
Department of Computer Science

Torbjörn Andersson

Single SCTP Association with Multiple

Streams vs. Multiple TCP Connections: A

Performance Evaluation

Master's Thesis
2005:08

Single SCTP Association with Multiple

Streams vs. Multiple TCP Connections: A

Performance Evaluation

Torbjörn Andersson

c© 2005 The author and Karlstad University

This thesis is submitted in partial ful�llment of the requirements
for the Masters degree in Computer Science. All material in this
thesis which is not my own work has been identi�ed and no mate-
rial is included for which a degree has previously been conferred.

Torbjörn Andersson

Approved, 2005-06-07

Opponent: Eivind Nordby

Advisor: Johan Garcia

Examiner: Donald Ross

iii

Abstract

The Stream Control Transfer Protocol (SCTP) is a new transport protocol designed to
solve some of the shortcomings of the Transmission Control Protocol (TCP). SCTP has a
new internal structure, which allows a connection, called association in SCTP, to contain
multiple streams. These streams give users the opportunity to separate unrelated data
into di�erent streams and avoid Head of Line Blocking (HLB) situations, which can occur
when unrelated data items are transferred in a single stream.

The goals of this study were to gain practical experience of SCTP and reveal infor-
mation about the performance of the protocol. The means for reaching these goals were
therefore naturally practical experiments on a real SCTP implementation with the neces-
sary performance measurements.

Initialy, an evaluation of SCTP implementations was performed and the most appro-
priate for a performance evaluation was chosen. The experiment was designed to compare
the performance of multiple streams against multiple TCP connections. The downloading
of web-pages serving as an inspiration and the composition of the web-pages varied from
1 to 300 di�erent �les, each �le transferred separately over a SCTP stream or a TCP
connection. The result showed that SCTP can be 10% faster when 300KB are transferred
with 50 streams/connections and under some circumstances up to 70% faster. The over-
head generated by initializing multiple TCP connections was found partially responsible
for TCP's lack of performance. Further, the way the TCP connections were initialized was
found to have a big e�ect on TCP's results in the tests.

v

Contents

1 Introduction 1

1.1 Aim of study . 2
1.2 Scope . 3
1.3 Document disposition . 4

2 A TCP and SCTP summary 5

2.1 Basic concepts . 5
2.2 TCP . 7

2.2.1 General properties . 8
2.2.2 TCP connection sequence . 8
2.2.3 Data abstraction . 9
2.2.4 Congestion control . 10

2.3 SCTP . 12
2.3.1 General properties . 13
2.3.2 The SCTP connection sequence . 14
2.3.3 Data abstraction . 16
2.3.4 Congestion control . 16
2.3.5 SCTP socket API . 17
2.3.6 Additional features of SCTP . 19

vii

3 An evaluation of SCTP implementations 21

3.1 The competitors . 21
3.2 Implementation basics . 22

3.2.1 Implementation techniques and concepts 22
3.2.2 One SCTP layer per host . 23
3.2.3 User-space process assignments . 24

3.3 Comparison . 25
3.3.1 Randall R. Stewart . 26
3.3.2 Siemens-Essen . 27

3.4 Conclusion . 29

4 Experiment design 31

4.1 Choosing a suitable feature of SCTP . 31
4.1.1 Features of SCTP with experiment possibilities 31
4.1.2 Motivation . 33

4.2 Experiment speci�cation . 34
4.2.1 Experiment scenarios . 34
4.2.2 Test measurements . 35
4.2.3 Network con�gurations . 37
4.2.4 Summary . 38

4.3 Experiment components and environment 38
4.3.1 Simulated HTTP transfer . 38
4.3.2 Software overview . 39
4.3.3 SCTP application details . 39
4.3.4 TCP application details . 40
4.3.5 Implementation experience . 42
4.3.6 Network environment . 43

viii

5 Experiment Results and Analysis 47

5.1 Verifying the results for correctness . 47
5.1.1 Method . 47
5.1.2 Variance in the results . 48
5.1.3 Application result versus the log 48
5.1.4 Auto-tuning in TCP . 49

5.2 Experiment results . 50
5.2.1 Data representation and �gure explanations 50
5.2.2 Basic scenarios . 51
5.2.3 MS scenarios . 51

5.3 Analysis . 53
5.3.1 Excel as an analysis tool . 53
5.3.2 Important parameters and behaviours that can a�ect the result . . 56
5.3.3 Basic scenario analysis . 62
5.3.4 MS scenario analysis . 64
5.3.5 Summary . 70

5.4 Conclusion . 72

6 Summary 75

6.1 Accomplishments . 75
6.2 Future work . 76

6.2.1 A continuation with HTTP1.0 . 76
6.2.2 HTTP1.1 . 77
6.2.3 Signalling tra�c . 77

6.3 Final thoughts . 78

References 79

A List of Abbreviations 83

ix

List of Figures

2.1 A TCP/IP stack . 7
2.2 TCP Connection sequence . 9
2.3 Congestion control[8] . 12
2.4 SCTP Connection sequence . 15

3.1 Implementation overview . 29

4.1 Shutdown of SCTP and TCP . 36
4.2 SCTP - Bandwidth sharing . 40
4.3 Sequential initiation of multiple TCP connections 42
4.4 The components creating the experiment network 45
4.5 A logical view of the experiment network 45

5.1 BASIC scenario results . 52
5.2 MS scenario results . 54
5.3 Connection comparison . 58
5.4 TCP - No bandwidth sharing . 63
5.5 SCTP R2 result in percentage of TCP . 71

xi

List of Tables

4.1 Comparison possibilities . 34
4.2 Basic scenarios . 34
4.3 Multiple Stream (MS) scenarios . 35
4.4 Network con�gurations . 37

5.1 Idle calculations . 55
5.2 Bu�er calculations . 57
5.3 Header overhead . 61
5.4 Idle time percentage for TCP in MS 6, 7 and 8 69

xiii

Chapter 1

Introduction

The Internet community has been conservative when it comes to introducing new general
transport protocols. Why it has been like this probably have many reasons, but one reason
may be that new protocols have to interact with existing protocols in a friendly manner
and not damage the functionality of Internet. The spreading of a new general transport
protocol might also be hindered by the operating systems. General transport protocols
work on top on the Internet Protocol (IP) and the access to the IP layer is often restricted
by the operating system. General transport protocols are therefore often required to be
implemented in the kernel of the operating system, which can be troublesome in some
operating systems. Specialized transport protocols have in general avoided the IP layer
and instead have they been working on top of User Datagram Protocol (UDP), which is
a general transport protocol that o�ers a minimal transport service. UDP acts as a thin
layer on top on IP and the access to the UDP layer is normally not restricted and the
spreading of a specialized protocol is therefore not hindered by the operating system.

The Transmission Control Protocol (TCP), unlike UDP, o�ers a much more complex
transport service, which in many cases is adequate for most applications. Now when the
applications of the Internet evolve new transport services are needed, due to new demands
from the applications. The transport service of TCP is in some cases too complex, expensive

1

2 CHAPTER 1. INTRODUCTION

or in some cases inadequate. SCTP was developed to meet some of these demands.
SCTP, which was in the beginning a specialized signalling transport protocol, was

also at �rst designed to work on top on UDP, but SCTP evolved further. As SCTP
evolved Internet Engineering Task Force (IETF) changed their mind and moved SCTP
from working over UDP to instead work directly on top the IP layer, because that they
saw SCTP as a new general transport protocol. The move was made and now SCTP has to
prove itself as an important general transport protocol and persuade all operating system
developers to add SCTP to their kernel.

The performance of SCTP is naturally a key factor to SCTP's future as a general
transport protocol. This master thesis documents the performance study on SCTP done
by the author during the year 2001. They study was performed at Karlstad University in
close relation with the Distributed System Communication (DISCO) research group.

1.1 Aim of study

SCTP was at the start of this study a fairly new protocol and the DISCO group in Karlstad
(Sweden) had no pratical experience of it at the time. The overall goal for this study
was therefore to gain practical experience of SCTP and do a transmission performance
comparison between SCTP and TCP. The natural input to the comparison was therefore
results from experiments performed in a non simulated environment. These goals can be
divided into a couple of speci�c goals. All goals are enumerated and listed below, where
each goal is identi�ed with the pre�x "Goal" followed by a number.

Goal 1:

This goal involved �nding the most suitable feature for the performance study. SCTP
has several new transport features that a user can apply. The stream functionality of
SCTP had been identi�ed, in an undocumented pre-study, as interesting in a performance

1.2. SCOPE 3

perspective. However, other features might also have a positive e�ect on the performance
and those were also to be regarded for this study.

Goal 2:

Design an experiment that tests the chosen SCTP feature from goal 1. The outputs from
the experiment should reveal information about what kind of impact the chosen feature
has on the performance in several di�erent situations. Both di�erent protocol usages and
network characteristics should be tested so that broader conclusions can be made, where
the network dependent and independent e�ects can be identi�ed.

This goal demands that a test application that uses the chosen SCTP feature from
goal 1 needs to be implemented. A logically identical application that uses TCP instead
of SCTP must also be implemented. The TCP application must use TCP in a way which
enables the application to o�er the same transport service as the SCTP version. Further,
the execution of the experiment requires a test environment, which contains a network that
allows the network characteristics to be changed. The test environment must also support
both the SCTP- and the TCP protocol.

1.2 Scope

Both SCTP and TCP are big protocols and there are many di�erences between the two.
All of them can be evaluated but not within a single master thesis and therefore some
limitations have been de�ned for this project. The limitations are listed below.

• The �ow control of SCTP and TCP are not studied in this thesis.

• How SCTP interacts with other protocols on the same network, i.e. the fairness of
SCTP is not studied in this thesis.

4 CHAPTER 1. INTRODUCTION

• The added features for redundancy/reliability implemented in SCTP are not studied
in this thesis.

1.3 Document disposition

Chapter 1 describes the background, aim and limitations for this work.
Chapter 2 begins by describing the basic concepts of Internet communication. With

the basic concepts as a foundation the chapter continues with the details of TCP and
SCTP. The amount of details is balanced so that the reader can understand the di�erences
between TCP and SCTP and later also understand the analysis of the results from the
experiment.

Chapter 3 describes the di�erent implementations of SCTP that were available when
this study was performed. The chapter then continues with the motivations for why a
particular implementation was chosen for the experiment.

Chapter 4 describes the di�erent experiment possibilities that were identi�ed for this
thesis. It then follows with the motivation for why one of the possibilities was chosen and
how that particular experiment was designed. The chapter describes all the scenarios that
are to be executed in the experiment, de�nes network con�gurations for the experiment,
describes details on how the test applications work and �nally de�nes the test environment.

Chapter 5 describes the results from the experiment, how the results were checked for
correctness, how the results were analyzed and the summary of the analysis. The chapter
ends with the conclusions that can be drawn from the experiment results.

Chapter 6 is the summary of this thesis. The di�erent goals of this study are compared
with the results. The chapter �nishes with the conclusions and thoughts from the author.

Finally Appendix A contains two tables containing descriptions for abbreviations and
concepts and the reader should remember to look in Appendix A when the meaning of a
certain abbreviation or concept is forgotten.

Chapter 2

A TCP and SCTP summary

This chapter is the result of the theoretical study on TCP and SCTP. This chapter �rst
describes the basic concepts of Internet communications, focusing on TCP. The chapter
then moves from TCP to SCTP and its description. The SCTP section describes SCTP
and at the same time compares SCTP with TCP so that the reader more easily can identify
the di�erences that were found during the study. The description of basic concepts, TCP
and SCTP should give the reader the necessary knowledge to understand the following
chapters.

2.1 Basic concepts

A protocol de�nes the format and the order of messages exchanged between two or more
communicating entities, as well as the actions taken on the transmission and/or receipt
of a message or other event [11]. A protocol can be designed in many ways and di�erent
protocols often address di�erent problems. Some protocols address the problems of several
interconnected computers and some only work between two computers. The service of one
protocol can be a real-time signalling service and another protocol may want to give a
very reliable, but slow, data transport service. The service SCTP o�ers is giving the user

5

6 CHAPTER 2. A TCP AND SCTP SUMMARY

a communication channel between two endpoints on Internet with some properties, very
much similar to TCP. The endpoints are referred as peers to each other.

A major complexity of the Internet is that when two peers communicate the com-
munication often involves additional computers or network devices that only forward the
messages between the communicating peers. The computers on Internet are also intercon-
nected in a more or less dense net and therefore exists it a large number of possible chains
of computers that a message can follow to reach its peer. Many things can go wrong and
we need good protocols that handle this complexity.

Often a single protocol is not enough to deliver data over Internet and therefore several
protocols cooperate to be able to give a certain transport service. The protocols create a
stack where the protocols are put on top of each other, creating a layered structure. Each
protocol gives at least one service that the protocol above makes use of. The protocol stack
used together with the Internet network is often referred to as TCP/IP, where TCP is the
transport protocol that works on top of IP. Figure 2.1 visualizes a possible TCP/IP stack.
The dotted lines in the �gure show the conceptual �ow of data and the solid lines show
how the data actually �ow through the stacks. The bottom layer is not named here but
it can be seen as the hardware associated layers that handle a physical medium such as
radio, Ethernet and other. The application layer located above TCP in the �gure is also
referred as the Upper Layer Process (ULP) for TCP.

The IP layer responsibility is to make sure that the packets end up at the correct
computer on Internet and its service is classi�ed as �best e�ort�, meaning that packets
can be lost and delivered out of order. TCP o�ers an application to application transport
service and it does not address the problems arising from Internet-communication involving
several computers. Instead it focuses on making sure that the data are delivered to the
user in the same order they were sent. When the IP layer fails to deliver a packet TCP will
automatically stand in and retransmit the packet by instructing the IP layer to transmit
a new packet with the same contents that was lost. Except handling retransmission and

2.2. TCP 7

IP

TCPTCP

ApplicationApplication

Physical medium

IP

Figure 2.1: A TCP/IP stack

handling packets out of order TCP also has to ensure that the communication honours the
�ow, software related, and congestion, network related, constraints that ensure that the
network is in a stable state without too much congestion.

The IP layer is a simple protocol and its service is well de�ned and is not an issue
for optimizing. It was designed to address the problem of making sure that the packets
are able to propagate to the right computer and not so much more and therefore it does
not limit the upper layers. If the IP layer had o�ered a more complex and costly service
then some ULPs may �nd this service unwanted and hindering in aspects of performance.
Instead the transport protocols that work on top of IP are much more complex and they
are under active development and SCTP is a result of this.

