

 Department of Computer Science

D-level Thesis

2004:07

Johan Eklund

Evaluation of Emulab as Exper imental

Platform by Compar ing TCP and SCTP

© 2004 Johan Eklund and Karlstad University

Evaluation of Emulab as Exper imental

Platform by Compar ing TCP and SCTP

Johan Eklund

 iii

This thesis is submitted in partial fulfillment of the requirements for the

Masters degree in Computer Science. All material in this thesis which is not

my own work has been identified and no material is included for which a

degree has previously been conferred.

__

Johan Eklund

Approved, 2004-12-10

__

Advisor: Katarina Asplund

__

Examiner: Donald F Ross

 v

Abstract

To be able to evaluate new protocols it is important to have access to good experimental

environments. Several experiments are needed to verify different aspects of protocol

performance as well as robustness under various network conditions. Emulab is a new public

experimental platform which is available for remote users. The ambition is that Emulab

should offer the user the possibility to perform both simulation and emulation of a network. In

addition, Emulab offers access to an experimental live network. This thesis presents a study

where a series of tests are performed on the Emulab platform and also gives an introduction to

SCTP. The first objective of the thesis is to obtain practical experience and to evaluate the

usability of Emulab and the second objective is to compare the throughput between the

transport protocols TCP and SCTP. The experiences from using Emulab are very positive.

The results show that Emulab is a reliable and robust platform with high availability. The

throughput comparison did not reveal significant differences between SCTP and TCP under

moderate traffic load. Further tests and analyses are necessary to obtain a clear view of the

situation in a heavily loaded network.

 vi

 vii

Acknowledgements

First I would like to thank my supervisor Katarina Asplund for good supervision and

encouragement during this drawn out work. I am also thankful to Annika Wennström, Anna

Brunström, Johan Garcia, Hannes Persson, Karl-Johan Grinnemo and Stefan Alfredsson in the

Distributed System and Communication Research Group for helpful answers to many of my

questions and for encouraging comments during the work.

Last but not least, I want to thank Torbjörn Andersson for giving me great support in how

to solve many of the technical challenges that have turned up during this project and also for

providing me with some of the application programs used in the experiment. Without his

support I would have spent several nights and days finding solutions to technical problems.

 viii

 ix

Contents

1 Introduction... 1

1.1 Objectives.. 2

1.2 Disposition... 2

2 Netbed .. 3

2.1 The experiment procedure for a new protocol .. 3
2.1.1 Simulation
2.1.2 Emulation
2.1.3 Conclusion

2.2 Netbed and Emulab ... 4
2.2.1 Hardware
2.2.2 Software
2.2.3 Access
2.2.4 Using the platform
2.2.5 Security

3 Stream Control Transmission Protocol (SCTP) .. 11

3.1 History of SCTP.. 11

3.2 Motivation for SCTP... 11
3.2.1 Shortcomings of TCP according to IP-telephony signaling
3.2.2 Shortcomings of UDP according to IP-telephony signaling
3.2.3 SCTP components
3.2.4 SCTP packets
3.2.5 SCTP implementations

4 Exper imental Setup .. 19

4.1 Aims of the study .. 19

4.2 Inspiration for the study .. 19

4.3 Studies on SCTP.. 21

4.4 Studies performed on Emulab... 21

4.5 Scenario... 22
4.5.1 Simplifications

4.6 Background traffic... 24

4.7 Naglé s algorithm.. 24

4.8 The network... 25

4.9 Software... 26

 x

4.10 Experimental parameters... 26

4.11 Problems.. 27
4.11.1 TCP cache
4.11.2 Halts in the test
4.11.3 Different implementations
4.11.4 Change of implementation
4.11.5 Connection problems

5 Exper imental results and analysis... 31

5.1 Expected results from the experiment ... 31

5.2 Experimental results.. 31
5.2.1 Result graphs
5.2.2 Results from the experiment in the local lab
5.2.3 Analysis of the results

6 Results of using Emulab ... 41

6.1 The most significant advantages of using Emulab.. 41

6.2 Disadvantages of using Emulab .. 42

6.3 Recommendation... 42

7 Conclusion and future work .. 45

7.1 Conclusion... 45

7.2 Parts of the study that could have been done differently .. 46

7.3 Future work ... 46

Appendix... 49

A Information presenting details about allocated resources at Emulab 49

B Test parameters used in the exper iments... 53

C Results from the exper iment running SCTP per formed in the local lab................... 55

D Results from the exper iment running SCTP and TCP per formed on Emulab 59

 xi

List of Figures

Figure 2.1 An overview of the Netbed architecture.. 6

Figure 2.2 Graphic image of network for an experiment created by NetBuild 8

Figure 2.3 The ns-script generated from the NetBuild-picture in Figure 2.2 8

Figure 3.1 Overview of functions of SCTP.. 13

Figure 3.2 SCTP four-way handshake.. 14

Figure 3.3 Multihoming between two hosts ... 15

Figure 3.4 View of an SCTP packet ... 16

Figure 4.1 SIP message exchange... 20

Figure 4.2 Overview of scenario for the experiment .. 22

Figure 4.3 Logical view of network setup.. 25

Figure 5.1 Reference graph showing maximal throughput... 32

Figure 5.2 No concurrent traffic. 75 ms delay, 12 packet router buffer 33

Figure 5.3 No concurrent traffic. 75 ms delay, 32 packet router buffer 34

Figure 5.4 No concurrent traffic. 25 ms delay, 6 packet router buffer 35

Figure 5.5. No concurrent traffic. 25 ms delay, 12 packet router buffer 35

Figure 5.6 No concurrent traffic. 25 ms delay, 32 packet router buffer 36

 xii

 xiii

Abbreviations

Association - A relationship established and maintained between two communicating

 peers. An association in SCTP is semantically equivalent to a

 connection in TCP

Chunk - The SCTP datagram is comprised of a common header and chunks. The

 chunks contain either control information or user data.

Firewalling - Setting up rules to protect your system from specific traffic

IETF - Internet Engineering Task Force. An open international community of

 network designers, operators, vendors, and researchers concerned with

 the evolution of the Internet architecture.

MTU - Maximum Transmission Unit. The largest size of IP datagram which

 may be transferred using a specific data link connection

Multistreaming - In SCTP the term is used for the possibility to have several independent

 logical streams in the same association for transfer of data or control

 information between endpoints

Multihoming - Assigning more than one IP network interface to a single endpoint. This

 means that a connection endpoint may have alternate IP addresses.

NFS - Network File System. A protocol for sharing files over a network

RTO - Retransmission Time Out. A counter which purpose is to differentiate

 the cases where

 – acknowledgment is delayed to due random delay fluctuations

– network is congested and the sent segment has been lost

SCTP -Stream Control Transmission Protocol. A reliable transport protocol

 with partial ordering of data.

SIP -Session Initiation Protocol. An application protocol used to set up, tear

 down and negotiate options for a session

Stream - In SCTP: a sequence of user messages that are to be delivered to the

 upper-layer protocol

 xiv

 1

1 Introduction

Before a new transport protocol can come into general use, the new protocol is usually

subject to several experiments. The requirements on a protocol may concern reliability,

throughput, robustness, and fairness to competing traffic. To perform these experiments, it is

possible to test the protocol in a network emulator, a network simulator or in a live network.

All these approaches have advantages as well as limitations.

A new experimental environment for networks and distributed systems, Netbed [23], has

been available since the year 2000. The group responsible for Netbed claims that it is an

environment that integrates the three approaches above and therefore makes it easier, faster

and less costly to perform experiments and to get valid results compared to traditional testing

in the separate environments. One part of Netbed is a cluster of computers connected to a

network called Emulab. Emulab is free to use for research purposes and it is run remotely

using a web interface on the Internet. Emulab has not previously been used by the Distributed

System Communication Research Group (DISCO) in Karlstad.

For many years, the two transport protocols Transmission Control Protocol (TCP) [15] and

User Datagram Protocol (UDP) [13] have served applications as transport providers in a

sufficient way. However, as computer networking has evolved, the demands on the service

provided by the network protocols have become more divergent.

Today, neither TCP nor UDP fulfills the requirements of, for instance, applications like IP-

telephony signaling. This type of application is not very sensitive to small data losses, but

instead extremely sensitive to delays. However, IP-telephony signaling needs a basic level of

reliability; otherwise the application will not be useful.

To meet the demands from the new type of applications, new transport protocols are being

developed. The Stream Control Transmission Protocol (SCTP) [19] is one of these transport

protocols that claims to meet some of these new demands. The goal when developing SCTP

has been to present a protocol that offers reliability and high throughput but only partial

ordering. A transport service designed this way would be a better solution for IP telephony

signaling applications as compared to one using TCP and UDP.

 2

1.1 Objectives

The objectives of this thesis are twofold. The first objective is to evaluate the benefits and

drawbacks from using the remote experimental platform Emulab as a base for experiments

with network applications and protocols. The second objective is to undertake a performance

study of SCTP. The aim is to compare the throughput of SCTP and TCP.

1.2 Disposition

The rest of this thesis is structured as follows. Chapter 2 presents background information

on the Netbed and Emulab platforms. It gives an overview on how the platforms are designed,

configured and how they are to be used by remote users. Other public research labs are also

briefly presented. Chapter 3 gives an introduction to the transport protocol SCTP, and

presents an overview of how it is designed. Moreover, the chapter covers related research

performed on SCTP and experiments performed on Emulab. Chapter 4 describes the

experimental design. It begins with a specification of the aim of the study. The scenario,

which has served as inspiration for the experiments is then presented as well as the hardware

and software required to perform the experiment. Furthermore, the chapter presents the

different parameters used. In chapter 5, the results of the experiments with SCTP and TCP are

presented as well as comments and analyses. Chapter 6 presents the experiences from using

the remote lab Emulab as platform for the experiments, and benefits and drawbacks are stated.

Finally, in Chapter 7, conclusions from this study are drawn and areas for further studies are

proposed.

 3

2 Netbed

This chapter first introduces and gives an overview of some experimental environments

available for testing new protocols. After this, background information concerning Netbed

and Emulab is given.

2.1 The exper iment procedure for a new protocol

All new protocols should be exposed to several tests to verify different aspects of the

performance under various network conditions as well as robustness and fairness to other

traffic, before being accepted as generally used protocols.

Traditionally, there have been three experimental environments supporting computer

networking research. These are live networks, network simulators, and network emulators.

Each of these environments has different advantages as well as drawbacks. Live networks

naturally offer the most realistic experimental environment, but it is difficult to control the

tests in this environment. That is, it is almost impossible to repeat the same network

conditions twice. Therefore, different types of artificial solutions are often used. The most

frequently used approaches are simulation and emulation.

