
Department of Computer Science

Martin Persson

Development of three AI techniques for

2D platform games

D-level Dissertation (20p)

2005:11

Development of three AI techniques for

2D platform games

Martin Persson

c© 2005 The author and Karlstad University

This thesis is submitted in partial fulfillment of the requirements

for the Masters degree in Computer Science. All material in this

thesis which is not my own work has been identified and no mate-

rial is included for which a degree has previously been conferred.

Martin Persson

Approved, 9 December 2005

Opponent: Jan Eriksson

Advisor: Simone Fischer-Hübner

Examiner: Donald F. Ross

iii

Abstract

This thesis serves as an introduction to anyone that has an interest in artificial

intelligence games and has experience in programming or anyone who knows not-

hing of computer games but wants to learn about it. The first part will present

a brief introduction to AI, then it will give an introduction to games and game

programming for someone that has little knowledge about games. This part inclu-

des game programming terminology, different game genres and a little history of

games. Then there is an introduction of a couple of common techniques used in

game AI. The main contribution of this dissertation is in the second part where

three techniques that never were properly implemented before 3D games took over

the market are introduced and it is explained how they would be done if they

were to live up to today’s standards and demands. These are: line of sight, image

recognition and pathfinding. These three techniques are used in today’s 3D games

so if a 2D game were to be released today the demands on the AI would be much

higher then they were ten years ago when 2D games stagnated. The last part is

an evaluation of the three discussed topics.

Keywords

Artificial intelligence, AI, Game, 2D, Platform, Line of sight, Image recognition,

Pathfinding.

v

Acknowledgements

I would like to thank the flowing people.

Simone Fischer-Hübner, for all the advise and help throughout the project.

And for showing me that there exist people in the computer science world that do

not know who Pac-Man is.

Donald F. Ross, for approving this topic as a D-level dissertation. And for

setting an example for how code should not be written.

Jan Eriksson, for constructive criticism during the opposition. And for pointing

out all the bad things in the dissertation.

vii

Preface

I decided that the topic for my D-level dissertation would be game artificial intel-

ligence when my C-level dissertation was finished and it ended up containing no

artificial intelligence. I found this disappointing because AI in an important part

of a game. It is especially important to develop advanced AI in platform games

because the last game that developed the genre was released eight years ago. And

for some reason there are few people in the academic world that even care about

games. This I want to change.

Making movies requires no technical knowledge, anyone who can aim a camera

and press record can direct movies. But when it comes to games the game makers

are always programmers with great knowledge of computers. And musicians do

not need to build their own instruments. Imagine that all movie directors and

producers had to build their own cameras. Then there would be a lot less movies

that were made. And if all musicians needed to build their own instruments

themselves there would be a lot less musicians around. But game makers have to

make the engine for the game themselves. Compare musicians and directors with

game makers, the musicians and movie directors are artists while game makers are

technicians. This is one of the reasons why there are so few game programmers

around. There are a lot of people who like games and would like to make their own

games but few of them have the technical knowledge needed to make games and

even fewer who like 2D platform games. Hopefully this will change in the future.

ix

When the movie Star Wars was released it made every science fiction movie

before it seem to be obsolete because of its special effects. It is the same thing for

games; a really great game makes all other of its genre seem to be obsolete. This

is what is needed in order to make 2D platform games return.

The AI techniques presented in the dissertation are nothing but help to anyone

that would like to make AI in a 2D platform game. The real result depends on the

game makers themselves. As Robert L. Glass put it in “Facts and Fallacies about

Software Engineering”[2]:

The most important factor in software work is not the tools and te-

chniques used by the programmers, but rather the quality of the pro-

grammers themselves.

I could not agree more with that statement.

Martin Persson, October 2005.