2.2 TCP

TCP has existed and been used from the very beginning of the Internet and is also today
a very commonly used transport layer protocol. Many of the big Internet applications
such as sur�ng the Web, communication with email and more use TCP's transport service.
This part will describe the functionality and behaviour of TCP. The understanding of
TCP is needed when comparing TCP with SCTP and when analyzing the outcome of the
experiment, as described in Chapter 4.

8 CHAPTER 2. A TCP AND SCTP SUMMARY

2.2.1 General properties

This section describes the general properties of TCP that are relevant in this study. Such
properties are connection sequence, data abstraction and congestion control. The bullet
list below describes these properties shortly and then the next three sections discuss each
separately.
• TCP is a connection oriented protocol meaning that a connection must be established
before any data can be sent.

• A TCP connection is bidirectional, data can be sent by both peers using a single
connection. Further, TCP has a byte stream abstraction, which means that TCP
does not help the ULP to identify the start and the end of each ULP message. Finally
the delivery of the data at the receiving side of the connection is always done in the
same order they were sent.

• TCP has a congestion control functionality which monitors the transmission and
tries to adapt to the networks capacity. The retransmission of lost packets is tightly
coupled with the congestion control.

2.2.2 TCP connection sequence

The connection sequence is an interesting performance aspect, especially when small amount
of data is to be sent over the new connection. This section therefore describes TCP's con-
nection sequence. TCP utilizes a three-way-handshake to establish a connection between
two peers and Figure 2.2 illustrates this handshake. First host A sends a SYN packet
to its peer host B, which receives the SYN packet and answers host A with a SYN-ACK
packet. Host B also allocate the necessary resources for the connection. When the SYN-
ACK packet arrive at host A believes that the connection is established and after it has
sent its ACK packet to the peer it can immediately start sending data. The connection is
completely established when the ACK packet from host A arrives.

2.2. TCP 9

Host A Host B

Close

Open

B: Half−open

Open

SYN

SYN−ACK

ACK

Figure 2.2: TCP Connection sequence

This three-way handshake is fairly fast but has at least one drawback. It is vulnerable
for hostile attacks because when host B receives a SYN from a peer it must allocate re-
sources for the connection, without verifying the existence of host A. Therefore an attacker
may forge SYN packets with a fake source address and send SYN packets at a rate that is
faster than the time-out time for the ACK response packet. At the timeout the allocated
resources are freed for new connections, but eventually can an intensive stream of fake
SYN packets empty the resources of host B, which no longer can handle new connections.
Already existing connections may also be a�ected. This attack is called SYN �ooding[5].

2.2.3 Data abstraction

TCP transfers data as a stream of bytes and it is limited to one single stream. If an
application wants to transfer multiple data items with a single TCP connection, then the
application has to merge them into the single data stream and separated the individual
items at the receiver. TCPs single stream is not necessary always bad for the application,
but for these kinds of applications there is one drawback. The Head of Line Blocking

(HLB) phenomenon occurs when individual TCP packets experience transfer di�culties
and are lost or delayed. The data that was lost or delayed can naturally not be delivered
to its application. Further, the data that arrive after the time the lost or delayed data

10 CHAPTER 2. A TCP AND SCTP SUMMARY

arrives are indirectly a�ected by the loss and cannot be delivered to the application. This
happens because TCP always delivers its data in the order it was sent. The data that are
indirectly a�ected are experiencing head of line blocking.

TCPs byte stream orientation has also some implications to the behaviur of TCP. TCP
does, in order to send data with as little over-head as possible, apply some rules before
it sends out new data. What TCP does is that it waits for some more data from the
application if it cannot create a TCP packet of the maximum size. The maximum time
TCP waits for more data from the application is controlled by a few rules. This is not
a problem for ordinary �le or �bulk� transfers because these applications has no problem
�lling a TCP-packet when TCP is ready to send out a new packet. However, telephony
signalling applications are an example of applications that dislike this kind of delay. These
applications tend to send many small data items and are not always able �ll up a TCP
packet.

2.2.4 Congestion control

Congestion occurs when the bu�ers in a router somewhere in the network is full and has
to throw packets due to tra�c overload. The congestion control in TCP has a number
of algorithms that help to avoid congestion. The following descriptions are short and will
only give a brief summary of the algorithms. Knowledge of the algorithms is necessary to
understand why TCP performs as it does. The descriptions are supported by Figure 2.3.

• The Slow-start algorithm is used as the initial algorithm, which probes the network
path between two peers to �nd the currently available bandwidth. This algorithm
starts with assuming that the network can handle one or two Maximum Transfer

Unit (MTU) and the variable Congestion WiNDow (cwnd) is set to this value. In
Figure 2.3 the cwnd starts with the value of 2*MTU. The value of the cwnd limits
the amount of out-standing data the connection is allowed to have. Each segment ac-
knowledgement received during slow-start increases cwnd by one MTU, which results

2.2. TCP 11

in that each acknowledged burst of segments will double the cwnd. The cwnd will
exponentially increase until it reaches the Slow Start threshold (ssthresh), prede�ned
at the start by the system. From ssthresh and up cwnd is increased only by one MTU
per Round Trip Time (RTT), according to the Congestion avoidance algorithm[11].

• The Congestion control algorithm is used when the retransmission timer expires.
This algorithm will decrease ssthresh to half of the current cwnd and the cwnd is
set to two MTU. The slow-start is then restarted with the new values on ssthresh
and cwnd[15]. In Figure 2.3 the retransmission timer expires early in the illustrated
transfer and the values on ssthresh and cwnd can be observed after and before the
timeout.

• The Fast retransmit algorithm is applied when the receiver has sent 3 consecutive
duplicate ACKs. This algorithm will immediately retransmit the lost segment, in-
dicated by ACKs, and this will shorten the time before the retransmission is done,
which otherwise would have been done when the retransmission timer expires[15].
Figure 2.3 shows and points out two occurrences of Fast retransmit.

• The Fast recovery algorithm is applied after that a Fast retransmit has been per-
formed. The sstresh is reset to half its value and cwnd is set to sstresh. Then the
sender will then with new values on the cwnd and sstresh continue transmit data
following the rules of the congestion avoidance rules[15]. Figure 2.3 show two occur-
rences of Fast retransmit and has therefore also two of Fast recovery.

• The Selective ACKnowledgment (SACK) algorithm is used to help the sender to get
knowledge about lost packets. Without SACK enabled the sender will only be noti�ed
about one lost packet per RTT. This is because the receiver only sends ACKs with
the sequence number of the �rst missing segment in the bu�er. This limits TCP to
only report one gap per RTT. Now SACK allows the receiver to specify for the sender
exactly which segments it has received. The SACK information sent from the receiver

12 CHAPTER 2. A TCP AND SCTP SUMMARY

New
ssthresh

New
ssthresh

2

4

6

8

10

12

14

16

18

20

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

ssthresh
Initial

Congestion
avoidance

Slow startSlow start

Timeout

Fast Retransmit

21

(x MSS)

Size of

Time
(x RTT)

congestion window

Congestion avoidance

Figure 2.3: Congestion control[8]

to the sender is appended as a TCP option. However, TCP allows only 40 bytes for
TCP options. This limits the SACK algorithm to SACK 4 blocks of received data,
because the SACK option allocates 8*n+2 bytes, where n is the amount of SACK
blocks. In the reality TCP often has other TCP option that it wants to send and
therefore is the limit often less than 4 SACKs[12].

2.3 SCTP

SCTP is a connection oriented protocol that o�ers transport services similar to TCP. But
SCTP has extended the concept of a connection between two computers to include a stream
concept. SCTPs connection is called an association and can contain from 1 up to 65535

2.3. SCTP 13

streams. All user data that is delivered over the association must be assigned to a stream.
So far things may seem similar to TCP but the interaction between the streams in

SCTP makes on big di�erence. The streams deliver data independently of each other. A
transmission error only a�ects the streams that lost data and the una�ected streams do
not need to wait for resynchronization. The data that is received on the una�ected streams
can therefore be deliver data to the ULP. By using several streams one can avoid the HLB
issue of TCP.

This section has the same structure as the TCP section but it is extended with a de-
scription of the socket API that has been suggested for SCTP. Further SCTP has additional
features that TCP does not have and these are described in the last subsection. To point
out di�erences and similarities the descriptions referrers back to TCP when possible.

2.3.1 General properties

This section presents some properties of SCTP that have been found relevant when com-
paring with TCP. Item 1, 4 and 5 in the bullet list are each followed up with a separate
section where they are described further. Item 2 is not described in detail since it is out-
side the scope for this study. The streams of SCTP are described in item 3 and are not
described further.

• SCTP is as TCP a connection oriented protocol meaning that an association must
be established before any data can be sent.

• SCTP is multi-homed meaning that an association can involve several IP addresses at
each end; in contrast to TCP that only has one IP address at each end. The multiple
IP addresses at each end make it possible for the packets to be transferred in several
di�erent paths. If several paths exist, then one path, the primary path, will be used
for transfer and the others are redundant and are available for retransmissions and
path failure situations.

14 CHAPTER 2. A TCP AND SCTP SUMMARY

• Within the association logical streams exist and a stream is uni-directional, meaning
that data can only be transported in one direction. Streams are therefore speci�ed
in both directions and a SCTP endpoint can specify the amount of streams that it
want to receive on, which implies that the endpoints can have di�erent amount of
streams ready to receive on. A SCTP association must have at least one stream in
each direction.

• SCTP's data transfer is message oriented, as opposed to the byte stream oriented
TCP. This means that the ULP can send messages with SCTP without having to
neither merge them nor separate them. This is also known as conservation of message
boundaries[23]. In general all ULP messages are assigned to a stream, which ensures
ordered delivery within the stream. However SCTP allows ULP messages to be
transmitted without being assigned to a stream. These messages are allowed to
delivered to the ULP as soon as they arrive, which may result in an unordered
delivery.

• SCTP has as TCP a congestion control functionality which monitors the transmission
and tries to adapt to the networks capacity. SCTP's congestion control is made as
similar as possible to TCP but there are di�erences.

2.3.2 The SCTP connection sequence

SCTP uses a 4-way handshake to initiate a connection with a peer. The motivation for
the longer handshake, which includes a cookie mechanism, is to protect a server from SYN
�ooding, see Section 2.2.2. Figure 2.4 shows the sequence of packets passed between the
two peers during the SCTP connection phase. First host A sends an INIT packet to host
B. Host A answers with an INIT-ACK packet that includes a cookie, which is generated for
each received INIT packet. This cookie contains all information needed by host B to setup
this connection, but by sending this information over the network host B does not need to

2.3. SCTP 15

INIT

INIT−ACK

COOKIE−ECHO

COOKIE−ACK

Host A Host B

Figure 2.4: SCTP Connection sequence

store the information locally. Instead host A is supposed to send back this cookie in the
COOKIE-ECHO packet. This ensures the existence of host A, which might not exist, and
also allows host B to avoid allocating resources before host A has been veri�ed. To ensure
that the cookie is not modi�ed by host A the cookie contains a Message Authentication

Code (MAC). This MAC is generated with a secret key and the same key is used again
upon the reception of the Cookie-ECHO packet. If host B receives a valid cookie from
host A the association is seen as complete and a COOKIE-ACK is sent to host A, which
regards the association complete when the COOKIE-ACK packet arrives.

This handshake procedure is longer than TCP's and might be too long for some applica-
tions. SCTP therefore allows data to be appended to the COOKIE-ECHO and COOKE-
ACK packets, which is called piggybacking. This makes the number of packets to be
sent before the data transfer can begin the same as in TCP. When comparing TCP's and
SCTP's connection establishment in terms of performance, the only di�erence is the few
extra bytes that are sent over the network.

16 CHAPTER 2. A TCP AND SCTP SUMMARY

2.3.3 Data abstraction

SCTP utilizes the concept of a message, which has a user de�ned size. These messages are
built by the application and sent down to the SCTP layer, and they do not need to contain
any data for explicitly de�ning the message boundaries. SCTP inserts the messages into
one or more chunks, which is a unit used to transfer data. A chunk has its own header that
describes its contents. There are several di�erent chunk types in SCTP but only one chunk
is used for user messages. Its header contains information about the classi�cation of the
data inside, the message length, a stream number, stream sequence number and �ags. The
�ags are used to specify the chunk's relationship to other chunks, if the message should be
delivered unordered and more.

SCTP can, to improve e�ciency, bundle as many chunks as it wants into a SCTP
packet, as long as the packet size does not exceed the MTU of the used path. Further can
SCTP, as TCP, delay the transmission of a SCTP packet and wait for more chunks. In
this way it can increase the amount of bundling.

2.3.4 Congestion control

The streams of an association share �ow control, which operates at the association level.
The congestion control of SCTP operates on a per path basis, because each path can be
a di�erent network with a di�erent bandwidth congestion state. The design of SCTP's
congestion control originates from TCP and the two have much in common. A SCTP
association is designed to be equally aggressive when competing for bandwidth as a TCP-
connection and this makes it possible to have TCP and SCTP connections on the same
network without unfair competition for the shared network resources. Still there are some
di�erences between the two protocols. The following items below are retrieved from [24] if
no other reference is given.

• The initial cwnd is suggested to be 2*MTU in SCTP, which is usually one in TCP.

2.3. SCTP 17

• In SCTP, the increase of the cwnd is controlled by the number of acknowledged bytes;
while in TCP, it is done on a per packet basis where each received new acknowledg-
ment increase cwnd with one MTU.

• The cwnd is a limit that SCTP is allowed to exceed with up to MTU-1 bytes, if the
outstanding amount of data is less than cwnd before the transfer of a segment[17].
One says that SCTP �slops over� the cwnd limit.

• SCTP is required to be in slow start phase when the ssthresh is equal to the cwnd.
For TCP is it optional to be either in the slow start phase or in the congestion
avoidance phase when the ssthresh is equal to the cwnd.

• In SCTP; the SACK feature is not limited. This allows SCTP to send large amount
of SACK information to the peer[20]. While in TCP, the SACK feature is limited
by the small space that the SACK header has in the option header section in a TCP
packet.

• In SCTP, Fast retransmit is triggered by the fourth SACK, reporting a missing chunk.
While in TCP, Fast retransmit is triggered by the third missing report of a packet[17].

• SCTP has no explicit fast recovery algorithm like the one used in TCP. In SCTP, the
parameter Max.Burst is used after the fast retransmit to avoid �ooding the network.
Max.Burst limits the number of SCTP packets that may be sent after processing the
SACK, which acknowledges the data chunk that has been fast retransmitted.