2.1.1 Simulation

Simulation is often used by network researchers. Simulating a protocol is a way to test the

behavior of a protocol artificially by using software acting as, i.e. simulating, a protocol in a

real network. The advantage of simulation compared to experiments in a live network is that it

is faster, that the experiments are repeatable and that the environment is controlled. For

example, the user may change one parameter and then run the simulator again to rapidly

obtain and analyze possible differences. By using simulation, the researcher obtains basic

information concerning protocol behavior. The drawback of using a simulator compared to a

live network is the loss of realism. Since simulation often makes simplifying assumptions of

both the protocol and the network the results may be affected.

 4

2.1.2 Emulation

It is often interesting to try to imitate a large network in an experimental lab by using a

small experimental network, a network emulator. This could be done by inserting an extra

node on a link between two hosts and on this node run software which makes the link look

like a real network with bandwidth constraints, losses and delays. The software Dummynet

[16] is commonly used for these purposes. By using Dummynet it is possible to set, for

example, bandwidth constraint, delay, loss rate and router buffer size.

Emulation is often a more realistic way to test a protocol compared to simulation since a

real protocol (sender and receiver) is used over a network. Nevertheless, also emulation is a

simplification of reality and therefore also emulation results must be interpreted carefully.

In comparison to simulation, emulation takes more time to run and the tests are also more

limited, i.e. it is possible to simulate situations that cannot be emulated.

2.1.3 Conclusion

There are both benefits and drawbacks with both simulation and emulation. When making

use of a simulator it is possible to achieve a controlled, fast and repeatable environment.

However, possibly the simulated situation is not very realistic, since using a simulator often

implies simplifications. Using an emulator is a more realistic approach to obtain a view of

how a protocol performs in a network, but emulating a network usually requires quite some

time for manual configuration of the system.

To achieve information from as many aspects as possible, researchers sometimes make use

of these two approaches. To get a proper view of the application or network protocol

performance the information from the simulated and emulated situation also has to be verified

by information from a real situation in a live network.

2.2 Netbed and Emulab

Netbed is a public research platform that intends to integrate the three experimental

environments mentioned above, in order to streamline the evaluation of network scenarios.

The use of the platform is free of charge for authorized users.

Netbed was founded in 1999 when a prototype for a large cluster of computers, Emulab,

was compiled. After a time, it was made public to remote researchers via a web interface.

Emulab was primarily intended to be an emulation platform, but there is no restriction against

running a simulation on a machine in the test bed as well. Over time, Netbed has evolved and

now also an experimental wide area network is available. This network consists of computers

 5

in different parts of the world connected to the Internet, especially dedicated to research

activities and running a special configuration. This network offers the ability to use a live

network under controlled forms [23].

Netbed is intended to be an experimental platform available for users from all over the

world. The intention is to let researchers, research groups as well as companies use the

platform for performing their own experiments [10]. The ambition of the founders1 was also

to integrate the three test approaches, for computer networking research. Three goals were set

up when designing the platform:

• “Ease of use” . By using a web interface and also a Java GUI for users to allocate

resources and to configure and run experiments

• “Control” . An authorized user gets full control of the nodes in the allocated

network during test performance

• “Realism”. By offering both emulation, simulation and wide area facilities

Netbed consists of two parts. The first part is a number of computer clusters. Originally

there was only one cluster called Emulab, situated at the University of Utah (168 PCs) [26].

Over time the cluster was cloned and today there exist two other clusters controlled by

Netbed. One of them is situated at the University of Kentucky (48 PCs) [25] and the other at

Georgia Institute of Technology (40 PCs) [24]. These clusters are configured in the same way

as the Emulab cluster and are controlled by Netbed staff. Emulab is the cluster primarily

intended for external users, but also the cluster in Kentucky may be used by externals,

although it is used primarily as a teaching aid. The cluster in Georgia is used only for classes

and for research purposes, not for external users.

The second part of Netbed is a distributed system of different test beds and separate nodes

contributed by different organizations. This system is dynamic and nodes may be added and

withdrawn dynamically from the system by the owners. All nodes in this network run a

special UNIX configuration. This network is called PlanetLab [30] .

The scope of this thesis includes evaluation of only one part of Netbed, the public cluster

of computers situated at the University of Utah, Emulab. Therefore, subsequent parts of this

thesis concerning Netbed will focus on Emulab.

1 www.cs.utah.edu/flux/index.html

 6

2.2.1 Hardware

Emulab is composed of 168 PCs. Each computer has five 100 Mbps Ethernet network

interfaces four of which are available for network project setup. The fifth network interface is

used as a control interface to regulate access and communication to the outside world.

A server called userhost and a database are connected to the system. These components are

used for starting up new experiments and for storing project information for the users. The

user and experiment directories are exported via NFS to the nodes allocated for an

experiment.

There is also a master server in the network, called masterhost. This server is not directly

accessible by test bed users, but is used as a web server and as a name server, among other

things.

All computers (nodes) in the network are connected to switches that function as a

programmable panel. This means it uses Virtual LAN-technology (VLAN) [35] for isolating

arbitrary topologies and for granting security to the different projects. An overview of the

entire Netbed is shown in Figure 2.1. The figure focuses on Emulab, but the connection to the

wide area network, PlanetLab, is also visible in the figure.

Figure 2.1 An overview of the Netbed architecture

 7

2.2.2 Software

All the computers are able to boot on FreeBSD 4.7 and RedHat Linux 7.3 but the users are

also free to load an operating system of their own. This thesis only covers usage of the default

operating systems.

For emulation purposes Emulab uses Dummynet to set bandwidth constraints, loss rate,

queue size and delay. The insertion of a node running Dummynet (to “shape the link”) is

transparent to the user.

If a user wants to use simulation, Emulab uses ns’s2 simulation facility nse [6]. Running

several simulated nodes, links and traffic on one physical node gives the possibility to test

scalability beyond the number of the nodes in the experimental network.

2.2.3 Access

To start experimenting on Emulab the user needs a user account. This account covers a

project, and is requested for by a principal investigator of the project. The Emulab approval

committee3 is the authority that approves or rejects the request.

After approval, the requesting researcher is set as the person responsible for all activities

performed in the project. This person also acquires authorization to accept new members of

the project. In this way, the administrative load for the Emulab staff is kept low. After

authorization, any researcher (accepted by the person responsible for the project) in the group

is free to start as many experiments as is requested. Each project and each authorized user has

a directory for storing files needed for the experiment.

2.2.4 Using the platform

Any authorized user may run an experiment. The Emulab administrative governance has

set up a few administrative policies concerning acceptable use and referencing [31]. These

policies are very general and they prevent serious misuse of the platform. If the user follows

these policies there are no restrictions for using nodes in the cluster.

An experiment is created by using the web interface. The user sends information about the

topology and the parameters of the network wanted for the experiment. Information about

topology is submitted via an ns-script. This script could either be written in an editor, or it

could be created using a Java GUI, called NetBuild. This GUI makes it possible to draw a

2 Network Simulator is a discrete event simulator targeted at networking research
3 testbed-approval@flux.cs.utah.edu

 8

picture of the topology of the network including nodes, links, LANs, bandwidth constraints,

loss rates and delays as well as naming of both nodes and links.

Figure 2.2 Graphic image of network for an experiment created by NetBuild

After processing this drawing, NetBuild produces a valid ns-script4, usable for creation of

an emulated network topology similar to the drawing. The topology shown in Figure 2.2 will

generate the ns-script shown in Figure 2.3.

Figure 2.3 The ns-script generated from the NetBuild-picture in Figure 2.2

4 The NS script may be used the way it is generated, but it can also serve as a base and can be complemented by instructions for routing and

automatic load and start of applications.

#generated by Netbuild 1.03
set ns [new Simulator]
source tb_compat.tcl

set server [$ns node]
set client [$ns node]
set admin [$ns node]

set testlink [$ns duplex-link $server $client 0.4Mb 25ms DropTail]

set lan0 [$ns make-lan "$server $client $admin " 100Mb 0ms]

$ns rtproto Static
$ns run
#netbuild-generated ns file ends.

 9

After submission of information about the requested project, all information is stored in the

userhost database. A request may also contain information about swap ability and running of

the experiment in batch mode. Allocation of resources and configuration of the experiment is

performed automatically by Emulab after obtaining the requested information. No staff is

needed for the processing.

After processing of the request, the user receives an e-mail informing him or her whether

the setup of the experiment was successful or not. The request may be rejected or postponed if

there are not enough free nodes available to construct the network. If the response is positive,

the e-mail contains a listing of the nodes, DNS-names and IP-addresses to the nodes allocated

to the project (see Appendix A). The user is then free to use the network.

Normally, the user allocates resources for the experiment immediately before the

experiment is conducted. A different way of setting up an experiment is to request it to be set

up in batch mode, i.e. that the experiment is run when enough nodes are available. This time

may be immediately or sometime in the future. The batch system is then responsible for

setting up and removing the experiment. Running the experiment in batch mode requires an

extension in the ns-file that handles automatic load and start of programs as well as startup

and completion information. This mode is beyond the scope of this thesis.

The user is free to log on to any node allocated to the experiment using secure shell (ssh),

and to load and run any program. The user has full privileges over the node and may

customize the configuration in any way as well as reboot the node. After experiment

completion the user has to terminate the experiment (if it is not run in batch mode or in swap

mode). After termination the user is requested to return all allocated resources to Emulab.

After any change concerning the allocated resources the user will receive an e-mail that

informs him or her about the new network status. The only control performed by the Emulab

is the network utilization status. If the experiment is found to be idle for a specified time

period this may lead to automatic project swapout5 and the resources are automatically

returned to Emulab. The user may also manually swap a running experiment in or out by

using the web interface.

5 An automatic experiment swapout does not mean loss of experiment information. All swapped out data is

saved in the Emulab database and may be swapped in again. Data stored locally on the allocated machine is
lost when the experiment is swapped out.

 10

2.2.4.1 Performing an experiment

The nodes allocated for the experiment are under full control by the user as the experiment

is running. This control gives the user the ability to run programs to generate and analyze

traffic through the network. Since the user has full privileges and the possibility to connect to

every node in the allocated system it is now transparent that the experiment is performed

remotely. The intention is that the user should be using the constructed network as if it was

situated in a local lab.

The easiest way of storing data generated from the experiment is to store it on a specific

node and then to copy it to a local machine after experiment termination.

2.2.5 Secur ity

As a public network intended to serve as a research platform, Emulab might be attractive to

attackers. An attacker might, for example, be interested in disturbing the current experiment

or in stealing information concerning a special experiment. It is also most essential that the

lab is available to the researcher whenever he or she wants.

