earliest using the given end as a starting point.

ALGORITHM TO DETERMINE START OF AN OPERATION WITH GIVEN END

function getLatestOperationStart(end, operation)

begin

 resources = operation.workCenter.getWorkCenterResources

 for each resource in resources do

 requiredOpTime = operation.duration/resource.utilization

 availableIntervals = the resources utilization intervals

 that are not occupied

 order availableIntervals using end, from latest to earliest

 while availableIntervals.hasMoreElements do

 availableInterval = availableIntervals.getNextInList

 if availableInterval.end before or equal to end and

 requiredOpTime can be performed in availableInterval

 then

 tempEnd = end

 tempStart = operation start calculated using

 requiredOpTime

 end if

 end

 if currentLatestStart is set then

 if tempStart after currentLatestStart then

 currentLatestStart = tempStart

 currentEnd = tempEnd

 currentLatestResource = resource

 72

 end if

 else

 currentLatestStart = tempStart

 currentEnd = tempEnd

 currentLatestResource = resource

 end if

 end
 operation.start = currentLatestStart

 operation.end = currentEnd

 operation.actualResource = currentLatestResource

 return

end

Figure 7.10. Algorithm to determine latest start date/time of an operation when the end

date/time is given

Determine earliest available date of materials required to perform an operation

The materials required to perform an operation have to be available when the execution of the

operation is started. To do this, the availability of each required material has to be checked.

The earliest available date of the materials required to perform an operation is the latest

available date found among the required materials. Figure 7.11 shows an algorithm to do this.

If a materials on-hands balance is more than the required quantity the available date is today,

else the deliveries must be checked to determine if these can satisfy the request (there might

be previous allocations from other operations). If a delivery can satisfy the request the

available date is this delivery date. If neither a materials on-hands balance nor a future

delivery can satisfy the request, the available date is set to today plus the number of days that

is the purchasing leadtime of the material. The purchasing leadtime of a material is the time

expected to elaps from purchase until the material is available for use on the shop floor.

 73

ALGORITHM TO DETERMINE AVAILABLE DATE OF MATERIALS REQUIRED TO

PERFORM A GIVEN OPERATION

function getEarliestMaterialAvailableDate(operation)

begin

 opReqMaterials = operation.getRequiredMaterials

 for each opReqMaterial in opReqMaterials do

 material = Materials.getMaterial(opReqMaterial.itemNumber)

 if material.onHandsBalance >= opReqMaterial.quantity then

 material.onHandsBalance = material.onHandsBalance -

 opReqMaterial.quantity

 availableDate = today

 else if material delivery exists then

 determine delivery date of delivery that can satisfy the

 requirement.

 Allocate the required quantity in found delivery

 availableDate = delivery date of found delivery

 else

 availableDate = today + material.leadtime

 end if

 if earliestAvailableDate is set then

 if availableDate after earliestAvailableDate then

 earliestAvailableDate = availableDate

 end if

 else

 earliestAvailableDate = availableDate

 end if

 end

 return earliestAvailDate

end

Figure 7.11. Algorithm to determine earliest available date of materials required to

perform a given operation.

 74

7.2.4.2 Basic algorithm

This section describes a basic algorithm that uses the scheduling primitives described in

section 7.2.4.1 to develop a schedule satisfying the requirements in section 7.1.3.1. The steps

for developing a schedule using this algorithm are:

1. Backwards schedule all customer order lines from their respective due dates without

considering the constraints imposed by work center capacities and availability of

materials to get an optimal schedule (the schedule is optimal by the definition given in

section 3.4). This schedule is used as a reference to compare other schedules.

 What can be derived from this schedule are those operations and orders that are, or

probably are going to be, late even if work centers available capacities and materials

availability were unconstrained because derived start and/or end of operations are

before a given schedule start date.

2. Forward schedule all customer order lines from a given start date considering the

constraints imposed by work center capacities and availability of materials. To find

out which orders and operations that are late because of unavailable materials, the start

and end of operations are first derived without the constraint imposed by material

availability. The earliest material availability date is then checked and compared to the

derived start date of the operation. If the earliest material availability date is after the

derived operation start date this fact is stored in the operation and new operation start

and end date/time’s are derived using the earliest material availability date as start

parameter.

1. Backwards scheduling using unconstrained capacity

Since this scheduling method decomposes the problem at the order (or job) level as described

in section 3.5.3.3, the fundamental operation is to schedule a sequence of operations. Figure

7.12 shows a sequence of operations. An operation in this figure has a duration, a pre

operation time and a post operation time. The duration that is used during scheduling is the

calculated duration derived from the planned duration of the operation and the resource’s

utilization rate. If for example the operations planned duration is one hour and the resource’s

utilization rate is 80%, the duration used when scheduling is 1.2 hours. Pre- and post

operation times can be 0 or higher. In Figure 7.12, the operations are executed in order from

O1 to On.

 75

Figure 7.12 Operation sequence

An algorithm to backwards schedule a sequence of operations is shown in Figure 7.13. The

algorithm starts with the last operation in the sequence and schedules the operations one by

one backwards through the sequence.

ALGORITHM TO BACKWARD SCHEDULE A SEQUENCE OF OPERATIONS

function backwardScheduleOperations(endDate, operations)
begin

 sort operations from last to first

 Operation curOp, nextOp

 while operations.hasMoreElements do begin

 curOp = operations.getNextInList

 Date opStart

 if curOp is first in list then

 opEnd = endDate - curOp.postOperationTime

 else

 opEnd = nextOp.start - nextOp.preOperationTime -

 curOp.postOperationTime

 end if

 getLatestOperationStart(opEnd, curOp)

 nextOp = curOp

 end

end

Figure 7.13. Algorithm to backward schedule a sequence of operations

O1

O1 pre
operation
time

O1 post
operation

time

O2 pre
operation
time

O2 post
operation

time

O1 duration

O n -1 pre
operation
time

O n -1 post
operation

time

O2 O n - 1 O n

O n pre
operation
time

O n post
operation

time

O2 duration O n - 1 On duration

EndStart

Execution order

 76

Figure 7.14 shows a sequence of operations ordered from last operation to first as used in the

algorithm described in Figure 7.13. In the figure, the parameters endDate and operations are

shown together with the variables nextOp and curOp. The operations are visited from On to

O1. The figure shows the state of the variables when the algorithm is in the second iteration of

the while loop.

nextOp curOp

O n - 1

Figure 7.14 Operation sequence as used in Figure 7.13

Figure 7.15 shows how the algorithm described in Figure 7.13 is used to backward schedule a

list of customer order lines. The dispatching rule uses the due date of the order lines to set the

priority order of jobs to be scheduled.