2.3.5 SCTP socket API

Together with SCTP a socket API extension has been speci�ed for the existing socket API
used with TCP and UDP. This section gives a short summery of the draft[22], available at
IETF home page1, that de�ne this extension.

1http://www.ietf.org

18 CHAPTER 2. A TCP AND SCTP SUMMARY

This extension allows users to easily interact with the SCTP stack and make use of all
the new features. There are two API styles available, a TCP-style and a UDP-style design.
The TCP-style has the purpose to allow applications to quickly change from using TCP
to instead use SCTP. This style has a complete set of functions that one can use to access
all features of SCTP, and one is also able to use the old primitives from the TCP API.
The only mayor restriction of the TCP-style is that one can only have one association per
socket, a default association.

The UDP-style gives the user the possibility to have multiple associations per socket.
This socket style only allows calls to the sendmsg() and sendto() primitives but not to
the send() primitive, which depend on the existence of a default association in the socket
and such a thing does not exist in the UDP style socket. The sendmsg() and sendto()
primitives will open a new association, when needed, and also reuse an already opened
association. A user may branch o� one association and create a new socket containing the
selected association. The socket will be a TCP style socket which one can use the send()
primitive on.

Common for both styles is that only sendmsg() allows the user to bundle ancillary data
to the calls. These data tells the SCTP layer how the message is to be transferred, for
instance which stream is to be used[23]. The send() and sendto() primitives use the socket
default settings when sending data and therefore will data be sent by default on stream
'0', depending on socket implementation.

The primitives for reception works in the same way, where recvmsg() is the only prim-
itive that can give the user information about the way the message was transported, such
as stream information and more. Messages sent with sendmsg() can be received with
recvfrom() and recv() on the receiving side but with the possibility that data may seem to
arrive out of order etc.

2.3. SCTP 19

2.3.6 Additional features of SCTP

Here follows a list with additional interesting features that SCTP have, but they are
regarded as out side the focus of this study. Some are also only drafts and do not exist in
the current IETF proposed standard.

• Unordered message delivery: This allows the user to send an urgent message that
will be delivered as soon as it arrives at the receiver. The receiver can identify urgent
messages and separate them from the main �ow of messages.

• Partial reliable transport[21]: Each stream of an association can be con�gured di�er-
ently and it is possible to con�gure one or more streams for partial reliable transport.
This feature basically allows SCTP to abort the transfer of a certain message if it
has been delayed for too long, due to congestion, network losses etc.

• Add and remove paths[18]: During the initialization of an association several di�erent
paths can be speci�ed, where a path is de�ned by an IP address at the receiver. This
draft speci�es how new paths can be added to or how existing ones can be removed
from the association, after the initialization phase.

• The heartbeat functionality probes the di�erent paths of an association during times
of inactivity to check if they are valid for data transfer.

Chapter 3

An evaluation of SCTP implementations

Goal 2 of this study, de�ned in Section 1.1, includes building an experiment environment
where both TCP and SCTP are supported. TCP has support in most operating systems
but SCTP is not yet included in any operating system known by the author. But there
are �stand alone� implementations that are operating system independent. This chapter
compares two di�erent implementations of SCTP that where found on Internet. The two
are compared focusing on the support for SCTP features, usability and documentation.
A SCTP implementation that supports a big set of SCTP features and is easy to use is
preferred. The result from the comparison is used to choose one for the experiment of this
study.

3.1 The competitors

The candidates were selected at the start of this work and the initial requirement was that
the candidates' project was active. The �rst candidate is distributed and developed by
Randall R. Stewart, who is one of the main actors in the SCTP �eld. His implementation
is referred to as a reference implementation of SCTP. The source code of his implementation
can be downloaded from his website[19]. The second candidate is a prototype of SCTP that

21

22 CHAPTER 3. AN EVALUATION OF SCTP IMPLEMENTATIONS

is developed by Siemens in cooperation with the Computer Networking Technology Group
of the University of Essen. The source code of the implementation can be downloaded
from their website[2].

3.2 Implementation basics

This section explains how the two candidates have implemented the SCTP layer. It does
not compare the two candidates; instead this section gives an insight on the implementation
techniques and concepts that the two candidates applied. The �rst subsection introduces
important implementation techniques from both candidates. They were identi�ed during
the study of the implementations and are regarded as important when electing one imple-
mentation for the upcoming experiment. The second subsection describes why only one
SCTP layer can be active on a host. This restriction has also a�ected how the SCTP
layer been assigned an operating system process. In all three di�erent process designs have
been adopted by the two candidates and the �nal subsection describes these three process
designs.

3.2.1 Implementation techniques and concepts

The SCTP protocol is new to the data communication world but it has already proven
itself as being worthy to exist as a stand alone transport protocol, in opposite to many
other protocols that have to work on top of UDP. As a stand alone transport protocol
SCTP is designed to work directly on top of the IP-layer in the same way that TCP and
UDP do today. Both TCP and UDP have been around for a long time now and they
are therefore implemented as part of many operating systems. As a part of the operating
system TCP and UDP are granted access to the IP-layer. SCTP is not implemented in
any operating system and a non operating system implementations are often denied access
the IP-layer and it makes it almost impossible to implement SCTP as a user process.

3.2. IMPLEMENTATION BASICS 23

Luckily the RAW-IP socket, which some operating systems o�ers, allows privileged users
to insert handcrafted IP packets into a network and the RAW-IP socket can also be used
for reception of packets. [16]. The RAW-IP socket makes it possible to implement a SCTP
layer as a user process with the restriction that the SCTP layer has to be executed by a
user with privileged rights.

Together with the user space implementations of SCTP the need of a daemon arise,
see section 3.2.2. A daemon is a separate process that provides a service point that other
processes can connect to and use. This service could for example be a mail sending service
or in this case a SCTP service point. One reason of making a single process responsible
of a certain service is that there can in some cases only exist one such service point at
any given time. For example there can only be one web server that provides a Hyper Text

Transfer Protocol (HTTP) transfer service at TCP-port 80. If two processes are listening
on this port would the outcome be unde�ned because they would both compete for the
same messages arriving on a TCP-port. This situation is in most cases prohibited by the
operating system but is seen as a good example of the need for a single service point.

Threads are an alternative for having multiple processes. Threads are sometimes called
lightweight processes and they exist within a parent process. Threads share the process
memory but have their own runtime stacks. The separate runtime stacks allows the threads
to be executed in parallel. Threads are useful when one does not want several processes
and still want to have multiple tasks to be performed in parallel. They also do not need
a separate communication channel between each other because they share memory of the
process[14].

3.2.2 One SCTP layer per host

At the time of writing SCTP was not yet implemented in any operating system kernel know
by the author. Instead the studied implementations open an RAW-IP socket and listens for
SCTP packets. The possibility to create multiple sockets that listens for the same packets

24 CHAPTER 3. AN EVALUATION OF SCTP IMPLEMENTATIONS

makes it possible to start multiple SCTP layers on a system, at least in LINUX which is
the operating system used in the test environment.

But having multiple instances of SCTP active will not work because SCTP has been
designed to handle packets that are not expected, called Out Of The Blue (OOTB) packets.
In the normal case these packets may be received due to a crash followed by a quick restart
of the computer, which had an SCTP association open to a peer before the crash. The peer
will likely not be noti�ed about the crash and therefore it could keep on sending packets
to the crashed system. To notify the peer about the broken association SCTP's behaviour
is to send an ABORT message to the peer that sends OOTB packets. When the peer's
SCTP layer receives the ABORT message it can remove the invalid association and notify
its ULP. Now if two SCTP layer instances receive the same packets, at least one instance
would regard these packets as OOTB packets and send an ABORT message. This would
sabotage for the other instance and make communication impossible.

3.2.3 User-space process assignments

A user-space implementation of the SCTP layer has to be executed, but how and where is
an open subject. Three di�erent approaches on where to put the SCTP layer have been
seen in the two SCTP distributions from the competitors. This section describes them and
explains their negative and positive sides that have been identi�ed during this study.

1. An alternative is to run the layer inside the application, meaning that the layer will
share a process with the main program. This has a negative e�ect; imagine that
the application performs extensive calculation that require a long computation time.
Then the SCTP layer would be left without any CPU time for a long time. The SCTP
layer needs CPU time in a regular fashion so that it can obey its timing constraints.
The performance of SCTP and its ability to act correctly is diminished if SCTP is not
treated right. This approach makes it also impossible to have several user programs
concurrently running a SCTP layer, because it would mean that two SCTP layers

3.3. COMPARISON 25

would be active concurrently on a single host. For more details about why only one
SCTP layer can be active on one host read section 3.2.2.

2. The second approach uses a daemon. The SCTP layer is assigned to a separate
process, which makes it able to execute freely. The user program will also have its
own process and can do as heavy calculations it want without risking to a�ect the
SCTP layer. The side e�ect is that if one wants to use the daemon one has to use
the separate communication channel. The positive side of this approach is that this
design makes it possible to have several user programs concurrently using a single
SCTP layer, which allows testing SCTP software on a single host.

3. The third approach is located somewhere between the �rst and second approach.
By utilizing threads one can allow a process to perform more than one activity in
parallel[14]. At least one thread can be assigned to the SCTP layer and one to the
application. The threads will execute in parallel and SCTP will not be a�ected by
the application behaviour. The need for an explicit communication channel between
the application and the SCTP layer, which was needed in approach 2, is avoided
due to that the threads exist in the same memory space. As in the �rst approach
this approach has a side e�ect, which is that it is impossible to have two or more
programs with a SCTP layer active on the same host.

3.3 Comparison

The two candidates will be compared focusing on four properties, its documentation, size
of source code and usability. The documentation is important for the usability of imple-
mentation and the size of the source code for the implementation is regarded important
for bug tracking and if any modi�cation needs to be done to the SCTP layer. Further the
usability of the implementation is a�ected by how the SCTP layer is implemented, read
section 3.2.3 for details on di�erent implementation approaches. The usability is also very

26 CHAPTER 3. AN EVALUATION OF SCTP IMPLEMENTATIONS

much depending on if the socket API is implemented, read section 2.3.5 for more details
on this API.

The section describes each implementation, speci�ed in Section 3.1, in detail focusing on
the four properties mentioned above. The last subsection �nally describes the motivation
for why one was regarded as most appropriate for this study.

3.3.1 Randall R. Stewart

The purpose of this implementation is to allow tests on SCTP and also to show how one
can implement a SCTP layer[23]. This study used version 4.05 of the implementation.

Documentation

The distribution available on Internet does not include a description of the use of this
implementation of SCTP. There are header �les with short descriptions and the function
names often tell what they perform. There are also example programs bundled with the
distribution that exempli�es how to use the distribution.

However, one can read chapter 14 in the book, �SCTP A Reference Guide�, written by
Randall Stewart and Xie Qiabing[23], to get a more solid description. It also explains the
internal structure of the SCTP implementation and how the parts interact.

Size of source code

Approximately 25617 lines of code are written to realize the SCTP implementation, spread
over 17 �les (only counting the .c �les).

Usability

Here there only exists one implementation variant and Randall focuses on the daemon
approach, which allows the user to disregard SCTPs need of CPU time. To communicate
with the daemon one must send UDP packets over the localhost interface, which are created

3.3. COMPARISON 27

by a speci�c daemon API. The daemon approach has a positive a�ect on the usabililty
because one can test SCTP software, both server and client, on a single host.

Socket API

The socket API is not implemented.

3.3.2 Siemens-Essen

This study has used the nineteenth pre-release of version 1, which is seen as a prototype
implementation.

Documentation

Several manuals exist in their distribution and they explain how this distribution is com-
piled and used. There are also several test programs bundled and they serve as a com-
plement for the manuals. These test programs are more up to date than the manuals
and therefore they are seen as the most important information source. This distribution
has three di�erent APIs, described in the usability section below, and they are all well
documented.

Size of source code

Approximately 19404 lines of code are written to realize the SCTP implementation, spread
over 17 �les (only counting the .c �les).

The implementation is made general to allow it to be compiled and executed in several
environments. As a consequence it is necessary to run a con�gure script that builds all the
make-�les and a con�guration �le (con�g.h), which is needed during compilation of the
SCTP implementation and user applications. The generated con�guration �le contains
macros that resolve con�icts with the local system libraries, which are supplied by the
operating system.

28 CHAPTER 3. AN EVALUATION OF SCTP IMPLEMENTATIONS

Usability

This distribution contains three possibilities, Figure 3.1 gives an overview of the distribu-
tion. One can for starters create a single process application, containing both the appli-
cation and the SCTP layer, and use the internal API. Through the mailing list for the
Siemens project, it was told that this API is not regarded as �nal and it might be changed
in later releases. This design also requires that the user application assign CPU time to
the SCTP layer.

The second option is a multi-threaded single process design. The process contains the
user application, the socket implementation and the SCTP layer. One thread is assigned
to each part and they will receive CPU time separately from the operating system. The
application uses the socket API to interact with SCTP. This API is under construction,
but it is likely to exist in all future SCTP distributions.

The third and last option is the daemon. The API to the daemon is created nearly
identical to the internal API of this implementation. This allows users to change at smallest
possible cost between the internal API and daemon API. The daemon is implemented as
a wrapper to SCTP and therefore it inherits all updates of the SCTP implementation.
The daemon is unfortunately no longer maintained by the Siemens team and it will most
likely be removed from newer versions of the distribution. Therefore, if one wants to use
the daemon one must be aware that there might be bugs in the daemon and no support
is available. Further, the daemon may have to be updated due to changes in the internal
API of SCTP.

Socket API

A socket API implementation is available in this distribution. This API wraps the internal
API of SCTP and not the daemon API, which is unfortunate due to the limitations implied
with this API, which is that only one program with SCTP can execute at any given time
on a host, see section 3.2. Both the TCP and UDP styles, mentioned in section 2.3.5, are

3.4. CONCLUSION 29

Socket implDaemon impl

internal API

Socket APIDaemon API

The core of the implementation

SCTP impl

Figure 3.1: Implementation overview

available.

3.4 Conclusion

Both distributions help the user with assigning the SCTP layer enough CPU time, which
is an essential service, but there are also di�erences between the two implementations. The
most important di�erence is the socket API for SCTP, which is available in the Siemens
distribution and not in Randal Stewart's. During the time of implementing small test ap-
plications for both implementations, Michael Tuxen, a member of the group that develops
the Siemens implementation, recommended to use the socket API for SCTP. The other
APIs are likely to be changed and will not be available any more when the kernel imple-
mentation of SCTP arrive. To keep the door open for code reuse in future experiments the
Siemens implementation is preferable because it has the socket API.