To prevent attacks, Emulab blocks all ports below 1024 (with exception of port 20, 21 for

ftp, port 22 for ssh and port 80 for http). This blocking is done for the protection of the

experimenters, as well as to ensure that an errant application cannot become the source of a

Denial-of-Service attack on sites outside of Emulab. This is done by firewalling traffic from

outside the present experimental net.

To be able to control the use of Emulab, every user must have a personal identity and login

name. Secure Sockets Layer (SSL) [32] is used to protect submitted data. SSL is a protocol

that encrypts data as it is transferred across the Internet.

Emulab makes use of user and group mechanisms in UNIX to provide protection between

users and projects. Each new user obtains a new Unix UID, and each new project obtains a

new Unix GID. Users are members of the UNIX groups that correspond to each of the

projects they are working on, and thus may share files with other members of those projects.

The default directory permissions are set so that project files are not readable by members of

other projects.

 11

3 Stream Control Transmission Protocol (SCTP)

In this chapter the Stream Control Transmission Protocol (SCTP) is presented. The

motivation for development of this new protocol is first discussed. Further, the different

features of SCTP are described. Finally, a motivation for the choice of SCTP implementation

for this project is presented.

3.1 History of SCTP

The process of developing the Stream Control Transmission Protocol (SCTP) [19] was

started in 1997. At that time the protocol was intended to run on top of UDP. It was then

called the Multi-Network Datagram Transmission Protocol (MDTP) and it was intended to be

a protocol for telephony signaling transport. The requirements from telephony signaling

traffic were that the transport service provided should offer reliability and high throughput,

but only partial ordering. After submission to the Internet Engineering Task Force (IETF)

[33], the work with MDTP was incorporated in the Signaling Transport working group

(SIGTRAN) in the IETF. Over time, the scope and functionality of the protocol expanded,

and therefore the design and the name of the protocol was changed. The name was changed to

SCTP and it expanded from being a protocol running over UDP to be a general purpose

transport protocol running directly over IP, not only serving telephony signaling.

After a few years of designing and reviewing, SCTP became an IETF Proposed Standard

and was published as RFC 2960 in October 2000. The still continuing work on SCTP is now

performed in the Transport Area Working Group (TSVWG) in the IETF [36] .

3.2 Motivation for SCTP

The original ambition of the founders of SCTP was to develop a transport protocol to serve

the demands from telephony signaling applications. These applications need:

• full reliability

• stable connections between end points

• only partial ordering of messages

Neither of the traditional transport protocols, TCP and UDP could fulfill all of these

demands; therefore the development of a new network protocol, SCTP was started.

 12

3.2.1 Shortcomings of TCP according to IP-telephony signaling

TCP provides reliable data transfer and strict order-of-transmission delivery of data to the

application. All data is sent as a stream of bytes between the sender and the receiver.

However, for telephony signaling only partial ordering of data is necessary. The strict

sequence number delivery in TCP could be a problem, since it can cause delays. Loss of a

single TCP segment may block delivery of all subsequent data until the lost segment is

retransmitted. This situation is called head-of–line blocking [21].

 To achieve stabile connections between endpoints, it is necessary to introduce path-level

redundancy. TCP is not designed for path level redundancy, since it does not support multi-

homing, which SCTP does. This implies a problem; if one part of the network breaks down

the connection will be unusable.

3.2.2 Shortcomings of UDP according to IP-telephony signaling

The most critical drawback regarding UDP is the lack of reliability. Further, UDP is not

connection oriented, which is a requirement for IP telephony signaling. Nevertheless, UDP

has some advantages over TCP, since it is faster than TCP due to no extra delay for the

connection procedure, and, furthermore, UDP introduces no extra delay for retransmissions

and for ordering before delivery.

3.2.3 SCTP components

There are many similarities between SCTP and TCP, but also a number of differences. An

overview of the functions of an SCTP endpoint is seen in Figure 3.1.

SCTP has inherited the congestion and flow control mechanisms from TCP. Like TCP,

SCTP is connection oriented and fully reliable. However, the connection is established a bit

differently. Some TCP implementations use the selective acknowledgement (SACK)

mechanism [11]. When using SACK, the receiver sends back an ACK informing the sender of

all the data that has been received both in order and out of order. The sender may then

retransmit only the missing data segments. The SACK mechanism has been adopted and

extended by SCTP. When using SCTP, SACK is the only option.

What is new in SCTP is the support for multihoming, the concept of associations and

multistreaming. Other specific features in SCTP are the message boundary conservation and

the ability to deliver messages out of order to the receiving application. Below, in Figure 3.1,

the most important mechanisms in SCTP are shown. In the coming subsections these

mechanisms are described.

 13

Figure 3.1 Overview of functions of SCTP

3.2.3.1 The association setup

SCTP is connection oriented, which means that a connection is established between sender

and receiver before data is sent. The connection is established using a four-way handshake,

see Figure 3.2. This procedure is different from that in TCP, which uses a three-way

handshake. The four-way handshake was introduced to protect from Denial-of-Service

attacks, such as SYN flooding [9] .

An established connection between hosts is, when using SCTP, called an association.

IP network

Stream sequence delivery

Packet validation

Acknowledgement &

congestion control

Message fragmentation

Association

star tup

and

shutdown

SCTP user application

Path management

 14

Figure 3.2 SCTP four-way handshake

3.2.3.2 Unordered data delivery

An application using SCTP has the possibility to choose to deliver the message in ordered

or in unordered delivery mode. When using unordered delivery mode the receiving SCTP host

will deliver the messages to the application as soon as they arrive, even if the sequence

number is not the next expected. This is suitable for IP telephony signaling messages, which

does not require strict ordering6.

3.2.3.3 Message boundary conservation

SCTP is message oriented whereas TCP is byte stream oriented. This means that SCTP

preserves the message boundaries throughout the transport between peers. The message

boundary control makes the message delineation information, needed by the application when

using TCP, unnecessary. The whole message is kept together and the receiver will deliver the

assembled message to the application, whereas TCP delivers a stream of bytes.

6 If the message is bigger than the underlying path MTU, SCTP also has support for fragmentation of messages.

 Endpoint A Endpoint B

 INIT

 INIT ACK

COOKIE ECHO

COOKIE ACK

 15

3.2.3.4 Multistream support

Within one SCTP association there can be multiple logical parallel multiplexed streams.

These streams are unidirectional. The number of inbound and outbound streams is set during

the connection procedure. The streams may be used in parallel for simultaneous data transfer.

The ordering of data in a single stream is strict, but there is no ordering of data between

separate streams, therefore partial ordering is provided. If the message is sent in ordered

mode, the receiver will use a mechanism to reorder data if necessary, but this reordering

process is bypassed if the message is sent in unordered mode. Multistreaming was invented to

prevent head-of-line blocking when one or more packets were lost.

3.2.3.5 Multihomed host support

Multihomed hosts are hosts that have multiple IP interfaces. The multihoming support

provided by SCTP improves the robustness of the association because there may be several

paths between the same end points. A multihomed SCTP end point can be represented as a list

of SCTP transport addresses that share a single SCTP port. If one path fails, traffic can still be

sent using another path. In an association, one path is marked as primary and if this path

suffers a breakdown the sender starts sending data using one of the other connections. Figure

3.3 shows a multihomed association between two processes. If the path using the interfaces

IP2 will break down, the association will still be working using either the IP1 or the IP3 paths

(on both machines). The multihoming feature thus improves the association robustness [14].

Figure 3.3 Multihoming between two hosts

Host A

Process 1

IP4

 Host B

Process 2

IP1

IP2

IP3

X

IP1

IP2

IP3

 IP

network

 16

3.2.4 SCTP packets

An SCTP packet has a header, called the common header. The SCTP packets sent over the

networks are composed of the common header and of one or more specific building blocks

called chunks (containing control information or data). An SCTP packet is seen in Figure 3.4.

Figure 3.4 View of an SCTP packet

3.2.4.1 The common header

The SCTP common header is 12 bytes long and it provides three basic services: the

method to associate an SCTP packet with an association (source and destination addresses

and port numbers), the verification tag to validate the sender of the SCTP packet and a

checksum to verify that the data is correct.

3.2.4.2 The Chunk

Chunks are the SCTP messages sent over the network. There are basically two types of

chunks, data chunks and control chunks. The chunks are used for connection setup and shut

down, heartbeat messages (used as a keep-alive message sent to idle destination addresses)

and for data messages. The chunk includes information about chunk type (16 chunk types

have been defined), chunk flags (used by the specific chunk type) and chunk length. If it is a

data chunk, data is included.

3.2.4.3 Message bundling

An SCTP packet is designed to carry multiple chunks, so that multiple user messages may

be bundled into a single SCTP packet. By bundling several small user messages into a single

SCTP common

header

Chunk 1

Chunk n

SCTP

packet

 17

SCTP packet, there is an improvement in network bandwidth efficiency. Bundling is the

default for data chunks, but not for control chunks.

3.2.5 SCTP implementations

A few implementations of SCTP are as yet available and several projects are currently

implementing SCTP [34]. The most well known implementation is the one in FreeBSD [27].

Another running project is implementing SCTP in a coming Linux kernel (Linux 2.6) [29],

but so far there is only an alpha version available. A reference implementation, run in user

space, is being developed by the research group run by Randall Stewart [20]. Another

reference implementation has been produced by Siemens in cooperation with Computer

Networking Technology Group of the University of Essen [22].

 18

 19

4 Exper imental Setup

In this chapter, first the aims of the study are described, and then there is a brief

introduction to the Session Initiation Protocol (SIP) [17], which has served as inspiration for

the study. Next, the network topology and the different test parameters are described and

motivated.

4.1 Aims of the study

The aims of this study were twofold. One aim was to evaluate the experimental platform

Emulab, i.e. to investigate which benefits and drawbacks that can be seen from using Emulab

as a platform for experiments compared to using a local lab.

Specific questions raised were:

•••• How difficult is it to allocate resources for an experiment?

•••• How difficult is it to perform an experiment on Emulab compared to in a local

lab and what are in such case the drawbacks/advantages?

•••• How well documented is Emulab?

•••• How is the support situation of Emulab?

•••• How long will response to a support question take?

One way to evaluate Emulab is to do the same tests in both Emulab and in a local lab and

to compare the results. This corresponded well with the second aim of this thesis, to undertake

a performance study on SCTP.

Specific questions were:

•••• Does SCTP in ordered or unordered mode offer higher or lower throughput than

TCP?

