
Department of Computer Science

Daniel Jansson

Software Development Kit for a Telecom
Services Architecture

D-level Thesis (30 ECTS)
2005:03

Software Development Kit for a Telecom
Services Architecture

Daniel Jansson

c© 2005 The author and Karlstad University

This thesis is submitted in partial ful�llment of the requirements
for the Masters degree in Computer Science. All material in this
thesis which is not my own work has been identi�ed and no mate-
rial is included for which a degree has previously been conferred.

Daniel Jansson

Approved, May 27, 2005

Opponent: Martin Blom

Advisor: Katarina Asplund

Examiner: Donald F. Ross

iii

Abstract

This Master's thesis is the result of a project performed at Incomit AB in Karlstad. The
content describes the requirements gathering for, and the development of, a Software De-
velopment Kit (SDK) for telecom service creation. The SDK facilitates the development
of network plug-ins that enable new protocol speci�c behaviour in the Incomit Applica-
tion Hub. As part of the requirement gathering for the SDK, two surveys were performed
among the developers at Incomit. The �rst survey regarded experiences with development
environments and the second survey regarded their opinion of development environment
features.

The results from the two surveys and requirements from an old requirement speci�cation
were used as a base for creating the requirement speci�cation for the SDK.

The SDK consists of interface documentation and a utility that generates compilable
Java code in order to make it easier for the developer of the network plug-in to concentrate
on protocol speci�c implementation. The code generation of the SDK has a graphical user
interface implemented as a plug-in in the eclipse platform.

The SDK works well in a Windows XP environment. The SDK has very loosely coupled
parts which makes it ideal for extension and modi�cation which was part of the require-
ments.

v

Contents

1 Introduction 1
1.1 Thesis Assignment . 2

1.2 Reading Guide . 7

2 Background 9
2.1 Introduction . 9

2.2 History of Open Network APIs . 9

2.3 Incomit Application Hub . 11

2.4 Incomit Service Logic Execution Environment 13

2.5 Software Development Kit . 16

2.6 Incomit Network Simulator . 16

2.7 Summary . 17

3 Methods and Tools 19
3.1 Introduction . 19

3.2 Development Method . 19

3.3 Ant . 20

3.4 Java . 22

3.5 Extensive Markup Language . 23

3.6 Other Tools . 24

vii

4 Requirement Gathering 25
4.1 Introduction . 25

4.2 Old Requirement Speci�cation . 25

4.3 Evaluation of JBuilder and eclipse . 26

4.3.1 JBuilder . 27

4.3.2 Eclipse . 27

4.3.3 Review Process . 28

4.3.4 Running a test in JBuilder . 29

4.3.5 Running a test in Eclipse . 35

4.3.6 Conclusion . 41

4.4 Development Environment Survey . 44

4.4.1 Awareness of Development Environments 44

4.4.2 Evaluation of Development Environments 45

4.4.3 Grading of eclipse . 46

4.4.4 Grading of JBuilder . 47

4.4.5 Grading of NetBeans . 48

4.4.6 Summary from Development Environment Grading 49

4.4.7 Development Environment Preference 49

4.5 Development Environment Features Survey 50

4.5.1 Code Templates . 51

4.5.2 Code Examples . 52

4.5.3 Tutorials . 54

4.5.4 Wizards . 56

4.5.5 Performance . 56

4.5.6 Method Generation . 58

4.5.7 Code Completion . 58

4.5.8 Automatic Code Packaging . 59

viii

4.5.9 Automatic Deployment . 60
4.5.10 Errorless Compilation . 61
4.5.11 Javadoc . 62
4.5.12 Accessible Documentation . 64
4.5.13 Short Commands . 65

4.6 Summary . 66

5 Requirement Speci�cation 67
5.1 Introduction . 67
5.2 Requirement Evaluation . 67
5.3 Requirements Listing . 69

5.3.1 Code Templates . 69
5.3.2 Code Examples and Class Libraries 70
5.3.3 Facilitate Development of Network Plug-ins 72
5.3.4 Facilitate Development of Net Simulator Support 73
5.3.5 Standalone Extension SDK . 73
5.3.6 Separation of Logic and GUI . 73
5.3.7 Operating Systems . 74
5.3.8 Documentation . 74
5.3.9 Eclipse Support . 74
5.3.10 Automatic Code Packaging . 75
5.3.11 Automatically Generated Code Compiles 75

6 Design of the SDK 77
6.1 Introduction . 77
6.2 Modularity . 78
6.3 Parsing Speci�c Classes . 79
6.4 Eclipse Speci�c Classes . 80

ix

6.5 Code Templates . 81
6.6 Code Examples . 84
6.7 Network Plug-ins . 84

6.7.1 SleeService . 86
6.7.2 SleeServiceOAM . 88

6.8 Special Tokens . 90
6.9 Graphical User Interface . 94

7 Results and Evaluation 97
7.1 Problems . 98
7.2 Future work . 99

References 101

A Appendix 105
A.1 Original Requirement Speci�cation . 105

A.1.1 Movade ExtSdk-R1: Facilitate development of SCSs 105
A.1.2 Movade ExtSdk-R2: Code templates 106
A.1.3 Movade ExtSdk-R3: Code examples and class libraries 106
A.1.4 Movade ExtSdk-R4: Facilitate development - Network Plug-ins . . . 107
A.1.5 Movade ExtSdk-R5: Facilitate development - SCS Plug-ins 107
A.1.6 Movade ExtSdk-R6: Facilitate development - SCS-proxies 107
A.1.7 Movade ExtSdk-R7: Facilitate development - JAIN SPA Services . 108
A.1.8 Movade ExtSdk-R8: Facilitate development - ESPA Services 108
A.1.9 Movade ExtSdk-R9: Facilitate development - ATE support 108
A.1.10 Movade ExtSdk-R10: Movade DS support 108
A.1.11 Movade ExtSdk-R11: Other IDE support 109
A.1.12 Movade ExtSdk-R12: Facilitate deployment - General 109
A.1.13 Movade ExtSdk-R13: Facilitate deployment - Internal plug-ins . . . 109

x

A.1.14 Movade ExtSdk-R14: Facilitate deployment - SCS plug-ins 109
A.1.15 Movade ExtSdk-R15: Facilitate deployment - SCS-proxies 109
A.1.16 Movade ExtSdk-R16: Facilitate deployment - JAIN SPA services . . 110
A.1.17 Movade ExtSdk-R17: Facilitate deployment - ESPA services 110
A.1.18 Movade ExtSdk-R18: Standalone Extension SDK 111
A.1.19 Movade ExtSdk-R19: Documentation 111
A.1.20 Movade ExtSdk-R20: Windows . 111
A.1.21 Movade ExtSdk-R21: Possible to install on top of Application devel-

opment SDK . 112
A.1.22 Movade ExtSdk-R22: Installation wizard 112

xi

List of Figures

1.1 Creating a Network Plug-in . 4

1.2 Development Environment . 5

1.3 Compilation . 6

2.1 Horizontal Scalability . 12

2.2 Vertical Scalability . 13

2.3 Incomit Management Tool . 15

4.1 JBuilder - Project Wizard . 29

4.2 JBuilder - Class Wizard . 30

4.3 JBuilder - Error and Code Completion . 30

4.4 JBuilder - Structure Window . 31

4.5 JBuilder - Import Code Completion . 31

4.6 JBuilder - Code Completion . 31

4.7 JBuilder - Fixable Error . 31

4.8 JBuilder - Solution Suggestions . 32

4.9 JBuilder - Solution Suggestions 2 . 32

4.10 JBuilder - Added Try and Catch . 32

4.11 JBuilder - Execute . 34

4.12 JBuilder - Con�g Window . 34

4.13 JBuilder - Message Window . 35

xiii

4.14 Eclipse - New Project . 35

4.15 Eclipse - New Java Project . 36

4.16 Eclipse - New Java Class . 36

4.17 Eclipse - Error . 37

4.18 Eclipse - Import Code Completion . 38

4.19 Eclipse - Code Completion . 38

4.20 Eclipse - Fixable Error . 38

4.21 Eclipse - Solution Suggestions . 38

4.22 Eclipse - Solution Suggestions 2 . 39

4.23 Eclipse - Added Try and Catch . 39

4.24 Eclipse - Execution . 40

4.25 Eclipse - Console . 40

4.26 Awareness of IDEs . 45

4.27 Tried IDE . 46

4.28 Experience handling IDE . 47

4.29 Average Grade of IDEs . 48

4.30 Importance of Code Templates . 53

4.31 Importance of Code Examples . 54

4.32 Importance of Incomit Tutorials . 55

4.33 Importance of Beginner Tutorials . 55

4.34 Importance of Wizards . 57

4.35 Importance of Performance . 58

4.36 Importance of Method Generation from Interface �les 59

4.37 Importance of Code Completion . 60

4.38 Importance of Automatic Code Packaging 61

4.39 Importance of Automatic Deployment . 62

4.40 Importance of New Created Code Compilable 63

xiv

4.41 Importance of Javadoc . 63
4.42 Importance of Accessing documentation from IDE 64
4.43 Importance of Short Commands . 65

6.1 Overview . 78
6.2 Separation of Logic and GUI . 79
6.3 Parser Class Diagram . 80
6.4 Eclipse Class Diagram . 81
6.5 Property File Example . 82
6.6 Code Templates . 83
6.7 Code Examples . 84
6.8 Trace Service Code Example . 85
6.9 SleeService Class Diagram . 86
6.10 SleeServiceOAM Class Diagram . 88
6.11 Eclipse Project Folder . 94
6.12 Property Editor . 95
6.13 Project Folders . 96

xv

List of Tables

4.1 Comparison between JBuilder and eclipse 43

xvii

Chapter 1

Introduction

Development of telecom services is often tied to telecom protocols. Since telecom network
operators often refrain from opening their network because of security and billing compli-
cations, most of the service development is done within the operator company. It is very
expensive and complex for outside developers to create a new service (e.g. a voting service
that registers SMS-votes) since they have to work very closely with the network operator.
This is not only a disadvantage for external developers but for the network providing com-
pany as well. The reason for this is that the operator could bene�t from more services as
it may attract more customers.

The company Incomit solves the above described problem by providing plug-in-based
products with simple northbound interfaces1 (see Section 2.3). Incomit AB was founded in
March 2000. The company has two o�ces2, one in Karlstad and one in London. The o�ce
in London is mostly sales based where the o�ce in Karlstad is mostly product development
based. The company, in total, has about 30 employees.

1interfaces provided to the layer above. As an example, the transport layer in the TCP/IP stack has
an northbound interface toward the application layer

2Incomit AB was acquired by BEA Systems in December 2004

1

2 CHAPTER 1. INTRODUCTION

1.1 Thesis Assignment

Incomit has a product called The Application Hub (see Section 2.3). This product acts
as a gateway between di�erent networks. For example, one could through the Application
Hub access the GSM-network from the Internet. In order to support new functionality the
developers at Incomit create new software modules within the Application Hub. It is the
creation of these modules that would need some help.

When developers at Incomit design a new plug-in in order to extend the functionality
of their Application Hub, they tend to reuse old code and change it in order to create
their new plug-in. This method has one major advantage and that advantage is time. The
development time is greatly reduced when reusing existing code and replacing only certain
parts of it with new code. However, there are also several disadvantages with this approach.
First, using code that was speci�cally designed for one purpose may not be optimal for
the new purpose. Second, source code that comes from old code can linger unused in the
new code, and errors that could exist in the old code propagates to the new code. One
solution to this problem is a Software Development Kit (SDK). The SDK should facilitate
development of new telecom services such as network plug-ins. It should do this in such a
way that the developer gets the required help to create the service fast and still avoid the
problems described above.

The purpose of the project described in this thesis is to design and develop an SDK,
which could be used to create network plug-ins. A network plug-in could, for example, be
a messaging type plug-in that forwards text over a certain network protocol. An example
of what a message plug-in could do is sending an application generated SMS to a GSM
mobile phone.

The SDK is supposed to provide a development environment for the developer. This
development environment should, through wizards and code manipulating features such as
code completion, make the code creation of telecom services faster and easier. The SDK
should also facilitate the testing of created network plug-ins by providing easy access to

1.1. THESIS ASSIGNMENT 3

Incomits own Network Simulator (see Section 2.6).

In order to �nd out what kind of parts that were essential for the SDK and the priorities
of these, a quite extensive requirement gathering has been done. Incomit had an old
requirement speci�cation which was examined and modi�ed. The modi�cation was done
according to two surveys performed among the Incomit developers. The surveys were done
as a part of this thesis. Furthermore, in order to �nd what Graphical User Interface (GUI)
the SDK should support, an evaluation was made of the two development environments
Incomit suggested, JBuilder and eclipse. The evaluation part was seen as an important
part by Incomit, therefore it is quite extensive.

The result of the work for this thesis is an SDK which is called "the Extension SDK"
since it extends the existing functionality of the telecom services architecture. The SDK
provides code examples which developers can use as a reference when creating their own
service. Javadoc for utilities and necessary APIs are included into the SDK, as well as a
plug-in to the popular development environment eclipse. This plug-in creates code from
code templates, where the developer's own preferences for name and type of the services
are taken into consideration and a�ects the result. The ability to receive help with code
creation speeds up development of new telecom network services, reducing the overall
implementation time.

In order to clarify how this is all implemented three �gures are provided. These �gures
explain the di�erent steps a developer is following when using the eclipse plug-in to create
a new Network plug-in.

Figure 1.1 explains the creation of the project in the eclipse environment. First, the
File->New->Project... is clicked. Second, the type of service which is to be created
is chosen. Third, the project name is entered. Fourth, the service-speci�c information is
entered, such as name, module name and what the .jar �le will be called after compilation.

Figure 1.2 shows how the working project looks like after the creation of the project,
which envolves generating code depending on the decisions of the developer. This is where

4 CHAPTER 1. INTRODUCTION

Figure 1.1: Creating a Network Plug-in

1.1. THESIS ASSIGNMENT 5

Figure 1.2: Development Environment

6 CHAPTER 1. INTRODUCTION

Figure 1.3: Compilation

1.2. READING GUIDE 7

the code has been generated and the developer can add his or her own functionality.

Finally, Figure 1.3 shows how the compilation is done in the project. First, the build-
�le is right-clicked and run. Second, the result from the compilation is shown in the eclipse
console.

Note that the above scenario is how the Extension SDK would work in collaboration
with eclipse. Using the Extension SDK with scripts instead of the Graphical Interface
provided with eclipse would look di�erent, but the result would be the same.

