

 Department of Computer Science

D-level Thesis (30 ECTS)

2005:04

Per Johansson, Henrik Wallinder

A Test Tool Framework

for an Integrated Test Environment

in the Telecom Domain

© 2005 Per Johansson, Henrik Wallinder and Karlstad University

A Test Tool Framework

for an Integrated Test Environment

in the Telecom Domain

Per Johansson, Henrik Wallinder

 iii

This thesis is submitted in partial fulfillment of the requirements for the

Master’s degree in Computer Science. All material in this report which is

not my own work has been identified and no material is included for which

a degree has previously been conferred.

Per Johansson, Henrik Wallinder

(perjoha@gmail.com, henrik.wallinder@bredband.net)

Approved, June 7, 2005

Opponents: Malin Abrahamsson, Aleksandra Gadji

Advisor Karlstad University: Katarina Asplund

Advisor TietoEnator, Karlstad: Lars Lundegård

Examiner: Donald F. Ross

 v

Abstract

This thesis is the result of a Master’s Project in Computer Science at Karlstad University

performed by Per Johansson and Henrik Wallinder in 2005. The project was carried out at the

Telecom R&D, Test Tools & Solutions department of TietoEnator in Karlstad, which

develops support systems for different telecom platforms. The purpose of the project was to

study different test tool frameworks that can be used for creating an integrated test

environment. The goal of the project was to find a product that TietoEnator could use in

future projects. The method used was to first specify some basic requirements for a test tool

framework, then carry out a market analysis to find candidate products, and finally build a

prototype as a proof of concept for the product that best matched the specified requirements.

The requirements include infrastructure for remote test bed launch and execution as well as

centralized functions for building new test tools. The result from the market analysis was that

the product that best fulfilled the stated requirements was a product from the open source

project Eclipse: the Test and Performance Tools Platform (TPTP). A functioning prototype

was built using Eclipse TPTP. The prototype makes it possible for a tester to prepare, run and

evaluate a test executed on a remote machine. A final conclusion from the project is that there

remains some work with additional functionality and documentation before Eclipse TPTP is

mature to use in real projects, but that Eclipse TPTP has good potential for being a quality test

tool framework with a rich set of functions in the future.

 vii

Acknowledgements

We would like to thank the following persons for helping us with the project described in

the thesis:

• Lars Lundegård, our advisor at TietoEnator, who made this project possible two days

before Christmas and has been encouraging throughout the project.

• Mats Berglund at Ericsson, Linköping, who has given us valuable feedback on our

work, and has shared his expertise and experience of testing in the telecom domain

with us.

• Katarina Asplund, our advisor at Karlstad University, who has patiently reviewed our

thesis during the project.

• Johan Andersson, our co-worker at TietoEnator, who has helped us come over the

Eclipse threshold.

• Magnus Einarsson at TietoEnator, who came up with the well thought-out suggestion

for a prototype to implement.

• Lars Ohlén at TietoEnator, who has shared his knowledge and experience of working

with Eclipse with us.

• Joe Toomey at IBM Rational, who has answered several questions necessary for us to

understand the Eclipse TPTP design model and to succeed with building the

prototype.

• Vesa-Matti Puro at OpenTTCN Oy, who has reviewed our survey of OpenTTCN and

given us feedback on our work.

• Patrick Krånglin and Per Blysa at Telelogic AB, who has reviewed our survey of

Telelogic TAU/Tester.

 viii

• Ove Teigen, ThinTech AS, distributor of Scapa Technologies, who has reviewed our

survey of Scapa Test and Performance Platform 3.1.

 ix

Contents

1 Introduction ... 1

1.1 Project Goal ... 1

1.2 Background.. 1

1.3 Requirements of the Test Tool Framework ... 3

1.4 Method... 4

1.5 Result ... 4

1.6 Exam Thesis Disposition ... 5

2 Background.. 7

2.1 Introduction.. 7

2.2 Software Testing.. 7
2.2.1 Test Methods
2.2.2 Test Tools
2.2.3 Test Cases and Scripts
2.2.4 Test Environment
2.2.5 System Under Test (SUT)
2.2.6 Test Tool Framework versus Test Framework

2.3 Telecom Platforms... 13
2.3.1 Ericsson’s Telecom Platforms
2.3.2 AXE
2.3.3 The Telecom Server Platform (TSP)
2.3.4 The Connectivity Packet Platform (CPP)

2.4 Testing of Telecom Platform Software.. 23
2.4.1 Meeting with Mats Berglund, Testing Expert at Ericsson

2.5 Currently Used Test Beds and Test Tool Integrations... 31
2.5.1 The Simulated Environment Architecture (SEA)
2.5.2 The Message Protocol Handler (MPH)
2.5.3 The CPP Emulator
2.5.4 Vega and MessageDriver

 x

3 Test Tool Framework ... 39

3.1 Introduction.. 39

3.2 Background.. 39

3.3 An Integrated Test Environment ... 40

3.4 Test Tool Framework Requirements ... 42
3.4.1 Connection to the System Under Test (SUT)
3.4.2 Centralized Functions

4 Market Analysis .. 45

4.1 Introduction.. 45

4.2 Candidate Products .. 47

4.3 Comparison Points... 48

4.4 Eclipse TPTP ... 50
4.4.1 Introduction
4.4.2 Functionality
4.4.3 Architecture
4.4.4 Eclipse Modeling Framework (EMF)
4.4.5 Standards

4.5 Software Testing Automation Framework (STAF)... 55
4.5.1 Introduction
4.5.2 Functionality
4.5.3 Architecture

4.6 Eclipse TPTP versus STAF ... 58

4.7 Summary.. 59

5 Prototype.. 61

5.1 Introduction.. 61
5.1.1 Prototype Components
5.1.2 Deployment

5.2 Requirements ... 64
5.2.1 Use Case: Execute Expect Test Against the CPP Emulator
5.2.2 Use Case: Prepare Test
5.2.3 Use Case: Run Test
5.2.4 Use Case: Evaluate Test

5.3 Design .. 69
5.3.1 Introduction
5.3.2 Eclipse TPTP Design Overview
5.3.3 Scope of the Prototype
5.3.4 Prepare Test
5.3.5 Run Test

5.4 Improvements of the Prototype ... 82

 xi

5.4.1 Permissions of Remote Agents
5.4.2 Telnet Port Forwarding
5.4.3 Test Agent Implemented in C
5.4.4 Separate Launching Agent
5.4.5 Test Management Integration
5.4.6 Port to TPTP 4.x
5.4.7 SUT Configuration as a New Resource Type
5.4.8 Deployment of Test Scripts

6 Summary and Evaluation... 87

6.1 Market Analysis... 87

6.2 Prototype.. 87

6.3 Discussion.. 88
6.3.1 Pros and Cons of a Common Framework
6.3.2 Standardization
6.3.3 Open Source
6.3.4 Eclipse-Based Products

7 Conclusion.. 95

References ... 97

A Definitions .. 103

B Acronyms and Abbreviations... 113

C Introduction to TTCN-3 ... 119

D Market Analysis – Product Descriptions .. 123

D.1 Danet TTCN-3 Toolbox .. 123
D.1.1 Introduction
D.1.2 Functionality
D.1.3 Architecture

D.2 IBM Rational Testing Products ... 129
D.2.1 Introduction
D.2.2 IBM Rational TestManager

D.3 JUnit .. 131

D.4 OpenTTCN Tester for TTCN-3... 132
D.4.1 Introduction
D.4.2 Functionality
D.4.3 Architecture

D.5 Scapa Test and Performance Platform 3.1... 136

D.6 Telelogic TAU/Tester.. 137
D.6.1 Introduction
D.6.2 Functionality

 xii

D.6.3 Architecture

D.7 Testing Technologies TTworkbench ... 142
D.7.1 Introduction
D.7.2 Functionality
D.7.3 Architecture

E Market Analysis – Comparison Points.. 147

F Market Analysis – Product Evaluations ... 151

F.1 Ready-to-Use Products .. 151
F.1.1 Danet TTCN-3 Toolbox
F.1.2 Eclipse TPTP 3.2 (as a ready-to-use product)
F.1.3 IBM Rational Test Manager
F.1.4 JUnit
F.1.5 OpenTTCN Tester
F.1.6 Scapa Test and Performance Platform 3.1
F.1.7 Telelogic TAU/Tester
F.1.8 Testing Tech TTWorkbench

F.2 Frameworks ... 160
F.2.1 Eclipse TPTP 3.2 (as a framework)
F.2.2 STAF

G Prototype – User Manual.. 163

G.1 Introduction.. 163

G.2 Eclipse Vocabulary.. 164

G.3 Eclipse Pre-Defined Architecture of Resources .. 165

G.4 Prepare Test ... 166
G.4.1 Changing to the Test perspective
G.4.2 Creating the Project
G.4.3 Creating and Editing the TPTP Expect Test Suite Resource
G.4.4 Creating and Editing the Artifact Resource
G.4.5 Creating and Editing the Location Resource
G.4.6 Creating and Editing the Deployment Resource

G.5 Run Test... 189

G.6 Evaluate Test ... 192
G.6.1 Test Execution Structure
G.6.2 Exporting the Test Execution Result

H Prototype – Installation Instruction .. 199

H.1 Introduction.. 199

H.2 Requirements ... 200

H.3 Installation of the Eclipse Plug-ins .. 201

H.4 Installation of the RAC Plug-in ... 203

 xiii

List of Figures

Figure 1: Conceptual Model of Software Testing... 8

Figure 2: Functional Testing ... 9

Figure 3: Test Methods and their Relations .. 11

Figure 4: Conceptual Model of a Test Tool Framework...13

Figure 5: The Three Layers of the Logical Network .. 14

Figure 6: Example of an AXE Based System ... 16

Figure 7: The TSP Architecture .. 18

Figure 8: Software Fault in TSP.. 19

Figure 9: CPP Fundamental Architecture ... 20

Figure 10: Examples of CPP Network Nodes in the WCDMA Application Area 22

Figure 11: Schematic View of a Test Case ... 25

Figure 12: A Use Case Example ... 26

Figure 13: Example System Architecture for an End-to-End Test Case 27

Figure 14: Launching Model with Pre-Defined States ... 29

Figure 15: SEA Architecture... 32

Figure 16: MPH Communication Layer ... 33

Figure 17: Example Configurations Using MPH.. 34

Figure 18: MPH Protocol Packet Format.. 36

Figure 19: MPH Control Channel Data Format.. 36

Figure 20: The Real versus the Emulated CPP Environment ... 37

Figure 21: One-to-One Relationship between the Test Tool and the SUT. 39

Figure 22: Many-to-Many Relationship between the Test Tool and the SUT.................. 40

Figure 23: Users that Benefit from an Integrated Test Environment................................ 41

 xiv

Figure 24: External Interfaces... 42

Figure 25: Centralized Functions. ... 44

Figure 26: TPTP Architecture Overview .. 53

Figure 27: STAF Architecture Overview.. 57

Figure 28: Remote Test Bed Launch .. 62

Figure 29: Prototype Components .. 62

Figure 30: Deployment of the Prototype Components ...63

Figure 31: Target Environment Deployment .. 64

Figure 32: Prototype Use Case.. 65

Figure 33: TPTP Basic System Structure.. 69

Figure 34: Test Launch Interactions ... 71

Figure 35: Test Execution Components.. 72

Figure 36: Prototype plug-ins.. 73

Figure 37: Expect Test Suite New Wizard.. 74

Figure 38: The Tester Creates a New Test Suite... 75

Figure 39: Test Suite Editor Classes ... 76

Figure 40: TPTP EMF Test Profile Model ... 77

Figure 41: Text Execution Components ... 78

Figure 42: The Tester Starts the Test .. 79

Figure 43: Test Agent.. 80

Figure 44: Test Bed Launch.. 81

Figure 45: One-to-Many Relationship between a Test Tool and SUTs............................ 87

Figure 46: Integration by Means of a Common Test Tool Framework. 88

Figure 47: Specialized Test Tool .. 90

Figure 48: The General Structure of a TTCN-3 Test System ... 120

Figure 49: Danet TTCN-3 Toolbox .. 124

Figure 50: An Architectural Overview over TTCN-3 Toolbox 127

Figure 51: JUnit Interfaces and Classes .. 132

Figure 52: The OpenTTCN Campaign Manager .. 133

Figure 53: Telelogic TAU/Tester showing a TTCN-3 Tutorial...................................... 138

 xv

Figure 54: The Architecture of TAU/Tester’s Executable Test Suite (ETS).................. 140

Figure 55: TTworkbench showing the Built-in Text Editor ... 144

Figure 56: The Prototypes’ Three Use Cases.. 163

Figure 57: The Main Window of Eclipse.. 164

Figure 58: The Eclipse TPTP Resource Architecture ...166

Figure 59: Wizards in Eclipse ... 166

Figure 60: Select Perspective Dialog Window ... 167

Figure 61: Creating a Simple Project .. 168

Figure 62: Another Way to create a Project in Eclipse... 169

Figure 63: Creating a New Test Artifact... 170

Figure 64: Creating a New TPTP Expect Test Suite... 171

Figure 65: The TPTP Expect Test Suite Editor .. 172

Figure 66: The CPP Emulator Configuration Tab .. 173

Figure 67: The Expect Test Cases Tab ... 174

Figure 68: Creating a New Artifact... 175

Figure 69: The Artifact Editor... 176

Figure 70: The Select Resource Dialog Window.. 177

Figure 71: The Test Assets Tab .. 178

Figure 72: Creating a New Location... 179

Figure 73: The Location Editor... 180

Figure 74: Creating a New Deployment ... 181

Figure 75: The Deployment Editor ... 182

Figure 76: The Pairs Tab... 183

Figure 77: The Add Artifact Dialog Window... 184

Figure 78: The Select Resource Dialog Window.. 184

Figure 79: The Add Location Dialog Window ... 185

Figure 80: The Select Resource Dialog Window.. 186

Figure 81: The Pairs Tab... 187

Figure 82: The Overview Tab ... 188

Figure 83: The Test Navigator after Test Preparation .. 189

 xvi

Figure 84: How to Open the Run Dialog Window ... 190

Figure 85: The Run Dialog Window... 191

Figure 86: My Expect Test Suite Test Execution Resource ... 192

Figure 87: The My Expect Test Suite Test Execution Editor ... 193

Figure 88: The Events Tab.. 194

Figure 89: The Events Tab, with a Collapsed View ... 195

Figure 90: WinZip Showing the “My Expect Test Suite.execution.zip” File................. 197

Figure 91: ConTEXT Showing the “ResourceContents” File .. 197

Figure 92: Plug-ins in the Eclipse TPTP Architecture.. 199

Figure 93: The “About Eclipse Platform Plug-ins” Dialog Window.............................. 201

Figure 94: The “TPTP Expect Test Suite” Wizard ... 202

 xvii

List of Tables

Table 1: MPH Service Primitives ... 35

Table 2: Example STAF Services ... 56

Table 3: IBM Rational TestManager Test Script Types... 130

Table 4: Comparison Points used in the Market Analysis .. 149

 xviii

 1

1 Introduction

1.1 Project Goal

The purpose of the project described in this thesis was to act as a first study to increase the

knowledge about available test tool frameworks that may be used for creating an integrated

test environment. The main objective was to give TietoEnator guidance in which test tool

framework, product or technical solution, they should use in future projects. The goal was to

find an existing product on the market, which was as complete as possible and ready to use

with as small modifications as possible. The product should use standard, open techniques

and preferably be open source.

Two main groups of users would benefit from a general test tool framework: testers and

people developing and maintaining test tools. Testers would benefit from a simplified test

preparation, execution and evaluation. Simplifying the test preparation, execution and

evaluation is also important for the people developing the emulators and tools at TietoEnator,

in order for them to be able to verify that the test tools work in the emulated environment.

1.2 Background

The Telecom R&D, Test Tools & Solutions department of TietoEnator in Karlstad

develops support systems for different telecom platforms. The platforms are typically

distributed systems with a network of cooperating nodes, which together make up the system

functionality. The platforms are large and complex with a great amount of system software.

Testing the system software is an essential part in the development process.

The support systems developed by TietoEnator include complete runtime environments

consisting of emulators and tools for loading and executing the telecom platform software.

Introduction

 2

The runtime environments enable testing of the system software without access to the target

hardware; testing can be performed on an ordinary PC instead. Since target hardware is often

expensive and not widely available, the emulated environments are important. The emulated

runtime environments increase the availability for testing and reduce the amount of necessary

function testing in the target environment. Other benefits are increased determinism and better

debugging possibilities.

The function tests are run from fully automated test suites. The test suites may be used for

testing both in emulated and target environments. There are also manual, interactive tests that

can be run, for example simulation of mobile phones.

An investigation of the need for test tools for one of the platforms, the Ericsson Telecom

Server Platform (TSP) [4],[5], has been made by TietoEnator together with Ericsson. The

investigation showed that different TSP subsystems have a similar need for test tools and have

also developed their own test suites, with different solutions and techniques. For example, one

of the subsystems has used JUnit [52], while another has based its tests on The Testing and

Test Control Notation (TTCN) [48]. The result of the investigation showed the need for an

integrated test environment and was one incentive for carrying out this project.

A common problem when performing function testing is the setup of the test environment.

In End-to-End (E2E) testing, for example, all the nodes that take part in the function under

test must be set up and connected. Each node implements one or more interfaces. In the test

suites there are typically one separate tool for each interface. Thus, a test environment setup

typically consists of a whole chain of different tools that must be connected to its respective

node interface and run simultaneously during the test. Furthermore, there are often

dependencies between nodes and components making it difficult to start-up or launch the test

environment in an initial stable status. The setup of the test environment can be quite a

complex task for the tester. The many different tools may also make it difficult to follow up

the test execution.

The many dependencies between the test tools and the node interfaces may also make

maintenance problematic. A change in the interface of a node may imply changes to a number

of dependent test tools.

Introduction

 3

The main business goal with a test tool framework, from TietoEnator’s point of view, is

the possibility to use it as a basis for an integrated test environment for new platforms. It may

also be possible to use it for integrating existing test tools, for example the different test suites

for the TSP platform.

1.3 Requirements of the Test Tool Framework

The following are requirements that were specified for the test tool framework.

The test tool framework should be generic, allowing for interoperability with as many

different test tools as possible. The test tool framework should also allow use of any test script

language. The main target environment is telecom platforms, which means that testing of

distributed systems must be supported. All different test methods used for testing telecom

platform software must be supported; automatic functional regression testing must be

supported as well as manual testing. Although telecom was the main focus, the test tool

framework should be applicable in other technical areas as well.

The main technical requirement for a test tool framework is to find a general way of

connecting the test tools to the nodes in the System Under Test (SUT). Ideally the whole

platform, for example TSP, should be viewed as a single unit with one single access point for

connecting test tools to the nodes to be tested.

The second technical requirement for a test tool framework is to centralize functions

common to different test tools, as a base for building new test tools. The test tool framework

could, for example, have support functions for logging and debugging. Another possibility is

a common Graphical User Interface (GUI) that the test tools can use. The centralized

functions would give a better integration of the different test tools, less duplicated

functionality, a reduced number of tools, fewer dependencies, simplified maintenance,

simplified use for the tester and a more uniform look and feel. The support functions should

also use standardized techniques where possible.

Introduction

 4

1.4 Method

The scientific method used in this project was largely based on theoretical descriptions and

comparisons of different available products. The project was divided into two phases: First, a

market analysis of available products was carried out. The second phase was to build a

prototype to further increase the knowledge about using a specific product for solving an

actual problem.

During the project, the project group had the privilege to meet Mats Berglund, testing

expert at Ericsson, to discuss the exam thesis and software testing in the telecom domain.

Mats Berglund has contributed with valuable experience and has had the role as a reference

person in the project.

1.5 Result

The market analysis resulted in a theoretical evaluation of different products for building

an integrated test environment. The main conclusion from the market analysis was that the

product that best fulfills the specified requirements of a test tool framework, see Section 1.3,

is Eclipse. Eclipse is open source and is designed to be an open architecture that can be

extended in many different ways. Eclipse provides quite many centralized functions for

building different test tools, such as distributed test execution and a common GUI. Eclipse

also uses standardized techniques such as Unified Modeling Language (UML) [36] and

Extensible Markup Language (XML) [37].

A prototype was built as a proof of concept in order to show that Eclipse can be used as a

basis for a general test tool framework. The prototype makes it possible for a tester to create a

test configuration to be run on a remote machine. The test configuration includes a selection

of test scripts, test bed configuration and SUT configuration. When the tester starts the test

from the Eclipse client Workbench, the test bed is automatically launched on the remote

machine, the test scripts are executed, and finally the test bed is torn down. The tester can

view the test result in a test execution history in the Eclipse client Workbench.

Introduction

 5

The conclusion from the prototyping is that it should be possible to use Eclipse for creating

an integrated test environment.

1.6 Exam Thesis Disposition

This thesis has the following disposition:

• Chapter 1 (this chapter) contains a summary of this thesis with purpose, background,

method and result.

• Chapter 2 contains background information for the project. The concept of a test tool

framework is described in the context of software testing in general and testing of

telecom platforms in particular. Examples of current telecom platforms are given.

• Chapter 3 describes the concept of a test tool framework, as defined in this thesis.

• Chapter 4 contains the survey of the different products, with summary and

conclusions.

• Chapter 5 describes the prototype that was implemented.

• Chapter 6 summarizes the results of the thesis.

• Chapter 7 contains a final conclusion for the project.

• Appendix A defines some concepts used in this thesis.

• Appendix B lists acronyms and abbreviations used in this thesis.

• Appendix C gives an introduction to TTCN-3.

• Appendix D contains descriptions of the different products studied in the market

analysis.

• Appendix E contains descriptions of the points used to compare the different products

in the market analysis.

• Appendix F contains evaluations for the different products studied in the market

analysis.

• Appendix G is a User Manual for the prototype that was implemented.

• Appendix H is an Installation Instruction for the prototype that was implemented.

 7

2 Background

2.1 Introduction

This chapter gives a background to the area for this project. Section 2.2 describes a test

tool framework in the context of software testing in general and Section 2.3 gives an

introduction to different telecom platforms. Section 2.4 describes some issues when testing

telecom systems. Test beds and test tool integrations used at TietoEnator today are described

in Section 2.5.

2.2 Software Testing

Software Testing is an essential part of Software Engineering. Traditionally, testing has

been primarily seen as a quality improving activity. The main purpose of testing is to find

defects and getting the defects corrected. If defects in the system are corrected in a systematic

way the quality of the system will improve.

Historically, testing was mainly used as debugging to find out if software functioned as

intended. The testing and debugging phase took place after the program was written. Testing

was therefore considered as a follow on activity [13]. The terms testing and debugging were

not clearly distinguished, but used as having the same meaning. Today software testing is

considered as a separate process when developing software. The test phase is no longer seen

as a follow on activity, but rather as an integrated process.

Testing methods have evolved rapidly in recent years and methods as Test Driven

Development [18], [22] have become very popular. With Test Driven Development tests are

created before the program is written. The tests are used as a reference for judging whether or

not the system is correct; in the extreme case tests are even used as a replacement for software

specifications.

Background

 8

Software systems are becoming more and more complex and extensive testing in all phases

of the development is necessary to master the complexity.

Therefore, with increasing complexity in software systems and development methods

based on tests, testing can no longer be seen only as a quality improving activity, but instead

as a necessary activity in order to develop functioning systems.

Software testing involves many concepts. Figure 1 shows a brief conceptual model of

software testing with the relationships between some of the concepts involved. Appendix A

defines many important testing related concepts used in this thesis.

Software
Engineering

Software
Quality

Test
Environment

Test SUT

configures

executes

Test Method

Software
Testing

includes

depends on realized in

*

defines

**

includes

Test Tool
**

includes

*supported by

includes

*

*

Figure 1: Conceptual Model of Software Testing

During the software testing phase in a software development project, the main objective is

to define a set of tests that execute the System Under Test (SUT) in order to find defects.

Software testing includes many test methods and test tools and is realized in a test

environment. The test environment includes the test tools needed to conduct the tests and is

also responsible for the correct configuration of the SUT.

Background

 9

A schematic model of functional testing is shown in Figure 2. A test generates stimuli that

are sent to the interface of a SUT. In response to the stimuli, the test retrieves an output,

interpreted as a test result generated by the SUT.

SUT

Stimuli

Test Result

Test executes

generates

retrieves generated by

sent to

Figure 2: Functional Testing

2.2.1 Test Methods

The area of software testing includes a great number of methods. Testing can, for example,

be fully or partly automated. There are a number of benefits with automated testing which

give both lower cost and higher quality. Automatic tests can, for example, be run much more

frequently than manual ones. One possibility is nightly smoke tests for each new build, in

order to continuously regression test the system during development – something that would

be impossible with manual testing. Automatic tests also enable much more test cases to be run

compared to manual testing, giving a better coverage of the system being tested and thus more

defects being found and corrected. Another advantage is that computers, unlike humans, do

not miss a deviation from an expected result.

New processes for software development, for example lightweight processes such as

Extreme Programming (XP) [16], are totally dependent on automatic testing. New test cases

are created and run before new functions are added to the system in order to constantly keep

the system on a sufficient quality level.

Background

 10

Even though automatic testing is preferable, there are often tests that cannot be automated.

Test cases for starting up or shutting down a system or interaction with special hardware in a

system must normally be manual.

Two major concepts in software testing are black box and white box testing. With black

box testing, the test case selection is based on an analysis of the specification of the

component without reference to its internal workings [24]. The SUT is tested by giving

stimuli to and checking responses from the external interfaces of the SUT only. Testing based

on an analysis of internal workings and structure of the components is called white box

testing, glass box testing or structural testing [12]. White box testing includes techniques such

as branch testing and path testing.

Figure 3 shows different test methods and their relations, as well as relations to functional

and non-functional requirements. A test can be either black box or white box. Black box tests

can be divided into functional tests and non-functional tests. Functional tests can be divided

into system external interface test and unit test. Non-functional tests can be divided into

load/performance and stress tests. Unit test, also called module test or basic test, tests a single

unit or small cluster of coherent units. Unit test is sometimes seen as a white box test. There

are a number of different types of system external interface tests, among others: protocol tests,

Graphical User Interface (GUI) tests, Command Line Interface (CLI) tests, Operation and

Maintenance (O&M) tests and terminal or End-to-End (E2E) tests.

Functional requirements can often be described by different use cases and are tested by

means of system external interface tests. Non-functional requirements are tested with

corresponding non-functional tests, such as load or stress tests.

Background

 11

Test Method

Requirement

Functional test

Black boxWhite box

Unit test

Protocol GUI

Operation &
Maintenance

Terminal (E2E)

Load/Performance

Stress

Functional req

System external
interface test

Non-functional req

Non-functional
test

CLI

Figure 3: Test Methods and their Relations

2.2.2 Test Tools

The tools for software testing should support the methods used. There are tools for a

number of purposes, for example test drivers, comparators and tools for creating stubs.

2.2.3 Test Cases and Scripts

Test cases are documented in test procedures. The test procedures are automated by means

of test scripts and run by a test tool, typically a dedicated test driver. Test scripts may be

written in an ordinary programming language, such as C++ or Java, or in a script language.

Background

 12

There are also special, standardized languages for creating test scripts as, for example, TTCN-

3 [48]. An introduction to TTCN-3 is given in Appendix C.

2.2.4 Test Environment

To be able to run test cases, a test environment has to be created. An environment

containing the hardware, the instrumentation, the simulators, the software tools, and other

support elements needed to conduct a test is called a test bed [24].