•••• If there are any differences, how will these differences vary under various

network conditions?

4.2 Inspiration for the study

A new application protocol for initiation of multimedia sessions, the Session Initiation

Protocol (SIP), became available a few years ago. SIP is transport independent, but today the

mostly used transport protocol is UDP. The SIP architecture consists of end points, called user

 20

agents (UA) and SIP proxies. The proxies receive a message from a user agent or another

proxy and forward the message to another proxy or the destination user agent. Figure 4.1

shows a SIP message exchange to establish a session. In this figure there are two user agents

and one proxy.

Figure 4.1 SIP message exchange

The idea was to perform an experiment simulating SIP traffic between two proxies, using

the different transport protocols and then to compare the throughput. The aim of SIP is to

initiate and negotiate options for a session. SIP messages are therefore usually quite small,

since they only carry a session description, written in Session description protocol (SDP) [39].

UDP is usually used for the transport of SIP messages. UDP is suitable for transport of

individual small messages, when no fragmentation is necessary. UDP has also the advantage

that no latency for connection establishment is introduced. However, one of the drawbacks of

UDP is that no reliability is provided. This means that the end points must provide reliability

in each application layer.

Due to the lack of reliability, the loss of one message may take a long time before

detection. Nevertheless, UDP is the most suitable protocol for these types of small messages

between end point and proxy, at least under moderate traffic load.

The situation is a bit different in the transmission between proxies, where many messages

may be sent between the same two hosts. In this situation, TCP or SCTP may become a

Caller Proxy Callee

100 Trying

 INVITE

200 OK

ACK
ACK

200 OK

 INVITE

100 Trying

 Multimedia session

 21

competitive alternative to UDP, since many small messages may be assembled and sent in the

same packet. The scenario our experimental study focuses on is emulation of several SIP

messages sent between the same hosts.

4.3 Studies on SCTP

SCTP is quite a new protocol, but there are nevertheless several studies of SCTP. A few of

them have been focused on aspects related to this study.

In one study, a comparison between SCTP (using one single stream in unordered mode),

TCP and UDP has been made to see which transport service is best for transporting multiple

SIP messages between proxies [5]. In this study the protocols and the network were simulated

and the experiments indicated that SCTP has some advantages over TCP. The protection

against Denial-of-Service attacks, the multihoming facility and the delivery of complete

signaling messages to the application provided by SCTP were some of the advantages pointed

out in the report. According to throughput there was no significant difference between the

different transport protocols under moderate traffic, but for higher levels of packet loss SCTP

was shown to have significantly higher throughput.

A performance study comparing SCTP and TCP over a satellite link has also been

performed [1]. This study indicated that SCTP has slightly higher throughput than TCP. The

difference between TCP and SCTP was found to depend on differences in the congestion

control mechanism.

Another study compares SCTP to TCP for mobile IP [7]. This study shows that SCTP has

slightly higher throughput than TCP when the bandwidth is low (under 200 Kbps).

The same scenario, as described for the experiment in this thesis, has been studied in a

local lab at Karlstad University [4]. In the study, TCP and SCTP were used and one aim of

this study was to investigate the fairness in sharing bandwidth between the two protocols in a

concurrent situation. Further, another aim was to see if the unordered delivery gives a shorter

message delay compared to ordered delivery. Since the same scenario has been used in that

experiment, the results from that study will be compared to the results from Emulab (see

Section 5.2).

4.4 Studies per formed on Emulab

Emulab has been open for public use for a few years. Several studies where Emulab has

been used as experimental platform have been performed. Most of the studies have naturally

 22

been focusing on networking problems. As an example, one study focused on problems with

differential services for TCP flows over Internet [18]. Another study focused on reliable

communications in overlay networks [3]. Most of the studies performed on Emulab can be

found at the Emulab homepage [39].

None of these studies has been made in order to evaluate Emulab, but the researchers of

these studies all seem to be confident in the high performance of the platform.

4.5 Scenar io

Figure 4.2 Overview of scenario for the experiment

One aim of the study was to evaluate whether there is an improvement in throughput by

using SCTP compared to TCP, for transport between proxies.

Three scenarios were used in this study. In the first scenario, the proxy makes use of

SCTP in ordered mode, meaning that SCTP delivers messages to the application in the same

order as they were sent. In the second scenario, SCTP delivers messages in unordered mode,

and in the third scenario TCP is used.

To make the experiment a bit more realistic, some of the tests performed include

concurrent traffic. To achieve this, TCP-traffic will be sent as fast as possible in parallel to the

emulated SIP traffic (Appl. 1 and Appl. 2 in Figure 4.2).

Proxy 1 Proxy 2

 User

Agent A

 User

Agent B

 User

Agent C

 User

Agent D

User

Agent G

User

Agent H

User

Agent I

User

Agent J

User

Agent F

 User

Agent E

Appl. 1 Appl. 2

SCTP/TCP

TCP

 23

Since the experiments focus on the transport between proxies the endpoints (User Agents)

will not be a part of the experiment. This exclusion of endpoints makes it possible to emulate

a number of User Agents in one application, generating messages and transmitting them to the

SIP proxy. In the different scenarios, either SCTP or TCP will be used as transport service

provider. The content of the messages is not important, just the message size. This message

size is to be in the same range as the size of a SIP message and is therefore set to 500 bytes.

The one-way delay and the bandwidth over the link will be set within a realistic range. The

decision is to use two different delays, 25 and 75 ms. The first delay is a realistic delay for

sending between two proxies inside the same country, and 75 ms is reasonable delay between

two more distant proxies. The bandwidth is decided to be 400Kbps. The motivation for using

this bandwidth is that the minimum limited interval used between messages is 10 ms. This

implies that 100 messages will be sent every second. Since the message size is 500 bytes this

implies 400 Kbit of data sent every second, which is 100% of the bandwidth. (Messages are

also sent at full speed, the results from this transmission are to be seen as a reference value,

since the bandwidth constraint is set to 400 Kbps).

4.5.1 Simplifications

Compared to a real situation a few simplifications were made. These were the following:

•••• Traffic was sent only in one direction. Real SIP-traffic is bidirectional in a

query-response-pattern, see Figure 4.1.

•••• The emulated SIP messages were, when making use of SCTP, transported on

a single stream inside the SCTP association. This implied that the multi-

streaming facility of SCTP was not used. In the situation when TCP was used

as transport service provider, the SIP messages were transported using a

single TCP connection. In a real situation probably several streams inside a

SCTP association would be used, and perhaps also several TCP connections

in the TCP scenario.

•••• There was a fixed interval between messages generated by the application. In

a real situation the SIP messages would be generated with varying intervals.

•••• The multihoming facility of SCTP was not used in this study. This is a

limitation and the use of this option was left to further studies.

 24

4.6 Background traffic

In real life the links between hosts are usually busy. To make the experiment a bit more

realistic some of the emulated SIP traffic had to compete with parallel traffic. The competing

traffic was controlled by applications, which were sending TCP data in parallel to the SIP

traffic over the same link. The applications were able to vary the amount of competing traffic

by varying the number of TCP connections. The competing traffic was always sent at full

speed and the amount of traffic was controlled by setting up different number of parallel

connections. In the case where competing traffic was used it was started a few seconds before

the emulated SIP traffic.

4.7 Naglé s algor ithm

The sending of small TCP or SCTP packets over a network introduces quite a big

overhead, since each packet has a header. If the network is heavily loaded there is a risk of

congestion, which may result in lost packets and retransmissions. If the traffic consists mostly

of small packets, the introduction of many headers increases the overhead for the delivery and

decreases the data throughput. This is called “ the small packet problem” . To overcome this

problem, an algorithm to reduce the overhead has been introduced. This algorithm, called

Nagle’s algorithm [12], reduces the overhead by first sending the first packet, and then

queuing the other packets until an acknowledgement arrives for the first packet. When this

happens all queued messages are sent in a single packet (up to the MTU) Nagle’s algorithm

introduces a potential delay for the individual small packet, but not for the entire transmission.

The reduction of risk of congestion has made Nagle’s algorithm standard in TCP

implementations. This feature has also been inherited by SCTP. Nevertheless, it is possible to

disable Nagle’s algorithm when using both TCP and SCTP.

The delay of packets may have an impact on the results in the tests of this study since 1000

packets of 500 Bytes are sent in sequence with a specific interval in between. It is unclear

whether the message bundling facility of SCTP has any impact on the throughput when

Nagle’s algorithm is not used. It seems possible that the usage of Nagle’s algorithm may

increase throughput when bundling of messages is used. Due to this, the ambition was to

perform the experiment both with and without using Nagle’s algorithm to see whether the

usage of this algorithm entailed any differences. When Nagle’s algorithm is enabled it is

referred to as delay, and when disabled referred to as nodelay (see Section 4.10).

 25

4.8 The network

A logical connection between two computers, a client and a server, was allocated at

Emulab, as described in Section 2.2.4. The client and the server ran the test programs and

programs generating background traffic. The data was sent from the server to the client over a

link called testlink, see Figure 4.3. A third computer, admin, was also allocated and connected

to the network. This server ran scripts to manage the different programs and stored the test

results.

Figure 4.3 Logical view of network setup

The physical setup included a fourth computer running Dummynet marked as Tbsdelay0 in

Figure 4.3. The computer was implicitly allocated, since the request for the resources included

a request for bandwidth constraint on the testlink between server and client.

Client receiving

SCTP and TCP

data. Client is also

running

background traffic

Server transmitting

data using SCTP

and TCP. Server is

also running

background traffic

Administrative

node running

scripts to manage

the traffic

Link to manage

Dummynet on the

node transparent to

the user

 Server Client

Computer running

Dummynet.

(transparent to the

user)

Local Area

Network

Tbsdelay0

testlink

 26

4.9 Software

The ambition was to compare the results of the tests in this study with the results from the

tests performed on the local platform [4]. The experiment on the local platform was to be

made using the Siemens implementation of SCTP run on a Linux platform, in user space. The

choice made for this study was to use the same SCTP implementation to make the comparison

as fair as possible. An advantage from using this implementation was that there was a socket

API with useful functionality and test programs available. The prototype implementation of

SCTP made by Siemens, together with the API, was installed on both the server and the

client. For some reasons the SCTP implementation used in the experiment in the local lab was

changed. That experiment was performed using the FreeBSD implementation of SCTP, which

is a kernel implementation, see Section 4.11.4.

The experiment with TCP as transport protocol was performed using the kernel

implementation of Red Hat Linux 7.3.

There were 2 + 2 applications running during the experiment. Two of them were the

concurrent traffic generators (unidirectional TCP-traffic). The third application was the

generator of SIP traffic, and the fourth application was the receiver of SIP data.