x

Contents

1 Introduction 1

1.1 Purpose . 1

1.2 Motivation . 2

1.3 Limitation . 3

1.4 New techniques . 4

1.4.1 Line of sight . 4

1.4.2 Image recognition of the level 4

1.4.3 Pathfinding . 5

1.5 Goal . 5

1.6 Disposition . 5

I Background 7

2 Introduction to artificial intelligence 9

2.1 What is artificial intelligence? . 9

2.1.1 AI agent . 10

2.2 Heuristics . 11

2.3 Weak and strong AI . 11

2.4 The Turing test . 13

2.4.1 The history of the Turing test 13

xi

2.4.2 Objections to the Turing test 14

2.5 The Foundation of artificial intelligence 15

2.5.1 Philosophy . 15

2.5.2 Mathematics . 16

2.5.3 Neuropsychology . 16

2.5.4 Control theory . 17

2.6 The history of Artificial Intelligence 17

2.6.1 The birth . 17

2.6.2 The first AI agents . 18

2.6.3 Setback . 19

2.6.4 Knowledge based systems 19

2.6.5 The AI winter . 20

2.6.6 AI becomes a science . 20

2.7 AI today . 21

2.7.1 Robotics . 22

2.7.2 Spam filters . 22

2.7.3 Virus scanners . 22

2.7.4 Security agents . 23

2.8 Image recognition . 23

2.8.1 Introduction . 23

2.8.2 Reading a image . 24

2.8.3 Transforming the image into data 25

2.8.4 Recognizing objects . 26

2.9 Deep Blue . 28

2.10 Summary . 29

3 Introduction to game programming 31

3.1 Game platforms . 32

xii

3.1.1 Arcade games . 32

3.1.2 Console games . 33

3.1.3 Computer games . 34

3.2 2D and 3D games . 35

3.3 Terminology . 38

3.4 Game Genres . 43

3.4.1 Platform games . 43

3.4.2 First Person Shooter games 44

3.4.3 Role Playing Games . 45

3.4.4 Adventure games . 47

3.4.5 Strategy games . 49

3.4.6 Beat’em up . 51

3.4.7 Shoot’em up . 51

3.4.8 Simulator games . 53

3.4.9 Sim games . 53

3.4.10 Sports games . 54

3.4.11 Massive Multiplayer Online games 54

3.4.12 Puzzle games . 55

3.5 Game Application Programming Interface 56

3.5.1 DirectX . 56

3.5.2 SDL . 57

3.5.3 OpenGL . 57

3.6 Programming games . 58

3.6.1 Modifications . 59

3.7 Summary . 60

4 Introduction to game AI 61

4.1 Introduction . 62

xiii

4.2 Mainstream AI and game AI . 62

4.2.1 Expert systems and production systems 62

4.2.2 Artificial life . 66

4.2.3 Finite state machine . 67

4.3 Fuzzy logic . 70

4.3.1 Fussy sets . 71

4.3.2 Defuzzification . 73

4.4 Pathfinding with A* . 74

4.4.1 Terms . 74

4.4.2 The algorithm . 76

4.4.3 Pseudo code for the algorithm 77

4.5 A complete enemy AI agent . 78

4.6 Summary . 78

II Experiment 79

5 Line of sight 81

5.1 Introduction . 81

5.2 Theory . 82

5.2.1 Visual limit . 83

5.2.2 Free sight . 85

5.2.3 Bresenham’s algorithm . 86

5.2.4 Efficiency . 89

5.3 Implementation . 89

5.3.1 One problem . 91

5.3.2 Statistics . 91

5.3.3 Solution . 93

xiv

5.4 Summary . 93

6 Image recognition of the level 95

6.1 Introduction . 95

6.2 Collision detection for making AI agents “see” 96

6.3 Jump over gorges . 96

6.3.1 To know when to jump . 97

6.3.2 To know if it is possible to jump 98

6.3.3 To know how far to jump 99

6.3.4 Summary . 99

6.4 Free jump trajectory . 100

6.4.1 To know if there is jump area is free 100

6.4.2 To know if the trajectory path is free 101

6.5 Jump over objects . 103

6.5.1 To know the obstacle is not too high 105

6.5.2 To know if it is possible to jump over a obstacle 107

6.5.3 To know if the opening is big enough 108

6.6 Triggers on the map . 109

6.6.1 Fixed points on the map . 111

6.7 Summary . 112

7 Pathfinding 113

7.1 Introduction . 113

7.2 Theory . 114

7.2.1 The graph of nodes . 114

7.3 2D platform games need only few nodes 114

7.4 Implementation . 117

7.5 Summary . 118

xv

III Discussion 123

8 Evaluation 125

8.1 Introduction . 125

8.2 Achievements . 126

8.2.1 Line of sight . 126

8.2.2 Image recognition of the level 127

8.2.3 Pathfinding . 128

8.3 Cell phones and palm pilots . 129

8.3.1 Line of sight . 129

8.3.2 Image recognition of the level 130

8.3.3 Pathfinding . 130

8.4 Summary . 130

9 Conclusions 133

9.1 Conclusion . 133

9.1.1 Line of sight . 133

9.1.2 Image recognition of the level 134

9.1.3 Pathfinding . 134

9.2 Problems . 134

9.2.1 Line of sight . 135

9.2.2 Image recognition of the level 135

9.2.3 Pathfinding . 136

10 Plans for Future work 137

10.1 Line of sight . 137

10.2 Image recognition of the level . 138

10.3 Pathfinding . 139

xvi

References 141

IV Appendixes 143

A Line of sight 145

A.1 Bresenham’s algorithm . 146

A.1.1 Code . 146

A.2 Line of sight . 147

A.2.1 Code . 148

A.3 Character on screen . 150

A.3.1 Code . 150

A.4 Collision test . 150

A.4.1 Code . 151

A.5 Free sight . 151

A.5.1 Code . 152

A.6 Simple ground collision . 153

A.6.1 Code . 154

B Image recognition of the level 155

B.1 Reached left edge . 155

B.1.1 Code . 156

B.2 Reached right edge . 156

B.2.1 Code . 156

B.3 Block within jumprange . 157

B.3.1 Code . 157

B.4 Measure gap width . 159

B.4.1 Code . 159

B.5 Free jump area . 160

xvii

B.5.1 Code . 161

B.6 Free jump trajectory . 162

B.6.1 Code . 162

B.7 Block in path . 163

B.7.1 Code . 163

B.8 Obstacle low enough . 164

B.8.1 Code . 164

xviii

List of Figures

1.1 Bubble Bobble, a plattform game released in 1986. The characters

and objects all stand on platform, can move left and right and fall

downward. 2

1.2 Castlevania: Aria of Sorrow, a 2D platform game released 2003.

But the genre have not developed since 1997. 3

2.1 A photograph of a stapler (left) and edges computed from the pho-

tograph (right). 26

2.2 The same stapler as in Figure 2.1 but with the adjacency points

between the lines (left) and the lines of the object known by the AI

drawn out(right). 27

3.1 Super Mario Bros, the first screen scrolling platform game. 34

3.2 Pitfall!, the worlds first platform game. 36

3.3 Ultima Underworld, one of the first real 3D games. 37

3.4 Mario64, a third person perspective game. Notice the reflection of

the little guy hovering on the cloud with the camera in the mirror. . 38

3.5 Guybrush Threepwood from The Secret of Monkey IslandTM. The

rectangle will disappear when it is sprited on the screen. 40

3.6 Wolfenstein 3D, the worlds first First Person Shooter. 45

3.7 The Secret of Monkey IslandTM, a classic point and click game. . . 49

xix

3.8 Dune II: The Battle for Akkaris, the first Realtime Strategy game. . 50

3.9 Gradius, a side scrolling 2D shot’em up game. 52

3.10 Tetris, a simple but popular puzzle game. 56

3.11 Diagram of a main event loop. 58

4.1 The ghosts from Pac-Man. Blinky, Pinky, Inky and Clyde. 61

4.2 A basic production system. 63

4.3 A simple finite state machine for a enemy AI agent. 69

4.4 A fuzzy trapezoid set. 72

4.5 Graph displaying the membership in fuzzy sets of a enemy AI agent

depending on how much health it has. 73

5.1 Blackthorne, released in 1994, a 2D platform game where the ene-

mies only reacted on what they saw. 83

5.2 This picture shows a screenshot of a level with the a character in

the center. 84

5.3 This picture shows the same level as Figure 5.2 but is shows what

would be on the screen if everything were moved a bit to the left. . 85

5.4 Free sight example 1. Two characters on the same screen. 86

5.5 Free sight example 2. Highlighting the area of the screen that is

within the line of sight of the character below the block. 87

5.6 Line Approximations[1]. 88

5.7 Illustration of that several lines can be drawn between two charac-

ters in a game. 90

5.8 Summary of line of sight, the shaded area within the rectangle is

the area of the level that the enemy AI agent can see. 94

6.1 The enemy AI agent standing in front of a gorge. 97

6.2 The enemy AI agent checking the ground in front of it. 97

xx

6.3 The enemy AI agent checking if there is something to stand on

within the distance of how far the enemy AI agent can jump. 98

6.4 The enemy AI agent checking how far it have to jump in order land

on a platform. 99

6.5 Collision detect used by a AI agent in a game. 100

6.6 A scenario where a bock i blocking the jump trajectory of the AI

agent. 101

6.7 The AI agent checking the area that it will jump through over the

gorge. 102

6.8 The AI agent checking the approximate path it will take in the jump

trajectory. 103

6.9 A gorge where it is possible for the enemy AI agent jump over it

even though there it blocks in the large check. 104

6.10 The AI agent and a obstacle with height. 105

6.11 Displaying the path the AI agent will take if it do not predict when

to jump. 106

6.12 The AI agent is checking the path in front of it in case it is a obstacle

in the way. 107

6.13 Path of the AI agent if the jump hade been predicted before it

reached the wall. 108

6.14 A enemy character standing in front of a wall with a opening in it. . 109

6.15 An AI agent and a jump trigger. 110

6.16 An AI agent and a turn left trigger. 111

7.1 A part of a navigation mesh covering a staircase. Each convex

polygon (with an ’X’ in the center) is a node of the navigation

mesh. Courtesy of Paul Tozour and Ion Storm Austin[4]. 115

xxi

7.2 A map in a 2D platform game with the pathfinding nodes marked

as ellipses. 116

7.3 The same map as in Figure 7.2 but with the node indexes and

connections. 119

xxii

List of Tables

3.1 Diagram showing how different genres often and seldom are combined. 43

4.1 The knowledge database for a system expert system 64

4.2 The production rules for a system expert system 64

5.1 Table over the statistics for average time it took to complete a frame

with visible debug lines. 91

5.2 Table over the statistics for the same level as in Table 5.1 but no

lines are drawn. 92

5.3 Table of the average time between frames with the number of object

in the level greatly increased. 92

7.1 The list for node 22 in Figure 7.3. 120

xxiii

Chapter 1

Introduction

F
or a long time computer games with two dimensions, 2D games, were

the only games available and they were made in large scale until

the middle of 1990s when three-dimensional computer games, 3D

games, made their breakthrough. Artificial intelligence in these 2D

computer games was not very advanced because of lack of techniques, hardware and

motivation. There were no scientific papers written about Artificial intelligence

for games in that time. The computers were so slow that too advanced artificial

intelligence would make the game run too slow to be playable. And since computer

games were a relatively new thing and had a small audience compared to today, the

player’s demands on the games were lower, hence, the effort to make the enemies

in the game look smart were not so great.

1.1 Purpose

When the last 2D games were released almost ten years ago the development of

2D games have stood almost still. Particularity AI in 2D platform games has been

left undeveloped and is in need of improvement.

1

2 CHAPTER 1. INTRODUCTION

Figure 1.1: Bubble Bobble, a plattform game released in 1986. The characters
and objects all stand on platform, can move left and right and fall downward.

Even the last of the 2D platform games had very simple AI. With this disser-

tation AI for 2D platform games will give the game makers some of the tools and

techniques needed for making more advanced AI for 2D platform games.

The purpose of this dissertation is to give programmers who plans to make 2D

platform games three techniques that they can use in their games.

1.2 Motivation

When the string “2D platform game AI‘” was searched with google scholar[28], at

the start of the work of this dissertation, it got three hits. None of them contained

useful information. This alone is motivation enough to write a dissertation about

artificial intelligence for 2D platform games. But that reason mainly applies to

hardcore gamers1, so today’s large scale audience will most likely encounter 2D

1People that played 2D games ten years ago and miss their old games.

