
Department of Computer Science

Magnus Bohman

Fredric Hellberg

Development of a Prototype to Determine

an Individual’s Utility Function

Master’s Thesis

2005:07

Development of a Prototype to Determine

an Individual’s Utility Function

Magnus Bohman

Fredric Hellberg

c© 2006 The authors and Karlstad University

This thesis is submitted in partial fulfillment of the requirements

for the Masters degree in Computer Science. All material in this

thesis which is not my own work has been identified and no mate-

rial is included for which a degree has previously been conferred.

Magnus Bohman

Fredric Hellberg

Approved, 2005-06-07

Opponent: Thijs Holleboom

Advisor: Albin Zuccato

Examiner: Donald F. Ross

iii

Abstract

Theories from the fields of economics, business management and decision analysis allow

for the assessment of risk attitudes. Using games of chance it is possible to get an insight

in the risk attitude of a decision maker. In this thesis an application is presented, which

assesses risk attitudes by letting a decision maker play such games of chance.

The games indicate how the decision maker behaves in risky situations versus certain

situations. The game results are then transformed into a utility function, using regression

analysis. The utility function can be used by other applications to prioritise risk situations

based on the assessed risk attitude of the decision maker.

The thesis also discuss the development of the application and the experience derived

from the application of extreme programming as development approach.

v

Acknowledgements

We want to thank our supervisor Albin Zuccato, for steering us in the right way and helping

us throughout this project. We also want to thank Magnus’s mother, Ylva, for her help

checking the grammar and spelling of the thesis.

I, Fredric want to thank my children, Leon and Alva for great understanding when I

was tired in the mornings because of late nights writing this thesis. I also want to thank

my father, my brother and all my friends for their great support and understanding during

the thesis.

vii

Contents

1 Introduction 1

1.1 Objectives . 2

1.2 Target Audience . 2

1.3 Scientific Method . 3

1.4 Outline . 3

2 Decision and Risk Analysis Theory 5

2.1 Introduction . 5

2.2 Risks . 6

2.2.1 Example . 6

2.3 Games . 8

2.4 The Utility Function . 10

2.4.1 Risk Premium . 13

3 Regression Analysis 15

3.1 Introduction . 15

3.2 Regression Analysis . 16

3.3 Approximating a Third Order Polynomial 18

3.4 Checking the Approximation . 18

3.4.1 R2 Test . 19

ix

3.4.2 Confidence Interval . 20

4 Development Approach 23

4.1 Introduction . 23

4.2 Extreme Programming . 24

4.3 The Development Environment . 25

4.4 Prototyping . 26

4.5 Testing . 26

4.5.1 Test Coverage . 27

4.5.2 The JUnit Framework . 27

4.5.3 The jfcUnit Framework . 27

5 The Prototypes 29

5.1 Introduction . 29

5.2 Prototype Planning . 30

5.3 The First Prototype - User Interface . 30

5.3.1 Design Decisions . 30

5.3.2 Results . 31

5.4 The Second Prototype - Regression Analysis 31

5.4.1 Testing The Regression Analysis . 32

5.4.2 Results . 32

6 The Mmv Application 33

6.1 Introduction . 33

6.2 The Release Plan . 34

6.3 External Libraries . 34

6.3.1 XML . 35

x

7 The First Iteration 37

7.1 Introduction . 37

7.2 Story and Task planning . 37

7.3 Implementation . 38

7.3.1 Game Structure . 38

7.3.2 Regression . 39

7.4 The First Release . 39

7.4.1 Comments . 40

8 The Second Iteration 43

8.1 Introduction . 43

8.2 Story and Task planning . 43

8.3 Implementation . 44

8.3.1 New games dialog . 44

8.3.2 Modifications to The Game Window 44

8.3.3 Game Structure . 44

8.3.4 Refactoring . 46

8.3.5 Saving Games . 47

8.4 The Second Release . 47

8.4.1 Problems . 49

8.4.2 Comments . 50

9 The Third Iteration 53

9.1 Introduction . 53

9.2 Story and Task planning . 53

9.3 Implementation . 54

9.3.1 Game Window . 54

9.3.2 Statistical tests . 55

xi

9.3.3 File extension . 55

9.4 The Third Release . 55

9.4.1 Comments . 56

10 Thesis Summary 59

10.1 Introduction . 59

10.2 MMV Summary . 59

10.2.1 Additional Games Does Not Improve The Result 60

10.2.2 The First Games Guide Utility . 60

10.2.3 Inconsistency Is Impossible . 61

10.2.4 Solution . 61

10.3 Contribution . 62

10.4 Experiences . 62

10.4.1 XP Experiences . 62

10.4.2 Regression Analysis . 63

10.5 Conclusion . 63

10.6 Future Work . 64

References 65

A XP Stories 67

A.1 Prototype 1 . 67

A.2 Prototype 2 . 68

A.3 MMV . 69

A.4 Additional stories . 72

B UML-Diagrams 75

xii

List of Figures

2.1 Risk scenario . 7

2.2 Relationship between games . 11

2.3 Utility calculations . 11

2.4 Risk averseness . 12

2.5 Risk proneness . 12

2.6 Risk neutrality . 12

2.7 Risk averse, risk neutral and risk prone . 12

2.8 The PE-game in the risk premium example 13

3.1 A linear approximation. 16

3.2 A third order polynomial approximation of data. 19

7.1 Example of the implicit game tree structure 38

7.2 The game window for the first release. 40

8.1 Example tree . 45

8.2 The DTD used for save files . 48

8.3 A save file example . 48

8.4 The game window for the second release. 49

8.5 The dialog for game suite settings . 50

9.1 The analysis window with regression results. 56

xiii

9.2 The utility function . 57

9.3 The game window for the third release. 57

10.1 A game suite with 15 games played. 60

10.2 A game suite with 31 games played . 60

B.1 Overview of all packages. 76

B.2 The parts of the game package. 77

B.3 The parts of the math package. 78

B.4 The parts of the ui package. 79

B.5 The parts of the model package. 80

B.6 Overview of all classes and their relationship. 81

xiv

List of Tables

3.1 Example data . 19

3.2 R2 test results. 20

5.1 Test values used as input to regressions . 32

6.1 The initial iteration plan . 34

6.2 The revised iteration plan . 35

8.1 In-order traversal . 46

8.2 Breadth first traversal . 46

A.1 Menu structure . 68

xv

Chapter 1

Introduction

“What you risk reveals what you value.”

– Jeanette Winterson (1961-)

Every day people make decisions. Some decisions are small, such as the decision whether

to buy a soda or an ice-cream. These decisions are often quite easy to make. Other decisions

are big, such as decisions made in politics or in business management. These decisions are

often hard to make because they often have great impact.

There are always risks involved in the decision making process, but the significance of

the risks varies depending on the decision maker’s attitude towards them. The decision

maker’s attitude towards risks differ depending on the situation.

If a decision maker’s risk attitude somehow could be determined, people at a lower level

in the decision making hierarchy could benefit from an insight in how the decision maker

would value different aspects of a decision, in regards to risk attitude.

The theories coming from the field of economics and business management, allow for

the assessment of risk attitude. By letting a decision maker play games, it is possible to

determine the risk attitude, or utility function of that individual.

1

2 CHAPTER 1. INTRODUCTION

In French [7] games are played with the help of an interviewer, asking questions for the

decision maker to answer. If the interviewer could be replaced by a computer program,

which asks the decision maker the same questions, the risk attitude could be automatically

determined.

The application developed in this thesis takes the first step towards an application that

ultimately will enable users to assess security risks, using the pre-determined risk attitude,

according to the Modified Mean Value approach, put forward by Zuccato [16]. This goal

proved to be too time consuming, therefore the application was developed with the goal

to determine risk attitudes and utility functions. The application was developed using

the Extreme Programming (XP) software development method. As part of the thesis, the

development of the application is described.

This thesis was written at the Department of Computer Science at Karlstad University.

This project was initiated by Albin Zuccato, who was the owner of the project and also had

the role of the XP customer during the application development. The project owner decided

that the application was to be named Mmv, after his modified mean value approach.

1.1 Objectives

The main objective is the creation of a Java application, using the extreme programming

method. The application should try to determine an individual’s utility function.

The secondary objective is to compile a documentation covering both the development

phase as well as the theories needed to determine a utility function.

1.2 Target Audience

This thesis is directed to people interested in risk analysis. The reader is assumed to have

some mathematical and statistical knowledge. As this thesis also describes the development

1.3. SCIENTIFIC METHOD 3

of a Java application, it is assumed that the reader has some knowledge of both Java and

application development.

1.3 Scientific Method

The scientific methods used in this thesis are both experimental and analytic. The ex-

perimental part is the creation of an application to determine risk attitudes described in

chapter 2. The analytic part of the thesis is the literature study to search for information

to obtain enough knowledge on how to determine risk attitudes.

1.4 Outline

This thesis begins with a description of its background and purpose. In Chapter 2, the

decision and risk theories are introduced and a method for assessment of a person’s risk

attitude is covered.

In Chapter 3 a method for approximating a mathematical model to a set of values is

described. This method is called regression analysis and converts the results from the risk

attitude assessment method into a continuous function.

Chapter 4 covers the environment, software model and tools used during development

of the application mentioned in the main objective for this thesis. In Chapter 5 the

development of the two prototypes that were developed prior to the main application is

described.

Chapters 6 to 9 describe the development of the main application. Chapter 6 is a com-

mon chapter for the three iterations that were produced during the development. Chapter

7 describes the first iteration and chapters 8 and 9 describe the next two iterations. Chap-

ter 10 concludes the thesis and contains a discussion of experiences as well as a presentation

of further works.

Chapter 2

Decision and Risk Analysis Theory

“When it is not necessary to make a decision, it is necessary not to make a decision.”

– Lord Falkland (1610-1643)

2.1 Introduction

This chapter introduces decision and risk analysis theories. It begins with a definition

of what a risk is and then tries, by means of a few examples, to explain the meaning of

different risk attitudes. After risks and risk attitudes are explained, the method used in

this thesis to assess a person’s risk attitude is explained. Then the chapter continues with

an explanation of the utility function, which is the representation of a person’s attitude

toward risks. The utility function is the result given from the method for assessment of

risk attitudes. Throughout this chapter some mathematical reasoning is done, which is

explained in more detail in chapter 3.