ALGORITHM TO BACKWARD SCHEDULE CUSTOMER ORDER LINES

customerOrderLines = list of customer-order lines to be scheduled

Date schStart (start date of schedule)

Sort customerOrderLines in decreasing due date order

while customerOrderLines.hasMoreElements do begin

 customer-order-line orderLine = customerOrderLines.getNextInList

 production-order topProdOrder = orderLine.getTopProdOrder

 backwardScheduleOperations(orderLine.dueDate,

 topProdOrder.getOperations)

 topOrder.start = start of first operation on order

 if topProdOrder has sub-order then

 subOrderList = topProdOrder.getSubOrders

 while subOrderList.hasMoreElements do begin

 production-order subOrder = subOrderList.getNextInList

 topOrderOp = topOrder.getOperation(suborder.nextLevelOp)

 subOrderEnd = topOrderOp.start

On O n - 2 O1· · ·

endDate operations

 77

 backwardScheduleOperations(subOrderEnd,

 subOrder.getOperations)

 end

 end if

end

Figure 7.15. Algorithm to backward schedule customer order lines.

2. Forward scheduling using constrained capacity

As described above the fundamental operation when a scheduling problem is decomposed at

the job level is to schedule a sequence of operations (see Figure 7.12). When forward

scheduling, the problem is to find the earliest end of the last operation in a sequence of

operations. To do this the sequence has to be ordered from the first operation to the last and

then the operations are visited in order. The first operation’s start is given and the other

operations get their start from the determined end of the previous operation. In the order

structure described in section 7.2.3.3, a top level order has one operation that is connected to

the sub-orders. The end date of the latest sub-order must be considered when scheduling this

operation. An algorithm for this is shown in Figure 7.16. This algorithm satisfies the

constraint imposed by work center capacities by storing the intervals needed to perform the

operations as occupied intervals in the resources. The constraint imposed by material

availability is satisfied by checking the earliest material availability date and reschedule

operations if material is unavailable.

ALGORITHM TO FORWARD SCHEDULE A SEQUENCE OF OPERATIONS

function forwardScheduleOperations(startDate, operations,
 subOrdersConnectOp, subOrdersEnd)

begin

 sort operations in order from first to last

 Operation curOp, prevOp

 while operations.hasMoreElements do begin

 curOp = operations.getNextInList

 Date opStart

 if curOp = subOrdersConnectOp then

 78

 if curOp is first in list then

 opStart = subOrdersEnd + curOp.preOperationTime

 else

 opStart = max(prevOp.end + prevOp.postOperationTime,

 subOrdersEnd)

 opStart = opStart + curOp.preOperationTime

 end if

 else if curOp is first in list then

 opStart = opStart + curOp.preOperationTime

 else

 opStart = prevOp.end + prevOp.postOperationTime +

 curOp.preOperationTime

 end if

 getEarliestOperationEnd(opStart, curOp)

 Date matAvailDate = getEarliestMaterialAvailableDate(curOp)

 if matAvailDate after opStart then

 store this fact in the operation

 getEarliestOperationEnd(matAvailDate, curOp)

 end if

 WorkCenterResource resource = curOp.actualWorkCenterResource

 resource.addOccupiedInterval(curOp.start, curOp.end)

 prevOp = curOp

 end

end

Figure 7.16. Algorithm to forward schedule a list of operations

Figure 7.17 corresponds to Figure 7.14 and shows a sequence of operations ordered from first

operation to last as used in the algorithm described in Figure 7.16. In the figure, the

parameters startDate and operations are shown together with the variables prevOp and

curOp. The operations are visited from O1 to On. The figure shows the state of the variables

when the algorithm is in the second iteration of the while loop.

 79

prevtOp curOp

Figure 7.17 Operation sequence as used in Figure 7.16

Figure 7.18 shows how the algorithm described in Figure 7.16 is used to forward schedule a

list of customer order lines.

ALGORITHM TO FORWARD SCHEDULE CUSTOMER ORDER LINES

customerOrderLines = list of customer-order lines to be scheduled

Date schStart (start date of schedule)

Sort customerOrderLines in decreasing due date order

while customerOrderLines is not empty do begin

 customer-order-line orderLine = customerOrderLines.getNextInList

 production-order topProdOrder = orderLine.getTopProdOrder

 if orderLine.releaseDate after schStart then

 ordStart = orderLine.releaseDate

 else

 ordStart = schStart

 end if

 toStart = ordStart

 if topProdOrder has sub-order then

 subOrderList = topProdOrder.getSubOrders

 while subOrderList.hasMoreElements do begin

 production-order suborder = subOrderList.getNextInList

 forwardScheduleOperations(ordStart, subOrder.getOperations,

 0, 0)

 set subOrder end date to end of last operation on order +

 postOperationTime of last operation

 end

O1 O 2 O n - 1 On· · ·

startDate operations

 80

 subOrdEnd = latest end date of orders in subOrderList

 end if

 forwardScheduleOperations(ordStart, topProdOrder.getOperations,

 topOrder.subConnectOp, subOrdEnd)

 set topProdOrder end date to end of last operation on order +

 postOperationTime of last operation

 set orderLine end date to end date of topProdOrder

end

Figure 7.18. Algorithm to forward schedule customer order lines

7.2.4.3 Further developments of algorithms

Some details have been left out of the algorithms described in the previous sections. The

reason for this has been to focus on the basic structure of the algorithms and not having to

deal with special cases and exceptions that occur in a real production environment. Details

that must be added when using the algorithms in a real production environment are:

- Handling of started operations. All started operations must be scheduled before

operations that are not started. Since an operation can be started anywhere in the

operation list of an order if such a opportunity occurs on the shop floor, there can be

situations where an operation earlier in the list can get a derived end later than the end

of following started operation. To handle this it has to be made sure that an operation

cannot start before any of the operations preceding it. Changes to handle started

operations are required in the algorithm shown in Figure 7.16.

- Handling of finished production orders. Since some or all of the suborders associated

with a top production order may be already finished, this must be handled in the

algorithms shown in Figure 7.15 and Figure 7.18.

- Handling of external priorities. This can be seen as an extension of the used

dispatching rule. An example can be to first sort the orders by external priority, then

by due date.

- Storing information required for metrics and reports that is found during algorithm

execution. This can for example be how long an operation must wait in queue before it

is executed at a work center or how long an operation is delayed because of missing

 81

materials. Exactly what information that should be stored depends on what is required

by the metrics and reports.

- Handling of missing or inconsistent data. In real production environments, situations

can occur where the data used for scheduling is missing or inconsistent. This can be

handled either in the algorithms, in the Extraction/Transformation/Loading/Updating

layer or by a combination of both. How it should be handled depends on the situation

but the user must in some way be notified of these problems. The goal should be to

detect the problems as early as possible, preferably during extraction and loading. The

user can then be notified about the problems and solve these before the algorithms are

run. Some inconsistencies can be difficult to find during extraction and loading,

therefore the algorithms probably must contain some sort of handling of these

exceptions.