1.2 Reading Guide

To fully understand the contents of this document basic knowledge in computer science
is required. Previous experience with SDKs, telecom architectures and object oriented
approaches makes the reading easier, but is not required. The thesis is structured as
follows:

Chapter 2. Background. This chapter explain knowledge areas needed to comprehend
the contents of this thesis.

Chapter 3. Methods and Tools. This chapter describes some of the most important
methods and tools used.

Chapter 4. Requirement Gathering. The requirement gathering is discussed in this
chapter.

Chapter 5. Requirement Speci�cation. The requirement speci�cation is discussed in
this chapter.

Chapter 6. Design and implementation. In this chapter the design and the imple-
mentation of the SDK are described.

8 CHAPTER 1. INTRODUCTION

Chapter 7. Results and Evaluation. This chapter describes the results and evaluation
of the thesis.

Chapter 2

Background

2.1 Introduction

This chapter contains information about concepts and technologies which are necessary to
comprehend in order to understand the content of this thesis. First, a historic overview
of the evolving telecom architecture is given in Section 2.2. Second and third, telecommu-
nication and company speci�c technologies, such as the Incomit Service Logic Execution
Environment and The Incomit Application Hub are described. Fourth, the concept Soft-
ware Development Kit is described. Finally, the Incomit Network Simulator is brie�y
discussed.

2.2 History of Open Network APIs

Extending the functionality of a network can from the network provider's point of view
be done in two ways; Either by adding the functionality oneself, or by allowing outside
developers to do it. The �rst solution is the easiest if new features will be implemented
fairly infrequently. However, with a steadily increasing mobile market the strategy of
allowing other developers into the network and extending it can be seen as the winning

9

10 CHAPTER 2. BACKGROUND

one. It should be noted that allowing people into the network makes certain restrictions
necessary so that third party developers are unable to abuse the network.

The Intelligent Network concept (IN) [29, 11] was the �rst step in order to standardize
an interface for outside developers so that it would not look di�erent from network provider
to network provider. The concept separates the service-speci�c software, which allows
external applications to be deployed without interfering with the underlying network, from
the service switching points.

Although IN solved the problem with deployment of applications it did less to the
standardization part of the interface. It could be described as a �rst step toward a more
open service architecture but it did not reach all the way. The third party developers still
needed telecommunication expertise. What this meant for the telecommunication industry
was that the development of services was not as fast as it could have been.

Two major standardization groups, JAIN [19] and Parlay [10], had proved that stan-
dardized and open network APIs decreased development time. They abstracted the telecom-
munication service creation from the telecommunication details. JAIN and Parlay did this
with concern for the third party developers and the fact that Internet had become increas-
ingly entangled with mobile telecommunication networks.

The Third Generation Partnership Project (3GPP) [2] and ETSI [1] were heading the
same way de�ning the Open Service Access Standard (OSA) [26]. However, instead of
being network agnostic like Parlay tried to be, they focused on the 3rd generation network.
OSA consists of open network APIs that enables third party developers to develop and
deploy their services into a telecommunication network without reducing security. Part
of these APIs were taken from Parlay. Since the three organizations had common goals
they decided to create a single development community by creating a Joint API group.
This allow the organizations to synchronize their APIs. For further information about
the history of the APIs of ETSI, 3GPP and Parlay see Chapter 2 and 3 in "Opening the
networks with PARLAY/OSA APIs: standards and aspects behind the APIs" [3].

2.3. INCOMIT APPLICATION HUB 11

Incomit has built products on the open standards described above. In the next section
the Incomit Application Hub will be discussed.

2.3 Incomit Application Hub

Incomit has two main products that aims to tie the data communication world to the
telecommunication world. These are the Application Hub[13] and the OSA Gateway[14].
In this thesis the focus is on the Incomit Application Hub and the OSA Gateway will not
be further described.

The Application Hub is intended to act as a gateway between the traditional telecom
network and the IP network. It consists of both hardware and software components, both
from Incomit and from third party companies. Incomit is able to include third party
software and hardware into their Application Hub because of their decision to base their
interfaces on open standards and open architecture (see Section 2.2). The application Hub
is based on the Incomit SLEE described in the next section.

The Application Hub has several northbound APIs based on Java, CORBA or Web
Services standards. The choice of API depends mostly on the preference of the developers
and the demands of the application. Since security is often a concern of the operator, the
Application Hub uses a central point of authentication for both third party applications
and internal applications alike. One central point means only one point to protect.

Policy-based access control means that operators can dynamically con�gure their Ser-
vice Level Agreement (SLA) [30] data according to contracts and security speci�cations.
The fact that the policies can be changed dynamically means that operators can change
rules without a�ecting the rest of the system.

Using policies in the Application Hub together with the subscriber pro�les 1 allows
access control to the services. For example, the Incomit Application Hub can check which

1data of people subscribing to services running on the Application Hub

12 CHAPTER 2. BACKGROUND

Figure 2.1: Horizontal Scalability

services the users subscribe to, which payment method to use, account status and more.

There is support for a wide range of standard network protocols which enables fast
creation of applications that target the mobile networks directly through IP-based service
nodes or via OSA/Parlay gateways (such as the Incomit OSA Gateway). The Application
Hub also has built-in routing of services requests to other networks nodes, depending on
the destination address.

The Application Hub is built with a modular architecture in mind, which makes it
easier for service application developers to form their own unique service application from
their needs and requirements.

How the system scales is very important in large commercial systems and Incomit's
Application Hub is very scalable. It is scalable in both horizontal and vertical aspects.
Horizontal scaling means that a speci�c part of the Application Hub can be run on several
computers so that the tra�c load is balanced. Thus, the Application Hub becomes capable
of higher throughput. An example could be that a computer which runs a whole messaging

2.4. INCOMIT SERVICE LOGIC EXECUTION ENVIRONMENT 13

Figure 2.2: Vertical Scalability

pipe2 is scaled over a number of computers. These computers run the same software, but
they have a common access layer which selects which computer gets to handle the event
from above (see Figure 2.1). Vertical scalability is when a software module is divided into
pieces which are distributed over a number of computers. The messaging pipe could be
divided so that an SMS plug-in resides on one computer and another part, for example
the messaging service capability (which handles charging database access and routing of
messages), resides on a di�erent computer (see Figure 2.2).

The functionality of the Application Hub is created through the fact that it utilizes the
Incomit SLEE technology which is described in the next section.

2.4 Incomit Service Logic Execution Environment

A Service Logic Execution Environment (SLEE, pronounced [sli:]) [15] is a container
for applications and is a high throughput environment with low latency. The SLEE pro-
vides functionality for applications inside the SLEE for communicating with each other.

2all the way from the access interface on the top to the network speci�c plug-in at the bottom

14 CHAPTER 2. BACKGROUND

Applications in the SLEE are referred to as services.
The Incomit SLEE runs as a Java application. The communication between the ser-

vices in the Incomit SLEE is handled via a standardised architechture called the Common
Object Request Broker Architecture (CORBA) [27]. CORBA is language independent
and provides network distribution of objects which enables remote management of services
in the SLEE. Below are the three interfaces described which has a connection to SLEE
services.

ServiceDeployable. This interface has to be implemented in order for the SLEE service
to be deployed and recognized by the SLEE.

ServiceAccessible. If the service should be reachable by other services the ServiceAcces-
sible interface has to be implemented. This interface enables external access to the
SLEE service.

ServiceManageable. In order for the SLEE service to be managed by the SLEE manager
this interface has to be implemented.

The SLEE has a number of SLEE utilities which can provide help with functionalities such
as database access, timer functions, alarm generation and more. The SLEE utilities are
also SLEE services.

The SLEE manager application exists within the Incomit Management Tool and is used
to monitor and manage SLEE services (see Figure 2.3). On the lower left side the services
deployed in the SLEE are listed. When clicked on, they display their accessible methods.
The methods can be run through the manager by double clicking on them, inserting the
necessary parameters into an appearing dialog, and then pressing the "invoke"-button. To
the right, in the message �eld, responses and alarms are printed.

There are various designs and implementation of SLEEs. Other than Incomit's SLEE
(the one described above), there is also the JAIN[19] SLEE architecture which has a tech-
nical approach which will not be described in this thesis.

2.4. INCOMIT SERVICE LOGIC EXECUTION ENVIRONMENT 15

Figure 2.3: Incomit Management Tool

16 CHAPTER 2. BACKGROUND

2.5 Software Development Kit

Creating software code that is intended to be accessed by other developers produces a
number of problems. One of the problems is how to easily educate developers in how to
use the interface of that software code. This is commonly done by providing a Software
Development Kit (SDK).

An SDK is a programming toolkit which can vary in form and therefore the de�nition
also varies. It could be everything from a simple Application Programming Interface (API)
to an extensive library of helpful documentation, code examples, tutorials and software
wizards. This thesis will use the latter de�nition of an SDK, thinking of it more as giving a
person not accustomed with a code library a helping hand in order to use its functionality.

In short an SDK is a number of parts that will help a developer understand how to use a
piece of software. It is a kit with more or less advanced utilities and documentation. There
are a number of SDKs out on the market; every big software product usually has one. As
an example, in order to develop code in the programming language Java, it is recommended
to use the Java SDK. The Java SDK consists of the Java API documentation, utilities for
compilating and debugging created software as well as run-time �les so the developer can
execute the programs which he or she created. The approach with these parts, the API
documentation, utilities and run-time �les are quite common when describing an SDK.

2.6 Incomit Network Simulator

The Incomit Network Simulator is an application that simulates a real telecom network.
Such an application is extremely valuable when testing a network plug-in as the testing
can be done on a single workstation.

The network simulator is based on random behaviour. For example, in a call related
environment, the application could simulate a normal call, a busy call, no answer or an
error, depending on random values. The behaviour of the network simulator is con�gurable;

2.7. SUMMARY 17

this means that the probability of, for example, a normal call could be altered so that it
occurs more often.

The simulator provides a plug-in interface for each supported services capabilities (such
as Call Control). In order to develop a network simulator plug-in the plug-in must conform
to that interface.

The Network Simulator is used when testing new functionality included in the Appli-
cation Hub. The SDK described in this thesis provides templates for Network Simulator
interfaces, so that testing new services will be easier.

2.7 Summary

In this chapter the historical background of open network APIs has been described. Fol-
lowing the historic view, the Incomit products were explained, which are based on these
open standards. The project described in this thesis is the creation of an SDK, therefore a
de�nition of what an SDK is was described in this chapter. Finally, the Incomit Network
Simulator was brie�y described since the SDK will facilitate creation of plug-ins to the
Network Simulator in order to simplify testing new parts. The next chapter consists of a
description of the methods and tools used to create the SDK.

Chapter 3

Methods and Tools

3.1 Introduction

This chapter describes the di�erent methods and tools which were used during the project.
First, the development method used is explained. Second, the building tool Ant is de-
scribed. Third, some important features with the programming language Java is listed and
explained, since this is the language used throughout the project. Fourth, a description of
the extensive markup language is made, and �nally, other tools which have been used are
listed.

3.2 Development Method

No known development method has been followed during the development of the SDK
and it was never intended to use a method similar to eXtreme Programming (XP) [17].
Nevertheless, the way that refactoring was made, and the short deliveries with extensive
testing was similar to that of XP. However, there are some major di�erences between
the method the author of this thesis used and that of XP. First of all, XP recommends
pair programming, which was impossible since there was only one person developing the

19

20 CHAPTER 3. METHODS AND TOOLS

Extension SDK. Second, instead of tasks there were requirements which could have been
divided into tasks, but this was never done. Instead, the requirements were implemented
as they were, but divided into smaller parts by the developer. This method worked okay
since there was only one person developing. However, it would have been chaos if more
than one person had been involved. Another big di�erence is that XP programming more
or less demands that the customer works physically close to the developers. In this case,
the developer worked in the environment of the customer, but the developer was also one
of the people making the requirements for the Extension SDK and therefore the customer
was one of the developers in a sense.

3.3 Ant

Ant[7] is a java-based build tool which is used to compile Java code, comparable to the
build tool "make". It is designed to be cross-platform, easy to use, and very �exible so
that it can be used e�ciently in a large as well as a small project.

It uses eXtensible Markup Language (XML) [28] as a �le format, which enables very
simple syntax, especially for those who have used XML before but also for beginners who
manage to overcome the threshold one experiences when �rst encountering XML. The
core concepts of Ant are simplicity, understandability and extensibility, which all basically
express that it should be easy to comprehend and use.

An example is provided below in order to understand Ant in more detail. To fur-
ther understand how Ant works compared to "make", we will compare how the building
tools handle a building process. The make-example below require some understanding of
make�les and java.

All: project.jar

project.jar: Main.class XmlStuff.class

3.3. ANT 21

jar -cvf $@ $<

%.class: %.java

javac $<

If the directory where the execution of the make�le is made has the �les "Main.java"
and "XmlStu�.java" then the make-example above will process the following:

Javac Main.java XmlStuff.java

Jar -cvf project.jar Main.class XmlStuff.class

Make is built on dependencies and targets. "All", "project.jar" and "%.class" are tar-
gets. Project.jar, located after the target "all", depends on Main.class

and XmlStuff.class which in turn depends on its source code image Main.java and
XmlStuff.java (shown in the example as the wildcards). The row underneath each target
speci�es the rule which creates the target. $@ corresponds to the current target and $<

corresponds to all dependencies.

<?xml version="1.0" ?>

<project name="makefile" default="all">

<target name="all">

<javac srcdir="." />

<jar destfile="project.jar" includes="*.class"/>

</target>

</project>

In the Ant-example above the <javac> command automatically selects all Java-�les in
the source directory which it compiles. The result of the two approaches are the same. In
ant you de�ne a project name which is not done with make. The default target is "all"
which is de�ned to �rst compile all source-�les and then create an .jar-�le which consists
of all .class �les.

22 CHAPTER 3. METHODS AND TOOLS

3.4 Java

This section will explain certain java-speci�c mechanisms from the perspective of a C++
programmer. Since the practical work in this thesis was done mostly using the Java
programming language, an explanation feels justi�ed in order to understand all design and
implementation aspects. However, this section only brie�y touches a number of features
of the Java programming language and should not be seen as a crash course in Java.

Java uses only one �le as the main code container, the .java �le. This �le contains
one or more classes. A compiler who compiles a .java �le creates a .class �le which is
executable if there is access to a Java Runtime library. Hence, a .class �le cannot be
executed on its own and demands external help. This approach enables Java to be platform
independent even after compilation.