5

6 CHAPTER 2. DECISION AND RISK ANALYSIS THEORY

2.2 Risks

According to Frosdick [8], the British Standard 4778 defines risk as “a combination of

the probability, or frequency, of occurrence of a defined hazard and the magnitude of the

consequences of the occurrence”. A consequence can for example be a monetary loss or,

in the area of computer security, be a network intrusion or the loss of critical data. Conse-

quences with small magnitudes that occur frequently (high probability of occurrence) are

often preferred to consequences with big magnitudes that seldom occur (lower probability

of occurrence). Taking a risk, is hereafter thought of as making a decision with uncertain

outcome.

People’s attitude toward risks differ. A person can be risk averse, risk neutral or

risk prone. A person that is risk averse avoids taking risks, whereas a risk prone person

is more willing to take risks. A person that is risk neutral is indifferent whether to take

a risk or to decide for the certain alternative as long as they are on the same preference

curve [7]. Indifference means that a person having two options, a and b, does not prefer a

over b or b over a.

Although a person generally is either more or less risk prone or risk averse, a risk averse

person can become more risk prone when the gain of taking the risk outweighs the eventual

loss. A risk prone person can become more risk averse when the eventual loss outweighs

the gain of taking the risk. This can be further explained with an example.

2.2.1 Example

A decision maker (hereafter the abbreviation DM will be used), is faced with a scenario

as in figure 2.1. The probability for each outcome is defined by p which can be any value

between 0 and 1. In this scenario a DM in a certain situation can decide to increase security

for a certain cost or the DM can choose to do nothing.

If not increasing security, there may be a security breach with an estimated cost and a

2.2. RISKS 7

Cost of Security Breach
p ↗

Cost of Security Increase OR

1−p ↘
Nothing happens

Figure 2.1: Risk scenario

probability of p or there may be a situation where nothing will happen with a probability

of 1− p.

This scenario is an artificial scenario, in the sense that it assumes that increased security

results in no security breaches in a foreseeable future. In the real world this assumption

is not true, since there is no guarantee that a security increase would actually stop all

breaches.

A solely risk averse DM would increase security instead of taking the possibility that

a breach would occur (although the mean value would suggest different). As soon as the

occurrence probability (p) of a breach is higher than zero a solely risk averse DM does that

decision. If a DM is solely risk prone instead, the decision would be the opposite. This

means that if the probability is less than one for a breach, then a solely risk prone DM

would do the decision not to increase security. A risk neutral DM faced with the same

scenario is indifferent between increasing security or not, if the benefit is the same.

A DM is usually not solely risk averse or solely risk prone, but the risk attitude is

somewhere in between. Every DM has a threshold at which the risk attitude changes from

risk averse to risk neutral and from risk neutral to risk prone, or vice versa. If a DM is

faced with the scenario in figure 2.1, not increasing security would save the DM the cost

of increased security, but that also results in a less secure situation. Depending on the

probability p, the average cost of a security breach may be lower or higher than the cost

for increased security.

Depending on the cost of the security increase, the average cost of a breach and the

consequences of a breach, a former risk averse DM can be less risk averse or even become

8 CHAPTER 2. DECISION AND RISK ANALYSIS THEORY

risk prone.

Similarly, a risk prone DM can be less prone if, in the event of a breach, the consequences

are deemed to high. For instance, if the reputation of a network security company is

damaged due to an intrusion, then the resulting loss in sales might be higher than the

increased security costs.

A risk neutral DM is indifferent between the upgrading cost and the cost of an eventual

breach. The DM must base its decision on other preferences, which are out of the scope of

this thesis to discuss.

2.3 Games

There are several methods used for determining a person’s risk attitude. For instance:

certain equivalence (CE) and probability equivalence (PE) [5]. The PE method, which is

used in this thesis to measure a person’s risk attitude, was a requirement from the project

owner1. The PE method will be described in this section.

To determine a person’s attitude toward risks the person is told to play a number of

games. In this context, the word game is defined as letting the decision maker or player

answer a question. There are actually no real game-playing going on in the sense that one

normally would think of playing games.

In each game the player is offered the choice between getting a sum of money for certain

or a lottery ticket. The goal of the game is to find out when the player is indifferent between

taking the money for certain and playing the lottery.

Depending on when the player is indifferent between taking the money or playing the

lottery, for a number of different scenarios a risk attitude can be approximated. The

approximation is then converted into a function called the utility function.

According to Gordon [10], the utility is a numerical value associated to each monetary

1As mentioned in the introduction the project owner was Albin Zuccato

2.3. GAMES 9

gain and loss, indicating the decision makers desirability or undesirability of these monetary

gains or losses.

The PE-game and CE-game look like equation 2.1, where p and 1−p are the probabilities

for the monetary outcomes x1 and x2, respectively and xc is a sum that the player certainly

gets. The symbol ’∼’ is used to denote indifference.

xc︸︷︷︸
certain

∼

(p, x1)

(1− p, x2)
︸ ︷︷ ︸

lottery

, where x2 < xc < x1 (2.1)

The difference between the two games is how they are played. In a PE game the player

is asked to set the probability p at which the player is indifferent (∼) between playing the

lottery and certainly getting xc. In a CE game the probability p is given and the player

sets xc.

From a security point of view, the two games, PE and CE are different in that PE games

tend to generate a more risk averse result than CE games. In this thesis it is assumed that

a risk averse result is preferred over a risk prone result. If a risk averse person is playing

a CE game, the result may be that the person seems to be more risk prone than it really

is. When the result from playing is used as the basis for decision making in scenarios

concerning security, the consequences of this may be expensive due to the highly volatile

and uncertain character of information systems.[5]

For instance, think of the scenario in figure 2.1, where a person that in reality is risk

averse and normally would choose to increase security, would make its decision based on

playing games. It is more likely that the person would increase the security based on the

result from a PE game than from a CE game. A risk prone person would, when playing a

PE game, seem more risk averse and may increase the security. To increase the security,

for instance by upgrading a firewall, is from this thesis point of view the safest thing to do.

This gives a more secure result and therefore a PE game gives, according to this, a safer

10 CHAPTER 2. DECISION AND RISK ANALYSIS THEORY

attitude seen from a security point of view. Therefore, PE games is used for the assessment

of risk attitudes in this thesis.

2.4 The Utility Function

The utility function represents the risk attitude of a person. If two persons have different

risk attitudes then they have different utility functions. This means that the utility function

is individually determined.[7]

Determining the utility function is aided by the use of expected utility (EU) which is

calculated for each game. To calculate the EU for the game presented in equation 2.1, the

equation in 2.2 is used.

u(xc) = p ∗ u(x1) + (1− p) ∗ u(x2) (2.2)

To be able to calculate the recursive equation of 2.2, the expected utility for each

outcome x1 and x2 are needed. Let x be the highest outcome value for a series of games.

Then the expected utility for x equals 1.0. Similarly, x denotes the lowest outcome value

for the same series of games and the utility for x is set to 0.0. [7]. This way the utility for

the game using the two outcomes x and x, can be calculated.

To be able to calculate all utility values there are some restrictions about the possible

outcomes x1 and x2 for any games in a series. For any game, the outcomes must be either

x, x, or a xc from another game.

To exemplify, calculation of a series of three games are shown in figure 2.2. These

games have the different lottery outcomes x1, x2 and x3. The probabilities p1, p2 and p3 in

figure 2.2 are set by the player, since PE games are used for determine the utility. Then

expected utilities u(x3), u(x4) and u(x5) are calculated as in figure 2.3. The lowest of all

outcome values is x2 and the highest is x1. Together all expected utilities result in the

utility function u(x).

When playing games the player is assumed to be consistent in its decisions. According

2.4. THE UTILITY FUNCTION 11

x3 ∼
{

(p1, x1)
(1− p1, x2)

, and x1 > x3 > x2

x4 ∼
{

(p2, x1)
(1− p2, x3)

, and x1 > x4 > x3

x5 ∼
{

(p3, x3)
(1− p3, x2)

, and x3 > x5 > x2

Figure 2.2: Relationship between games

u(x1) = 1
u(x2) = 0
u(x3) = p1 ∗ u(x1) + (1− p1) ∗ u(x2)
u(x4) = p2 ∗ u(x1) + (1− p2) ∗ u(x3)
u(x5) = p3 ∗ u(x3) + (1− p3) ∗ u(x2)

Figure 2.3: Utility calculations

to French [7], a player is consistent when the player always prefers a higher monetary value

to a lower monetary value. See equation 2.3.

xi ≥ xj ⇔ u(xi) ≥ u(xj) for any xi, xj (2.3)

In figures 2.4 - 2.7, some examples of graphs drawn from utility functions are given. In

the graphs, C is the value for certain payoff and U is the utility for that payoff. In figure

2.4 a utility function for a risk averse person is shown. As can be seen, the curve for a risk

averse person is concave. In figure 2.5 the person’s risk attitude is risk prone. As can be

seen, the curve for a risk averse person is convex. In figure 2.6 the person’s risk attitude is

risk neutral, and therefore is linear. In figure 2.7 the person’s risk attitude changes from

risk averse (A) to risk neutral (N) and from risk neutral to risk prone (P).

The range of the utility function u(x) is 0 ≤ u(x) ≤ 1. Its domain is defined by the in-

terval [x1, x2 . . . xn], and the function is strictly increasing on that interval. The utility func-

tion u(x) can be seen as an ordered set of values S = {(x1, u(x1)), (x2, u(x2)), . . . , (xn, u(xn))}.

12 CHAPTER 2. DECISION AND RISK ANALYSIS THEORY

Figure 2.4: Risk averseness Figure 2.5: Risk proneness

Figure 2.6: Risk neutrality Figure 2.7: Risk averse, risk neutral and
risk prone

To simplify the usage of the utility function in an application, a mathematical model of

the utility function is needed.

In this thesis the model is assumed, based on figure 2.7, to be a polynomial function

of the third order, see section 3.3. This assumption is reasonable, because most DMs

follow that behaviour. The model is fitted using regression analysis on the set of values S.

Although the resulting function U(x), is mathematically valid in the interval [−∞,+∞],

the approximation is only valid in the interval I = xmin ≤ x ≤ xmax. The range of

the function U(x) does not necessarily have the same range 0 ≤ U(x) ≤ 1, ∀x ∈ I, as

u(x), because the approximation of U(x) takes equally care of each value. Sometimes the

approximation, will even be invalid in regards to the strictly increasing property, imposed

on the function u(x), as the regression does not care about such restrictions.[1]

Since the domain of the new function U(x) is I, any point x ∈ I results in a valid

function value no further interpolations are needed. After all computations are made, the

2.4. THE UTILITY FUNCTION 13

persons risk attitude is specified by the four coefficients of a polynomial.