For the prototype, the algorithms must handle started operations and finished production

orders. Adding this functionality to the algorithms in question should pose no difficulties

since no changes to the structures of the algorithms are required. The changes mostly involve

performing additional checks at appropriate places.

Handling of external priorities is not implemented in the prototype. The only part of the

algorithms effected by external priorities are the sorting of customer order lines. To add this

functionality later should be relatively easy.

The metrics and reports information that should be stored by the prototype are when an

operation cannot be performed as required because of overloaded work centers and when an

operation is delayed because of material shortages.

The data used to test the prototype should not contain any missing or inconsistent

information; therefore no handling of this is required.

7.2.5 Metrics and Reports

The responsibility of the Metrics and Reports modules is to provide information that is

required to produce reports and other visualizations for feedback to the user of the scheduling

system. This information can either be communicated to clients of the framework via the

Interface/API layer or stored in appropriate data sources and then retrieved directly from these

sources by the client.

 82

7.2.5.1 Metrics

Metrics can be for example the lateness of orders and operations or the utilization of work

centers. Metrics can be used both by algorithms, such as the metrics used by the different

dispatching rules described in section 3.5.2, and by upper layers to provide feedback for users.

The metrics module is responsible for performing the calculations of these metrics. This

involves getting the required information from the model, performing the calculations and

then storing the derived values at appropriate places in the model.

7.2.5.2 Reports

The Reports module is intended to be used when processing of information is required to

facilitate special reports and other visualizations. This can for example be to structure the

information to be suitable for use by an interactive Gantt chart and also for providing

functionality to communicate back to the model on actions performed in the interactive chart.

The report requirements from the case study do not require the use of the report module.

7.2.6 Interface/API

The framework should provide a complete interface for its functionality via the Interface/API.

This layer is a façade [13] for the framework. Exactly how this should be designed cannot be

determined at this point. It has to be further investigated when the framework is integrated

with ComActivity’s solution. For the purpose of the prototype it is sufficient to provide

functionality to load the model and to run the algorithm.

7.3 The Prototype

The purpose of the prototype is to implement the model and algorithm modules of the

scheduling core layer to be used as a proof of concept. Some parts of the Metrics module are

also implemented to show how information required by reports and visualizations can be

derived.

To test the prototype required parts of the data access,

extraction/transformation/loading/updating and interface/API modules have been

implemented but the details of this are not described.

 83

7.3.1 Functionality

The functionality provided by the prototype is the possibility to produce schedules by

applying the algorithms described in section 7.2.4 to the model described in section 7.2.3. The

algorithms described in Figure 7.9 to Figure 7.18 are implemented together with a control

interface. A prerequisite is that the model is loaded with data.

7.3.2 Implementation

The prototype consists of four top-level packages model, algorithms, metrics and util. These

packages contains sub-packages that further groups the classes. A diagram of the top-level

classes is shown in Figure 7.19.

Figure 7.19. UML package diagram of top-level packages of the prototype.

Algorithms

Metrics

Model

Util

 84

7.3.2.1 Model

The model package consists of the classes that implement the model as described in section

7.2.3. These classes are grouped into appropriate sub-packages as shown in Figure 7.20.

model

Model

Figure 7.20. The model package.

The class Model is a façade that provides access to the model. The orders sub-package

contains the classes shown in Figure 7.7 except the Operation class, the operations sub-

package the classes described in Figure 7.6 and the materials sub-package the classes shown

in Figure 7.8. The resources sub-package contains the classes shown in Figure 7.3, Figure 7.4,

Figure 7.5 and a class representing the calendar as described in section 7.2.3.2.

The data structures of the model are implemented using the Java Collections framework

[38][7]. See appendix A for the model package code.

Orders

Operations

Materials

Resources

 85

7.3.2.2 Algorithms

The algorithm package contains classes that implement the algorithms and classes that

perform calculations and comparisons. Figure 7.21 shows the algorithm package.

algorithms

<< interface >>

Algorithm

BasicAlgorithm

AlgorithmPrimitives

Calculations CapacityRequest

Comparators MaterialRequest

Figure 7.21. The algorithm package.

The algorithm interface should provide the interface for clients to control the algorithm in the

package. In the prototype this just contains the method runAlgorithm. The BasicAlgorithm

class implements the algorithm described in section 7.2.4.2 and AlgorithmPrimitives the

algorithms described in section 7.2.4.1. The Calculations class implements calculations and

logic that are required by the algorithms and by the metrics package. The Comparators class

implements comparators that are required for sorting the collections contained in the model

package. The CapacityRequest and MaterialRequest classes are command classes used to

transfer parameters in the algorithm classes. See appendix A for the algorithm package code.

 86

7.3.2.3 Metrics

The metrics package contains classes for performing calculations and retrieving of

information required in reports and other visual presentations. Figure 7.22 shows a diagram of

the package.

metrics

LatenessCalculator

LeadtimeCalculator

UtilizationCalculator WorkCenterDayUtilizationRecord

Figure 7.22. The metrics package.

The calculations implemented are lateness of orders and operations, leadtime of orders and

utilization of work centers. The classes for this are LatenessCalculator, LeadtimeCalculator

and UtilizationCalculator. The WorkCenterDayUtilizationRecord class is used by the

UtilizationCalculator to store information. See appendix A for the metrics package code.

 87

7.3.2.4 Utils

The util package contains utility classes used in the scheduling framework. These are classes

to handle the management and manipulation of date and time and for handling constants.

Figure 7.23 shows the util package.

util

datetime constants

DateTime

DateTimeInterval

TimeUnit

SchedulingConstants

Figure 7.23. The util package.

See appendix A for the util package code.

 88

8 Results

In the preceding chapters, production scheduling and production scheduling systems has been

investigated. As described in chapter 2, scheduling is the last step in a chain of activities

carried out in a company to perform production. Scheduling determines in detail how

production is executed on the shop floor and thus directly affects the overall performance of a

company. Therefore scheduling, and how it is performed, is an important part of the

management of a company.

There exists a great deal of interest from industry to utilize software systems to support and

improve scheduling and to facilitate the application of advanced scheduling methods. The

purpose of this dissertation has been to investigate which functional requirements there are on

such systems. Since the practical use of advanced scheduling methods has shown to be

problematic, the aim has been to find requirements that are derived from real production

environments and methods that can be put to use in such environments. The investigation has

been conducted through literature studies and by performing a case study in a company that

uses a scheduling system. From the requirements derived, a scheduling system framework has

been proposed and a prototype of the core functionality in this framework has been

implemented.