1.3. LIMITATION 3

Figure 1.2: Castlevania: Aria of Sorrow, a 2D platform game released 2003. But
the genre have not developed since 1997.

games in their cell phoned and/or palm pilots. Although a few new 2D games have

been recently released for GameBoy Advance, like Castlevania: Aria of Sorrow ,

See Figure 1.2, they have been either remakes of old games or have contributed

nothing new to the genre.

1.3 Limitation

To completely describe a working AI system for a 2D platform game that was to be

released today is a too great subject to cover in 20 a points academic dissertation.

The experiment in this dissertation focuses on three techniques that were never

properly implemented when 2D platform games were “the big thing”.

4 CHAPTER 1. INTRODUCTION

1.4 New techniques

Three techniques have been developed for this dissertation to address the following

problems: line of sight, image recognition of the level and pathfinding.

1.4.1 Line of sight

Line of sight is what the enemies can see. In moast games made before the 3D

era, and even in some 3D games, the enemies can see the player the entire time.

Even when there is a wall between them. If a 2D platform game was to be released

today this would be unacceptable which is why this technique is necessary.

The problem is to decide if the enemy can see the player or not. If there is a

wall between the enemy and the player, the enemy should not react to the player.

This is a problem because the enemy is part of the game system and has direct

access to the values of all the variables in the game. Thus knows where the player

is all the time.

1.4.2 Image recognition of the level

In old games the enemies moved only on small places or with extremely simple

patterns. The enemies that moved in large areas were known to jump randomly

and fall down cliffs. In order to make the enemies know what they are doing, a

technique that makes them analyze their surroundings is needed.

The question is: how can the enemies see what is around them? There is no

screen that displays it to them and they have no real eyes that can see what blocks

are displayed and not. They have access to everything in the game, since they are

a part of the game system. But what can they see, and hence, react on? This has

to be solved.

1.5. GOAL 5

1.4.3 Pathfinding

In old games the enemies were often confined to small areas or moved in random

on the map. In newer games the enemies cannot wander the level like confused

rats. They need a technique that makes them less predictable.

Pathfinding is quite advanced in 3D games and only need to be applied to 2D

platform games in order or work. This is not really a problem, it is more of an

obstacle, the theory is there; it only have to implemented in 2D games.

1.5 Goal

In this dissertation the three techniques line of sight, image recognition of the

level and pathfinding will be explained in detail. Line of sight will limit the things

the enemies reacts on to what they see, just like a player only can react to what

is displayed on the screen. Image recognition of the level will make the enemies

dynamic enough to move around large areas of the level without falling down cliffs

and analyze its soundings in a similar way that a human does. Pathfinding will

make the enemies find their way on large levels.

The goal is also to implement as many of the techniques as possible. Of course,

this work is meant to be the programmers reading this dissertation. But for

evaluation purposes it is good to have implemented at least two of the techniques.

Line of sight and image recognition of the level will have higher priority then

pathfinding because they control small scale behavior and pathfinding control large

scale behavior. And small scale behavior is more important.

1.6 Disposition

Part I gives the background information needed for the topics in this dissertation.

6 CHAPTER 1. INTRODUCTION

Chapter 2 gives a introduction to artificial intelligence to provide enough infor-

mation to understand game AI. It is basically summarizing what you would find

in every text book or paper about AI.

Chapter 3 is an introduction to computer games and how games are program-

med. If you are planning to hold a fake lecture2 about games you should read this

chapter.

Chapter 4 is an introduction to the tools and techniques commonly used in

game AI. If you are planing to extend the fake lecture about games to include

game AI you should read this chapter as well.

Part II discusses the three topics that this dissertation tries to improve.

Chapter 5 explains the line of sight technique.

Chapter 6 explains how an enemy can visually analyze the virtual game world.

Chapter 7 explains the pathfinding technique that makes the enemies find their

way along the level and not to get lost.

Part III discusses the results from Part II.

Chapter 8 will describe the main results.

Chapter 9 provides the conclusion, it will describe the problems.

Chapter 10 will describe the plans for future work.

Part IV is the appendix which contains the code for the implemented techni-

ques.

Appendix A is the detailed description and the code for the implementation of

the line of sight technique.

Appendix B is the detailed description and the code for the implementation of

the image recognition of the level technique.

2Fake lecture is a term used by Donald Ross. It means to hold a lecture about a topic you
just learned.

Part I

Background

7

Chapter 2

Introduction to artificial

intelligence

M
aking computers act like humans in a given situation is subject to

a special area in computer science called Artificial intelligence.

This chapter will give an overview to the history of artificial in-

telligence and will cover the very basic theory behind it. It will

explain the basic terms and concepts of artificial intelligence and will give a few

examples, including Deep Blue. At the end of the chapter a small description of

the status of artificial intelligence today will be given.

2.1 What is artificial intelligence?

The purpose of artificial intelligence, AI for short, is to make computers mimic

the human characteristics creativity, self-improvement and language use. But it is

this author’s opinion that it is enough to make a computer function independently

within the context it was designed for.

“American Heritage Dictionarie”[21] described AI as:

9

10 CHAPTER 2. INTRODUCTION TO ARTIFICIAL INTELLIGENCE

The ability of a computer or other machine to perform those activities

that are normally thought to require intelligence.

To define AI is like trying to define computer science, every programmer/sci-

entist will give a unique in depth definition. However they are divided into two

groups, one group defines AI as computers acting and thinking like humans and the

other group defines AI as computers acting and thinking rational. The computer

is said to act rational when it does the “right thing” given what it knows[6]. The

main problem with making computers think is that neuropsychology does not yet

know exactly how we think. And since it is really hard to read each others mind we

cannot know if anybody other then ourselves is thinking. Human consciousness is

an axiom of empistemology. But measuring how computers act in given situations

is much simpler, it is just to observe and compare it to how humans acted in that

situation.

2.1.1 AI agent

A module that uses AI is called an AI agent. The word agent means:

A means by which something is done or caused[24].

This definition of agent can also be applied to any other program but to be

considered an agent the program has to exhibit the behavioral qualities of agent-

hood. Essentially this means perceiving the software environment through sen-

sors and acting on the environment throughout actions and this must be done

autonomously[6].

The AI agent can be the entire system or just one module in the system. There

is nothing that says that one system can have just one AI agent, a system can have

as many AI agents as the designers want it to have.

2.2. HEURISTICS 11

The AI agent simply gets input data and produces output data. It can be one

big process in the entire system or small independent agents acting alone. Deep

Blue, see Section 2.9, was a system with one AI agent occupying the entire system

and enemies in most computer games are examples of a system containing many

small AI agents.

In the book “Artificial Intelligence: A Modern Approach”[6] many different

types of agents that handle AI are described. But they are all AI agents

2.2 Heuristics

The ordinary goal in computer science it to find the optimal algorithm that solves

a given problem. It means that the solution if found in the shortest amount of

time or the optimal solution to a given problem[6].

The word heuristics comes from the Greek word “eureka”. The word eureka

means “I have figured it out” and is most famous from the the incident when

Archimedes figured out buoyancy and ran naked through the city.

Heuristic algorithms are algorithms that do not have the goal to find the best

possible solution or run in the shortest amount of time. Heuristic algorithms find a

solution that is good enough in short enough time[6]. There are however situations

where heuristics will give a very bad result in very long time but these situations

can be avoided in games by good level design.

Heuristics are often used in search algorithms by using a special function called

heuristic function that is used to estimates values[4].

2.3 Weak and strong AI

The field of AI can be divided into two parts, strong AI and weak AI.

12 CHAPTER 2. INTRODUCTION TO ARTIFICIAL INTELLIGENCE

Strong AI are systems that use real reasoning and rationality when making

decisions. Strong AI could be described as computers that act as they have actual

minds or machines that really think[6]. Some claim that emotions and consciences

of itself is required for a computer to have strong AI[3], meaning that they are

aware about their own existence and can figure out new ideas themselves. Strong

AI must also be able to adapt to all new situations. So logically we can assume

that when strong AI has been created the research is done and all AI scientists

can retire. Since when a computer has strong AI, it really thinks. But there is

still a long way to go before we are there.