2.4.1 Risk Premium

According to French [7] a risk premium “is the maximum part of the expected monetary

value that the decision maker is prepared to forfeit in order to avoid the risk associated

with a lottery.”

The expected monetary value (EMV) is calculated as shown in equation 2.4. The EMV

is the average payoff of a lottery if played many times (a finite number of times) [7]. Again,

the game presented in equation 2.1 is used as model for the theories.

EMV = p ∗ x1 + (1− p) ∗ x2 (2.4)

With the help of expected monetary value, the risk premium can be calculated using

equation 2.5. xc is the certain payoff.

π = EMV − xc (2.5)

The sign of π indicates a person’s attitude to risks. Thus,

π > 0 indicates risk averseness.

π = 0 indicates risk neutrality.

π < 0 indicates risk proneness.

Consider an example where two persons are offered the same PE-game as in figure 2.8.

500 ∼
{

(p, 1000)
(1− p, 0)

Figure 2.8: The PE-game in the risk premium example

14 CHAPTER 2. DECISION AND RISK ANALYSIS THEORY

Person (A) sets the probability p to a value that makes it indifferent between getting the

500 or playing the lottery. Maybe to a value of 0.4. Then EMV = 0.4 ·1000+0.6 ·0 = 400,

which makes π = 400− 500 = −100. Person (B) is playing the same game but sets the p

to a value of 0.6, then EMV = 0.6 ·1000+0.4 ·0 = 600, which makes π = 600−500 = 100.

This makes person A risk prone, whereas person B is risk averse. To be indifferent between

getting 500 or playing the lottery person A must be offered a lottery with an average payoff

of 400. Person B must be offered a lottery with an average payoff of 600 to be indifferent.

A risk neutral person would be indifferent when offered a lottery with an average payoff of

500, which gives a risk premium of 0.

Chapter 3

Regression Analysis

“There are three kinds of lies: lies, damned lies, and statistics.”

– Benjamin Disraeli, British politician (1804 - 1881)

3.1 Introduction

This chapter describes how the utility function from the previous chapter is approximated

to a mathematical function. This is done by regression analysis, using the method of

least squares. It is also shown how to adapt the least square method to derive third

order polynomial as required for risk attitude functions. Some statistical tests are also

described, like the confidence interval and R2-test, which are used to check how good the

approximation represents the actual values.

15

16 CHAPTER 3. REGRESSION ANALYSIS

3.2 Regression Analysis

The purpose of single variate regression analysis is to adapt a mathematical model to a set

of values. This is useful, for instance when trying to determine a relation between data. In

figure 3.1, a straight line has been approximated to the values represented by dots. One

Figure 3.1: A linear approximation.

way of finding the approximation is by using the method of least squares. Equation 3.1

shows the formula for multi variate regression, for n variables. Multi variate regression is

used when the relation is based on multiple factors, that is the model is approximated to

the set of (y, (X1, X2, . . . , Xn)) values. [6]

ŷ = β0 + β1X1 + β2X2 + β3X3 + . . .+ βnXn (3.1)

The idea behind the method of least squares is to find the coefficients β0, β1, . . . , βn that

make the sum Q in equation 3.2 as small as possible. Equation 3.2 is the sum of all squared

differences from an approximated value ŷi to the yi value.

Q =
n∑

i=1

(yi − ŷi)2 =
n∑

i=1

(yi − β0 − β1X1i − β2X2i − β3X3i − . . .− βnXni)
2 (3.2)

To establish the so called normal-equations, see equation 3.3, the partial derivative of

the function Q with respect to each βi is calculated.[6], which results in equations 3.3.

3.2. REGRESSION ANALYSIS 17

∂Q
∂β0

= −2
∑n
i=1(yi − β0 − β1X1i − β2X2i − β3X3i − . . .− βnXni)

∂Q
∂β1

= −2
∑n
i=1 X1i(yi − β0 − β1X1i − β2X2i − β3X3i − . . .− βnXni)

...

∂Q
∂βn

= −2
∑n
i=1 Xni(yi − β0 − β1X1i − β2X2i − β3X3i − . . .− βnXni)

(3.3)

Then all partial derivates, from equation 3.3, are set to 0 to make a linear equation

system. After the equations are simplified the result is the equations in 3.4.

∑n
i=1 yi − β0n− β1

∑n
i=1 X1i − . . .− βn

∑n
i=1 Xni = 0

∑n
i=1 yiX1i − β0

∑n
i=1 X1i − β1

∑n
i=1 X

2
1i − . . .− βn

∑n
i=1X1iXni = 0

...
∑n
i=1 yiXni − β0

∑n
i=1 Xni − β1

∑n
i=1 XniX1i − . . .− βn

∑n
i=1X

2
ni = 0

(3.4)

The equations in 3.4 can be written as an augmented matrix Ax = b, resulting in the

matrix in equation 3.5.[2]

A =

n
∑n
i=1 X1i . . .

∑n
i=1 Xni

∑n
i=1X1i

∑n
i=1 X

2
1i . . .

∑n
i=1 X1iXni

...
...

. . .
...

∑n
i=1 Xni

∑n
i=1 XniX1i . . .

∑n
i=1 X

2
ni

, x =

β0

β1

...

βn−1

, b =

∑n
i=1 yi

∑n
i=1 yiX1i

...
∑n
i=1 yiXni

A|b =

n
∑n
i=1 X1i . . .

∑n
i=1 Xni

∑n
i=1 yi

∑n
i=1X1i

∑n
i=1 X

2
1i . . .

∑n
i=1 X1iXni

∑n
i=1 yiX1i

∑n
i=1X2i

∑n
i=1 X2iX1i . . .

∑n
i=1 X2iXni

∑n
i=1 yiX2i

...
...

. . .
...

...
∑n
i=1 Xni

∑n
i=1 XniX1i . . .

∑n
i=1 X

2
ni

∑n
i=1 yiXni

(3.5)

The matrix in equation 3.5 is solved using x = A−1b, assuming that A is invertible. A

matrix A is invertible if there is a matrix B satisfying: AB = BA = I, where I is the

18 CHAPTER 3. REGRESSION ANALYSIS

identity matrix1.[2]

A matrix that is not invertible is called singular, which is the word used when talking

about unsolvable matrices later on in the thesis.

3.3 Approximating a Third Order Polynomial

As presented in the previous chapter, the utility function looks like a polynomial of the

third order. A third order polynomial is defined as in equation 3.6.

y(x) = α0 + α1x + α2x
2 + α3x

3 (3.6)

The regression determines the coefficients: α0, α1, α2, α3 of the polynomial in equation

3.6. This is done by using three variables in equation 3.1, and setting them accordingly to

X1 = x, X2 = x2, X3 = x3 . Using the least square method gives as result the aug-

mented matrix in figure 3.7, which when solved reveals the coefficients: α0, α1, α2, α3.

n
∑n
i=1 X1i

∑n
i=1 X2i

∑n
i=1 X3i

∑n
i=1 yi

∑n
i=1 X1i

∑n
i=1 X

2
1i

∑n
i=1 X1iX2i

∑n
i=1 X1iX3i

∑n
i=1 yiX1i

∑n
i=1 X2i

∑n
i=1 X1i ∗X2i

∑n
i=1 X

2
2i

∑n
i=1 X2iX3i

∑n
i=1 yiX2i

∑n
i=1 X3i

∑n
i=1 X1iX3i

∑n
i=1 X2iX3i

∑n
i=1 X

2
3i

∑n
i=1 yiX3i

(3.7)

Figure 3.2 shows an approximation of a third order polynomial, using the same data as in

figure 3.1.

3.4 Checking the Approximation

Some measurements are needed to determine how well the model was approximated to the

values. To do this, the term residual is defined, since it is used by the R2 test.

1An identity matrix is a matrix where all entries are 0, except the diagonal entries which are 1.

3.4. CHECKING THE APPROXIMATION 19

Figure 3.2: A third order polynomial approximation of data.

The difference between the approximated value ŷi and the corresponding value in the

set yi is called the residual ei and is calculated as shown in equation 3.8.

ei = yi − ŷi (3.8)

3.4.1 R2 Test

R2 is a measurement indicating the success of a regression, see equation 3.9 for definition.

According to Draper and Smith [6] the “R2 value measures the ‘proportion of total variation

about the mean Ȳ explained by the regression”’. It is a percentage explaining how much

of the variations in data that can be explained by the model.

R2 =

∑n
i=1(ŷi − ȳ)2

∑n
i=1(yi − ȳ)2

(3.9)

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
y 0 2.11 4.55 6.06 6.57 7.16 6.8 6.32 6.32 6.57 7.2 7.6 8.76 9.43 11.2 14

Table 3.1: Example data

The data in table 3.1 was generated from a third order polynomial, chosen at random.

Then some of the values were either increased or decreased making the date not to be an

20 CHAPTER 3. REGRESSION ANALYSIS

exact polynomial. This data were then used to build the diagrams in figures 3.1 and 3.2.

The R2-values were calculated for each approximation (both the linear and the third order

polynomial). Table 3.2 shows the result.

linear 0.7979
polynomial 0.9893

Table 3.2: R2 test results.

The results from table 3.2 would not surprisingly indicate that the approximation of a

third order polynomial is a better fit for that particular set of data.

3.4.2 Confidence Interval

Two measurements of the average, of a set of values, are the mean value and the median.

If the set of values contains values that lie in a cluster, and one or two of the values lies far

away from these, then there is a big difference between the mean value and the median.

The median is not as sensitive as the mean value in the case of such values. The mean

value is the sum of all values divided with the number of values. The mean value of n

numbers {x1, x2, . . . , xn} is given by equation 3.10.

x̄ =

∑n
i=1 xi
n

(3.10)

The median value is chosen from a sorted set of numbers so that there is equally many

numbers greater than and smaller than the median value. If there is an odd amount of

values in the set, then the value that lies in the middle of the set is the median. If the

set contains an even amount of values, then the average of the two middle-values is the

median for that set. For instance, in a sorted set of five values the third value would be

the median for that set.