4.10 Exper imental parameters

The tests were to be performed in six different modes in total:

•••• SCTP in unordered mode

•••• SCTP in ordered mode

•••• TCP

All of these modes were also to be performed with Nagle’s algorithm both enabled and

disabled (referred to as delay and nodelay).

The chosen SCTP-implementation is still under development. This implies that not all

features of SCTP specified in the RFC 2960 are implemented. During the experiment it was

found that the possibility to disable Nagle’s algorithm was not yet implemented. As a result,

the running of the experiment in nodelay mode was not possible when using SCTP. This

implied that this mode was not used in any of the experiments and the tests were performed

only in the three modes mentioned above.

To be able to compare the experimental results to the results from the local lab, this

experiment was performed with the same parameters. In the local experiment only a network

delay of 75 ms was emulated. To have the possibility to see differences in throughput when

 27

the network delay was changed, tests with a network delay of 25 ms was performed. To be

able to see a possible impact on throughout of a small router buffer, tests with a network

router buffer of 6 packets was also performed. This resulted in many different parameter

settings. All tests for each setting were repeated 100 times. All the different parameter

combinations used in this experiment are presented in Appendix B.

The packet size was always 500 Bytes and for every parameter setting 100 packets were

sent.

4.11 Problems

4.11.1 TCP cache

When using TCP, the slow start and congestion avoidance algorithm is used [2]. By using

this algorithm the sender, after a while, gets to know a reasonable level for sending data over

the specified connection. The TCP implementation in Linux 2.4 is caching data concerning

transfer rates between subsequent connections between the same hosts, so that the size of the

congestion window of the server is stored (for 10 minutes) and reused when setting up a new

connection between the same hosts again [28]. Caching may impact the results, since the

different tests are to be performed in sequence. There is no way to disable this feature, but

there is a way to restore the congestion window between each test to the initial value, by using

a specific command. This has to be done with root privileges. The overall recommendation by

Emulab is to use the command sudo to get root privileges. When trying to type the command

the response was “permission denied” . This was expected, since the sudo command is just a

redirection. After contacting the support team at Emulab there was a rapid reply that gave a

proper answer which helped to solve the problem.

4.11.2 Halts in the test

The time to perform the whole experiment was estimated to take between 7 and 10 days.

The experiment was run automatically by several management scripts. The scripts run on the

admin node sent parameters as well as start and stop commands to the different nodes using

ssh. The tests run smoothly most of the times, but occasionally there was a stop in a test due

to ssh problems (the application suddenly asked for the authentication key). Problems with

ssh caused several stops in the execution. These ssh problems prolonged the execution time

dramatically.

The problem was presented to the Emulab staff and the answer was as follows:

 28

“ It looks like the root of the problem is your NFS-mounted home directory disappearing

occasionally on the admin node” .

They promised to look at the problem after experiment termination. After a while the

following answer and suggestion came:

“ It's a race in the FreeBSD code. We have found it but it's tedious to fix so it has not been

done yet. But if you remove your dependency on the NFS mount, you shouldn't have the

problem. Copy all your stuff over to the local disk and run from there.”

At this time most of the tests were already completed and since it would have meant more

work, the tests were not repeated.

4.11.3 Different implementations

The kernel implementation of TCP has further restrictions when sending data, since the

buffer to store data until the ACK arrives is limited. This implies that the send call is blocked

when the buffer is full. Nevertheless, the size of the send buffer doesn’ t seem to have any

impact on throughput. There may also be other differences between the kernel

implementation and the user space implementation used for SCTP that impacts the result.

This means that the interpretation of the different results from using TCP and SCTP has to be

done with care.

4.11.4 Change of implementation

The ambition was to compare the results of the SCTP tests in Emulab with those

performed in the local lab. The intention was also to use the same implementation of SCTP

and the same operating system on both platforms. For different reasons the experiment in the

local lab was changed slightly and the local experiment was executed with the FreeBSD

implementation of SCTP, which is a kernel implementation. It was not possible to change the

SCTP implementation for the Emulab SCTP experiment, since the tests had already started.

The use of different implementations makes it more difficult to compare the results. The

difference in performance does not have to be a result of the different platforms but they can

also be due to different implementations.

Another difference between the experiments was the operating system. In FreeBSD, the

SACK functionality in TCP is not included. This implies that the concurrent traffic is using

ordinary cumulative ACKs. The SACK-functionality is used in the Linux implementation

used for the experiment on Emulab. Since the SACK functionality is more efficient than only

cumulative ACKs the concurrent traffic is supposed to be more aggressive when using SACK.

 29

Therefore, it is difficult to make a fair comparison between the results on Emulab and the

local results when using concurrent traffic. The only possible fair comparison is when no

concurrent traffic is used.

4.11.5 Connection problems

The ambition was to perform 100 repetitions for each setting, to get reliable results. From

these results the plan was to calculate a valid mean value with a 95% confidence interval.

This ambition was fulfilled when there was no concurrent traffic. When using a limited router

buffer and concurrent traffic it was not always possible for the application to connect within

reasonable time. The reason for these problems is not identified in the scope of this thesis.

These connection problems lead to fewer samples (in some situations only about 50

repetitions were performed) and is one of the reasons why the confidence interval in some

settings is rather large. The few samples and the big confidence intervals is one of the reasons

why it was not possible to make a fair comparison to the test in the local lab.

 30

 31

5 Exper imental results and analysis

This chapter presents and analyses the results obtained from the experiment. The

evaluation of Emulab as an experimental platform is presented in chapter 6 .

In Section 5.1 the expected results are stated, followed by the presentation of the actual

results in the form of graphs in Section 5.2. Finally, in this section a brief analysis of the

results is made and specific throughput differences from using SCTP and TCP as transport

services are pointed out.

5.1 Expected results from the exper iment

There were many similarities in sending data over a network using SCTP with a single

stream, and using a single TCP connection. However, one difference is that data delivered by

SCTP may be delivered unordered, whereas data delivered by TCP always has to be delivered

in order.

Because of this, the differences in throughput between TCP and SCTP in ordered mode

were expected to be small since the functionalities are very much the same. Nevertheless, the

results from using SCTP were expected to show a slightly higher throughput, at least in a

congested network. The reason for this was that results were expected to be in line with those

achieved in the simulation study [5].

 Another expectation was that there should be small differences in the result from using

SCTP in the local lab compared to using SCTP at Emulab, since the lab platforms are similar.

The possible differences in the results between the local lab and Emulab are not supposed to

depend on the lab platform, but on the different implementations of SCTP that had been used.

Moreover, the concurrent TCP traffic is not using the same ACK mechanism on FreeBSD as

in Linux, why it is not reasonable to expect the same small differences between the results in

the congested situations as in the situations with no concurrent traffic.

5.2 Exper imental results

In this study, throughput was the main concern. That is the reason for presenting the

throughput mean value of the 100 repetitions. In addition, the confidence interval at the 95%

level was calculated and included.

 32

The data from the experiments was written to a file. The data collected was:

•••• Departure time from the server application

•••• Arrival time to the client application

•••• Sequence number for the message (1-1000)

•••• Test number and repetition number (1-100)

For each test the time from sending the first message to arrival of the last packet was

measured. From these values it was possible to calculate the throughput since the size of the

data transferred was known. The average time and the confidence interval were calculated

from the 100 repetitions of the same test. All calculations were made by home made perl

scripts. From the calculations it was possible to plot the results in graphs by using gnuplot.

The results are presented in form of graphs, where each graph shows the throughput as a

function of the interval between messages. In each figure the same number of concurrent

connections and the same router buffer size is used, at different intervals between messages.

The interval between messages indicates the capacity used by the measured traffic. For

example, when the interval is 20 ms, 200 Kbps is used. A result graph showing the maximal

throughput at the given intervals is shown in Figure 5.1. The graph in this figure is shown as a

reference graph, showing the maximal possible throughput when no concurrent traffic is in

the network. This graph has no error bars for confidence interval, since it is a reference and in

this ideal situation all messages have the same maximum throughput.

50

100

150

200

250

300

350

400

450

0 5 10 15 20 25 30

K
bi

t/s
ec

Interval between messages

Reference showing maximal throughput in the net at different time intervals

Figure 5.1 Reference graph showing maximal throughput

 33

The results in the graph only show throughput values for the specific intervals 0, 10, 20

and 30 ms. It is not possible to say anything about the values between the specific intervals.

The values are connected with lines, but these lines should be looked upon just as probable

values.

In Figure 5.1 it can be seen that sending messages without any time interval in between

does not increase the maximal throughput compared to sending the messages with 10 ms

interval. This result is due to the bandwidth constraint, which is set to 400 Kbps. When

sending the messages with 10 ms interval it implies full usage of the bandwidth. Further, 20

ms interval means usage of 50% of the maximal bandwidth.

5.2.1 Result graphs

Result graphs from some of the tests are shown in Figures 5.2-5.6. Each graph shows the

throughput as a function of the intervals between messages using the same number of

concurrent connections. The graphs commented in this section concern results with

reasonably small confidence interval and also results that differ from the results from the local

lab, see Appendix C.

100

150

200

250

300

350

400

0 5 10 15 20 25 30

K
bi

t/s
ec

Interval between messages

TCP and SCTP Throughput with 0 concurrent connections using 12 packet router buffer(netdelay 75 ms)

SCTP ordered
SCTP unordered

TCP

Figure 5.2 No concurrent traffic. 75 ms delay, 12 packet router buffer

When looking upon the first two of these figures (Figure 5.2 and 5.3), where the delay is

set to 75 ms, there are no significant differences between the results and the reference values

 34

shown in Figure 5.1, and there is also no significant difference between the different transport

services. This is expected, since there is no other traffic competing for bandwidth. The results

indicate that TCP is performing marginally better than SCTP in any mode when traffic is

being sent at full speed and when the usage of the bandwidth is exactly 100% (= 10 ms

interval).

100

150

200

250

300

350

400

0 5 10 15 20 25 30

K
bi

t/s
ec

Interval between messages

TCP and SCTP Throughput with 0 concurrent connections using 32 packet router buffer(netdelay 75 ms)

SCTP ordered
SCTP unordered

TCP

Figure 5.3 No concurrent traffic. 75 ms delay, 32 packet router buffer

The comparison shows that the different results from Emulab in Figure 5.2 to Figure 5.4

are in line with the local results in Appendix C. This indicates that the usage of the remote

platform does not introduce any difference in the results.