The case study has been a very important part of the investigation. By using experiences

gathered from the practical use of a scheduling system it has been possible to find

requirements that are derived from real needs. Although the aim in this dissertation has been

to be as general as possible about production scheduling, the size and diversity of the area

requires a tighter focus and the case study has provided for this. The type of production

environment that exists in the shop studied in the case study has been the basis of the

investigation. This environment can be characterized as a job shop with diverse production

and small order quantities with often complex relationships between orders.

 89

8.1 Difficulties in the implementation and use of scheduling systems

Since the implementation and use of scheduling systems has shown to be problematic, it has

been important to investigate the reasons for this and how these difficulties may be overcome.

As described in chapter 3, the difficulties in the implementation and use of a scheduling

system can be divided into problems concerning the modeling of production environments

and problems involving human aspects of using the system.

8.1.1 Modeling difficulties

To be able to use a software system for scheduling, the production environment must be

represented as a model in the system. Due to the fact that a typical production environment is

very complex and always involves some degree of uncertainty, developing a model of such an

environment can prove difficult. As with all modeling activities the problem is to find a good

enough approximation of reality without getting the model to complex. In a scheduling

system the model must represent the production environment in enough detail to make the

developed schedules useful. What enough detail in the model actually means must be

determined for the particular environment in question. Factors that must be considered when

determining this are:

- The purpose of the developed schedules. As described in chapter 3, schedules can be

used for other purposes than the obvious one of how to execute production on the shop

floor. For instance, if a schedule is just to determine system capacity for a higher level

production planning system, the required level of detail might be less than if the

schedule is to be executed in reality.

- Handling of uncertainties. The uncertainties that can occur in a production

environment are described in section 3.6.1. The general rule related in section 3.5

which says that the more randomness that exists in an environment, the simpler the

scheduling methods should be, also applies to the model and is very important to keep

in mind. The value of putting effort into detailed modeling of an unstable environment

with high levels of randomness is questionable. It is probably wiser to first try to

remove as many of the uncertainties as possible. Some level of uncertainty will always

exist and this can be handled both in the model and in the applied algorithms. The

most common method is probably a combination of the two. In the environment

described in the case study uncertainties are handled by setting the utilization rate of

 90

resources to less than 100% and using the slack put into the schedule by this to deal

with unforeseen events.

- Effort required to keep the model updated. If the model is complex and contains many

details, it requires more effort to keep it updated. The cost and time required to keep

the model updated must be put in relation to the value of the effort. That is, the value

of the schedules produced must be worth the effort required to develop them. Since an

updated model is most often as important as a sufficiently detailed model when it

comes to developing schedules that are feasible, these two aspects must be considered

together.

- The information requirements of the algorithms that are going to use the model.

Different algorithms can have different information requirements which must be

satisfied by the model. In Figure 7.2, a basic model with extensions for different

algorithms is shown. In such a design it is important to notice that sufficient level of

detail must exist in the basic model, the extension can then add details.

- General versus special cases. It is important to differentiate between the general case

and cases that occur in special situations. This is related to the effort to keep the model

updated as described above. An example of this from the case study is when parts of

an operation require two workers to perform. If this should be modeled the operation

would have to be split into two (or even three) operations. The effort required to do

this has not been termed necessary, instead the time required from the second worker

is taken from the slack that is put into the schedule by setting the utilization rate of the

resources to less than 100%. In the environment described in the case study, that a part

of an operation which requires two workers has been termed a special case. When

determining the level of detail to describe in a model, one approach can be to start

with the general case and then add the special cases that are shown to occur most

frequently and have the most impact on scheduling. Another way of handling special

cases is to let the algorithm find them and signal this. It is then up to the scheduler to

handle these cases manually in some way.

A general principle that is very important when modeling a production environment is that the

complexity of the model and the effort required to keep it updated must always be put in

relation to the value of the schedules produced. If for instance the scheduling method

proposed to be applied to an environment requires a complex model which in turn requires

 91

much effort to keep updated, maybe a less ambitious scheduling method requiring a simpler

model should be considered. The solution to strive for would be the simplest model and

scheduling method that satisfies the scheduling requirements, and by that the general goals, of

the company.

8.1.2 Human aspects

As described in section 3.6.2, scheduling has traditionally been a manual operation performed

by skilled and experienced personnel with thorough knowledge of the production

environment in question. A scheduling system can never replace this; it will always be a tool

to be used by the person developing the schedules. Scheduling systems have a reputation of

being complicated to use and produce schedules that are hard to understand. This has been

one cause for failed implementations of such systems. To get a system accepted and seen as

an aid in the scheduling activities it is important that the system is easy to use and that the

schedules produced by the system are feasible (possible to execute on the shop floor) and

transparent (the user should be able to follow how the schedule has been derived).

When implementing a scheduling system it is very important that all parties affected by the

system understand and accept the implications of using such a system. Due to the general

difficulties involved in the scheduling activities, such as prediction of the future and handling

of large amounts of information, when this process is formalized in a system it becomes very

important that all interested parties perform the activities required for the system to work.

Examples of this are to follow the developed schedules and reporting performed work. When

using a scheduling system, all relevant information must be available in the system. It is very

easy to make a schedule infeasible by for example taking decisions that are not in accordance

with the information in the schedule or to use informal ways, which are not reflected in the

system, to exchange information. Such decisions might affect other parts of the schedule,

potentially making dependent activities impossible to perform and thus making the schedule

useless. Getting interested parties involved is therefore necessarily a large and important part

in the implementation of a scheduling system. This is probably also a hard part since it is not

uncommon in planning situations that people are used to taking fast decisions to solve

problems that occur. When a scheduling system is used, such decisions must fit in with the

information that exists in the schedule. By some people in an organization, a scheduling

system can therefore be seen as obstacle in their daily work. Getting those people to accept

the use of the system, and hopefully beginning to see how the system can support them in

their work, is very important. One reason to use a scheduling system is often to get a global

 92

view of the scheduling situation and take decisions based on this view. If people continue to

take local decisions the system is not going to work as intended. It is easy to see that this can

be a problem since in reality there can exist situations where a fast decision can make it

possible to take advantage of an opportunity that occurs, for instance by unexpected available

capacity in a production resource. It could be argued that a scheduling system makes it

difficult to take advantage of such situations. This is an aspect that must be considered when

deciding on the scheduling method to apply in an environment and is connected to how much

uncertainty there is in the environment. Opportunities like the one described above occur

because of some fact that was not known when the schedule was developed. If this occurs

often the scheduling method might not be suitable for the environment. Since all

environments contain some level of uncertainty, one approach could be to allow local

decisions to some degree. In the environment described in the case study, this is accomplished

by setting a lower utilization level for resources. The slack put into the schedule by this leaves

room for local decisions. The difficult part is to know when the local decisions affect the

schedule so much that a reschedule is required. In the job shop studied no explicit rule for this

exists, but since a reschedule is performed every day the effects of the local decisions are

incorporated daily into the schedule.