Further, the documentation included in the Siemens distribution is much better. The
usability of the Siemens distribution is also regarded as better due to socket API. The
di�erence in source code size is seen as small and the two are regarded as identical. Hence

30 CHAPTER 3. AN EVALUATION OF SCTP IMPLEMENTATIONS

the Siemens distribution is regarded as most suitable mostly due to the availability of a
socket API.

Chapter 4

Experiment design

This chapter de�nes the experiments that were conducted in this study in order to �nd out
more about the transmission performance of SCTP. As mentioned in goal 1, from Section
1.1, other experiment possibilities than testing the streams of SCTP should be regarded
before the �nal decision on which SCTP feature the experiments should test. This chapter
starts with describing how the chosen feature of SCTP was elected and then it describes
the experiments that tested the chosen feature. The last section describes the software
components and the test network that made it possible to perform this experiments.

4.1 Choosing a suitable feature of SCTP

Not all of the features of SCTP are appropriate to address in a �rst study of SCTP. This
section brie�y discusses di�erent features of SCTP that can be tested in a performance
study and �nally motivates why the stream feature of SCTP was chosen for this study.

4.1.1 Features of SCTP with experiment possibilities

There are several features in SCTP that are interesting because they allow data to be
delivered in a way TCP cannot match in aspects of transport service and/or performance.

31

32 CHAPTER 4. EXPERIMENT DESIGN

Here follows a list of features that were identi�ed during this study as interesting and how
each one of them can be applied.
• A possible application of the stream feature in SCTP is to adapt HTTP1.0 protocol
for SCTP[23]. This application protocol is normally used on top of TCP and it is
used for transporting web pages, with their HTML �les, pictures and other parts.
In HTTP1.0 each �le requested by the client is normally transferred in a separate
TCP connection[4]. If HTTP1.0 is used over SCTP each �le can be sent over a
separate stream, which eliminates the need for multiple connections. The throughput
that underlying protocol achieves is the most interesting performance parameter for
HTTP1.0. The use of HTTP1.0 over TCP and SCTP could be compared from the
aspect of performance by measuring the throughput. One reason why SCTP could be
faster, reaching higher a throughput, than TCP here is that the SCTP association will
send more data than the individual TCP connections. A busy connection/association
may in some cases discover packet loss faster than a connection/association with little
data to transmit. Also the need to set up more than one connection is avoided with
SCTP in contrast to TCP. Multiple TCP connections are, compared to a single SCTP
association, on the other hand expected to more quickly make use of all available
bandwidth on the network.

• A partial reliable transport is not a new feature for data communication, but by in-
cluding it in SCTP some interesting possibilities appear. A partial reliable transport
means that the user can specify how long SCTP should try to transmit a message.
SCTP can then abandon the message when it has tried long enough. Further a SCTP
association can be semi-reliable, meaning that a subset of streams can be unreliable
and others reliable. This allows separation of tra�c and one could then send appli-
cation data that is not allowed to be lost over the reliable streams and application
data with a high temporal importance can be sent over the unreliable streams. An
application which can use this feature is a robust version of JPEG, where the control

4.1. CHOOSING A SUITABLE FEATURE OF SCTP 33

information in the header of JPEG �le and the picture data can be separated and
merged by the application at the receiving end. This means that the picture can be
transferred to the user with some degree of controlled data loss and the number of
retransmission can be minimized, which shortens the total transmission time.

• Unordered message delivery can for example be used for a progressive delivery of a
JPEG picture, which is coded for progressive display. A progressive coding means
that each delivered part of a picture improves the picture quality of the entire picture,
instead of just a small part, and �nally when all the pieces have arrived the picture
has the best possible quality. The good thing here is that a message might be lost
without disrupting the stream of messages arriving to the user, which results in a
more or less constant improvement of picture quality during the transfer.

• Multi homing is a feature that mainly improves the reliability of SCTP and is not
designed to improve the transmission performance of SCTP. There are though some
performance aspects that arise when retransmissions are made over the redundant
paths but this is regarded as outside the scope of this study.

4.1.2 Motivation

One goal of this study was to perform an initial performance experiment on SCTP and
therefore it was suitable to start with the basic features of SCTP. Streams are fundamental
for SCTP and it is vital to understand this basic feature before more experiments on SCTP
are done. It was also believed that the amount of time needed to prepare the test software
for this feature was lower than the other.

The use of many streams was believed to be comparable to the usage of multiple TCP
connection, which can give the same transport service. Both o�er a transport service
that allows sending multiple data objects simultaneously. An experiment where the two
are compared can allow an interesting performance comparison. Table 4.1 lists possible

34 CHAPTER 4. EXPERIMENT DESIGN

Streams Connections Description Factors
1 1 One on One Protocol overhead and di�er-

ences in congestion control
x>1 x>1 HTTP1.0/SCTP vs

HTTP1.0/TCP
Costs of multiple streams and
connections

Table 4.1: Comparison possibilities
Scenario Name Basic 1 Basic 2 Basic 3

Data (byte) 1K 3K 300K

Table 4.2: Basic scenarios

scenarios that were believed to be interesting to investigate together with factors that
possibly have an e�ect on the result.

4.2 Experiment speci�cation

As described in Section 4.1, the focus of this performance comparison was set on HTTP1.0
over SCTP and the usage of multiple streams. This section speci�es the experiments of
this study. Goal 2 for this study includes studying network dependent and independent
e�ects and �ve di�erent networks were therefore de�ned.

4.2.1 Experiment scenarios

In Table 4.1, two di�erent scenarios are de�ned but they are loosely speci�ed. This section
speci�es a limited subset of test scenarios that was tested in this study.

A small set of scenarios were de�ned to verify the basic behaviour of SCTP and TCP.
These are referred as the basic scenarios. All data were in these scenarios transferred with
a single TCP connection or a single stream in a SCTP association. The result of these
scenarios was used as a reference when analyzing other scenarios, where many streams and
connections were used. Table 4.2 speci�s the amount of data sent in each scenario.

4.2. EXPERIMENT SPECIFICATION 35

Scenario Name MS 1 MS 2 MS 3 MS 4 MS 5 MS 6 MS 7 MS 8
Streams / Connections 1 2 5 10 30 50 100 300

Table 4.3: Multiple Stream (MS) scenarios

Before the scenarios for the HTTP1.0/SCTP vs. HTTP1.0/TCP comparison were
speci�ed, a small survey was performed to �nd a good example for modern web-page that
could serve as a reference page. The front page of the Swedish news paper Aftonbladet1
was found suitable. Microsoft Internet Explorer version 5 was used to download it and
by monitoring the transmission it was found that around 50 TCP connections were used
and the total amount of data was around 300KB. 300KB of data was regarded as valid
for a many web-pages with quite a large set of pictures and text; 100 KB for the index
HTML �le and 200 KB for the pictures. With this information, it was decided that all
the scenarios for the comparison should transmit a total of 300 KB of data. The only
parameter varied in the scenarios was therefore the number objects that were transferred,
where each object was assigned to a separate stream or TCP connection.

Table 4.3 specify the eight scenarios that were chosen for the HTTP1.0/SCTP vs.
HTTP1.0/TCP comparison. The number of objects varied from 1 to 300 and the interme-
diate values were chosen to limit the object size to 1KB.

4.2.2 Test measurements

The measurements for comparing the the performance of SCTP and TCP were done by
client, which initiates the connections/association to the server and receives the data from
the server. The output from the client contained two di�erent measurements. The client
started its clocks right before it connected its connections or association and stopped its
clocks at two di�erent points, described below.

• R1: The time it took until the �rst connection/stream received its object.
1http://www.aftonbladet.se

36 CHAPTER 4. EXPERIMENT DESIGN

API reports
to the user

to the user
API reports

Data Transfer

Connect Sequence

Shutdown ACK

Shutdown Complete

Shutdown

SCTPClient Server

(a) SCTP

to the user
API reports

API reports
to the user

FIN

Data Transfer

Connect Sequence

ACK

TCPClient Server

FIN

ACK

(b) TCP

Figure 4.1: Shutdown of SCTP and TCP

• R2: The time it took to receive all objects on all connections/streams, excluding the
shutdown of the connection/association.

The R2 result was used to calculate the average throughput for both TCP and SCTP and
the R1 result was used to calculate the speci�c throughput for the fastest connection and
stream.

The shutdown of the connections/association was excluded due to socket-API di�er-
ences between SCTP and TCP. SCTP's socket-API reports to the user when the association
is completely closed and TCP's socket-API reports when no more data will be received
on the connection and not that the connection is completely closed. Figure 4.1 shows a
diagram for the shutdown of both TCP and SCTP. The diagrams illustrate the messages
generated by the test applications speci�ed in Section 4.3.2 and they also illustrate when
the user is noti�ed about changes in the status of the connection/association.

4.2. EXPERIMENT SPECIFICATION 37

Name Bandwidth Loss Rate Propagation de-
lay (ms)

Router Bu�er
(packets)

GSM 7680 (bit/s) 0 310 50
Modem 48 down / 33.6 up

(Kbit/s)
0 35 50

B1 60 (Kbit/s) 0 180 50
B1 60 (Kbit/s) 0 180 50

Table 4.4: Network con�gurations

4.2.3 Network con�gurations

Several di�erent test networks were de�ned in order to get a wide perspective on the per-
formance of HTTP1.0/SCTP and HTTP1.0/TCP. Today we have several di�erent Internet
connections available and all have di�erent characteristics, such as bandwidth and round
trip times. This experiment used the connection types shown in Table 4.4. This speci�-
cation was a copied from a previous study on PRTP [9]. The e�ects on the performance
from all these properties were not analyzed but they were regarded as valid as a starting
point. The letter B in the network names stands for a broadband.

The network bu�er were in all the networks con�gured to store up to 50 packets, which
equals MSS*50 bytes of data, where MSS is 1400 bytes. This bu�er size was greater than the
highest possible Receiver WiNDow(rwnd) of TCP, which have a maximum of 63 KB, and
SCTP, which have a maximum of 33 KB. The maximum �ight size for both TCP and SCTP
is the minimum of Congestion WiNDow(cwnd) and rwnd. A single connection/association
will therefore eventually be limited by the rwnd and not cwnd and it prevents bu�er
over�ow in the router. Bu�er over�ows can therefore only occur in tests with more than
one concurrent connection/association. All the links in the test networks had a zero loss
rate, which decrease the numbers of factors that a�ect the data transfer.

The internal performance of the TCP and SCTP layer may vary. Therefore, might a
certain layer end up faster when the network allows very high transfer rates due to the
internal performance. However, we did not expect to be a�ected by this because the test

38 CHAPTER 4. EXPERIMENT DESIGN

networks all had a more or less moderate bandwidth.

4.2.4 Summary

In all, 22 scenarios were speci�ed, counting both TCP and SCTP, and they were to be
evaluated over �ve di�erent network con�gurations. This made a total of 110 di�erent
experiments and to be able to verify the consistency of the results were they repeated ten
times. Ten repetitions can be seen as a too small number for statistical analysis but it was
regarded as enough to ensure that there were no unwanted parameters that a�ected the
tests. The result from each run is a valid result as long as it has not been a�ected by any
unexpected activity.

4.3 Experiment components and environment

This section describes the di�erent components, including the test software that realized
the experiment.

Goal 2 of this study states that a test application for HTTP1.0/SCTP and HTTP1.0/TCP
must be created. This section �rst describes why the HTTP1.0 protocol was simulated and
not fully implemented. Then an overview of the functionality of the test software is given,
mapping the SCTP version with the TCP version. Then a detailed technical description
follows for both the SCTP and TCP version, where the problems that occurred during de-
velopment are described with their solutions. Finally, the network environment is described
together with all its components.

4.3.1 Simulated HTTP transfer

To test HTTP1.0 over SCTP one has to both port existing an HTTP1.0 client and server
to work with SCTP or write your own software from scratch. Porting existing software
might take longer than one can believe and writing HTTP1.0 test software from scratch

4.3. EXPERIMENT COMPONENTS AND ENVIRONMENT 39

is expected to be too time consuming. The third alternative is performing bulk-transfers
that mimic the HTTP1.0 behaviour. This minimizes the time spent on developing software
for both the SCTP and the corresponding TCP software. The request-reply protocol is
therefore not implemented and the server application does not wait for the �GET� request
after that a connection is established. Instead, it starts to deliver a speci�ed amount of
data over the new connection. This was regarded as a valid simulation, where the �GET�
request is the only thing that is left out.

4.3.2 Software overview

Both the SCTP and the TCP versions of the client software retrieved a SCTP or TCP
end point from the user and connect to it. In the case of TCP; a varying amount of
connections were initialized and these connections were initialized by the client application
in a sequence. The motivation for the sequential connection initializations can be read in
section 4.3.4. In the case of SCTP; a single association was initiated with a varying amount
of streams. Quickly summarized, multiple TCP connections are mapped to a single SCTP
association with multiple streams.

The server side was noti�ed about the new connections or the new association and
started sending data on each stream/connection. Each stream was fed with the same
amount of data, speci�ed by the user at the start-up. The TCP connections were closed
individually as soon as they have transferred all their data, but the SCTP streams are left
unused when they are done and when �nally all streams were done the application closed
the entire association.

4.3.3 SCTP application details

Both the client and server application were single process construction that receive or
send data on a varying number of streams. The socket implementation for SCTP has no
bandwidth sharing between the streams in the association. Instead, it handles send requests

40 CHAPTER 4. EXPERIMENT DESIGN

Network

Stream 3

Stream 2

Stream 1

Association

1:02:03:01:11:2

1:3

2:3 2:2

3:3 3:2

2:13:1

Figure 4.2: SCTP - Bandwidth sharing

in a �rst come �rst served fashion. A single send bu�er serves all outgoing streams and if
one wants the streams to transfer in parallel one must not have entire bu�er completely
occupied by one stream. Otherwise one will not be able to avoid Head-of-Line Blocking

(HLB) situations. The application therefore splits the data into parts with a size equal
to the MTU. It then iterates over all the streams in a round robin fashion, which forces
SCTP to spread the bandwidth of the association evenly over all the streams.

A situation where the association is evenly utilized by three streams is illustrated in
Figure 4.2. The squares in the �gure symbolize the parts of the data and the shading
and the number before the colon de�nes which stream the part belong. The number after
the colon enumerates the packets per stream basis. In the �gure, each stream has its own
queue and the streams share the association. The association queue contains the packets
that are queued for delivery and the network contains the packets that are being delivered.