2.2.5 System Under Test (SUT)

Before running a test, the test bed has to be configured for the system being tested – the

System Under Test (SUT). The SUT is normally composed of a number of components. The

Implementation Under Test (IUT) is the actual components within the SUT that are the target

test objects for the current test.

2.2.6 Test Tool Framework versus Test Framework

The purpose with a framework in general is to make it easy for software developers to add

new functionality. The purpose with a test tool framework is thus to make it easy to add new

test tools to the test environment. The concept of adding new test tools has two different

meanings in this project:

1. It should be easy to connect an existing test tool to the SUT, in order to let the test

tool access and communicate with the target components.

2. It should be easy to create new test tools by building on functions implemented in

the test tool framework. In this sense the framework has the role of a Software

Development Kit (SDK).

A test framework should make it easy to add new test cases. A test framework may be built

by means of a test tool framework and different tools. Figure 4 shows a conceptual model of a

test tool framework.

Background

 13

Makes it easy
to add new test
cases.

Makes it easy
to add new test
tools.

Test Tool

Test
Framework

*

1

*

1

includes

Test Case

Test Suite
*

1

*

1

includes

executed by

*

1

*

1

includes

Test Tool
Framework

*

1

*

1

integrates

1 11 1uses

Test

SUT

1 *1 *

adapts to

executes

realizes

Figure 4: Conceptual Model of a Test Tool Framework

2.3 Telecom Platforms

This section gives examples of different Telecom Systems. Three platforms from Ericsson

are presented: AXE, TSP and CPP. The purpose is to give an understanding of the basic

functionality of these systems and also to describe the complexity of the SUTs in the telecom

domain. When performing software testing, understanding of the SUT is essential.

2.3.1 Ericsson’s Telecom Platforms

Today users require the possibility to always communicate, and their demand on telecom

applications and services constantly increases. To be able to keep up, the Telecom Platforms

have to evolve continuously. In the telecom world today, the trend is towards a convergence

Background

 14

of telephony, media and data communication. Ericsson’s answer to this development [5] is to

use a logical network divided into three horizontal layers, see Figure 5. Within the top layer

content and user applications layer, server applications, databases and services are provided.

The middle layer communications control layer, is responsible for control functionality.

Finally, the bottom layer connectivity layer assures that the transport of all data is performed

in an appropriate way.

Content and User Application Layer

Communications Control Layer

Connectivity Layer

AXE

CPP

TSP

Figure 5: The Three Layers of the Logical Network

To be able to provide telephony, server and access applications, Ericsson’s plan [5] is to

extend the existing AXE telecom platform with two additional platforms: the Telecom Server

Platform (TSP) for servers and the Connectivity Packet Platform (CPP) for gateways. Both

platforms were created with the fundamental requirements of high availability. Users of

telecom applications are generally used to higher availability, compared to users of data

communication applications (it is more likely that your internet connection will be down than

that your phone does not get a dial tone). The architecture has been created using a server-

gateway split meaning that the applications and control functionality have been separated

from the connectivity and transport. Another important approach when extending the

architecture, according to Ericsson [5], is to use common system components and the same

Background

 15

building practice for AXE, TSP and CPP. Common key words for all platforms are high

availability, real-time performance, scalable capacity and openness.

2.3.2 AXE

The AXE system [5] has existed for a long time and today AXE equipment can be found

all over the world. As many new Internet based telecom services require packet data

transports, there is a need for integration of packet data transports and legacy telecom circuit

switching. AXE provides a base for merging circuit switching and packet data transport

networks. AXE is not only the basis for legacy telephony applications such as Public

Switched Telephone Networks (PSTN), but also used for mobile telephony. The AXE 810

version incorporates commercially standardized components for mobile telephony and it

mainly serves as, see Figure 6:

• The Mobile Switching Centre (MSC) is a part of a Global System for Mobile

Communication (GSM) network and its function can be compared to the exchange in

a fixed network, plus everything extra needed to handle Mobile Stations (MS). MS

collectively refers to all the devices communicating over the mobile phone network.

The MSC controls the Mobile Stations and functions as authentication, location

management, handovers, registration and the routing of the calls.

• Base Station Subsystem/System (BSS), which is a segment of the GSM system

consisting of a Base Station Controller (BSC) and one or more Base Transceiver

Stations (BTS) that are associated with it. The BSC manages the BTS (one or more),

and the BSS itself is controlled by the MSC, which controls several BSS. The BSS is

the interface between the MS and the MSC.

Background

 16

BTS

BTS

BSC

BSS

MSC

Other networks

MS

MS

MS

Figure 6: Example of an AXE Based System

To be able to get an open architecture of the AXE system, Ericsson uses commercially

available hardware components, standard hardware building practices and commercially

available software components and interfaces. Due to the open architecture approach, AXE

hardware has been reduced drastically in size, making it much easier to work with. Even

though the AXE is being constantly upgraded and developed it is still fully backward

compatible.

2.3.3 The Telecom Server Platform (TSP)

The Telecom Server Platform (TSP) [4] is a robust and fault-tolerant platform based on

open server technology. It is built to support new multimedia applications and control

functionality. Considering the high availability requirements of the telecom users and that

TSP is designed for server application purposes, TSP has key features such as high reliability,

scalable capacity and real-time operation (minimal delay).

Background

 17

The architecture of TSP consists of both hardware and software, see Figure 7. The

hardware used is several boards with off-the-shelf Intel CPUs connected to each other via an

Ethernet network. The software running on top of the CPUs are two Operating Systems (OS),

one Linux based and an OS called DICOS, developed by Ericsson and optimized for real-time

processing. DICOS is based on queuing technologies and offers soft real-time response.

On top of the DICOS and Linux OS is a Clusterware called Telecommunications Object

Request Broker (TelORB). TelORB handles network communication, database operations

and effectively runs executing software on available nodes. TelORB distributes all processes

redundantly (runs each process on at least two CPUs). By doing this, high availability and

reliability is achieved. The TelORB makes all application processes transparent to the

application. Since the application processes are transparent, the application does not know

where its processes run.

On top of the TelORB relies Node Management and Signaling, see Figure 7. The Node

Management is used to manage the TSP node. Node Management is based on

Telecommunications Management Network (TMN) and incorporates standards such as

Common Object Request Broker Architecture (CORBA) [14], Lightweight Directory Access

Protocol (LDAP) [17], Hypertext Transfer Protocol (HTTP) and Simple Network

Management Protocol (SNMP) [9]. The Node Management has support for several functions

such as the following: Fault Management (FM), Configuration Management (CM),

Performance Management (PM), provisioning support, logging and license management. The

signaling part of the TSP architecture handles the Signaling System 7 (SS7) [20] and the

Internet Protocol (IP) stacks. Currently SS7 is still the one most commonly used in telecom

networks. The trend today, however, is that IP is becoming more and more popular due to

new services and applications using IP.

Background

 18

C++ API Java API

Signaling Node Management

TelORB Clusterware

DICOS Linux OS

CPU CPU CPU CPU CPU

Figure 7: The TSP Architecture

High availability can be achieved with fault-tolerant hardware, but such hardware is

expensive and will not give full control. Ericsson has therefore chosen to use the software

solution TelORB to eliminate faults. Using software instead of hardware is a more cost-

effective solution since standard off-the-shelf hardware can be used. To be able to guarantee

high availability TelORB uses replication. By using replication, all the processes run on at

least two nodes, meaning that all the nodes do not have to be available all the time. Figure 8

shows an example how this redundancy caused by the distribution works in case of a software

failure. In Figure 8A, a working system is shown. In Figure 8B, a software fault occurs in a

node, and the processes and the data are lost. Due to TelORB and its distribution, the

processes and data are replicated (redundant) and can be found in the other nodes, see Figure

8C. When the node where the software fault occurred has restarted, the processes and data can

be copied from the other nodes, see Figure 8D, and the system is back to a working system

again.

Background

 19

A B C D

Figure 8: Software Fault in TSP

High availability is also provided in TSP by the opportunity to update while the system is

still online. Since TSP is built on several standard off-the-shelf CPUs, upgrading can be done

linearly by just adding more CPUs. By using the same concept as TSP does when software

faults occurs, i.e. moving the processes and data to a working node in case of failure or

downtime of a node, upgrading can easily be done without taking the system down.

According to Ericsson [4] the system can even be moved to new hardware without downtime,

by using the TelORB distribution concept.

The applications and services that TSP provides must be very robust and easily

expandable. They share central databases containing essential user, traffic and charging data.

Examples of TSP applications and services are:

• Home Location Register (HLR), which contains information (databases) about the

subscriber for billing purposes and information about where the user is located.

• Media Gateway Control Function (MGCF), which provides signaling interoperability

between IP and PSTN domains.

• Authentication, Authorization and Accounting (AAA) servers, which remotely control

users’ network access by requiring identification from them.

• General Packet Radio Service (GPRS) Support Node (GSN).

Background

 20

2.3.4 The Connectivity Packet Platform (CPP)

The Connectivity Packet Platform (CPP) [6] is used as Asynchronous Transfer Mode

(ATM) and IP transport solutions for access networks. CPP is based on packet-switching

technology and Ericsson introduced CPP for use with the third generation of radio access. The

packet-switching technologies supported by CPP are TDM (Time Division Multiplexing),

ATM and IP traffic. QoS (Quality of Service) can be achieved as well. The first CPP

applications used ATM switching only, but IP has been introduced to enable access-networks

products to switch between ATM and IP traffic.

A CPP node consists of two parts, an application part and a platform part, see Figure 9.

The application is customized to handle the software and hardware specific for the application

the CPP node is used for. The platform part can be divided into five subparts: CADE, Core,

IP&C, SS7 and O&M.

Platform

Application

CADE

Core

IP&C

SS7

O&M

 Figure 9: CPP Fundamental Architecture

The CPP Application Development Environment (CADE) is a software development

environment for both application and CPP software. The CPP Core provides core

functionality for the applications such as software execution via OSE (the operating system

used), Java execution, system upgrades during operation, fundamental configuration and

start/restart functions. The Internet Protocol and Connectivity (IP&C) provides the transport

Background

 21

service for both ATM and IP and network synchronization. The Signaling System number 7

(SS7) is used to send signaling messages between the CPP nodes in a network. Finally, the

Operation and Maintenance (O&M) provides services to support management services and

applications.

The hardware of CPP consists of several magazines (a kind of chassis) equipped with

different types of circuit boards. Roughly, the CPP hardware consists of switch- and processor

boards. The CPP switchboards handle user and control data in the node as well as between

nodes. The CPP processor boards are used to perform a variety of tasks. Each CPP node has

at least one processor board, the General Processor Board (GPB). The GPB functions as a

central control and resource handler and also provides management services.

As in the case of TSP, robustness and fault-tolerance are achieved through processors

working together in the CPP (distribution and replication of the executable software). When

designing the architecture of CPP, the aspect that essential functions should survive hardware

faults was in mind [6]. The switch, power supply, internal links and signaling links between

the nodes are all redundant. Scalability was also important when designing CPP, since CPP

was going to be used as a variety of applications. The result is that CPP can be used for a

wide range of node setups, from a small node only handling one radio channel to a large node

consisting of 30 or more magazines.

The applications based on CPP are most often found in Wideband Code Division Multiple

Access (WCDMA) [7] and Code Division Multiple Access 2000 (CDMA2000) [7]. Another

application area for CPP-based nodes is the Telephony Access Gateway (TAG), which creates

access from an IP network to a circuit switched network.

WCDMA is a technology, partly developed by Ericsson, for wideband digital radio

communications capacity-demanding applications, such as Internet services, streaming

multimedia and videoconference. WCDMA has been selected for the third generation of

mobile telephone systems in Europe, Japan and the United States. CPP-based applications in

the WCDMA area are: the Media Gateway (MGW), the Radio Base Station (RBS), the Radio

Network Controller (RNC) and the Radio access network aggregator / IP Router (RXI).

Background

 22

CDMA2000 is also a telecommunications standard adapted for the third generation of

mobile telephone systems. CDMA2000 allows higher data transmission rates than the

predecessor CDMA and is a competitor to WCDMA. CPP-based applications in the

CDMA2000 area are: the Base Station Controller (BSC), the Home Agent (HA), the Packet

Data Serving Node (PDSN), the Radio Base Station (RBS) and the WLAN Serving Node

(WSN).

Figure 10 shows three CPP nodes with different CPP-based applications. The Radio Base

Station (RBS) CPP node is responsible for transmission and reception in one or more cells to

and from the User Equipment (UE). One example of a UE is a cellular phone. The Radio

Network Controller (RNC) CPP node controls the use and integrity of radio resources. The

CPP Media Gateway (MGW) connects the Mobile Core Network (MCN) with other networks

such as GSM Radio Access Networks, Public Switched Telephone Network (PSTN) or other

mobile networks.

ATM

IP

RBS

ATM

IP

 ATM

IP

ATM

IP

 ATM

IP

RNC

Media Gateway

Figure 10: Examples of CPP Network Nodes in the WCDMA Application Area

Background

 23

2.4 Testing of Telecom Platform Software

Function testing is an essential activity in most software development projects. This is

especially true when developing telecom platforms which typically are very large and

complex systems. The quality requirements for telecom platforms are also very high,

demanding extreme availability, among others. Furthermore, there are many functional

requirements as well as real-time and other performance demands that must be met. The

platforms are also essential parts of the communications infrastructure of the society and

affect a large number of people. Therefore, testing these platforms is especially important.

At the same time, testing telecom platforms may be more difficult than testing other

systems. Telecom platforms are typically distributed systems with a number of cooperating

nodes, making testing a complex activity. Compared to a desktop system running on a single

PC, for example, a distributed system is much more difficult to test. With a desktop system,

the whole test bed with SUT is run locally, with the full control of the test execution on a

single computer. With a distributed system, on the other hand, the test bed with possible use

of different simulators and emulators, as well as the SUT, is run on a number of different

nodes. The test tools must thus control remote computers and processes. There is typically

also a great deal of internal communication between the nodes in a distributed system, which

must run at the same time as different stimuli are given to the SUT when running different

test cases. The communication between the nodes may, for example, include distributed

functionality, synchronizing or keep-alive heart beats. The clustering and fail-over

functionality needed to meet the high availability requirements also imposes additional

complexity with a great amount of internal signaling, synchronizing and additional layering of

the system software.

Function testing telecom platform software may be performed in different kinds of

environments – in different test beds. Traditionally, function tests have primarily been run in

target environments, but with the introduction of simulators and emulators function tests may

also be run in simulator-based environments. Different strategies may be used. The same

Background

 24

function tests may be run both in a simulator based environment and on target, in which case

many defects can be found and corrected before testing on target starts, thus saving both time

and money. Another strategy is to run function tests in simulator based environments only,

thus completely replacing the corresponding function testing in the target environment.

With open hardware architectures such as CPP and TSP, a test bed can also be assembled

from standard computer components. With such a solution no simulators or emulators are

used; instead function tests are run on alternative, low cost hardware. One example is the

PCBox solution for TSP, in which standard barebone PCs are used for running DICOS, Linux

and the different software systems.

New telecom platforms such as CPP and TSP are distributed systems consisting of a

number of nodes and sub-systems. Thus a test bed may be configured by using a mix of real

and simulator based environments.

2.4.1 Meeting with Mats Berglund, Testing Expert at Ericsson

At the start of this project the project group had a meeting [1] with Mats Berglund, testing

expert at Ericsson. The purpose of the meeting was to discuss the exam thesis project as well

as automated testing of telecom systems in general. Mats Berglund described many of the

issues involved when testing telecom systems, which was very important for us to get a

deeper understanding of the subject. A few, brief, extracts from the descriptions given by

Mats Berglund are described in this section, in order to give a more complete picture of the

complexity when testing telecom platform software.

Mats Berglund confirmed that testing solutions that enable automatization and re-use have

been successful at Ericsson. Testing solutions that give both low cost and high availability are

valuable; therefore, simulators, emulators and test automatization are interesting areas. Mats

Berglund also described the software testing domain in general as very large and non-

standardized. A common problem is that infrastructure is re-invented in many different testing

products and solutions. According to Mats Berglund there is a need to unify and standardize

testing concepts among different organizations and tool vendors. Another aspect is that it is

Background

 25

normally difficult to replace existing testing solutions altogether; instead it is important to

build adaptable systems that enable interoperability and integration.

Mats Berglund also told us that there are quite a few testing products that are focused on

desktop testing, that is, testing a program run on the local machine; less common are products

which focuses on distributed systems. There are also many different scenarios or test use

cases that must be supported. Mats Berglund told us that testing tools at Ericsson can be

divided into four groups:

• Operation & Maintenance (O&M) Test Tools

• Protocol and Load Test Tools

• Terminal Test Tools

• GUI Test Tools

Besides automated testing, manual testing must be supported. According to Mats Berglund,

manual testing should be seen as a special case of automated testing. The only difference

between a manual test case and an automated one is that the manual test case requires human

interaction at one or more stages; all other test management should be exactly the same.

Mats Berglund also described what the concept of a test case may mean when testing

telecom systems. At an abstract level a test case may be described by the schematic view in

Figure 11.

System

Under Test

Response Stimuli

Configurations
Precondition

Figure 11: Schematic View of a Test Case

Background

 26

When function testing, the SUT is viewed as a black box. A test case sends stimuli to the

SUT and checks if the response matches the expected result. Before the test case can be run,

all configurations must be set up correctly and the SUT must be in the state required by the

precondition of the test case. An experience shared by Mats Berglund is that it is important to

distinguish between stimuli given to the SUT and internal communication; that is,

communication between the nodes in the SUT. The configuration handling may be quite a

complex task. A test case configuration includes data, nodes as well as connections between

nodes. The test bed, possibly including a number of simulators and tools, must be correctly

configured, and the SUT must, of course, be of the correct version. According to Mats

Berglund, the number of combinations of all components to configure may be “as many as the

stars in the Universe”.

It is important to emphasize that a test case in the telecommunications area can be very

different from a test case used when testing desktop software. A test case when testing

desktop software could, for example, be to test a function easily executed in an average PC

environment. However, in telecommunications a test case often involves a complex network

of hardware, often including simulators because of economical aspects. An example of a test

case in telecommunications, which Mats Berglund described, could be the use case shown in

Figure 12; a caller who initiates a phone call to a callee.

Caller CalleePhone Call

Figure 12: A Use Case Example

Background

 27

The use case may sound simple, but it is not so simple to test in a complex

telecommunication architecture consisting of a number of different hardware components.

Figure 13 shows an example system architecture needed to perform the test case in Figure 12.

Cellular

MSC BSC

Phone

SIMULATED IUT SIMULATED

BTS

SUT

PSTN

Figure 13: Example System Architecture for an End-to-End Test Case

A caller uses a phone connected to the Public Switched Telephone Network (PSTN) to dial a

callee who has a cellular phone registered to a Base Transceiver Station (BTS). The SUT in

this case is a PSTN phone, a Mobile Switching Centre (MSC), a Base Station Controller

(BSC), a BTS and a Mobile Station (MS) (in this case a GSM cellular). The BSC is the actual

Implementation Under Test (IUT); the specific part of the system (SUT) that is being tested.

We also discussed the problem of finding a general way of connecting different test tools

to the SUT, since this is an important issue for this project. Mats Berglund explained that the

problem of connecting different tools is part of a bigger concept called launching. The

purpose of launching is to bring the SUT into a status that allows for testing to start, and also

to tear down the test setup in a controlled way after testing has completed. Launching may

therefore include all of the following steps:

1. Start up all nodes

Background

 28

2. Connect nodes

3. Assure that all nodes contain correct data

4. Test execution

5. Tear down

Start up and connection of nodes must be done in two steps because of dependencies

between nodes. To be able to start up the system, a node A may be dependent on a node B to

be up and running, and vice versa. A trick to solve this problem is to create a stub for the

interface of node B, start the stub, and then start node A. Node A can then be connected to the

real node B in step 2. According to Mats Berglund, step 2 – Connect nodes – is often

confused with launching, but launching contains much more.

Step 3 is to check that all nodes contain correct data, a sanity check. Since the telecom

systems under test often contain big volumes of data, the sanity check can be expensive. A

sanity check may be optimized by only checking critical points. There is often a hierarchical

organization of data and it is therefore sufficient to check certain points to gain confidence

that all data are correct.

Mats Berglund also explained that a good approach would be to also let the launching

mechanism maintain the SUT in predefined, controlled states, or levels, during the whole test

execution. The different levels should be defined according to data definition levels. The idea

is that each test case should be started from a predefined, stable, state and also return the

system in a stable state after completion. There should be a few number of predefined states,

in which the SUT would be allowed to be in between test cases, for example as in Figure 14.

Background

 29

A. Default Level

4

2

1

B. Basic Level

C. Device Defs

D. Cell data

E. Activated

Data
Definition

Level

Time

3

5

6

Figure 14: Launching Model with Pre-Defined States

In this conceptual view there are five different stable states that the SUT may be in

between test cases. The launcher mechanism is responsible for setting up the SUT in an initial

stable state. During test execution, each test case is responsible for setting the SUT in the state

according to its precondition. If the SUT is not in the correct state, the test case orders the

launching mechanism to change to the required state. The launcher supplies functions for

changing levels. Before a test case finishes, the test case is also responsible for leaving the

system in a stable state. If a test case stops before completion, the launching mechanism

should set the system in a stable state instead. Figure 14 shows the following scenario, in

which two test cases are run:

1. The launcher has run the sanity check and the SUT is in the default level. The first

test case starts and orders the launcher to set the SUT in state D, according to its

precondition.

2. The first test case runs and the data definition varies between level D and E.

Background

 30

3. The first test case ends and leaves the SUT in state D.

4. The second test case starts and brings the system to level C, by means of the

launcher.

5. The second test case ends and leaves the SUT in state C.

6. After the last test case, the launcher takes the SUT to the default level.

The big advantage with the launching model described is that it enables test cases to be run

completely independent of other test cases. A test suite can be set up with any collection of

test cases, and the test cases can be run in any order. For optimization reasons, however, test

cases on the same level may be grouped together. The normal situation when testing is that

there is no launching mechanism as the one described, but test cases are instead dependent on

other test cases and can only be run in a specific order. If a test case ends pre-maturely, the

whole test suite ends. With the launching model described, the test suite will continue to run

even if one or more test cases fail to complete.

In addition to launching issues, there are many other problems to solve in order to build a

complete, automated test management system. Before launching the SUT, for example, there

are other tasks that must be completed. An example that Mats Berglund gave was that the

desktop from which the tester is controlling and running the test must be setup. This is called

desktop launch, and may include the start of a workbench and different log viewers.

Resources used by the test cases must also be booked and allocated before the test can start.

This normally implies database support and additional control software.

Another important area is traceability between test cases, requirements and default reports,

which normally imply a central database. Ericsson has developed a complete test management

solution called Test Harness with connection to a central database for handling of all kind of

resources and artifacts.

Background

 31

2.5 Currently Used Test Beds and Test Tool Integrations

This section describes a few test beds and test tool integrations used at TietoEnator and

Ericsson today.

2.5.1 The Simulated Environment Architecture (SEA)

Simulated Environment Architecture (SEA) [19] is a system developed by Ericsson,

originally for testing AXE system software. The SEA system includes a complete runtime

environment consisting of emulators and tools for loading and executing the AXE system

software. The SEA system enables testing of the system software without access to the target

AXE hardware; testing can be performed on an ordinary PC instead. Since target hardware is

a scarce resource, the emulated environment is important. The emulated runtime environment

increases the availability for testing and reduces the amount of necessary function testing in

the target environment. Other benefits are increased determinism and better debugging

possibilities.

SEA is a scalable architecture for test environments and products that are emulator based.

The architecture is based on the concept that by using well-defined interfaces and services,

independent components can easily cooperate. To be able to cooperate, each component has a

unique identity. By letting the users of SEA adding their own components to implement

existing or new interfaces, SEA becomes a flexible environment for testing purposes. SEAs

component-oriented architecture is based on Microsoft’s Component Object Model (COM)

[15], which will make SEA support future products implementing COM.

The kernel of SEA uses a layer-based model, see Figure 15. Each layer consists of several

components working together. SEA can be divided into three core layers:

• osCore

• simCore

• appCore (AXE, CPP, TSP)

Background

 32

SEA osCore

SEA / CPP

SEA / TSP

SEA simCore

SEA / AXE

Figure 15: SEA Architecture

The osCore layer can be considered as the foundation or the “operating system” of SEA. It

is the inner or bottom layer of SEA and acts as a virtual operating system. It hides and

encapsulates properties and semantic differences between host operating systems. Another

task of SEA is to bring up the kernel in a mode that makes it configurable to the components.

The simCore layer consists of generic and basic components which are needed by the

simulation components. These generic components are:

• HTTP server component – to interact with the components in the kernel

• TCL interpreter component – to provide a script environment

• Scheduler component – to handle threads

Finally, the appCore can be seen as the simulated telecommunication platform (consisting

of a number of basic components specific for the system that is going to be simulated). Using

a layer approach makes it easy to change the appCore part, depending on which telecom

platform is to be used when performing the tests.

Background

 33

2.5.2 The Message Protocol Handler (MPH)

The Message Protocol Handler (MPH) is a component of the SEA system which provides a

service for establishing connections and communication channels between internal SEA

entities and external entities. An example of an internal SEA entity is an AXE system

component loaded into the SEA runtime environment. Examples of external entities are

external test tools or other SEA processes.

The main purpose of the MPH component is to provide one single, central connection

point, which external entities can connect and communicate through. By this connection point

different test tools can establish communication channels with components in the SUT, for

example AXE components loaded into the SEA environment.

2.5.2.1 MPH Design Solution

The MPH component in SEA is designed as a separate data communications layer, like the

layers according to the standard OSI model [10].

IM e s a g e H a n d le r
IM e s s a g e R e c e p tio n
IM p h R e m o te
IM p h R e m o te R e su lt

IP

T C P

M P H

A P P

Figure 16: MPH Communication Layer

The MPH layer consists of:

• A service provided to the upper application layer (App in Figure 16), defined as a

set of primitives in the four interfaces: IMessageHandler, IMessageReception,

IMphRemote and IMphRemoteResult.

Background

 34

• An MPH protocol implementing the service.

The MPH service supports two different configurations, see Figure 17:

• Connection of an external tool, acting as a client, to a process with an MPH-server,

for example a test tool connecting to a SEA process.

• Connection of two or more processes with MPH-servers, for example two SEA

processes.

Test Tool SEA Process

MPH Client

MPH Server

SEA Process SEA Process

MPH Client/Server

MPH Client/Server

MPH/TCP/IP

MPH/TCP/IP

IMessageHandler
IMessageReception

IMphRemote
IMphRemoteResult
IMessageHandler
IMessageReception

Figure 17: Example Configurations Using MPH

When an external test tool, acting as a client, is connected to a process running an MPH

server, the IMessageHandler and IMessageReception interfaces are used. The interfaces are

used both for setting up the connection and for communication between the entities. The two

additional interfaces IMphRemote and IMphRemoteResult are used for connection setup

between two peer entities with MPH servers. In the example configurations shown in Figure

17, the SEA process uses a special MPH component implementing both a server and a client

part. The external test tool implements its MPH client part by means of an MPH client library.

Background

 35

Communication between an external test tool and a SEA internal component, for example,

is established by the following steps:

1. The SEA internal component publishes itself as a connectable entity, by calling the

MPH component within the SEA process.

2. The external test tool sets up a connection between itself and the SEA internal

component, by calling an MPH client library function. The host name and IP address of

the remote entity are needed when a connection is setup.

3. The external test tool sets up a communication channel for the connection, by calling

an MPH client library function. Up to 255 different channels can be setup on the same

port.