Getting interested parties involved in the implementation of a scheduling system and

gaining a wide acceptance is crucial for a successful implementation. The possibilities

available in the scheduling system to be adapted to a particular environment largely affect

this. The system must be flexible enough to provide the scheduling functionality required and

provide user interaction that suits the environment. Apart from possibility to support the

scheduling method decided for the production environment, without which the system

hopefully would not have been chosen, the ability to provide suitable user interaction is very

important for the acceptance of the system. This is of course a general requirement for

software systems, but it becomes even more important here because of the circumstances

described above where there can exist arguments for not using the system. If the user interface

can be highly adapted to the tasks to be performed, it is easier to get people involved and

hopefully realize the support the system can provide.

 93

8.2 Reasons for implementing a scheduling system

The overall reason for using a scheduling system is of course to produce schedules that satisfy

the scheduling objectives of the company (see section 3.2). It is useful to investigate this in

more detail and determine what the scheduling system can provide that is hard to perform in a

manual system. As described in chapter 3, there can be different reasons for developing a

schedule. The most common reason and the one discussed here is to develop a schedule that

can be executed on the shop floor. From the environment described in the case study, the

following reasons where termed important when the decision to implement a scheduling

system was taken (see section 6.1.1):

- Obtain a global view of the current production situation that is shared among all
participants in the scheduling process.

- Take informed scheduling decisions that satisfy the overall objectives of the shop and
consequently minimize local, potentially sub-optimizing, decisions.

- Execute, and provide feedback on, the schedule decided on the shop floor

- Reduce lead-time and improve the accuracy in the due dates that are promised to
customers

- Solve problems early, hopefully before they disturb the production and affects
deliveries.

These reasons are probably fairly general and occur in most production environments where

the implementation of a scheduling system is considered. The aspect that appears to be most

important is the visualization of the production situation. To share a common view of the

current production situation, and to use this as a base for scheduling decisions, is an important

reason to use a scheduling system. To visualize the production situation, and to communicate

this, appears to be more important than for the system to produce an optimized schedule. It

can be argued that to have a common view of the production situation among the interested

parties is a requirement before advanced scheduling methods can be applied. Without this

common view, even if an optimal schedule existed, it would be difficult to use in practice

since it could not be communicated in the required way. The human aspects of this were

described in section 8.1.2.

To produce this common global view of the production situation requires a significant

amount of information processing that a scheduling system can provide. The level of detail

required in this global view, and the cost of keeping the information updated, in relation to the

value the view provides where discussed in section 8.1.1.

 94

8.3 Application of advanced scheduling methods and theories

From the discussion in sections 8.1 and 8.2, it can be argued that the most important part of a

scheduling system is the ability to provide a common global view of the production situation

in an environment and to visualize this in different ways. Only when this is in place it is

possible to consider the application of advanced scheduling methods. As described in chapter

3, the use of optimizing methods is only in question when the production environment is very

stable and the level of randomness and uncertainty are low. The use of optimizing methods

also probably incurs higher cost to keep the model updated since the requirement of details in

this is high. For most production environments, the question is to find a suitable scheduling

method that can work with the uncertainties in the environment while at the same time giving

the possibilities to fulfill the scheduling objectives of the company. From the requirements

derived from this it can be useful to study the theoretical aspects of scheduling methods which

were overviewed in chapter 4. The application of these theories must always be with a model

that is possible to keep updated as described in section 8.1.1 in mind, together with the

requirement from section 8.1.2 that the developed schedules must be transparent and possible

to understand. The use of a complex method might require specialized skills to understand

and control from the personnel using it.

One approach to the application of advanced scheduling methods might be to start with the

common global view as described above and then apply more advanced method as the need

occurs. When this global view is in place and all interested parties shares a common view the

application of more sophisticated methods might come naturally. Information can probably be

derived from this visualization of the production environment that has not been available

before, and this might reveal possibilities to apply scheduling methods that was not apparent

earlier.

 95

8.4 Requirements on a scheduling system

Section 7.1 describes requirements on a scheduling system gathered from literature studies as

related in chapters 2 to 5 and the case study described in chapter 6. These can be grouped into

external requirements concerning the usage of the system and those of a more technical,

internal character. Many of the external requirements concern the possibilities of visualizing

the production environment in a way that suits the particular needs of the environment in

question and the ease of use of the system. The internal requirements are derived from the

external requirements and must be satisfied to provide the functionality needed to satisfy the

external requirements.

8.4.1 External requirements

The external requirements can in large part be derived from the discussion in section 8.1.2 on

the human aspects of implementing a scheduling system and the discussion in section 8.2 on

the reasons for implementing a scheduling system. External requirements can be grouped into

visualization of the production environment and control of the developed schedules.

8.4.1.1 Visualization

Arguably the most important aspect is to provide a visualization of the production

environment. The reason for this is that the visualization is what makes it possible to get a

common global view of the production environment that can be shared among all parties

affected by the schedule. This is fundamental to the successful use of a scheduling system.

Visualization is accomplished via reports and other graphical representations. Examples of

this are Gantt charts and load diagrams as described in section 5.2.1.3. Since how this is done

plays a crucial part in getting a scheduling system accepted and actually used, it is important

that the system provides flexible means for this.

8.4.1.2 Control

To control how the schedule is developed is also an important part in the external

requirements on a scheduling system but since this affects fewer users these requirements are

not as important as the visualization requirements. This said, there exists no reason why a

scheduling system cannot satisfy both requirement groups equally well.

The control of the development of schedules involves such aspects as setting parameters

that affects how schedules are developed and also encompasses the requirement that the

schedules produced should be possible to understand. It is important that the system provides

the scheduling support required for the environment in question and should be possible to

 96

adapt to the particular needs of the users. Examples of this can be extensions of the

requirements for visualization such as interactive Gantt charts where the schedule can be

manipulated.

8.4.2 Internal requirements

The internal requirements are derived from the external requirements and are requirements on

the core functionality of the system. Examples of this are interaction with different data

sources, flexible and adaptable modeling of production environments and possibilities to

implement and apply different scheduling algorithms.

The most important part is the modeling capabilities of the system. It must be possible to

develop a model that represents the production environment in a way that is suitable for the

chosen scheduling method. The model must provide information required for the scheduling

algorithms that are applied as well as for the different reports and graphical representations

that are used to visualize the production environment. With the model as a base, the system

must then provide ways of implementing the algorithms required for the chosen scheduling

method.