4.3.4 TCP application details

The TCP version the client software is also a single process design, which handles multiple
TCP connections. The client ensures that each connection is read often enough to avoid
saturated connections, which happen when a connection's receive bu�er becomes full.

4.3. EXPERIMENT COMPONENTS AND ENVIRONMENT 41

Setting up a single SCTP association can only be done in one way but setting up
multiple TCP connections can be done in several ways. Connections can be initiated in
parallel, in sequence or in a way that combines the both previous alternatives. A pure
parallel approach where the software tries to initialize all connections at once is expected
to be bad. Sending a large number of SYN packets in parallel could �ll the bu�er of a
packet-limited router in the network and the router could drop SYN packets. Further, too
many parallel connections can together reach a far too high amount of outstanding data,
causing high drop rates if the routers limitations are exceeded. In situations with high
drop rates can it be di�cult to initiate new connections that are not yet established.

A pure sequential algorithm does not risk �lling the bu�er in the same way. On the
other hand, this algorithm is expected to be less aggressive and also slower in high ca-
pacity networks. A combined algorithm, located between the sequential and the parallel
algorithm, is there third alternative where the connections are initiated in sequential bursts.
This algorithm demands that a strategy is de�ned, de�ning the size of the bursts and the
delay between the bursts.

The client was designed to initialize connections in a sequence, meaning that once
a connection has been initialized the client initialize the next connection. This ensures
the simplicity of the application and that all connections are established in low capacity
networks. Figure 4.3 visualize the sequential connection sequence with three connections.

The server is a multi-process design. When a new connection is initiated from the
client, a new process is created and assigned to serve this connection. This process will
immediately send data on the new connection and close it when all is sent. By assigning one
process to each connection will they be handled in parallel and compete for the bandwidth
of the network.

The SCTP application avoids HLB with its multiple streams and TCP avoids it with
its multiple connections. One down side of multiple connections is that it there is no way
to ensure that the bandwidth of the network is evenly shared between the connections in

42 CHAPTER 4. EXPERIMENT DESIGN

2: SYN

2: Data
3: SYN

2: ACK

2: SYN−ACK

1: Data

1: SYN−ACK

1: ACK

1: SYN

Client Server
1: Connection 1
2: Connection 2
3: Connection 3

Figure 4.3: Sequential initiation of multiple TCP connections

a short time perspective. However, the TCP connections will in the long run eventually
reach a steady state were the connections have the same throughput.

The data payload of a SCTP packet is limited to 1400 bytes in the Siemens implemen-
tation of SCTP. All TCP connections are con�gured to have the same limit, which allows
the two protocols to be compared with as small parameter variation as possible. This was
done by setting the Maximum Segment Size (MSS) for TCP to 1412 bytes, with 12 bytes
for the Time-stamp option header. The SACK feature also transport it self as an option
but SACKs don't need to be include in the calculations due to that data is only sent in one
direction and SACKs are sent in the opposite direction and does compete with the data
for space in the segments.

4.3.5 Implementation experience

The TCP client was somewhat di�cult to program because the client had to measure the
performance for all connections. The system call �poll� was the tool that �tted best for

4.3. EXPERIMENT COMPONENTS AND ENVIRONMENT 43

this task, because it took all the connections as a parameter and reported back immediate
when one or more connections have received data or when a connection have been closed
by the server. The software simply uses the �poll� function until all connections are closed.

For the TCP server one issue came up because it was unknown what the maximum
amount of new pending TCP connections a socket in Linux can handle. This limit is
de�ned by the user, at the call to the listen() primitive, but it has also an upper limit that
the system de�nes. The test environment uses the Redhat 7.2 Linux distribution and by
investigating this limit, it was found that it was set to 256. Up to 300 connections were
in the experiments, but the sequential initiation of the connections makes it impossible to
reach this limit.

For the SCTP version of the applications, the socket-API was used and the socket
implementation itself had some bugs in the beginning. These bugs had to do with the
closing of associations and the reception of noti�cations, which made it hard to accurate
measurements. The socket-API was luckily in contrast to the daemon API maintained and
the bugs were solved in later releases of the Siemens distributions.

The socket API for SCTP was besides the initial bugs somewhat di�cult to use. Several
new data structures had to be used and new function calls had to be done, compared to the
socket API for TCP. The send and receive primitives of SCTP, sendmsg() and recvmsg(),
were the only ones that can make full use of the SCTP protocol and they were somewhat
di�cult to learn due to the new structures that had to be used. A conclusion that can be
drawn is that if one wants to use all the features of SCTP one has to be an experienced
programmer. The positive side with the socket-API of SCTP is that it gives a nice feeling
of control over the association.

4.3.6 Network environment

The Communications Applied Research Laboratory (CARL) at Karlstad University have
been used in several other communication experiments, for example has various perfor-

44 CHAPTER 4. EXPERIMENT DESIGN

mance studies been made on the Partial Reliable Transport Protocol (PRTP)[3]. CARL is
therefore prepared with several utilities and components one might need.

Physical components

The test environment is a controlled network with three computers; a client, a server and a
network emulator. All three computers were Dell Optiplex GX1 with a 100Mbit/s network
card. The client and server ran Linux Redhat 7.2 and the third computer ran FreeBSD and
used Dummynet to emulate a drop-tail router with a limited bu�er size. A drop-tail router
discards arriving packets when its bu�er becomes full. Dummynet also allows emulation
a network links and they can be speci�ed based on bandwidth, loss rate and delay. The
emulated router together with the network link together creates a pipe, which the data
will pass through.

By creating tra�c �lters can speci�c network tra�c be selected, depending on several
parameters such as transport protocol, source IP-address and more. By sending this tra�c
through a speci�c pipe can it be forced to experience a wanted network environment.

Both the client and the server hosts are setup with the UNIX tool tcpdump in order to
log the tra�c on network. tcpdump logs all tra�c on the network by writing down the time
when each packet was sent/received and it also stores the packet so that the conversation
can be studied later.

Network topology and con�guration

The three computers were connected so that they can create a link between the server and
client that pass through the network emulator. Figure 4.4 shows the network topology and
all the Network Interface Cards (NIC) together with their network addresses. The arrows
between the NICs and the switching hub show how they are physically connected. Notice
that 192.168.0.103 and 192.168.0.100 were connected directly with a crossover cable.

In order to make sure that all experiment tra�c passes through the network emula-

4.3. EXPERIMENT COMPONENTS AND ENVIRONMENT 45

dv6.cs.kau.se 192.168.0.100

Network Emulator

NIC 192.168.0.103 dv7.cs.kau.sedv5.cs.kau.seNIC NIC

ServerClient

�����
�����
�����
�����
Switching Hub

Figure 4.4: The components creating the experiment network

100 Mbit/s 100 Mbit/s

Emulated Network

Buffer Buffer

Router

ServerClient

������

Figure 4.5: A logical view of the experiment network

tor the test software that executes on the server must use the interface with IP address
192.168.0.103. This forces all communication to go through the network emulator. The
client does not have any direct access to the 192.168.0.* network and it therefore routed
all its tra�c to 192.168.0.103 through dv6.cs.kau.se. The network emulator forwarded the
messages to 192.168.0.103 and at the same time applied the network emulation. The server
always sent its tra�c to dv5.cs.kau.se through 192.168.0.100 in order to make sure that the
tra�c in the opposite direction goes the same way and pass through the network emulator.
Figure 4.5 gives a logical view over the components in the network.

Chapter 5

Experiment Results and Analysis

The execution of the scenarios generates a lot of data that has to be checked for correctness
and analyzed. This chapter starts with the veri�cation of correctness in the results and
then continues with a presentation of the results of the throughput measurements. The
�nal section contains the analysis, which tries to identify the details behind the results.

5.1 Verifying the results for correctness

The results from the execution of all scenarios have been veri�ed and this section describes
the method of veri�cation and how the encountered issues were handled.

5.1.1 Method

The log �les generated by tcpdump were analyzed with Ethereal[1] and tcptrace[13] to en-
sure that the measured results reported from the test applications are accurate. Ethereal is
able to analyze both TCP and SCTP and quickly summarize communication and calculate
the total transfer time. It can also display all the contents of the packets sent during the
test by disassembling the stored information in the tcpdump log �les. The output from
ethereal is a readable list of packets with their contents.

47

48 CHAPTER 5. EXPERIMENT RESULTS AND ANALYSIS

The second tool used, tcptrace, can sadly only analyze TCP transfers but it has still
been used. The output from tcptrace is both text and graphs summaries. The graphs from
tcptrace are many and the most useful one is the Time-Sequence diagram. This diagram
contains information about when packets are sent, when retransmissions occurred, when
acknowledgments are retrieved and more. Another limitation that tcptrace have is that
the generated graph only visualize one connection. Therefore, one has to look at several
graphs to get the entire picture of what happened when several connections were active.

5.1.2 Variance in the results

The test results showed that there was only a small variance between the repetitions and
it can be assumed that there are no unknown parameters, such as other data �ows on the
network, a�ecting the tests. An average value of all repetitions is used in this document.
An average is seen as a good approximate for the value because there are no extreme
variations in the results.

5.1.3 Application result versus the log

The R1 and R2 results, de�ned in Section 4.2.2, for both SCTP and TCP were checked
with Ethereal to verify that the applications reported accurate values. The di�erence was
one thousand of a second for both SCTP and TCP.

During the veri�cation of the R1 results, the logs identi�ed a problem with the client
test application for TCP, which was designed as single process software. The problem
was found in the handling of with sockets, which was con�gured as blocking, meaning
that each connect operation on a socket blocks until it is done. This design did not allow
the application to retrieve data on initiated connections until all connections have been
initiated. The reported R1 results were therefore faulty in the scenarios where a connection
had transferred all its data before all connections were initiated.

5.1. VERIFYING THE RESULTS FOR CORRECTNESS 49

Further, this design hindered the client application from reading the arrived data from
the already initiated TCP connections when it still was initiating new connections. This
resulted in that some connections managed to transmit all its data, which temporary
is stored in the receive bu�er, before the last connection was established. In MS 6 for
example, the e�ect was that 49 connections were closed at once when the last connection
was established, due to that they had already transmitted all its data. These 49 connections
then tried to close them self and all these closures generated 49 close message that caused
congestion at the router, which had a negative e�ect on the remaining connection.

This was regarded as unfair for TCP, which was expected to perform better if the
connections were independently connected, read and closed. The solution was a more
complex version of the client application, where the single process design and sequential
connection sequence was kept, but all sockets were instead con�gured as non-blocking,
meaning that all operations on the socket return before the wanted result is acquired. This
forces the program to check all sockets afterward to ensure that the wanted operation has
been performed.

5.1.4 Auto-tuning in TCP

Scenarios Basic 3 and MS 1, de�ned in Section 4.2.1, are identical and the results from the
two should also therefore be identical, but they were found di�erent. However, a di�erence
in the behaviour of TCP was found after a study of the logs. In Basic 3, TCP acted as
anticipated and increased the amount of outstanding data until it reached the limit of
rwnd. When MS 1 was executed, TCP acted less aggressive and did not reach the rwnd
limit as TCP did in Basic 1. The result for TCP was not a�ected by this in any negative
way but this less aggressive behaviour of TCP could be positive or negative in all the
other MS scenarios, where multiple connections are used. For example, a less aggressive
TCP might help avoid congestion and dropped packets and on the other hand may the less
aggressive behaviour hinder the connections from using all the available bandwidth.

50 CHAPTER 5. EXPERIMENT RESULTS AND ANALYSIS

The reason for TCP's behaviour was found in the kernel 2.4 for Linux, which caches con-
nection parameters from previous connections and this data is used by the new connections[6].
This makes TCP aware of the network even before it has sent any data. This however cre-
ated a relationship between di�erent experiments and repetitions and this is unwanted.
Luckily, this cache could be cleared by the user, which was done before each repetition of
a experiment.

5.2 Experiment results

The �gures showing the result from the experiments are �rst described in this section and
then this section continues with the results. The analysis and discussion of the results are
left for the next section.

5.2.1 Data representation and �gure explanations

Each scenario was repeated ten times for each network and the results from these were an
average calculated. The averages from each scenario, network and protocol combination is
presented in the graphs. A con�dence interval is regarded as appropriate to use together
with an average representation, but the interval would hardly be visible in graphs because
it was found very small.

Two di�erent types of graphs are used. For the BASIC scenarios, SCTP's and TCP's
R2 results from all the di�erent scenario and network combinations are compared in one
single graph. The dots connected with a solid line represent SCTPs results as a percentage
of TCP results. A value of 100% means that TCP and SCTP is identical, a value less
than 100% means that SCTP is faster and a value greater than 100% means that SCTP
is slower. The dots connected with a dashed line represent the di�erence between TCP
and SCTP in seconds, which can be read in the right y-axes. A positive value means that
SCTP is slower TCPs.

5.2. EXPERIMENT RESULTS 51

The second type of graphs is used to represent the results from the MS scenarios. This
graph shows the R1 and R2 results of either TCP or SCTP in all the di�erent scenario and
network combinations. The R1 and R2 results from the same scenario and network create
pairs that are connected with a line, which creates a interval. All streams/connections
have �nished within this interval. The �gures also contain a comparison between the R2
result of MS1 and R2 result of MS 2-8. The round circles denote how much longer time
in percent MS 2-8 required compared to MS1. The value was calculated with this formula
(MSx−MS1)/MS1.

5.2.2 Basic scenarios

Figure 5.1 shows the results from the basic scenarios and shows that there was never more
than 1 second between TCP and SCTP. Nevertheless, there was a di�erence between the
two. One can see that SCTP was from 4 to 13 percent behind TCP in Basic 1 throughout
all networks. SCTP was closer to TCP in Basic 2 than in Basic 1 scenario, where the
SCTP results were from 3% to 6% slower than TCP. In Basic 3, where 300 KB of data was
transferred, the �gure shows that SCTP has caught up with TCP in all networks.

5.2.3 MS scenarios

The results of the MS scenarios are summarized in text and �gures in this section. Figure
5.2 shows how both TCP and SCTP have reacted to changes in the amount of connection-
s/streams and to changes in the network properties.