Table 1 gives an overview of the service primitives defined by the different interfaces.

Service Interface Primitive Description

IMessageHandler AddMessageReceiver Publish a component as a connectable entity.

 CloseChannel Close an open channel.

 DeleteMessageReceiver Unpublish a component.

 SendMessage Send a message.

IMessageReception ChannelClosed Notification that a channel has been closed.

 HandleMessage Receive a message.

 NewChannel Notification that a channel has been established.

IMphRemote ConnectRemote
Connect an internal component with an external

one.

 DisconnectRemote
Disconnect an internal component from an external

one.

IMphRemoteResult ConnectionClosed Notification that a connection has been closed.

 ConnectResult Result from ConnectRemote.

Table 1: MPH Service Primitives

Background

 36

The communication between peer MPH entities is implemented by means of an MPH

protocol. The MPH protocol defines the following packet format.

Channel Length 1 Length 0 Data

Figure 18: MPH Protocol Packet Format

The Channel field is a one byte long number specifying a channel number from 0 through

255, where channel 255 is reserved for a special control channel. Length 1 and 0 are two

bytes specifying the length of the data; max packet size is 64 kB. The data format is not

specified, but can be any stream of bytes agreed upon by the applications using the MPH.

The control channel has the following data format.

Message type Message type specific data

Figure 19: MPH Control Channel Data Format

The control channel is, among others, used for the following:

• Open a channel (request/response)

• Close a channel (request/response)

• Search for published components (request/response)

2.5.3 The CPP Emulator

The CPP Emulator [77],[78] is intended to behave as the real CPP platform. It has the same

code, functions, communications, boards and test-suites. The most important differences

compared to the real CPP platform is that the CPP Emulator is cheaper and provides higher

availability for developers and testers.

There are several advantages with emulators. Two advantages are, as mentioned, that it is

cheaper and provides higher availability, but there are more benefits. With an emulator,

checkpoints can be created, that is a state (hardware, software and memory) can be saved and

Background

 37

loaded again. The possibility to use checkpoints saves a lot of time and money, since the setup

of the emulated CPP node can easily be changed. It is also much more inexpensive to emulate

in terms of hardware. The real CPP environment incorporates a variety of expensive hardware

and software, while the emulated CPP environment can be run on an ordinary desktop PC.

High availability enables testing and debugging before going to the real CPP environment,

which also saves time and money. High availability also leads to increased quality. Other

advantages are debugging on source code level and single step instructions, both providing

quality insurance.

The objective with an emulator-based system is to make the system behave as the real

target, and to act deterministic. The CPP Emulator is based on simulation of the instruction

sets of the CPUs in the CPP target. Figure 20 shows the real CPP environment compared to

the emulated, the CPP binary executable code is the same for both. The emulator replaces the

real CPP hardware, which is also known as a hardware emulator.

Host System

Emulator

Operating
System

Hardware

Operating
System

Application Application

Real CPP Environment Emulated CPP Environment

CPP Binary
Executable

Code

Figure 20: The Real versus the Emulated CPP Environment

Background

 38

2.5.4 Vega and MessageDriver

Another example of a test bed currently used by TietoEnator and Ericsson is Vega. Vega is

a simulator for one of the processors in the TSP platform running the DICOS operating

system. It is a part of the TSP platform and is used for function testing.

MessageDriver is a test tool for testing TSP platform software loaded into the Vega

simulator. MessageDriver is only used for function testing in a simulated environment, not on

target. MessageDriver uses its own script language for writing test cases, with code for

preparation, action and expected result.

 39

3 Test Tool Framework

3.1 Introduction

The requirements of a test tool framework were briefly described in Section 1.3. The

purpose of this section is to give a more detailed description of the requirements of a test tool

framework, as they are defined in this thesis, and also to discuss the advantages with an

integrated test environment.

3.2 Background

The investigation for the TSP platform, see Section 1.2, showed that different TSP sub

systems have developed different test tool solutions. The TSP platform is used in distributed

telecom systems with many cooperating nodes. Each node may provide several interfaces, for

different applications and services. In many cases, there is a specialized test tool for a specific

node interface. The specialized test tool may be dependent on details of the node interface and

cannot easily be re-used in other test environments. The dependency between the test tool and

the SUT can schematically be described as a one-to-one relationship, as shown in Figure 21.

With this model one specific test tool is used for testing one specific SUT.

SUTTest Tool

11 11

Figure 21: One-to-One Relationship between the Test Tool and the SUT.

The MPH described in Section 2.5.2 provides a solution for publishing the interfaces of

internal SEA entities so that external test tools can connect to them. The test bed, in this case

the SEA system, implements an MPH server part and the test tool implements an MPH client

Test Tool Framework

 40

part. The test tool with the MPH client has hard dependencies to the test bed with the MPH

server, and cannot easily be re-used, for example in a target environment. Therefore, this can

also be seen as a one-to-one relationship between the test tool and the SUT, as in Figure 21.

The MessageDriver, see Section 2.5.4, uses its own test script language for testing TSP

platform software loaded into the Vega simulator. MessageDriver cannot easily be re-used in

other test environments.

With one specialized tool for each node interface, there will be many different tools. If the

tools are developed independently of each other, there will also be many differences between

the tools.

The conclusion is that there seems to be many advantages in creating an integrated test

environment, these advantages are presented in the following section.

3.3 An Integrated Test Environment

Instead of hard dependencies between the test tool and the SUT, there should be as loose

coupling as possible. With loose coupling between the test tool and the SUT, the possibility

for re-using the test tool in other test environments increase. Another advantage is that

changes to the interface of the SUT do not imply direct changes to the test tool. Instead of a

one-to-one relationship between the test tool and the SUT, as in Figure 21, there should be a

many-to-many relationship, as in Figure 22. With this model, a specific test tool is re-used for

testing different SUTs. It should also be easy to connect many different test tools to a specific

SUT, for different testing purposes.

Test Tool SUT
Test Tool

Framework
1* 1* *1 *1

Figure 22: Many-to-Many Relationship between the Test Tool and the SUT.

With an integrated test environment there should be a few number of test tools for different

testing purposes. It should be easy to adapt each test tool for use with a new SUT. From the

Test Tool Framework

 41

user’s point of view the different test tools should have a uniform look and feel with similar

user interfaces. With a reduced number of test tools, well integrated with each other; test

preparation, test execution and test evaluation will be easier to perform. With an integrated

test environment it will also be easier to create new test tools and to maintain existing ones.

Creation of new tools will be easier because the unifying of different tools will require some

base of design and implementation that can be extended. Maintenance of test tools will be

much easier and cheaper because of the reduced number of tools and the separation of the test

tools from the SUTs.

In conclusion, there are four different groups of users that will benefit from an integrated

test environment: test environment responsibles, test developers, test executors and test tool

developers, see Figure 23.

Test Environment
Responsible

Test Developer

Test Executor Test Tool Creation Test Tool mainenanceTest Evaluation

Test Environment Preparation

Test Preparation Test Tool Developer

Test Execution

delivers to

provides prerequisites

has requirements

develops

test runs

has requirements
launches

performs

performs

test runs

test runs

test runs

performs performs

Figure 23: Users that Benefit from an Integrated Test Environment.

Test Tool Framework

 42

3.4 Test Tool Framework Requirements

3.4.1 Connection to the System Under Test (SUT)

An important requirement for a test tool framework is that it must provide some general

mechanism for letting different test tools connect to the SUT, to support the model in Figure

22. This thesis focuses on a test tool framework to be used in the Telecom domain. An

example of a SUT in the telecom domain may be a complete network of cooperating nodes, as

the example in Figure 13 on page 27. The actual Implementation Under Test (IUT) is

typically one of the nodes in the network. The node is tested by checking responses from

stimuli sent to any of its external interfaces, that is black box testing. The external interface

may be any man or machine interface, examples are given in Figure 24.

Application protocols: HTTP, FTP, POP3, IMAP,
WAP, SMS, MMS, …

Protocol stack. ATM, SS7, TCP/IP
APIs: Java, C++
MMI: GUI, CLI, User equipment

Test Tool SUT
Test Tool

Framework
1* 1* *1 *1

Figure 24: External Interfaces.

The test tool framework must provide some means for letting a test tool access a SUT through

any of these interfaces. The test tool framework must also provide an infrastructure allowing

for remote test bed launch, see Section 2.4.1. There must be functions for deploying different

test input data to a remote machine, launching the test bed and executing the test, and for

collecting different output produced during the test execution.

Test Tool Framework

 43

Another related requirement is that the test tool framework should use standardized

techniques allowing for integration with other tools.

3.4.2 Centralized Functions

A second high-level requirement for a test tool framework is that it should provide a base

of testing related functionality that can be used as is or extended. The test tool framework

should support common functionality that different test tools can use, instead of re-inventing

the functionality from scratch. The infrastructure for test launch and execution described in

the previous section is one example of such common functionality. Another example is that

the test tool framework should provide a common user interface to be used by different test

tools. The testing related functions to be supported can be divided into three groups: test

preparation, test execution and test evaluation.

Test preparation includes preparation of test plans, test cases and test data. Test cases can

be created in an editor or re-used by importing them from an external repository. Test cases

can also be generated automatically by a capture/play-back function, examples are capture of

GUI events or capture of protocol messages such as HTTP. Test data can also be manually

created, generated automatically or re-used. There should also be support for associating test

data with test cases.

Test execution includes drivers for the actual test execution and different comparators for

verifying SUT responses against expected results. Test execution should also support different

kinds of runtime monitoring. Runtime monitoring includes both monitoring of the test script

execution and different monitoring of the SUT. Both logs and traces from the test scripts or

the SUT may be viewed and analysed during runtime. There may also be additional

information such as performance monitoring gathered from the runtime environment of the

SUT. Runtime debugging should also be supported, to help locate the source of defects found.

Test evaluation consists of analysis of different output generated from the test execution.

There must be functions for analysing the test execution history, with verdicts for the different

test cases. There should be support for analysing logs and traces generated by the test scripts

Test Tool Framework

 44

or by the SUT. Test evaluation may also include support for analysing different profile data

such as code coverage, performance or statistical data. Profiling data normally implies some

sort of instrumentation of the SUT, which is not normal when function testing, but can also be

gathered from the runtime environment by means of different probes.

Figure 25 summarizes some centralized functions.

Test Tool SUT
Test Tool

Framework
1* 1* *1 *1

Test Preparation
• Test Plans
• Test Cases
• Test Data
• Capture

Test Execution
• Drivers
• Comparators
• Play-back
• Monitoring
• Debug

Test Evaluation
• Execution history
• Logs
• Traces
• Profiling
• Statistics

Figure 25: Centralized Functions.

 45

4 Market Analysis

4.1 Introduction

This chapter describes the result from the market analysis that was carried out in the

project. The purpose of the market analysis was to increase the knowledge about different test

tools, and specifically about available test tool frameworks that may be used for creating an

integrated test environment. The main objective was to find a test tool framework, product or

technical solution, that TietoEnator could use in future projects. The goal was to find an

existing product on the market, which was as complete as possible and ready to use with as

small modifications as possible. The product should use standard, open techniques and

preferably be open source.

The following describes the method used for carrying out the market analysis.

Furthermore, the different results from the market analysis are described.

First, a background study was performed, to get a deeper knowledge about testing concepts

in the telecom domain. The background study is described in Chapter 2. To be able to

describe different products in a common way, and also to be able to compare different

products, a necessary activity was to establish a common terminology for all different testing-

related concepts. Different terms and concepts had to be defined and described, together with

the relations between them. Testing literature, articles, the Internet and different testing-

related standards were studied in order to find the correct terminology and definitions to use.

General software testing concepts are described in Section 2.2. A list defining all testing

related concepts used in this thesis can be found in Appendix A.

After the background study, some basic requirements of a test tool framework were

specified. The main issue that TietoEnator wanted to solve was to find a standard technique

for connecting different test tools to the SUT. An example of a test tool integration currently

used by TietoEnator and Ericsson is the MPH solution described in Section 2.5.2. The MPH is

Market Analysis

 46

an “in-house” design that TietoEnator wanted to replace with some kind of standardized

technique or product. We then extended the requirements to also include centralized functions

to be used by different test tools. The requirements are summarized with the model of a test

tool framework that integrates many different test tools and that adapts to many different

SUTs, see Section 3.4.

The list of testing related concepts and requirements of a test tool framework were

extended when different products were studied during the market analysis, as a consequence

of getting a deeper understanding of different concepts and of functionality that should be

supported.

The first activity in the market analysis was to search for similar studies performed by

other people. We did not find any similar studies.

Secondly, a thorough search for candidate products was made, in order to create a list of

products to investigate. The product search mostly included Internet search, but also database

searches at Karlstad University. The most interesting products were then studied in detail. We

chose to both study ready-to-use products and frameworks for building new test tools. Each

candidate product was studied by reading documentation available on the Internet, such as

technical sheets, white papers and user manuals. Evaluation copies of the products were

downloaded whenever possible, in order to get access to on-line documentation as well as

more detailed technical documentation. There was no time for test running the different

products, but the investigation was purely theoretical, based on written information only. An

overview of the products studied is given in Section 4.2. The frameworks that were found are

described in Section 4.4 and Section 4.5 respectively. A full description of the ready-to-use

products studied can be found in Appendix D.

Furthermore, the functionality of each product was summarized in a table with different

comparison points. The comparison points are based on the requirements of a test tool

framework described in Section 3.4. The purpose with the comparison points was to be able

to compare different products with a common terminology. The comparison points are

Market Analysis

 47

described in Section 4.3 and summarized in a table in Appendix E. The evaluation for each

product studied, based on the comparison points, can be found in Appendix F.

Finally, the description and evaluation table for each product were mailed to the respective

companies for review.

The result of the market analysis is summarized in Section 4.7. Summary and evaluation of

the market analysis can be found in Chapter 6.

4.2 Candidate Products

The following candidate products were studied in the market analysis:

• Danet TTCN-3 Toolbox

• Eclipse TPTP

• IBM Rational Test Manager

• JUnit

• OpenTTCN Tester for TTCN-3

• Scapa Test and Performance Platform 3.1

• Software Testing Automation Framework (STAF)

• Telelogic TAU/Tester

• Testing Technologies TTworkbench

Danet TTCN-3 Toolbox, OpenTTCN for TTCN-3, Telelogic TAU/Tester, and Testing

Technologies TTworkbench are all TTCN-3 based products. An introduction to TTCN-3 can

be found in Appendix C. Eclipse TPTP is an open source framework for testing and profiling

tools. IBM Rational Test Manager is one of many testing products from IBM Rational that

together cover the full life-cycle of software testing and are well integrated with each other as

well with other IBM Rational products. JUnit is a simple open source framework for unit

testing Java classes. Scapa Test and Performance Platform is a performance testing tool with

the main focus to help locating performance related problems in server-based systems. The

Market Analysis

 48

Software Testing Automation Framework (STAF) is an open source product that provides a

re-usable infrastructure for remote test execution.

Appendix D contains more detailed descriptions of these products and Appendix F

contains an evaluation table for each product.

Out of the nine products studied there are two that can be classified as test tool frameworks

according to the requirements defined in this thesis: Eclipse TPTP and STAF. JUnit is a

simple framework for unit testing Java classes. The remaining products are designed to be

used as they are, and not as a base for building new tools.

During the market analysis we found several other interesting products, but we did not

have time to study them, among others these products:

• ApTest Manager

• Ascert TestPilot

• Mercury TestDirector

• Segue SilkTest

• Tata SmarTest

4.3 Comparison Points

The points that were used for comparing and summarizing different products were

categorized into six groups:

• General

• Test methods supported

• Interoperability

• Test Preparation

• Test Execution (real-time)

• Test Evaluation (post mortem)

Market Analysis

 49

The general group summarizes the use of the product with its main target SUT

environment, different test management phases supported and different platforms supported.

Test methods supported includes support for automatic testing, testing of distributed

systems, GUI-testing, load/stress testing, manual testing, protocol testing and unit testing.

Testing of distributed systems is considered to be supported if remote test deployment and

execution are supported. There should also be means for collecting different data from remote

machines, such as logs and traces generated by the SUT. GUI-testing should, for example,

include support for automatically creating test scripts by recording user-interface events.

Interoperability contains important functionality that enables integration with different

external systems. One example is data models used by the product for handling different test

artifacts, such as test cases or test execution histories. Other examples are support for

exporting or importing information to/from external databases and support for remote test bed

launch. Different standards used or supported by the product are also very important for

enabling integration with other products, such as storing different test artifacts in XML-

format for example. Another interoperability point is the technique used for adapting to the

interfaces of the SUT.

The division of the three remaining groups; test preparation, test execution and test

evaluation, very nicely maps to the typical phases of a project; with a distinct preparation,

execution and evaluation phase. Test preparation contains different points necessary to

complete before the test can be executed. Examples are re-use of test cases by importing them

from external systems and which test script languages that are supported by the product. Test

execution contains different runtime support, such as runtime monitoring of logs and traces

generated by the SUT. Test Evaluation contains points for analyzing test execution history as

well as log, traces and different profiling data generated by the SUT during the test execution.

Market Analysis

 50

4.4 Eclipse TPTP

4.4.1 Introduction

Eclipse [25] is an open source platform designed for building Integrated Development

Environments (IDEs). The Eclipse platform has been designed in a general way, meant to be

useful for a wide range of applications. “Eclipse is a kind of universal tool platform – an open

extensible IDE for anything and nothing in particular” [25].

The design is based upon the concept of plugging in tools (plug-ins) to a common

infrastructure [32]. The Eclipse platform provides a framework and an infrastructure with

building blocks accessible through open APIs that facilitate the development of new tools.

There is also a mechanism for automatically discovering, integrating and running plug-ins. By

using the building blocks as a base, different IDEs, or tools can be created. One example of a

tool built upon the Eclipse platform is the widely used Java Development Tooling (JDT) [26]

included in the Eclipse Software Development Kit (Eclipse SDK).

One of the many Eclipse subprojects is the Test and Performance Tools Platform project

(TPTP) [27], formerly Hyades, which goal is to provide an open development platform for

test and performance tools, collectively referred to as Automated Software Quality (ASQ)

tools. The platform includes both a general infrastructure for test and related activities, as well

as example tool implementations, which can be used as is or extended.

The TPTP project was formed in August 2004 and the Hyades project was formed in

December 2002. The following organizations are participating in the development of the

TPTP project [29]:

• Computer Associates (Test and monitoring design)

• Compuware (Monitoring Design)

• FOKUS (Test design)

• IBM (Trace, Test, Log, Data Collection)

• Intel (Data collection)

• OC Systems (BCI -Data Collection, Probekit)

Market Analysis

 51

• SAP (Test design)

• Scapa Technologies (Test, Trace)

An important goal with the TPTP project is to achieve interoperability between different

testing tools. Interoperability will be achieved in two ways: by building a generic, extensible

infrastructure and, by wherever possible, using existing standards.

4.4.2 Functionality

Most of the Eclipse platform, including the TPTP platform, is written in Java; and Java

development and Web application development are also the main focus for the TPTP

functionality.

The TPTP platform provides a common infrastructure for testing, tracing, profiling,

monitoring and logging tools:

• The testing functionality includes test editors and supports test deployment and

execution on remote and distributed systems. There are also functions for creating data

pools to provide a test with variable data.

• The tracing and profiling functionality consists of data collection and analysis for Java:

collection of local or distributed execution stacks as well as heap information. The

purpose with profiling is to help finding performance and memory usage problems in

Java and Web applications.

• The logging and monitoring functionality includes support for importing log events

generated by the SUT into a common format: Common Base Event format (CBE) [34].

The imported logs can be monitored and analyzed, post execution or in real time, with

functions such as navigating, sorting, filtering and searching.

New test tools can be created by using the common infrastructure in the TPTP platform as

a base. The TPTP platform also includes the following example tool implementations that are

ready to use:

Market Analysis

 52

• JUnit based unit testing tool

• Test tool for browser-based applications

• Manual testing tool

The JUnit based unit testing tool has functions for creating a test suite with test methods

(test cases), generating Java code, running a test and analyzing the test results.

The browser-based applications testing tool includes functionality for recording user

interactions with a browser-based application, editing a test, generating an executable test,

running a test and analyzing the test results.

The manual testing tool may be used for creating and running a test suite with manual test

cases.

Market Analysis

 53

4.4.3 Architecture

Figure 26: TPTP Architecture Overview

Figure 26 shows an overview of the TPTP Architecture. The architecture includes three

sub-frameworks: a test control framework, a deployment framework and a data collection

framework.

The test control framework handles test execution by the use of a group of three

components: the test agent control interface, the testability interface and the test engine. The

test engine is responsible for generating the actual stimuli to the SUT.

The deployment framework supports deployment of agents for collecting data as well as

deployment of tests with associated meta data (data pools).

Market Analysis

 54

The data collection framework includes functionality for collecting and importing trace

and log data generated during test execution into the Eclipse Modeling Framework (EMF).

4.4.4 Eclipse Modeling Framework (EMF)

In order to achieve tool interoperability, an important and central strategy in the design of

the Eclipse platform is the use of standardized data models. The data models are abstract

descriptions in the Unified Modeling Language (UML) of different assets (tests, traces, logs

etc), and they are provided with a concrete implementation through the Eclipse Modeling

Framework (EMF) [35], [31]. The data models are provided in the following areas [27]:

• A test data model that supports test cases, input data, results and execution history. It

consists of three models:

1. A data model for creation, definition and management of test artifacts. This model

implements the UML 2 Testing Profile meta model [33].

2. A data model for test case behaviors. It implements the UML 2 Interaction Meta

model.

3. A data model for test execution history. It supports execution traces and results from

different test types.

• A trace data model supports traces of local and distributed execution stacks and heaps.

• A log data model that supports sequence of CBEs and other logged messages that are

transformable into CBE.

• A statistical data model that supports snapshots of arbitrary data over time.

4.4.5 Standards

TPTP uses the following standards:

• Unified Modeling Language (UML) [36]. EMF data model descriptions.

• UML 2 Test Profile (U2TP) [33]. EMF test data model.

• Common Base Event (CBE) [34]. EMF Log Model.

Market Analysis

 55

• JavaTM Virtual Machine Profiler Interface (JVMPI) [39]. Trace model (maps closely to

JVMPI [27]).

• JVMTM Tool Interface (JVMTI) [40]. Trace model (maps closely to JMTI [27]).

• Java Management Extensions (JMX) [41]. Statistical model (maps well onto JMX,

Microsoft PerfMon [27]).

• Extensible Markup Language (XML) [37].

• XML Metadata Interchange (XMI) [38]. EMF data model persistence.

4.5 Software Testing Automation Framework (STAF)

4.5.1 Introduction

Software Testing Automation Framework (STAF) [61] is an open source product from

IBM released under the GNU Lesser General Public License (LGPL) [64]. STAF is an

automation framework intended to make it easier to create and manage automated test cases

and test environments [62]. STAF is designed around the idea of reusable components, called

services (such as process invocation, resource management, logging, and monitoring).

STAF was designed with the following points in mind [62]:

• Minimum machine requirements - This is both a hardware and a software statement.

• Easily useable from a variety of languages, such as Java, C/C++, Rexx, Perl, and TCL,

or from a shell (command) prompt.

• Easily extendable - This means that it should be easy to create other services to plug

into STAF.

STAf eXecution Engine (STAX) is an execution engine which can help automate the

distribution, execution, and results analysis of test cases. STAX is built on top of three

existing technologies: STAF, XML, and Python.

Market Analysis

 56

4.5.2 Functionality

The functionality in STAF is provided through services. The following are examples of

services that are ready to use.

Service Description

PROCESS Start, stop, and query processes.

EVENT Provides a publish/subscribe notification system.

LOG

Provides a logging facility for test cases.

RESOURCE POOL
Manages exclusive access to pools of elements,

e.g. VM UserIDs or Software Licenses.

MONITOR
Allows a test case to publish its current running execution status for others to

read.

Table 2: Example STAF Services

4.5.3 Architecture

STAF runs as a daemon process called STAFProc on each machine, see Figure 27. The

collection of machines on which STAF has been installed is referred to as the STAF

Environment.

STAF operates in a peer-to-peer environment; in other words, there is no client-server

hierarchy among machines running STAF.

STAF services are reusable components that provide all the capability in STAF. Each

STAF service provides a specific set of functionality (such as Logging) and defines a set of

requests that it will accept. STAF Services are used by sending STAF requests to them. A

STAF request is simply a string which describes the operation to perform. STAF requests can

be sent to services on the local machine or to another, remote, machine in the STAF

Environment. In either case, the STAFProc daemon process handles the sending and receiving

of requests.

Market Analysis

 57

STAFProc

Service A

Service B

Service C

Service D

Machine 2

STAFProc

Service A

Service B

Service C

Service D

Machine 1

STAF Environment

TCP/IP

Figure 27: STAF Architecture Overview

Market Analysis

 58

4.6 Eclipse TPTP versus STAF

This section compares Eclipse TPTP and STAF. For a more detailed evaluation of Eclipse

TPTP and STAF based on common comparison points, see Appendix F.2.1 and Appendix

F.2.2 respectively.

TPTP and STAF both provide an infrastructure that enables remote test execution. Both

products can be used for integrating many test tools and to adapt to many different SUTs.

Both Eclipse TPTP and STAF also use component technology, but in very different ways.

Eclipse TPTP supports components by the concept of plug-ins that can be added both to

the client Workbench and to the Remote Agent Controller (RAC). Eclipse TPTP is also very

Java-centric and builds on common object oriented design patterns. Another design solution

that makes Eclipse TPTP very extensible is the concept of extensions and extension points.

Any plug-in can provide its own extension points that other plug-ins can extend.

STAF implements a “mini-CORBA” solution [63] with a peer-to-peer network of daemon

(STAFProc) processes that runs on each machine. Components are supported in the form of

services that can be registered (plugged-in) with the STAFProc processes. Communication

between services is provided by means of simple request/reply pairs. To ask for different

tasks to be performed by a specific service or to get different kind of information, different

requests are used. Both requests and replies are sent as simple text strings, which means that

many different programming languages can be used for implementing services.

The main difference between Eclipse TPTP and STAF is the size of the products. Eclipse,

with TPTP, is a much bigger product with a broad user community. STAF was created by

IBM, and was used internally at IBM only, before being released as open source. Eclipse

TPTP is the result from the cooperation among several companies.

An advantage with STAF compared to Eclipse TPTP should be performance. STAF was

designed to consume a small amount of system resources such as memory usage. Eclipse

TPTP, however, uses a great amount of system resources, both on client and server sides. The

Market Analysis

 59

RAC is implemented in C for performance reasons, but the test execution components are

implemented in Java, and a remote test bed launch starts two different JVMs on the remote

machine.

However, there are several advantages with Eclipse TPTP compared to STAF. Eclipse

TPTP contains a framework with a rich set of functions for building new test tools. The

Eclipse Modeling Framework (EMF) constitutes a solid base for supporting many different

models, with both runtime access and persistence. Different standards are supported, see

Section 4.4.5, and the members of Eclipse TPTP are even contributing to the work of defining

new standards, such as the UML 2 Testing Profile [33].

Therefore, the conclusion is that Eclipse TPTP better fulfills the requirements for a test

tool framework as defined in this thesis.

4.7 Summary

The main objective with the market analysis described in this chapter was to find a test tool

framework, product or technical solution, that TietoEnator could use in future projects. We

found two products: Eclipse TPTP and STAF. Both should be possible to use for building an

integrated test environment, but Eclipse TPTP has much more centralized functions that

facilitate building new test tools, and is therefore considered a better choice.