Java does not allow multiple inheritances; instead a class can inherit multiple interfaces,
but only one class. In Java there are Interfaces and Classes. An interface cannot be
instantiated and does not contain method de�nitions, only declarations.

The drawback with using Java has been the speed. Since Java is interpreting to some
degree, Java is not as fast as native code. However, with the use of Just-In-Time (JIT)
compilers and the new HotSpot [23] technology Java code can have near native code per-
formance.

In Java, everything must consist within a class. There is no such thing as global
functions or global data in Java. Therefore, to create similar functionality to that of
globals, the developer would have to create static methods and static data within a class.

The preprocessor does not exist in Java. Therefore, Java developers use the keyword
import in order to use classes from other libraries.

Pointers, in the sense from C and C++, do not exist in Java. When an object is created
with the keyword new, a reference is returned.

In Java there is something called a Garbage Collector (GC). The GC's main task is to
destroy objects which no longer have a reference to them. This makes memory leaks much

3.5. EXTENSIVE MARKUP LANGUAGE 23

harder to create in Java and makes a lot of programming problems, seen in for example C
and C++, disappear.

For more di�erences and more detailed description about Java features from a C++
view see Homepage Comparing C++ and Java [5].

Further information on Java can be found on Sun's homepage http://java.sun.com/

where they provide online books which are readable free of charge.

3.5 Extensive Markup Language

In order to explain what the eXtensible Markup Language (XML) [28] is, we should �rst
look at its ancestor the Standard Generalized Markup Language (SGML) [16]. SGML is
an international standard describing how data can be structured in a document, where
SGML documents consist of text and graphics. SGML enables indenti�cation and naming
through its structure on parts of the information in the document. This format enables
these parts to be used to create a range of products such as indexing, CD-ROM distribution
and translation into foreign languages.

XML is created as a leaner type of SGML. A valid XML document is also a valid SGML
document. XML uses only the most common SGML features and is thus easier to work
with. XML has become mainly used for distribution of structured information over the
web.

Another similar Markup Language is the Hyper Text Markup Language (HTML), which
is used to display homepages on the internet. There is a di�erence, however. HTML has
�xed tags that web browsers understand, whereas XML and SGML are "meta" languages
where tags are not prede�ned but speci�ced by the person creating the XML or SGML
�le.

The following example is a simple example of an XML �le:

<?xml version='1.0'?>

24 CHAPTER 3. METHODS AND TOOLS

<GARAGE>

<CAR>

Ford

</CAR>

<CAR>

Volvo

</CAR>

</GARAGE>

This example illustrates a garage with two cars in it, a Ford and a Volvo. The �rst row
identi�es the XML-version of the �le. The tag "GARAGE" de�nes the outer parameter of
the �le. Inside "GARAGE" are two "CARS".

3.6 Other Tools

For the creation of the diagrams under the requirement chapter (Chapter 4) Microsoft
Excel was used. The class diagrams in this thesis were created using Rational Rose En-
terprise edition. Some of the pictures under the design chapter were created in Microsoft
PowerPoint.

Chapter 4

Requirement Gathering

4.1 Introduction

This chapter contains the di�erent parts that will be considered and judged in order to
create the requirement speci�cation for the SDK. First, the requirement speci�cation that
already existed before the work for this thesis was begun is considered and evaulated.
Second, a review is made of the two development environments JBuilder and eclipse. Third,
a survey regarding the thoughts and populartity of di�erent development environments is
discussed. Fourth, another survey is presented, discussing the features in development
environments. Finally, a conclusion of this chapter is made.

4.2 Old Requirement Speci�cation

Incomit already had a Requirement Speci�cation (RS) for the product that they wanted
done. They had named it "Extension SDK" and it was an SDK for Extending the func-
tionality of their Application Hub. It was meant for the Extension SDK to facilitate the
creation of services 1 in the Application Hub. The old RS was qritten quite some time

1for more information regarding services see Section 2.4

25

26 CHAPTER 4. REQUIREMENT GATHERING

before the work for this thesis had even started. The naming conventions in the old RS was
a bit di�erent from what they used at the point in time when this thesis was conducted.
That RS was designed for the use in their other product, called the OSA Gateway, so there
was a need to rewrite this requirement speci�cation to �t the current needs. The old RS is
added to this thesis in the Appendix A.1. It is not documented, hence it should be treated
as an external document. The old RS re�ects what was availible at the beginning of this
thesis.

Some core requirements in the old requirement speci�cation were:

• Code Templates

• Code Examples and Class Libraries

• Facilitating Development of Network Plug-ins

• Standalone

• Documentation

• Installation Wizard

• Other IDE support

For more detailed description of the items above please see Appendix A.1.

4.3 Evaluation of JBuilder and eclipse

In this section a comparison will be made between JBuilder and eclipse. First, the two
di�erent development environments are described including their background. Second, the
comparison will be made regarding several aspects, including some of the features described
in the survey in Section 4.5. This is done in order to determine which development environ-
ment to support for the Extension SDK. Research regarding the development environments
was something which was regarded as important by Incomit.

4.3. EVALUATION OF JBUILDER AND ECLIPSE 27

4.3.1 JBuilder

Jbuilder is an Development Environment developed by Borland, which comes with many
helping utilities out of the box. These helping utilities speeds up the development of
Enterprise JavaBeans[22], Web Services[18], XML[28], database applications and more.

Borland started in 1983 to create software to simplify and speed up development of
new software. They launched one of the �rst development environments with "Turbo
Pascal", making them one of the leaders in software development tools. Since then, they
have re�ned and tuned their software in order to keep in phase with what the software
developers needed next.

Borland's solutions and services are used by organizations all over the world, ranging
from public sector and healthcare to telecommunications and �nancial service �rms.

4.3.2 Eclipse

Eclipse is a platform operating under open source that targets tool developers. Being roy-
alty free makes eclipse a attractive choice when deciding which development environment
a company should use for their tool extension.

Eclipse uses a plug-in based framework that facilitates creation and integration. It
also utilizes software tools, saving both time and money. The tool producer can concen-
trate on the core functionality of the new software tool since the help from the eclipse
platform is pretty extensive. The Eclipse Platform is written in the Java language and
comes with extensive plug-in construction toolkits and examples. It has already been de-
ployed on a range of development workstations including Linux, HP-UX, AIX, Solaris,
QNX, OSx and Windows based systems. A full description of the Eclipse community
and white papers documenting the design and use of the Eclipse Platform are available at
http://www.eclipse.org.

Borland, IBM, MERANT, QNX Software Systems, Rational Software, Red Hat, SuSE,

28 CHAPTER 4. REQUIREMENT GATHERING

TogetherSoft and Webgain formed the �rst eclipse.org Board of Stewards in November
2001. Since then, a number of companies has joined the managing board, companies and
groups such as Fujitsu, Hitachi, HP, OMG, Oracle and Intel. Needless to say, many large
companies have an eye on eclipse, which predicts a promising future for the platform.

4.3.3 Review Process

In order to compare the two development environments a design for a simple application
was made. The application reads from an XML-�le and prints a string representation of
the �le, suitable for debugging. It uses the XML-parser from JDOM[12], which is provided
as an external jar-�le. The purpose of this application was to compare a number of features
the di�erent development environments use. The application was designed to rely on third
party software, so that is becomes clear how easy it is to integrate applications with third
party software in the development environment. First, every item which is looked at
when reviewing each development environment is listed. After that, a walkthrough of how
JBuilder 2005 Enterprise (version 11.0.236.0) handled the creation of the application is
described. Next, eclipse platform's (version 3.0.0) creation of the application is reviewed.
The reviews are made totally separate, and comparisons will be made after both reviews.
Finally, a conclusion of the evaluation between JBuilder and eclipse is made.

It will be observed how the development environment handles the following features:

Creation of the Java-class. How does the development provide help when creating a
Java-class?

Errors. How does the development environment convey errors?

Code completion. How does the development environment handle code completion 2?

Execution. How does the development environment handle execution of applications?
2code completion is explained further in Section 4.3.4 and 4.3.5

4.3. EVALUATION OF JBUILDER AND ECLIPSE 29

Figure 4.1: JBuilder - Project Wizard

4.3.4 Running a test in JBuilder

Creating a class in JBuilder requires that that class has a project. Therefore, when trying
to create a class without having a project, the project wizard is opened so that the creation
of a project can be done �rst. The project wizard's �rst page is where the name, location
and template usage of the project is entered. The second page handles project paths such as
location of the Java Development Kit (JDK), the output directory, the backup directory
and the working directory. In this page, the required libraries (see Figure 4.1) can be
entered. This is where the location of the jdom.jar is entered. The third page handles
general project settings. When the project wizard has completed, the class wizard pops
up. This wizard has only one page where name of the class, the package it should belong
to, and base class is speci�ed. The page also contains certain class speci�c options such as
if the class should be accessible from outside the package and if a main method should be
created. A main method is preferred in this case since only a few lines of code is necessary
rather than some advanced object oriented structure. This is displayed in Figure 4.2.

30 CHAPTER 4. REQUIREMENT GATHERING

Figure 4.2: JBuilder - Class Wizard

When the class wizard is completed, JBuilder creates mandatory code for the class,
including javadoc as well as the main method that was chosen during the class wizard.
JBuilder added a row in the generated main-method that instansiated the class. This
feature would be useful in most cases, but in this cases it is not - therefore it is removed.

Next comes the importing of the JDOM-speci�c classes that is needed to retrieve the
XML-�le. Starting to add the import-line, in order to read the XML from �les, streams

Figure 4.3: JBuilder - Error and Code Completion

4.3. EVALUATION OF JBUILDER AND ECLIPSE 31

Figure 4.4: JBuilder - Structure Window

Figure 4.5: JBuilder - Import Code Completion

Figure 4.6: JBuilder - Code Completion

Figure 4.7: JBuilder - Fixable Error

32 CHAPTER 4. REQUIREMENT GATHERING

Figure 4.8: JBuilder - Solution Suggestions

Figure 4.9: JBuilder - Solution Suggestions 2

Figure 4.10: JBuilder - Added Try and Catch

4.3. EVALUATION OF JBUILDER AND ECLIPSE 33

and more with help from the "SAXBuilder", creates an error which is conveyed in two
ways to the developer. The �rst one is the line (which can be seen as a small blur directly
after the word import in Figure 4.3) under recently added text. The second presentation
of the error lies in a window to the left and provides more information about the error;
what it speci�cally is and the line number where it is located, as shown in Figure 4.4.
As the import code line is fully written the errors disappear. Figure 4.5 shows the code
completion JBuilder provides the developer. Starting to add the SAXBuilder into the
code reveals another code completion feature from the development environment. Here
JBuilder provides a code completion when the class is instantiated (shown in Figure 4.6)
which speeded up the coding. JBuilder also conveys which parameters that can be entered
into a method in the same way. To retrieve the XML-data, a document to put the data
into is needed. Trying to create the document without importing the Document class will
cause an error as the compiler is not able to �nd the Document class. This is a test in
order to see if JBuilder can provide help for �xing this error, and if so - how? An icon
that looks like a wrench, with a red circle with an exclamation mark in it, appears to the
left of the editor window (see Figure 4.7). Had the development environment been unable
to help the developer, the icon to the left would have been only a red circle with a white
exclamation mark in it. Left clicking on the wrench shows a number of options that will
solve the error (shown in Figure 4.8). In this case a new import is preferred and therefore
the option "Find with ClassInsight..." is chosen. This option pops up a window with
di�erent import-options where ClassInsight has found the class "Document". Choosing
an option here and clicking OK will add the import line to the code. When this is done,
JBuilder shows the developer that there is still an error with this seemingly error free code
line. Apparently, the build method throws an exception which must be caught or thrown.
Getting information about this is done by placing the mouse pointer over the red line that
underlines a piece of code, or by looking at the window to the right. Luckily, this can be
done automatically by JBuilder with a left click yet again on the yellow wrench-icon to

34 CHAPTER 4. REQUIREMENT GATHERING

Figure 4.11: JBuilder - Execute

Figure 4.12: JBuilder - Con�g Window

the left of the editor-window (see Figure 4.9). Now there are two di�erent suggestions to
solve the error; throwing the exception or enclose it with try and catch brackets. Choosing
the second option creates code around the line which the development environment was
complaining about (see Figure 4.10). Adding a line, that prints the information about the
exception, to the catch bracket provides debugging information. The last code line that is
added is the printing of the debug information of the XML-�le.

In order to run the application, the con�guration of the project has to be made. This
is done through the green "play" button on the toolbar(see Figure 4.11). Since this is the

4.3. EVALUATION OF JBUILDER AND ECLIPSE 35

Figure 4.13: JBuilder - Message Window

Figure 4.14: Eclipse - New Project

�rst time that the execution button is pressed for this project, a con�guration window (see
Figure 4.12) is shown where con�guration of how the execution should be made is shown
(for instance, what class that should be executed). When all con�gurations are done and
the execution button is pressed, then the system output is presented in the "messages"
window at the bottom, as can be seen in Figure 4.13. The output of the application is of
less importance for this review.

4.3.5 Running a test in Eclipse

A folder is needed when trying to create a java-class. Eclipse demands that each �le is
encapsulated in a project and thus a project must be created �rst and after that a class

36 CHAPTER 4. REQUIREMENT GATHERING

Figure 4.15: Eclipse - New Java Project

Figure 4.16: Eclipse - New Java Class

4.3. EVALUATION OF JBUILDER AND ECLIPSE 37

Figure 4.17: Eclipse - Error

can be created. Opening the project creation page shows several di�erent types of projects
that can be created. Eclipse is not designed only for Java related creation but is more
of a platform with several functionalities built into it. Therefore, creating Java code is
only a portion of the eclipse development environment. Selecting the "Java Project" in
the project creation window (Figure 4.14) and pressing next show the "New Java Project"
page where the name and location of the project is entered. The page shown after the
project creation page is about the java settings, where the library tab has functionality for
adding the external jar �le "jdom.jar" which is needed for this application (Figure 4.15).
When "Finish" is pressed, eclipse prompts a question if the developer would like to change
to the "Java Perspective" (perspectives in eclipse means initial set and layout of views in
the desktop development environment). Answering "Yes" to this popup changes the GUI
of the development environment. Now the developer can either chose a new class from
the File->New->Class or right-click on the "test" folder and choose New->Class. This
action will launch the "New Java Class"-wizard which only consists of one page (Figure
4.16). This page enables the developer to enter name, package and - in this case a quite
useful feature - if any method stubs should be generated and put into the class. Checking
the option that it would be preferred to have the main-class included and then pressing
"Finish" generates the java-�le.