• R1 (Time until �rst stream/connection has �nished): SCTP did in MS 1 �nish its
�rst stream as quickly as TCP. SCTP then �nished its �rst stream further and further
behind TCP the more connections/streams were used. The trend stops with MS 8,
where SCTP again was on track with TCP and the two has identical results. One
can see that the less data were sent on each connection the faster the �rst TCP

52 CHAPTER 5. EXPERIMENT RESULTS AND ANALYSIS

90%

95%

100%

105%

110%

115%

G
S

M

M
O

D
E

M B
1

B
2

B
3

G
S

M

M
O

D
E

M B
1

B
2

B
3

G
S

M

M
O

D
E

M B
1

B
2

B
3

Network
Scenario

(%
)

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

0,45

(s
)

Basic 1 Basic 2 Basic 3

Figure 5.1: BASIC scenario results

connection was �nished. This is true both for TCP and SCTP, but TCP �nished
its �rst connection far much earlier than SCTP's �nished its �rst stream, except in
MS 1 and MS 8. It was also been observed in the logs that the �rst initiated TCP
connection was also the one that �nishes �rst. The same was observed for SCTP's
streams, which �nish in the same order as they were used.

• R2 (Total transmission time): SCTP's result was in all networks almost identical
no matter how many streams were used. The di�erence between MS 1 and 8 was
less than two percent. In contrast to the SCTP application, the TCP application
experienced longer transmission times the more connections were used. TCP's results
for MS 2, 3 and 4 were less than 1% slower than MS 1 and MS 5 was only slightly
slower than MS 1 in the GSM network. MS 6 was the �rst scenario for TCP where
it struggled in all networks, it required from 2% to 21% more time than MS 1 and
the transmission time increased in exponential fashion in MS7 and MS 8. One can
also see that the di�erence between TCP's MS 1 result and the other scenarios vary
between the di�erent networks, which also indicate that the networks properties have

5.3. ANALYSIS 53

been a factor that have e�ected the TCP application's results.

5.3 Analysis

In addition to tcptrace, and ethereal one more tool was used during the analysis of the logs
from the tests. The �rst section describes this tool and what it can do. The next section
lists important issues found on why SCTP and TCP perform as they did. These issues
are then used when explaining the results from the MS scenarios, which is done in the two
�nal sections.

5.3.1 Excel as an analysis tool

It is interesting to examine the utilization of the network during the tests, but this was
not done during the execution of the tests. A method for examining this by utilizing the
logs, generated by tcpdump, was created for this study. By �ltering the log-�les for the
communication in one direction, in this case; Server to Client, one can focus on direction at
the time. The �ltered log-�les were converted to text-�les and then imported to Microsoft
Excel, where the data was used as an input for calculations. By knowing the bandwidth
of the network one can calculate how much transmission time each packet require before a
new packet can be transmitted.

A snapshot from the resulting Excel tables can be seen in Table 5.1. The data in the
table is from a run of MS 6 with TCP over the B1 network and the direction of the data is
from the server to the client. The Time column shows the time when the packet was put
into the network queue and the Start time column speci�es when the packet starts using
transmission resources. The End time column is the time when the packet is expected to
have received all the necessary transmission resources and left the server.

The network is bu�ering when the Start time is later than Time, but if the two times
are identical the network may have been idle for some time. The Idle time column in the

54 CHAPTER 5. EXPERIMENT RESULTS AND ANALYSIS

0%0%0%0%

0%
0%

1%

1%

0%0%0%0%

0%
0%

1%

1%

0%0%0%0%

0%
0%

1%

2%

0%0%0%0%

0%

0%

1%

1%

0%0%0%0%

0%

0%

1%

1%

0

100

200

300

400

500

600

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8Scenario
Network

S
ec

on
ds

-0,20%

0,00%

0,20%

0,40%

0,60%

0,80%

1,00%

1,20%

1,40%

1,60%

[R1,R2] interval R2 increase in % of MS 1

GSM Modem B1 B2 B3

(a) SCTP

0% 0%1%1% 4%4%

24%

74%

0% 0%0% 1%1%2%

19%

63%

0%0%0% 1%1%

21%

88%

270%

0%0% 0%0%1% 2%

41%

127%

0%0% 0%0% 1%2%

43%

131%

0

100

200

300

400

500

600

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8Scenario
Network

S
ec

on
ds

0,00%

50,00%

100,00%

150,00%

200,00%

250,00%

300,00%

[R1,R2] interval R2 increase in % of MS 1

GSM Modem B1 B2 B3

(b) TCP

Figure 5.2: MS scenario results

5.3. ANALYSIS 55

No. Time Pkt
Size

Src.
port

Dest.
port

Info Start
time

End
time

Idle
time

2 0,000 76 5577 > 2886 [SYN, 0,000 0,010 0,000
4 0,383 1468 5577 > 2886 [ACK] 0,383 0,579 0,373
5 0,383 1468 5577 > 2886 [ACK] 0,579 0,774 0,000
7 0,390 76 5577 > 2887 [SYN, 0,774 0,784 0,000
9 0,944 1468 5577 > 2886 [PSH, 0,944 1,140 0,160
10 0,944 1468 5577 > 2886 [ACK] 1,140 1,335 0,000
11 0,944 468 5577 > 2886 [FIN, 1,335 1,398 0,000
14 1,146 1468 5577 > 2887 [ACK] 1,398 1,594 0,000
15 1,147 1468 5577 > 2887 [ACK] 1,594 1,789 0,000
17 1,154 76 5577 > 2888 [SYN, 1,789 1,799 0,000
22 1,959 1468 5577 > 2887 [PSH, 1,959 2,155 0,159
23 1,959 1468 5577 > 2887 [ACK] 2,155 2,350 0,000
24 1,959 468 5577 > 2887 [FIN, 2,350 2,413 0,000
27 2,160 1468 5577 > 2888 [ACK] 2,413 2,608 0,000
28 2,160 1468 5577 > 2888 [ACK] 2,608 2,804 0,000
30 2,168 76 5577 > 2889 [SYN, 2,804 2,814 0,000
35 2,974 1468 5577 > 2888 [PSH, 2,974 3,169 0,159
36 2,974 1468 5577 > 2888 [ACK] 3,169 3,365 0,000

Table 5.1: Idle calculations

56 CHAPTER 5. EXPERIMENT RESULTS AND ANALYSIS

table lists the di�erence between when the previous packet had received all transmission
resources and when the next packet started using transmission resources. There are often
packets in the bu�er so this time is zero, but in the example in Table 5.1 one can see that
the network was idle for 160ms three times, meaning that the transmission resources of
the network was unused between no 2 and 4.

The data in the Excel sheets were also used as an input to a small Visual Basic program,
which was developed to calculate how many packets the bu�er was occupied with at the
time when a packet is sent. This amount was compared with how many packets the router
can queue and if the calculated value is greater then must a packet have been dropped.

5.3.2 Important parameters and behaviours that can a�ect the

result

This section discusses a number of issues that have been identi�ed during the analysis
and seen as important when discussing SCTP's and TCP's results. The impact on the
performance for each issue is not discussed in detail.

How TCP and SCTP sends ACK

It is especially interesting to know how TCP acknowledges the received data at the start
of a connection. The aggressiveness of the TCP protocol is a�ected by how fast data is
acknowledged. By studying the logs it was discovered that the Linux kernel 2.4 implemen-
tation of TCP does not delay ACKs in the beginning of the Slow-start algorithm. Delayed
ACKs that acknowledges two or more segments hinder TCP from increasing its cwnd as
much as if it had received two or more ACKs[10].

For SCTP the logs also show that the Siemens implementation of SCTP does not delay
the ACK on the �rst packet but then it ACKs at least every second packet. If SCTP was as
TCP ACK-counting then it would not increase its cwnd as fast as TCP due to the delayed

5.3. ANALYSIS 57

GSM Modem B1 B2 B3
Data packet size (Bytes) 1468 1468 1468 1468 1468
ACK packet size (Bytes) 68 68 68 68 68
Bandwidth down (bit/s) 7680 48000 60000 150000 400000
Bandwidth up (bit/s) 7680 33000 60000 150000 400000
Propagation delay (s) 0.310 0.035 0.180 0.030 0.012
Bandwith delay product (Bytes) 595.2 354.4 2700 1125 1200
Transmission delay: 1 * Data pkt. (s) 1,529 0,245 0,196 0,078 0,029
Transmission delay: 2 * Data pkt. (s) 3,058 0,489 0,391 0,157 0,059
Transmission. delay: 3 * Data pkt. (s) 4,588 1,068 0,587 0,235 0,088
Time for DATA + ACK (s) 2,220 0,331 0,565 0,142 0,055

Table 5.2: Bu�er calculations

ACKS. However, SCTP's congestion control algorithms are byte-counting so SCTP will
not loose speed of the delayed ACKs.

Network parameters

Another key needed for understanding why SCTP and TCP perform as they do was re-
trieved by studying the network parameters that were chosen for these experiments, de�ned
in Table 4.4. Table 5.2 contain various calculations for all networks and the results give us
some interesting information. It turns out that networks are regardless the di�erences in
bandwidth and delay very similar.

The B1 network was the only network where it requires more time to receive the ACK
on the �rst data packet than it takes to transmit two data packets, each containing 1468
bytes of data. Remember that TCP sends two packets at the start of the initial slow-start.
During the time after that the second packet was sent and when the ACK returns is the
network idle, meaning that the network is idle. This idle period gives an opportunity for
other connections to transfer data. This idle time is though very short and if a connection
sends three instead of two packets at the start will the idle time be zero. In the other
networks, the opposite was true meaning that there was no idle time in the network.

58 CHAPTER 5. EXPERIMENT RESULTS AND ANALYSIS

Client Server

INIT (80 Byte)

INIT−ACK (176 Byte)

COOKIE−ECHO (152 Byte)

Data transfer

SHUTDOWN−ACK (62 Byte)

SHUTDOWN−COMPLETE (52 Byte)

COOKIE−ACK(52 Byte)

SHUTDOWN (56 Byte)

(a) SCTP

Client Server

Data transfer

SYN (76 Byte)

SYN−ACK (76 Byte)

FIN (68 Byte)

FIN (68 Byte)

ACK (68 Byte)

ACK (68 Byte)

ACK (68 Byte)

(b) TCP

Figure 5.3: Connection comparison

The cost of the cookie mechanism

SCTP sends bigger messages than TCP during the initiation of an association due to its
cookie mechanism. The extra amount of data, 240 bytes more than TCP, extends the
transmission delay for the initiation. The size of the cookie sent back and forth over
the network is implementation dependent and this value is only valid for the Siemens
implementation. The signi�cance of this becomes naturally less when the amount of user
data is increased. Figure 5.3 visualize the packets sent by SCTP and TCP during the
initialization with their sizes, including headers of IP layer and Ethernet.

Added transmissions delays from the multiple connection

Initiating multiple TCP connections increases the tra�c load in both direction, but Figure
5.3 shows that TCP only needs to send one packet, SYN-ACK, in the same direction as
the experiments user-data for each new connection. The transmission delay for this packet

5.3. ANALYSIS 59

in a GSM network is 80ms. A connection actively transmitting data in this direction will
see its packets delayed with 80ms for each connection that initiates.

The closure of the TCP connections also adds on the amount of data sent during the
test, illustrated in Figure 5.3. Two packets are sent from the server for each connection,
a total of 136 bytes, during the shutdown, which generates a transmission delay 142 ms
in a GSM network. In total, counting the connection phase and closure, each connection
generates at least 222ms extra transmission delay in the direction from the server to the
client.

TCP timeouts during the initialization

TCP has time limits on the response time for the packets sent during initialization of a
connection and on the packets in the shutdown sequence. With several TCP connections
active on the same network these limits can be exceeded due to long bu�er delays in the
network bu�er or congestion.

TCP sends its SYN packet at max 5 times and the delay between the retransmission
is {3,6,12,24} seconds, where 3s is the �rst delay and 6s is the second and so on. The
peer, who receives the SYN packet answers with a SYN-ACK packet, which also has time
constraints on how fast its response should reach back. A maximum of 4 retransmissions
are done from each side but the logs show that TCP does not count the answers, SYN-
ACKs, that are sent directly after receiving a SYN, as a retransmission. The passive side
of the two TCP endpoints can therefore in a worse case scenario send up to nine SYN-ACK
packets, 5 answers and 4 retransmits. The retransmission of SYN-ACK packets are the
most relevant in this experiment because they are sent in the same direction as the user
data and will add some extra delay.

These retransmissions can potentially increase the tra�c load on the network, but it is
hard to specify in advance exactly how much. The number of retransmissions can easily
be investigated but to be sure about the increased load on the network one has to use the

60 CHAPTER 5. EXPERIMENT RESULTS AND ANALYSIS

logs from both sides of the connection. The two logs can only together verify whether a
packet went through the drop-tail router or if it was dropped. A packet that is dropped
by the router will never use any of the transmission resources of the bottleneck link.

Two packets are normally sent during the closure of a TCP connection from the server
to the client, see Figure 5.3. The FIN packet may be retransmitted if the peer does not
acknowledged the FIN packet fast enough. This is normally not needed because the time-
out time is more accurate than the time-out times on the SYN and SYN-ACK packets.
During the data transfer have TCP acquired information of the network and it can based
on the information set the time-out time to a more accurate value. A FIN packet from
the server that makes it through the network is very likely to be promptly acknowledged
by the client, because the link from the client to the server has no congestion in the
experiments. The FIN packet from the client have no problem reaching the server but the
acknowledgment from the server may be lost due to congestion or delayed too much. The
client may therefore retransmit its FIN packet but this does not delay the transmission of
the user data in the other direction.

The header overhead for data packets

SCTP has a smaller header overhead than TCP. The header of a SCTP data packet, with
one chunk, is 4 bytes less than TCP. Transferring 300 KB of data over one connection or
SCTP stream will require 215 data packets for both TCP and SCTP. In total, not counting
the connection phase, TCP will send 860(4*215) Bytes more than SCTP.

At the end of the transfer it often exist a small amount of data that does not �ll an entire
packet. SCTP can bundle several chunks in one SCTP packet if there are several streams
with small chunks waiting to be delivered. Each chunk has its own header but they share
the common header of the packet so the header overhead decreases. For TCP a similar
situation can occur but several TCP connections cannot cooperate and share a single TCP
packet, as the streams in SCTP share a SCTP packet. The overhead then increases even

5.3. ANALYSIS 61

Number of chunks TCP header SCTP header Di�erence(TCP/SCTP)
1 32 B 28 B +14%
2 64 B 44 B +45%
3 96 B 60 B +60%
4 128 B 76 B +68%
5 160 B 92 B +74%

(B = Bytes)

Table 5.3: Header overhead

more for TCP in comparison to SCTP. Table 5.3 contain a comparison between TCP and
SCTP regarding how the header overhead change when SCTP bundle chunks in one packet
and TCP sends them in separate packets. The TCP and SCTP header column lists the
total amount of header data needed for the speci�ed amount of chunks. The di�erence
column list how much more header data TCP need than SCTP.