 61

5 Prototype

5.1 Introduction

A prototype was implemented as a proof of concept to show that Eclipse TPTP can be used

as a general test tool framework. The support for connecting different test tools to the SUT

was of special interest for further investigation.

The main objective for the prototype was to implement support for executing Expect [60]

test cases against CPP system software loaded into the CPP-Emulator. TietoEnator currently

develops and maintains the CPP Emulator. Expect was chosen as script language because it is

currently used for testing target CPP system software at Ericsson.

This section contains many concepts that are further described in the user manual, see

Appendix G. Appendix G.2 contains Eclipse vocabulary and Appendix G.3 describes the pre-

defined architecture of Eclipse TPTP. These appendices are recommended to read before

reading this chapter, or to be used as a reference when reading this chapter.

The prototype makes it possible for a tester to prepare a test configuration to be run on a

remote machine. The test configuration includes selection of the Expect test scripts, the SUT

configuration, and the CPP Emulator version. When the tester starts the test from the client

Workbench, the test bed is automatically launched on the remote machine, the test scripts are

executed, and the test bed is torn down. The tester can evaluate the test result by viewing the

test execution history in the client Workbench. Figure 28 shows a conceptual diagram for the

interactions when the tester prepares, runs and evaluates the test from the client Workbench.

Prototype

 62

 : Tester

 : Eclipse Client
Workbench

 : Test
Agent

 : CPP
Emulator

 : CPP
Node

 : Expect

1: Prepare Test

2: Run Test

9: Evaluate Test

3: launch

4: launch

8: tearDown

6: execute

5: launch

7: execute

Figure 28: Remote Test Bed Launch

The CPP platform is described in Section 2.3.4 and the CPP Emulator is described in

Section 2.5.3. The CPP hardware and CPP software configuration to be loaded into the CPP

Emulator are specified in different configuration files. The configuration files are given as

parameters when starting the CPP Emulator.

5.1.1 Prototype Components

Test Bed Machine Workbench Machine

CPP
Emulator

Expect

Test
Client

Test
Agent

Test Suite
Editor

Eclipse
Workbench

Remote Agent
Controller

Client
Library

CPP
Node

Figure 29: Prototype Components

Figure 29 shows the different components in the prototype implementation. The prototype

implements the Test Suite Editor, the Test Client and the Test Agent. The Test Suite Editor

Prototype

 63

and the Test Client are plug-ins in the Eclipse Workbench. The Test Agent is a plug-in in the

Remote Agent Controller (RAC). In addition, the Test Client uses a test execution part of the

Client Library. The Test Suite Editor incorporates the graphical components for creating and

editing the TPTP Expect Test Suite in the Eclipse Workbench. The Test Client makes up the

client side for launching and executing the Expect test suites, while the Test Agent makes up

the server side for launching and executing the Expect test suites. The Test Agent also

generates execution events which are sent to the client Workbench during test execution.

5.1.2 Deployment

Workbench
Machine

<<TCP/IP>>

* Eclipse Workbench
* Test Suite Editor
* Test Client

Windows, Linux or
Solaris

* Remote Agent Controller
* Test Agent
* Expect
* CPP Emulator

Linux or Solaris

Test Bed
Machine

Figure 30: Deployment of the Prototype Components

Figure 30 shows the deployment of the prototype components. The Eclipse Workbench is

run on a client machine with Windows, Linux or Solaris operating systems. The Test Suite

Editor and Test Client are installed as plug-ins in the Eclipse Workbench. The RAC with the

Test Agent plug-in runs on a remote Linux or Solaris machine. The CPP Emulator and Expect

are run on this machine as well.

Prototype

 64

Workbench
Machine

* Eclipse Workbench
* Test Suite Editor
* Test Client

Windows, Linux or
Solaris

* Remote Agent Controller
* Test Agent
* Expect

Linux or Solaris

Test Bed
Machine<<TCP/IP>>

CPP Node

Figure 31: Target Environment Deployment

The prototype can be used in the target environment as well, as shown in Figure 31. The

only difference is that the CPP Emulator is not used in the target environment.

5.2 Requirements

5.2.1 Use Case: Execute Expect Test Against the CPP Emulator

The requirements for the prototype can be summarized with the use case shown in Figure

32. The use case Execute Expect test against the CPP Emulator includes the use cases Prepare

Test, Run Test and Evaluate Test.

Prototype

 65

Tester Execute Expect test against
the CPP Emulator

Prepare Test

Run Test

Evaluate Test

<<include>>

<<include>>

<<include>>

Figure 32: Prototype Use Case

Appendix G contains a User Manual for the prototype, which describes the use of the

prototype in detail.

5.2.2 Use Case: Prepare Test

5.2.2.1 Purpose

The purpose of the Prepare Test use case is to let a Tester prepare a test by configuring the

Expect test suite, the CPP system software configuration and the CPP Emulator configuration.

5.2.2.2 Precondition

The precondition for this use case is that the Tester has the following data:

• One or more Expect test scripts

• Host name of the remote machine to run the test on

• Telnet port number for the CPP node running in the CPP Emulator

• CPP Emulator configuration files

• A ClearCase view

Prototype

 66

The Expect test scripts must be configured to be run against the CPP Emulator. The scripts

take two parameters: host name and telnet port.

The Expect test scripts communicate with the SUT, that is the CPP node loaded in the CPP

Emulator, via Telnet. The Telnet port number for the CPP node must be configured in the

CPP Emulator. The prototype uses port forwarding in the CPP Emulator, which assigns the

default port number 4023 to the main board in the CPP node. If another CPP Emulator is

running on the same machine, this port number may be occupied and the Tester can then set

another port number to use.

The CPP Emulator configuration files define the CPP node configuration to be loaded and

executed in the CPP Emulator. The configuration files define both CPP hardware and

software configuration.

IBM Rational ClearCase [79] is a configuration management system. The ClearCase view

defines which CPP Emulator version to use. When running the test, the ClearCase view is

started on the server machine, in order to access the CPP Emulator executable. The view

name is also used for setting the PATH environment variable, which is used by the CPP

Emulator to access its installation files.

The test is run on a machine which has a RAC installed. The name of this machine must be

specified.

5.2.2.3 Postcondition

The postcondition for this use case is that the Tester has an Expect test suite configuration

that is ready to run.

5.2.2.4 Description

This use case starts when the tester creates a new TPTP Expect test suite. The tester may

also change an already existing test suite. The tester fills in the fields in the TPTP Expect test

suite editor and saves the test suite. The test suite is then assigned to an artifact element,

which in turn is bound to a deployment element, together with a location element.

Prototype

 67

5.2.3 Use Case: Run Test

5.2.3.1 Purpose

The purpose with the Run Test use case is to let the tester run a prepared test suite.

5.2.3.2 Precondition

The precondition for the Run Test use case is that the Prepare Test use case has finished

successfully. There must also be a RAC running on the remote machine to launch the CPP

Emulator on and to run the test on.

5.2.3.3 Postcondition

The postcondition for this use case is that the Expect test scripts in the test suite have been

executed. There is a test execution history showing the result of the test.

5.2.3.4 Description

This use case starts when the tester runs an Expect test suite configuration. The tester either

creates a new test configuration or uses an existing one. The following points briefly describe

the user and system interactions:

1. The tester starts the test execution.

2. The test client sets the PATH on the remote machine and orders the RAC to launch the

remote test agent with the test suite configuration parameters.

3. The test agent starts the specified ClearCase view.

4. The test agent launches the CPP Emulator with the specified CPP node configuration.

5. The test agent executes the Expect test scripts. Each test script opens a Telnet

connection to the CPP node on the specified host and port. The output from the Expect

test scripts are sent back to the test client as execution message events and gets stored

in a test execution history.

6. The tester can view the test execution events in an execution history view in the

Eclipse Workbench.

Prototype

 68

7. When all test cases have been executed, the test agent terminates the CPP Emulator

and stops the ClearCase view.

5.2.4 Use Case: Evaluate Test

5.2.4.1 Purpose

The purpose with the Evaluate Test use case is to let the tester view the test execution

history in order to evaluate the test.

5.2.4.2 Precondition

The precondition for the Evaluate Test use case is that the Run Test use case has finished

successfully.

5.2.4.3 Postcondition

The postcondition for this use case is that the tester has viewed the execution history and

evaluated the test.

5.2.4.4 Description

The test execution history is saved in the current project in a file with suffix .execution. If

the test just has been run, the test execution view can be opened directly by selecting the

.execution file in the navigator view for the current project. The .execution file is a zip-file

containing an XML document with the execution history events from the test agent. Test

execution histories from earlier test executions can be opened via the File menu in the Eclipse

workbench.

The prototype implementation does not add any functionality for this use case, but it uses

already existing functionality in TPTP.

Prototype

 69

5.3 Design

5.3.1 Introduction

This section describes the design of the prototype. First an overview of the TPTP design is

given, see Section 5.3.2. The scope of the prototype implementation is described in Section

5.3.3. The remaining sections are realization of the use cases described in Section 5.2.

Realization of use case “Prepare Test” can be found in Section 5.3.4 and realization of use

case “Run Test” can be found in Section 5.3.5. There is no description of realization of use

case “Evaluate Test”, since the prototype does not add any functionality to this use case.

5.3.2 Eclipse TPTP Design Overview

Client
Application

TPTP
Client

Library

Remote
Agent

Controller

Agents

Figure 33: TPTP Basic System Structure

Figure 33 shows the basic system structure of TPTP. TPTP includes a client library and a

Remote Agent Controller (RAC) that are ready to use. The Client Library supports the

creation of different Client Applications written in Java or C++. Specialized Agents are

written for different purposes, such as test execution or data collection. The Agents

implement the interfaces to the SUT. The RAC is implemented in C. The Agents may be

implemented in any language. There are sample Agent implementations in Java. The

communication between the Client Library and the Agent Controller uses TCP/IP. The Agent

Controller communicates with the different Agents by means of shared memory.

Prototype

 70

5.3.2.1 TPTP Test Tools Project

The Eclipse Test & Performance Tools Platform (TPTP) Project is divided into four

projects:

• TPTP Platform

• Monitoring Tools

• Testing Tools

• Tracing and Profiling Tools

The TPTP Platform project provides the core functionality in TPTP, which the other

projects extend. The prototype uses functionality provided by the Testing Tools project. The

testing functionality includes test editors and supports test deployment and execution on

remote and distributed systems. There are also functions for creating data pools to provide a

test with variable data. Furthermore, the Testing Tools project provides three tool example

implementations that are ready to use. The common infrastructure used by these tools can be

used to create new customized test tools. The prototype has been realized by using this

functionality.

5.3.2.2 Test Execution Overview

The design of the test execution components in TPTP is described in a presentation from

Joe Toomey et al [30].

To run a test from the Eclipse Workbench, a test launch configuration has to be created.

The test is started by running the launch configuration. The launch configuration calls the

Test Execution Harness to launch the test. The Test Execution Harness, in turn, invokes

different Test Execution Components, see Figure 34.

Prototype

 71

Test Launch
Configuration

Test Execution
Harness

Test Execution
Components

Figure 34: Test Launch Interactions

Each Test Execution Component consists of a client part and a server part, which interact

with each other. There are four different Test Execution Components: the

ExecutionEnvironment, the ExecutableObject, the Executor and the

RemoteHyadesComponent. The Test Execution Components are implemented in Java.

The ExecutionEnvironment component handles environment variables in the remote test

environment. For example, the client part of the ExecutionEnvironment can set the

CLASSPATH to be used in the remote test execution environment.

The ExecutableObject handles command line arguments, such as Java Virtual Machine

(JVM) arguments, main class for the remote test agent and parameters to the remote test

agent.

The Executor component launches a JVM with the arguments specified by the

ExecutableObject in the environment specified by the ExecutionEnvironment.

The RemoteHyadesComponent provides the communication channel to control the test and

to send back test results to the client.

Prototype

 72

 Test Execution
Harness

Execution
Environment Adapter

Executable Object
Adapter

Execution
Environment (Client)

Executor (Client)

Remote Hyades
Component (Client)

Executable Object
(Client)

Test
Agent

Execution
Environment

Executor

Remote Hyades
component

Executable
Object

Workbench Machine Test Bed Machine

Figure 35: Test Execution Components

To use the execution components, for creating a custom test execution environment, two

adapter classes are created: ExecutionEnvironmentAdapter and ExecutableObjectAdapter, see

Figure 35. The Test Execution Harness calls these adapter classes during the test launch.

5.3.3 Scope of the Prototype

The prototype implements three Eclipse plug-ins, two Eclipse TPTP Client plug-ins and

one Eclipse TPTP RAC plug-in:

• Eclipse TPTP Client plug-ins

o com.tieto.eclipse.tptp.cpp.expect.ui_1.0.0

o com.tieto.eclipse.tptp.cpp.expect.core_1.0.0

• Eclipse TPTP RAC plug-in

o com.tieto.eclipse.tptp.cpp.expect

The com.tieto.eclipse.tptp.cpp.expect.ui plug-in implements the Test Suite Editor with

related Test Suite Wizard, see Figure 36. The design of the Test Suite Editor and the Test

Suite Wizard is described in Section 5.3.4.

Prototype

 73

The com.tieto.eclipse.tptp.cpp.expect.core plug-in implements the Test Client, see Figure

36. The Test Client makes up the client side for launching and executing the Expect test

suites. The design of the Test Client is described in Section 5.3.5.

The com.tieto.eclipse.tptp.cpp.expect plug-in implements the Test Agent, see Figure 36.

The Test Agent makes up the server side for launching and executing the Expect test suites

and is also responsible for generating the execution events which are sent to the client

Workbench during test execution. The design of the Test Client is described in Section 5.3.5.

Test Bed Machine Workbench Machine

CPP
Emulator

Expect

Test
Client

Test
Agent

Test Suite
Editor

Eclipse
Workbench

Remote Agent
Controller

Client
Library

CPP
Node

Figure 36: Prototype plug-ins

Prototype

 74

5.3.4 Prepare Test

5.3.4.1 Test Suite Wizard

TestSui teNewWizard

addPages()

ExpectTestSuiteNewWizard

HyadesNewWizard

handleEvent()
performFi nish()
getNewFile()

HyadesWizard

dispose()
getSelection()
getWorkbench()
init()
createPageControls()
initPages()

Figure 37: Expect Test Suite New Wizard

The prototype implements the class ExpectTestSuiteNewWizard, which responsible for

creating a new Expect Test Suite, see Figure 37. The ExpectTestSuiteNewWizard class

inherits from the TestSuiteNewWizard class. The ExpectTestSuiteNewWizard class is

registered in the extension point org.eclipse.ui.newWizard.

Prototype

 75

 : Tester : WorkBench :
ExpectTestSuiteNewWizard

1: newWizard()

2: initPages()

3: addPages()

4: enterFileName()

5: nextPage()

6: enterDescription()

7: finish()

8: performFinish()

Figure 38: The Tester Creates a New Test Suite

Figure 38 shows the interactions when the Tester creates a new Expect Test Suite:

1. The Tester selects TPTP Expect Test Suite from the File menu in the Eclipse

workbench.

2. The Workbench calls the ExpectTestSuiteNewWizard to initialize its pages to

display in the wizard dialog.

3. The Workbench calls the ExpectTestSuiteNewWizard to add its pages.

4. The first page is displayed and the Tester is asked to enter a name for the test suite

resource file.

5. The Tester presses the Next button.

6. The Tester is asked to enter a description for the test suite.

7. The Tester presses the Finish button. At this stage the resource file is created and

the EMF-model for the test suite is created. The registered editor for the Expect

Test Suite is displayed.

Prototype

 76

5.3.4.2 Test Suite Editor

TestSuiteEditorExtension

BaseEditorExtension

EditorExtension

TestContextOverview
Contribution

EditorForm

AddTestSuiteCh
ildAction

ExpectTestSuiteOverview
Contribution

CppEmuConfig
Form

ExpectTestSuiteEditor ExpectTestCasesForm

AddExpectTestCase
Action

Figure 39: Test Suite Editor Classes

Figure 39 shows a diagram for the classes implementing the Expect Test Suite Editor. The

prototype implements the following classes: the ExpectTestSuiteEditor, the

ExpectTestSuiteOverviewContribution, the CppEmuConfigForm, the ExpectTestCasesForm

and the AddExpectTestCaseAction. The ExpectTestSuiteEditor class is the main class and is

registered in the org.eclipse.hyades.editorExtensions extension point, associated with the test

suite resource. The classes ExpectTestSuiteOverviewContribution, CppEmuConfigForm and

ExpectTestCasesForm implement the three tabs in the Expect Test Suite editor.

The CppEmuConfigForm contains the following fields:

• Host name

• Telnet port

• ClearCase view

• CPP Emulator file (.cppemu)

• Persistent file (.persistent)

Prototype

 77

• Checkpoint file (.checkpoint)

To get the fields stored with the test suite resource, the values of the fields must be stored in

the EMF model related to the test suite resource. In the prototype, the values of the fields are

stored in the location parameter for the SUT class for the Test Suite class. The values are

stored $-separated in the location parameter. The class diagram in Figure 40 is an extract from

the EMF test profile model [73]. The TPFSUT class contains the location field used for

storing the SUT configuration values.

TPFSUT
locat ion : String

TPFArbiter

TPFTestCase
name : String

TPFTestSuite

0..*

0..1

0..10..1

0..* 10..* 1
0..1

0..*

TPFTest

TPFTestCom
ponent

0..*0..1 0..*0..1

TPFBehavior

1..*

0..1

1..*

0..1

1

0..1

1

0..1

1.. *

0..1

1.. *

0..1

Figure 40: TPTP EMF Test Profile Model

The ExpectTestCasesForm provides a list of test cases for the Expect Test Suite. In the

prototype each test case corresponds to an Expect test script. The TPFTestCase class, see

Figure 40, is used for storing the path and file name for each Expect test script. The name and

path of the Expect test script is stored in the name attribute.

Prototype

 78

5.3.5 Run Test

ExpectExecutionDeploy mentAdapter

ExpectExecutionEnv ironmentAdapter

ExpectExecutableObjectAdapter

TestExecutionHarness

launchTest()
initializeRemoteHy adesComponent()()

IExecutionD eploy mentAdapterExtended
<<Interface>>

IExecutionDeploy mentAdapter

deployTestAssets()

<<Interface>>

IExecutionEnv ironmentAdapter

setupExecutionEnvironment()

<<Interface>>

IExecutableObjectAdapter

setupExecutableObject()

<<Interface>>

Figure 41: Text Execution Components

The class diagram in Figure 41 shows the execution components registered to be called

from the Test Execution Harness during test launch. The prototype implements the three

adapter classes: the ExpectExecutionDeploymentAdapter, the

ExpectExecutionEnvironmentAdapter and the ExpectExecutablObjectAdapter.

Prototype

 79

 : TestExecutionHarness

 : Tester

 : ExpectExecutionDeploymentAdapter : ExpectExecutableObjectAdapter

 : ExpectExecutionEnvironmentAdapter

5: initializeRemoteHyadesComponent()

2: deployTestAssets()

3: setupExecut ionEnvironment()

4: setupExecutableObject()

1: launchTest()

Figure 42: The Tester Starts the Test

Figure 42 shows the interactions when the Tester starts the test. The TestExecutionHarness

calls the execution components to perform necessary setup. The server parts of the execution

components, see Figure 35, are instantiated in a JVM on the remote test bed machine, and are

called to prepare the test execution.

Prototype

 80

HyadesRunner

isOkToStart()
setOkToStart()
writeExecEvent()
getAgent()

ComptestAgent

ComptestAgent()
sendData()
sendMessage()
write()

RemoteComponentSkeleton

isAgentControllerActive()
isLogging()
logMessage()
logMessage()
logErrMsg()
logMessageUTF8()
sendMessageToAttachedClient()

Thread TPTPExpectRunner

main()
runTest()

SUTLauncher

exec()
endProcess()

Figure 43: Test Agent

Figure 43 shows a class diagram for the test agent and related classes. The prototype

implements the TPTPExpectRunner class and the SUTLauncher class.

The remote test agent is implemented in the TPTPExpectRunner class, which extends the

HyadesRunner. The HyadesRunner uses a ComptestAgent, which in turn uses a

RemoteComponentSkeleton. The RemoteComponentSkeleton implements the communication

with the RAC. The TPTPExpectRunner uses a SUTLauncher to launch and tear down the

SUT, which in the prototype case is the CPP Emulator.

Prototype

 81

 : RAC : TPTPExpectRunner : SUTLauncher

1: main()

3: writeExecEvent()

4: logMessageUTF81(String, byte[])

2: SUTLauncher()

5: exec()

8: logMessageUTF81(String, byte[])

7: writeExecEvent()

9: endProcess()

10: writeExecEvent()

11: logMessageUTF81(String, byte[])

6: runTest()

Figure 44: Test Bed Launch

During test bed launch, the remote test agent is started in a separate JVM on the test bed

machine. Figure 44 shows the interactions when the RAC starts the test agent:

1. The RAC starts a JVM, which loads the remote test agent, implemented in the

TPTPExpectRunner class in the prototype. The TPTPExpectRunner gets all its

parameters as arguments to its main method.

2. The TPTPExpectRunner instantiates a SUTLauncher.

3. The TPTPExpectRunner calls its writeExecEvent method to log the start test event.

4. The RAC method logMessageUTF81 is called. This is a Java Native Interface (JNI)

call to the C-implementation provided by the RAC.

5. The TPTPExpectRunner calls the exec method in the SUTLauncher to launch the CPP

Emulator.

6. The TPTPExpectRunner calls its runTest method to execute the Expect test scripts.

Prototype

 82

7. The TPTPExpectRunner calls its writeExecEvent method to log events for start/stop of

each test script and to log output from the Expect process.

8. The RAC method logMessageUTF81 is called.

9. The TPTPExpectRunner calls the endProcess method in the SUTLauncher to tear down

the CPP Emulator.

10. The TPTPExpectRunner calls its writeExecEvent method to log messages that the test

execution has finished.

11. The RAC method logMessageUTF81 is called.

The first six parameters passed to the TPTPExpectRunner are CPP Emulator configuration:

1. Host name

2. Telnet port

3. ClearCase view

4. CPP Emulator file (.cppemu)

5. Persistent file (.persistent)

6. Checkpoint file (.checkpoint)

If any of these parameters has not been filled in when the test starts, the string “null” is passed

as parameter value instead. After the six parameters specifying the CPP Emulator

configuration, parameter seven and above specify the Expect test scripts dynamically.

5.4 Improvements of the Prototype

If a real product is to be developed, based on the prototype implementation, there are a

number of functions that should be improved. Some possible improvements are listed in this

section.

Prototype

 83

5.4.1 Permissions of Remote Agents

In the prototype implementation, the ClearCase view name entered by the tester is used for

setting the path to the CPP Emulator installation. The RAC must have been started with

permissions allowed to access this path. The permissions needed by agents started versus the

permissions for the RAC is a general design problem to be solved.

5.4.2 Telnet Port Forwarding

The prototype uses the simplest possible method for enabling port-forwarding to the CPP

Node loaded in the CPP Emulator. The command that is used is cppemu-connect-real-

network-port, which forwards all ports to default numbers. If another CPP Emulator instance

is running on the same machine, the port may be occupied, or the Expect scripts may connect

to CPP nodes loaded in the other CPP Emulator instead. A better method for port-forwarding

should be used. The field for entering a Telnet port number in the test suite editor should be

removed.

5.4.3 Test Agent Implemented in C

The goal for the prototype was to implement the remote test agent in C. The reason is that

Java is not installed on the Linux machines used for running the CPP Emulators at

TietoEnator, for performance reasons. But implementing an agent in C was not possible

within the time available for implementing the prototype in the project. The test execution

component infrastructure in TPTP is implemented in Java. Furthermore, TPTP launches two

JVMs on the remote test machine for the test execution components and for the test agent.

Support for implementing a test agent in C or C++ may be supported in future versions of

TPTP.

5.4.4 Separate Launching Agent

Another improvement would be to implement a separate launching agent for launching and

tearing down the CPP Emulator. The test agent can then call the launching agent to launch the

CPP Emulator, before test execution, and call the launching agent to tear down the CPP

Prototype

 84

Emulator after test execution. With this design, a RAC and launching agent can be installed

on machines without Java.

5.4.5 Test Management Integration

The prototype implementation automates testing tasks for a human tester. A tester can

prepare, run and evaluate tests from a client Workbench. All resources, as test launch

configuration and test execution history, are saved locally in the tester’s workspace. But a

more realistic scenario is that the test automation is integrated and controlled from a test

management system. In that case, the test automation cannot be controlled from a client

Workbench, but must be controlled via an API instead. Likewise, the resources cannot be

saved in a local workspace, but must be handled by some kind of external repository.

Therefore, an interesting new prototype to implement is a so called headless implementation,

where the test automation is run without the Eclipse Workbench GUI. Another issue is the

handling of the different resources. Coming versions of Eclipse TPTP will have support for

storing resources in external repositories.

5.4.6 Port to TPTP 4.x

The prototype is implemented with TPTP 3.2A. In TPTP 4.x there will be additional

features such as better feedback for the tester during test execution.

5.4.7 SUT Configuration as a New Resource Type

In the prototype implementation the SUT configuration is connected to the test suite

resource. A possibility is to create a new resource type for the SUT configuration, with a

related wizard and a related editor. The test suite can then store a link to the SUT

configuration instead, which would mean a looser coupling and possibility to have several

SUT configurations to easily choose between.

5.4.8 Deployment of Test Scripts

The prototype makes the assumption that the client Workbench and remote test agent share

file system. The test scripts are passed from test client to test agent by passing the file path

Prototype

 85

only. An improvement would be real deployment of the test scripts, that is to transfer the

actual files to the test bed machine. This improvement requires TPTP 4.x.

 87

6 Summary and Evaluation

6.1 Market Analysis

The conclusion from the market analysis is that Eclipse TPTP is the product that best

matches the requirements of a test tool framework, as defined in this thesis.

Another conclusion is that most commercial products are not designed to be extendable,

but to be used as they are. These products do not match the model of a test tool framework,

see Chapter 3. There is not a many-to-many relationship between the test tool and the SUT,

but a one-to-many relationship, as in Figure 45.

SUTTest Tool

*1 *1

Figure 45: One-to-Many Relationship between a Test Tool and SUTs.

A final conclusion from the market analysis is that it is a difficult task to describe different

products in a common way. Different organizations use different testing terminology. The

product information available is often of poor quality and written in a sales perspective.

6.2 Prototype

The conclusion from building a prototype in Eclipse TPTP as a proof of concept is that

Eclipse TPTP is a test tool framework that can be used for creating an integrated test

environment. However, working with Eclipse TPTP requires a great amount of time and

effort before getting productive. There is not much documentation available, and therefore an

active participation in the Eclipse TPTP community is required. The Eclipse TPTP project is

still a young project, but the platform is expected to be much more mature in the coming

Summary and Evaluation

 88

future, with more documentation and extended functionality. It will then be a quality test tool

framework with a rich set of functions for building new test tools.

6.3 Discussion

6.3.1 Pros and Cons of a Common Framework

Many advantages can be seen in using a test tool framework with a common infrastructure

that enables integration with different test tools and with different SUTs. The schematic

model we have used for a test tool framework in this thesis is repeated in Figure 46.

Test Tool SUT
Test Tool

Framework
1* 1* *1 *1

Figure 46: Integration by Means of a Common Test Tool Framework.

The main advantage with a common test tool framework is that an integrated test

environment can be achieved, with benefits for different groups of users, see Section 3.3.