 35

100

150

200

250

300

350

400

0 5 10 15 20 25 30

K
bi

t/s
ec

Interval between messages

TCP and SCTP Throughput with 0 concurrent connections using 6 packet router buffer(netdelay 25 ms)

SCTP ordered
SCTP unordered

TCP

Figure 5.4 No concurrent traffic. 25 ms delay, 6 packet router buffer

Even after reducing the router buffer to 6 packets and the network delay to 25 ms (see

Figure 5.4), the throughput of the protocols is almost identical. The graphs show that SCTP in

ordered mode performs slightly poorer than the other protocols when the bandwidth of the

network is fully utilized. The results from these settings are also in the same region as the

results of the reference results of Figure 5.1.

100

150

200

250

300

350

400

0 5 10 15 20 25 30

K
bi

t/s
ec

Interval between messages

TCP and SCTP Throughput with 0 concurrent connections using 12 packet router buffer(netdelay 25 ms)

SCTP ordered
SCTP unordered

TCP

Figure 5.5. No concurrent traffic. 25 ms delay, 12 packet router buffer

 36

Figure 5.5 and Figure 5.6 show results when almost all parameters are the same as in

Figure 5.4. The delay is the same, as well as the number of concurrent connections (none).

The only difference is the increase of the size of the router buffer of Dummynet. In Figure 5.5

the router buffer is set to 12 packets and in Figure 5.6 it is 32 packets.

These results show that the throughput of TCP remains unchanged, and the throughput is

still almost the maximum possible. When using this setting there is a discrepancy seen in the

results from using SCTP both in ordered, but even more in unordered mode. This is not

expected and it is quite remarkable. The expectation was that the throughput in these cases

should be at least as good as with a smaller router buffer. The results show that when using

SCTP in unordered mode, with a router buffer of 12 packets (at 10 ms interval between

messages), the average throughput is only 278 Kbps. and for SCTP in ordered mode the

throughput is 315 Kbps.

100

150

200

250

300

350

400

0 5 10 15 20 25 30

K
bi

t/s
ec

Interval between messages

TCP and SCTP Throughput with 0 concurrent connections using 32 packet router buffer(netdelay 25 ms)

SCTP ordered
SCTP unordered

TCP

Figure 5.6 No concurrent traffic. 25 ms delay, 32 packet router buffer

When further increasing the buffer size, seen in Figure 5.6, the throughput for TCP

remains unchanged and the throughput when using SCTP in ordered mode improves. Here the

result when sending with 10 ms interval is 368 Kbps. On the other hand SCTP, in unordered

mode at 10 ms interval is still not performing better than 285 Kbps, which is about 70% of the

possible bandwidth. This is a remarkable loss in throughput compared to SCTP in ordered

mode which shows utilization of about 88% and TCP which utilizes around 95% of the

bandwidth. These decreases in throughput for SCTP were not expected, since there is no other

 37

traffic in the net. These results raise a few questions which are further discussed in Section

5.2.2.

The results from using concurrent traffic all show different patterns and the confidence

intervals tend to be larger than the results without concurrent traffic. The results from these

experiments can all be seen in Appendix D. They are all very hard to analyse and it is also

hard to see any tendencies. Further studies with different parameters have to be done to see

any significant differences between the different protocols. In the same way it is very difficult

to compare the results with the results in the local lab, since the prerequisites for the two

parallel studies differ due to differences in concurrent traffic. What can be said as a general

comment is that TCP with SACK functionality, which is implemented in Linux, but not in

FreeBSD, has a more efficient loss recovery functionality than ordinary cumulative ACK.

This usage of the SACK functionality makes the TCP traffic, used as concurrent traffic, use a

larger share of the bandwidth compared to TCP without that functionality. The throughput for

the measured traffic, when TCP without SACK is used (in the local lab), is generally higher

than the throughput when TCP traffic with SACK is used for the concurrent traffic. These

indications are in line with what was expected and no other comparison is made, since it is a

bit like comparing pears with apples.

5.2.2 Results from the exper iment in the local lab

The results from the experiment performed in the local lab have been compared to the

results from the experiment performed in this study. To make this comparison possible the

local results have been treated the same way as the results from Emulab. The local results are

presented in the same form as the results from these tests. These graphs and are found in

Appendix C.

5.2.3 Analysis of the results

Most of the results when there is no concurrent traffic are in line with the expected results.

The only remarkable digressions are the results when using a net with 25 ms net delay and 12

or 32 packet router buffer, see Figures 5.5. and 5.6. In these cases, the throughput for SCTP in

any mode is significantly lower than for TCP when there is 10 ms interval between the

messages. At this interval exactly 400 Kbps is sent into the network, which means 100%

utilization of the available bandwidth. The discrepancy is not seen at any other interval.

The drop in throughput for SCTP is not seen when the router buffer is as small as 6

packets, see Figure 5.4, and it is not seen when using TCP. Furthermore, the pattern is not

 38

seen when having a longer net delay, 75 ms, see Figures 5.2 and 5.3. In this situation there is

just a very small difference in throughput between the transport services.

It is not obvious why there is such a drop in throughput in this specific case and why this

drop is not seen when the application is trying to utilize more or less than 100% of the

bandwidth (at 0 ms or 20 ms or 30 ms interval) and why it is not seen when the router buffer

is small.

There may be several reasons for this decline in throughput. When trying to search for a

probable reason it is important to look at the differences in transport services. One aspect is

that in these tests the results are all obtained with the Nagle’s algorithm enabled. This

introduces a potential delay (see Section 4.7). Nagle’s algorithm is used both for TCP and

SCTP. The difference between the protocols is that TCP is byte stream-oriented, whereas

SCTP is message-oriented. The transport in SCTP is performed in the form of chunks.

Usually one message is put in the same chunk (if the message is not larger than the path

MTU). To reduce overhead, several chunks may be bundled into the same SCTP message. In

this scenario the messages are 500 Bytes, which means that several messages are bundled into

the same packet. This bundling also introduces a potential delay and a potential reduction in

throughput. The theory that the bundling of messages together with Nagle’s algorithm is

responsible for the drop in throughput is nevertheless not likely, since that would also have

reduced the throughput when messages are sent without intervals and even when the buffer

queue is small. Nevertheless it would be interesting to see if this situation is repeated when

Nagle’s algorithm is disabled. That might be a subject for further studies.

Another theory is that, since the situation does not occur when the buffer is small, the

increased size of the router buffer might entail the throughput reduction. It is a complex

process to choose the optimal router buffer size, but there is a universally applied rule-of-

thumb [38] that says that B= 2T*C, where B is the buffer size, 2T is the roundtrip time and C

is the capacity of the link. This rule is based on the TCP congestion control and would in this

specific case be 50 ms * 400Kbps = 20Kbit = 2500 Bytes = 5 packets. This implies that a 6

packet router buffer should be enough for this transport and the usage of 12 and 32 packets

would be more than enough. Further analysis of each packet is needed to find the reason for

this decrease in throughput.

Deciding the router buffer size is a delicate problem and in this case one aspect could be

that a big router buffer may cause the packets to stay in the buffer queue longer than if the

router buffer is small. This could affect the timer on the sender side so that the retransmission

time out, RTO does not decrease properly. This would make the sender wait longer time

 39

before resending a lost packet. Nevertheless, if this would be the only reason it is difficult to

explain why the drop in throughput is different between SCTP in ordered and unordered

mode, since the same implementation is used.

Another possible reason for this discrepant result is that the implementation used for this

SCTP transport is a prototype implementation, which is probably not yet optimized.

To further analyze the result, there is a need for controlling each packet by looking at the

network dump files. This is not possible within the scope of this project and is left as a

challenge for further studies. From the results obtained in this study it is not possible to say

whether SCTP is more efficient for this type of traffic than TCP. A few questions have come

up and to answer these question and to say anything about which transport service is more

efficient further tests and analysis have to be performed and perhaps also with a different

SCTP implementation.

 40

 41

6 Results of using Emulab

The expectations on Emulab were quite high, since the documentation concerning the

platform was very positive. The results from this study do not cover all the aspects and

facilities of Emulab. For example, no operating system but the default ones has been used.

Before performing the study presented in this thesis a few expectations were stated. The

result from using the platform shows that almost all the expectations were fulfilled.

As the experiments turned out, the only fair comparison between the results from the local

lab and the results achieved on Emulab platform were the results from tests without

concurrent traffic, since the situation when using concurrent traffic is not the same on the

different platforms.

When looking at the results from the different platforms (see Appendix C and D) they look

very much the same, which was expected. Based on this similarity between the results, it is

possible to say that the remote platform performs the same way as a local lab.

Only four nodes were necessary for this experiment so there has been no pressure on the

number of nodes from our side. Nevertheless, the number of free nodes has always been

presented on the web-page and the number of free nodes has almost always been high. Only

twice all the nodes have been occupied and at these occasions there has always been some

special event going on and all users of Emulab has been informed in advance via mail. Maybe

Emulab is mostly used by researchers in the USA and due to the time difference the number

of available nodes has been high when we required resources in the daytime.

The documentation concerning the functionality of Emulab has been found to be clear and

easy to follow. After reading the instructions found on the web site it was easy to start the

experiments.

A few problems have come up during the experiments and a number of questions have

been sent to the Emulab staff. The answers to these questions have always come rapidly,

within 24 hours, and they have always been very clear and almost always have helped to

solve the problem.

6.1 The most significant advantages of using Emulab

There have been several benefits from using Emulab compared to a local network. The

most significant advantages found are:

 42

� Simple and fast configuration

- There has been no need for manual setup of the network and no manual

configuration of the separate nodes. All allocation and configuration has been

done via the web interface and if the requested resources were available the e-

mail informing that the network is ready has come within two minutes.

� The possibility to run several tests in parallel

- The execution of the experiments presented in this thesis took several days and

nights. To speed up the execution, it was possible to allocate several different

experimental setups and run experiments in parallel. The only part to be

careful about was that the results should be stored on the local machine. If data

was stored on the NFS mounted device there is a risk of overwriting data, since

this device is the same for all allocated networks.

� Good capacity

- Emulab consists of 168 PCs and it does not seem to be heavily loaded, and it is

free to use. This makes it a good alternative to a local lab.

6.2 Disadvantages of using Emulab

For this study there have not been many drawbacks of using Emulab. The prolonged

execution time does not seem to have anything to do with Emulab, but is a result of the

implementation of NFS in FreeBSD and could easily have been overcome by mounting the

program on the local node.

The only potential drawback is if Emulab comes to be very popular, since then it would be

heavily loaded. This will make it more difficult to allocate the resources needed. Anyhow,

today this does not seem to be a problem.

6.3 Recommendation

It is risky to say much about Emulab from just having gathered limited experience from

using it. There are still many features that have not been tested in the scope of this thesis.