The slop-over e�ect

A SCTP association starts more aggressive than TCP connection because it may temporary
send more data than the initial cwnd allows, read Section 2.3.4 for more details. In the
B1 network, where TCP cannot fully utilize the available bandwidth at once, can SCTP
slop over its cwnd and send three full packets (4200 Bytes). This is enough to keep the
network working until the �rst ACK returns.

Data packets dropped by the router

When parallel TCP connections probe the network for the available bandwidth, they are
likely to �ll the bu�er of the router. The router used in the experiment, which is a drop-tail
router, handles the problem with a full bu�er by dropping the packets that arrive when
the bu�er is full. The dropped packets have to be resent and packets can arrive unordered.
The cost of dropping packets is not that expensive as one can think because they will not
have used any of the constrained network resources.

62 CHAPTER 5. EXPERIMENT RESULTS AND ANALYSIS

The connection that loose a packet will on the other hand slow down and reduce the
amount of outstanding data. The load on the network will become less, the network may
be under utilized for some time and the transmission time will increase.

Bandwidth sharing between the data �ows

The R1 result is very much dependent on how the data �ows share the available band-
width of the network. The test software for the SCTP version force SCTP to spread the
bandwidth over all streams. The test software for the TCP version does not spread the
bandwidth evenly between the �ows because it has no possibility to do that. Multiple TCP
connection does not have a shared association as the streams of SCTP have. Instead the
connections compete for the bandwidth, where TCP's congestion avoidance rules de�ne
how the competitors act.

If the connections also are initiated in a sequence will the �rst initiated connection
have a head-start on the others, which allows it to increased its cwnd before the other
connection even have started. The subsequent connections are therefore hindered by the
�rst connections transmission delay and their messages will be delayed. It can take some
time before the other connections have forced the �rst connection to decrease its cwnd and
evenly share the available bandwidth with the other connections. Figure 5.4 illustrates
three connections that have two packets each to send. Connection 1 is the �rst connection
to be initiated and the �gure illustrate that connection 1 will be able to send all its packets
at once and �nish long before the other two.

5.3.3 Basic scenario analysis

This section analyzes the result for each Basic scenario, showed in Figure 5.1, and summa-
rizes them by referring to some of the topics mentioned in the previous section. Remember
that the R2 result is only valid in the basic scenarios because no more than one stream or
TCP connection was used in Basic scenarios.

5.3. ANALYSIS 63

Connection 1

Connection 2

Connectino 3

Network

1:01:12:02:1

3:03:1

Figure 5.4: TCP - No bandwidth sharing

Basic 1

SCTP turned out to be slower than TCP because SCTP su�ered from its connection phase,
where the cookie mechanism required that 240 bytes more to be sent compared to TCP.
240 bytes generate a 0.25s transmission delay in a GSM network and it covers for the entire
di�erence between TCP and SCTP in this network. SCTP dropped further behind in the
Modem network, where the bandwidth was higher downstream than upstream and SCTP
send more data upstream than TCP during initialization. In the B1 network, which had a
high bandwidth in both direction but a long propagation delay, the transmission delay was
tiny in comparison of the total delay. This hid the loss in time for SCTP during initiation.
The situation in the B2 and the B3 networks, which had a less dominant propagation
delay than B1, were basically the same as in the GSM network and SCTP's need of extra
transmission time during initiation was again visible.

Basic 2

This scenario transfers three times more data than Basic 1 between the server and client
and the transmission delay of the connection phase is therefore less signi�cant. The cookie
mechanism was however noticeable and it put SCTP behind TCP.

64 CHAPTER 5. EXPERIMENT RESULTS AND ANALYSIS

Basic 3

The amount of data transferred between the server and client was here 300 KB and we saw
that SCTP caught up with TCP in all networks. The 240 bytes more that SCTP have to
transmit during the initiation was eaten up by the fact that SCTP's data packet is four
bytes smaller than TCP. SCTP did in total send less data than TCP. TCP sent 620 bytes
(860-240) more, but it was only a little part of the entire transfer.

Another reason why SCTP has caught up with TCP was that it was favoured by its
slop-over rule, which allows SCTP to temporary exceed its cwnd. SCTP was able to keep
the B1 network, which can transfer more than 2*MTU bytes before the ACK returns on
the �rst packet, busy long enough to allow the ACK to arrive. The amount of idle time
for TCP during the �rst RTT was however only two tenth of a second and it was tiny in
comparison to the total transmission time.

5.3.4 MS scenario analysis

This section analyzes the execution of the MS scenarios, which in opposite to the Basic
scenarios use multiple streams and TCP connections. These multiple concurrent TCP
connections make the analysis more complex, which sometimes makes it very hard to
specify the exact e�ect of each issue. The complexity originates from the fact that each
TCP connections have its own congestion control. For SCTP no such complexity arises
since only one association, shared by all streams, was used. The reader should have read
the topics mentioned in Section 5.3.2 before continuing further.

All the R1 result was quickly analyzed and the reason why SCTP was behind TCP in
most MS scenarios was due to the implemented bandwidth sharing between the streams
in SCTP, enforced by the test application. TCP, which have no such explicit bandwidth
sharing, relies on that congestion occurs which will force the connection that loose packets
to slow down and give room for other connections. The �rst initiated TCP connection

5.3. ANALYSIS 65

did initially use a majority of the available bandwidth and the following connections did
struggle to acquire the bandwidth, due to the transmission delay generated by the �rst
connection. The TCP connections did never evenly share the available network resources
because the amount of data in the tests was too small. SCTP was in MS 8 on phase with
TCP and this occurred because the data amount sent on each connection/stream was less
than one MTU. Only one data packet was transferred on each connection/stream.

The R2 result turned out to be the most interesting and TCPs results have been hardest
to analyze. The result for SCTP, showed in Figure 5.2, clearly says that SCTP was not
a�ected by the amount of streams. Its speed remains almost constant and the simple
reason is that there is no inherent overhead in using multiple streams. The TCP results
are less obvious and the analysis below focuses on TCP and how it struggled to perform
as SCTP.

MS 1

In this scenario, identical to Basic 3, TCP perform as SCTP. See the Basic 3 analysis in
Section 5.3.3 for details.

MS 2

This scenario utilized the stream feature of SCTP and multiple TCP connection but no
noticeable di�erence was seen between the two alternatives. The extra transmission delay
of the second TCP connection was tiny in comparison to the total transmission time. It
was not be regarded as a big issue, even when the second TCP connection experienced
time-outs for its SYN and SYN-ACK packets in the GSM network. Read more about the
transmission delay related to connection setup in Section 5.3.2.

Further, the extra aggressiveness of two TCP connections had no advantage over the
single SCTP association in any of the network. The networks had a too low Band-

width*Delay*Product (BDP) and the ACK packets arrived quickly enough to help the

66 CHAPTER 5. EXPERIMENT RESULTS AND ANALYSIS

single SCTP association to make sure that the network was fully utilized. The B1 network
was the only network that gave two TCP connections an opportunity to use all of the
bandwidth of the network more quickly than one SCTP association could. However, the
opportunity was not big enough and the �rst TCP connection was able fully utilize the
entire bandwidth when the second connection got ready and started sending data.

A negative e�ect of using two parallel TCP connections was observed in all networks.
The two connections, which have their own congestion window, did together �ll the bu�er
of the router. This resulted in that packets were dropped and retransmissions were per-
formed. The test logs showed that packets were dropped twice in the experiments and
each connection lost one packet. In both cases, TCP recovered with a fast retransmit and
resumed with a reduced cwnd. However, the two connections did together make sure that
the network was fully occupied and the networks were never in an idle state, even when
one connection slowed down.

MS 3

The result from MS 2 showed that the extra aggressiveness of two TCP connections,
compared to one SCTP association, had no positive impact on the throughput. In this
experiment where �ve TCP connections used, which was prior to the experiment expected
to be even more aggressive than two. The �ve connection had however no positive impact
on the throughput and instead where more network resources used for transmitting non-
user data, related to the initiation and the closure of the connections.

In the GSM network, the connections were forced to retransmit SYN-ACK packets
during the initiation. Except the �rst connection, which had no problems, the connections
sent their SYN-ACK packets in average 5,25 times. In total, the initiation together with
the closure of the connections generated 2.4 KB of non user-data. This was however less
than 1% of the total user data (300KB) so it did not have any noticeable impact on the
R2 result. In the other networks where there no retransmission of SYN-ACK packets.

5.3. ANALYSIS 67

Signi�cant for this scenario was that the load on the network occasionally was far
higher than the capacity of network. The �ve TCP connections did together generate
a high amount of outstanding data, caused full bu�ers in the router and consequently
dropped packets. As in MS 2, the connections that lost packets slowed down but the
TCP connections did together send at a high enough rate even during congestion and the
network was never in a idle state.

MS 4

With ten TCP connections in the GSM network the amount of retransmissions of SYN-
ACK packets increased and they began to make a noticeable di�erence. The total amount
of none-user data sent from the server during initiation was 6,8 KB, which is 20 times more
than what SCTP needs for one association. In the other networks were 2,1 KB of none
user-data transferred.

The router bu�er was in contrast to MS 2 and 3 never full in this experiment, which
actually indicates that the ten TCP connections are less aggressive than two and �ve
connections in MS 2 and 3. One factor for the aggressiveness turned out to be the initiation
of the ten connections. The sequential initiation of the connections, which was used due to
its robustness, and the length of each connection made less connections active in parallel.
The length of each connection, de�ned by the amount of user-data sent with the connection,
was in this scenario only 30 KB. This mades each connection �nish earlier and therefore
was less connection active in parallel.

The limited amount of data was found as another factor, which hindered each connec-
tion to reach a high amount of outstanding data. The amount of outstanding data of a
connection is increased as the data are delivered, see slow-start and congestion avoidance
algorithms, and with less data the connection reached a lower amount.

68 CHAPTER 5. EXPERIMENT RESULTS AND ANALYSIS

MS 5

In MS 5 each TCP connection only transmitted 10 KB of data, 300KB spread over 30
TCP connections. 10 KB of data only requires eight data packets and the connection was
now �nished after four burst of two data packets. It was observed that the network bu�er
contained fewer packets than MS 4 throughout the entire transmission.

Further when the TCP sessions are short will less connections transfer in parallel. A
result of this was seen when studying the bu�er of the network router, which have not been
bu�ering packets to the same extent as in MS 1 ,2 ,3 and 4. This did shorten the delay
that the SYN and SYN-ACK packets experienced and the amount of retransmissions of
SYN-ACK packets decreased. In the GSM network was SYN-ACK packets still on average
sent 5 times and the total amount of non-user data sent reached 15 KB. 15 KB is 5 % of
the user-data and the cost of multiple TCP connections are now getting substantial in the
GSM network. 6,4 KB of none user-data was transferred in the other networks.

Another consequence of fewer packets bu�ered in the network was that no packets were
dropped due to congestion. This indicates that the network might be under utilized, but
the logs shows that the network was fully utilized during the entire test. One can also see
that MS 5 was not much slower than MS 1 in any network.

MS 6

With �fty TCP connections, the overhead from the initiations and closures became visible
in the graph for all networks. The overhead was 18 KB in the GSM network, where
retransmissions of SYN-ACK occurred two times per connection, and in the other networks
11KB. This is 6 % respectively 3,5 % of the 300 KB of user data.

The MS 6 result from the B1 network did however worsen more than the rest of the
networks so there was some other parameter that a�ected the result. This was investigated
and the network was found being regularly idle during the transmission. The network was
delivering data packets faster than the TCP connections were putting data packets on the

5.3. ANALYSIS 69

Scenario name GSM Modem B1 B2 B3
MS 6 0% 0% 16% 0% 0%
MS 7 13% 12% 45% 26% 29%
MS 8 35% 27% 69% 48% 51%

Table 5.4: Idle time percentage for TCP in MS 6, 7 and 8

network. The sequential initiation of the connection now separated the connection too
much to allow the short TCP sessions to overlap enough so that network could be fully
utilized. The idle time percentage of the total time was measured and can be seen in Table
5.4. Read to Section 5.3.1 for more details on how this is calculated.

MS 7

The overhead from multiple TCP connections continued to grow when 100 connections
were used. The overhead was now 32 KB in the GSM network and 21 KB in the other
network. This overhead did not alone explain why TCP needed more time to transfer the
data, compared to MS 6.

The analysis discovered that TCP had the same e�ciency problem that was seen with
MS 6 in the B1 network, but now in all networks. The reason was the same but it was now
worse due to that the each TCP connection was now even shorter, the amount of data was
now only 3 KB.

MS 8

With 300 TCP connections the overhead created by the initiations and closures grew further
compared to MS 7. No retransmission of SYN-ACK packets occurred in the GSM network
and all networks experienced the same header overhead, 63,6 KB of non-user data. The
overhead increase could not alone explain why the R2 result has increased with 74%, 63%,
270%, 127% and 131% in respective networks compared to MS1 in the same network.

The idle periods did compared to MS 7 occur with shorter intervals and even with

70 CHAPTER 5. EXPERIMENT RESULTS AND ANALYSIS

longer periods and it can be concluded that the e�ciency problem has worsened from MS
7. The idle time is now responsible for a large part of the R2 result, from 27% to 69% of
the total time in the di�erent networks.

5.3.5 Summary

The network con�gurations that were chosen were the biggest reason on why TCP struggle
with its R2 result in the MS 2, MS 3, MS 4 and MS 5 scenarios. We saw in MS 2 that
two TCP connections failed to give TCP a boost in the positive direction in any network.
Using more TCP connections did not improve TCP situation. The networks forced TCP
to show all the bad things with using multiple connections. Such things are the overhead of
initiating multiple connection, idle networks and time-outs with retransmissions. The GSM
network was the network that showed to be the least suitable for concurrent connections.
A comparison between SCTP's and TCP's R2 result is available in Figure 5.5, containing
all scenarios and network combinations. The �gure shows SCTP's result as a percentage
of TCP's result in the same scenario.

The sequential initiation of TCP connections was identi�ed as the main reason why
some network capacity was left unused in MS6, MS7 and MS8. However, initiating the
connection in parallel might have its own issues and perform equally bad. For more details
on the initiation of the TCP connections read Section 4.3.4.