Using a common infrastructure assures interoperability between different tools. Common

solutions can be used by different tools, instead of re-inventing them. Instead of fragmented

solutions where every single test environment develops its own solutions, there are

advantages in centralizing common functions, so that different tools can re-use them.

Examples of areas where common functions should be shared are infrastructure for test

deployment and execution as well as collection of different data. Runtime monitoring of test

execution as well as different SUT metrics are other examples of functionality that should be

possible to re-use without modification from one test environment to another. Instead of

specialized log viewers for every single SUT, for example, it should be possible to agree on a

common solution to use globally.

The over-all advantages with centralized functions shared by different test tools are higher

quality and reduced costs. Higher quality is achieved by common tools that can be shared by a

Summary and Evaluation

 89

broader community. Experiences from many people and different organizations can be

utilized to ensure correct functionality and high quality. Reduced costs are a direct

consequence of re-use; there will simply be a reduced number of test tools to create and

maintain. Another aspect is that looser coupling between the test tools and the SUT reduces

test tool maintenance when external interfaces of the SUT changes.

The framework delivered by the Eclipse TPTP project very closely matches the model of a

test tool framework described in this thesis, with a common infrastructure and other

centralized testing related functions. A great strength with the Eclipse TPTP project is the

cooperation between several software vendors, sharing experience from many people.

Michael G. Norman et al summarizes the problem with re-inventing infrastructures in a paper

describing the objectives of the Hyades project [28]: “80% of the effort that testers and

developers spend today is on making testing possible, and only 20% focuses on making

testing meaningful. 80% of the effort Automated Software Quality (ASQ) tool vendors spend

today duplicates the work of others, recreating an infrastructure to enable testing and

debugging activities. Only 20% of their work produces new function that’s visible and

valuable to testers and developers.”

Commercial products with remote testing capabilities have their own proprietary

infrastructures for integration of different test tools and with the SUT. Michael G. Norman et

al [28] also describes this problem: “More significantly, the “plumbing” required to

effectively drive and monitor the SUT is enormous and its maintenance expensive and highly

dependent on obscure details of the runtime environment.”

But there are not only advantages with a common framework shared by different test tools.

A problem pointed out by Mats Berglund [3], who has a great amount of experience from

issues as this from previous work at Ericsson, is that a test solution with different test tools

integrated in a common framework requires a party that takes the overall responsibility.

Changes to the platform may imply changes to every single test tool dependent on it. The

question is who should be responsible for coordination of the platform and the different tools,

to ensure a constant high quality. Changes are inevitable and it might be a big risk if the

Summary and Evaluation

 90

whole test environment is dependent on a single framework. A fragmented solution with one-

to-one or one-to-many relations between the test tool and the SUT may therefore be

preferable for a company as Ericsson. The schematic model we have used for specialized test

tools in this thesis is repeated in Figure 47.

SUTTest Tool

11 11

Figure 47: Specialized Test Tool

There is a choice between an open flexible solution and many specialized tools. A framework

gives a more integrated environment, but may also imply a bigger risk. Many specialized

tools means less integration and a number of disadvantages, but more safety and lower risks.

6.3.2 Standardization

Experiences gained from working with the project described in this thesis, and also from

previous projects, is that homemade not-invented-here solutions are dominating the testing

world of today. There should be great potential and many advantages in agreeing in common

standards and solutions. The UML 2 Testing Profile [33] seems very promising and should be

a great step forward. A seemingly simple matter like agreeing on a common terminology to

use for different verdicts has probably enormous impact on the testing world as a whole.

Instead of using its own terminology, every test environment can use the same pass, fail,

inconclusive, error. Another interesting standardization is the Common Base Event [34]. Logs

created in server-based and distributed systems are very important for operation, maintenance,

fault localization etc. The log events normally contain timestamp, text message, source

information and category such as information, warning and error. There should be great

benefits in agreeing on a common format for these logs instead of each system using its own.

With a common format there can be one single log viewer for all different logs created by all

different systems. Other standards that seem important to use are UML and XML.

Summary and Evaluation

 91

6.3.3 Open Source

When building the prototype we got some experience from using an open source product.

There are both advantages and disadvantages with open source. Free licenses may be seen as

the main advantage with open source. Free licenses may lead to greatly reduced costs for a

company. An interesting point made at a meeting with Ericsson [2] was that free licenses are

not at all important when Ericsson is making a decision in which technical solution to choose

for the future. License costs are only a small fragment of the total cost for investing in a

specific solution.

Our experience is that another important issue is documentation. Open source does not say

anything about documentation. When you work with open source, there might not be any

system or design documentation at all. And the little documentation available might be out-of-

date, incomplete or otherwise of bad quality. It might require a great amount of time and

effort to get productive. You are also dependent on other people to help you. The good thing

is that open source projects normally have an active community with a good atmosphere for

sharing information between members. But it feels like a big risk to be completely dependent

on other people to answer your questions.

In the long term, building on open source should be preferable compared to designing a

solution from scratch. By building on existing solutions you should be able to produce much

more functionality than if starting from zero. There may be many functions that you get for

free. In a short project, however, it might require too much time to find out how all

functionality works. A well documented commercial product may then be preferable.

Our conclusion from working with the open source project Eclipse TPTP is that the main

advantage with open source is that an open source project is a forum for cooperation outside

company borders. An open source project is a unique opportunity for sharing experience from

different organizations. Cooperation between companies is necessary in works with

standardization and should also be very important for unifying software testing standards and

techniques.

Summary and Evaluation

 92

6.3.4 Eclipse-Based Products

The interest for the Eclipse platform and TPTP increases. When this thesis is written there

are already a few commercial products based on Eclipse TPTP available. Out of the products

studied in the market analysis in this project, the Scapa Test and Performance Platform 3.1,

see Section D.5, and Testing Technologies TTworkbench, see Section D.7, are two examples

of currently available Eclipse-based products. Scapa Technologies is one of the contributors

of source code to Eclipse TPTP and their Test and Performance Platform extends the TPTP

open source. The TTworkbench from Testing Technologies includes Eclipse plug-ins for

editing TTCN-3 scripts and for compiling TTCN-3 modules into test executables. There will

probably be several other TPTP based products available in the coming future, when the

TPTP platform gets more mature. Eclipse integration may also be a requirement from

different test tool customers who want to use the same Integrated Development Environment

(IDE) for as many different software development tasks as possible. There are many

advantages in being able to use the same IDE for both coding and testing an application, for

example.

Eclipse TPTP should be very interesting to use as a framework for a company who wants

to build an integrated test environment. Different plug-ins can be bought from different

software vendors, which also should be important for spreading the risks and increasing the

competition. The testing domain is too big for one single vendor to cover. One vendor may be

specialized in unit testing while another may be specialized in TTCN-3 protocol testing. By

using Eclipse as a base, it should be possible to keep an integrated test environment even

though different tools (plug-ins) are bought from different vendors. There are, of course, not

only advantages with a solution like this, as was discussed in Section 6.3.1. If the common

platform requires updates that affect all dependent tools from different vendors, updating the

tools will be more problematic than if all tools are coming from a single vendor, for example.

Another important aspect is that Eclipse integration may be provided at different levels, for

example user interface level, file interoperability level and runtime interoperability level. A

software vendor may sell a product marked as “Eclipse ready” even if the product in question

Summary and Evaluation

 93

just provides a plug-in for a very small part of the entire system. The front-end user interface

may be ported to the Eclipse design while the back-end parts are kept in a proprietary design.

Common user interface is important for a uniform look and feel, and to achieve this it is

important that the different plug-ins follow common design guides. Another level of

integration is file interoperability, where integration is achieved if one tool can read the output

from another tool. It is important that the plug-ins follow the standards and models used in

Eclipse, and not its own home-made. An integrated test environment also requires that the

different tools can communicate with each other in a runtime environment. A workbench

launch for a distributed telecom system may include a number of tools that must run

simultaneously, as for example test driver, test execution monitor and different runtime

log/trace monitors. Each tool may work well when run stand-alone, but to be able to run all at

once probably require additional actions. An integrated test environment should be

independent of test script languages used. An interesting scenario that would require good

integration, both in client and server parts, would be the possibility to run a test suite with

scripts in different languages, such as Java, C++, Perl and TTCN-3, for example. Good

integration with Eclipse TPTP will not come for free, but requires that the different plug-ins

follow the Eclipse TPTP design. The goal should be the highest level of integration, that is

runtime interoperability.

 95

7 Conclusion

The purpose of the project described in this thesis was to study different test tool

frameworks that can be used for creating an integrated test environment. The goal of the

project was to find a product that TietoEnator could use in future projects. The method used

was to first specify some basic requirements for a test tool framework, then carry out a market

analysis to find candidate products, and finally build a prototype as a proof of concept for the

product that best matched the specified requirements. The requirements include infrastructure

for remote test bed launch and execution as well as centralized functions for building new test

tools. We found two candidates for test tool frameworks in the market analysis: Eclipse TPTP

and STAF. The conclusion from the market analysis was that the product that best fulfilled

the stated requirements was Eclipse TPTP. Other results from the market analysis are a

thorough study of a number of products, including product descriptions and evaluations based

on common comparison points. A functioning prototype was built using Eclipse TPTP. The

prototype makes it possible for a tester to create a test configuration to be run on a remote

machine. The test configuration includes a selection of test scripts, test bed configuration and

SUT configuration. When the tester starts the test from the client Workbench, the test bed is

automatically launched on the remote machine, the test scripts are executed, and finally the

test bed is torn down. The tester can view the test result in a test execution history in the client

Workbench. A final conclusion from the project is that there remains some work with

additional functionality and documentation before Eclipse TPTP is mature to be used in real

projects, but that Eclipse TPTP has good potential for being a quality test tool framework with

a rich set of functions in the future.

 97

References

[1] Meeting at Ericsson Linköping, February 3, 2005. Attendees: Mats Berglund (testing
expert at Ericsson), Lars-Lundegård, Per Johansson, Henrik Wallinder.

[2] Exam thesis presentation at Ericsson Linköping, May 9, 2005. Attendees: Mats
Berglund, Per Emanuelsson, Patrik Nandorf, Conor White Ericsson Linköping, Lars
Lundegård, Lars Ohlen, Johan Andersson, Per Johansson, Henrik Wallinder TietoEnator
Karlstad.

[3] Telephone meeting, Exam thesis draft review, May 17, 2005. Attendees: Mats
Berglund, Ericsson Linköping, Lars Lundegård, Per Johansson, Henrik Wallinder
TietoEnator Karlstad.

[4] Victor Ferraro-Esparza, Michael Gudmandsen, Kristofer Olsson, Ericsson Telecom
Server Platform 4, Ericsson Review No. 3, 2002.

[5] Göran Ahlforn, Erik Örnulf, Ericsson’s family of carrier-class technologies, Ericsson
Review No. 4, 2001.

[6] Lars-Örjan Kling, Åke Lindholm, Lars Marklund and Gunnar B. Nilsson, CPP – Cello
Packet Platform, Ericsson Review No. 2, 2002.

[7] UMTS, UMTS World, http://www.umtsworld.com/technology/technology.htm, May 24,
2005.

[8] Glenford J. Myers, The Art of Software Testing, page 5, Wiley Interscience, 1979.

[9] J. Case, M. Fedor, M. Schoffstall, J. Davin, RFC 1157, A Simple Network Management
Protocol (SNMP), May 1990.

[10] Andrew S. Tanenbaum, Computer Networks, Third Edition, Prentice Hall, 1996.

[11] ANSI/IEEE Std 729-1983, Glossary of Software Engineering Terminology, New
York:IEEE, 1983.

[12] ApTest, Software Testing Glossary, http://www.aptest.com/glossary.html, February 9,
2005.

[13] Bill Hetzel, The Complete Guide to Software Testing, Second Edition, QED Information
Sciences, Inc., 1988.

[14] Catalog of OMG CORBA®/IIOP® Specifications, OMG,
http://www.omg.org/technology/documents/corba_spec_catalog.htm, February 24,
2005.

References

 98

[15] COM: Component Object Model Technologies, http://www.microsoft.com/com,
Microsoft, February 9, 2005.

[16] Kent Beck, Extreme Programming Explained, Addison-Wesley, Harlow, USA, 1999.

[17] W. Yeong, T. Howes, S. Kille, RFC 1777, Lightweight Directory Access Protocol,
March 1995.

[18] Object Mentor, Inc, Test Driven Development,
http://www.objectmentor.com/writeUps/TestDrivenDevelopment, February 9, 2005.

[19] SEA Architecture (15553-CRL 119 007, Rev A), Ericsson internal document.

[20] SS7 Protocol Suite, http://www.protocols.com/pbook/ss7.htm, PROTOCOLS.COM,
February 24, 2005.

[21] RiceConsulting, Software Testing and Quality Glossary,
http://www.riceconsulting.com/new/index.php?option=displaypage&Itemid=116&op=p
age&SubMenu=&secret=-1, February 9, 2005.

[22] TestDriven.com, http://www.testdriven.com, February 9, 2005.

[23] The Testing Standards Working Party, Living Glossary,
http://www.testingstandards.co.uk/living_glossary.htm, February 9, 2005.

[24] University of Oulu, Eletrical and Information Engineering, Glossary of Vulnaribility
Testing Terminology, http://www.ee.oulu.fi/research/ouspg/sage/glossary/, February 9,
2005.

[25] Eclipse, http://www.eclipse.org, February 21, 2005

[26] Object Technology International, Inc, Eclipse Platform Technical Overview, February
2003, http://www.eclipse.org/articles, February 21, 2005.

[27] Eclipse test & performance tools platform project, Project Descriptions,
http://www.eclipse.org/test-and-performance/index.html, February 21, 2005.

[28] Michael G. Norman, Sam Guckenheimer, Harm Sluiman, Marc R Erickson, Sara
Mariani, The Hyades Project Automated Software Quality for Eclipse, December 10,
2002.

[29] Eclipse test & performance tools platform project, Frequently Asked Questions,
http://www.eclipse.org/test-and-performance/index.html, February 24, 2005.

[30] Building a Custom Test Execution Environment, February 28, 2005, TPTP Testing
Tools Project, Documentation, http://www.eclipse.org/tptp/index.html, February 28,
2005.

[31] Frank Budinsky, David Steinberg, Ed Merks, Raymond Ellersick, Timothy J. Grose,
Eclipse Modeling Framework, Addison-Wesley, 2004.

References

 99

[32] Eric Clayberg, Dan Rubel, Eclipse Building Commercial-Quality Plug-ins, Addison-
Wesley, 2004.

[33] UML 2.0 Testing Profile Specification, OMG, April 2004,
http://www.omg.org/technology/documents/modeling_spec_catalog.htm, February 24,
2005.

[34] David Ogle, Eric Labadie, James Schoech, Heather Kreger, Mandy Chessell, Mike
Wamboldt, Abdi Salahshour, Bill Horn, Jason Cornpropst, John Gerken, Canonical
Situation Data Format: The Common Base Event V1.0.1, November 04, 2003,
http://www.eclipse.org/hyades/, February 24, 2005.

[35] Catherine Griffin, Using EMF, December 9 2002,
http://www.eclipse.org/articles/index.html, February 25, 2005.

[36] Unified Modeling Language, OMG, http://www.uml.org/, February 24, 2005.

[37] Extensible Markup Language (XML), W3C, http://www.w3.org/XML, February 24,
2005.

[38] XML Metadata Interchange (XMI) Specification, Version 2.0, OMG, May 2003,
http://www.omg.org/docs, February 24, 2005.

[39] JavaTM Virtual Machine Profiler Interface (JVMPI),
http://java.sun.com/j2se/1.4.2/docs/guide/jvmpi/jvmpi.html, February 24, 2005.

[40] JVMTM Tool Interface Version 1.0,
http://java.sun.com/j2se/1.5.0/docs/guide/jvmti/jvmti.html, February 24, 2005.

[41] Java Management Extensions (JMX), http://java.sun.com/products/JavaManagement/,
February 24, 2005.

[42] Scapa Technologies, http://www.scapatech.com/home.html, February 28, 2005.

[43] Scapa Technologies, Scapa Test and Performance Platform 3.1, Product Datasheet,
http://www.scapatech.com/home.html, February 28, 2005.

[44] IBM, Rational TestManager, http://www-306.ibm.com/software/awdtools/test/manager,
Mars 1, 2005.

[45] IBM, Rational Test RealTime, http://www-06.ibm.com/software/awdtools/test/realtime/,
Mars 9, 2005.

[46] IBM, Rational Testing Products, Rational TestManager, User’s Guide, Rational
Software Corporation, June, 2003,
ftp://ftp.software.ibm.com/software/rational/docs/documentation/manuals/testing.html,
Mars 1, 2005.

[47] IBM, Rational Testing Products, Rational TestManager, Extensibility Reference,
Rational Software Corporation, June, 2003,

References

 100

ftp://ftp.software.ibm.com/software/rational/docs/documentation/manuals/testing.html,
Mars 1, 2005.

[48] ISO, ISO/IEC 9646-3:1998, Information technology -- Open Systems Interconnection --
Conformance testing methodology and framework -- Part 3: The Tree and Tabular
Combined Notation (TTCN), Published ISO Standard.

[49] ETSI, TTCN-3 TRI, ETSI ES 201 873-5 V1.1.1 (2003-02), Methods for Testing and
Specification (MTS); The Testing and Test Control Notation version 3; Part 5: TTCN-3
Runtime Interface (TRI), Published ETSI Standard.

[50] ETSI, TTCN-3 TCI, ETSI ES 201 873-6 V1.1.1 (2003-07), Methods for Testing and
Specification (MTS); The Testing and Test Control Notation version 3; Part 6: TTCN-3
Control Interface (TCI), Published ETSI Standard.

[51] ISO, PICS/PIXIT, http://www.iec.org/online/tutorials/ttcn/topic03.html, Mars 2, 2005.

[52] JUnit.org, JUnit, http://www.junit.org/index.htm, Mars 3, 2005.

[53] ETSI PTCC, Protocol & Testing Competence Centre, Latest TTCN-3 Specifications,
ETSI ES 201 873, http://www.etsi.org/ptcc/ptccttcn3.htm, Mars 9, 2005.

[54] Telelogic, http://www.telelogic.com, Mars 9, 2005.

[55] Telelogic, Telelogic TAU, http://www.telelogic.com/products/tau/index.cfm, Mars 9,
2005.

[56] Telelogic, Telelogic TAU/Tester Technical Integration Documentation, provided with
Telelogic TAU/Tester, September 2004.

[57] Danet, Test-automation systems and services, http://www.danet.com, Mars 9, 2005.

[58] International Telecommunication Union (ITU), Telecommunication Standardization
Sector of ITU (ITU-T), Z.120, Annex B: Formal semantics of Message Sequence
Charts, SDL Forum Society, Publication – Standards, http://www.sdl-
forum.org/Publications/Standards.htm, Mars 9, 2005.

[59] European Telecommunications Standards Institute (ETSI), http://www.etsi.org, Mars 9,
2005.

[60] The Expect Home Page, http://expect.nist.gov/, Mars 14, 2005.

[61] Software Testing Automation Framework (STAF), http://staf.sourceforge.net/index.php,
Mars 14, 2005.

[62] Frequently Asked Questions about STAF, STAX, and STAF services,
http://staf.sourceforge.net/current/STAFFAQ.htm, Mars 14, 2005.

[63] C. Rankin, The Software Testing Automation Framework,
http://www.research.ibm.com/journal/sj/411/rankin.html, IBM, June 8, 2005.

References

 101

[64] GNU Lesser General Public License, http://www.gnu.org/copyleft/lesser.html, Mars 14,
2005.

[65] OpenTTCN, http://www.openttcn.com, Mars 17, 2005.

[66] OpenTTCN Tester for TTCN-3,
http://www.openttcn.com/Sections/Products/OpenTTCN3, Mars 17, 2005.

[67] OpenTTCN XPress for TTCN-3, http://www.openttcn.com/Sections/Products/Xpress3,
Mars 17, 2005.

[68] ITU-T, X.683 (12/97), Abstract Syntax Notation One (ASN.1), Published ITU-T
Standard.

[69] Testing Technologies, http://www.testingtech.de, Mars 18, 2005.

[70] Fraunhofer FOKUS, http://www.fokus.gmd.de/home, Mars 18, 2005.

[71] ISO/IEC 14750:1999, Information technology -- Open Distributed Processing --
Interface Definition Language, Publiched ISO/IEC Standard.

[72] Citrix, http://www.citrix.com/lang/English/home.asp, April 8, 2005.

[73] Hyades Data Models,
http://eclipse.org/tptp/home/archives/hyades/data_models/index.htm, May 12, 2005.

[74] Jan Tretmans, An Overview of OSI Conformance Testing, Formal Methods & Tools
group, University of Twente, January 25, 2001,
http://www.cs.auc.dk/~kgl/TOV03/iso9646.pdf, May 15, 2005.

[75] Wikepedia, http://en.wikipedia.org, May 18, 2005.

[76] Open Process Framework (OPF), http://www.donald-
firesmith.com/index.html?Glossary, May 15, 2005.

[77] Ericsson AB, Using the CPPemu – R2A, User’s Guide, Ericsson internal document, 198
17-CRL 119 071 Uen C.

[78] Ericsson AB, CPP Emulator Training, Hands-on Course R2, Ericsson internal
document, January 12, 2004.

[79] IBM, IBM Software – Rational ClearCase, http://www-
306.ibm.com/software/awdtools/clearcase/, June 8, 2005.

 103

A Definitions

Architecture

An architecture is “the fundamental organization of a system embodied in its components,

their relationships to each other, and to the environment, and the principles guiding its design

and evolution” [11].

Black-box testing

“Functional test case design: Test case selection that is based on an analysis of the

specification of the component without reference to its internal workings” [24].

Branch coverage

“Metric of the number of branches executed under test; "100% branch coverage" means

that every branch in a program has been executed at least once under some test (also link

coverage)” [24].

Capture/Play-back

Functionality for automatically creating test scripts by recording events, which can be

automatically repeated with a play-back function. Example of events are user-interface

interaction or HTTP requests.

Comparator

A function or tool for comparing the response from the SUT against expected results as

specified by the test.

Component

“A minimal software item for which a separate specification is available” [22].

Definitions

 104

Configuration Testing

“The system testing of different variations of the application against its configurability

requirements” [76].

Conformance Testing

“The process of testing that an implementation conforms to the specification on which it is

based” [23].

Debug

The process of locating the source of different defects.

Driver

See Test Driver.

Emulator

“A device, computer program, or system that accepts the same inputs and produces the

same outputs as a given system” [12].

Execution History

See Test Execution History

Framework

“The software environment tailored to the needs of a specific domain. Frameworks include

a collection of software components that programmers use to build applications for the

domain the framework addresses. Frameworks can contain specialized APIs, services, and

tools, which reduce the knowledge a user or programmer needs to accomplish a specific task”

[12].

Functional Testing

“Testing that ignores the internal mechanism of a system or component and focuses solely

on the outputs generated in response to selected inputs and execution conditions” [12].

Definitions

 105

Glass Box Testing

See White Box Testing.

Implementation Under Test (IUT)

The actual components within the SUT that are the target test objects for the current test.

Instrumentation

“Devices or instructions installed or inserted into hardware or software to monitor the

operation of a system or component” [24].

Integration Testing

“Testing performed to expose faults in the interfaces and in the interaction between

integrated components” [76].

Interoperability

“The ability of systems, units, or forces to provide services to and accept services from

other systems, units or forces and to use the services so exchanged to enable them to operate

effectively together” [75].

Interoperability Testing

Testing for interoperability between systems or components, see Interoperability.

Interworking Testing

See Interoperability Testing.

Load Testing

See Performance Testing.

Definitions

 106

Log

Listing that contains a record of events often stored in a file. The events can be generated

by test scripts or by the SUT, producing different type of logs. Often categorized by tags such

as information, warning, error. Standardized format in Common Base Event (CBE) [34].

Monitor

The activity of observing different aspects of the test execution in real-time. Examples are

real-time monitoring of test execution and monitoring of logs created by the SUT.

Path coverage

“Metric applied to all path-testing strategies: in a hierarchy by path length, where length is

measured by the number of graph links traversed by the path or path segment; e.g. coverage

with respect to path segments two links long, three links long, etc. Unqualified, this term

usually means coverage with respect to the set of entry/exit paths. Often used erroneously as

synonym for statement coverage” [24].

Performance Testing

“Testing conducted to evaluate the compliance of a system or component with specified

performance requirements. Often this is performed using an automated test tool to simulate

large number of users. Also known as "Load Testing"” [12].

Profiling

The process of analyzing the performance, resource utilization, or execution of a running

program or process. Normally requires source code instrumentation. Examples of profiling

analysis are: code coverage analysis, execution time analysis and memory usage analysis.

Protocol Testing

See Protocol Conformance Testing.

Definitions

 107

Protocol Conformance Testing

“Testing conducted to verify that an implementation of a protocol conforms to the

specification of the protocol” [74].

Regression Testing

“Retesting a previously tested program following modification to ensure that faults have

not been introduced or uncovered as a result of the changes made” [12].

Robustness Testing

“The testing that attempts to cause failures involving how the system behaves under

invalid conditions (e.g., unavailability of dependent applications, hardware failure, and

invalid input such as entry of more than the maximum amount of data in a field)” [76].

Simulator

“A device, computer program or system used during software verification, which behaves

or operates like a given system when provided with a set of controlled inputs” [22].

Smoke Test

“A quick-and-dirty test that the major functions of a piece of software work. Originated in

the hardware testing practice of turning on a new piece of hardware for the first time and

considering it a success if it does not catch on fire” [12].

Software Tool

A software tool is “a computer program used to help develop, test, analyze, or maintain

another computer program or its documentation” [11].

Stress Testing

“Testing in which a system is subjected to unrealistically harsh inputs or load with

inadequate resources with the intention of breaking it” [24].

Definitions

 108

“Testing conducted to evaluate a system or component at or beyond the limits of its

specified requirements” [23].

Structural Testing

See White Box Testing.

Stub

“A skeletal or special-purpose implementation of a software module, used to develop or

test a component that calls or is otherwise dependent on it” [22] .

System Testing

“Testing that attempts to discover defects that are properties of the entire system rather

than of its individual components” [12].

System Under Test (SUT)

“The real open system in which the Implementation Under Test (IUT) resides” [24].

Test

“A set of one or more test cases” [24].

Test Artifact

See Test Asset.

Test Asset

A test asset is any resource, normally persisted to file, that is either used as input to a test

or result from a test execution, e.g. test plan, test suite, test case, test script, test execution

history, trace, log, profiling information, statistical data or test report.

Test Architecture

See Test Environment.

Definitions

 109

Test Bed

“An environment containing the hardware, instrumentation, simulators, software tools, and

other support elements needed to conduct a test” [24].

Test Campaign

See definition of Test.

Test Case

“A specific set of test data along with expected results for a particular test objective, such

as to exercise a program feature or to verity compliance with a specific requirement” [11].

Test Comparator

“A test tool that compares the actual outputs produced by the software under test with the

expected outputs for that test case” [22].

Test Cycle

“A formal test cycle consists of all tests performed. In software development, it can consist

of, for example, the following tests: unit/component testing, integration testing, system

testing, user acceptance testing and the code inspection” [24].

Test Data

Test input data used in association with different test cases. Used to generate desired

stimuli to the SUT. Test data may be generated automatically by different tools, for example

different properties of virtual users.

Test Driver

“A program or testing tool used to execute and control testing. Includes initialization, data

object support, preparation of input values, call to tested object, recording and comparison of

outcomes to required outcomes” [24].

Definitions

 110

Test Environment

“A description of the hardware and software environment in which the tests will be run,

and any other software with which the software under test interacts when under test including

stubs and test drivers” [24].