Weak AI on the other hand are just systems that act like humans in the given

situation. It has been designed for having human capabilities[6]. Weak AI is much

easier to achieve because only the part of the system that is necessary to consider

is the output of the system, as long as the system acts like an human it is not

important if the machine really thinks or not. Weak AI is also defined as the

process of a computer program repeating a algorithm once invented by a human,

in this case the differences between a ordinary computation and weak AI is dim,

in fact, there is no explicit difference defined. A human sorting integers and a

computer sorting integers do a similar thing. But the computer program would

not be defined as a AI system by computer scientists but everybody would agree

that the human needs intelligence to sort.

Since weak AI “gets the job done” all AI systems in the industry are weak AI

systems. Examples of weak AI systems are the speech recognition, parsing and

recognition of natural languages and visual recognition of handwritten text. It

does not really require any intelligence to preform these tasks but you need to

mimic intelligence to do it.

It is arguable if some of these systems really are AI systems but as mentioned

above the definition is dim.

2.4. THE TURING TEST 13

2.4 The Turing test

The Turing test is a way of determining the quality of a AI agent developed

by Alan Turing in 1950. The test is very simple. A test subject is put in an

isolated room with only a computer to communicate with the outside world.[6] The

communication could be text conversation or, more related to this dissertation, the

test subject could play a multiplayer game against an AI Agent. But the original

and most common form of the Turing test is pure text conversation. If the test

subject is unable to determine if he/she interacted with a computer or with a

human or an AI agent the test is considered successful.

Since the Turing test only measures the behavior of the AI agent, it can only

check the quality of weak AI. Passing the Turing test does not mean that the AI

agent has strong AI

2.4.1 The history of the Turing test

The test was inspired by a party game known as the “Imitation Game”, in which

a man and a woman go into separate rooms, and guests try to tell them apart by

writing a series of questions and reading the typewritten answers sent back. In

this game, both the man and the woman aim to convince the guests that they are

the woman[22].

Turing originally proposed the test in order to replace the emotionally charged

and for him meaningless question “Can machines think?” with a more well-defined

one[22].

One interesting part of his proposed test was that the answers in conversation

would have to be delivered at controlled intervals and rates. He believed that

this was necessary to prevent the observer drawing a conclusion based on the fact

the computer potentially would answer so much faster than the human operator,

14 CHAPTER 2. INTRODUCTION TO ARTIFICIAL INTELLIGENCE

especially on mathematical questions[22].

2.4.2 Objections to the Turing test

There have been many objections to the Turing test during the years. But fortu-

nately Allan Turing had foreseen many of them and gave answers to them in the

original article. Here are some of the replies he gave to the objections[27].

Mathematical Objections

This objection uses mathematical theorems, such as Gödel’s incompleteness theorem[23],

to show that there are limits to what questions a computer system based on logic

can answer. Turing suggests that humans are too often wrong themselves and

pleased at the fallibility of a machine[27].

Argument From Consciousness

This argument, suggested by Professor Jefferson Lister states:

Not until a machine can write a sonnet or compose a concerto because

of thoughts and emotions felt, and not by the chance fall of symbols,

could we agree that machine equals brain.

Turing replies by saying that we have no way of knowing that any individual

other than ourselves experiences emotions, and that therefore we should accept

the test[27].

Lady Lovelace Objection

One of the most famous objections, it states that computers are incapable of

originality. Turing replies that computers could still surprise humans, in particular

where the consequences of different facts are not immediately recognizable[27].

2.5. THE FOUNDATION OF ARTIFICIAL INTELLIGENCE 15

This objection was inspired by Ada Lovelace’s notes about Babbage’s differential

engine.

Informality of Behavior

This argument states that any system governed by laws will be predictable and

therefore not truly intelligent. Turing replies by stating that this is confusing laws

of behaviour with general rules of conduct[27].

2.5 The Foundation of artificial intelligence

The foundation of artificial intelligence is a very broad base. It uses logic, mathe-

matics, economy, statistics and psychology. This section will present a overview

of the basics needed.

2.5.1 Philosophy

The basic techniques used to create artificial intelligence can be traced back to the

ancient Greek times[6]. To be specific it is Aristotelian principles and laws of logic

that is still used in todays applications. One more important concept is Boolean

algebra developed in the mid 19th century by George Boolean at the University

College Cork in England. The logic laws of Aristotle and Boolean algebra can be

used to simulate human behavior to some extent.

The very first algorithm in the world was Euclid’s algorithm for finding the

greatest common denominator[6]. This was the first mechanical way of calculation

something without the need to think at all. It is the same principle that is used

to create weak AI today[6]. Algorithms repeat a problem solution figured out by

a human earlier.

16 CHAPTER 2. INTRODUCTION TO ARTIFICIAL INTELLIGENCE

2.5.2 Mathematics

The idea of logic in AI can be traced back to the ancient Greeks but mathemati-

cally the development begun with the work of George Boyle who worked out the

details of Boolean logic. Gottlob Frege extended Bool’s logic to include objects

and relations, creating the first-order logic that is used today as the most basic

knowledge representation[6].

Another fundamental of artificial intelligence is to make computers make the

most economic decision. Meaning that AI agents should make the decision that

the greatest payoff for energy spent or the most efficient choice. The idea is very

simple. Make an AI agent that maximize payoff. It can be buying and selling stuff

but can also be the energy use of a transportation, for example the transportation

route of a mail1

Another aspect of making AI that is economic is to make an AI agent that

makes decisions that are good enough instead of making the optimal decision every

time. Comparable to realtime systems when a approximative value fast is better

then a exact value later. Similar to that are decisions that are “good enough”

made by an AI agent is the behavior more like a human decision than the optimal

performance. Because humans do not always make the optimal decision.

2.5.3 Neuropsychology

However one problem that still is apparent with today’s computers is that human

brains and computers function fundamentally different. A CPU is 1,000,000 times

faster then a human brain in raw switching speed but the human brain is 100,000

times faster at what it does. A human brain contains 1000 times more neurons

then a CPU has logic gates and the brain uses all neurons at the same time and a

CPU uses only 8-128 logic gates at a time depending on the environment. Scientists

1Not the electronic type.

2.6. THE HISTORY OF ARTIFICIAL INTELLIGENCE 17

predict that we will have computers that can match a human brain in performance

and speed in 2020[6].

Reflexes on the other hand fall under a subcategory of weak AI and are much

easier to make then thinking. Imagine that you accidentally put you hand on

a hot plate then you will pull you hand away before you feel the pain from the

burning. This kind of behavior is easier to imitate with computers then real

rational thinking.

2.5.4 Control theory

The goal of control theory using AI is to make computers behave optimal[6].

A thermostat is an intelligent component that reads the surrounding and changes

its state. But a thermostat cannot plan its actions, therefore it has no artificial

intelligence, but it gets the same result that a human sitting with a switch adjusting

the temperature to its liking would do.

2.6 The history of Artificial Intelligence

This section will give a summary of the history of the artificial intelligence. It will

not go deep into the details of the history, for that see “Artificial Intelligence: a

modern Approach”[6].

2.6.1 The birth

The official birthplace of AI was Dartmouth Collage in the USA[6]. There the

computer scientists John McCarthy, Marvin Minsky, Claude Shannon and Natha-

niel Rochester started a workshop including themselves, Trenchard More, Arthur

Samuel,Ray Solomonoff, Oliver Selfridge, Allen Newell and Herbert Simon. Their

purpose with the workshop was to do research about automata theory and neural

18 CHAPTER 2. INTRODUCTION TO ARTIFICIAL INTELLIGENCE

nets. The Dartmouth Workshop lasted for two months in the summer of 1956

and did not accomplish anything of significance except to adopt the term artificial

intelligence[6].

During the last years of the fifties and the sixties a lot of relative big steps

forward were taken[6]. One of the major once was the general problem solver, or

GPS, that were first to imitate human behavior to solve simple board games and

puzzles. In its limited way of solving problems it could still make predictions of

possible outcomes and choose its actions[6].