Now when the java-�le is created, the external classes have to be imported. Having
written an incomplete line renders an error which is marked as a red line under the erroneous
code and as a small red box displayed next to the scrollbar to the right (Figure 4.17).
Moving the mouse pointer over the red line shows the error message and a possible solution.
Continuing to write on the import line shows how eclipse handles the code completion (see

38 CHAPTER 4. REQUIREMENT GATHERING

Figure 4.18: Eclipse - Import Code Completion

Figure 4.19: Eclipse - Code Completion

Figure 4.20: Eclipse - Fixable Error

Figure 4.21: Eclipse - Solution Suggestions

4.3. EVALUATION OF JBUILDER AND ECLIPSE 39

Figure 4.22: Eclipse - Solution Suggestions 2

Figure 4.23: Eclipse - Added Try and Catch

Figure 4.18). The code completion of the import-archives was done automatically, but
when a class is searched for, the developer must use the keyboard button combination Ctrl
and Space to display the code completion. When the SAXBuilder is imported, a yellow
line is displayed under the import-line. This yellow line signals that the import is not used
in the java-�le. This is e�ective for removing unused imports, but this time it is just a
comment since the import will indeed be used. Creating the SAXBuilder is pretty straight
forward. Code completion, such as help with what classes that could be instantiated, can
be provided through pressing the Ctrl and Space keys (Figure 4.19). Adding the document
that should hold the XML-data generates an error by eclipse. Placing the mouse pointer
on the red lined word or on the icon to the left in the editor window pops up a tooltip
that presents what kind of error it is. In this case eclipse cannot �nd the class Document,
so that would have to be included (see Figure 4.20). Eclipse has a feature that gives a
solution to such problems. Left-clicking on the icon which looks like a light bulb with a
red box in front of it shows a number of solutions to this problem (Figure 4.21). The �rst

40 CHAPTER 4. REQUIREMENT GATHERING

Figure 4.24: Eclipse - Execution

Figure 4.25: Eclipse - Console

solution listed is to import the org.jdom.document which is the one the developer would
want in this case. To the right of the suggested method menu there is a presentation of
what the suggested method would actually do if executed. After that action is performed,
eclipse marks the creation of the XML-building with the red lines. Clicking on the light
bulb icon this time generates the suggestion list found in Figure 4.22. The adding of the
try and catch brackets automatically adds a printout of the exception error if caught. A
new import has also been made during the adding of the try and catch code. The last
thing added is the debug presentation of the document.

Execution of the application is done through the green play button on the toolbar
(Figure 4.24). Clicking on the side-arrow shows numerous ways to execute the application.
Clicking on "Run As->Java Application" makes eclipse ask the developer if he or she
wishes to save the �le �rst, and if the developer choose to save, the application is run. It
should be noted that the printing is done under the "console" tab, which is not displayed
as default (Figure 4.25).

4.3. EVALUATION OF JBUILDER AND ECLIPSE 41

4.3.6 Conclusion

The comparison has followed a certain scenario and the comparison will therefore only touch
the aspects which were evaluated. There are other aspects which also would have been
interesting to compare. One such ascpect is how the di�erent development environments
handle version handling and a possible integration with the Concurrent Versions System
(CVS) [4, 9]. Another aspect is how easy extensions of the development environment can
be made and how they would work. But due to time limitations, these aspects have not
been reviewed. The comparison was also done from a default con�guration without much
knowledge of how the actual development environment functioned in detail. This was as
intended, as the review was supposed to look at how JBuilder and eclipse handled the
creation of the XML-debug-writing application from default values and settings. It could
be argued that some of the features that in this review are seen as "less good" could be
changed in the settings to that of the reviewers liking, but this review does not take such
"after changeable settings" into account.

The project creation of the two IDEs are very similar in that both require that a project
exist. The advantage here is leaning towards JBuilder since if a developer would try to
create a class in JBuilder, the project creation page launches so that the creation of the
project can be done. In comparison, eclipse launches the class-creation page but demands
a folder, which at start does not exist. There was no obvious way to create a folder from
the class-creation wizard, so that wizard had to be closed and a project had to be created
manually.

The way jdom.jar was included as a library in the class path was equally easy com-
paring the two development environments. What could have been interesting to see was
how JBuilder and eclipse handled dependencies between projects and if code completion
had worked in that case. Another interesting comparison would have been to see how easy
the deployment of plug-ins and the like would have been for JBuilder, especially when the
plug-in would have external dependencies, since this was a bit of a hassle in eclipse (see

42 CHAPTER 4. REQUIREMENT GATHERING

Section 7.1).

Error handling was similar in the environments but not identical. Both used the red
underlining technique to convey errors to the developer. But in order to specify where in
the �le the error was, eclipse used a little red box near the scrollbar. JBuilder used a part
in a window where the line number was written as well as a text describing the problem.
The author of this thesis preferred the eclipse solution to the JBuilder solution since it
could possibly give a better overview of the amount of errors located in a certain area in
the code. For example, imports of external code often would need some adapting to the
current code. Using the error conveying on the right side of the editor window would give
the developer a feel of where the errors are located and what needs to be �xed and adapted.
JBuilder would in that respect have problems conveying information about the density of
errors in a certain area, since an amount of numbers is harder to quickly translate into
positions then actually seeing where the errors are located. It should be noted that both
development environments used a real-time Java compilation in order to get these errors.
Receiving the errors directly when developing is certainly good, but the downside is that
the programming environment demands more resources from the workstation.

Code completion had some minor di�erences between the two applications. One rel-
evant di�erence was the fact that code completion often came automatically when using
JBuilder where in eclipse the developer in most cases had to use the Ctrl + Space com-
bination. For beginners in the Java development world, the key combination might have
been news to them. If that would have been the case they would have missed a great deal
of help from eclipse. In the case when a developer is unfamiliar with the key-combination
JBuilder would have been preferred, but considering that code completion could be un-
necessary in certain scenarios (because the developer knows what he or she wants to write
and the code completion takes some resources) the author of this thesis consider neither
JBuilder or eclipse the winner of the code completion comparison.

When running the application, JBuilder had no seemingly fast way to do this. The

4.3. EVALUATION OF JBUILDER AND ECLIPSE 43

developer had to con�gure how the project should be run, whereas in eclipse only two
easy clicks were needed to get the application to run. The downside was that in this case
(with output to the console) it felt like nothing happened in eclipse when the program was
executed. The developer had to �nd the console tab to �nd that something had actually
happened. In JBuilder, on the other hand, there was clear output in the message windows
as well as sound e�ects being played at execution and termination of the application. The
sound e�ects were experienced as something unnecessary and could easily be frustrating
(as there is a sound e�ect when the program crashes too). The advantage here is leaning
towards eclipse.

Even though this application was very simple, it shows certain key features in each of
the development environments. The winner in this particular case is eclipse, but not with
a large margin, and this is the subjective statement by the reviewer. The development
environments were very similar in usage. It should be noted that with the development of
new IDEs, the developers has to upgrade their computers. The JBuilder 2005 Enterprise
edition has a minimum memory requirement of 512Mb RAM which could be seen as high.
The memory requirement of eclipse could not be found by the reviewer but an quali�ed
guess would be that the requirements of eclipse are equal to those of JBuilder. The mem-
ory requirement is probably due to the real-time compilation done by the development
environments.

Feature Advantage
Creation of the Java-class JBuilder
Error conveying eclipse
Code Completion -
Execution eclipse

Table 4.1: Comparison between JBuilder and eclipse

44 CHAPTER 4. REQUIREMENT GATHERING

4.4 Development Environment Survey

To collect information about di�erent development environments at Incomit, a survey was
produced. The survey guidelines used is described in "Vetenskaplig metod"[6] by Rolf
Ejvegård. These guidelines describe how questions should be written, how the layout of
the survey should be designed and if any signi�cant statistical information can be derived
from it.

An e-mail was sent out to the developers' mailing list which redirected the mail to
nineteen people. Fifteen developers at Incomit answered the survey. Four persons could
not answer because of legitimate reasons; one person was on parental leave, one person was
the author of this thesis, and another two had occupations not related to code creation.
Of the remaining �fteen people all answered. This means that there was a 100% response
rate which, of course, is the best response rate one can have.

Below are the questions shown in the form they were asked. The questions were asked
in Swedish, but are translated in this thesis into English. The results of the answers are
discussed after each question.

4.4.1 Awareness of Development Environments

1. Which of the following development environments have you heard about?
(Place an X after the option which suites you the best)
eclipse ()
JBuilder ()
Netbeans ()
None of the above ()

By using the question above, an overview of the employees general knowledge could
be identi�ed. The result of this question is shown in Figure 4.26 and shows that the
employees had a good knowledge of what kind of development environments that are

4.4. DEVELOPMENT ENVIRONMENT SURVEY 45

Figure 4.26: Awareness of IDEs

available. Surprisingly, the only IDE which not everybody knew of was eclipse which had
the highest priority to be integrated with the Extension SDK. It should noted that none
of the employees answered "None of the above".

4.4.2 Evaluation of Development Environments

2. Which of the following development environments have you tried?
(Place an X after the option which suites you the best)
eclipse ()
JBuilder ()
NetBeans ()
None of the above ()

Only three out of �fteen developers had used eclipse while thirteen had used NetBeans
(see Figure 4.27). Although nearly half had used JBuilder, only three felt con�dent enough

46 CHAPTER 4. REQUIREMENT GATHERING

Figure 4.27: Tried IDE

to grade it (see Figure 4.28).

4.4.3 Grading of eclipse

3. If you should grade the development environment 'eclipse', what grade
should it receive?
On a scale from 1 - 5 (where 1 is 'bad' and 5 is 'excellent')
If you haven't tried it enough to grade it put an X as answer.
Please give a short motivation for your answer: ()

In the third to �fth questions the developers answered questions on how they like
di�erent development environments. Only three people graded eclipse but the grades
eclipse were given were clearly the highest in the survey (see Figure 4.28 and Figure 4.29).
The only negative comment about eclipse was that the learning threshold for eclipse was
a bit high. Some of the positive feedback was that it was easy to use, easy to integrate

4.4. DEVELOPMENT ENVIRONMENT SURVEY 47

Figure 4.28: Experience handling IDE

with other products and stable. It should be noted that with such a low response rate this
information cannot be seen as a general opinion of eclipse. However, what this result does
indicate is that the developers at Incomit have little experience of eclipse, but those who
do have positive remarks about the IDE.

4.4.4 Grading of JBuilder

4. If you should grade the development environment 'JBuilder', what grade
should it receive?
On a scale from 1 - 5 (where 1 is 'bad' and 5 is 'excellent')
If you haven't tried it enough to grade it put an X as answer.
Please give a short motivation for your answer: ()

JBuilder had poor responses. Only three people graded it, and although the grades were
not that low (see Figure 4.29), the responses insinuated that JBuilder had some integration

48 CHAPTER 4. REQUIREMENT GATHERING

Figure 4.29: Average Grade of IDEs

issues. The developers claimed that using JBuilder restrained them to that development
environment and thus it was hard to integrate it with other products. If these are old
issues that have been addressed or if this is still the case has not investigated in this thesis.

4.4.5 Grading of NetBeans

5. If you should grade the development environment 'NetBeans', what grade
should it receive?
On a scale from 1 - 5 (where 1 is 'bad' and 5 is 'excellent')
If you haven't tried it enough to grade it put an X as answer.
Please give a short motivation for your answer: ()

Ten developers graded NetBeans which meant that they had used it at least enough
to get a proper opinion about it. Most of the grades were low and the aspect which
most people complained about was the performance of NetBeans. They claimed that

4.4. DEVELOPMENT ENVIRONMENT SURVEY 49

NetBeans was slow and demanded a lot of computer resources to work with. NetBeans.org
performed a survey about the performance of netbeans 3.6 [25], which seem to contradict
the statement about NetBeans beeing slow in performance. It should be observed that
NetBeans' survey was not done by an unbiased corporation. Another downside a few
people complained about was the GUI-creation ability in NetBeans. One person argued
that there was a poor connection between what the GUI looked like in the design phase
and what it actually looked like when running. However, there were also some positive
comments about NetBeans. One of these comments concerned the �exibility of NetBeans.
NetBeans uses a modular perspective[24] (not unlike the plug-in approach eclipse uses. See
more in Section 4.3.2) which facilitates expanding and integration with other software.

4.4.6 Summary from Development Environment Grading

Figure 4.29 shows the average grades the di�erent development environments received. It
should be said that this diagram does not depend on how many of the employees actually
gave grades. Therefore, the NetBeans result could be seen as the result best showing how
the employees of Incomit feel about the IDE as compared to JBuilder and eclipse where
few developers could answer. Since so few have graded JBuilder and eclipse, the result is
not signi�cant and can only give an indication of the company's acceptance towards those
speci�c IDEs. Even if this result is just a hint about what the employees prefer it should
be taken seriously and be properly evaluated.

4.4.7 Development Environment Preference

6. Which development environment would you prefer to use?
eclipse ()
JBuilder ()
No opinion ()

50 CHAPTER 4. REQUIREMENT GATHERING

If you have answered 'No opinion' on question number 6 then you can skip
question number 7.
7. What is the main reason you prefer the development environment you
marked in question number 6 over the other?
Please motivate your answer: ()

In the �nal two questions the participants were asked to decide which of JBuilder and
eclipse they would choose and why. NetBeans was ruled out here because of expressed
interest in JBuilder and eclipse from Incomit. Even though there were only three persons
who graded eclipse, �ve persons preferred eclipse over JBuilder. One reason for this result
was the ease with which third-party software could be integrated into eclipse (see Section
4.3.2). Another reason was the fact that eclipse is open source software. One participant
who had not used eclipse thought it better than JBuilder because of positive rumours.
This opinion could indicate that eclipse has a good reputation, or that JBuilder has a bad
reputation.

4.5 Development Environment Features Survey

A second survey was also performed and once again it was the developers at Incomit
who were the participants. This survey covered features in development environments and
facilitating tools for the development of Incomit speci�c services. The employee gave his or
her opinion on how important each aspect was, where the grades were "not so important",
"A bit important", "Important", "Very Important" and "I couldn't live without it".