Test Execution History

The result of a test execution containing the test cases executed with verdicts.

Test Framework

A framework for making it easy to add new tests and to run various suites of tests.

Test Harness

“A program or test tool used to execute tests. Also known as a Test Driver” [12]. See also

Test Tool.

Test Item

“A software item which is an object of testing” [24].

Test Plan

“A document describing the scope, approach, resources, and schedule of intended test

activities. It identifies test items, the features to be tested, the testing tasks, who will do each

task, and any risks requiring contingency planning” [24].

Test Procedure

“A document providing detailed instructions for the execution of one or more test cases”

[22].

Test Script

“Commonly used to refer to the instructions for a particular test that will be carried out by

an automated test tool” [12].

“Commonly used to refer to the automated test procedure used with a test harness” [22].

Definitions

 111

Test Suite

A set of test cases and/or test scripts that are related to a particular function or feature of an

application.

Test Tool

A test tool is a computer program used to test another computer program. Based on the

definition of Software Tool. See also Test Harness.

Test Tool Framework

A test tool framework is a framework for creating an integrated test environment. In this

document, there are two main purposes with a test tool framework:

1. To make it easy for test tools to connect and communicate with the SUT.

2. To make it easy to create new test tools.

Testing

“Testing is the process of executing a program or system with the intent of finding errors”

[8].

Trace

Listing of the path of execution in a system or between systems. May require

instrumentation of source code or use of probes to collect the necessary data. Trace

information can be collected at different levels, for example method calls between classes or

messages sent via an interface between two network components. Trace data may also be

gathered from system stacks and heap information. Trace information can be represented in

textual form or in graphical form, for example as UML sequence diagram.

Validation

“Determination of the correctness of the products of software development with respect to

the user needs and requirements” [23].

Definitions

 112

Verdict

“Verdict is the assessment of the correctness of the SUT. Test cases yield verdicts.

Verdicts can also be used to report failures in the test system. Predefined verdict values are

pass, fail, inconclusive and error. Pass indicates that the test behavior gives evidence for

correctness of the SUT for that specific test case. Fail describes that the purpose of the test

case has been violated. Inconclusive is used for cases where neither a Pass nor a Fail can be

given. An Error verdict shall be used to indicate errors (exceptions) within the test system

itself. Verdicts can be user-defined. The verdict of a test case is calculated by the arbiter.”

[33]

Verification

“The process of evaluating a system or component to determine whether the products of

the given development phase satisfy the conditions imposed at the start of that phase” [23].

White-box testing

 “Testing based on an analysis of internal workings and structure of a piece of software.

Includes techniques such as Branch Testing and Path Testing. Also known as Structural

Testing and Glass Box Testing. Contrast with Black Box Testing” [12].

 113

B Acronyms and Abbreviations

AAA Authentication, Authorization and Accounting

ANSI American National Standards Institute

API Application Programming Interface

ASN.1 Abstract Syntax Notation One

ASQ Automatic Software Quality

ATM Asynchronous Transfer Mode

ATS Abstract Test Suite

AXE An open architecture, Ericsson’s communications platform. AXE is a

system for computer-controlled digital exchanges that constitute the nodes

in large public telecommunications networks. AXE is the basis for

Ericsson’s wire line and mobile systems.

BER Basic Encoding Rules

BSC Base Station Controller

BSS Base Station Subsystem/System

BTS Base Transceiver Station

CADE CPP Application Development Environment

CBE Common Base Event

CD Codec and Decoding

CDMA Code Division Multiple Access

CDMA2000 Code Division Multiple Access 2000

CH Component Handling

CLI Command Line Interface

CM Configuration Management

COM Component Object Model

CORBA Common Object Request Broker Architecture

Acronyms and Abbreviations

 114

CPP Connectivity Packet Platform

CPU Central Processing Unit

DOS Disk Operating System

E2E End-to-end

ECU Electronic Control Unit

EMF Eclipse Modeling Framework

EPL Eclipse Public License

ETS Executable Test Suite

ETSI European Telecommunications Standards Institute

FM Fault Management

GNU GNU’s Not Unix

GPB General Processor Board

GPL General Public License

GPRS General Packet Radio Service

GSM Global System for Mobile communications

GSN GPRS Support Node

GUI Graphical User Interface

HCE Hyades Collection Engine

HD Home Agent

HLR Home Location Register

HP Hewlett Packard

HTTP HyperText Transfer Protocol

IBM International Business Machines Corporation

IDE Integrated Development Environment

IDL Interface Description Language

IEC International Electrotechnical Commission

IEEE Institute of Electrical & Electronic Engineers

IIOP Internet Inter-ORB Protocol

Acronyms and Abbreviations

 115

IP Internet Protocol

IP&C IP & Connectivity

ISO International Organization for Standardization

ITU International Telecommunications Unit

IUT Implementation Under Test

J2EE Java 2 Enterprise Edition

JDK Java Development Kit

JDT Java Development Tooling

JMX Java Management Extensions

JNI Java Native Interface

JRE Java Runtime Environment

JVM Java Virtual Machine

JVMPI Java Virtual Machine Profiler Interface

JVMTI JVM Tool Interface

LAN Local Area Network

LDAP Lightweight Directory Access Protocol

LGPL Lesser GPL

MCN Mobile Core Network

MGCF Media Gateway Control Function

MGW Media Gateway

MPH Message Protocol Handler

MS Mobile Station

MSC Message Sequence Chart (MSC-96)

MSC Mobile services Switching Center

MTS Methods for Testing and Specification

O&M Operation and Maintenance

OMG Object Management Group

ORB Object Request Broker

Acronyms and Abbreviations

 116

OS Operating System

OSI Open Systems Interconnection

PA Platform Adapter

PC Personal Computer

PCO Point of Control and Observation

PDSN Packet Data Serving Node

PER Packet Encoding Rules

PICS Platform for Internet Content Selection

PIXIT Protocol Implementation Extra Information

PL Platform Layer

PM Performance Management

PSTN Public Switched Telephone Networks

PTCC Protocol & Testing Competence Centre

QoS Quality of Service

R&D Research & Development

RAC Remote Agent Controller

RBS Radio Base Station

RNC Radio Network Controller

RTL Runtime Layer

RTPAR Rational Test Asset Parcel

RTS Runtime System

RXI Radio access network aggregator / IP router

SA System Adaptor

SCCI Source Code Control Integration

SDK Software Development Kit

SDL Specification and Description Language

SEA Simulated Environment Architecture

SNMP Simple Network Management Protocol

Acronyms and Abbreviations

 117

SS7 Signaling System #7

STAF Software Testing Automation Framework

STAX STAF Execution Engine

SUT System Under Test

TAG Telephony Access Gateway

TCI TTCN-3 Control Interface

TCL Tool Command Language

TDM Time Division Multiplexing

TE TTCN-3 Executable

TelORB Telecommunications Object Request Broker

TM Test Management

TMC Test Management and Control

TMN Telecommunications Management Network

TPTP Eclipse Test & Performance Tools Platform Project

TRI TTCN-3 Runtime Interface

TSO Test Suite Operation

TSP Ericsson Telecom Server Platform

TTCN The Testing and Test Control Notation

U2TP UML 2 Test Profile

UE User Equipment

UML Unified Modeling Language

VB Visual Basic

VoIP Voice over IP

WCDMA Wide-band CDMA

WLAN Wireless LAN

WSN WLAN Serving Node

XMI XML Metadata Interchange

XML eXtensible Markup Language

Acronyms and Abbreviations

 118

XP eXtreme Programming

XSD XML Schema Definition

 119

C Introduction to TTCN-3

Testing and Test Control Notation generation 3 (TTCN-3) is an internationally

standardized, multi-purpose test language. TTCN-3 was standardized by European

Telecommunications Standards Institute (ETSI) [59] and Telecommunication Standardization

Sector, of International Telecommunication Union (ITU), (ITU-T) [58]. TTCN-3 is a formal,

dedicated and independent language, making it precise and distinct (interpreted in the same

way by everyone). TTCN-3 is generally focused on black box testing, but not only intended

for conformance testing, it can be used in many areas. Examples of areas where TTCN-3 can

be used are integration testing, interoperability/inter-working testing, load/stress testing,

performance testing, regression testing, robustness testing and system testing. Since TTCN-3

is suitable for testing in a variety of areas, it can be used to test a variety of applications such

as automotive applications, broadband technologies, cordless phones, Internet protocols,

middleware platforms, mobile communications, smart cards, and wireless LANs.

The advantages of TTCN-3 being a dedicated testing language, is that it is especially

designed with testing in mind. TTCN-3 is also abstract (the testing code has to be interpreted

and compiled before it can be executed), making it SUT independent and increases the level

of reusability. TTCN-3 supports systematic testing and test automation. Another advantage is

TTCN-3s standardization. Concepts based on standardization are generally safer investments

than non-standardized in-house solutions, since they are more future-proof.

The line-of-action when using TTCN-3 can roughly be divided into three steps:

specification, compilation and implementation. The specification part comprises specifying

test data descriptions, test cases, test verdicts and test configuration, among others. The

second part, compilation, is used to compile the abstract TTCN-3 code into an executable

code. Examples of executable codes are C/C++ and Java. Finally, the implementation part is

when the compiled code is implemented to an existing system. Most often test suites are

executed in test devices and PCs.

Introduction to TTCN-3

 120

The general structure of a TTCN-3 test system defined by ETSI, shown in Figure 48,

includes three main parts: the Test Management and Control (TMC), the TTCN-3 Executable

(TE) and the adaptation against SUT. The TMC consists of the Test Management (TM), the

Component Handling (CH) and the Coding and Decoding (CD). The adaptation against the

SUT is performed with the SUT Adapter (SA) and the Platform Adapter (PA). Two interfaces

are defined: the TTCN-3 Control Interface (TCI) and the TTCN-3 Runtime Interface (TRI).

Test System User

TM: Test Management

TE: TTCN-3 Executable

CD:
Coding

and
Decoding

CH:
Component

Handling

SA: SUT Adapter PA: Platform Adapter

SUT: System Under Test

TCI

TRI

Figure 48: The General Structure of a TTCN-3 Test System

The TM entity is responsible for the overall management of the test system. It is in the TM

that the test execution starts after the test system has been initialized. The TM is also the

entity that performs the test event logging and presentation to the test system user.

The CD entity is responsible for the encoding and decoding of the TTCN-3 values. The

TTCN-3 values are instances of TTCN-3 data types used in the test scripts. To be able to pass

TTCN-3 values between the TE and the SUT, encode and decode functions have to be

provided. An encode function takes values and encodes them into a transferable binary

representation so that they can be sent in an appropriate way. The decoder does the opposite

Introduction to TTCN-3

 121

of the encoder, it takes binary representations and decodes them back to TTCN-3 values.

Examples of standardized encoding schemes are Basic Encoding Rules (BER), Packed

Encoding Rules (PER) and Abstract Syntax Notation One (ASN.1). ASN.1 is a formal

language for abstractly describing messages to be exchanged among an extensive range of

applications, while BER and PER are encoding techniques. The TE determines what codecs

that should be used, so that the values/bit-strings get properly encoded/decoded.

During a test execution, the execution can be distributed among several test devices or test

system components. In order to properly perform a distributed test execution, the CH is

needed. The CH implements communication between distributed test systems components. In

short, the CH entity provides the needed functionality to synchronize test system components

that might be distributed onto several nodes.

The task of the TE part is to execute or interpret TTCN-3 modules, so that they can be

executed. The TTCN-3 modules contain the test specification, and before they can be

executed, the TE has to identify a number of structural elements that represents different

functionality. The structural elements that the TE identifies from the TTCN-3 modules are

Control, Behavior, Components, Types, Values and Queues. Often in relation to TTCN-3 the

terms Abstract Test Suite (ATS) and Executable test Suite (ETS) are mentioned. Roughly, the

ATS can be compared to the TTCN-3 module and the ETS to the TTCN-3 module after

compilation.

The SA is used to adapt message and procedure based communication of the TTCN-3 test

system with the SUT to the particular execution platform of the test system. The SA is also

responsible for sending requests and operations from the TE to the SUT and notifies the TE of

received test events from the SUT.

The PA is used to implement TTCN-3 external functions and timers. The PA is responsible

for notifying the TE of expired timers as well as letting the TE control the external functions

and timers.

The TCI is the interface between the TMC and the TE, and defines the interaction between

the TE and the TM, the TE and the CD, the TE and the CH. The TCI provides means for the

Introduction to TTCN-3

 122

TE to manage test execution, distribute execution of test components and encoding and

decoding test data.

The TRI is the interface between the TE and the SUT, and defines the interaction between

the TE and the SA, the TE and the PA. The TRI provides means for the TE to send test data to

the SUT or to manipulate timers, and similarly to notify the TE of received data and timeouts.

 123

D Market Analysis – Product Descriptions

This appendix contains descriptions of products studied during the market analysis in the

project.

D.1 Danet TTCN-3 Toolbox

D.1.1 Introduction

Danet’s TTCN-3 Toolbox [57], see Figure 49, is a TTCN-3 [53] compiling and processing

system that allows users to use available test suites or to develop their own test suites. TTCN-

3 Toolbox performs code generation to create executable test suites and provides flexible

management of test campaigns using open interfaces. TTCN-3 Toolbox is designed for testing

multiple protocols on development platforms and can be used to automate end-to-end/network

integration testing.

Market Analysis – Product Descriptions

 124

Figure 49: Danet TTCN-3 Toolbox

TTCN-3 Toolbox is based on TTCN-3, see Appendix C. TTCN-3 Toolbox is not only

suitable for data communication testing (synchronous) but also telecommunication

(asynchronous) and web service testing (XML based).

D.1.2 Functionality

Key features of TTCN-3 Toolbox, according to Danet [57], are to provide support across

major industry platforms including multi-platform support, and to provide efficient code

generation and execution with possibilities to customization. Other key features of TTCN-3

Toolbox are tracing functionality, result analysis and support for debugging. Since TTCN-3

Toolbox is built on the TTCN-3 TRI [49], adaptability against the SUT is also provided.

Market Analysis – Product Descriptions

 125

Danet TTCN-3 Toolbox has a GUI Framework and an integrated TTCN-3 editor. The

TTCN-3 Editor has syntax highlighting for easier usage. TTCN-3 Toolbox is embedded in

Rational’s Test RealTime Studio GUI framework [45] which eases integration with Rational’s

modeling tools and version control system.

TTCN-3 Toolbox also features Syntax Analysis. The Syntax Analysis functionality let

users easily find errors in their source code. Users can use their external functions and user-

defined libraries and link their own code with TTCN-3 test cases. TTCN-2 source code can be

converted to TTCN-3 with Danet’s TTCN-2 to TTCN-3 source code converter.

In terms of test campaign management, TTCN-3 Toolbox features interactive (user) or test

suite (automatically) controlled test campaign management. The TTCN-3 Toolbox GUI

admits more than one execution in sequence. The parameters are passed in an XML-based

form. TTCN-3 Toolbox has an integrated command line which enables the integration of

TTCN-3 Toolbox execution environment into other test management systems.

The runtime interface in TTCN-3 Toolbox is based on the TTCN-3 standardized runtime

interface TRI. The TRI contains several sample implementations, which will help users to

quickly get started. When using TRI and making the SUT adaptation, TTCN-3 ports have to

be mapped to TRI ports. Danet has a ‘testconfig’ control feature, which helps users map their

TTCN-3 ports to the TRI ports without having to re-compile, thus helping users save time.

The encoding and decoding part of messages is done automatically, based on a test suite’s

type and template information. TTCN-3 Toolbox supports ASN.1 encoding rules, BER, PER

and direct encoding. Users can implement their own or third-party codecs via the Test Control

Interface – Codec (TCI-CD) [50].

After the execution process, test case trace analysis and reporting can be performed.

TTCN-3 Toolbox uses an XML-based trace logging. To show the message structure in a

readable form and reduce the need for implementing decoding functionality, automatic

mnemonic decoding of events based on the test suite’s type and template information is

performed. TTCN-3 Toolbox shows online trace display and TTCN-3 log statement events

Market Analysis – Product Descriptions

 126

during a test case/test suite execution. The trace viewing is based on UML sequence diagrams

(similar to Message Sequence Charts (MSC) [58].

Debugging is supported by TTCN-3 Toolbox via the built in debugger. The debugger

makes it easy to find errors and let the users see how the TTCN-3 code is executed step by

step.

TTCN-3 Toolbox supports the Windows 32, Linux and Solaris platforms.

D.1.3 Architecture

Danet has used four phases when describing the architecture of TTCN-3 Toolbox (see

Figure 50). The four phases are: Test Generation, Test Execution, Result Analysis and Test

Reporting. The first phase Test Generation creates TTCN-3, opens TTCN-3 or imports

TTCN-2 source code. The TTCN-3 code is then compiled along with test parameters and

environment libraries. User Libraries can also be defined. During the Test Execution phase

the Test Campaign Manager executes the test with the compiled TTCN-3 code (executable

code). The third phase Result Analysis enables the user to do result comparison, tracing (both

textual and graphical) and debugging. Finally, the fourth step Test Reporting is used for post

processing and not really a part of Danet TTCN-3 Toolbox.

Market Analysis – Product Descriptions

 127

Figure 50: An Architectural Overview over TTCN-3 Toolbox

Before entering the first phase Test Generation, test development has to be done. When

performing test development, the test environment is created and test suites and test cases are

developed. Before compiling the abstract TTCN-3 test suites and the generation of the

executable test code, TTCN-3 Toolbox offers a restrictive syntax and semantic checking. The

syntax and semantic check is performed according to ISO 9646 [48]. Users are given the

opportunity to convert existing TTCN-2 test cases to TTCN-3 in order to reuse them in the

Test Execution phase. When converting TTCN-2 test cases to TTCN-3, it is important to

remember that the TTCN-3 source code created when performing the conversion is still

TTCN-2 test cases in TTCN-3 format. To take full advantages of TTCN-3, test cases should

be created from scratch or at least be modified to fully benefit the TTCN-3 format.

When it is time to compile the TTCN-3 source code to executable C source code, TTCN-3

Toolbox has support for incremental and selective compiling. Incremental compiling will

automatically only compile the changed parts since the last compilation. Selective compiling

Market Analysis – Product Descriptions

 128

will let the user choose which parts to compile. Make files are supported and so are user-

defined libraries. During the code generation/compilation, Platform for Internet Content

Selection/Protocol Implementation Extra Information (PICS/PIXIT) [51] template files are

generated as well. The PICS/PIXIT template files specify the test suite parameters and can be

further edited with Danet’s integrated PICS/PIXIT editor. In short, the purpose of the

PICS/PIXIT is to enable information to be provided during startup of the execution.

In the Test Execution phase, the Test Campaign Manager lets the user control the test suite

execution interactively. Test cases can be selected manually, automatically or can be

controlled by test execution lists. The pre-selection of test cases is performed according to

ISO 9646. Users can still modify or override the pre-selection. During the execution, a log

window shows test case output and can also show the SUT output. The adaptation towards

SUT in TTCN-3 Toolbox is an implementation of the reference interface TRI specified by

TTCN-3 [49].

The TTCN-3 test suites are mapped to the communication links in SUT with Danet’s Point

of Control and Observation (PCO)/Port Editor. The term PCO is used with TTCN-2 while it is

called a port in TTCN-3.

The Test Execution phase will generate test results. TTCN-3 Toolbox features a result

analysis with general (mnemonic) data decoder, trace analysis and debugging support. The

results can be compared using the result comparison. The result analysis let users see what is

going on in a test campaign. Statistics, tracing and logging preserves test case and SUT

activities. Users can also perform step-by-step analysis of test case execution via hyperlinks to

the TTCN editors. Within the result analysis a protocol independent mnemonic decoding is

used for all TTCN test suites. The mnemonic decoder shows the TTCN message data

structure and description in a general form. The test suite debugging feature does not change

test case verdicts and handles all SUT/test suite timing problems correctly. The debug tracing

can be performed both online and offline. The execution itself can be performed in parallel

according to TTCN-3, and can also be performed on both single and distributed platforms.

Market Analysis – Product Descriptions

 129

D.2 IBM Rational Testing Products

D.2.1 Introduction

IBM Rational provides several Software Quality products: IBM Rational Test Manager,

IBM Rational Functional Tester, IBM Rational Manual Tester, IBM Rational Performance

Tester, IBM Rational Purify, IBM Rational Robot, IBM Rational Test RealTime.

D.2.2 IBM Rational TestManager

D.2.2.1 Introduction

Rational TestManager [44] includes support for many testing-related activities: planning,

design, implementation, execution and evaluation. Different test methods are supported: unit

testing, functional regression testing, performance testing and configuration testing [46].

Rational Test Manager can be integrated with several other IBM Rational products:

Rational RequisitePro for requirements management, Rational ClearQuest for change

management and Rational ClearCase LT for configuration management. Rational Robot is

needed in order to develop automated test scripts.

There are also possibilities for customizing and extending the environment by defining

new test inputs and new test types [47].

D.2.2.2 Functionality

The following are examples of functionality included in Rational Test Manager [44]:

• Traceability between requirements and test cases.

• Create data pools for supplying data values to the variables in a test script.

• Create test plans with test cases.

• Implement test cases in test scripts.

• Monitor test execution.

• Test report generation.

Market Analysis – Product Descriptions

 130

• Configuration testing support through integration with VMWare server

virtualization software. Parallel configuration testing possible by use of agent

computers.

• Submit a defect to ClearQuest, with build, configuration, and script information

automatically filled in, from a failed log event, in an execution history (test log).

The test script types supported by TestManager [47] are listed in Table 3.

Test Script Type Description

GUI

A functional test script written in SQABasic, a proprietary Basic-like scripting

language.

VU

A performance test script written in VU, a proprietary C-like scripting language.

VB

A test script written in the Visual Basic language.

Java

A test script written in the Java language.

Command Line

A test script (written in any language) that can be executed from the command

line – for example, a DOS batch file, a Perl or Bourne shell script, or compiled C

program.

Manual
A procedure explaining how to perform a test manually that, when executed,

prompts a tester to verify the result of the test.

Table 3: IBM Rational TestManager Test Script Types

IBM Rational TestManager can be extended in two ways: by adding custom test script

types or by adding custom test input types [47].

Rational TestManager has an built-in data store for recording test assets and artifacts such

as test suites, test plans, test cases, reports, test logs, scripts, users, groups, computers. The

test assets and artifacts are stored in XML-format in Rational Test Asset Parcel (.RTPAR)

files and can be exported from TestManager and imported to TestManager in this format.

Market Analysis – Product Descriptions

 131

Test data to be used in test scripts are managed by means of data pools. There are functions

for creating and editing data pools within TestManager. Data pools are stored in two files: a

.csv text file with data pool values and a .spc specification file with data pool column names.

Data pools with data types and data values can also be imported into TestManager.

In TestManager, a test plan is created to manage folders with test cases. A test case is

implemented by building a test script and then associating that test script with the test case.

D.3 JUnit

JUnit [52] is a unit testing framework for Java. The interfaces and classes in the JUnit API

are shown in the class diagram in Figure 51. A test is created in a specialized test class, by

subclassing TestCase. Typically, the test class contains separate methods for testing the

corresponding methods in the class being tested, the Implementation Under Test. There are

convenience functions in the framework for setting up the test data before each test method is

run and tearing down the test data afterwards. There are also different assert methods for

testing various expected states.

Market Analysis – Product Descriptions

 132

Test
<<Interface>>

Protectable
<<Interface>>

TestListener
<<Interface>>

TestCase

TestSuite

TestDecorator

Assert
TestFailure

TestResult

AssertionFailedError

ComparisonFailure

ActiveTestSuite

ExceptionTestCase RepeatedTest TestSetup

Figure 51: JUnit Interfaces and Classes

D.4 OpenTTCN Tester for TTCN-3

D.4.1 Introduction

OpenTTCN Oy [65] is a Finish company that specializes in test execution tools.

OpenTTCN Oy has been active since 1993 and their primary focus is development of TTCN

based testing tools and components.

OpenTTCN Tester for TTCN-3 [66] is a test automation tool for executing both in-house

developed and standard test suites written in TTCN-3 [53] and TTCN-2 [48]. OpenTTCN

Tester for TTCN-3 is compliant with the ISO/IEC 9646 [48] conformance testing

methodology and framework.

OpenTTCN Tester for TTCN-3 is available for Windows and Linux, both versions support

CLI interaction and the Windows version also features a GUI, OpenTTCN Campaign

Manager (see Figure 52). Finally, OpenTTCN Tester for TTCN-3 can be integrated with

Market Analysis – Product Descriptions

 133

third-party test management software using the standardized TTCN-3 Control Interface – Test

Management (TCI-TM) [50] interface.

Figure 52: The OpenTTCN Campaign Manager

D.4.2 Functionality

The OpenTTCN virtual machine handles TTCN-3, TTCN-2, and ASN.1 [68] languages as

a hybrid just-in-time compiler and interpreter. OpenTTCN Tester for TTCN-3 includes one

tool to process TTCN-3 Core Language and ASN.1 language files, while another included

tool process files in TTCN-2 Machine Processable format. Parameters for both TTCN-3 and

TTCN-2 can be loaded and specified via XML files. A more natural approach when using

TTCN-3 is specifying module parameters in a file using the TTCN-3 Core Language syntax

Market Analysis – Product Descriptions

 134

in a modulepar section. The test suite parameters term is used with TTCN-2 and the module

parameters term is used for TTCN-3 for the same type of parameters.

OpenTTCN Tester for TTCN-3 complies with the ISO/IEC 9646 OSI Conformance

Testing Methodology and Framework, the general framework where TTCN-2 was originally

developed. OpenTTCN Tester for TTCN-3 features an interactive display during the test

campaign execution and display of TTCN-3 and TTCN-2 log events. The Log events can be

saved in text or XML format.

Statistics of previously executed test campaigns is also shown in form of pass, fail,

inconclusive, none and error verdicts along with the total number of test cases.

D.4.3 Architecture

The OpenTTCN architecture is built upon distributed modular components. The

architecture has been used to implement the OpenTTCN Tester for TTCN-3 among other

OpenTTCN products. The architecture can be divided into six components:

• OpenTTCN User Interface

• OpenTTCN Virtual Machine

• OpenTTCN Repository

• OpenTTCN Coding and Decoding

• OpenTTCN SUT Adapter

• OpenTTCN Platform Adapter

OpenTTCN Tester for TTCN-3 has two alternative user interfaces: a GUI (available for the

Windows platform) and a CLI (available for the Windows platform and the Linux platform).

OpenTTCN Tester for TTCN-3 can also be integrated with existing Test Management

software using the TCI-TM interface, which is available as a library with an ANSI C API.

OpenTTCN also has a web-based test management and control tool user interface,

OpenTTCN Xpress [67], which is suitable when sharing testing through Internet or intranets.

OpenTTCN Xpress has more sophisticate functionality besides the features of OpenTTCN

Market Analysis – Product Descriptions

 135

Campaign Manager (the Windows GUI). Features are user authentication and authorization

for his/her test projects, GUI for editing test suite/module parameters, a database to hold test

results, dynamic ISO/IEC 9646 compliant test reports and more detailed test logs.

The OpenTTCN Virtual Machine component, also referred to as the “Server-part”, consists

of TTCN-3 and TTCN-2 interpreters and implements part of the TTCN-3 Executable. It

implements necessary functionality to control and execute test specifications.

The OpenTTCN Repository component enables storage of TTCN-3, TTCN-2 and ASN.1

test suites and values of test suite and module parameters. The OpenTTCN Repository

implements part of the TTCN-3 Executable (together with OpenTTCN Virtual Machine).