2.6.2 The first AI agents

In 1958 McCarthy published a paper describing a hypothetical program, Active

Talker, that used knowledge to find solutions to problems. The program was

designed so that it could add more knowledge to its database during execution,

which meant that it could learn and make depositions it was not programmed

for[6].

Arthur Samuel wrote a checkers program that could learn as it played and

soon became better at playing then its creator. The program was displayed on

TV in 1956.[6] Checkers is, by the way, one of the few problems that have been

absolutely solved meaning that the program will win if it is possible to win in a

given situation[13].

In 1963 James Slagle made the program SAINT that could solve first order

closed-form calculus. In 1967 Daniel Bobrow made the program STUDENT that

could parse natural English, interpret the problem and give a correct solution. In

1968 Tom Evan made the program ANALOGY that could analyze geometrical

shapes and solve visual problems. In 1973 all these techniques were combined

by several other scientists to make the program SHRDLU which could play with

colored blocks and solve problems at an infants level[6].

2.6. THE HISTORY OF ARTIFICIAL INTELLIGENCE 19

2.6.3 Setback

The early success soon proved to be a disappointment. The simple problems that

had been solved in the beginning were only possible to solve in their closed systems

and not usable in outside the contexts for which they were designed. One funny

example was when the American military funded a project which should make a

electronic translator from Russian to English. A test run of the program resulted

in the sentence “the spirit is willing but the flesh is weak” translated from English

to Russian and back again to “the vodka if good but the meat is rotten”[6]2.

For example, if a human is to misinterpret the expression “pissed”, which means

different things on different sides of the Atlantic3, it is considered funny but when

a computer does it it is considered stupid.

2.6.4 Knowledge based systems

The next real step forward came with the program DENDRAL witch separated

the knowledge from the the production rules used. What DENDRAL did was

to analyze spectral lines from molecules bombarded with electrons. DENDRAL

was important because it used a large number of special case rules which know-

ledge could be added later, see Section 4.2.1. DENDRAL was actually a system

implementing the principle described in McCarthy’s program Active Talker. The

technique was compared to a cook following the recipes in a cookbook because

many courses are cooked the same way but they have different ingredients and the

same ingredients can make different courses[6].

This technique was applied in the medical computer MYCIN that analyzed

blood infections and gave a diagnose. The results this expert system produced

was above the level of junior doctors. MYCIN used a technique called certainty

2After this the military funding to the project was cut.
3In Great Britain pissed means drunk and in north America pissed means angry.

20 CHAPTER 2. INTRODUCTION TO ARTIFICIAL INTELLIGENCE

factors for calculating which was an attempt to imitate the way the doctors make

decisions[6].

The first AI system that was used in commercial industry with success was an

expert system called R1. It was used for helping to configure complete computer

systems. It was developed in 1980 an it saved the Digital Equipment Corporation

$40 million a year[6] by 1986. In Japan in 1981 a ten year plan for creating

intelligent computers was made. The project was called Fifth Generation and the

purpose was to, within a period of ten years create a computer that could actually

think[6]. This was of course immediately followed by similar plans from the Unites

States and Great Britain.

2.6.5 The AI winter

In the period of 1980 - 1988, AI was a big part of the computer industry. But

when they failed to deliver what was promised many companies went bankrupt.

This period was called the AI winter[6].

In later years it has become more common to create real working AI systems

rather then making new theories. The reason for this was partly because of the

failure with strong AI during the AI winter. The effort to make weak AI became

more attracting since computer systems do not need to think like a human to do

whatever it was meant to do as long as they did it successfully[6].

In the middle of the 1980s, the research of neural networks begun anew and is

still an area where much of the scientific effort is put[6].

2.6.6 AI becomes a science

It was in the time after the AI winter that people learned that it is time to

start using scientific methods in the research. One of the reasons that so many

unrealistic promises were made in the early 1980 was that the AI industry had not

2.7. AI TODAY 21

analyzed their premisses in a scientific way. They had just set out to create strong

AI without knowing what algorithm to use. Now hypothesizes must be analyzed,

tested with rigorous empirical experiments and the data must be evaluated before

the hypothesis will be accepted as scientific[6].

Speech recognition illustrates this process. It started in the 1970s as ad hoc

with more or less trial and error. Speech recognition survived the AI winter and

has today become common in many applications. It was because of the use of the

Hidden Markow models (HMM), which is a combination of mathematics and lots

of empirical data in the field of speech recognition. The related field of recognizing

handwritten text has developed in a similar from ad hoc to science in a period of

20 years[6].

2.7 AI today

Today AI is a big industry. There are AI agents planning everything from train

routes to space travel, monitoring everything from automatic greenhouses to che-

mical experiments. There for example is an AI system called ALVINN that can

steer a car[6]. It used image recognition to keep the car on the road and to avoid

accidents. ALVINN controlled a minivan for 98% of the time on 4590 km of road

across the United States. We have lots of diagnostics systems using probabilistic

calculations to help doctors make decisions about how to treat patients in hospi-

tals. As well as expert diagnostic systems, robotics are used in hospitals to help

doctors preform critical surgery. And of course in the manufacturing industry

there has been robots helping to make just about everything for the last decades.

In language understanding almost every text processor has built in spell checking

and grammatical checking, this paper was written in one of those.

These topics are called mainstream AI. Which is different from game AI,

22 CHAPTER 2. INTRODUCTION TO ARTIFICIAL INTELLIGENCE

which this dissertation is about.

2.7.1 Robotics

Robotics is the manipulation of physical objects which not necessarily have to

be guided with an AI agent but the things that come to most peoples minds when

they hear the word robot is AI. In hospitals doctors are assisted i surgery with

robot arms that are only partly controlled by an AI agent. The robots in car

factories on the other hand are entirely controlled by an AI agent.

2.7.2 Spam filters

Many e-mail services offers a spam filter service which makes a scan of all incoming

e-mail and sort the ones that are believed to be spam in a special folder. An AI

agent reads all incoming mail and recognize the common used phrases in the mails

marked as spam by the user. The AI agent learns more and more and becomes

better and better at recognizing spam each time the user marks a letter as spam.

This of course requires the user to actively teach the AI agent what mails are

spam.

This technique is called Bayesian filtering because it uses an improved version

of the theorem presented by the British mathematician Thomas Bayes.

2.7.3 Virus scanners

Virus scanners can use a similar technique that spam filters use to recognize the

patterns of new unknown viruses. But of course the paranoia level needs to be

higher with virus scans than with e-mail scans.

2.8. IMAGE RECOGNITION 23

2.7.4 Security agents

An AI agent that handles network security could for example recognize when

someone, meaning one IP address, repeatedly try to log in to an account and stop

responding to that address because it could be someone that is trying to crack a

password using brute-force.

A security agent could also gather statistics about what the user does when

logged in. It could store the most common used application for each user4 and

react when a user does something out of the ordinary. This would be a security

expert system.

2.8 Image recognition

Image recognition, object recognition or computer vision are synonyms for

the way AI agent gather information about the outside world. The term perception

is used when more factors then visual input is used. In the industry this is used

quite a lot in the manufacturing industry to make the robots put the parts in

the right place. But in this dissertation the term image recognition will be used

because the AI agents in a 2D game only needs to recognize two dimensional

images.

2.8.1 Introduction

The first thing needed in order use image recognition is in fact an image. When it

is in robotics or industrial machines the image is gained by using a camera. The

result of that is a picture made up of pixels or raster graphics, that is, a picture

made up by a finite number of squares. This is the image itself that shall be

interpreted.

4This is a little 1984 warning[?, GOrwell84]

24 CHAPTER 2. INTRODUCTION TO ARTIFICIAL INTELLIGENCE

With, for example, a robot walking on Mars every single detail in the image

is needed to be recognized and analyzed. But an industrial robot that only works

within a given context in an specific environment only parts of the image needs

to be scanned and analyzed, for example a robot that places the engine in a car

on a conveyer belt needs only to know the position of the car in order to place

the engine and the position can be gained by recognizing the corners of the car

and from the position of the corners the place that the engine shall be placed in

calculated from pre programmed knowledge.