The way this survey was distributed was di�erent from that in the �rst survey. This
time a web based survey was used after �nding a homepage3 which provided free survey
functionality. Using the web based survey technique had several bene�ts: it was easier to
get an overview of the results at any time in the survey collection phase. It was also easier

3http://www.freeonlinesurvey.com/

4.5. DEVELOPMENT ENVIRONMENT FEATURES SURVEY 51

to create the survey and for the developers to answer the survey as they only had to surf
to the web page and check a number of checkboxes (compared to the complexity of using
e-mail). However, the technique had some negative sides too. It was impossible in the free
version to check the origin of a submitter, and the results from the survey could only be
checked within ten days from posting the survey.

The questions were created through person-to-person interviews and written conversa-
tions with Incomit developers using an Instant Messenger software. Finally, the authors
personal views were used in order to produce the questions.

Below, the questions are �rst printed as they were stated in the survey. After that,
a deeper explanation of the question is given. Then the results of the question and the
conclusions that can be drawn from this answer are discussed.

4.5.1 Code Templates

How important do you feel code templates are for your development of a SLEE
service?

Code templates provide necessary steps which are mandatory in the type of
service you are creating. It could for example be registration when you are
developing a new plug-in.

Code templates describe certain steps which are necessary for some types of services.
For example, a service in the SLEE (see Section 2.4) needs to implement certain methods
in order to achieve communication with the SLEE. Using a code template could make
this easier and specify how a clean SLEE-service should look like without any or little
functionality. Thus a SLEE-service code template provides the user with a quick start
where he or she can start implementing the functionality without the mandatory work
around it. The Java-code below demonstrates how a code template could look like, where
the class CodeTemplate is part of the code template and the interface MandatoryMethods

52 CHAPTER 4. REQUIREMENT GATHERING

de�nes the methods which are mandatory.

public interface MandatoryMethods {

// this method is called by some other instance

public int start();

public int stop();

}

public class CodeTemplate implements MandatoryMethods {

public CodeTemplate() {

}

public int start() {

initiate();

register(this);

}

public int stop() {

unregister(this);

destroy();

}

}

Over 50% of the developers thought that code templates were "Very important". Ob-
viously people regarded them as something which they could �nd useful, which is why this
feature was prioritised at the highest level possible. (See Figure 4.30)

4.5.2 Code Examples

How important do you feel code examples are for your development of a SLEE
service?

4.5. DEVELOPMENT ENVIRONMENT FEATURES SURVEY 53

Figure 4.30: Importance of Code Templates

Code examples range from complete examples of SLEE services to parts of code
which explain key areas.

Code examples can be compared to Code templates. They both simplify the creation of
a service. Code templates have little or no functionality but code examples show a speci�c
functionality or a range of functionalities. A code template provides the user with stubs
whereas a code example shows a working �ow of code. From a developers point of view
the templates has commented rows that says "Put your code here" or similar, while the
example is often a code snippet or code not needing any user manipulation at all to work.
An example of Code Examples can be found in Figure 6.8.

Compared to Code Templates, people found Code Examples to be even more important
(see �gure 4.31). It should be noted that some people who voted "Very important" about
the Code Templates now voted "Important" in the Code Examples. This means that
some people think that Code Templates are more important than Code Examples, but the
majority thinks otherwise.

54 CHAPTER 4. REQUIREMENT GATHERING

Figure 4.31: Importance of Code Examples

4.5.3 Tutorials

How important do you feel tutorials are for your development of a SLEE service?

and

How important do you feel tutorials are for beginners (people who are not
familiar with Incomit's APIs) development of a SLEE service?

A tutorial guides you through the steps of creating a service. It is very basic
but shows the whole �ow of the process - from creation to completion.

Tutorials are generally a set of lessons which the user are guided through in order to
learn how to use a software product. In the case of the Extension SDK the tutorial could
for example walk the user through how to create a SLEE-service. The user follows the
steps provided by the tutorial and performs the various tasks he or she is ordered to do.

The developers at Incomit found tutorials to be of less importance to them as can be
seen in Figure 4.32. It should be noted that none of the developers thought it to be totally

4.5. DEVELOPMENT ENVIRONMENT FEATURES SURVEY 55

Figure 4.32: Importance of Incomit Tutorials

Figure 4.33: Importance of Beginner Tutorials

56 CHAPTER 4. REQUIREMENT GATHERING

unimportant, but most of them rated it as next to that. However, they thought that
beginners could bene�t from tutorials and hence saw it as important in respect to people
outside of Incomit.

4.5.4 Wizards

How important do you feel wizards in the Integrated Development Environment
(IDE) i.e. Eclipse are for the development of SLEE services?

A wizard is a number of dialogs shown for the user in order to easy step-by-step
con�gure what kind of SLEE services you would like to create.

Wizards are a set of dialogs shown to the user aiming towards an end-goal. The user
can then change the outcome of the wizard by selecting or deselecting checkboxes provided
by a graphical interface. Questions could be regarding what kind of SLEE services you
would like to create. The result from the wizard in that case would be template code.
Pictures how a wizard can look like can be seen in Figure 4.1 and Figure 4.14.

The result of this question had only some divergence as most developers considered
wizards to be "Important" or "A bit important". From Figure 4.34 it seems like the
developers do not �nd wizards to be that important.

4.5.5 Performance

How important is the performance of the SDK in order to develop SLEE ser-
vices?

Performance - the responsiveness of the SDK. The lesser the performance the
longer it takes to process certain key-thing such as code creation, deployment
etc.

The performance is evaluated from the following criteria: how long development envi-
ronment tasks take (could for example be the amount of time it takes from a keypress to

4.5. DEVELOPMENT ENVIRONMENT FEATURES SURVEY 57

Figure 4.34: Importance of Wizards

the action actually taking place) and how long certain tasks take (for example generating
code from a template). The performance depends not only on the software but on the
hardware as well.

The results of the performance question was the most divergent result of the survey.
It seems that the developers at Incomit have a very varying view of the importance of
performance. The result could perhaps depend on how they viewed the question. If they
viewed it as if these answers would prioritise the requirements of the Extension SDK they
could very well have answered a lower importance level. The lower importance level would
make the priority of optimising the code of the Extension SDK lower. The developers
might have compared the importance of what they needed and thought that performance
was something they did not crave that much, as performance often is dependent on other
factors like hardware. Other developers might not have thought about it that much and
just remembered situations of frustration over low performance and thus have given this
query a higher importance. (See Figure 4.35)

58 CHAPTER 4. REQUIREMENT GATHERING

Figure 4.35: Importance of Performance

4.5.6 Method Generation

How important do you feel method generation from interface-de�nition-�les is?

Consider having an IDL �le and using this method generation feature. Then
the java-�les and code-stubs would be automatically created from this �le.

Interface �les, such as CORBA IDL �les or Web Services WSDL �les, can be parsed
through and used to create stubs for future development. Most of the developers consider
the automatic creation of code stubs from interface �les to be important. It was not
something they absolutely needed to do their job but at the same time it was not considered
to be unimportant. (See Figure 4.36)

4.5.7 Code Completion

How important do you feel code-completion is for the development of SLEE
services?

4.5. DEVELOPMENT ENVIRONMENT FEATURES SURVEY 59

Figure 4.36: Importance of Method Generation from Interface �les

The IDE suggests and �lls in a possible function call, variable or constant.

Code completion was viewed as the most important feature (excluding Javadoc) inves-
tigated in the survey. The result shown in Figure 4.37 shows how much the developers
believe code completion facilitates programming and should thus be considered a very im-
portant feature for developing environments. Examples of how code completion looks like
can be found in Figure 4.6 and 4.19.

4.5.8 Automatic Code Packaging

How important do you feel automatic code packaging is?

Creating a deployable jar-�le which needs no manual intervention (xml �les are
created automatically)

Incomit uses ant (see Section 3.3) to compile their source code. The application ant
follows commands written in a build.xml �le just like the compiling utility make[8] follows

60 CHAPTER 4. REQUIREMENT GATHERING

Figure 4.37: Importance of Code Completion

the commands in makefile. The automatic code packaging means that the jar �le is
created automatically and can be deployed and run instantly from creation.

Automatic code packaging had a normalised grade of importance around the "impor-
tant" level. The conclusion that can be drawn from this result is that it is more important
to some developers than others but the overall view is that it is fairly important. (See
Figure 4.38)

4.5.9 Automatic Deployment

How important do you feel automatic deployment into the SLEE is?

The IDE automatically deploys the service into the SLEE without user inter-
vention.

The ordinary way to integrate compiled source code with a SLEE is to transfer the jar-
�le to the computer running the SLEE and con�gure the SLEE to integrate that executable

4.5. DEVELOPMENT ENVIRONMENT FEATURES SURVEY 61

Figure 4.38: Importance of Automatic Code Packaging

code. There are ways to automatically accomplish the integration from the network. One
way is to start a Web Server distributing the jar-�le. The SLEE can then use its install
functionality to connect to the Web Server, download the jar-�le and execute it during
runtime.

The developers at Incomit clearly did not think automatic deployment into the SLEE
was a feature which had signi�cant importance, as can be seen from Figure 4.39. This
could mean that the developers feel that the manual intervention needed to perform the
deployment is not that di�cult and time consuming.

4.5.10 Errorless Compilation

How important is it for you that the service should be compilable without errors
directly from creation without any further additions by the user?

After using a creation wizard, there are two possible states the code could be in, non-

62 CHAPTER 4. REQUIREMENT GATHERING

Figure 4.39: Importance of Automatic Deployment

compilable or compilable. The non-compilable code needs some sort of manual intervention
from the user to get it to compile. Compilable code is compilable and runnable directly from
creation. The compilable code has little (maybe a dummy-function) or no functionality.

Regarding the question about whether or not code should be error-free directly from
creation there was no clear indication from the developers. The average grade lies just
under "important" but considering that a third of the answering people listed it as very
important or higher makes the topic not that uninteresting. (See Figure 4.40)

4.5.11 Javadoc

How important is it for you to have the documentation javadoc for the APIs?

Documentation of the javadoc API provides information about method calls, which
parameters they require and what they do. Javadoc was voted as the most important of
all features, and since it is more or less standard to have javadoc documentation it should

4.5. DEVELOPMENT ENVIRONMENT FEATURES SURVEY 63

Figure 4.40: Importance of New Created Code Compilable

Figure 4.41: Importance of Javadoc

64 CHAPTER 4. REQUIREMENT GATHERING

Figure 4.42: Importance of Accessing documentation from IDE

come as no surprise. Good documented code ease the work tremendously for the developer
using that code. (See Figure 4.41)

4.5.12 Accessible Documentation

How important is it for you to have access to documentation (java doc and
development guide) from the IDE?

This means that you could easily reach the doc. from a button or menu.

Being able to access the documentation of classes and methods fast and easily from
within the development environment is a priority of most developers. A quick way to reach
documentation reduces development time.

Accessing the documentation was not something that the developers at Incomit saw as
something that would help them to a greater extent. A developer commented that this
could be a feature more sought after when demonstrating the Extension SDK to customers.

4.5. DEVELOPMENT ENVIRONMENT FEATURES SURVEY 65

Figure 4.43: Importance of Short Commands

(See Figure 4.42)

4.5.13 Short Commands

How important is it to have short commands in order to insert code such as
trace-support?

There is a feature in some IDEs which enables the user to program his or her own
scripts which converts a text combination to something else. An example of this is eclipse
which can show a for-loop stub when the word "for" are written in the editor.

Using short commands was something that most of the developers saw as less important,
although there were two persons who could not live without it. (See Figure 4.43)

66 CHAPTER 4. REQUIREMENT GATHERING

4.6 Summary

This chapter brie�y discussed the requirement speci�cation that existed prior to this thesis,
evaluated the two development environments JBuilder and eclipse, and covered two surveys
targeted at the developers of Incomit. The core requirements from the old requirement was
listed. In the comparison between JBuilder and eclipse, eclipse emerged as the victor even
if it was not by a large margin. The last two parts showed the results of two surveys done at
Incomit. In the �rst survey, which touched the subject of which development environment
that was preferred, the developers at Incomit seemed to prefer eclipse. The second survey
concerned di�erent features in development environments as well as facilitating features in
a future SDK. In that survey there were some features which stood out from the rest in
terms of importance. These features were Code Completion, Javadoc, Code Examples and
Code Templates.

Chapter 5

Requirement Speci�cation

5.1 Introduction

All the requirement gathering from the previous chapter is evaluated and summarized in
this chapter. The old requirement speci�cation was the base on which this new require-
ment speci�cation was built. The evaluation between JBuilder and eclipse as well as the
�rst survey supported the decision on what development environment to support. The sec-
ond survey in the previous chapter, about the development environment features, helped
prioritizing the requirements and created some of the them.

5.2 Requirement Evaluation

This section will go through the results from the previous chapter and discuss how these
are integrated into the SDK or discarded.

The old requirement speci�cation suggested that the SDK should support IDEs from
other vendors (as well as their own IDE which will not be discussed in this thesis) which
lead to the surveys about eclipse and JBuilder. From this survey and the evaluation on the
two IDEs, it was decided that eclipse would be the IDE which the SDK would support.

67

68 CHAPTER 5. REQUIREMENT SPECIFICATION

From the second survey we have the following requirements:

Code Templates was suggested by the old requirement speci�cation to facilitate code
creation. This was the foundation for the question about the importance of code
templates in the second survey. The developers at Incomit graded code templates
very high and thus it was included as a top priority requirement.

Code Examples was included by the same reasons as code templates.

Tutorials was not included as a top priority requirement because of time restraints and the
fact that it did not end up that high on features the developers of Incomit regarded
as important.

Wizards was regarded as being not that important by the developers of Incomit. Nonethe-
less, it was included in the SDK under "eclipse support". The motivation for this
is that Wizards is a good way to integrate the ease of creating a Service with a
Graphical User Interface.

Performance was not explicitly included into the SDK, because the scope of the SDK
had to be limited.

Method generation from interface �les was included but is a part of the requirement
"Facilitate Development...".

Automatic Code Packaging was included since this was something that felt relevant
for the SDK.

Automatic Deployment into the SLEE was not included, since the importance factor
was pretty low.

New Created Code Compiles was included and renamed "Automatically Generated
Code Compiles".

5.3. REQUIREMENTS LISTING 69

Javadoc was included into the requirement, since it was in the original requirement spec-
i�cation and the fact that it was considered very important by the developers of
Incomit.

IDE access to Javadoc was not included at the time of this thesis, but would not be
too hard to implement.

Short commands is entirely up to the development environment and not something that
the SDK is planning to help with.

There are some additional requirements from the old requirement speci�cation listed here:

Facilitating Development of Network Plug-ins from the old requirement speci�cation is
still there since this is the core feature of the SDK.

Documentation is a relevant requirement which came from the old requirement speci�-
cation and got top priority in the requirement speci�cation below.