The confidence interval is an interval with a grade called confidence grade connected

3.4. CHECKING THE APPROXIMATION 21

to it, as the interval without this grade is not saying anything. The confidence grade is a

measurement of the probability that, if sampling many times, the median is lying inside

the boundaries of the interval. If sampling 100 times then a confidence grade of 95% means

that the median is lying inside the interval in 95 of the cases and in 5 of the cases it lies

outside the interval. So, if the sampling should continue, one could with 95% certainty

predict that the interval would contain the median.

When deciding the confidence interval the values of the samples are first sorted in an

ascending order. Then the values are numbered from 1 to n. The largest interval that

can be is [1, n], the next largest is [2, n − 1] and so on. Depending on how great the

confidence grade should be, the interval is narrowed so the grade is close to the desired

grade. The desired grade and the calculated grade can almost never be the same. Therefore

a calculated grade that is greater than or equal to the desired one is chosen. To calculate

the confidence grade for the interval the formula in equation 3.11 is used.[13]

grade = 1− 2 ·
k∑

i=0

n

i

 · 0.5i · 0.5n−i

 (3.11)

In equation 3.11, n is the total amount of values in the set, k is the narrowing factor and

n over i is defined as in equation 3.12.

n

i

 =

n!

n! · (n− i)! (3.12)

With n = 8 in equation 3.11, the interval [1, 8] has k = 0 and the interval [2, 7] has

k = 1 and so on. When the interval is narrowed the grade is decreased. The greater

amount of values in the set, the greater the confidence interval can be at the same time as

a narrow interval.

The set of values can for instance be the distance between the actual data and the

regressed values. Then the median is telling the average distance between the regressed

22 CHAPTER 3. REGRESSION ANALYSIS

and the actual values. The confidence grade is the probability that the next distance would

fall into the confidence interval.

Chapter 4

Development Approach

“Good judgement comes from experience, and experience comes from bad judgement.”

– Barry LaPatner

4.1 Introduction

The theories needed for determining risk attitudes has now been investigated and it is time

for the next part of the thesis to start. From now on the focus will be on the development

of the application to utilize these theories.

This chapter first introduces Extreme Programming (XP), which is the software devel-

opment method used in this project. Then the development environment for this project

is described. Finally, a section describing the need and motivation for prototyping and

testing follows.

23

24 CHAPTER 4. DEVELOPMENT APPROACH

4.2 Extreme Programming

XP is an lightweight agile method for software development, put forward by Kent Beck

[3]. XP includes many practices, but in this project only a few were used since only two

people were involved in it.

In XP, a metaphor is selected for a project when it begins. A metaphor is a simple,

shared story of how the whole system works, and that guides all development through the

project. The metaphor for this project was: Build an application to assess risk attitudes.

Pair programming is one of the practices in XP. The idea is to have two people

sitting together working on one computer. One person codes, and the other person reviews

the code and helps with design issues. Every now and then they switch roles, so the coder

becomes the reviewer, and vice versa. The continuous reviewing of new code minimizes

coding errors.[3]

According to XP, testing should be performed early and continuously during devel-

opment to ensure code compatibility. Preferably, a test should be implemented prior to

coding. Code is then written to make the test run successfully. The JUnit framework, see

section 4.5.2, has been used for testing in this project, as it supports automatic testing in

an XP project.

In XP, development proceeds according to stories and tasks. A story consists of

requirements about the functionality of the application. A story has a priority, set by

the customer, stating how important that particular story or functionality is. From each

story the development team then creates tasks. Each task is implemented by a pair of

developers.

In an XP project, the code should be written as simple as possible, as long as it

solves the current task. Simple code is easier to understand and contains less faults [3].

Continuous refactoring is another important practice in XP. Refactoring means that the

code-design is restructured without changing the code’s behaviour. Usually refactoring

moves from one design to another, as the need for a more fitting design becomes evident,

4.3. THE DEVELOPMENT ENVIRONMENT 25

due to increased code size. In XP, the code design should be modified whenever it is

suitable to do so, to ensure that the simplest and best design is always used.

In XP, every release is planned with a planning game, where the stories are prioritised

and the content of the release is roughly estimated [3]. In this project the releases were

planned in the start of each iteration.

The XP practice of continuous integration says that the project should be built and

integrated after each task is completed.[3] This step was not needed in this project because

of the size of the project and the number of developers.

4.3 The Development Environment

The NetBeans IDE1 was chosen because the authors were familiar with that IDE. Since

the selection of an IDE does not reflect the resulting code, no further investigation of other

IDEs seemed necessary. NetBeans has built-in support for user interface design and JUnit2

tests. This helped to fulfill the testing practices of XP.

It was decided that the Concurrent Versions System (CVS) was to be used because one

of the authors already had a CVS server up and running. The author’s prior knowledge of

CVS ensured that it would be preferable to other version control systems.

CVS centralises all code and other files in a repository stored on a server. This allows

for a distributed development model by letting each client use its own subset of the CVS

repository. Each client then updates the repository with only their modifications. If a

conflict should occur, that is when two clients want to make similar updates to the same

files, then the CVS will stop the update of the second client until that client has resolved

the conflict. The centralised code base makes backups, builds easier since all code is located

in one place.

1An IDE or Integrated Development Environment, is an application that aids in writing code, user
interface design, compilation and debugging of software.

2JUnit is a framework for automated tests. See section 4.5.2

26 CHAPTER 4. DEVELOPMENT APPROACH

4.4 Prototyping

According to Sommerville [11] “The principal purpose with prototyping is to validate

software requirements”. This means that prototypes are useful to demonstrate that the

requirements are captured and understood. The two types of prototypes that are used in

this thesis are called throw-away and evolutionary prototypes.

A throw-away prototype is used to clarify the requirements of an application. Although

a throw-away prototype should not be used in further development, parts of the prototype

can later be used in production code.[11]

An evolutionary prototype, starts with an incomplete application and as requirements

become clear more functionality is added. This way the prototype evolves to an application

with all the required functionality.[11]

4.5 Testing

According to Binder [4], “software testing is the execution of code using combinations of

input and state selected to find bugs”.

A fault is defined as missing or incorrect code. When a block of code that contains

faulty code is executed, a failure might occur. A failure is code that during its execution

does not do what it is supposed to. This can manifest in a crash of the program or as

an erroneous output. Faults are created as a developer makes coding errors, or by bad

hardware.[4]

Behavioural testing or blackbox testing, are tests based on an external view of a

component.[4] The term component is used for the entity (method, class or system) cur-

rently being tested.

A testcase specifies the component’s state before and after the test, and performs the

actual test. If the actual result would differ from the expected result, then the test has

failed. Test cases can be grouped into one or more testsuites. [4]

4.5. TESTING 27

4.5.1 Test Coverage

The following method int sum(int a, int b), which returns the sum of two parameters a

and b, serves as an example of a test case. One of many test cases for the method is the

assertion that sum(20,30) = 50. This only validates that the method call is valid for the

specified arguments of the test case. If for instance sum(21,31) also would result in 50, the

assertion that sum(21,31) = 52 would fail.

The example above demonstrates that a component does not need to be free of faults

after passing one test case. In fact, there is no guarantee that a component is fault free,

even after several test cases with different arguments has successfully been run. [4]

However, the set of all possible test cases, called an exhaustive test suite, for the method

int sum(int a, int b) is quite big since it consists of all possible combinations of a and

b. If int is a 32-bit datatype, then there are 264 different combinations for the values of

a and b, and equally many test cases. This is too many for most cases, or as Binder says

regarding exhaustive test cases: “Software testing is therefore necessarily concerned with

small subsets of the exhaustive test suite.”. [4]

4.5.2 The JUnit Framework

JUnit is a unit testing framework for Java. It facilitates automated testing using both

test cases and test suites. JUnit is written by Erich Gamma and Kent Beck. Further

information about JUnit can be found at http://www.junit.org. JUnit was used throughout

the development to create unit tests for the source code.

4.5.3 The jfcUnit Framework

The project owner proposed that jfcUnit should be used to test user interface specific code.

jfcUnit is a framework that allows testing of Swing-based graphical user interfaces. jfcUnit

is based on JUnit, and handles test cases and test suites the same way. With jfcUnit tests

28 CHAPTER 4. DEVELOPMENT APPROACH

that asserts certain application responses to user interaction, such as menu selections or

the press of a specific button, can be created. Further information about jfcUnit, can be

found at http://jfcunit.sourceforge.net/.

Chapter 5

The Prototypes

“Get your facts first, and then you can distort them as much as you please.”

– Mark Twain (1835-1910)

5.1 Introduction

The project owner wanted two prototypes developed, prior to the Mmv application. The

first prototype presents a simple application exemplifying a user interface (UI). Being

able to perform regression analysis was considered a critical functionality of the Mmv

application. Thus, the purpose of the second prototype was to find a way of performing

regression analysis.

Throughout this chapter the design decisions taken while developing the prototypes are

explained, as well as comments regarding each prototype when presented to the project

owner.

29

30 CHAPTER 5. THE PROTOTYPES

5.2 Prototype Planning

Each prototype was planned with the project owner, and resulted in six stories for the

first prototype, and two stories for the second prototype. See appendix A.1 and A.2,

respectively.

The user interface prototype was developed as a throw-away prototype. This means

that code is thrown away when the requirements are validated. The regression analysis

prototype was an evolutionary prototype and was used as the regression analysis code in

the Mmv application.

5.3 The First Prototype - User Interface

The purpose of the first prototype was to present a user interface for the project owner.

The UI consisted of a menubar, a statusbar and three small windows. The options in

the menubar had no functionality, except for the ’About’-option. When the user choose

the ’About’-option a dialog appears on the screen with information about the prototype,

such as version and copyright notice. The small windows were all empty, and had the

purpose of showing that the mainframe can hold windows where information, such as

game information or a table, can be shown. When the user tries to close the prototype

a dialog appears on the screen, asking the user if it wants to save data before closing the

prototype.

5.3.1 Design Decisions

At this level in the project, the decision about which file format that should be used for

saving data regarding games, was thought to be a too early decision to take. This, and

to remember the last file path were not implemented in the prototype, so the task ’Open

File’ in story 3 was abandoned. Since each story was rather small, no actual tasks were

5.4. THE SECOND PROTOTYPE - REGRESSION ANALYSIS 31

needed for implementing them.

The prototype was a so called multi document interface (MDI). This means that the UI

consists of a mainframe that may contain many windows, containing any type of content

such as a diagram or a table with values. These windows are freely positionable and

resizeable inside the application window. A MDI approach was decided to be used because

multiple views of the same data were supposed to be used. All views are kept into the same

application window and not spread all over the screen, which is the alternative if using a

single document interface (SDI).