2.8.2 Reading a image

Reading a pixeled image and transforming it into mathematical formulas that is

usable for an AI agent is a complicated task. Begin with thinking that a computer

animated frame for motion picture takes several hours to render from mathematical

formulas into raster graphics. Lets call this function that transforms mathematical

formulas into an image

image = f(math)

where f is the function that renders the image. Then consider the facts that a

opposite operation of creating mathematical formulas of an image,

math = f−1(image)

, is more complicated and in order to work well in needed to be done in realtime.

Further, function f−1() is not really an inverse of the function f() because all the

depth of the image is lost. Of course this can be partly recovered with the use

of stereoscopic vision, but that is a chapter of its own. Furthermore an image

recognition agent cannot tell the difference between a large poster of a car and an

actual car[6].

2.8. IMAGE RECOGNITION 25

This is somewhat related to the fact that mirages in the dessert may look like

lakes. It is objectively true that, under certain circumstances, a mirage in the

dessert give our eyes the exact same information that an actual lake would. In

that context we have to use our mind and figure out if it is a lake or an mirage.

In similar ways an AI agent have to use its knowledge database calculate the

probability of what is see really is the most common thing. Overall in the world

the image of a lake is most likely a lake but in the dessert the image of a lake is

most likely a mirage. Just like a human the AI agent have to know its context

otherwise a lot of stupid decisions can de done.

2.8.3 Transforming the image into data

The technique for transforming raster graphics into data described in “Artificial

Intelligence: A modern Approach”[6] is done by first stripping the image from all

color into a greyscale image. Then the image read pixelline by pixelline in search

for great contrast changes. When a great change in contrast is found it means that

there is an edge on that position in the image and it is noted by placing a pixel

on that position. By repeating this for every pixelline in the image, lines will be

drawn at the edges of the objects in the image. These pixels will form the edge

lines which the AI agent later will interpret.

Figure 2.1 is taken from “Artificial Intelligence: A modern Approach”[6] and

it illustrates how an image is transformed from raster graphics to lines by finding

the contrast changes and drawing edge lines at the edges of the objects in the

picture. In the right picture there are black dots which should not be there. These

are “noise” edges caused by disturbance in the photograph. This can be solved by

a smoothing algorithm that recalculates the brightness of each pixel by the mean

value of its neighboring pixels. If a smoothing algorithm had been done on the

photograph before it was scanned for edges, the noise edges would disappear[6].

26 CHAPTER 2. INTRODUCTION TO ARTIFICIAL INTELLIGENCE

Figure 2.1: A photograph of a stapler (left) and edges computed from the photo-
graph (right).

2.8.4 Recognizing objects

The next step is to identify the corners of the object by finding the adjacency

points between the edges. Figure 2.2 shows the adjacency points from the stapler

in Figure 2.1, Figure 2.2 was also taken from “Artificial Intelligence: A Modern

Approach”[6]. The reasons for drawing edges for finding the adjacency points

instead of using the pixeled image directly is one: Data reduction, there is a lot

fewer lines then pixels on the image and two: Illumination indifference, the edges

will with a good algorithm appear at the same coordinates on the image no matter

the lighting circumstances[6].

These lines are abstractions of the image and abstractions is the computer

science method of creating concepts and the purpose of concepts is: “...to reduce

a vast amount of information to a minimal number of units.”[14].

As soon as the adjacency points of an object in an image is known the remaining

problem is to identify what it is. This is done by a form of parsing of the points

of the object and comparing it to the points of the objects in the object/image

recognition AI agents knowledge database. If the object was always viewed from

2.8. IMAGE RECOGNITION 27

Figure 2.2: The same stapler as in Figure 2.1 but with the adjacency points
between the lines (left) and the lines of the object known by the AI drawn
out(right).

the same angle the search algorithm for finding the points are rather simple, for

example a fingerprint search technique always use the same kind os image, a perfect

print of pattern of the fingertips.

But since the AI agents sees the object from an unknown angle, in the case of

a robot using a camera, and it is possible to see a object from any angle in the

real world the AI agent has to test every single possible angle on the object in its

database before it can identify what kind of object it is looking at. Imagine it like

the AI agent is rotating the object in its memory until it find one with adjacency

points exactly like the object in image. There is quite a lot of combinations possible

even after the object type in known.

The worst case scenario for visual object recognition is

O
(
M4N3 log N

)
according to an algorithm presentend in“Artificial Intelligence: A Modern Appro-

ach”[6]. Where M is the number of models in the knowledge database and N is

28 CHAPTER 2. INTRODUCTION TO ARTIFICIAL INTELLIGENCE

the number of points in the object.

But of course, in a 2D computer game the picture is already known and the

problem with getting the image is not there. And no objets in the game are neces-

sary to really identify because all objects are part of the game system so the object

recognition recognition problem is not present to begin with in a game. What is

left is knowing positions relative to the AI agent in the game. In summation; in

games it is possible for the programmers and designers to cheat around real AI

problems.

2.9 Deep Blue

Deep blue was the first computer ever to defeat a human world champion in chess.

It won over Garry Kasparov, witch was at the time the world champion in chess,

in a series of games in 1997 with the score 3.5 - 2.5 to Deep Blue. Deep Blue had

actually lost the first series of games against Kasparov in 1996 but was upgraded in

between the games. The interesting thing about the first series of games was that

Kasparov lost the very first game but managed to learn how the computer played

and defeated it. But after the upgrade the computer knew how to play against

Kasparow and won. Kasparow was very angry for loosing and demanded rematch

but IBM, that had made Beep Blue, declined. He accused IBM for designing Deep

Blue for the sole purpose or defeating him and that it would stand very little

chance against other world class chess players. IBM retired Deep Blue since the

value of all IBM stock had increased by $18 Billion in total and Deep Blue had

furfilled its purpose.

Deep Blue was a state of the art AI agent using a 30 node RS/6000 system

with 480 additional special purpose VLSI chess processors. The program itself was

written in C and run on the AIX operating system witch was a version of UNIX.

2.10. SUMMARY 29

The complete system was capable of performing 100 million position evaluations

per sec ond[29]5.

2.10 Summary

Artificial intelligence is a special field of computer science that actinally was one

of the earliest ideas in the field but did not really gain success in the industry until

recently. A lot of money was invested in projects that had unrealistic goals and

the disappointments were great when the promises were not made and AI suffered

great setback.

AI has its base in over two thousand year old philosophy, modern day mathe-

matics and psychology.

AI can be used literally to anything that we want to use it as because it is such

a broad and useful field of computer science. And in recent years it have exploded

because so many new scientists have chosen AI as their field. It is one of the most

popular fields that other scientist wished they were in if they where not already

involved deeply in other fealds[6].

5Remember that this was in 1996.

Chapter 3

Introduction to game

programming

G
ames have in later years become a large industry but game program-

ming have not yet become common in academic teachings. Many

academics have even missed the boom entirely. Therefore this chap-

ter will give an introduction to computer games to a reader who has

no knowledge or experience of games.

The first section is about the three different kind of game hardware platforms

and the differences between them. The next section explains the difference about

two dimensional graphics and three dimensional graphics. That section also inclu-

des a little history. Following is a listing of the terminology needed for program-

ming games and some of what is used only when games are played. Next follows

descriptions of the most common game genres. The description of game genres

are only stereotypical, there is a lot of games that do not fit into any category or

is a combination of many genres. Then follows a section about game application

programming interfaces. And the last section is an introduction to how games

could be programmed.

31

32 CHAPTER 3. INTRODUCTION TO GAME PROGRAMMING

3.1 Game platforms

Computer games come in many different formats and genres that go by different

names but it is in essence always a computer in one shape or another. Many diffe-

rent words can describe the same thing for example does the words console game,

video game and most common in Swedish “TV-spel” all describe the same plat-

form. Games on the same platform may be very different from each other. These

terms may be new to some but is crystal clear to a player or game programmer.

This subsection will describe these platforms from the players point of view. From

a programmers point of view; all game plattforms are computer games.