8.4.3 A proposed scheduling system framework

The proposed scheduling system framework is described in chapter 7. The aim with the

framework is to primarily satisfy the internal requirements as described above. The core

functionality of the system determines how the external requirements can be satisfied and the

design of this is the most important. To satisfy the external requirements, the main aspect is to

make sure that all information that is needed is actually available. If the required information

is available, the visualization of the production environment becomes presentation issues, that

of course are very important, but there exists well established techniques to solve these issues.

If the information exists it is be possible to present it in the way required by the users of the

system. Therefore the main focus of the framework is the core functionality.

An overview of the framework is shown in Figure 7.1, and section 7.2 describes the

design. The aim of the design has been to be as general as possible and to keep the framework

modular to make it adaptable to different environments. The detailed parts of the framework,

where it has been difficult to have a general approach, has been design to satisfy the

requirements of the environments of the case study. The model component of the framework

has been design to be as independent of the underlying data sources as possible to provide for

use of different underlying environments. The basic model can also be extended to satisfy

 97

different requirements from applied algorithms as shown in Figure 7.2. The interface against

clients is thorough a façade that should give access to all functionality provided by the

framework. The framework includes separate modules for reports and metrics in which

processing can occur to provide information required in reports and other graphical

representations.

 98

9 Evaluation of proposed scheduling system framework

A prototype that includes the core functionality of the framework described in chapter 7 has

been implemented. The intention of the prototype has been to determine how the proposed

framework can be used to support scheduling in the environment described in the case study

(see chapter 6). The evaluation has been made by validating and comparing the schedules

produced by the prototype against schedules produced by the existing scheduling system and

by evaluating how the reporting and visualization needs are satisfied by the framework.

9.1 Validation and comparison of schedules

The algorithm implemented in the prototype is similar to that utilized in the scheduling

system in use in the environment described in the case study. It should therefore be possible

to produce schedules from a determined set of production data and then compare the

schedules produced by the two systems from this data. When examining the schedules

produced in detail, it has been shown that the schedule produced by the existing system

contains faults. Operations are actually scheduled using more capacity than has been

described as available. Since the deviation from what is the correct capacity is small the fault

has gone unnoticed and it probably has not affected the performance of the environment too

much. Because of this fault, a side by side comparison of the schedules has not been possible.

The comparison has instead been performed by taking smaller excerpts of the schedules, such

as individual orders, and manually comparing and validating these.

Since the priority rule used is strictly based on the due dates of orders, the validation of this

is straightforward and by manually checking the derived dates of selected orders and

operations it has been validated that the calculations performed are correct. From this it has

been concluded that the schedules produced are valid. The validations have shown that the

prototype produces schedules that correspond to the intended outcome of the algorithm used.

That the schedules produced by the existing system contain faults shows the importance of

validating schedules produced by scheduling algorithms. This is also another reason for the

requirement that how schedules are developed should be transparent, so that they are possible

to understand and validate.

 99

9.2 Evaluation of reports and visualization possibilities

The requirements from the environment in the case study concerning reports and

visualizations are described in section 6.4. The requirement on the prototype is to show how

the information for this is obtained in the scheduling core of the framework. Since these

requirements were known when the framework was design all information needs have been

built into the framework as described in chapter 7. The intended use of the framework is in

the environment provided by ComActivity. The presentation layer of this environment is

completely web based and provides all functionality necessary to satisfy the visualization

need from the case study. As an example there exists a web based interactive Gantt chart that

can be used to display scheduling information.

9.3 Summary

As a summary of the evaluation of the proposed framework it can be concluded that the

framework can satisfy the scheduling needs of the environment described in the case study.

The schedules produced by the prototype are validated and, since the schedules produced by

the existing system contain faults, actually can be described as better than the schedules

currently in use. By using the reporting and visualization possibilities provided by the

combination of the information produced by the scheduling core of the framework and

ComActivity’s environment, all requirements described in the case study can be satisfied.

In addition to this there are some advantages that come from the web based deployment

such as easier administration and the potential to make the reports and other visualizations

available to everyone that needs them. The existing system requires individual installations on

every computer where it is to be used.

 100

10 Conclusion and future work

After this investigation into production scheduling and scheduling systems, some conclusions

can be summarized and some areas of future work can be suggested.

10.1 Conclusion

The results and conclusions of this dissertation are based on literature studies and the case

study as described in the previous chapters. Since the area of production scheduling is so large

and diverse it has been necessary to focus on selected parts to maintain a manageable scope.

The focus has been kept by using a production environment described in a case study as a

reference and by focusing on the aspects most relevant to this environment. This environment

is a job shop performing diverse production working with small order quantities and often

complex relationships between orders.

The implementation and use of production scheduling systems in practice has been shown

to be difficult and there exist many examples of failed implementations. The causes of this

can be grouped into either those concerning the difficulties involved in the modeling of

production environments or those concerning the human aspects of using scheduling systems.

The difficulties concerning the modeling of production environments are largely due to the

complexities and uncertainties contained in the environments. Connected with the modeling

difficulties are the gap between theory and practice in the research area which makes practical

application of the theoretical methods difficult. The human aspects encompass such areas as

the acceptance and trust of the system and whether the system is actually seen as a support for

the scheduling activities. The two causes are related. The model of the production

environment is the basis of the system and if this does not describe the actual environment

well enough, it is not going to produce the intended output and is not going to provide

adequate support for the scheduling activities. Such a system is probably not going to be

accepted by the users

A conclusion that can be drawn is that the correspondence between the type of

environment, how well the model represents this environment and the scheduling method

used is very important. The general rule is that the more randomness and uncertainties that

exist in an environment, the simpler the scheduling method should be. When determining

which scheduling method that should be applied in a given environment, the goals of the

 101

company, the characteristics of the environment and the modeling possibilities must be

considered. It is possible that many failed implementations are caused by trying to apply too

advanced scheduling methods to environments, actually to models representing environments,

which did not have the characteristics suitable for the applied methods. Under such

conditions, a system will probably not give sufficient support for the scheduling activities as

they are performed in practice, and thus would not be accepted by the users.

From the description above, the most important aspects to consider regarding production

scheduling and the use of production scheduling systems that has been derived in this

investigation can be stated as follows:

- A common view of the production situation shared between all parties participating in

the scheduling activity is necessary.

- A suitable visualization of the production environment is fundamental.

- The scheduling method must be suitable for the production environment and for the

model of the production environment that is used.

- Optimizing scheduling methods are rarely applicable in practice.

To successfully schedule a production environment it is necessary that all parties

participating in the scheduling activities shares a common view of the production situation.