5.3.2 Results

After showing the prototype to the project owner some issues arose. The biggest concern

was that the UI was not consistent in the graphical design. The ’About’-dialog did not

have the right look and feel according to the ’Windows Look and Feel’-standard. This was

remedied in the development of the Mmv application.

5.4 The Second Prototype - Regression Analysis

The first story of this prototype allows a user to input data into the prototype. The second

story would approximate a third order polynomial to the data inputted in the first story

using regression analysis.

The first story was implemented as a window with a table where the user could input

a number of values. The implementation of the second story was rather straightforward,

simply an implementation of the theories from section 3.3. A problem was encountered

since Java does not contain a matrix class, needed to facilitate the final step of the regression

analysis, namely solving the matrix in equation 3.7. Since developing a matrix class for this

project would have taken too much time, the use of an external library was needed. The

Jama library, see section 6.3, supported all functionality needed to solve the augmented

32 CHAPTER 5. THE PROTOTYPES

x y x y
1.0 13.6 9.0 4360.0
2.0 60.6 10.0 5959.0
3.0 179.8 11.0 7908.6
4.0 406.0 12.0 10243.6
5.0 774.0 13.0 12998.8
6.0 1318.6 14.0 16209.0
7.0 2074.6 15.0 19909.0
8.0 3076.8

Table 5.1: Test values used as input to regressions

matrix and was selected for this prototype.

5.4.1 Testing The Regression Analysis

The regression analysis was tested using Microsoft Excel as a reference. The regression in

Excel is assumed to be correct. The test values in table 5.1 were used in both the prototype

and Excel. A third order polynomial was approximated to the values in table 5.1 using

regression analysis in each application. The results from the regression analysis is given in

equation 5.1, where the coefficients values were rounded off to two decimals. Both Excel

and the prototype gave the same end result.

y(x) = 5.80x3 + 1.30x2 + 2.50x+ 4.00 (5.1)

5.4.2 Results

The result of the second prototype is that the implemented module to perform regression

analysis seems to be working properly. When testing the regression module, with data

from table 5.1 as well as several other tests with varying data used as input, the approxi-

mation obtained was either similar or exact to the approximation from Excel. The eventual

differences can be explained by roundoffs.

Chapter 6

The Mmv Application

“In these matters the only certainty is that nothing is certain.”

– Pliny the Elder (23 AD - 79 AD)

6.1 Introduction

After the prototypes had been developed and presented to the project owner, the develop-

ment of the Mmv application was started. This chapter describes the release plan and the

external libraries used in the application. The Extensible Markup Language (XML), will

also be briefly described in this chapter since some of the stories are depending on XML.

In the three following chapters the design and implementation of each iteration of the

application is described.

33

34 CHAPTER 6. THE MMV APPLICATION

6.2 The Release Plan

The Mmv application was developed with short release cycles according to XP. Each iter-

ation was set to be two weeks long, and at the end of each iteration a release was shown

to the project owner.

A total of four iterations was originally planned for the project, where each iteration

was based on one or more stories that can be seen in appendix A.3. Each story was divided

into smaller tasks. Table 6.1 shows the stories planned for each iteration.

First release: Game
Menu structure
User interface
Regression

Second release: Save game
Game settings

Third release: Load game
Export and Import

Fourth release: Statistical Tests

Table 6.1: The initial iteration plan

The iteration plan was revised after the second iteration, see table 6.2. As mentioned

in section 9.2, the fourth iteration was cancelled. The ’Load games’ story had already

been implemented in the second iteration and there was a decision that the priority for the

’Import and Export’ story, originally destined for the third iteration, should be lowered.

Due to this, the statistics story was moved to the third iteration, so there were no stories

left for a fourth iteration. In addition, the time for the project was almost used and further

stories considered outside the scope.

6.3 External Libraries

The need for a library to solve matrix systems became evident in the second prototype,

see section 5.4. The prototype used the Jama Matrix API. The Jama API can be found

6.3. EXTERNAL LIBRARIES 35

First release: Game
Menu structure
User interface
Regression

Second release: Save game
Game settings
Load Game

Third release: Statistical Tests

Table 6.2: The revised iteration plan

at http://math.nist.gov/javanumerics/jama. According to the Jama web site, the API will

be proposed as a Java standard for general matrix handling. Since Jama proved to work

well in the prototype, it was decided to be used in the Mmv application as well.

The stories in the initial iteration plan, see table 6.1, showed the need for a way to handle

XML files. XML is explained in section 6.3.1. Since the authors had prior knowledge of

the JDOM XML API, that API was chosen without further investigation, knowing that

all requirements from the stories would be met. JDOM is a Java based document object

model API for XML files. It allows for creation, loading and saving of XML documents,

see http://www.jdom.org for more information.

6.3.1 XML

The Extensible Markup Language (XML) is a markup language based on the Standard

Generalized Markup Language (SGML). XML focuses on the structure and contents of a

document, instead of how it should be represented. An XML document contains a hierarchy

of elements. Each element can contain attributes, information or child elements.[14]

To be considered well-formed, an XML document must obey the following rules:

• An XML document must contain only one root-element. A root-element is the ele-

ment that contains all other elements.

• All elements must be properly nested.

36 CHAPTER 6. THE MMV APPLICATION

• All attributes must be quoted.

• All end tags are required.

A well-formed document which also comforts to a DTD, is called a valid document.[12]

A DTD, or Document Type Definition, defines the structure, or language of an XML

document. The DTD describes the relationship between elements, which elements that

are allowed as children of another element, which elements that are mandatory and the

multiplicity of elements. A DTD also defines which attributes that are valid for each

element.[12] Since a DTD provides sufficient control over the structure needed in this

prototype, the more advanced XML-schema was not needed. ’

Chapter 7

The First Iteration

“Doubt is not a pleasant condition, but certainty is absurd.”

– Voltaire (1694-1778)

7.1 Introduction

This chapter describes the first iteration of the Mmv application. Together with the added

functionality of playing games like in figure 2.1, this iteration implemented the stories as

planned for the first iteration, see section 6.2. Some problems related to the regression

analysis are described in section 7.3.2.

7.2 Story and Task planning

According to the plan, see section 6.2, the stories to implement in this iteration were:

’Game’, ’User interface’, ’Menu structure’ and ’Regression’.

37

38 CHAPTER 7. THE FIRST ITERATION

7.3 Implementation

The regression analysis component from the second prototype was used in this iteration.

7.3.1 Game Structure

As a design decision it was decided that all games would be stored in a list and created

using recursion. The main reason for this decision was that it was quite easy to build the

game structure in a recursive way, as the game structure must resemble the recursiveness

of the utility function, see section 2.4.

Figure 7.1 shows the dependencies between the games, not the storage structure. In the

figure each game is represented by a box, where O1 and O2 are the outcomes and E is the

estimate for each game. The outcome values for the first game are set to 10000 and 0 as

Figure 7.1: Example of the implicit game tree structure

specified in the story. The estimate is always the mean value of the two outcomes. Then,

two more games were built based on this first game. One of these two got its outcomes

based on the low outcome and the estimate from the first game. The other game of these

two got its outcomes based on the high outcome and the estimate from the first game.

7.4. THE FIRST RELEASE 39

Then the procedure continued in a recursive manner until the desired amount of games

was created.

The game structure was chosen since the utility calculations for each estimate E needs

the utility of the outcomes O1 and O2, as described in section 2.4.

7.3.2 Regression

The regression analysis component from the second prototype was used in this iteration.

Before it could be used, JUnit tests had to be created for the component.

Despite the successful JUnit tests, it turned out that the regression analysis had some

problems. Since it is not possible to solve the matrix in equation 3.7 if it is singular, the

regression analysis will fail for some combinations of the utility values if used as input.

There is no easy way to determine which games or utility values that will result in a

singular matrix. Therefore the implementation was to always try to analyse, and if it failed

take care of that failure.

The data used in the analysis are the calculated utility u(estimate) and the estimate

for each game. This leads to a polynomial representation of the user’s utility function, or

U() as mentioned in section 2.4

7.4 The First Release

The first iteration contained the menu structure, a game panel, regression analysis and a

text display showing the results of the regression analysis. The only options in the menu

that were functioning were on the ’File’-menu and the ’Help’-menu. On the ’File’-menu,

only the options ’New session’ and ’Exit’ were functioning and on the ’Help’-menu only

the ’About’ option was functioning.

In the following text, values in parenthesis are the values shown in the figure 7.2. The

figure is a representation of the PE-games described in figure 2.1. The textfield (45) was

40 CHAPTER 7. THE FIRST ITERATION

an editable field where the probability for outcome one (10000) should be entered. Then

there were text labels for the certain outcome (5000), outcome one (10000), outcome 2 (0),

and also the probability for outcome two (55). When the probability for outcome one was

altered the probability for outcome two was also altered. There were also two buttons, one

for advancing to the next game and one for stopping the game suite.

Figure 7.2: The game window for the first release.

After the 20 games were played a dialog was displayed on the screen, informing the

user that all games had been played. When the dialog was confirmed the utility function

was determined by first calculating the utility for each game. Then regression analysis was

started and a text display was opened showing the utility function.

7.4.1 Comments

When the first release was presented, the project owner had a few comments and change

requests. Some of the changes were related to the design of the window used for playing

games. The symbol ’%’ should be put to the right of the two probability fields. An average

mean value should be shown between the two outcomes. Two additional buttons were

desired by the project owner. One of theses buttons has the same functionality as the

’Enter’ key in the probability field. This button should have the caption ’Ok’. Then a

second button, for clearing the probability field, was desired. This button should have the

caption ’Clear’. The caption of the stop-button should be changed to ’Cancel’ instead.

7.4. THE FIRST RELEASE 41

The locations of the buttons should be changed for easier usage. Then there should be a

symbol for indifference above the ’indifferent’ text.

The project owner also had a few suggestions about the logic of the game window. The

field for inputting the probability value is desired to be a spinner. A spinner is a field

where the value can be either increased or decreased with two buttons. There should be

a possibility to enter the probability value in two different manners. Either as a decimal

between 0 and 1, or as an integer between 0 and 100. This is motivated as some users

prefer one notation of probability over the other. The error message that is shown when a

user enters an illegal value should also be changed due to this fact.