Installation Wizard was not included in the top priortity requirements because of time
restraints.

5.3 Requirements Listing

This section lists all the top priority requirements on which the SDK was built. The SDK
is called "Extension SDK" in the requirement listing because it was the development name
and it is used for creating extensions to the Application Hub.

5.3.1 Code Templates

The Extension SDK shall provide code templates for creating SLEE services and thus help
with registration into the SLEE (see in Section 2.4). This means that the code templates

70 CHAPTER 5. REQUIREMENT SPECIFICATION

shall implement the mandatory interfaces which are needed for SLEE registration and
access.

5.3.2 Code Examples and Class Libraries

The Extension SDK shall provide code (examples and utility classes where necessary) for
a number of functionalities used by SLEE services. Below is a list of functionalities that
should be implemented (by examples and utility classes) into the Extension SDK.

High Availability is the ability to keep an application or service operational and usable
by clients most of the time. This is done by providing redundant resources and
handovers when one resource is unavailable. One of the requirements when using
High Availability is that tra�c should not be lost when a resource breaks down and
another resource takes that place.

Load Balancing comes into play when a resource is under load and more connections
would like to use that resource. Load Balancing will then distribute tra�c to other
resources that experiences less load. It's basically balancing load over several re-
sources.

Alarm Generation is used when the Incomit SLEE convey errors to the user. The SLEE
service can �re alarms at will that can be handled by the user in a apropriate way.

Event Generation means an event is sent to all SLEEs which are building up the Appli-
cation Hub or the OSA Gateway. This is often used when updates are made which
a�ect a number of SLEE services. An example is when a SLEE service changes a
value in a database and has to inform everyone dependent on this value about the
change. This can then be done using an event.

Load Measurement and Reporting targets the ability of a SLEE service to report its
status. An internal SLEE service can �nd out its own load by asking the SLEE. The

5.3. REQUIREMENTS LISTING 71

SLEE calculates the load of the SLEE services by checking the amount of memory
used and the number of active threads. External plugins have to �nd out their own
load and convey it when asked.

Overload Protection involves the functionality to avoid SLEE services getting over-
loaded. This is done by restricting access to services that are overloaded. There
are three stages of overload. Normal, Overloaded and Severely Overloaded. When
a SLEE services becomes overloaded, services above it will try to �nd a di�erent
one with less load. If the SLEE services becomes severely overloaded it will throw
exceptions and stop answering.

Event Channel Usage for Receiving Events concerns the functionality of receiving
events. SLEE services that want to listen to events of a certain type has to register
a listener in order to obtain information about that event.

Time Service Usage describes how SLEE services can use the Time service utility. The
SLEE services can then perform tasks at a given time or periodic tasks which execute
at given intervals.

Data Base Access involves the ability of getting SLEE services to use databases to store
data in.

Trace Service Usage provides debugging functionality for SLEE services by printing
information to a �le.

Task Scheduling is used when tasks is sent between SLEE services. The Task scheduler
handles threads and avoids deadlocks.

Supervised List Usage handles services and checks their status. The supervised list is
used with High Availability and Load Balancing. It makes sure that requests are not
being sent to non-responding services. If a service does not respond then it is put

72 CHAPTER 5. REQUIREMENT SPECIFICATION

into a zombie list where no external requests will be sent to it. This zombie list is
checked with discrete intervals. If the service in the zombie list suddenly starts to
respond it will be put back.

Charging Data Record (CDR) usage is responsible for saving information so the ap-
propriate billing and charging measures can be taken.

Con�guration Management is the ability to manage the SLEE service from external
sources by setting parameters. An example of an external source is the SLEE man-
ager.

5.3.3 Facilitate Development of Network Plug-ins

The Extension SDK shall facilitate the development of the Network Plug-ins by providing
code examples which describes the mandatory registrations which need to be done in order
to get the plug-in integrated with the SLEE. It should also provide the following code
templates:

Generic plug-in. Allows creation of a generic network plug-in which conforms to the
SLEE.

Call Control plug-in. Allows creation of a call control plug-in, which enables setting up,
monitoring, managing and terminating calls.

Messaging plug-in. Allows creation of a messaging plug-in, which enables the sending
and receiving of messages (for instance SMS).

User Location plug-in. Allows creation of user location plug-in, which enables the re-
trieval of the location a mobile or �xed terminal.

User Status plug-in. Allows creation of user status plug-in, which enables the retrieval
of the status of a terminal.

5.3. REQUIREMENTS LISTING 73

Charging plug-in. Allows creation of charging plug-in, which enables content based
charging and billing functionality.

Subscriber Pro�le plug-in. Allows creation of subscriber pro�le plug-in, which enables
the retrieval and storing of a subscriber's information (such as name, address and
payment method).

5.3.4 Facilitate Development of Net Simulator Support

The Extension SDK shall facilitate the development of the Network Simulator support
by providing code examples and necessary utility classes. The SDK shall also provide
templates for registration with the net simulator and support for the Network Simulator
management.

5.3.5 Standalone Extension SDK

The Extension SDK shall be possible to use standalone. All dependencies the SDK has
shall be included in the Extension SDK package. This means that the Extension SDK shall
be possible to install and use on a clean machine without having to download or install
any additional tools or sources.

5.3.6 Separation of Logic and GUI

The Extension SDK shall be designed so that the logic is separated from the development
environment. This means that it should be possible to run the Extension SDK without
an development environment and using the basic Extension SDK logic via scripts instead.
This approach simpli�es the conversion to another development environment, should that
be necessary in the future.

74 CHAPTER 5. REQUIREMENT SPECIFICATION

5.3.7 Operating Systems

The Extension SDK shall support Windows XP.

5.3.8 Documentation

The Extension SDK shall provide the following documentation:

• Incomit Service Extension SDK Developer Guides.

• Javadoc

• Development Environment User's Guide

The Incomit Service Extension SDK Developer Guides explaines how the Extension SDK
works with its di�erent helping utilities. The Developer Guides describes how the scripts
work and gives examples on how to use them.

The Javadoc provides documentation over methods and classes from di�erent parts:

• Class libraries

• SLEE

• Plug-in interface

The Development Environment User's Guide is a manual over how to use the devel-
opment environment with the Extension SDK. It describes how to perform the di�erent
actions provided by the Extension SDK functionality.

5.3.9 Eclipse Support

The Extension SDK shall be possible to use in combination with the eclipse IDE.

5.3. REQUIREMENTS LISTING 75

5.3.10 Automatic Code Packaging

The Extension SDK shall automaticaly create the build.xml �le which will have the
functionality of creating a deployable jar-�le.

5.3.11 Automatically Generated Code Compiles

The code which is generated from the Extension SDK shall be able to compile directly
after creation.

Chapter 6

Design of the SDK

6.1 Introduction

This chapter describes the design of the SDK derived from the requirements summarized
in Chapter 5. First, the aspect of modularity is discussed since requirements such as
Separation of logic and GUI (see Section 5.3.6) demands a design which is thoroughly
thought through. Second, the classes which form the SDK's logic and the graphical user
interface are brie�y described. Third, the code templates1 are reviewed. These helping
code pieces are used not only to create a uniform code look of each service that is created
using the SDK, but also to create the framework which the developer will work in. Fourth,
code examples are brie�y discussed with an example to clarify what they are. The central
role of the SDK is to facilitate the creation of Network Plug-ins, using code templates, code
examples, javadoc and more. What a Network Plug-in consists of is discussed there after.
The template �les which are used as the foundation for creating code with the SDK has
certain special tokens in them which are discussed in the �fth part. Finally, the integration
into the development environment eclipse is explained.

The main idea of the SDK is that it should facilitate the design of Incomit related
1see Section 4.5 under code templates for more details

77

78 CHAPTER 6. DESIGN OF THE SDK

Figure 6.1: Overview

software development. This is done mainly through providing code templates and code
examples which the developers can use. If the users intends to create a SLEE service
they input the name and properties of the SLEE service they would like to have and the
Extension SDK generates the code according to the users' wishes.

6.2 Modularity

One of the requirements was that the Extension SDK should be developed in such a way
that the GUI part of the Extension SDK was separated from the Extension SDK logic.
This makes the whole Extension SDK more modular in its architecture. It should also be
easy to change the GUI part from, for example, eclipse to JBuilder without rewriting large
amounts of code. The Extension SDK was designed so that scripts could be used to create
code. Using scripts means that the whole GUI part is bypassed. (See Figure 6.2)

What this means is that a Extension SDK logic part would have to be created which
consists of all logic needed in the SDK. Features like automatic code deployment and
generating code from code templates (code which compiles on �rst try) are implemented in
this logic. On top of this logic, di�erent layers could be made, for instance console based
access or eclipse GUI.

6.3. PARSING SPECIFIC CLASSES 79

Figure 6.2: Separation of Logic and GUI

6.3 Parsing Speci�c Classes

This section brie�y describes the classes which add to the parsing functionality of the
Extension SDK. A class diagram of the "parsing" classes can be found in Figure 6.3.

JarResources. This class contains functionality for extracting �les from .zip and .jar �les.

HandleProperties. Retrieving values from a property �le can be done through this class.

Parser. This class has the core functionality. The parsing through the template �les is
done in this class.

InterfaceToStubs. This class creates stub-java code from Java-interface �les.

HandleTypes. Used to get values from a speci�c XML �le.

HandleDir. Handles the location of the directories of the Extension SDK.

Dir. Small class that retrieves the location of the Extension SDK from a property �le.

80 CHAPTER 6. DESIGN OF THE SDK

Figure 6.3: Parser Class Diagram

6.4 Eclipse Speci�c Classes

In this section there is a brief description of the classes which are eclipse related which
provide the graphical user interface of the Extension SDK. A class diagram of the eclipse
classes can be found in Figure 6.4.

ExtSDKWizard. This is a base class for an Extension SDK wizard. If a new wizard
should be added to the Extension SDK, a new class should be created which inherits
from this class.

NSPluginWizard. The Network Simulator wizard.

PluginWizard. The class which contains the functionality of the wizard for network plug-
ins.

PropertyWizardPage. This class is used by wizards and dynamically creates a GUI
from a property �le.

6.5. CODE TEMPLATES 81

Figure 6.4: Eclipse Class Diagram

6.5 Code Templates

There are numerous advantages of the template 2 approach. First, less sources make
changes easier. Should it be necessary to change generated code in future releases, changes
only has to be done in the template code. Second, the code looks the same and is more
uniform. Code that has the same structure and style is easier to understand over time
since it is easier to follow code one is familiarized with. Third, problems with performance
and bugs in the template code can be taken care of once and for all and future code
will be free from those problems. The downside of using code templates is that errors
or performance issues that exist within them will propagate to code generated from the
templates. Hopefully, the fact that there is only one place to �x the error will in most cases
be an advantage instead of an disadvantage. The code generated from code templates has
none or little functionality other than registration into the SLEE (see Section 2.4), it is
then up to the user to add the functionality that makes the SLEE service unique. (See
Figure 6.1)

The Extension SDK logic's job is to generate the code that the developer wants from

2see Section 4.5 under code templates for more details

82 CHAPTER 6. DESIGN OF THE SDK

hidden.OPERATION_STUBS_FROM_INTERFACE_DIR=
c:/incomit/ext_sdk/idl_generated/lib/idl_generated.jar

hidden.OPERATION_STUBS_FROM_INTERFACE_FILE=
${hidden.XML_TYPE_INTERFACE}Operations.java

extsdk.plugin.combobox.XML_TYPE=Messaging

extsdk.plugin.MOD_PATH=com.mycompany.myplugin
extsdk.plugin.JAVADOC=${extsdk.plugin.NAME}_javadoc.zip
extsdk.plugin.NAME=Name
extsdk.plugin.PROJECT_NAME=${extsdk.plugin.NAME}
extsdk.plugin.JAR_FILENAME=${extsdk.plugin.NAME}.jar

Figure 6.5: Property File Example

the templates available. In order to make the Extension SDK as generic and modular as
possible it works in the following way: The code templates have tokens in them which
are replaced by actual text strings during the generation process. An example of a token
could be %[TITLE] which, whenever discovered, is changed to the title entered by the user.
Information about special tokens are found in Section 6.8. The Extension SDK parses a �le
which has values that correspond to each token, at the beginning of the code generation.
This �le is unique for each type of service available for creation in the Extension SDK. An
example of such a �le is the extsdk_plugin.properties which can be seen in Figure 6.5.

The property �le above requires some explanation in order to be understood. It is based
on standard property �les[20] with the addition of ant-like property assignment evaluation.
By property assignment evaluation is meant that in ant it is possible to assign a value to a
property and then retreive this value using ${ } around the property name. The property
segment below could clarify how this works:

property=hello

another=${property}

6.5. CODE TEMPLATES 83

Figure 6.6: Code Templates

The above property-example would after parsing evaluate property's value as hello and
another's value also as hello.

The extsdk_plugin.properties �le above decides which text strings the parser should
search for and also decides the default value the text token should be replaced with. Text
strings such as %[TITLE], %[MYRESOURCE], %[RESOURCE_IF] and so on are searched for by
the parser. The parser searches through all related �les. For example, if call control plug-in
stubs are generated, the call control plug-in template �les are parsed through. If the parser
�nds "%[TITLE]" in the template �le it will change it to "name". The default value "name"
can be changed through editing extsdk_plugin.properties. Another example would be
that "%[MYRESOURCE]" is changed in the template �le to "name_res" in the generated
�le. A second way to change the title would be to use eclipse in collaboration with the
Extension SDK. A wizard will then prompt the properties and their default values for the
user to change. More information on the eclipse plug-in can be found in Section 6.9.

84 CHAPTER 6. DESIGN OF THE SDK

Figure 6.7: Code Examples

6.6 Code Examples

Code examples give examples of how a certain task could be performed. The language
the code examples are written in is Java, since the whole Extension SDK and everything
around it is written in Java. The example will help them to get the insight or the knowledge
they need in order to overcome the problem with implementing their part of the source
code. Code examples are integrated into the code by the user and not externally by the
Extension SDK.

Figure 6.8 shows an example of an code example. That particular code example shows
the user how to use the trace service provided in the Incomit SLEE. Trace logs are put in
a �le on a machine that runs the SLEE and are used for debugging.

6.7 Network Plug-ins

A network plug-in consists of at least two code classes which provide the interface to
the Incomit Application Hub. What this means is that these classes connect the proto-
col speci�c code to the functionality of the Application Hub. The classes can of course

6.7. NETWORK PLUG-INS 85

.