The production scheduling activities generally requires the collaboration between a large

number of people, all of which are required to perform actions and make decision that

concerns the schedule. These actions and decisions must be in accordance with the common

view of the production situation. To arrive at this common view, the visualization of the

production environment is fundamental.

The scheduling method to apply in a production environment must be chosen to suit both

the actual production environment and the model of the production environment that is used.

Theses two aspects are of course related but it can, for example, be the case that a scheduling

method is found suitable for an environment but the model necessary for this method requires

too much effort to keep updated.

It can also be concluded that the use of optimizing scheduling methods in practice is rarely

necessary. This is due to the dynamic character of the production environments considered in

this investigation and the uncertainties that will always be a part of such environments.

 102

A viable approach concluded from this investigation is to first focus on modeling and

visualization of the environment in question and from that apply scheduling methods as is

found suitable. A prerequisite step for this must of course be to determine the scheduling

requirements of the environment which are to be derived from the overall goals of the

company. The scheduling framework proposed in this dissertation is intended to provide

support for applying this approach. The combination of the framework and the possibilities of

the web technologies provided by ComActivity’s environment give flexible modeling and

visualization capabilities and support for the implementation and application of scheduling

algorithms. The framework has been designed to be as flexible and transparent as possible

and to be adaptable to different scheduling needs.

As has been described in this dissertation, implementing a scheduling approach in a

production environment involves many aspects and can therefore be a very complex project

which often requires the participation of a large number of people from different departments

in the company. An important consideration in such an implementation project is to focus on

the implementation of a scheduling approach, not the implementation of a scheduling

software system. The software system should, of course, be adapted to the environment not

the other way around. This requires a system that is flexible enough to provide this

functionality. The implementation of a scheduling approach often requires changes in the

environment and the task performed by the personnel involved but it is important that the

changes are not dictated by the software system.

It is hoped that the proposed scheduling system framework can be used to support the

scheduling activities in real production environments. The framework should be flexible

enough to be possible to utilize for different scheduling needs. Important aspects of the

framework are the modeling and visualization possibilities. By utilizing the web based

architecture provided by ComActivity the deployment and administration of the system

should be easy. The approach described in combination with a flexible scheduling system

should give the opportunity to utilize a stepwise, iterative development approach where the

applied scheduling method can be developed and refined as experience is acquired and

knowledge elicited from using the visualization possibilities provided by the framework. This

gives opportunities for implementations of scheduling systems that make less impact on the

production environment in question and which also should be less costly than other

implementation methods.

 103

10.2 Future work

The most interesting, and also most important, future work should be to test the proposed

scheduling framework in a real production environment. The aim throughout this

investigation has been to maintain a practical focus and the best way to continue would be to

use the framework to implement a scheduling system in a company. To do this, the

presentation layer of such a system must be implemented. The information required in the

presentation layer is present in the framework but it remains to design the actual report and

other graphical representations. This should of course be done in collaboration with the

intended users.

Another area that should be investigated further is scheduling algorithms. The algorithm

that is implemented in the prototype is rather basic and should be possible to improve. One

aspect to investigate further is for instance the handling of uncertainty. In the implemented

algorithm, uncertainty is handled by decreasing the resource utilization rate. It should be

useful to find alternative methods to this since some amount of uncertainty will always remain

in all production environments and this must be handled in some way. Different methods

would provide for increased flexibility and give more alternatives when satisfying different

scheduling requirements. It should also be interesting to more thoroughly study the advanced

algorithms overviewed in chapter 4 and investigate how they could actually be used in reality

and implemented in the proposed framework.

 104

References

[1] Adams, Balas, Zawack. The shifting bottleneck procedure for job shop scheduling.
Management science, vol. 34, no. 3. 1988.

[2] Allen. Maintaining Knowledge about Temporal Intervals. Communications of the
ACM, 26(11), 832 – 843. 1983.

[3] APICS, The Educational Society for Resource Management. www.apics.org.

[4] Aytug, Lawley, McKay, Mohan, Uzsoy. Executing production schedules in the face of
uncertainties: A review and some future directions. To appear in European Journal of
Operational research. (vol. 161, no. 1, 86-110, 2005).

[5] Balzewicz, Domschke, Pesch. The job shop scheduling problem: Conventional and new
solution techniques. European journal of operational research, 93, 1 – 33. 1996.

[6] Blackstone. Theory of constraints – a status report. International journal of production
research, vol. 39, no. 6, 1053 – 1080. 2001.

[7] Bloch. Effective Java. Addison-Wesley. 2001.

[8] Chun. Constraint Programming in Java with JSolver. Proceedings of the Practical
Appplication of Constraint Technologies and Logic Programming. London. 1999.

[9] ComActivity. www.comactivity.net.

[10] Cox, Blackstone. The APICS Dictionary. APICS. 10th edition, 2002.

[11] Fowler. UML Distilled. 3rd edition. Addison-Wesley. 2004.

[12] Fox, Sadeh. Why Is Scheduling Difficult? A CSP Perspective. Center for Integrated
Manufacturing Decision Systems. Carnegie Mellon University. 1990.

[13] Gamma, Helm, Johnson, Vlissides. Design Patterns. Elements of Reusable Object-
Oriented Software. Addison-Wesley. 1995.

[14] Garey, Johnson. Computers and Intractability. A Guide to the Theory of NP-
Completeness. W. H. Freeman and Company. 1979.

[15] Goldratt, Cox. The Goal: A process for ongoing improvement. North River press, 2th
edition. 1992.

[16] Higgins. Architecture and Interface Aspects of Scheduling Decision Support. Human
Performance in Planning and Scheduling. Taylor and Francis. 2001.

[17] J2EE, Java Enterprise Edition. www.sun.com.

[18] Jain, Meeran. Deterministic job-shop scheduling: Past, Present and future. European
journal of operational research, vol. 113, no. 2, 390 – 434. 1999.

[19] Kempf, Uzoy, Smith, Gary. Evaluation and comparison of production schedules.
Computers in industry. No 42. pp 203 – 220. 2000.

[20] Le Pape. Implementation of Resource Constraints in ILOG SCHEDULE: A Library for
the Development of Constraint-Based Scheduling systems. Intelligent Systems
Engineering. 3. 55 – 66. 1994.

 105

http://www.sun.com/

[21] Marriott, Stuckey. Programming with Constraints: An Introduction. MIT Press. 1998.

[22] McKay, Safayeni, Buzacott. Job-Shop Scheduling Theory: What is relevant? Interfaces,
18:4, 84 – 90. 1988.

[23] Michalewicz, Fogel. How to solve it: Modern Heuristics. Springer-Verlag. 2002.