There was also a desire for higher outcome values, due to the fact that the difference

between the two outcomes after a few games became too small. Small differences between

the outcomes makes the player indifferent and the game is of no use. A more randomly

distribution of the games in a suit was also desired.

Chapter 8

The Second Iteration

“A common mistake that people make when trying to design something completely fool-

proof is to underestimate the ingenuity of complete fools.”

– Douglas Noel Adams, British author, Hitchhiker’s Guide to the Galaxy (1952-2001)

8.1 Introduction

In this chapter the continued development of the Mmv application is described. The

internal game structure was remade, saving files was implemented, and the UI of the game

window was modified according to the requests made by the project owner.

8.2 Story and Task planning

The two stories ’Save game’ and ’Game settings’ were originally planned for this iteration,

see section 6.2. But after the first release, more stories and tasks were defined, to accom-

modate the change requests made by the project owner. Most of these changes concerned

43

44 CHAPTER 8. THE SECOND ITERATION

the look of the game window.

8.3 Implementation

Most of the development done during the second iteration concerned new functionality.

Loading and saving games were implemented. As XP says that the design would be

refactored whenever suited, a new application model solving some design issues was created.

Also the way games were created and stored internally was modified, to accommodate the

change requests made by the project owner.

8.3.1 New games dialog

When the user selects ’New Session’ from the menu a dialog window is shown, asking for

the maximum and minimum outcome values as well as the total number of games to create

for the game suite. Some constraints were set on the input values, so the game creation

procedure would create games from valid data.

8.3.2 Modifications to The Game Window

The suggestion from the project owner to use a spinner control to select the probability

value was difficult to implement, because there are two different types of representation

of the probability value, namely decimal and integer values. This called for a change of

priority that resulted in that the spinner was postponed. More changes to the game window

are described in section 8.4.

8.3.3 Game Structure

The game structure in the first iteration, see section 7.3.1, stored games internally in a

linked list. The list was populated as the method for game creation recursively generated

8.3. IMPLEMENTATION 45

the game structure. The way the recursion was devised, resulted in a list containing the

in-order traversal of the recursion tree. Table 8.1 shows the result of an in-order traversal

of the tree in figure 8.1.

This worked as all games were played in an order from the first game to the last game

in the list. But as suggested by the project owner, the games seemed to be following a

pattern, which they also did. The project owner wanted a more random distribution of

the games during game play.

Figure 8.1: Example tree

It was decided that a breadth-first search of the game tree would result in a better

distribution of the games to play. But, the linked list of games did not offer any way of

being iterated in a breadth first way.

Then, the idea of using a binary heap came up. Since the structure of a binary heap

represents an implicit tree structure no need for a recursive creation process would be

necessary [15]. To create a new game, it is added to the next position of the heap, and

one can then determine which values to use from the items already in the heap, using the

46 CHAPTER 8. THE SECOND ITERATION

properties of the binary heap [15].

In the binary heap, games are stored in a breadth first search order, making the traversal

as trivial as iterating from the first game to the last. Table 8.2 shows the traversal of the

tree in figure 8.1. Notice that the first position of the table is not used since the first object

in a binary heap is located at the second position. [15]

F B U A S D C

Table 8.1: In-order traversal

A B D F U S C

Table 8.2: Breadth first traversal

The new solution for the game structure had more benefits. Additional games can

easily be added to existing ones, simply by adding a new game to the heap. This was not

possible before, as it would have demanded that the recursive calls all have been made

again.

Also, even though it was not implemented, a method could be used to randomly select

any game from the current level. This would have given an even better distribution of

games, and the application would still be able to do regression analysis after each played

game. This benefit would have been virtually impossible to do using the previous method.

8.3.4 Refactoring

To better accommodate the new functionality of the stories for the second iteration, the

object oriented design had to be refactored, see section 4.2.

The refactoring meant that an application model class was created. The model now

contains and defines all application logic. Some logic concerning games is still handled by

the game handler as before. This distinction made it possible not to change so much of

the code as a removal of the game handler would have caused.

8.4. THE SECOND RELEASE 47

The application model and user interface are separated and only communicates using

the observer pattern. Using the observer pattern, the application model now notifies the

UI (or whoever has registered for notifications) whenever the state of the application has

changed. The UI is then responsible for taking appropriate actions, corresponding to the

new state.

The observer pattern, defines a framework which allows several listeners to register for

notifications from a subject. One of the benefits from the observer pattern is that coupling

is loosened [9].

Like the rest of the UI, the analysis window also retrieves its data from the model when

it is notified by the model.

8.3.5 Saving Games

In the story ’Save game’ it is defined that games would be saved using XML, see 6.3.1.

It was also decided that a DTD, see 6.3.1, was needed to design the format of the XML

document.

The data needed to be saved for the game suite was the maximum and minimum

outcomes. For each game the estimate, the probability, the two outcomes and a calculated

utility for that game were also saved. To be able to determine whether a game had already

been played or not, a boolean field called ’played’ was added. The resulting DTD can be

found in figure 8.2. An example of a save file, based on the DTD is shown in figure 8.3.

8.4 The Second Release

There were a few changes due to the comments done regarding release 1. First there were

a few changes to the graphical design of the game window which can be seen in figure 8.4.

The ’%’ was added to the right of both the probability fields, to clarify that percentage

48 CHAPTER 8. THE SECOND ITERATION

<?xml version="1.0" encoding="UTF-8"?>

<!ELEMENT GameSuite (Game+)>

<!ATTLIST GameSuite>

<!ATTLIST GameSuite

max CDATA #REQUIRED

min CDATA #REQUIRED

nr CDATA #REQUIRED

>

<!ELEMENT Game EMPTY>

<!ATTLIST Game

played (false | true) #REQUIRED

probability CDATA #REQUIRED

outcome1 CDATA #REQUIRED

outcome2 CDATA #REQUIRED

estimate CDATA #REQUIRED

utility CDATA #REQUIRED

>

Figure 8.2: The DTD used for save files

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE GameSuite SYSTEM "gamesuite.dtd">

<GameSuite min="0" max="100" nr="10">

<Game played="true" outcome1="100" outcome2="0" estimate="50" probability="0.5" utility="0.5" />

<Game played="true" outcome1="50" outcome2="0" estimate="25" probability="0.4" utility="0.2" />

<Game played="true" outcome1="100" outcome2="50" estimate="75" probability="0.34" utility="0.67" />

<Game played="true" outcome1="25" outcome2="0" estimate="12" probability="0.64" utility="0.128" />

<Game played="true" outcome1="50" outcome2="25" estimate="37" probability="0.34" utility="0.302" />

<Game played="true" outcome1="75" outcome2="50" estimate="62" probability="0.34" utility="0.5578" />

<Game played="true" outcome1="100" outcome2="75" estimate="87" probability="0.24" utility="0.7492" />

<Game played="true" outcome1="12" outcome2="0" estimate="6" probability="0.34" utility="0.04352" />

<Game played="false" outcome1="25" outcome2="12" estimate="18" probability="0.0" utility="0.0" />

<Game played="false" outcome1="37" outcome2="25" estimate="31" probability="0.0" utility="0.0" />

</GameSuite>

Figure 8.3: A save file example

is the unit for the inputted value. The probability label was changed to a field. This was

done to get a more uniform appearance. This field is not editable and therefore greyed.

The average mean value was added to the game window right between the two outcomes.

A button with the caption ’Clear’ was added, with the functionality of clearing the input

field. Also a button, with the same functionality as the ’Enter’ key, was added to the game

window. The former ’Stop’ button has its caption changed to ’Cancel’. The location of

all the buttons was altered for easier usage. The symbol for indifference was added above

the text ’indifferent’. Also a few lines were added with the intention to clarify that it is a

8.4. THE SECOND RELEASE 49

Figure 8.4: The game window for the second release.

lottery with two outcomes.

Then there were a few changes to the logic in the game window. Now it is possible to

enter both decimal and integer values in the probability field. The range for the decimal is

between 0 and 1, and the range for the integers is between 0 and 100. If the user enters an

illegal value a dialog appears with a notification about this. Due to a suggestion from the

project owner about higher outcome values, a dialog for setting the parameters for a game

suite was developed for this release. The design of the dialog can be seen in figure 8.5.

In the dialog the minimum and maximum values for the outcomes in a game suite can

be set. This way the user has the ability to set the values to what are tangible values for

that user. There is also a field for setting the number of games to be played in a game

suite.

8.4.1 Problems

Due to bad and insufficient tests, some problems occurred during the second release. A

change in the logic that manages the check before closing the application, resulted in an

application that was unclosable. If a test had existed prior to that modification, and the

test had been run, then that error would have been found before showing it to the project

50 CHAPTER 8. THE SECOND ITERATION

Figure 8.5: The dialog for game suite settings

owner.

8.4.2 Comments

The project owner had a few suggestions concerning the game window shown in the UI.

The fields for the probabilities would have the width of four visible characters instead of

three. To display the average mean value should be optional, so there is also the need of

a check box for choosing if the value should be visible or not.

The buttons ’Ok’ and ’Next’ are desired to be one button with a double functionality.

When there is something entered in the probability field then the button should have the

same functionality as the former ’Ok’ button. After the user has confirmed the inputted

value, either by pressing the enter key or using the ’Ok’ button, the button should have

the same functionality as the former ’Next’ button. When pressing the button in the latter

mode the user can play the next game.

When entering values in decimal that are greater than 0.65 in the probability field,

8.4. THE SECOND RELEASE 51

the value shown in the probability field for outcome 2 showed only the last digits of the

number, as the field was right justified. The fields must be left-justified to show just the

first digits instead.

The project owner had a suggestion of a file extension, ’.mmv’ for the files that are

saved from the application. As game data are stored using XML there is a DTD connected

to each file. This DTD must reside in a specific catalog relative to the save file, for the

loader to be able to validate the save file.

When the option ’Analyse’ in menu ’Data Handling’ was chosen the display with results

from the regression analyser came up. If this was done twice, without first closing the

display, another window came up with the same information as the first one. This is a

faulty behaviour which should be fixed in the next release.

The project owner decided that the priority for the story ’Import and Export data’,

which was to come in the following iteration, was lowered. This decision was based on the

fact that the save file contained enough data to be used in other applications.

Chapter 9

The Third Iteration

“Many of life’s failures are people who did not realize how close they were to success when

they gave up.”

– Thomas A. Edison (1847 - 1931)

9.1 Introduction

In this chapter the continued development of the Mmv application is described. The user

interface of the game window was modified according to the requests made by the project

owner.