3.1.1 Arcade games

Arcade games were the most common form of computer games in the 70s and

first half of the 80s. These games were the big coin activated game machines that

was put in shopping malls that parents dropped their kids off at, with some coins,

and the parents could do the boring shopping and the kids would be happy. A

arcade game is a special computer with a ROM memory containing only the game.

All arcade and has a built in screen for displaying the game and a input device in

form of a joystick, searing wheel or mouse ball and often one or more buttons. In

order to play these games you have to insert a coin and you get a number of credits,

the number of chances you get in the game before you have to insert another coin

in order to continue, when you fail in the game you lose a credit and when you

have no credits left you cannot play any more.

Classic arcade games include Pac-Man, Donkey Kong , Galaxian, Space Inva-

ders , Streep Figther II , Defender and Bombjack .

To play arcade games could become very expensive so in the 80s arcade games

became less popular because of cheeper game consoles, with comparable hardware

3.1. GAME PLATFORMS 33

capacity to arcade games, become available. Since arcade games could be very big

and expensive, the hardware for each game could be custom made which resulted

in superior graphics and sound compared to game consoles and home computers

at the time. Somtimes entire stores at malls are devotet to arcade games these

special halls contanining nothing but arcade games are called arcade halls.

3.1.2 Console games

Console games are mostly called video games or in Swedish TV-spel but the

correct term is console game. A game console, video game console or in Swe-

dish TV-spelskonsoll, is a computer specially designed for playing games. The

games themselves for a game console are stored on cartridges or compact discs.

Cartridges were used from the start of the home console industry up to Nintendos

console Nintendo64 which was the last console to use cartridges. The first success-

ful console that used compact discs were Sonys Playstation. The advantages of

cartridges is that the cartridges contain hardware which makes it possible to up-

grade the graphics and sound of a game, which goes beyond the consoles original

capacity and that it is possible to save game data on the cartridges themselves

which is not possible on compact discs. The advantages of compact discs is that is

is easier to make consols backwards compatible with old games and it is cheaper

to make compact discs then to make cartridges.

Console games is the most common form of game platform. Mainly because

consoles are purely designed for playing games which makes the consoles much

cheaper than a computer. Microsoft’s console X-Box costs about 1’500 SEK, when

this was written, compared to a personal computer witch costs about 10’000 SEK.

And if the computer shall be considered good the price rises to about 20’000.

Besides, consoles are more user friendly than ordinary computers. All that is

necessary to do in order to play a console game is to insert a game in the console

34 CHAPTER 3. INTRODUCTION TO GAME PROGRAMMING

Figure 3.1: Super Mario Bros, the first screen scrolling platform game.

and push the power button. No installation in necessary in order to play on a

game console, all you need to do is connect the console to the television.

The leading console in the market today is Nintendo’s Gamecube, Sony’s Plays-

tation 2 and Microsoft’s X-Box. SEGA used to be a big competitor on the console

market but since their Dreamcast console failed miserably SEGA became a third

party manufacturer. A third party manufacturer is a company that only make

the games themself, or just the software.

Hand held game consoles are included in the category console games. A hand

held game console is a game console small enough to be hold in ones’ hands.

Nintendo’s Gameboy is by far the leading hand held console1.

3.1.3 Computer games

Computer games are games that are played on a personal computer. There is

nothing special about game applications compared to ordinary application except

that the game is for entertainment purposes. The disadvantages of computer ga-

1This was written in February 2005. By the time this dissertation is finished Sony’s hand
held console, Playstation Portable PSP, will be launched in Europe

3.2. 2D AND 3D GAMES 35

mes is that computers is expensive compared to game consoles and that computer

games need installation and sometimes special drivers for the computer hardware.

But the advantage is that there is no need to pay a licence to the hardware manu-

facturer when you release a computer game. Since the purpose of a computer is

that you is suppose to do whatever you want with it it is much easier to make your

own computer games compared to what it is to make a game for a game console.

The usual problems with viruses, spyware and other security issues are apparent

with comperes but that have nothing special to do whit the games themselves.

Except maybe when a trojan in built in to a freeware game, but security is not

the topic of this dissertation.

3.2 2D and 3D games

In the beginning of time2 all graphical computer games were flat two dimensional

games. In 2D games the graphics in the game is displayed in two dimensional

pictures or is drawn with vectors in a two dimensional plane. The best selling 2D

game ever is Nintendo’s Super Mario Bros released in 1986[30], see Figure 3.1.

This game spawned the popularity for 2D platform games. Super Mario Bros was

not the first platform game. The very first platform game ever[19] was Pitfall!

released in 1982, se Figure 3.2. But Super Mario Bros was the first 2D platform

game that scrolled the screen. In Pitfall! the player moved between one static

screen at a time, so Super Mario Bros is still refereed to as the grandfather of

platform games in most cases. Even though it is technically wrong.

Super Mario Bros is the classical stereotype of a computer game. It used

cartoonish graphics with a simple gameplay made it the the best selling game in

the world for years to come. Two dimensional games were in total domination of

2Viewed from the perspective of computer games this is 1962 when Spacewar was created on
the supercomputer PDP1 om MIT.

36 CHAPTER 3. INTRODUCTION TO GAME PROGRAMMING

Figure 3.2: Pitfall!, the worlds first platform game.

the market until in the middle of the 1990s. This were because computers were

much slower in the commercial market then and 3D were only a tool in architecture,

simulation and in some extent motion pictures.

The characteristics of a 2D game, except the graphics, is that the main charac-

ter or objects can only move in two dimensions, just like chess. All board games

are 2D games, if you would make a graph of the board. But in a 2D computer

game the board is the screen and it is often a game of very different characteristics

than a board game.

In a 3D game, the graphics are not in still pictures but are made up of

vectors on the screen rendered in realtime while the game is running. The simplest

geometric shape using straight lines i a triangle. So all 3D computer graphics are

made up of triangles linked together to make bigger shapes, like squares, spheres

and other polygons. The surface on the polygons can be monochrome or have a

picture attached on it. The view in a 3D game is not fixed like in a 2D game but

dynamic due to that the graphics is rendered in realtime during the execution of

the game. Therefore it is possible to change the view in the game by moving the

3.2. 2D AND 3D GAMES 37

Figure 3.3: Ultima Underworld, one of the first real 3D games.

camera. This feature adds simplicity in adding the feeling reality to the game. In

a motion picture the effect of moving the camera add to the drama in the movie,

the same principles can be applied in a 3D computer game.

The first game that used 3D graphics was Ultima Underworld , see Figure 3.3

released in 1991 by Looking Glass Studios. Ultima Underworld was the start of the

first person perspective in computer games3. Later 3D games started to use

third person perspective, which means that the view the player has is outside

of the main character just like if it had a small camera was hovering behind the

main character. In Mario64, released in 1996, it was possible to see the camera in

the mirrors in the game, see Figure 3.4.

There are some hybrids between 2D and 3D games. Snake Rattle Roll was a 2D

game graphicly but was 3D in the gameplay. Which could cause some confusion

in some places of the game. Dungeon Sedge was 3D in graphics only, the player

could only move two dimensions. This was a 2D game in the gameplay with a

3Some games had used first person perspective but only with still pictures.

38 CHAPTER 3. INTRODUCTION TO GAME PROGRAMMING

Figure 3.4: Mario64, a third person perspective game. Notice the reflection of the
little guy hovering on the cloud with the camera in the mirror.

3D wrapper so to say.

3.3 Terminology

This section will state and describe the terms used in this dissertation. Since

this is a dissertation about 2D games only the terms used i 2D games and game

programming will be mentioned.

Computer game

This term will be used for games on personal computers, video game consoles,

arcade games and other. Since there is no difference from the developers side one

term will be used for games for all kinds of platforms4 Throughout this dissertation.

Game engine

The game engine is the core of every computer game. It handles the backend in-

formation and calculation like the graphics, physics, sound, input/output, network

4In this context platforms means operating system or game console

3.3. TERMINOLOGY 39

if it is a multiplayer game and all other technologies needed to execute the game.

All game engines have a kernel just like an operating system.

Player

The player is the user of the game application. The player is the human sitting in

front of the computer or TV playing the game. In most cases the game has only

one player but many games have the option to have several players who compete

or cooperate in the game. Another word commonly used as a synonym for player

is gamer.