The negative issue observed for SCTP is the extra transmission delay due to the cookie
mechanism of SCTP. Otherwise SCTP has showed itself to be more e�cient than TCP, but
not by much, see the results from MS 1, 2, 3, 4 and 5. The use of parallel TCP connection
did not increase the overhead so that it becomes signi�cant until 50 or more connections
were used to transfer 300KB of user data.

5.3. ANALYSIS 71

SCTPs time in procent of TCP - MLS scenarios

0,000

20,000

40,000

60,000

80,000

100,000

120,000

140,000

GSM Modem Broadband 1 Broadband 2 Broadband 3

Network

(%
)

MLS 1

MLS 2

MLS 3

MLS 4

MLS 5

MLS 6

MLS 7

MLS 8

Figure 5.5: SCTP R2 result in percentage of TCP

72 CHAPTER 5. EXPERIMENT RESULTS AND ANALYSIS

5.4 Conclusion

The analysis method is regarded as accurate and helped during the study of concurrent
connections initiating, transferring data and closing. A number of parameters have been
identi�ed that a�ect the performance, most for TCP but also some for SCTP. The scenarios
that were chosen also gave an acceptable perspective on the performance of TCP and SCTP
when using a varying amount of connection/streams and data. The results did sadly not
show that multiple TCP connections can make use of the available bandwidth faster than
a single TCP or SCTP connection, which was as described in Section 4.1.1 expected.
However, the network logs from the scenarios indirectly con�rmed it. One could see that
TCP in MS 2, 3 and 4 tried more aggressively to make use of the available bandwidth than
the single SCTP association did.

The MS scenarios were designed to mimic HTTP1.0 with either SCTP or TCP but it is
di�cult to say if a user regards HTTP1.0 with SCTP as faster than TCP. The results show
that SCTP �nished its �rst stream together with all other streams during a short interval
at the end of the entire transmission. TCP did on the other hand �nish its connections
over a larger interval and therefore were many of TCP's connections �nished before the
corresponding SCTP streams. A user of HTTP1.0 might therefore regard HTTP1.0 over
TCP faster than HTTP1.0 over SCTP due to that some �les are retrieved faster.

In general, the results strongly indicate that an application, which uses TCP as its
transport protocol, will reach the best throughput performance if it uses long TCP sessions
instead of short sessions as in test scenario MS 6, 7 and 8. Such a recommendation is also
valid for SCTP, which almost have an identical congestion control as TCP. Longer sessions
make the header overhead from the initiations become less signi�cant. However, the most
important reason why long sessions are preferable is that all transmission resources are
more likely utilized if the congestion control algorithms are allowed to work longer.

The tests does not cover all the networks used for Internet communication but it is
believed, by the author, that one can now with the knowledge from this study extrapolate

5.4. CONCLUSION 73

what will happen if we go outside the domain of the scenarios in this study.

Chapter 6

Summary

This chapter summarizes the achievements of this study and look at possible future work.
The chapter �nishes with the authors �nal thoughts.

6.1 Accomplishments

There were two major implementations of SCTP available when this study started early in
year 2002. The Siemens implementation was regarded at that time as the best and most
active project. This implementation had though a number of bugs that hindered this study
for some time. When looking back at the decision the Siemens implementation is still seen
as the right choice, much because of its socket API implementation.

The stream feature of SCTP was in advance identi�ed as an appropriate feature to
test in this performance study. It was picked for the experiment after some other possi-
bilities were examined. The implementation of the test software for TCP and SCTP was
successfully performed, but some issues were discovered when verifying the results of the
experiment. The issues were resolved and at last were the TCP and SCTP version regarded
equivalent and the R1 and R2 results from both versions could be used in the comparison.

A test environment was successfully built and several scenarios were designed to test

75

76 CHAPTER 6. SUMMARY

SCTP and TCP against each other. The environment has worked �ne and the analysis has
found many interesting factors that had an e�ect on the results. However, the experiment
speci�cation was found falling short of the expectations. It turned out that the network
never allowed TCP to use the potential it had when using multiple connections. A more
wide spread set of network con�gurations would have given a richer view of the di�erences
between using one SCTP association instead of multiple TCP connections.

This document describes the experimental experience gained on SCTP and the knowl-
edge about SCTP. Chapter 2 summarizes the knowledge gained before and after the exe-
cution of the experiment, which veri�ed our expectation and also revealed new information
that was not known, as the slop-over rule.

6.2 Future work

This study on SCTP is narrow and there are many new studies on SCTP that can be done.
This section lists what the author has identi�ed during this study as potential continuations
to this study.

6.2.1 A continuation with HTTP1.0

Goal 2 not completely satisfactory ful�lled in this study, as mentioned in section 6.1. By
designing new test with di�erent network con�gurations one could �nd out more about the
performance of HTTP1.0 with SCTP. New network con�gurations should be chosen from
a new survey of networks. A network con�guration with a higher bandwidth delay product
can verify whether TCP can bene�t from its concurrent connections. The characteristics of
typical HTTP1.0 real world transfers should be identi�ed with more details, which would
strengthen the research and help make stronger conclusions.

We also need to check if the use of concurrent TCP connections is suitable on Internet
and identify a limit on how many that is suitable to use. Many TCP connections are more

6.2. FUTURE WORK 77

aggressive and might have a negative impact on concurrent network tra�c. The use of
multiple TCP connections is controversial and seen by some as TCP-unfriendly[7].

6.2.2 HTTP1.1

The problem with HTTP1.0 is that it sometimes use short TCP sessions for short data
streams and this is addressed by the successor of HTTP1.0. HTTP1.1 has a concept
called persistent connections[11], where di�erent data streams share a single TCP session.
Instead of tearing down the TCP connection after each data object could the connection
be reused, which results in longer TCP sessions. This allows the congestion algorithms to
receive more data about the state of the network and multiple initial slow-starts can be
avoided. The TCP connection will have a better chance to stabilize itself with an accurate
value of cwnd.

HTTP1.0/SCTP has also addressed this problem and several data streams can share an
association by using its streams. This has the same positive e�ects as HTTP1.1/TCP, but
with SCTP comes also more positive e�ects. SCTP delivers the di�erent streams in parallel
in opposite to HTTP1.1/TCP, which delivers the streams in a sequence. The sequential
delivery is vulnerable to HLB and SCTP has therefore a possibility to perform better.

6.2.3 Signalling tra�c

Tests with telephony signalling applications are also very interesting to perform, due to
that signalling was initially the main application for SCTP. To test signalling one needs
to collect information about the tra�c characteristics of signalling in an IP network. A
possible opponent to SCTP for transporting signalling tra�c over IP networks is unknown
right now, but it would be very interesting to study if SCTP can meet the demands from
signalling applications.

78 CHAPTER 6. SUMMARY

6.3 Final thoughts

SCTP is new and there was not much material published about it in the beginning of this
study. On the IETF web page, one could �nd the RFC and a few other documents on
SCTP. Several of these were drafts on specifying extensions and corrections to the proposed
standard. The book Stream Control Transmission Protocol[23] has given me many insights
in the subject. All together, I believe I have found the information I needed for this study.

Analyzing tests with multiple TCP connections active at the same time turned out to
be far harder than I expected at the start. In the beginning, it was even hard to see what
was happening with only one connection active, but as I gained experience I learned what
to look for. This is believed to be an important experience for future experiments that
might contain many concurrent �ows.

Performing research in the form of practical experiments was new for me and some
things have naturally gone wrong. When I chose between the di�erent APIs that were
available in the Siemens implementation of SCTP I �rst chose the SCTPd API. This de-
cision put me on a wrong path and I had to return after some time and restart. The
decision to restart with the socket-API was done after a discussion with the crew assigned
to the Siemens implementation and naturally should this discussion have been made ear-
lier. Regarding the experiment design, I have also made a mistake that I regret. The
network con�gurations, chosen for the experiment, were not as di�erent as I believed in
the beginning. All networks had similar bandwidth delay products and this hindered me
to see all aspects of using many concurrent TCP connections.

However, I still believe several interesting aspects have been found in this study.

References

[1] Ethereal, a network protocol analyzer. http://www.ethereal.com/.

[2] SCTP, a prototype implementation. http://www.sctp.de/.

[3] Katarina Asplund, Anna Brunstrom, Johan Garcia, and Karl-Johan Grinnemo. Anal-
ysis and implementation of a partially reliable transport protocol for multimedia ap-
plications: Project report. Project Report, Karlstad University, Dec 2000.

[4] T. Berners-Lee, R. Fielding, and H. Frystyk. RFC 1945: Hypertext Transfer Protocol
HTTP/1.0, May 1996. Status: INFORMATIONAL.

[5] P. Conrad, G. Heinz, A. Caro, P. Amer, and J. Fiore. SCTP in battle�eld networks.
Proceedings MILCOM 2001, Washington, DC, October 2001.

[6] Tom Dunigan. Tcp auto-tuning zoo. http://www.csm.ornl.gov/ duni-

gan/net100/auto.html.

[7] S. Floyd and K. Fall. Promoting the use of end-to-end congestion control in the
Internet. IEEE/ACM Transactions on Networking, 7(4):458�472, August 1999.

[8] J. Garcia and J. Gustafsson. Data communication in GSM networks. Project Report,
Karlstad University, 2000.

[9] Johan Garcia. Integrated testing - test setup. Working Report, Karlstad University,
October 2000.

79

80 REFERENCES

[10] M. Allman BBN/NASA GRC. Tcp congestion control with appropriate byte counting
(abc). http://www.ietf.org/, page 10, February 2003.

[11] James F. Kurose and Keith W. Ross. Computer networking: A top-down approach
featuring the internet. Addison Wesley, page 688, 2001.

[12] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow. RFC 2018: TCP selective
acknowledgment options, October 1996.

[13] Shawn Ostermann. Tcptrace. http://www.tcptrace.org/.

[14] Avi Silberschatz, Peter B. Galvin, and Greg Gagne. Operating system concepts, sixth
edition. John Wiley & Sons, Inc, page 803, 2002.

[15] W. Stevens. RFC 2001: TCP Slow Start, Congestion Avoidance, Fast Retransmit,
and Fast Recovery Algorithms, January 1997. Status: PROPOSED STANDARD.

[16] W. Richard Stevens. UNIX network programming, volume 1: Networking APIs -
sockets and XTI. Prentice Hall PTR, Upper Saddle River, NJ, 1998.

[17] Randal Stewart, Lyndon Ong, Ivan Arias-Rodriguez, Kacheong Roon, Phillip T. Con-
rad, Armando L. Caro Jr., and Michael Tuexen. Stream control transmission pro-
tocol (SCTP) implementers guide - work in progress. http://www.ietf.org/internet-

drafts/draft-ietf-tsvwg-sctpimpguide-07.txt, page 62, October 2002.

[18] Randal Stewart, M. Ramalho, Q. Xie, M. Tuexen, I. Rytina, M. Belinchon, and
P. Conrad. Stream control transmission protocol (SCTP) dynamic address recon�gu-
ration. http://www.ietf.org/internet-drafts/draft-ietf-tsvwg-addip-sctp-06.txt, page 36,
September 2002. Work in Progress.

[19] Randall Stewart. Stream control transmission protocol (SCTP). http://www.sctp.org/.

[20] Randall Stewart. RFC 2960: Stream Control Transmission Protocol. October 2000.

REFERENCES 81

[21] Randall Stewart, M. Ramalho, Q. Xie, M. Tuexen, and P. Conrad. SCTP partial
reliability extension. Work in progress, draft-stewart-tsvwg-prsctp-00.txt, May 2002.

[22] Randall Stewart, Q. Xie, L Yarroll, J. Wood, K. Poon, and K. Fujita. Sockets API
extensions for stream control transmission protocol (work in progress). IETF draft,
May 2002.

[23] Randall Stewart and Qiaobing Xie. Stream control transmission protocl (SCTP) - a
reference guide. Addison Wesley, November 2001.

[24] Guanhua Ye, Tarek Saadawi, and Myung Lee. SCTP congestion control performance
in wireless multi-hop networks. MILCOM, 2002.

83

84 APPENDIX A. LIST OF ABBREVIATIONS

Appendix A

List of Abbreviations

BDP Bandwidth Delay Product
CARL Communications Applied Research Laboratory
cwnd Congestion window
DISCO Distributed System Communication
HLB Head of Line Blocking
HTML HyperText Markup Language
HTTP Hyper Text Transfer Protocol
IETF Internet Engineering Task Force
IP Internet Protocol
MAC Message Authentication Code
MS Multiple Streams
MSS Maximum Segment Size
MTU Maximum Transfer Unit
NIC Network Interface Card
OOTB Out of the blue
PRTP Partial Reliable Transport Protocol
rtt Round Trip Time
rwnd Receiver Window
SACK Selective Acknowledgement
SCTP Stream Control Transmission Protocol
ssthresh Slow Start threshold
TCP Transmission Control Protocol

85

UDP User Datagram Protocol
ULP Upper Layer Protocol

	Introduction
	Aim of study
	Scope
	Document disposition

	A TCP and SCTP summary
	Basic concepts
	TCP
	General properties
	TCP connection sequence
	Data abstraction
	Congestion control

	SCTP
	General properties
	The SCTP connection sequence
	Data abstraction
	Congestion control
	SCTP socket API
	Additional features of SCTP

	An evaluation of SCTP implementations
	The competitors
	Implementation basics
	Implementation techniques and concepts
	One SCTP layer per host
	User-space process assignments

	Comparison
	Randall R. Stewart
	Siemens-Essen

	Conclusion

	Experiment design
	Choosing a suitable feature of SCTP
	Features of SCTP with experiment possibilities
	Motivation

	Experiment specification
	Experiment scenarios
	Test measurements
	Network configurations
	Summary

	Experiment components and environment
	Simulated HTTP transfer
	Software overview
	SCTP application details
	TCP application details
	Implementation experience
	Network environment

	Experiment Results and Analysis
	Verifying the results for correctness
	Method
	Variance in the results
	Application result versus the log
	Auto-tuning in TCP

	Experiment results
	Data representation and figure explanations
	Basic scenarios
	MS scenarios

	Analysis
	Excel as an analysis tool
	Important parameters and behaviours that can affect the result
	Basic scenario analysis
	MS scenario analysis
	Summary

	Conclusion

	Summary
	Accomplishments
	Future work
	A continuation with HTTP1.0
	HTTP1.1
	Signalling traffic

	Final thoughts

	References
	List of Abbreviations