9.2 Story and Task planning

According to the revised iteration plan in section 6.2, the story to develop in this iteration

was the ’Statistical tests’. A statistical test gives an indication to how good the regression

analysis fitted the utility function to the game data.

53

54 CHAPTER 9. THE THIRD ITERATION

Due to the comments from the project owner in the second release, a new story with

tasks was created. This story and its tasks can be seen in Appendix A.4.

9.3 Implementation

The stories and tasks for this iteration resulted in changes of the game window and the

development of statistical tests. These are described below in one section each.

9.3.1 Game Window

The tasks for the game window resulted in the new game window which can be seen in

figure 9.3. As the visibility of the average mean value would be optional and chosen by the

user, a check box was added to the game window. With this check box the user can choose

whether to show or hide the average mean value during game play. The former buttons ’Ok’

and ’Next’ were removed from the game window that was developed in the second release.

Instead another button with a double functionality was added. The two functionalities

for the new button are the same functionalities as the former ’Ok’ button and the former

’Next’ button had. If the user has confirmed the entered probability value, either through

pressing the ’Enter’ key in the field or pressing the ’Ok’ button, the new button has the

same functionality as the former ’Next’ button. If the user has not confirmed the entered

probability value, the button has the same functionality as the former ’Ok’ button.

The ’Clear’ button was moved further away from the ’Cancel’ button. This way it

made a group together with the ’Next/Ok’ button and the game window became more

clear. During play of a game suite the only buttons that would be used are the ’Clear’

button and the ’Next/Ok’ button. As the ’Cancel’ button is not grouped with the other

buttons, this got more obvious to the player.

9.4. THE THIRD RELEASE 55

9.3.2 Statistical tests

Statistical tests were developed according to the story for this release. The statistical tests

that were developed for this release were a R2-test and a test for confidence interval with

a confidence grade. The R2-test and confidence interval test are described in section 3.4.

The intention with these tests is to give the player an indication of when the regression

analysis is good enough. If the result is good enough the game suite can be stopped and

the results can be saved. Three results for the confidence interval were presented in the

analysis window. Three intervals, one for each one of the confidence grades 95%, 97% and

99%, were printed out to give the player the opportunity to decide at which interval it is

satisfied with the regression analysis.

9.3.3 File extension

The project owner wanted a file extension for files that are saved from the application. The

functionality that a file extension ’.mmv’ is added to a file before saving was implemented

in the application. Files with this extension are filtered out and are the only ones that are

shown as default when saving and loading files in the Mmv application.

9.4 The Third Release

The result of iteration three is given below as figures. Figure 9.1 shows a text from an

actual analysis window. Due to the fact that scaling and rotating the actual image of the

window would have made it unreadable, it was presented this way instead.

As can be seen in figure 9.1, the three confidence intervals (95%, 97% and 99%) are

presented beneath the R2-value, which is presented beneath the results from the regression

analysis. This is an example of a good regression analysis. The R2-value is very near 1.0

which is an indication that the regression is well approximated to the given game data.

Hence, the regressed third order polynomial that is presented is a good approximation of

56 CHAPTER 9. THE THIRD ITERATION

Regression Results:

y =c + c1*x + c2*x^2 + c3*x^3

[c,c1,c2,c3] =

-0.024135706914347802

0.3286431458548504

-0.2628869969040442

0.1768489852081243

R2-statistics: 0.9898946839579217

Confidence intervals:

95%: [0.013107907636738983, 0.031870807533538686]

Median: 0.025051599587203932 Grade: 0.950958251953125

97%: [0.01237704785861865, 0.03407023993808188]

Median: 0.025051599587203932 Grade: 0.987274169921875

99%: [0.007169117647057466, 0.0366985939112478]

Median: 0.025051599587203932 Grade: 0.997650146484375

Figure 9.1: The analysis window with regression results.

the players utility function. The utility function that follows from the regression analysis

is shown in figure 9.2.

The new game window is shown in figure 9.3. As can be seen, it has a check box

to choose if the average mean value would be visible or not. There is also fewer buttons

because the ’Ok’ and ’Next’ buttons are merged into one button with a double functionality.

The ’Clear’ button has been moved for a more clean and functional game window. It can

also be seen that the probability fields has become wider, from three to four characters, to

show more decimals.

9.4.1 Comments

When this release of the Mmv application was presented, the project owner was satisfied

with it. This release had the right graphical appearance and functionality according to

what the project owner wanted for the third release.

As this release is the last release of the project, it is also the final version of the

application.

Figure 9.2: The utility function

Figure 9.3: The game window for the third release.

Chapter 10

Thesis Summary

“The future is here. It’s just not widely distributed yet.”

– William Gibson (1948-)

10.1 Introduction

This chapter begins with a summary of the created application. The thesis is concluded

followed by a discussion covering some of the problems and progress made during the

project. Finally ideas of future works spawn from this thesis is presented.

10.2 MMV Summary

As described in section 8.3.3, the games in the Mmv application are created based on each

other. All games, except the first, get their outcome values from a game already created

or from the minimum and maximum outcome values decided for the game suite. The first

game always get its outcome values from the minimum and maximum values decided for

59

60 CHAPTER 10. THESIS SUMMARY

the game suite, as demonstrated in figure 7.1.

This way of generating games raised some issues. As described later, inconsistent play

is not possible, the first game played set the range for the following games. Also, it turned

out that adding more games, did not generate a better utility function.

10.2.1 Additional Games Does Not Improve The Result

The game creation procedure and dependencies between the games resulted in a few as-

pects, like that an inconsequent result is impossible, and that the first three games played

virtually sets the range for all other games.

Figure 10.1: A game suite with 15 games
played.

Figure 10.2: A game suite with 31 games
played

In figures 10.1 and 10.2 two played game suites are shown. After playing 15 games

the graph in figure 10.1 is the result from the regression. As can be seen in figure 10.2,

playing another 16 games does not show any or only a small difference in the result of

the regression. This is independent of the way the last 16 games are played. This is a

consequence caused by the way the first games guide the utility.

10.2.2 The First Games Guide Utility

Since the utility calculations for the first game is based on the utilities 1.0 and 0.0 for the

maximum and minimum outcome values respectively, the utility for the first game can be

10.2. MMV SUMMARY 61

any value in that interval. This implies that the probability set by the user for the first

game, in a very high degree determines the resulting utility function. Let u be the utility

of the first game, then the interval of the utility for the second and third game is [0.0, u]

and [u, 1.0] respectively. Every game, partitions that interval for its respective sub game,

in a similar way. All according to the theories in section 2.4.

After a while the interval becomes so small that all new sub games would obtain the

same utility value as their parents.

10.2.3 Inconsistency Is Impossible

No matter how weird or bad a user plays the games, it is impossible for the user to be

inconsistent. The way games are created forces the user to be consistent. Although the

result may be a strange utility function, it is always consistent. The forced consistency

comes from, as mentioned in section 2.4 that the player has to be consistent, that is, assign

higher utility values to higher monetary values.

10.2.4 Solution

Would the games have been created in another way, the issues mentioned above would

not have emerged. The games in each game suite can be better distributed if created

independently of each other. As long as it is possible to calculate the utilities for all

games, any game structure is possible.

Another method of creating games, could result in games where the player would be

able to play inconsistently. If the player was allowed to play inconsistently, the inconsis-

tencies must be resolved. French [7] says that it is up to the decision maker to resolve

the inconsistencies. That would mean that checks would have to be implemented in the

Mmv application to ensure that all inconsistencies are resolved. Perhaps by replaying the

inconsistent games, or letting the user decide which games that are valid.

62 CHAPTER 10. THESIS SUMMARY

10.3 Contribution

The thesis contributes with a developed application, which can serve as a start for further

development in the field of risk analysis. The theories described in the thesis have been

implemented, and results in a risk attitude function.

Since some problems occurred with the use of a third order polynomial for representing

the utility function, it might not be the most suitable in all occasions. Works derived from

this one might need to investigate additional methods of representation.

This thesis instrumentalises the research article Zuccato[16] by describing the determi-

nation of the utility function, or preference function from that article.

As an additional contribution the thesis also shows that XP can be usable in a small

development team, although some of the practices of XP are not usable in a two member

team.

10.4 Experiences

This section discusses some experiences made throughout the project.

10.4.1 XP Experiences

To avoid unnecessary changes due to assumptions taken by developers, it seems vital in an

XP based project to have the customer available when needed, or at least available within

a short times notice. Perhaps a more detailed specification is needed if the customer is

not available for a longer period. This is based on the fact that the customer changed the

specification of the user interface design twice, once after each release.

These changes would probably not have occurred in an XP project with an on site

customer to correct the assumptions of the developers at an early stage.

Since documentation of an XP project is done through code and not in massive paper

10.5. CONCLUSION 63

work, XP was suitable in a small team consisting of two members. However, automated

documentation such as JavaDoc is good even in XP.

10.4.2 Regression Analysis

Since the R2 value calculated after the analysis is done usually is close to 1, suggests that

a correct model has been used. How well the approximation of the third order polynomial

is done depends on how good the game is actually played. For instance, if an user sets the

probability to 0% or 100% in all games, then the utility values will not generate a good

approximation, because the utility values do not follow a third order polynomial, in this

case the data should have been approximated to another model.

10.5 Conclusion

To conclude this thesis, a look at the objectives presented in section 1.1 is in order.

The first objective of the thesis was to create a Java-application to determine a person’s

risk attitude, and that the application would be developed using the software development

method of XP. The first objective is met by the implementation of the Mmv application

described in chapters 6 through 9. This application has been developed using the XP

practises mentioned in section 4.2.

The second objective required the development of the application to be described,

as well as the theories used to determine risk attitudes. This objective is met by this

document, that describes both the creation of the Mmv application and the theories of risk

analysis, risk attitudes and utility functions as well as regression analysis.

64 CHAPTER 10. THESIS SUMMARY

10.6 Future Work

Further development of the application developed in this thesis is possible. For instance

modifying the game structure to avoid the issues mentioned in section 10.2.

Based on the research article, Zuccato [16], another application can be developed where

different risk scenarios can be assessed. When these scenarios have been assessed, the

results from the Mmv application can be used by a person other than the decision maker

that played the games, using the modified mean value approach. This person can then act

like as if the decision maker had been faced with the scenarios and had taken the relevant

actions.