.

.
TraceLogService myTraceService = myServiceContext.getTraceService();
.
int a = 42;
int b = getRandomNumber();
a = a + b;
if(myTraceService.isTraceActive()){

myTraceService.logTrace("MyClass",
"methodAPlusX",
TraceLogService.USERDEF_1,
("Result of stupid calculation:" + a));

}
.
.
.

Figure 6.8: Trace Service Code Example

have any name but for simplicity reasons we name them SleeService_impl.java and
SleeServiceOAM_impl.java (even a plug-in is a SLEE Service). OAM stands for Opera-
tion, Administration and Maintenance. These two �les should only contain methods which
are included from interfaces. Protocol speci�c methods should preferably be separated to
another �le.

When a network plug-in is created using the SDKs code auto generation feature the
directories below are created.

• build - Contains the ant build �le build.xml.

• doc - This is where the javadoc is placed.

• generated - Idl2java places the java-�les generated from the idl-�les here.

• idl - Contains the idl-�les which speci�es the service's corba interfaces.

• lib - This is the directory where the service jar-�le is placed after compilation.

86 CHAPTER 6. DESIGN OF THE SDK

Figure 6.9: SleeService Class Diagram

• src - This is the source directory where the source code is located.

6.7.1 SleeService

The classes which the class SleeService_impl inherits from are ServiceAccessible,
ServiceDeployable and a third class that for now will be called xyzPOA. ServiceAccessible
provides (as described in Chapter 2.4) the functionality of accessing speci�ed methods from
external sources. The ServiceDeployable class enables the SLEE Service to be deploy-
able into the Incomit SLEE. A deployed service can use all the SLEE utilities such as
trace-service for debugging purposes (see Figure 6.8 for an code example), database-access
and more. The third class xyzPOA is a class generated from a CORBA Interface De�nition
Language (IDL) �le. This IDL �le speci�es the plug-in speci�c interface and therefore
consists of method declarations and method variable de�nitions. This interface, which is
de�ned in the program language independent IDL �le, is converted to Java speci�c classes
through an idl-to-java mapping. More information about Java speci�c CORBA usage is
available at [21].

The mapping from IDL to Java creates a number of �les of which most have little

6.7. NETWORK PLUG-INS 87

interest to a developer using CORBA in Java. If the IDL-�le was named xyz.idl there
is a �le created called xyzPOA.java which is of greater importance. If there is a need
to distribute the methods declared in xyz.idl then a class (in this case that class is
SleeService_impl) should extend (inherit) the xyzPOA-class, and further implement all
methods speci�ed through the xyzPOA-class.

A requirement stated in Section 5.3 is the facilitation development of network plug-
ins. A network plug-in has the structure described above and is depicted in Figure 6.9.
A central part of the network plug-in is the registration of the plug-in to the Incomit
Application Hub. This part is already implemented in the SleeService_impl.java after
creation and needs no interaction from the developer in order to function. A problem arises
when speci�c plug-ins are designed, such as a Call Control (see Section 5.3.3) plug-in.

The �rst attempt to solve the problem with how to deal with speci�c plug-ins was
discarded. The idea was to create a template for each type of Network plug-in. The
positive side of that approach was that certain code which was repeated throughout a type
of network plug-in could be included in the template and developers could ignore those
parts. Due to the fact that creating such a template for every single one of the types would
be enormously time consuming this approach was discarded.

After that a second design approach was made. This approach was more generic and
based on the fact that the speci�c network plug-in SleeService_impl.java used an IDL-
interface which tied it to that speci�c network plug-in. For example, the Call Control
plug-ins all extend CallControlResourcePOA or at least a POA-class which inherits from
that particular class. If one could somehow access the IDL-interface and print the stubs
of each method into the SleeService_impl.java this would help the user to see which
methods he or she had to implement.

Since one requirement from the surveys was that the code should be compilable from
creation, there is more functionality than simply changing the interface to code-stubs. All
return values have to be set so that the compiler does not complain about missing return

88 CHAPTER 6. DESIGN OF THE SDK

Figure 6.10: SleeServiceOAM Class Diagram

values. Inheritance is also an issue, since the interfaces may inherit from other classes, so
a traversal through a number of classes had to be made, instead of just parsing one class.

Since parsing through the IDL and generating Java Code from that parsing would evolve
into too many hours work, a closer inspection of the .java-�les that the idl-to-java map-
ping created was made. This inspection resulted in the discovery of xyzOperations.java

which was an interface �le that the xyzPOA.java �le inherited from. The xyzOperations.java
included all the methods declared in the xyz.idl. The solution of creating stubs from
the interface was done through parsing the xyzOperations.java, locating the methods,
changing the declaration to de�nition and printing them into SleeService_impl.java.

6.7.2 SleeServiceOAM

The SleeServiceOAM_impl �le has similar architectural dependencies as
SleeService_impl, but this �le is for management purposes only. The SleeServiceOAM_impl
�le is used to retrieve and set values through a managing interface. It could for ex-
ample be to retrieve the value of when the SLEE service becomes overloaded or to set
that value. SleeServiceOAM_impl inherits from the interface ServiceManageable which

6.7. NETWORK PLUG-INS 89

makes the SleeService manageable. SleeServiceOAM also inherits from another class, a
SleeServiceOAMPOA (the name is depending on the IDL-�le) which is generated from an
idl-to-java mapping. The source is SleeServiceOAM.idl where the developer self declares
all methods that the SLEEmanager (see Section 2.4) can manage externally. This is thus
something that it is hard to facilitate, since the management methods depends very much
on what kind of service that is being created.

A number of approaches were considered when trying to facilitate the OAM for the user.
One of these was to let the user design his own OAM IDL and use IDL-to-Java to create the
Operations.java �le, and then use Operations.java to generate stubs which are entered
into the SleeServiceOAM.java. This would be a nice approach since it at least facilitates
the stubs for the developer (like in the SleeService.java-case), but at the same time it
demands that the user should have designed his own IDL before running the Extension
SDK. Another approach that was considered was to have a very simple IDL �le as a default.
If the developer did not have an IDL, the Extension SDK would use the default IDL. This
default IDL would provide a generic get and a generic set method. The advantage of this
approach is that the developer can use the Extension SDK from start and get and set a
number of values. The downside would be that the developer would have to keep a record of
the names of the values he or she sets. For example set("overloadValue","70") would
set the overloadValue to 70 and get("overloadValue") would thus return "70". The
developer has to know about the "overloadValue" since he or she can only see the set

and get method in the manager interface compared to a normal setOverLoadValue(70)
which would show setOverLoadValue. The �nal approach, which is how the Extension
SDK works, is a thin OAM IDL which gives the developer an example of how to use the
IDL and extend it on his or her own. The OAM IDL provides methods for setting and
getting the overload percentages and severe overload percentages of the SLEE service.

90 CHAPTER 6. DESIGN OF THE SDK

6.8 Special Tokens

Some of the tokens found in the code template �le have unique functionality. Normal
tokens are just found and translated to their respective value as described in Section 6.5.
Below follows a description of these special tokens and how they are used.

The token XML_TYPE_IMPORT outputs a java import line, such as "import " +

XML_TYPE_IMPORT (where XML_TYPE_IMPORT is decremented in every iteration). The string
"XML_TYPE_IMPORT=java.util.vector;" could be an example on how XML_TYPE_IMPORT

is set in the property �le. It should be noted that tokens which start with XML_TYPE_ are
special and not listed in the property �le but instead listed in types.xml (more on this
later in this section).

The string above in the property �le would change XML_TYPE_IMPORT to
"import java.util.vector;". A question that could be asked here is why the import-
token was implemented like this. Why not just use "import XML_TYPE_IMPORT" di-
rectly in the template �le and then the XML_TYPE_IMPORT would not be a special case.
If it would be implemented without the special case what would happen if there had
to be several imports in the java-�le? One intuitive solution would be to use a range
of numbers of XML_TYPE_IMPORT, for instance "import XML_TYPE_IMPORT_1" and
"import XML_TYPE_IMPORT_2". Using such a solution would mean that the number of
imports always have to be the same but, in reality the number could vary depending on
what type (for example messaging, call control) of service that is going to be created. An-
other solution would be to use "import XML_TYPE_IMPORT" and if there is more than one
import, then just extend the token XML_TYPE_IMPORT with another import line. However,
what would happen if there is no import needed? Then there would still be a "import "

which is not supposed to be there.

If a property in the property �le has "hidden." before its name then that property
will not be included when the Graphical User Interface (GUI) is created (see Section
6.9). Two of the hidden properties are OPERATION_STUBS_FROM_INTERFACE_FILE and

6.8. SPECIAL TOKENS 91

OPERATION_STUBS_FROM_INTERFACE_DIR. Both these tokens are used when the token
OPERATION_STUBS_FROM_INTERFACE is found in a template �le. This token is not included
in the property �le since it is a special token that points to a location in the template �le
where the generated stubs from the interfaces are input. There are some points where the
Extension SDK could be seen as a bit static. The fact that there is currently no way of
chosing another name for the token and the fact that there is no way to use more than one
"stubs from interfaces" makes the modularity of the Extension SDK less dynamic. This
static behaviour was motivated because of time restraints and because there were so few
cases where more than one interface should be translated into stubs.

When the token OPERATION_STUBS_FROM_INTERFACE is found, the java �le which con-
tains the interface is located through the OPERATION_STUBS_FROM_INTERFACE_FILE and
OPERATION_STUBS_FROM_INTERFACE_DIR properties. Then this �le is parsed and the
methods are output where the OPERATION_STUBS_FROM_INTERFACE was found. In order to
clarify how this works an example is provided below:

hidden.OPERATION_STUBS_FROM_INTERFACE_DIR=

c:/incomit/ext_sdk/idl_generated/lib/idl_generated.jar

hidden.OPERATION_STUBS_FROM_INTERFACE_FILE=

${hidden.XML_TYPE_INTERFACE}Operations.java

When the token OPERATION_STUBS_FROM_INTERFACE_FILE is found, the Extension
SDK will look for the ${hidden.XML_TYPE_INTERFACE}Operations.java �le in the loca-
tion speci�ced by OPERATION_STUBS_FROM_INTERFACE_DIR. OPERATION_STUBS_FROM_INTERFACE_DIR
can be either a .jar-�le or a directory.

The ${hidden.XML_TYPE_INTERFACE} is generated from types.xml.
The XML-�le could look as below (this is an example).

<?xml version='1.0'?>

<!-- THIS IS THE PLUGIN SIMULATOR TYPES -->

92 CHAPTER 6. DESIGN OF THE SDK

<TYPES>

<TYPE value="Messaging">

<!-- name of interface to use -->

<INTERFACE value="MessagingResourceExt"/>

<!-- path where interface lies -->

<IMPORT value="com.incomit.resources.messaging"/>

<TYPE value="MESSAGING_TYPE"/>

</TYPE>

<TYPE value="Call Control">

<!-- name of interface to use -->

<INTERFACE value="CallControlResource"/>

<!-- path where interface lies -->

<IMPORT value="com.incomit.resources.callcontrol"/>

<TYPE value="CALL_CONTROL_TYPE"/>

</TYPE>

</TYPES>

XML_TYPES_INTERFACES is directly generated from the XML-�les depending on what kind
of TYPE that is chosen. If "Messaging" is chosen than XML_TYPES_INTERFACES

will be set to "MessagingResourceExt". XML_TYPES_IMPORT will be mapped to
"com.incomit.resources.messaging" and XML_TYPES_TYPE will be mapped to "MESSAGING_TYPE".
It is possible to add other tags such as XYZ in the XML-�le and then use the XML_TYPES_XYZ-
tag in the template-�le.

The MOD_PATH tag is used to specify the package path of the service being created. An
example in the template �le could be "package $[MOD_PATH];" which could be translated
to "package com.acme.services.myspecificservice". MOD_PATH is not only used to
insert the package path but also used to create the appropriate directories in order to
create the directory structure for the service. For example, the MOD_PATH above would

6.8. SPECIAL TOKENS 93

generate the directory "com" and under that one "acme" would be created and so on. The
�nal directory structure would in this example look as follows:

com/acme/services/myspecificservice

It would be under the leaf directory (myspeci�cservice in this case) that the generated
�les are created.

The su�xes _START and _END of tokens create the MOD_PATH structure in an IDL-fashion.
These tags should only exist inside an IDL template �le. It creates indentation as well as
module structure. An IDL �le with the associated module path "com.acme.myproject"
could looks as follows:

module com {

module acme {

module myproject {

};

};

};

Consider that MOD_PATH is set to "com.acme.myproject". Then the follwing template
�le would be identical after parsing as the above IDL-�le.

$[MOD_PATH_START]

$[MOD_PATH_END]

The IDL �le above provides no functionality but it shows how an IDL-structure look
like. The _SLASH tag su�x converts all dots to slashes when used. If MOD_PATH is
"com.acme.myproject" then MOD_PATH_SLASH would be "com/acme/myproject". The _LC
tag su�x converts the tag content to lowercase. If XML_TYPE_TAG is "MSG" then
XML_TYPE_TAG_LC is "msg".

94 CHAPTER 6. DESIGN OF THE SDK

Figure 6.11: Eclipse Project Folder

6.9 Graphical User Interface

It is stated in the requirement speci�cation (see Section 5.3) that the Extension SDK
should have support for eclipse. The Extension SDK provides an eclipse plug-in which
collaborates with the Extension SDK's logic. This plug-in provides only minor additional
functionality in comparison to the scripted Extension SDK.

After installation, eclipse should have a new Incomit folder in the Graphical User In-
terface under the project creator. The Extension SDK facilitates creation of various SLEE
services which are listed under this folder. As of now, there are two services listed here,
the Incomit Network Plug-in and the Network Simulator Plug-in (see Figure 6.11)

When a service is chosen, the developer enters the name of the project he or she wants
to create and then clicks next. The second page of the creation wizard is an automatically
generated GUI which is generated from a property �le (see Figure 6.5) that can be di�erent
for each service (see Figure 6.12).

The Property Editor is divided into three columns. The �rst column is the name of
the property, the second is the value of the property and the third is the resolved value of
the property. If text is written in the second column, then all dependent rows in the third
column are updated. If the property name has "combobox.XML_" somewhere in its name
then instead of a textbox a combobox is shown. The options from this combobox is read
from the types.xml �le.