The OpenTTCN Coding and Decoding component is used for encoding and decoding

TTCN-3 and TTCN-2 messages. OpenTTCN Coding and Decoding is an implementation of

the TCI Codec and Decoding (TCI-CD) [50] interface. The same TTCN-3 TCI-CD interface

is used for implementing encoders and decoders for both TTCN-3 and TTCN-2 test systems.

The OpenTTCN SUT Adapter is an implementation of the TTCN-3 TRI [49] interface.

The same TTCN-3 TRI is used for implementing SUT Adapters (SA) for both TTCN-3 and

TTCN-2 test systems. The OpenTTCN SUT Adapter component consists of one or more

processes that contain the required functionality to be able to connect the SUT to the Tester

(the test executable). In TTCN-3 ports are used to perform the connection, while Points of

Control and Observation (PCO) are used in TTCN-2. Both TTCN-3 ports and TTCN-2

“ports” are implemented using TTCN-3 TRI interface.

The OpenTTCN Platform Adapter is an implementation of the triPlatform interface. The

same triPlatform interface is used for implementing Platform Adapters (PA) for both TTCN-3

and TTCN-2 test systems. Both TTCN-3 external functions and TTCN-2 Test Suite

Operations are implemented using TTCN-3 triPlatform interface. The OpenTTCN Platform

Adapter can be implemented as a separate process or combined with the OpenTTCN SUT

Adapter. The OpenTTCN Platform Adapter component consists of one process that contains

external functions defined in the test specification in abstract terms. The external functions are

Market Analysis – Product Descriptions

 136

used to add new operations to the test language that cannot be specified otherwise. In TTCN-2

the term Test suite Operation Declarations (TSO) are used.

OpenTTCN Tester for TTCN-3 supports Microsoft Windows 32 (NT 4.0, 2000, XP) and

RedHat Linux (9.0) and SuSE Linux (8.2) platforms.

Standards used in OpenTTCN Tester for TTCN-3 are:

• ASN.1

• ISO 9646

• TTCN-2

• TTCN-3 TCI

• TTCN-3 TRI

• PIXIT [51]

• XML

D.5 Scapa Test and Performance Platform 3.1

Scapa Test and Performance Platform 3.1 [43] is a performance testing tool from Scapa

Technologies [42] based on the Eclipse Test and Performance Tools Platform (TPTP) [27].

Scapa Test and Performance Platform 3.1 works by simulating multiple users of a

computer system and can be used for performance testing or stress testing. End-user response

times are measured together with different performance metrics gathered from the SUT.

There are diagnosis and monitoring functionality to help analysing performance and

systems information, such as different resource usage, during runtime. Diagnosis and

monitoring of collected performance data may be used for optimizing system response times,

in order to achieve better end-user experience. Scapa Test and Performance Platform 3.1 helps

in discovering and locating the bottlenecks of a system. By optimizing the bottlenecks found,

response time can be optimized in an efficient way. Scapa Test and Performance Platform 3.1

may be used as a testing tool when constructing a system, but the most important usage is

perhaps the possibility to use it as a help for fixing problems in existing installations.

Market Analysis – Product Descriptions

 137

Problems in existing installations may be purely performance related, but may also involve

more serious defects such as hang-ups or mal-functioning programs.

The target environments for Scapa Test and Performance Platform 3.1 are different server-

based solutions such as Java/J2EE, Web Services, Windows Client/Server or Citrix [72]

Application/Terminal Server.

D.6 Telelogic TAU/Tester

D.6.1 Introduction

Telelogic’s TAU/Tester [55], see Figure 53, is a member of the TAU tool family provided

by Telelogic [54]. The TAU family is a set of tools that provide support for automating design

and development tasks. The TAU family is designed to support systems engineering, software

development for embedded and advanced systems, quality assurance and testing. The family

consists of four products: TAU/Architect for systems architecture and design,

TAU/Developer for model-driven software development, TAU/Logiscope for software

quality assurance and metrics, and finally TAU/Tester which is specialized for systems and

integration testing over multiple industries.

TAU/Tester is a stand-alone tool based on TTCN-3, see Appendix C. TAU/Tester is built

to support the full test cycle. Test automation and support of multiple target environments due

to its open structure are also key features. Since TAU/Tester is built on the TTCN-3 standard

[53], which has a specified interface called TTCN-3 Runtime Interface (TRI) [49], it is

flexible to use with everything from small local to large scaled distributed systems.

TAU/Tester can be integrated with various configuration management systems.

Market Analysis – Product Descriptions

 138

Figure 53: Telelogic TAU/Tester showing a TTCN-3 Tutorial

D.6.2 Functionality

Telelogic TAU/Tester can be used to test a variety of different products and applications

within diverse industries. It is suitable for testing of communications such as: switches,

infrastructure, datacom devices and Voice over IP (VoIP). It can also be used to perform

different tests within military and aerospace, such as command and control systems, military

and commercial aircrafts, and satellite systems. Testing can also be done using TAU/Tester

Market Analysis – Product Descriptions

 139

within the transportation sector including electronic control units (ECUs) and chassis systems,

vehicle information and computing system and much more.

Testing is not just a phase in software development; it contains its own cycle. The Test

cycle includes the following phases, according to Telelogic [54]: test design and development,

analysis, execution and debugging. It is important to remember the importance of testing.

Testing will help detecting defects and by finding errors early costs are reduced. Testing also

improves the quality of the software and customer’s requirements are more easily met.

Telelogic has kept the full test cycle concept in mind when developing TAU/Tester, which

will help the user find the red tread during the test phase.

One of the most important features of TTCN-3 is the ability to dynamically be able to

construct and re-configure distributed components. To be able to dynamically construct and

re-configure along with being able to execute and run components in parallel, makes TTCN-3

based test tools very efficient to perform testing in even the most complex distributed

systems. TAU/Tester takes advantage of these benefits of TTCN-3 and has support for large

distributed systems and for integration of configuration and version management tools. Being

able to execute parallel tests also makes TAU/Tester feasible for load tests over distributed

systems.

Market Analysis – Product Descriptions

 140

D.6.3 Architecture

TTCN-3 Dependent Code

Runtime System (RTS)

Integration Codecs
Systems

Log
Mechanism

s

System Under Test
(SUT)

RTL

RTL

PL

ETS

TTCN-3 Abstract Test Suite (ATS)

Figure 54: The Architecture of TAU/Tester’s Executable Test Suite (ETS)

Telelogic [56] uses the concept Executable Test Suite (ETS) in TAU/Tester to describe the

architecture used when executing tests, see Figure 54. The ETS consists of five parts: TTCN-

3 Dependent Code, Runtime System (RTS), Integration, Codecs Systems and Log

Mechanisms. The ETS also specifies two interfaces: Runtime Layer (RTL) and Platform

Layer (PL).

The TTCN-3 Abstract Test Suite (ATS) Generated Code is used to compile the abstract

test language (TTCN-3) into an executable language (C language). The generated C code is

only used to be able to execute the test.

Market Analysis – Product Descriptions

 141

D.6.3.1 The Runtime System (RTS)

The Runtime System can be seen as the engine of the TTCN-3 test suite execution. It

handles values, control components and much more. Two interfaces are defined by the RTS:

Runtime Layer (RTL) and the Platform Layer (PL). The RTL interface defines services

provided by the RTS. Services that can be accessed via RTL are used by non-TRI integrations

and encoders/decoders as an example. The second interface defined by RTS, PL, defines

services that RTS needs from the Integration module, to be able to function properly.

When executing tests, a great amount of memory is allocated. Allocation of the memory

can be done permanently or temporarily. The RTS uses temporary memory allocation due to

performance reasons and to minimize the potential risk of memory leaks. The memory

allocation in RTS is performed with a dynamically growing memory area, which expands

automatically when needed. The RTS is configurable to be able to change its behavior. To be

able to save configurations and let integrations and codecs, among others, get access to the

configurations, a storage facility is used. The storage facility is populated with key-value pairs

represented as TTCN-3 RTS values. Source Tracking is used in RTS to keep track of source

code locations during the execution. The source tracking is also used to track execution in

other integrations modules like encoder and decoder functions and log mechanism

implementations.

D.6.3.2 The Integration Module

The integration module of the ETS is something that has to be implemented by the user to

make the RTS able to communicate with the SUT. What has to be done is an implementation

of the PL interface, which is defined by the RTS. The PL interface defines what is needed by

the RTS in forms of services to be able to provide integration functionality correctly.

Examples of services are memory primitives, representation of timers, handling of time, SUT

communications and task concurrency primitives. The implementation of the integration

module can be performed in three different ways: by using the provided TRI integration, by

extending and modifying the non-TRI example integration (which is provided by

Market Analysis – Product Descriptions

 142

TAU/Tester) or by implementing a non-TRI integration from scratch. According to Telelogic,

the first way (using the TRI integration) is the easiest way. The second and third way,

extending the non-TRI or building it from scratch, gives more flexibility but also requires

more of the user (especially when building the non-TRI from scratch). When using the

provided TRI integration, an implementation covering the System Adaptor (SA) and Platform

Adaptor (PA), both specified by the TRI, has to be done. When using the one of the non-TRI

integrations, the PL implementation has to be done more or less by the user.

D.6.3.3 The Codecs Systems

The RTS supports multiple codecs systems, which all are registered at runtime during the

initialization phase. When the initialization phase is performed all codecs systems encoder

and decoder functions have to be associated with the existing types in the system that needs to

be encoded during execution.

D.6.3.4 The Log Mechanisms

Logging during the execution is an essential part of the RTS. Two mechanisms for logging

are provided by TAU/Tester: a default text-based log mechanism and a log mechanism that

logs to files with Message Sequence Charts (MSC-96) syntax. The RTS supports an easy way

to plug in user-defined log mechanisms, in order to save logs in the way that the user wants.

Each component has its own log instances. Only events and information that is related to

every specific component will be logged.

D.7 Testing Technologies TTworkbench

D.7.1 Introduction

Testing Technologies [69], a spin-off of Fraunhofer FOKUS [70] research institute,

develops test development tool series and solutions based on the standardized test

specification language TTCN-3.

Market Analysis – Product Descriptions

 143

Testing Technologies’ product TTworkbench, see Figure 52, is a graphical test

development and execution environment using TTCN-3. TTworkbench is based on the

Eclipse platform [25] and is available in three versions:

• TTworkbench Basic

• TTworkbench Professional

• TTworkbench Enterprise

All versions of TTworkbench have a built-in TTCN-3 compiler and a textual TTCN-3 editor,

while the Professional and Enterprise versions of TTworkbench also have a graphical TTCN-

3 editor and ASN.1 [68] and Interface Definition Language (IDL) [71] data support. Finally,

all TTworkbench versions feature test management, execution and analysis; in addition, the

Enterprise version of TTworkbench can perform distributed execution.

Market Analysis – Product Descriptions

 144

Figure 55: TTworkbench showing the Built-in Text Editor

D.7.2 Functionality

TTworkbench features:

• TTCN-3 Core Language editor

• Graphical TTCN-3 editor

• TTCN-3 Compiler

• Test management

• Execution

• Analysis

Market Analysis – Product Descriptions

 145

The TTCN-3 Core Language editor (CL-editor) fully supports the TTCN-3 ETSI standard.

The CL-editor supports standard text editor functions, syntax highlighting, and validation of

test specifications. Other features of the CL-editor are: Error reporting with source navigation,

online parsing and a TTCN-3 console.

The Graphical TTCN-3 editor (GFT editor) enables graphical design and visualization of

test cases. The graphical test cases are represented in GFT sequence diagrams. Native TTCN-

3 data can be imported for type and template definitions, messages and data handling. The

GFT can be generated out of TTCN-3 core language, and GFT can be generated on-line to

TTCN-3 core language. The GFT can be exported to Graphic Interchange Format (GIF)

images for documentation purposes. XML is used as storage format for the GFT for possible

future interoperability.

The TTCN-3 Compiler enables compilation from the CL-editor and TTCN-3 console. It

fully supports the TTCN-3 ETSI standard with dynamic configuration, both message-based

and procedure-based communication, modularization with importing and test control. The

TTCN-3 Compiler supports error reporting with source navigation.

TTworkbench supports a variety of functions to manage, execute and analyze TTCN-3

compiled test suites. Logging of the TTCN-3 test case execution results can be performed

both online and offline, and filtering of the logs is also possible. Test data/results can be saved

and opened in order to view statistics, analyze and validate data. Generation of test reports

and scripting for batch mode tests can also be performed with TTworkbench.

D.7.3 Architecture

TTworkbench is implemented in Java and based on the Eclipse 3.0.1 platform. Eclipse

Modeling Framework (EMF) is also needed as well as Java 1.4.2 to get TTworkbench up and

running. The architecture consists of several plug-ins for Eclipse. Some of them are

TTworkbench CLEditor plug-in, TTworkbench TTthree plug-in and TTworkbench TTman

plug-in. The plug-ins can be seen as functionality divided into smaller parts.

Market Analysis – Product Descriptions

 146

The TTworkbench CLEditor plug-in contains the functionality required for the CL-editor.

It has been implemented to fully support the TTCN-3 ETSI standard. The Ttworkbench

CLEditor plug-in adds the TTCN-3 CL-editor and a TTCN-3 menu into the Eclipse platform.

The TTworkbench TTthree plug-in holds the functionality necessary to compile TTCN-3

modules into test executables. Adaptation against SUT is supported via the TTCN-3 Runtime

Interface (TRI). Integration of external codecs is supported via the TTCN-3 Control Interfaces

(TCI).

Finally, the TTworkbench TTman plug-in (or TTmex in TTworkbench Enterprise version,

which supports distributed execution) is responsible for test management, execution and

analysis functionality. Additionally plug-ins installed are plug-ins for core functionality, help

and meta models.

Since TTworkbench is built upon Java, all platforms supported by Eclipse and Java, are

supported by TTworkbench.

Standards used in TTworkbench are:

• ASN.1

• IDL

• TTCN-3

• XML

 147

E Market Analysis – Comparison Points

Table 4 contains a summary of the points used to compare different products in the market

analysis.

Comparison Point Description

General

Main target SUT environment For example Telecom, Desktop, Distributed Systems, Web-based

applications etc.

Test Management Test Management phases supported:

Preparation, Execution, Evaluation.

Open Source, license If the product is Open Source, and if so, which license is used.

Platform OS support

Test methods supported

Automatic testing Support for automated testing.

Distributed systems Support for remote test execution, data collection etc.

GUI-testing Support for testing Graphical User Interfaces.

Load/Stress testing Type of load testing supported; for example parallel execution with

virtual users or interaction with external load generators.

(This point also includes support for stress testing; the assumption is

that the same functionality is required.)

Manual testing Support for manual test cases, as a special case of automatic test cases.

Protocol testing Support for protocol testing.

Unit testing Support for unit testing.

Market Analysis – Comparison Points

 148

Interoperability

Data models Data models used for test assets, artifacts, etc.

Database support Built-in database. Support for import, export from external database.

Launching support (remote) Support for remote launching of test bed, for example: start up of

nodes, connection of nodes, data sanity check, test execution and test

bed tear down.

Standards used/supported Which standards (data formats, models etc) that the product uses and/or

supports.

SUT interface connection Technical solution for remote connection to SUT, for example adapters,

interfaces etc.

Test asset export Support for exporting different test assets, for example test cases,

execution history, logs, traces.

Test asset import Support for importing different test assets, for example test cases,

execution history, logs, traces.

Tool integration Support for integrating different external tools

Test Preparation

Capture/playback Support for capture/playback, for example GUI events or HTTP

packets.

Editor Built-in editor for test development; test plans, test cases, test scripts,

test data. External editors supported.

SUT Instrumentation Support for instrumenting SUT source code for coverage, performance,

or trace data.

Test case re-use Support for re-using test cases by importing them from an external

system (external repository or external tool).

Test data Support for creating, editing and associating test data with test cases.

Test data re-use Support for re-using test data by importing it from an external

repository.

Test script languages Test script languages supported.

Market Analysis – Comparison Points

 149

Test Execution (real-time)

SUT log monitoring Runtime monitoring of log events created by the SUT.

SUT performance/load/statistics

monitoring

Runtime monitoring of SUT performance, load or other measurements.

SUT trace monitoring Runtime monitoring of SUT traces (graphical/textual), for example

sequence diagram of method calls between classes (normally requires

instrumented SUT source code).

Test case execution monitoring Runtime monitoring of test execution (test cases with pass/fail

verdicts).

Evaluation (post mortem)

Execution history analysis Analysis of test execution history (search, filter etc).

SUT log analysis Analysis of SUT logs.

SUT profiling analysis Analysis of coverage and/or performance profiling data.

SUT trace analysis Support for viewing SUT traces (graphical/textual) after test execution,

for example sequence diagram of method calls between classes.

Table 4: Comparison Points used in the Market Analysis

 151

F Market Analysis – Product Evaluations

The product evaluations are divided into two groups: ready-to-use products see Section

F.1, and frameworks for building new test tools, see Section F.2.

F.1 Ready-to-Use Products

 152

F.1.1 Danet TTCN-3 Toolbox
General

Main target SUT environment TTCN-3:
• Telecom (asynchronous message exchange)
• Datacom (synchronous client/server communications)

Web Service (XML-based communications)

Test Management Preparation (development, generation), Execution, Evaluation
(analysis, reporting)

Open Source, license No

Platforms supported
Win32, Solaris, HP-UX, Digital Tru64 Unix, Linux, LynxOS,
VxWorks

Test Methods Supported

Automatic testing Yes

Distributed systems Yes

GUI-testing No

Load/Stress testing Yes (Parallel execution TTCN-3)

Manual testing No

Protocol testing Yes

Unit testing No

Interoperability

Data models Based on the TTCN-3 standard

Database support No

Launching support (remote) No

Standards used/supported TTCN-3, ASN.1, BER, PER, XML-based TTCN-3 trace logging

SUT interface connection TTCN-3 TRI standard

Test asset export Export of execution history (TTCN-3 trace) in XML based format

Test asset import TTCN-2 test cases (TTCN-2-to-3 Converter)

Tool integration Integration with IBM Rational Test RealTime

Test Preparation

Capture/playback No

Editor Yes

SUT instrumentation No

Test case re-use Yes (TTCN-2 and TTCN-3 test cases)

Test data No

Test data re-use No

Test script languages TTCN-2 via import, TTCN-3, ASN.1

Test Execution (real-time)

SUT log monitoring No

SUT performance/load/statistics
monitoring

No

SUT trace monitoring No

Test case execution monitoring Yes

Evaluation (post mortem)

Execution history analysis Yes, TTCN-3 trace analysis, hyperlinks to TTCN-3 source code

SUT log analysis No

SUT profiling analysis No

SUT trace analysis No

 153

F.1.2 Eclipse TPTP 3.2 (as a

ready-to-use product)
General

Main target SUT environment Java, Web-app

Test Management Preparation, execution, evaluation

Open Source, license Eclipse Public License (EPL)

Platforms supported Win32, Linux, Solaris, AIX, HPUX, Mac, IBM iSeries, IBM zSeries

Test Methods Supported

Automatic testing Yes

Distributed systems Yes

GUI-testing Test tool for browser-based applications

Load/Stress testing No

Manual testing Yes, Test tool for manual test cases

Protocol testing No

Unit testing Yes, Test tool for JUnit tests

Interoperability

Data models Test definition, Test execution history, Log, Trace, Statistical

Database support No

Launching support (remote) Java JVM

Standards used/supported UML (2.0), UML2 Test Profile (U2TP), Common Base Event (CBE),
XML, XMI, JMTI

SUT interface connection Testability interface (Remote Agent Controller and remote agents)

Test asset export Yes, but limited. Resource files in zip file format saved in user’s
workspace.

Test asset import No

Tool integration Integration with Web browsers for recording HTTP requests. Integration
with Performance Monitor on Windows and Linux. Integration with
JVMPI for Java profiling (code coverage, execution times, memory
analysis).

Test Preparation

Capture/playback Web-app

Editor JUnit, Web-app, Manual test cases

SUT instrumentation Java profiling, see Tool integration

Test case re-use No

Test data Yes (data pools)

Test data re-use No

Test script languages Java

Test Execution (real-time)

SUT log monitoring No. Requires customized adapter.

SUT performance/load/statistics monitoring Yes, Performance monitor

SUT trace monitoring Yes, Java profiling

Test case execution monitoring Yes, Test Execution History

Evaluation (post mortem)

Execution history analysis Yes

SUT log analysis No. Requires customized adapter.

SUT profiling analysis Yes, Java profiling: code coverage on method level, execution times on
method level, memory usage analysis.

SUT trace analysis Yes, Java profiling

 154

F.1.3 IBM Rational Test

Manager

General

Main target SUT environment Desktop

Test Management Preparation (planning, design, implementation), execution, evaluation

Open Source, license No

Platforms supported Win32, Linux

Test Methods Supported

Automatic testing Yes

Distributed systems Support for local and remote test execution

GUI-testing Yes (Rational Robot)

Load/Stress testing Yes (virtual users, data pools)

Manual testing Yes (manual test scripts)

Protocol testing No

Unit testing Yes

Interoperability

Data models See database support.

Database support Built-in datastore for test suites, test plans, test cases, reports, test logs,
scripts, users, groups, computers

Launching support (remote) No

Standards used/supported XML, in .RTPAR asset files

SUT interface connection No

Test asset export Yes, via XML .RTPAR file format

Test asset import Yes, via XML .RTPAR file format, Data pools (.csv files)

Tool integration External scripts via command line interface. Integration with several other
IBM Rational products. Test input adapters, execution adapters, test asset
import/export (file level interoperability).

Test Development

Capture/playback Robot - record test scripts
(QualityArchitect - generate test scripts from Rose models)

Editor Editor for test Plans, test Cases, test scripts, datapools

SUT instrumentation No

Test case re-use Custom test scripts can be used

Test data Datapools (.cvs + .spc files)

Test data re-use Import via .csv files

Test script languages Rational SQABasic (GUI test script), VU or VB (generated from Robot),
Java, Custom test script type

Test Execution (real-time)

SUT log monitoring No

SUT performance/load/statistics monitoring Local/Agent computer resource usage - for configuration testing

SUT trace monitoring No

Test case execution monitoring Yes (Progress Bar, Suite Views)

Evaluation (post mortem)

Execution history analysis Test log analysis; filter, defect creation, comparators (for verification points
created in Robot)

SUT log analysis No

SUT profiling analysis Profiling when unit testing supported in Rational Test RealTime

SUT trace analysis No

 155

F.1.4 JUnit

General

Main target SUT environment Java

Test Management Implementation, Execution

Open Source, license Common Public License Version 1.0

Platforms supported Java (Win32, Linux, Solaris)

Test Methods Supported

Automatic testing Yes

Distributed systems No

GUI-testing No

Load/Stress testing No

Manual testing No

Protocol testing No

Unit testing Yes

Interoperability

Data models No

Database support No

Launching support (remote) No

Standards used/supported No

SUT interface connection No

Test asset export No

Test asset import No

Tool integration No

Test Preparation

Capture/playback No

Editor No

SUT instrumentation No

Test case re-use No

Test data No

Test data re-use No

Test script languages Java

Test Execution (real-time)

SUT log monitoring No

SUT performance/load/statistics monitoring No

SUT trace monitoring No

Test case execution monitoring Graphical TestRunner

Evaluation (post mortem)

Execution history analysis No

SUT log analysis No

SUT profiling analysis No

SUT trace analysis No

 156

F.1.5 OpenTTCN Tester

General

Main target SUT environment TTCN-3:
• Telecom (asynchronous message exchange)
• Datacom (synchronous client/server communications)

Test Management Execution

Open Source, license No

Platforms supported Win32, Linux

Test Methods Supported

Automatic testing Yes

Distributed systems Yes

GUI-testing No

Load/Stress testing Yes (Parallel execution TTCN-3)

Manual testing No

Protocol testing Yes

Unit testing No

Interoperability

Data models Based on the TTCN-3 standard

Database support No

Launching support (remote) No

Standards used/supported ASN.1, ISO 9646, TTCN-2, TTCN-3 TCI, TTCN-3 TRI, PIXIT, XML

SUT interface connection TTCN-3 TRI standard

Test asset export TTCN logs as text/XML

Test asset import No

Tool integration Command-line user interface to OpenTTCN Tester for scripting and
integration with other tools. TCI-TM ANSI C API for integration with
other tools.

Test Preparation

Capture/playback No

Editor No

SUT instrumentation No

Test case re-use Yes

Test data No

Test data re-use No

Test script languages TTCN-2, TTCN-3, ASN.1

Test Execution (real-time)

SUT log monitoring No

SUT performance/load/statistics monitoring No

SUT trace monitoring No

Test case execution monitoring Yes

Evaluation (post mortem)

Execution history analysis Yes

SUT log analysis No

SUT profiling analysis No

SUT trace analysis No

 157

F.1.6 Scapa Test and

Performance Platform

3.1

General

Main target SUT environment Java/J2EE
Web-apps
Windows client/server
Citrix Terminal Services
Other Thin Client Environments

Test Management Preparation, Execution, Evaluation

Open Source, license No

Platforms supported Eclipse supported

Test Methods Supported

Automatic testing Yes

Distributed systems Yes

GUI-testing Web-app

Load/Stress testing Yes, simulation of multiple users

Manual testing No

Protocol testing No

Unit testing No

Interoperability

Data models Eclipse based

Database support No

Launching support (remote) No

Standards used/supported See Test asset export. Eclipse based.

SUT interface connection Eclipse based

Test asset export Exports results to Excel. HTML-based test report.

Test asset import No

Tool integration
Integration with CVS. Interfaces to third-party repositories. See Main target
SUT environment.

Test Preparation

Capture/playback Web-app (HTTP)

Editor Yes

SUT instrumentation No

Test case re-use Possible to import test cases from other tests.

Test data Virtual users

Test data re-use No

Test script languages Wintask, C++, VB, different object based scripts

Test Execution (real-time)

SUT log monitoring Yes, event logs

SUT performance/load/statistics monitoring
Yes, application service levels, system utilization. Performance seen by
virtual users. Systems information and performance statistics.

SUT trace monitoring No

Test case execution monitoring Control of multiple tests and test variables in real-time.

Evaluation (post mortem)

Execution history analysis Correlation of test results and systems performance data.