Nevertheless, the impression of Emulab is positive and the recommendation is that Emulab is

a good contribution to the academic environment. Based on the experience from the

experiments presented it is possible to say, without having tried all facilities of Emulab, that it

works well and it is well worth to continue to use the platform.

 43

The author recommends the research staff at Karlstad University to perform further

experiments on this experimental platform. Another step is perhaps to gather experience from

the real network PlanetLab.

 44

 45

7 Conclusion and future work

In this chapter some conclusions are drawn. Most of the conclusions concern usability and

availability in Emulab. Furthermore, a few parts of the experiment that could have been done

in a different way in the experiments are commented. Finally, suggestions for further work are

presented.

7.1 Conclusion

In this thesis I have compared the throughput of SCTP and TCP. Many tests with different

parameters have been performed and for each test several repetitions have been conducted.

From this study it is not easy to draw general conclusions from the comparison between

TCP and SCTP, neither is it possible to see any tendencies. To do this further analysis of the

results on packet level would have been required.

The conclusion from the results is that when there was no concurrent traffic in the network

SCTP shows no significant improvement over TCP. There are some deviating results when

the router buffer size was reduced, but also the analysis of these results was beyond the scope

of this thesis. More important than the choice of network protocol seems to be whether SACK

is used or not for reporting missing packets.

The experiments have been performed on the remote platform, Emulab, and the conclusion

from this study is that Emulab is a well working platform. The documentation of Emulab is

easy to read and it gives a clear overview of the network. As a beginner, it is easy to start

experimenting on the Emulab platform, since there is an online tutorial available [37]. By

reading this, one could easily receive all necessary information.

The fears that Emulab would be overloaded and that the availability therefore would be

limited turned out to be wrong. Only twice during these studies there have not been enough

nodes available.

The conclusion is that it is easy to use Emulab, the configuration of the experimental

network is simple, fast and the availability is high. From this study the experience is that

Emulab is a good contribution for many researchers and a good complement to a local lab.

 46

7.2 Parts of the study that could have been done differently

A few problems have turned up during this study. The first and the most serious was the

choice of SCTP implementation. Due to the change of SCTP implementation for the

experiments in the local lab, it was not possible to make a comparison between the different

results. The impact of the change of SCTP implementation was not obvious to the author until

it was too late. More open eyes and a better communication would have prevented this

problem.

This study has included many different tests with different parameters. These tests have

produced enormous amounts of data. Analyzing all these data has been time consuming. A

better approach for a study like this would have been to perform fewer tests and instead put

more effort on the analysis. That would probably have given the possibility to find an answer

to why throughput for SCTP was unexpectedly low under some circumstances.

7.3 Future work

Further analyses to find the reasons behind some of the results in this study could be one

challenge for future work, and perhaps also to use slightly different parameters (lower delay

and smaller router buffer), to see whether any tendencies could be found. To perform the tests

by using another SCTP implementation could perhaps also give some more validity to

whether the results are representative for SCTP or just for this implementation.

 As a comparison to this study, it would be interesting to perform the same study again, but

using several streams and several TCP connections for the transport of the emulated SIP

messages.

Another approach would be to compare throughput for TCP, SCTP and UDP. The results

from such a study could serve as a more complete basis of whether a reliable transport

protocol is better than UDP for the transmission of several packets between proxies in the SIP

scenario.

If interesting results are found and verified in the emulated environment provided by

Emulab another challenge would be to perform the same study in PlanetLab to see if the

results are the same in a live network.

To get more results from Emulab it would be interesting to run an experiment that is run on

another operating system than FreeBSD or Linux. This would require loading an OS image

apart from the default ones. Such an activity would further indicate whether the Emulab

documentation is good enough.

 47

References

[1] Alamgir R Et al. Effect of Congestion Control on the performance of TCP and SCTP
over Satellite Networks. NASA Earth Science Technology Conference. June 2002

[2] Allman M et al. RFC 2581 TCP Congestion Control. April 1999

[3] Amir Y, Danilov C. Reliable Communication in Overlay Networks. Proceedings of the
IEEE International Conference on Dependable Systems and Networks, San Francisco,
June 2003.

[4] Andersson T. An Evaluation: Multiple TCP connections vs Single SCTP Association
with Multiple Streams. Karlstad University, October 2003

[5] Camarillo G, Schulzrinne H, Kantola R. Signalling transport protocols. Technical

 report, Dept. of Computer Science, Columbia University, CUCS-002-02, February 2002

[6] Fall K. Network Emulation in the Wint/NS Simulator. In Proc. IEEE ISCC ’99, July
1999

[7] Fu S. Atiquzzaman M. Improving End-to-End throughput of Mobile IP using SCTP.
2003 Workshop on high performance switching and routing, Torino. June 2003

[8] Handley M, Jacobson V, SDP Session Description Protocol RFC 2327, April 1998

[9] Kurose J K. Computer Networking A top-down approach featuring the Internet. Pearson
Education 2003

[10] Leprau J., et al. An Emulation Testbed for Networks and Distributed Systems
http://www.cs.utah.edu/flux/testbed-docs/testbed-intel-jun01.htm September 2003

[11] Mathis M. et al. RFC 2018 TCP Selective Acknowledgment Options. October 1996

[12] Nagle J. RFC 896 Congestion Control in IP/TCP Internetworks. January 1984

[13] Postel J. RFC 768: UDP User Datagram Protocol. August 1980

[14] Ravier T., Brennan R., Curran T. Experimental studies of SCTP Multi-homing. First
Joint IEI/IEE Symposium on Telecommunications Systems Research, Dublin,
November 2001

[15] RFC 793: TCP Transmission Control Protocol. September 1981

[16] Rizzo L., Dummynet and Forward error correction. In Proc. Of the 1998 USENIX
Technical Conf. New Orleans, US, June 1998

[17] Schulzrinne H. et al. RFC 2543 SIP: Session initiation protocol. March 1999

[18] Singh M, Pradhan P, Francis P. MPAT: Aggregate TCP Congestion Management as a
Building Block for Internet QoS In Proceedings of IEEE International Conference on
Network Protocols (ICNP 2004), Berlin, Germany, October 2004.

[19] Stewart R. et al. RFC 2960 Stream Control Transmission Protocol. October 2000

[20] Stewart R. Stream Control Transmission Protocol (SCTP). http://www.sctp.org
 September 2003

[21] Stewart R. Stream Control Transmission Protocol (SCTP)-a reference guide. Adison
Wesley, November 2001

[22] SCTP-a prototype implementation http://www.sctp.de September 2003

 48

[23] White B., Lepreau J., Stoller L.,Ricci R., Guruprasad S., Newbold M., Hibler M., Barb
C.and Joglekar A.. An Integrated Experimental Environment for Distributed Systems
and Networks. 5th Symposium on Operating Systems Design & Implementation,
Boston, US, December 2002

[24] Emulab at Georgia Institute of Technology http://www.netlab.cc.gatech.edu/
September 2003

[25] Emulab at University of Kentucky http://www.uky.emulab.net/ September 2003

[26] Emulab at University of Utah http://www.emulab.net/ September 2003

[27] FreeBSD implementing SCTP http://www.freeBSD.org November 2004

[28] Linux 2.4 auto-tuning/caching http://www.csm.ornl.gov/~dunigan/net100/auto.html

 February 2004

[29] Linux Kernel SCTP http://sourceforge.net/projects/lksctp September 2003

[30] Planetlab http://www.planet-lab.org/ September 2003

[31] Policies for using Emulab
http://www.emulab.net/docwrapper.php3?docname=policies.html September 2004

[32] Secure sockets layer http://www.openssl.org/ September 2004

[33] The Internet Engineering Task Force http://www.ietf.org/ September 2003

[34] http://www.sctp.org/implementations.html May 2004

[35] http://www.cisco.com/warp/public/cc/pd/wr2k/cpbn/tech/vlan_wp.htm
September 2004

[36] http://www.ietf.org/html.charters/tsvwg-charter.html September 2004

[37] http://www.emulab.net/tutorial/docwrapper.php3?docname=tutorial.html
September 2003

[38] http://www.stanford.edu/class/ee384y/Handouts/EE384y_BufferSize.pdf
February 2002

[39] http://www.emulab.net/doc/docwrapper.php3?docname=expubs.html
November 2004

 49

Appendix

A Information presenting details about allocated resources at
Emulab

Your experiment `firsttest' in project `SCTP-KaU' has been started. Here is the experiment

summary detailing the nodes that were allocated to you. You may use the `Qualified Name' to log on

to your nodes. See /etc/hosts on your nodes (when running FreeBSD, Linux, or NetBSD) for the IP

mapping on each node.

User: Johan Eklund

EID: firsttest

PID: SCTP-KaU

GID: SCTP-KaU

Name: first test to test an application

Swappable: Yes

Idle-Swap: Yes, at 1 hours

Auto-Swap: Yes, at 10 hours

Created: 2003-09-24 06:10:18

Directory: /proj/SCTP-KaU/exp/firsttest

Appended at the end is the output of the experiment setup. If you have any questions or

comments, please include the output below in your message to testbed-ops@flux.cs.utah.edu

--------- firsttest.report --------

Experiment: SCTP-KaU/firsttest

State: active

Virtual Node Info:

ID Type OS Qualified Name

--------------- ------------ --------------- --------------------

node0 pc node0.firsttest.SCTP-KaU.emulab.net

node1 pc node1.firsttest.SCTP-KaU.emulab.net

node2 pc node2.firsttest.SCTP-KaU.emulab.net

node3 pc node3.firsttest.SCTP-KaU.emulab.net

Physical Node Mapping:

 50

ID Type OS Physical

--------------- ------------ --------------- ------------

node0 pc850 RHL73-STD pc112

node1 pc850 RHL73-STD pc113

node2 pc850 RHL73-STD pc114

node3 pc850 RHL73-STD pc110

tbdelay0 pc850 FBSD47-STD pc111

tbdelay1 pc850 FBSD47-STD pc149

Virtual Lan/Link Info:

ID Member IP/Mask Delay BW (Kbs) Loss Rate

--------------- --------------- --------------- --------- --------- -----

lan0 node0:0 10.1.2.3 25.00 100000 0.100

 255.255.255.0 25.00 100000 0.100

lan0 node1:0 10.1.2.4 25.00 100000 0.100

 255.255.255.0 25.00 100000 0.100

lan0 node2:1 10.1.2.2 25.00 100000 0.100

 255.255.255.0 25.00 100000 0.100

link0 node2:0 10.1.1.3 100.00 100000 0.010

 255.255.255.0 100.00 100000 0.010

link0 node3:0 10.1.1.2 100.00 100000 0.010

 255.255.255.0 100.00 100000 0.010

Virtual Queue Info:

ID Member Q Limit Type weight/min_th/max_th/linterm

--------------- --------------- ---------- ------- ----------------------

lan0 node0:0 50s Tail 0/0/0/0

lan0 node1:0 50s Tail 0/0/0/0

lan0 node2:1 50s Tail 0/0/0/0

link0 node2:0 50s Tail 0/0/0/0

link0 node3:0 50s Tail 0/0/0/0

Physical Lan/Link Info:

ID Member Delay Node Delay BW (Kbs) PLR Pipe

--------------- --------------- ------------ -------- -------- ------ ---

lan0 node0 tbdelay0 25.00 100000 0.100 130

 25.00 100000 0.100 140

lan0 node1 tbdelay1 25.00 100000 0.100 130

 25.00 100000 0.100 140

lan0 node2 tbdelay1 25.00 100000 0.100 110

 51

 25.00 100000 0.100 120

link0 node2 tbdelay0 200.00 100000 0.020 110

link0 node3 tbdelay0 200.00 100000 0.020 120

Physical Queue Info:

ID Member Q Limit Type weight/min_th/max_th/linterm

--------------- --------------- ---------- ------- ----------------------

lan0 node0 50s Tail 0/0/0/0

lan0 node1 50s Tail 0/0/0/0

lan0 node2 50s Tail 0/0/0/0

link0 node2 50s Tail 0/0/0/0

link0 node3 50s Tail 0/0/0/0

 52

 53

B Test parameters used in the exper iments

The parameter settings marked on this page are the same parameters as were used in the

experiment in the local lab, the settings on next page are the ones added for this experiment.

Test number Competing traffic message interval net delay (ms) Router Buffer

1 0 0 75 12

2 1 0 75 12

3 2 0 75 12

4 8 0 75 12

5 0 10 75 12

6 1 10 75 12

7 2 10 75 12

8 8 10 75 12

9 0 20 75 12

10 1 20 75 12

11 2 20 75 12

12 8 20 75 12

13 0 30 75 12

14 1 30 75 12

15 2 30 75 12

16 8 30 75 12

17 0 0 75 32

18 1 0 75 32

19 2 0 75 32

20 8 0 75 32

21 0 10 75 32

22 1 10 75 32

23 2 10 75 32

24 8 10 75 32

25 0 20 75 32

26 1 20 75 32

27 2 20 75 32

28 8 20 75 32

29 0 30 75 32

30 1 30 75 32

31 2 30 75 32

32 8 30 75 32

 54

Test number Competing traffic message interval net delay (ms) Router Buffer

33 0 0 25 6

34 2 0 25 6

35 8 0 25 6

36 0 10 25 6

37 2 10 25 6

38 8 10 25 6

39 0 20 25 6

40 2 20 25 6

41 8 20 25 6

42 0 30 25 6

43 2 30 25 6

44 8 30 25 6

45 0 0 25 12

46 2 0 25 12

47 8 0 25 12

48 0 10 25 12

49 2 10 25 12

50 8 10 25 12

51 0 20 25 12

52 2 20 25 12

53 8 20 25 12

54 0 30 25 12

55 2 30 25 12

56 8 30 25 12

57 0 0 25 32

58 2 0 25 32

59 8 0 25 32

60 0 10 25 32

61 2 10 25 32

62 8 10 25 32

63 0 20 25 32

64 2 20 25 32

65 8 20 25 32

66 0 30 25 32

67 2 30 25 32

68 8 30 25 32

 55

C Results from the exper iment running SCTP per formed in the
local lab

(Local lab = “CARL” at Karlstad university)

The graphs in this appendix show the results from the experiment performed in the Local

lab. The graphs are to be compared to the results achieved in this thesis.

100

150

200

250

300

350

400

0 5 10 15 20 25 30

K
bi

t/s
ec

Interval between messages

SCTP Throughput with 0 concurrent connections using 12 packet router buffer (netdelay 75 ms)

ordered
unordered

100

150

200

250

300

350

400

0 5 10 15 20 25 30

K
bi

t/s
ec

Interval between messages

SCTP Throughput with 0 concurrent connections using 32 packet router buffer(netdelay 75 ms)

ordered
unordered

 56

120

140

160

180

200

220

240

260

0 5 10 15 20 25 30

K
bi

t/s
ec

Interval between messages

SCTP Throughput with 1 concurrent connections using 12 packet router buffer(netdelay 75 ms)

ordered
unordered

120

140

160

180

200

220

240

260

280

0 5 10 15 20 25 30

K
bi

t/s
ec

Interval between messages

SCTP Throughput with 1 concurrent connections using 32 packet router buffer(netdelay 75 ms)

ordered
unordered

 57

120

130

140

150

160

170

180

190

0 5 10 15 20 25 30

K
bi

t/s
ec

Interval between messages

SCTP Throughput with 2 concurrent connections using 12 packet router buffer(netdelay 75 ms)

ordered
unordered

120

130

140

150

160

170

180

190

200

0 5 10 15 20 25 30

K
bi

t/s
ec

Interval between messages

SCTP Throughput with 2 concurrent connections using 32 packet router buffer(netdelay 75 ms)

ordered
unordered

 58

52

54

56

58

60

62

64

66

0 5 10 15 20 25 30

K
bi

t/s
ec

Interval between messages

SCTP Throughput with 8 concurrent connections using 12 packet router buffer(netdelay 75 ms)

ordered
unordered

70

71

72

73

74

75

76

77

78

79

80

81

0 5 10 15 20 25 30

K
bi

t/s
ec

Interval between messages

SCTP Throughput with 8 concurrent connections using 32 packet router buffer(netdelay 75 ms)

ordered
unordered

 59

D Results from the exper iment running SCTP and TCP
per formed on Emulab

100

150

200

250

300

350

400

0 5 10 15 20 25 30

K
bi

t/s
ec

Interval between messages

TCP and SCTP Throughput with 0 concurrent connections using 12 packet router buffer(netdelay 75 ms)

SCTP ordered
SCTP unordered

TCP

100

150

200

250

300

350

400

0 5 10 15 20 25 30

K
bi

t/s
ec

Interval between messages

TCP and SCTP Throughput with 0 concurrent connections using 32 packet router buffer(netdelay 75 ms)

SCTP ordered
SCTP unordered

TCP

 60

80

100

120

140

160

180

200

220

0 5 10 15 20 25 30

K
bi

t/s
ec

Interval between messages

TCP and SCTP Throughput with 1 concurrent connections using 12 packet router buffer(netdelay 75 ms)

SCTP ordered
SCTP unordered

TCP

40

60

80

100

120

140

160

180

200

220

0 5 10 15 20 25 30

K
bi

t/s
ec

Interval between messages

TCP and SCTP Throughput with 1 concurrent connections using 32 packet router buffer(netdelay 75 ms)

SCTP ordered
SCTP unordered

TCP

 61

60

70

80

90

100

110

120

130

140

0 5 10 15 20 25 30

K
bi

t/s
ec

Interval between messages

TCP and SCTP Throughput with 2 concurrent connections using 12 packet router buffer(netdelay 75 ms)

SCTP ordered
SCTP unordered

TCP

70

80

90

100

110

120

130

140

150

0 5 10 15 20 25 30

K
bi

t/s
ec

Interval between messages

TCP and SCTP Throughput with 2 concurrent connections using 32 packet router buffer(netdelay 75 ms)

SCTP ordered
SCTP unordered

TCP

 62

0

10

20

30

40

50

60

70

80

0 5 10 15 20 25 30

K
bi

t/s
ec

Interval between messages

TCP and SCTP Throughput with 8 concurrent connections using 12 packet router buffer(netdelay 75 ms)

SCTP ordered
SCTP unordered

TCP

0

10

20

30

40

50

60

70

80

90

0 5 10 15 20 25 30

K
bi

t/s
ec

Interval between messages

TCP and SCTP Throughput with 8 concurrent connections using 32 packet router buffer(netdelay 75 ms)

SCTP ordered
SCTP unordered

TCP

 63

100

150

200

250

300

350

400

0 5 10 15 20 25 30

K
bi

t/s
ec

Interval between messages

TCP and SCTP Throughput with 0 concurrent connections using 6 packet router buffer(netdelay 25 ms)

SCTP ordered
SCTP unordered

TCP

100

150

200

250

300

350

400

0 5 10 15 20 25 30

K
bi

t/s
ec

Interval between messages

TCP and SCTP Throughput with 0 concurrent connections using 12 packet router buffer(netdelay 25 ms)

SCTP ordered
SCTP unordered

TCP

 64

100

150

200

250

300

350

400

0 5 10 15 20 25 30

K
bi

t/s
ec

Interval between messages

TCP and SCTP Throughput with 0 concurrent connections using 32 packet router buffer(netdelay 25 ms)

SCTP ordered
SCTP unordered

TCP

40

60

80

100

120

140

160

180

200

0 5 10 15 20 25 30

K
bi

t/s
ec

Interval between messages

TCP and SCTP Throughput with 2 concurrent connections using 6 packet router buffer(netdelay 25 ms)

SCTP ordered
SCTP unordered

TCP

 65

105

110

115

120

125

130

135

140

145

0 5 10 15 20 25 30

K
bi

t/s
ec

Interval between messages

TCP and SCTP Throughput with 2 concurrent connections using 12 packet router buffer(netdelay 25 ms)

SCTP ordered
SCTP unordered

TCP

90

95

100

105

110

115

120

125

130

0 5 10 15 20 25 30

K
bi

t/s
ec

Interval between messages

TCP and SCTP Throughput with 2 concurrent connections using 32 packet router buffer(netdelay 25 ms)

SCTP ordered
SCTP unordered

TCP

 66

0

50

100

150

200

0 5 10 15 20 25 30

K
bi

t/s
ec

Interval between messages

TCP and SCTP Throughput with 8 concurrent connections using 6 packet router buffer(netdelay 25 ms)

SCTP ordered
SCTP unordered

TCP

0

50

100

150

200

0 5 10 15 20 25 30

K
bi

t/s
ec

Interval between messages

TCP and SCTP Throughput with 8 concurrent connections using 12 packet router buffer(netdelay 25 ms)

SCTP ordered
SCTP unordered

TCP

 67

0

20

40

60

80

100

0 5 10 15 20 25 30

K
bi

t/s
ec

Interval between messages

TCP and SCTP Throughput with 8 concurrent connections using 32 packet router buffer(netdelay 25 ms)

SCTP ordered
SCTP unordered

TCP