[24] Nahmias. Production and Operations Analysis. McGraw-Hill. 4th edition, 2001

[25] Pinedo. Scheduling. Theory, Algorithms and Systems. Prentice-Hall. 2nd edition, 2002.

[26] Plenert, Kirchmier. Finite capacity scheduling. John Wiley & Sons. 2000.

[27] Pongcharoen, Hicks, Braiden. The development of genetic algorithms for the finite
capacity scheduling of complex products, with multiple levels of product structure.
European journal of operational research, 152, 215 – 225. 2004.

[28] Porter, Little, Peck, Rollins. Manufacturing classification: relationships with
production control systems. Integrated Manufacturing Systems. 10/4, 189 – 198. 1999.

[29] Portougal, Robb. Production scheduling theory: just where is it applicable. Interfaces,
30:6, 64 – 76. 2000.

[30] Ralston. A brief history of manufacturing control systems, part 1. Control, June 1996.

[31] Ralston. A brief history of manufacturing control systems, part 2. Control, July/August
1996.

[32] Sadeh. Micro-opportunistic scheduling: The Micro-Boss factory scheduler. Technical
report CMU-RI_TR-94-04. The Robotic Institute, Carnegie Mellon University. 1994.

[33] Stoop. The complexity of scheduling in practice. International journal of operations and
production management, vol. 16, no. 10, 37 – 53. 1996.

[34] Uzoy, Wand. Performance of decomposition methods for job shop scheduling problems
with bottleneck machines. International journal of production research, vol. 38, no. 6,
1271 – 1286. 2000.

[35] Vollman, Berry, Whybark. Manufacturing planning and control systems. McGraw-Hill,
4th edition, 1997.

[36] Wiers. A review of the applicability of OR and AI scheduling techniques in practice.
International journal of management science, 25(2), 145 – 153. 1997.

[37] Yen, Chow, Yau. On the design and Development of User Interfaces in Interactive
Scheduling Systems. Manufacturing Agility and Hybrid Automation. 1998.

[38] Zukowski. Java Collections. Apress. 2001.

 106

A Prototype code

The code for the prototype together with corresponding javadoc documentation is contained

in a jar file called scheduling-framework.jar. The following packages and source files are

included:
algorithms

 Algorithm.java

 AlgorithmPrimitives.java

 BasicAlgorithm.java

 Calculations.java

 CapacityRequest.java

 Comparators.java

 MaterialRequest.java

metrics

 LatenessCalculator.java

 LeadtimeCalculator.java

 UtilizationCalculator.java

model

 Model.java

model.materials

 Material.java

 MaterialDelivery.java

 MaterialRequirement.java

 Materials.java

 MaterialShortageRecord.java

model.operation

 Operation.java

 OperationMaterialRequirement.java

 Operations.java

model.orders

 CustomerOrder.java

 CustomerOrderLine.java

 CustomerOrders.java

 ProductionOrder.java

 ProductionOrders.java

 107

model.resources.calendar

 Calendar.java

model.resources.capacityadjustments

 CapacityAdjustment.java

 CapacityAdjustments.java

model.resources.shifts

 Shift.java

 ShiftDay.java

 ShiftDayPart.java

 Shifts.java

model.resources.workcenters

 TimePerDayRecord.java

 UtilizationRecord.java

 WorkCenter.java

 WorkCenterResource.java

 WorkCenters.java

util.constants

 SchedulingConstants.java

util.datetime

 DateTime.java

 DateTimeInterval.java

 TimeUnit.java

 108

	Introduction
	Production scheduling, a brief introduction
	ComActivity
	The scope of this dissertation
	Dissertation layout

	Manufacturing planning and control from a scheduling perspec
	Introduction
	The difference between planning and scheduling

	Material requirements planning
	A general model
	Phase 1, Creating the overall manufacturing plan
	Phase 2, Detailed planning of material and capacity needs
	Phase 3, Execution of the detailed plans

	The evolution of material requirements planning
	Shortcomings of material requirements planning

	Terminology

	Production scheduling
	Characteristics of production environments
	Production resources
	Functionality
	Capacity
	Availability
	Cost

	Orders and operations
	Orders
	Operations

	Materials and subparts

	Scheduling objectives
	Organization and information flow
	Schedule evaluation and comparison
	Scheduling methods
	Deterministic and stochastic scheduling methods
	Dispatching rules
	Advanced scheduling methods
	Finite capacity scheduling
	Considering availability of capacity and material together
	Characterization of advanced scheduling methods
	Knowledge based and decision support systems

	Scheduling in practice
	Practical modeling and handling of uncertainties
	Human factors

	Scheduling theory
	The scheduling problem
	A problem formulation

	Solution methods
	Problem solving
	Exact and approximation methods

	Dispatching rules
	Bottleneck based methods
	Local search methods
	Simulated annealing
	Tabu search
	Genetic algorithms

	Constraint programming

	Summary

	Software systems for manufacturing planning and control
	Enterprise Resource Planning systems
	Scheduling systems
	Complete systems
	Database access and communication
	Scheduling module
	User interface

	Scheduling components

	Manufacturing execution systems

	A Case-Study
	Production environment
	General description
	The job shop and order structure
	Organization

	The scheduling process
	The process for an order
	Scheduling

	Scheduling objectives
	Scheduling tasks
	Generate schedule
	Manipulate scheduling data during development of schedules
	Prioritize an object, or groups of objects
	Find required, unavailable materials
	Find over utilized work centers
	Finding operations that are not executed as scheduled
	Simulate different scheduling scenarios
	Determine feasible due date for new objects
	Compare different schedules

	Scheduling algorithm
	Discussion

	A scheduling system framework
	Requirements
	Data access and modeling of production environments
	Requirements from the case study

	Algorithms
	Requirements from the case study

	User interaction
	Requirements from the case study

	Design
	Data access
	Extraction/Transformation/Loading /Updating
	Model
	Handling of dates and times
	Production resources
	Orders and operations
	Materials and subparts

	Algorithms
	Algorithm primitives
	Basic algorithm
	Further developments of algorithms

	Metrics and Reports
	Metrics
	Reports

	Interface/API

	The Prototype
	Functionality
	Implementation
	Model
	Algorithms
	Metrics
	Utils

	Results
	Difficulties in the implementation and use of scheduling sys
	Modeling difficulties
	Human aspects

	Reasons for implementing a scheduling system
	Application of advanced scheduling methods and theories
	Requirements on a scheduling system
	External requirements
	Visualization
	Control

	Internal requirements
	A proposed scheduling system framework

	Evaluation of proposed scheduling system framework
	Validation and comparison of schedules
	Evaluation of reports and visualization possibilities
	Summary

	Conclusion and future work
	Conclusion
	Future work

	References