SUT log analysis Yes, event logs

SUT profiling analysis No

SUT trace analysis No

 158

F.1.7 Telelogic TAU/Tester
General

Test Tool Framework No (see definition in Section 4.2)
Main target SUT environment TTCN-3:

Telecom (asynchronous message exchange)
Datacom (synchronous client/server communications)
Web Service (XML-based communications)

Test Management Development, generation, execution

Open Source, license No

Platforms supported Win32, Solaris 8, Linux RedHat Enterprise 3.0

Test Methods Supported

Automatic testing Yes

Distributed systems Yes

GUI-testing No

Load/Stress testing Yes (Parallel execution TTCN-3)

Manual testing No

Protocol testing Yes

Unit testing No

Interoperability

Data models Based on the TTCN-3 standard

Database support No

Launching support (remote) No

Standards used/supported TTCN-3 (abstract test language, TRI), ASN.1, BER, PER, MSC (Logging)

SUT interface connection TTCN-3 TRI standard, non-TRI example implementation

Test asset export SUT logging (text-based or MSC-96 or user-defined)

Test asset import No

Tool integration Configuration management via SCCI 1.1

Test Preparation

Capture/playback No

Editor Own Simple

SUT instrumentation No

Test case re-use Yes

Test data No

Test data re-use No

Test script languages TTCN-3

Test Execution (real-time)

SUT log monitoring No

SUT performance/load/statistics monitoring No

SUT trace monitoring No

Test case execution monitoring No

Evaluation (post mortem)

Execution history analysis Yes

SUT log analysis No

SUT profiling analysis No

SUT trace analysis No

 159

F.1.8 Testing Tech

TTWorkbench

General

Test Tool Framework Eclipse plug-in

Main target SUT environment TTCN-3:
Telecom (asynchronous message exchange)
Datacom (synchronous client/server communications)
Web Service (XML-based communications)

Test Management Development, generation, execution, evaluation

Open Source, license No

Platforms supported See Eclipse

Test Methods Supported

Automatic testing Yes

Distributed systems Yes

GUI-testing No

Load/Stress testing Yes (Parallel execution TTCN-3)

Manual testing No

Protocol testing Yes

Unit testing No

Interoperability

Data models Based on the TTCN-3 standard

Database support No

Launching support (remote) No

Standards used/supported TTCN-3, ASN.1, IDL, XML

SUT interface connection TTCN-3 TRI standard

Test asset export XML export of TTCN-3 sequence diagrams from Graphical Editor

Test asset import No (TTCN-3 core (text) import in Graphical Editor)

Tool integration See Eclipse

Test Preparation

Capture/playback No

Editor Both textual (Eclipse plug-in) and graphical (stand-alone)

SUT instrumentation No

Test case re-use No

Test data No

Test data re-use No

Test script languages TTCN-3, ASN.1

Test Execution (real-time)

SUT log monitoring No

SUT performance/load/statistics monitoring No

SUT trace monitoring No

Test case execution monitoring Yes (On-line TTCN-3 logging)

Evaluation (post mortem)

Execution history analysis Yes, TTCN-3 trace analysis, hyperlinks to TTCN-3 source code

SUT log analysis No

SUT profiling analysis No

SUT trace analysis No

 160

F.2 Frameworks

 161

F.2.1 Eclipse TPTP 3.2 (as a

framework)
General

Main target SUT environment Java, Web-app

Test Management Preparation, execution, evaluation

Open Source, license Eclipse Public License (EPL)

Platforms supported Win32, Linux, Solaris, AIX, HPUX, Mac, IBM iSeries, IBM zSeries

Test Methods Supported

Automatic testing Yes, infrastructure for automatic test deployment and execution

Distributed systems Yes, Remote Agent Controller launches control and data collection agents
on remote machines. TCP/IP (sockets) communication.

GUI-testing Capture of HTTP requests supported.

Load/Stress testing Possible to use TPTP as a base for a load/stress testing tool, for example
simulation of users as with Scapa T&P Platform, see Section F.1.6.

Manual testing Possible to use TPTP for customized manual testing tool, the ready-to-use
manual testing tool may be used as a base.

Protocol testing Possible to use TPTP as a base for a protocol testing tool, Testing
Technologies TTworkbench is an example, see Section D.7.

Unit testing Possible to use TPTP as a base for a customized unit testing tool, the ready-
to-use JUnit based tool may be used as a base.

Interoperability

Data models Test definition, Test execution history, Log, Trace, Statistical

Database support Not in TPTP 3.2, but Relational DB support in future releases of TPTP.

Launching support (remote) Infrastructure for remote deployment, execution and data collection.

Standards used/supported UML (2.0), UML2 Test Profile (U2TP), Common Base Event (CBE),
XML, XMI, JMTI

SUT interface connection Testability interface (Remote Agent Controller and remote agents)

Test asset export Yes, but limited. Resource files in zip file format saved in user’s
workspace. Relational Data Base support in future releases of TPTP.

Test asset import No explicit support functions.

Tool integration Plug-ins in client Workbench. Plug-ins in Remote Agent Controller.
Infrastructure for extensions and extension points.

Test Preparation

Capture/playback Capture/playback of HTTP requests supported.

Editor Support for building customized editors, both textual and form based.

SUT instrumentation Java profiling

Test case re-use No explicit support functions.

Test data Yes (data pools)

Test data re-use No explicit support functions.

Test script languages Possible to extend Eclipse for any script language.

Test Execution (real-time)

SUT log monitoring Support for creating log adapters to Common Base Events. Rich set of
ready-to-use functions, may be extended/customized.

SUT performance/load/statistics monitoring Support for performance monitoring. Support for collection and monitoring
of statistical data.

SUT trace monitoring Java profiling supported, including trace data.

Test case execution monitoring Standardized test execution messages that can be extended via customized
messages. Support for customized execution history viewer.

Evaluation (post mortem)

Execution history analysis Support for customized execution history viewer.

SUT log analysis Rich set of ready-to-use functions, may be extended/customized.

SUT profiling analysis Yes, Java profiling: code coverage on method level, execution times on
method level, memory usage analysis.

SUT trace analysis Java profiling supported, including trace data.

 162

F.2.2 STAF STAF
General

Main target SUT environment Distributed systems

Test Management Execution

Open Source, license LGPL

Platforms supported Win32, Linux, AS/400, AIX, Solaris, HP-UX, Irix, z/OS

Test Methods Supported

Automatic testing Yes

Distributed systems Yes

GUI-testing No explicit support functions

Load/Stress testing Possible to use STAF as a base for a load/stress testing tool.

Manual testing Possible to use STAF as a base for a manual testing tool.

Protocol testing Possible to use TPTP as a base for a protocol testing tool.

Unit testing Not very suitable for creating a unit testing tool.

Interoperability

Data models No special data models supported.

Database support No explicit support functions

Launching support (remote) Peer-to-peer network with STAFProc daemon processes on each machine.
Process service for starting, stopping and query processes.

Standards used/supported XML

SUT interface connection See Tool Integration

Test asset export No explicit support functions

Test asset import No explicit support functions

Tool integration Pluggable services. Support for interaction from C/C++, Java, Rexx, Perl,
Tcl and from the command line/shell prompt.

Test Preparation

Capture/playback No explicit support functions

Editor No explicit support functions

SUT instrumentation No explicit support functions

Test case re-use No explicit support functions

Test data No explicit support functions

Test data re-use No explicit support functions

Test script languages No explicit support functions

Test Execution (real-time)

SUT log monitoring No explicit support functions

SUT performance/load/statistics monitoring No explicit support functions

SUT trace monitoring No explicit support functions

Test case execution monitoring Test Case Monitoring through Monitor service.

Evaluation (post mortem)

Execution history analysis No explicit support functions

SUT log analysis No explicit support functions

SUT profiling analysis No explicit support functions

SUT trace analysis No explicit support functions

 163

G Prototype – User Manual

G.1 Introduction

The usage of the prototype can be divided into three use cases, see Figure 56:

• Test Preparation

• Test Execution

• Test Evaluation

Tester Execute Expect test against
the CPP Emulator

Prepare Test

Run Test

Evaluate Test

<<include>>

<<include>>

<<include>>

Figure 56: The Prototypes’ Three Use Cases

The Prepare Test phase includes creating all resources needed for executing a test suite, and

changing and editing required settings for the CPP Emulator and RAC. The Run Test (or

Execute Test) is the phase where the test suite remotely executes. The final phase, Evaluate

Test, is the phase where the user evaluates the test results from the test execution.

In the following instructions, “select” has the same meaning as clicking the left mouse

button or pressing the enter key.

Prototype – User Manual

 164

G.2 Eclipse Vocabulary

Before using the manual, it is useful and helpful to learn some Eclipse vocabulary. Figure

57 shows the Eclipse main window with a sample project opened.

Menu bar

Tool & Shortcut bar

Current Perspective

Editor

Views

View tool bar

Workbench window
Status line

Perspective

Editor tabs (or pages)

Figure 57: The Main Window of Eclipse

The Workbench window is the main window in Eclipse. In the Workbench window

different Parts can be shown. A Part is a set of Views and Editors. Each file (which is

represented as a Resource in the Workbench) has its own Editor in order to be displayed and

edited correctly. Views support Editors and provide alternative presentations or navigations of

the information in the Workbench. A predefined layout and initial set of Views and Editors in

the Workbench is called a Perspective.

Prototype – User Manual

 165

When creating and using plug-ins in Eclipse, the terms Extensions and Extension Points

are often used. An Extension is used to extend functionality. By adding Extensions using

Extension points, new functionality is contributed to the platform. Defining Extension Points

enables other plug-ins to make use of the new functionality.

G.3 Eclipse Pre-Defined Architecture of Resources

Eclipse TPTP comes with a pre-defined test architecture. The pre-defined test architecture

consists of four different resources:

• Artifact

• Deployment

• Location

• Test Suite

The Artifact resource has one or more Test Suites resources, where each test suite has one or

more test scripts. The test suite editor plug-in of the prototype in this case represents the test

suite. The Location resource describes the location of the RAC. Finally, the Deployment

resource associates an Artifact with a Location. Figure 58 shows the resource architecture of

Eclipse TPTP.

Prototype – User Manual

 166

 Deployment

Location
1

Artifact
1

Test Suite *

Test Script
*

1

*

*

1

Figure 58: The Eclipse TPTP Resource Architecture

Each resource is created with a Wizard. All available Wizards can be found by selecting

“Other” in the “File”, “New” menu, see Figure 59.

Figure 59: Wizards in Eclipse

G.4 Prepare Test

The use case Prepare Test consists of creating the needed resources to obtain the resource

architecture described in Figure 58. When all resources needed for the execution are created,

Prototype – User Manual

 167

settings have to be applied to the resource editors. It is important to save continuously when

creating the resources since resources are directly saved to and read from the file system. If

resources are not saved frequently when created, Eclipse TPTP has a tendency not to

understand that changes have been done to the resources.

G.4.1 Changing to the Test perspective

The perspective used when testing is called “Test”. To open the “Test” perspective:

• In the “Window”, “Open Perspective” menu, select “Other…”.

• In the “Select Perspective” dialog, mark the “Test” item and then select the “OK”

button, see Figure 60.

Figure 60: Select Perspective Dialog Window

G.4.2 Creating the Project

A project is needed to hold the resources, so start by creating a Simple Project, see Figure

61:

• In the “File”, “New” menu, select “Project…”.

• Under the Wizard folder “Simple”, mark “Project” and select the “Next” button.

Prototype – User Manual

 168

• Enter a name for the project in the field “Project Name”. Select the “Finish” button.

Figure 61: Creating a Simple Project

Another way to create the project is simply by clicking with the right mouse button in the

“Test Navigator” view and selecting “Project…” in the “New” menu, given that the “Test”

perspective has been selected, see Figure 62.

Prototype – User Manual

 169

Figure 62: Another Way to create a Project in Eclipse

G.4.3 Creating and Editing the TPTP Expect Test Suite Resource

The next step is to create the TPTP Expect Test Suite resource:

• Click with the right mouse button in the “Test Navigator” view and select “Test

Artifact…” in the “New” menu, see Figure 63.

Prototype – User Manual

 170

Figure 63: Creating a New Test Artifact

• Under the Wizard folder “Test”, select the folder “Test Suite” and then select “TPTP

Expect Test Suite”, see Figure 64.

• Select the “Next” button.

• Enter a name for the Test Suite in the field “File Name”, select “My Project” as parent

folder, see Figure 64.

• Select the “Finish” button.

Prototype – User Manual

 171

Figure 64: Creating a New TPTP Expect Test Suite

Before creating the next test artifact, the TPTP Expect Test Suite needs to be edited. After

the TPTP Expect Test Suite has been created, its editor is opened in Eclipse, see Figure 65.

Prototype – User Manual

 172

Figure 65: The TPTP Expect Test Suite Editor

The TPTP Expect Test Suite editor has three tabs:

• Overview – A default tab with general information and test objective.

• CPP Emulator Configuration – A tab with settings regarding the CPP Emulator

• Expect Test Cases – A tab for adding Expect test cases

The CPP Emulator Configuration tab, Figure 66, has the following fields:

• Host Name – The host name or IP address of the computer where the CPP emulator is

installed. (In the prototype implementation, this has to be the same computer as

running the RAC.)

• Host Telnet Port – The port number of the simulated CPP node.

Prototype – User Manual

 173

• ClearCase View – The ClearCase view which can be used to access the current CPP

Emulator (when writing this manual, CPP Emulator R2B is used).

• .cppemu file – The CPP Emulator configuration file

• .persistent file – The CPP Emulator persistent file

• .checkpoint file – The CPP Emulator checkpoint file

Enter the information in each field described above, either a:

• .cppemu file is given, or a…

• .cppemu file and a .persistent file are given, or a…

• .checkpoint file is given.

Figure 66: The CPP Emulator Configuration Tab

Prototype – User Manual

 174

Figure 67 shows the Expect Test Cases tab. To add Expect test cases simply select the “Add”

button, and a file browser dialog windows will appear. The added Expect test cases will not

be transferred themselves, but only the path and filenames. Since only the path and filenames

will be transferred, it is important that the remote machine (where the CPP Emulator and

Expect executable is located) can access the Expect script files.

Figure 67: The Expect Test Cases Tab

G.4.4 Creating and Editing the Artifact Resource

The next step is to create the Artifact resource:

• Click with the right mouse button in the “Test Navigator” view and select “Test

Artifact…” in the “New” menu, see Figure 63.

• Under the Wizard folder “Test”, select the folder “Test Elements” and then select

“Artifact”, see Figure 68.

Prototype – User Manual

 175

• Select the “Next” button.

• Enter a name for the Artifact in the field “File Name”, select “My Project” as parent

folder, see Figure 68.

• Select the “Finish” button.

Figure 68: Creating a New Artifact

After the Artifact has been created, its editor is opened in Eclipse, see Figure 69.

Prototype – User Manual

 176

Figure 69: The Artifact Editor

The Artifact editor has two tabs:

• Overview – A default tab with general information.

• Test Assets – A tab for associating Test Suites with the Artifact.

To add the My Expect Test Suite to the Test Assets tab, simply select the “Add” button, see

Figure 67, and the “Select Resource” dialog window will appear, see Figure 70. Mark the

“My Expect Test Suite.testsuite” and select “OK”.

Prototype – User Manual

 177

Figure 70: The Select Resource Dialog Window

After the TPTP Expect Test Suite has been selected, the Test Assets tab should look like

Figure 71.

Prototype – User Manual

 178

Figure 71: The Test Assets Tab

G.4.5 Creating and Editing the Location Resource

The next step is to create the Location resource:

• Click with the right mouse button in the “Test Navigator” view and select “Test

Artifact…” in the “New” menu, see Figure 63.

• Under the Wizard folder “Test”, select the folder “Test Elements” and then select

“Location”, see Figure 72.

• Select the “Next” button.

• Enter a name for the Location in the field “File Name”, select “My Project” as parent

folder, see Figure 72.

• Select the “Finish” button.

Prototype – User Manual

 179

Figure 72: Creating a New Location

After the Location has been created, its editor is opened in Eclipse, see Figure 73.

Prototype – User Manual

 180

Figure 73: The Location Editor

The Location editor has two tabs:

• Overview – A default tab with general information.

• Attributes – A tab for setting attributes of the Location.

The only setting that has to be edited on the Location resource is the Host name field on the

Overview tab. The Host name represents the machine running the RAC.

G.4.6 Creating and Editing the Deployment Resource

The next, and final step, is to create the Deployment resource:

• Click with the right mouse button in the “Test Navigator” view and select “Test

Artifact…” in the “New” menu, see Figure 63.

Prototype – User Manual

 181

• Under the Wizard folder “Test”, select the folder “Test Elements” and then select

“Deployment”, see Figure 74.

• Select the “Next” button.

• Enter a name for the Deployment in the field “File Name”, select “My Project” as

parent folder, see Figure 74.

• Select the “Finish” button.

Figure 74: Creating a New Deployment

After the Deployment has been created, its editor is opened in Eclipse, see Figure 75.

Prototype – User Manual

 182

Figure 75: The Deployment Editor

The Location editor has two tabs:

• Overview – A default tab with general information.

• Pairs – A tab used to pair the Artifact and the Location together.

Prototype – User Manual

 183

Figure 76: The Pairs Tab

To pair My Artifact and My Location together on the Pairs tab, see Figure 76:

• Select the “Add” button under the “Artifact” section. The “Add Artifact Association”

dialog window will appear, see Figure 77.

• Confirm that “Use an existing resource” is marked, and select the “Browse…” button.

The “Select resource” dialog window will appear.

• Mark the “My Artifact.artifact” and select “OK”, see Figure 78.

• Select the “Finish” button.

Prototype – User Manual

 184

Figure 77: The Add Artifact Dialog Window

Figure 78: The Select Resource Dialog Window

Prototype – User Manual

 185

• In a similar way as with the Artifact, select the “Add” button under the “Locations”

section, see Figure 76. The “Add Location Association” dialog window will appear,

see Figure 79.

• Confirm that “Use an existing resource” is marked, and select the “Browse…” button.

The “Select resource” dialog window will appear.

• Mark the “My Location.location” and select “OK”, see Figure 80.

• Select the “Finish” button.

Figure 79: The Add Location Dialog Window

Prototype – User Manual

 186

Figure 80: The Select Resource Dialog Window

Now that the Deployment has been associated with the Artifact and the Location, the

Artifact and Location has to be paired. To pair the Artifact and Location, select the small

button with and arrow pointing downwards on the Pairs tab. The Pairs tab should now look

like Figure 81.

Prototype – User Manual

 187

Figure 81: The Pairs Tab

The Overview tab should now look like Figure 82.

Prototype – User Manual

 188

Figure 82: The Overview Tab

The Preparation of the test should now be completed. The “Test Navigator” window

should now contain, see Figure 83:

• My Artifact

• My Deployment

• My Expect Test Suite

• My Location

Prototype – User Manual

 189

Figure 83: The Test Navigator after Test Preparation

G.5 Run Test

After the Prepare Test phase it is time to run the test. To run the test:

• Click with the right mouse button on “My Expect Test Suite” and select “Run…” in

the “Run” menu, see Figure 84. The “Run” dialog window will appear.

Prototype – User Manual

 190

Figure 84: How to Open the Run Dialog Window

To run My Expect Test Suite, a new test configuration has to be created. To create a new test

configuration:

• In the “Configurations” window in the “Run” dialog window, mark “Test”.

• Select the “New” button and a new test configuration will be created.

• Under the “Test” tab in the “Run” dialog window, mark “My Expect Test Suite”. The

“My Deployment” deployment will appear.

• Mark “My Deployment” and select the “Apply” button.

• Finally, select the “Run” button and the test will start to run.

Figure 85 shows how the “Run” dialog window will look like after the described steps (just

before selecting the “Run” button).

Prototype – User Manual

 191

Figure 85: The Run Dialog Window

The Run Test phase consists of three parts:

• Launch of the CPP Emulator

• Running all Expect test scripts associated with the TPTP Expect test suite

• Teardown of the CPP Emulator

The test execution will take several minutes, during the test execution the test result will be

sent back from the agent and RAC to the Eclipse Workbench.

Prototype – User Manual

 192

G.6 Evaluate Test

After the Run Test phase is completed the test results can be evaluated. The test result is

represented with a test execution resource, which will be created automatically during the Run

Test phase. The test execution resource will automatically be named based on the name of the

test suite, and will show itself in the Test Navigator, see Figure 86.

Figure 86: My Expect Test Suite Test Execution Resource

The test execution result includes four states (test verdicts) [33]:

• Pass

• Failed

• Error

• Inconclusive

Where Pass means that the test(s) could be executed successfully and passed. Failed means

that the test(s) could be executed successfully, but did not pass. Error means that the test(s)

could not be executed, meaning that something failed in the test bed. Finally, inconclusive

corresponds to when the test(s) is/are still running.

To open the My Expect Test Suite test execution resource:

Prototype – User Manual

 193

• Double click with the left mouse button on the My Expect Test Suite test execution

resource in the Test Navigator, see Figure 86.

• The My Expect Test Suite test execution editor is opened in Eclipse, see Figure 87.

Figure 87: The My Expect Test Suite Test Execution Editor

The Location editor has two tabs:

• Overview – A default tab with general information.

• Events – A tab describing the test execution result.

The Overview shows the overall verdict, in Figure 87 pass. The Events tab, see Figure 88,

contains a more detailed, graphical view of the test execution.

Prototype – User Manual

 194

Figure 88: The Events Tab

Each element that has a small plus sign (‘+’) to the left, can be expanded to show more

detailed information by clicking on the plus sign with the left mouse button. Figure 89 shows

My Expect Test Suite expanded.

Prototype – User Manual

 195

Figure 89: The Events Tab, with a Collapsed View

G.6.1 Test Execution Structure

Each test execution of the test suite created by the TPTP Expect Test Suite wizard has a

similar structure of the test execution:

• A Start container for the test execution (expandable)

• The initial messages part (three messages)

o A message describing which ClearCase view that will be started

o A message indicating that the CPP Emulator is about to start

o A message indicating that the execution of tests is about to start

• The test script part (which will be repeated for each test script in the test suite)

Prototype – User Manual

 196

o A message describing the path and name of the test script that is about to run

o A start container for the test script (expandable)

o The messages generated by the test script

o A test verdict describing the result of the test script execution

o A stop container for the test script

• The last messages part (three messages)

o A message indicating that the execution of tests is finished

o A message indicating that the CPP Emulator is about to teardown

o A message indicating that the started ClearCase view is about to be closed

• A summarized test verdict describing the total result of the test execution

• A Stop container for the test execution

G.6.2 Exporting the Test Execution Result

The test execution is saved in the Eclipse workspace. The project name is created as a

folder (directory) in the file system in the Eclipse workspace folder. Under the project folder

all project resources including the test execution can be found. The test execution resource has

the file extension ‘.execution’. Eclipse stores the resources in Zip files. To view the test

execution resource file:

• Rename the “My Expect Test Suite.execution” file to “My Expect Test

Suite.execution.zip”.

• Open the “My Expect Test Suite.execution.zip” file in WinZip or another Zip

compliant program, see Figure 90. The “My Expect Test Suite.execution.zip” should

contain a file named “ResourceContents”.

• Unzip the “ResourceContents” file to a folder of your choice. The “ResourceContents”

file contains XML fragments. A suitable text editor for viewing “ResourceContents” is

an editor with XML high-lightning support, such as the freeware editor ConTEXT.

• Open the “ResourceContents” file with a text editor of your choice, see Figure 91.

• Do not forget to rename the “My Expect Test Suite.execution.zip” file back to “My

Expect Test Suite.execution” after unzipping the “ResourceContents” file.

Prototype – User Manual

 197

Figure 90: WinZip Showing the “My Expect Test Suite.execution.zip” File

Figure 91: ConTEXT Showing the “ResourceContents” File

 199

H Prototype – Installation Instruction

H.1 Introduction

The installation of the prototype includes two parts: installation of the plug-ins on the

client side, the Eclipse Workbench, and installation of the plug-in on the remote side, the

RAC. The distribution of the prototype consists of the following:

• Eclipse TPTP Client plug-ins

o com.tieto.eclipse.tptp.cpp.expect.core_1.0.0

o com.tieto.eclipse.tptp.cpp.expect.ui_1.0.0

• Eclipse TPTP RAC plug-in

o com.tieto.eclipse.tptp.cpp.expect

• Eclipse TPTP RAC start/stop script

Figure 92 shows the Eclipse TPTP conceptual architecture and the prototype plug-ins.

Test Bed Machine Workbench Machine

CPP
Emulator

Expect

Test
Client

Test
Agent

Test Suite
Editor

Eclipse
Workbench

Remote Agent
Controller

Client
Library

CPP
Node

Figure 92: Plug-ins in the Eclipse TPTP Architecture

Prototype – Installation Instruction

 200

The Test Client plug-in (com.tieto.eclipse.tptp.cpp.expect.core) makes up the core

functionality for launching and executing the Expect test suites. The Test Suite Editor plug-in

(com.tieto.eclipse.tptp.cpp.expect.ui) incorporates the graphical components for creating and

editing the TPTP Expect Test Suite in the Eclipse Workbench.

H.2 Requirements

The prototype requires the following software on the client side:

• Java Runtime Environment (JRE) or Java Development Kit (JDK) 1.4.2

• Eclipse SDK 3.0.2

• Eclipse Modeling Framework (EMF) SDK 2.0.2

• XML Schema Infoset Model (XSD) SDK 2.0.2

• TPTP 3.2A Runtime

During the development and testing of the prototype, the Eclipse Workbench for Microsoft

Windows was used, but there should not be any problem using the Eclipse Workbench for

Linux.

The server side requirements are:

• Remote Agent Controller (shipped with Eclipse TPTP 3.2A), which is also known as

Hyades Data Collection Engine

• CPP Emulator R2A or R2B (accessible via a valid ClearCase view)

• Expect

During the execution and testing of the prototype, the Linux and Solaris Sparc operating

systems were used for running the Remote Agent Controller.

Prototype – Installation Instruction

 201

H.3 Installation of the Eclipse Plug-ins

To install the Eclipse plug-ins, simply unzip and copy the two folders found in the sub

folder “client_eclipse_plugins” in the prototype distribution zip file into your “<Eclipse-root-

dir>\plugins” folder. The plug-ins will automatically be detected during start up of Eclipse.

To verify that the plug-ins have been correctly detected, do the following in Eclipse:

• In the “Help menu”, select “About Eclipse Platform”. The dialog window “About

Eclipse Platform” will appear.

• Select the button “Plug-in Details”. Another dialog window “About Eclipse Platform

Plug-ins” appears, see Figure 93.

Figure 93: The “About Eclipse Platform Plug-ins” Dialog Window

If the plug-ins have been successfully installed, “TPTP Expect Execution Plug-in” and “TPTP

Test Expect Plug-in” should be listed as in Figure 93.

Prototype – Installation Instruction

 202

Another way to verify the installation of the plug-in is to confirm that the “TPTP Expect

Test Suite” wizard can be found:

• In the “File” menu, select “New” and “Other…”. The “New” wizard dialog window

appears.

• Verify that under the “Test” folder, the folder “Test Suite” contains the “TPTP Expect

Test Suite” wizard, see Figure 94.

If any of these two steps can be confirmed, the installation of the Eclipse plug-ins is

successful.

Figure 94: The “TPTP Expect Test Suite” Wizard

Prototype – Installation Instruction

 203

H.4 Installation of the RAC Plug-in

To install the RAC plug-in, simply unzip and copy the folder found in the sub folder

“rac_plugin” in the prototype distribution zip file into your “<RAC-root-dir>/plugins” folder.

The plug-in will automatically be detected during start up of the RAC. To verify that the plug-

in has been correctly detected, do the following:

• Open the “servicelog.log” file, located in the “<RAC-root-dir>/config” folder, using a

text editor.

• Confirm that sub-string "Successfully loaded plugin:

com.tieto.eclipse.tptp.cpp.expect" can be found in the “servicelog.log” file.

The RAC plug-in also requires some environment variables to be set, in order to function

correctly. The RAC needs to be started using a start script, “start.tcsh”. The start script can be

found in the sub folder “rac_start_stop_scripts” in the prototype distribution zip file along

with another script file, “stop.tcsh”. Use the “stop.tcsh” to terminate all processes started by

the RAC. To use the scripts, simply unzip and copy the script files into your “<RAC-root-

dir>/bin” folder. Before using the start script, it has to be edited:

Open the “start.tcsh” in an editor (NOTE: Edit the file using an editor in Linux/Unix or an

Linux/Unix compatible editor under the Microsoft Windows Environment).

Change the “JAVA_HOME” variable to match the path where Java Runtime is installed.

Change the “RASERVER_HOME” variable to match the path where the RAC is installed.

Finally, change the “path” variable, so that the “Expect” executable is found within the path.