References

[1] Robert A Adams. Calculus - A Complete Course. Addison Wesley, 5th edition, 2003.

[2] Howard Anton. Elementary Linear Algebra. John Wiley & Sons, Inc, 8th edition,
2000.

[3] Kent Beck and Cyntia Andres. Extreme Programming Explained. Addison Wesley,
2nd edition, 2005.

[4] Robert V. Binder. Testing Object-Oriented Software. Addison Wesley, 1999.

[5] Han Bleichrodt, Jose Luis Pinto, and Peter P. Wakker. Making descriptive use of
prospect theory to improve the prescriptive use of expected utility. Management
Science, 47(11):1498–1514, 2001.

[6] Norma R. Draper and Harry Smith. Applied Regression Analysis. John Wiley & Sons,
Inc, 3rd edition, 1998.

[7] Simon French. Decision Theory. Ellis Horwood Limited, 1st edition, 1993.

[8] Steve Frosdick. The techniques of risk analysis are insufficent in themselves. Disaster
Prevention and Management, 6(3):165–177, 1997.

[9] Erich Gamma, Ralf Johnson, Richard Helm, and John Vlissides. Design Patterns.
Addison Wesley, 2004.

[10] Gilbert Gordon and Israel Pressman. Quantitative Decision-Making For Business.
Prentice Hall, 2nd edition, 1983.

[11] Ian Sommerville. Software Engineering. Addison Wesley, 5th edition, 1995.

[12] Doug Tidwell. XSLT. O’Reilly, 1st edition, 2001.

[13] Kerstin Vännmann. Matematisk statistik. Studentlitteratur, 2nd edition, 2002.

65

66 REFERENCES

[14] The World Wide Web Consortium W3C. The extensible markup language (xml)
1.0 3rd edition. Available on the Internet:http://www.w3.org/TR/2004/REC-xml-
20040204/, 2004.

[15] Mark Allen Weiss. Data Structures & Algorithm Analysis in C++. Addison Wesley,
2nd edition, 1999.

[16] Albin Zuccato. A modified mean value approach to assess security risks. In
L. Labuschagne and M. Eloff, editors, 2nd Annual Conference of Information Security
for South Africa – ISSA-2 Proceedings. South African Computer Society, 2002.

Appendix A

XP Stories

A.1 Prototype 1

This part lists the XP-stories for the first prototype.

Story: Story1 Statusbar Nr: 1 Priority: 4

Description: The statusbar, should show last action for 15 seconds.

Story: Story2 Close program Nr: 2 Priority: 3

Description: Closing program should ask to save.

Story: Story3 About Nr: 3 Priority: 2

Description: About should contain version and copyright notice.

Story: Story3 Open File Nr: 4 Priority: 3

Description: Filter for application file type, and memorize last path.

Story: Story3 Menus Nr: 5 Priority: 1

67

68 APPENDIX A. XP STORIES

Description: The structure of the menus should look as in table A.1.

File New Session
Load Session
Dave Session

Import
Export

Exit
Edit

Display Graph
Table

Data Handling
Window

Help Help
About

Table A.1: Menu structure

A.2 Prototype 2

Story: Input Nr: 6 Priority: 1

Description: Input values for regression analysis.

Task: Values Story: 6 Priority: 1 Time: 4 hours

Description: The user should be able to enter a set of values.

Story: Regression Nr: 7 Priority: 1

Description: Regress some values.

Task: Regression Story: 7 Priority: 1 Time: 10 hours

Description: Perform a regression analysis, to fit a third order polynomial to the inputed

A.3. MMV 69

values from the task Values.

A.3 MMV

Story: Game Nr: 8 Priority: 1

Description: 20 games should be playable.

Task: Lottery Story: 8 Priority: 1 Time: 16 hours

Description: 20 PE games should be playable.

Story: Menu structure Nr: 9 Priority: 1

Description: Menu structure without functionality.

Task: Create Menu structure Story: 9 Priority: 1 Time: 2 hours

Description: The menu structure was supposed to be similar to that in the user interface

prototype.

Story: User Interface Nr: 10 Priority: 1

Description: The user interface should be similar to that of the user interface prototype.

Task: Statusbar Story: 10 Priority: 1 Time: 2 hours

Description: The application should have the same statusbar as the user interface pro-

totype. That is it should show its content for 15 seconds and then clear itself.

Task: Close Program Story: 10 Priority: 1 Time: 2 hours

70 APPENDIX A. XP STORIES

Description: When a user tries to close the program, a dialog should ask whether to quit

or save any unsaved data before quitting.

Task: About Story: 10 Priority: 1 Time: 2 hours

Description: The text for the about dialog should come from a file.

Story: Regression Nr: 11 Priority: 1

Description: A third order polynomial should be fitted to gamedata.

Story: Statistical Tests Nr: 12 Priority: 3

Description: Various tests should be performed on the result from the regression, to

determine if it represents a sound model according to gamedata.

Story: Save Game Result Nr: 12 Priority: 2

Description: After the user has successfully played games, or the save menu option is

chosen, the results of the games should be saved. The file saved should be in a XML format.

Task: Design a DTD Story: 12 Priority: 2 Time: 4 hours

Description: The DDT for the file to save must be designed, to allow games to be saved.

Task: Saving Games Story: 12 Priority: 2 Time: 8 hours

Description: Save games and the fitted utility function for the games.

Story: Game Settings Nr: 13 Priority: 2

Description: To get some versity in the games, various gameparameters should be setable

before starting a new game. These settings should be read and updated from a parameter

file.

A.3. MMV 71

Task: Design a parameter file DTD Story: 13 Priority: 2 Time: 1 hours

Description: The DDT for the parameter file.

Task: Reading the parameter file Story: 13 Priority: 2 Time: 4 hours

Description: Read the parameter file.

Task: Create a user interface Story: 13 Priority: 2 Time: 4 hours

Description: The user interface should allow to set various settings for the game.

Task: Update the parameter file Story: 13 Priority: 2 Time: 2 hours

Description: Update the parameter file through the user interface.

Story: Import and Export Nr: 14 Priority: 3

Description: It should be possible to import and export data to and from the application.

The import and export system should allow for easy extendability. Therefore the Abstract

factory, or an equivalent design is needed.

Task: Design of Abstract Factory Story: 14 Priority: 2 Time: 4 hours

Description: Design a plugin based framework using the Abstract factory.

Task: XML importer Story: 14 Priority: 3 Time: 4 hours

Description: Import data using XML

Task: XML exporter Story: 14 Priority: 3 Time: 4 hours

Description: Export data using XML

72 APPENDIX A. XP STORIES

Story: Statistical Tests Nr: 15 Priority: 3

Description: To check whether the result from regression is well fitted, some statistical

tests should be done on the result.

Task: R2-test Story: 15 Priority: 2 Time: 8 hours

Description: Test the regression using a R2-test.

Task: Confidence Interval Story: 15 Priority: 2 Time: 8 hours

Description: Test the residuals using statistical, confidence interval

A.4 Additional stories

Story: Changes Release 2 Nr: 16 Priority: 1

Description: Change code according to comments from release 1

Task: Adding symbol ’%’ Story: 16 Priority: 1 Time: .1 hours

Description: The symbol ’%’ should be put to the right of the two probability fields.

Task: Add average mean value Story: 16 Priority: 1 Time: .1 hours

Description: Add an average mean value between the two outcomes.

Task: Add buttons Story: 16 Priority: 1 Time: .3 hours

Description: Add a button with the same functionality as the ’Enter’ key in the prob-

ability field. This button should have the caption ’Ok’. Add a button for clearing the

probability field. This button should have the caption ’Clear’. Change location of the

A.4. ADDITIONAL STORIES 73

buttons for easier usage.

Task: Change caption of ’Stop’ Story: 16 Priority: 1 Time: .1 hours

Description: The caption of the ’Stop’-button should be changed to ’Cancel’.

Task: Add indifference symbol Story: 16 Priority: 1 Time: .2 hours

Description: Add a symbol for indifference above the ’indifferent’ text.

Task: Two different values in fields Story: 16 Priority: 1 Time: .5 hours

Description: Add the possibility to enter the probability value in two different manners,

as a decimal between 0 and 1, or as an integer between 0 and 100. The error message that

is shown when a user enters an illegal value should also be changed due to this fact.

Task: Raise outcome values Story: 16 Priority: 1 Time: .1 hours

Description: Give the oucomes higher values.

Task: Game distribution Story: 16 Priority: 1 Time: .5 hours

Description: The games should be more randomly distributed.

Story: Changes Release 3 Nr: 17 Priority: 1

Description: Change code according to comments from release 2

Task: Probability fields Story: 17 Priority: 1 Time: .1 hours

Description: Probability fields should have 4 characters instead of 3.

Task: Checkbox for average mean value Story: 17 Priority: 1 Time: .2 hours

Description: Add a checkbox for average mean value between the two outcomes.

74 APPENDIX A. XP STORIES

Task: File extension Story: 17 Priority: 1 Time: .2 hours

Description: The file extension ’.mmv’ should be added to files that are saved from the

application.

Task: Filter file extension when loading Story: 17 Priority: 1 Time: .2 hours

Description: The file extension ’.mmv’ should be filtered out when loading files.

Task: Ok + Next Story: 17 Priority: 1 Time: .5 hours

Description: The two buttons ’Ok’ and ’Next’ should be changed to one button with a

double functionality. When there is something entered in the probability field then the

button should have the same functionality as the former ’Ok’ button. After the user has

confirmed the inputted value, either by pressing the enter key or using the ’Ok’ button,

the button should have the same functionality as the former ’Next’ button. When pressing

the button in the latest mode the user can play the next game.

Appendix B

UML-Diagrams

The UML-diagrams shown here shows the class-diagrams for each Java package, as well as

the package structure. There is also a diagram showing the dependencies between all classes

in the application. The diagrams were generated automatically using reverse engineering in

Borland Together 6.1. As the diagrams were generated from code, they meet the XP need,

of only having automatically generated documentation to ensure that the documentation

always reflect the latest source.

75

76 APPENDIX B. UML-DIAGRAMS

Figure B.1: Overview of all packages.

77

Figure B.2: The parts of the game package.

78 APPENDIX B. UML-DIAGRAMS

Figure B.3: The parts of the math package.

79

Figure B.4: The parts of the ui package.

80 APPENDIX B. UML-DIAGRAMS

Figure B.5: The parts of the model package.

81

Figure B.6: Overview of all classes and their relationship.