After the Property Editor, which �nishes when the button "Finished" is pressed, the
project is created. Which �les that are included depend on what type of service the

6.9. GRAPHICAL USER INTERFACE 95

Figure 6.12: Property Editor

96 CHAPTER 6. DESIGN OF THE SDK

Figure 6.13: Project Folders

developer chose in the Property Editors combobox. Depending on that type the according
source directory is set and all template �les under that source directory is parsed and sent
to the project directory (see Figure 6.13).

After the project is created, with all the necessary dependencies made by the plug-in,
compiling it without errors should be possible. The plug-in does not use the basic built-in
eclipse compiler but the external ant functionality that eclipse has support for. Compiling
the service is done by running the build.xml-�le in the build directory. Output from the
compilation is shown in eclipse console window.

The GUI part is quite thin, but this is as intended as it makes porting the Extension
SDK to other IDEs easier. Had the GUI part been heavier that functionality would have
been lost in the transition to another IDE.

Chapter 7

Results and Evaluation

All requirements mentioned in Section 5.3 save two has been implemented in The Exten-
sion SDK. The �rst is the "Code Examples and Class Libraries"-requirement. Although
that requirement looks massive on paper, it would be su�cient with a code sample and
explaining documentation for each segment. There is currently only one code example
in the Extension SDK. Therefore, the requirement is not full�lled, but there exists parts
which show how to complete the Code Examples requirement. The second requirement
that has not been implemented is the Documentation requirement. The javadoc does exist,
but the Incomit Service Extension SDK Developer Guide and the Development Environ-
ment User's Guide have not been created. However, some of the information in those two
documents is available in this thesis.

The Extension SDK is a functional SDK. If we recollect the parts in Section 2.5 that
listed what a SDK normally consisted of and compare with the SDK created here, we can
see that there are some small di�erences. The largest di�erence is that in order to use this
SDK the developer must have access to the runtime �les, which means that these are not
included into the SDK. The SDK is a stand-alone product (see Section 5.3) and should be
bought by customers who want to extend the functionality of their Incomit Application
Hub.

97

98 CHAPTER 7. RESULTS AND EVALUATION

7.1 Problems

The largest obstacle when developing the SDK was to understand the system that Incomit
has and all the terminology surrounding that system. This was a continuous process
that was still in progress as the �nal touches to this thesis were placed. The information
about the system mainly came from large documents within Incomit. These documents
were created for a telecommunication community and therefore had quite a number of
abbreviations and acronyms in them. That, along with the fact that they often were quite
large and directed towards a certain part rather than describing a larger overview of the
system, made it a bit like a solving a big jigsaw puzzle.

Another large task was to understand how eclipse's plug-in environment worked and
how to create an eclipse plug-in. This was pretty straightforward at �rst, but when external
libraries should be added some issues came up. When testing of a plug-in is done in
eclipse another instance of eclipse is started. The new instance has the plug-in installed
automatically. The problem was that the testing and actually deploying of the plug-in
was two di�erent things. Another problem with the eclipse plug-in was the usage of a
property �le tied to the plug-in. This property �le could be used to change strings in the
code, in the same way the Extension SDK works. The problem was that the property �le
was included in the jar-�le which made modi�cation of that property-�le a hassle. If the
property �le was extracted outside of the jar-�le, the plug-in was unable to locate it. After
a lot of testing it would seem as the property-�le had to be named "plugin.property", and
this made it work. It was quite hard to �nd good help on these issues even though the
eclipse community is large. A forum1 was found and proved to be of help.

In order to full�ll the requirement with di�erent types of network plug-ins there was
an initial attempt to create a template for each service capability (messaging, call control
and more). This attempt was abandoned after a reassessment of time left at that stage.
The solution instead was to create stubs from the services capability interfaces described

1http://www.eclipseplugincentral.com/

7.2. FUTURE WORK 99

in Chapter 6.
When testing the created network plug-ins an error occurred in the SLEE. The SLEE

claimed that it could not recognize the type of the network plug-in. It was later found that
the Application Hub the plug-in was deployed into was a light version of a real Application
Hub and that this light version lacked reference to the plug-in interface. After adding this
plugin reference no error was displayed.

7.2 Future work

Future work on the Extension SDK has to be done if it should be released as a product.
The testing phase of the Extension SDK has been too short and too limited to validate its
functionality.

The Extension SDK has been created in such a way that it is very easy to extend. It
is encouraged to extend the toolkit further, with services mentioned in the Requirement
Speci�cation in the Appendix.

The parsing of the xyzOperations.java �les is done in a restricted way and should
possibly be addressed to enable for more general parsing of that �le - or better yet, parsing
from IDL to java stubs according to the java-to-idl standard.

References

[1] Etsi. Website, 21th April 2005. http://www.etsi.org/.

[2] The 3rd Generation Partnership Project. Jslee and the jain initiative. Website, 9th
December 2004. http://www.3gpp.org/.

[3] L Klostermann A Moerdijk. Opening the networks with parlay/osa apis:
standards and aspects behind the apis. Website, 21th April 2005. http:
//www.3gpp.org/ftp/tsg_cn/WG5_osa/_Pesentation_Tutorial_Press-Release/
Opening_the_networks_with_Parlay_OSA.PDF.

[4] Inc. CollabNet. Cvs home. Website, 30th Januray 2005. https://www.cvshome.org/.

[5] Bruce Eckel. Comparing c++ and java. Website, 2nd May 2005. http://www.
javacoffeebreak.com/articles/thinkinginjava/comparingc++andjava.html.

[6] Rolf Ejvegård. Vetenskaplig metod. Studentlitteratur, 2nd edition, 1993.

[7] Steve Loughran Erik Hatcher. Java Development with Ant. Manning, 4th edition,
2003.

[8] Inc. Free Software Foundation. Gnu make. Website, 29th October 2004. http:
//www.gnu.org/software/make/.

[9] Inc. Free Software Foundation. Cvs gnu project. Website, 30th Januray 2005. http:
//www.gnu.org/software/cvs/.

[10] The Parlay Group. The parlay group. Website, 1st December 2004. http://www.
parlay.org/.

[11] Jean-Pierre Hubaux, Constant Gbaguidi, Shawn Koppenhoefer, and Jean-Yves Le
Boudec. The impact of the Internet on telecommunication architectures. Computer
Networks (Amsterdam, Netherlands: 1999), 31(3):257�273, 1999.

[12] Jason Hunter and Brett McLaughlin. Jdom project. Website, 13th January 2005.
http://www.jdom.org/.

101

102 REFERENCES

[13] Incomit. Incomit application hub 5.1 product description.

[14] Incomit. Incomit osa gateway 5.1 product description.

[15] Incomit. Incomit application hub 5.1 product description. Comput. Archit., pages
85�87, 2004.

[16] ISO. Iso16387. Website, 30th Januray 2005. http://www.iso.ch/cate/d16387.html.

[17] Cynthia Andres Kent Beck. Extreme Programming Explained. ADDISON-WESLEY,
2nd edition, 2004.

[18] Microsoft. Web services home. Website, 29th March 2005. http://msdn.microsoft.
com/webservices/.

[19] Sun microsystems. Jslee and the jain initiative. Website, 14th November 2004. http:
//java.sun.com/products/jain/.

[20] Sun microsystems. Properties (java api). Website, 28th November 2004. http:
//java.sun.com/j2se/1.4.2/docs/api/java/util/Properties.html.

[21] Sun microsystems. Tutorials and codestamp: Corba. Website, 17th December
2004. http://java.sun.com/developer/onlineTraining/Programming/JDCBook/
corba.html.

[22] Sun microsystems. Enterprise javabeans technology. Website, 29th March 2005. http:
//java.sun.com/products/ejb/.

[23] Sun microsystems. The java hotspot performance engine architecture. Website, 2nd
May 2005. http://java.sun.com/products/hotspot/whitepaper.html.

[24] NetBeans. Netbeans platform. Website, 14th October 2004. http://www.netbeans.
org/products/platform/howitworks.html.

[25] netBeans.org. Netbeans 3.6 performance survey. Website, 29th Januray 2005. http:
//performance.netbeans.org/survey/nb36-performance-survey.html.

[26] 3GPP Technical Speci�cation Group Core Network. Open service access (osa). Web-
site, 21th April 2005. http://www.3gpp.org/ftp/Specs/html-info/23198.htm.

[27] Object Management Group. The Common Object Request Broker: Architecture and
Speci�cation. Object Management Group, 2.5 edition, September 2001.

[28] Inc. O'Reilly Media. Xml. Website, 30th Januray 2005. http://www.xml.com/.

REFERENCES 103

[29] Ravi Rajagopulan. The impact of open service access on network services. Lucent
white paper, pages 1�7, 2002.

[30] Wikipedia. De�nition of service level agreement. Website, 29th Januray 2005. http:
//www.mywiseowl.com/articles/Service_Level_Agreement.

Appendix A

Appendix

A.1 Original Requirement Speci�cation

A.1.1 Movade ExtSdk-R1: Facilitate development of SCSs

The Extension SDK shall facilitate the development of the following components:

• Internal Plug-ins

• SCS Plug-ins

• SCS-proxies

• JAIN SPA services

• ESPA services providing the following APIs:

• JESPA

• WESPA

• ATE support for a new SCS

105

106 APPENDIX A. APPENDIX

A.1.2 Movade ExtSdk-R2: Code templates

The Extension SDK shall facilitate the development of the components by providing code
templates.

A.1.3 Movade ExtSdk-R3: Code examples and class libraries

The Extension SDK shall facilitate the development of the components by providing code
examples and class libraries containing utility classes (if necessary) for:

• High Availability

• Load Balancing

• Alarm generation

• Event generation

• Overload protection

• Load measurement and generation

• Event channel usage

• Time service usage

• Data Base access

• Trace service usage

• Task scheduling

• Supervised list usage

A.1. ORIGINAL REQUIREMENT SPECIFICATION 107

A.1.4 Movade ExtSdk-R4: Facilitate development - Network Plug-
ins

The Extension SDK shall facilitate the development of the Networ Plug-ins by providing:

• Code examples and/or utility classes for:

� Plug-in manager registration

A.1.5 Movade ExtSdk-R5: Facilitate development - SCS Plug-ins

The Extension SDK shall facilitate the development of the SCS Plug-ins by providing:

• Code examples and/or utility classes for:

� Plug-in manager registration

A.1.6 Movade ExtSdk-R6: Facilitate development - SCS-proxies

The Extension SDK shall facilitate the development of the SCS-proxies by providing:

• Policy repository templates

• Policy rule �le templates (In case the user does not have access to the RDT)

• Code examples and/or utility classes for:

• Parlay Framework registration

• Policy initialisation and evaluation

• Statistics generation

• Charging generation

• Plug-in manager and plug-in access

• SCS manager registration

108 APPENDIX A. APPENDIX

A.1.7 Movade ExtSdk-R7: Facilitate development - JAIN SPA
Services

The Extension SDK shall facilitate the development of the JAIN SPA services by providing:

• Code examples and/or utility classes for:

• JAIN SPA Framework registration

• Statistics generation

• Charging generation

A.1.8 Movade ExtSdk-R8: Facilitate development - ESPA Ser-
vices

The Extension SDK shall facilitate the development of the ESPA services by providing:

• Code examples and/or utility classes for:

� ESPA Service registration

A.1.9 Movade ExtSdk-R9: Facilitate development - ATE support

The Extension SDK shall facilitate the development of the ATE support by providing:

• TBD

A.1.10 Movade ExtSdk-R10: Movade DS support

The Extension SDK shall be possible to use standalone and in combination with the Movade
DS.

A.1. ORIGINAL REQUIREMENT SPECIFICATION 109

A.1.11 Movade ExtSdk-R11: Other IDE support

The Extension SDK shall be possible to use in combination with Integrated Development
Environments from other vendors.

A.1.12 Movade ExtSdk-R12: Facilitate deployment - General

The Extension SDK shall facilitate the deployment of the developed components. Generally
for the developed components this includes:

• Deployment into SLEE

• TBD

A.1.13 Movade ExtSdk-R13: Facilitate deployment - Internal plug-
ins

The Extension SDK shall facilitate the deployment of developed internal plug-ins. This
includes:

• TBD

A.1.14 Movade ExtSdk-R14: Facilitate deployment - SCS plug-ins

The Extension SDK shall facilitate the deployment of developed SCS plug-ins. This in-
cludes:

• TBD

A.1.15 Movade ExtSdk-R15: Facilitate deployment - SCS-proxies

The Extension SDK shall facilitate the deployment of developed SCS-proxies. This in-
cludes:

110 APPENDIX A. APPENDIX

• Provisioning of new service types into the Parlay FW.

• Provisioning of new statistics type into the SLEE Statistics service

• Provisioning of policy rules

A.1.16 Movade ExtSdk-R16: Facilitate deployment - JAIN SPA
services

The Extension SDK shall facilitate the deployment of developed JAIN SPA services. This
includes:

• Provisioning of new service types into the Parlay FW

A.1.17 Movade ExtSdk-R17: Facilitate deployment - ESPA ser-
vices

The Extension SDK shall facilitate the deployment of developed ESPA services. For the
actual ESPA service this includes:

• Provisioning of new service types into ESPA

• TBD

For the APIs provided by ESPA this includes:

• JESPA

• Provisioning of the developed components into the DS

• WESPA

• Publication of the WSDL �les

A.1. ORIGINAL REQUIREMENT SPECIFICATION 111

A.1.18 Movade ExtSdk-R18: Standalone Extension SDK

The SCS SDK shall be possible to use standalone, i.e. all sources and development tools
required shall be included in the SCS SDK. This means that the SCS SDK shall be possible
to install and use on a clean machine without having to download or install any additional
tools or sources.

A.1.19 Movade ExtSdk-R19: Documentation

The following documentation shall be available:

• Movade Service Extension SDK Developer Guides

• Javadoc for:

• class libraries

• SLEE

• JAIN SPA Framework (Service registration)

• Parlay Framework (Service registration)

• ESPA Access

• Plug-in interface

• DS User´s Guide

A.1.20 Movade ExtSdk-R20: Windows

The Extension SDK shall support windows 2000.

112 APPENDIX A. APPENDIX

A.1.21 Movade ExtSdk-R21: Possible to install on top of Appli-
cation development SDK

The Extension SDK shall be possible to install on top of an installed Application develop-
ment SDK. This means that the installation shall be possible to skip and only the templates
e.t.c. should be installed in the existing DS.

A.1.22 Movade ExtSdk-R22: Installation wizard

It shall exist an installation wizard. It shall be possible to choose if DS shall be installed
or not. E.g. in some cases the Movade Application SDK might already be installed, and
in some cases the user only wants to have the ext_sdk templates library.