Enemy

Enemies are agents in the game that use AI in one form of another and are hostile

to the player. There may be characters in the game that are not hostile to the

player but enemies are by far the most common.

Hitpoints

Hitpoints is a unit used to measure the health of the characters in the game and

is in some cases just called health. It is measured from zero to a set maximum

level. It is common to represent hitpoints in the form of percent, that is, the

maximum amount of hitpoints is 100

The player and the different kind of enemies often have a different amount

of hitpoints to make the enemies tougher the the player. Each time a successful

attack damages a character the character looses some of its hitpoints and when the

characters hitpoints reaches zero the character either dies or loses consciousness.

Almost all new games use hitpoints or a variety of hitpoints. Games that do

not use hitpoints today are rare.

40 CHAPTER 3. INTRODUCTION TO GAME PROGRAMMING

Figure 3.5: Guybrush Threepwood from The Secret of Monkey IslandTM. The
rectangle will disappear when it is sprited on the screen.

Bitmap

Bitmaps are the simplest form of computer graphics, raster graphics. It is

simply a two dimensional matrix of integers representing a color.

Sprite

Sprites are the graphical objects that are visible on the screen. They may or may

not move on the screen. The technique of animating a sprite is exactly the same

as then one that is used in cartoons. One motionless image is quickly changed to

another. Since the average frame only lasts for about 1/40 of a second the many

changes of images on the sprite will animate the sprite.

One important characteristic of sprites is that some of the pixels on the bitmap

are transparent when drawn on the screen so that every sprite looks like it was

drawn directly on the picture used as background. This way one of the colors on

the smaller bitmap disappears and the character or item is perfectly integrated on

the background. In Figure 3.7 the rectangle around the character, see Figure 3.5,

disappear and is not seen on the picture.

There is no theoretical limit for how many sprites can be visible on the screen

at the same time except system memory.

3.3. TERMINOLOGY 41

Frame

A frame in computer game programming can refer to two things depending on

the context.

First a frame is the bitmap image displayed on the screen for about 1/40 of a

second. When it is said that the screen has a frame rate of 40 fps5 it means that

the game updates the screen 40 times per second, or has 40 Hz.

A sprite also has a frames. This is the bitmaps that is changed on the sprite

when a frame on the screen is updated to make the animation. Just like the ani-

mations in a cartoon is made by the rapidly changing images the rapidly changing

sprites make the objects move in a game.

Input

The input are the signals the game gets from the player using the computer hard-

ware. This include gamepad, joystick, keyboard, mouse and all subcategories

to these devices. The input is interpreted and used by the game engine once

every frame. Even though there are many input signals the word input is used in

singular.

Stage

A stage is a closed part of a game. When a player is on a stage the player have

do finish a goal of some kind. It is often just to move from one point A to B. So

when the player finish stage 1 the game continues on stage 2 and so on.

Level

A level is sometimes called map or landscape. A level is a area in the virtual world

that the player can move around on. It contains all the sprites that the player can

5Frames Per Second

42 CHAPTER 3. INTRODUCTION TO GAME PROGRAMMING

interact with, including the enemies. In programming the term is used describe

the map of the game.

Another thing the word level is used for is in the context of difficulty level. The

higher the difficulty level the harder it is to play the game.

Level can also mean experience level. More of this follows in the Role Playing

Game section.

The word level is sometimes used as a synonym for stage.

Blocks

The blocks are the terrain objects in the level that the player can walk, jump,

climb, crawl on and in other ways interact with. They can come in the chapes of

platforms6, floors, walls, ceilings, ground and many more. The term for block wary

from context to context but in the data structure in the backbone implementation

they are all the same type. The term used in this dissertation will wary depending

on the context where it is used.

In a 2D game each block has at least one sprite or more if the block is animated.

In 3D game a platform is a geometrical shape made of vectors.

Lagging

In gaming terms lagging means that the time between frames is increased resulting

in that the game runs slower then it is suppose to. The causes can be a slow

computer or slow network connection.

6In this context platform means a object in the game that the player can jump on

3.4. GAME GENRES 43

Table 3.1: Diagram showing how different genres often and seldom are combined.

3.4 Game Genres

Most games fit into a category or genres. This section will give a introduction

to some of the most common. Although most games fall in one of these genres

some games combine elements from two or more genres. As seen from Table 3.1;

first person shooters can have role play game elements but a first person shooters

cannot be combined with a platform game, then it will no longer be a first persons

shooter by definition. Table 3.1 shows how these genres can be combined. A check

sign means that the genres can be combined and an X means that the cannot be

combined. This picture is not an absolute truth about genres, it merely shows

common combinations of genres.

3.4.1 Platform games

A 2D platform game is a game where the player sees the game from one side,

see Figure 3.1 and Figure 3.2. The challenge in a platform game is to jump on

different platforms, over gorges and get past obstacles. The control in a platform

game is very simple, the player use one button each to move left and right and one

44 CHAPTER 3. INTRODUCTION TO GAME PROGRAMMING

to jump7 and in most cases one button to use a weapon of some kind. When the

player pushes the move right button the main character moves right on the screen

and when the player pushes the move left button the main character turns around

and moves left and when the jump button is pushed the main character jumps.

Platform games were the most popular game genre for about ten years spaw-

ning a lot of games witch vary in quality from masterpieces that still sell, like

Castlevania: Symphony of the Night , to complete crap that newer got of the shel-

ves. The popularity of platform games in the early days of the really big industry

made a lot of people associate computer games with 2D platform games during

the 2D era.

When 3D became a standard in games there were few 3D platform games but

3D platform games started to arise in the later half of the 1990s with the game

consoles Sony Playstation and Nintendo64.

For some reason not so many platform games for computers have been released.

They have been released almost exclusive for consoles and arcade games and nearly

no platform games have been realest on arcade for the latest ten years.

3.4.2 First Person Shooter games

First Person Shooter games, FPS for short, games are viewed from the eyes

of the main character. The game is controlled by changing the direction the

character is looking and walking forwards, backward and strafing from side to

side. The weapons used are fired directly forward in the direction the player is

looking/aming. Nowadays the most common way to look in different direction

in a FPS game is to use the mouse and the keys on the keyboard or the mouse

buttons are used to move in the level. The goal in the most simple FPS games is

7There exceptions, in some platform games there the main character cannot jump, like in
Bionic Commando, but those are rare.

3.4. GAME GENRES 45

Figure 3.6: Wolfenstein 3D, the worlds first First Person Shooter.

to get from one point to another and it will be enemies in between that the player

has to kill. The challenge in FPS games it to control your reaction speed and

your eye-hand coordination. FPS games can be challenging since it is hard to hit

moving targets when the player moves in order to avoid shoots from the enemies.

First Person Shooter games were introduced to the world with id software’s8

Wolfenstein 3D , see Figure 3.6. Released in 1992, Wolfenstein 3D had great

graphics for its time and was a fast action game. Popular FPS games today are

DooM3, Halo 2 and Half Life 2 .

3.4.3 Role Playing Games

Role Playing Games, or RPG for short, are games where the player controls a

character or a group of characters in the game and plays the roles in a story told

by the game. The challenge in RPG is not the finger dexterity of the player but

8A computer game company. Id is the raw and brutal part of the human brain that was
named by Sigmoid Freud.

46 CHAPTER 3. INTRODUCTION TO GAME PROGRAMMING

rather solving problems, finding the way out of labyrinths and have a good tactics

in battles. In most RPG the story is not told linear but the order and path it

takes depends on the different choices the player makes during the gameplay.

One important trait of RPG is that the characters in the game grow more

powerful as the game proceeds. This is represented by experience points. Whe-

never the player accomplices something in the game the character or characters in

the game gain experience points. The more experience points the characters in the

game have the more powerful they are. When a character earns enough experience

point the characters advance in experience level, or simply level. Not all RPG

systems have levels but it is very common.

In RPG the players character have certain skills that is represented by a inte-

ger. The higher the integer the greater the skill. During gameplay when the player

uses one of the character’s skills a random number is generated and depending on

that random number relative to characters skill decides if the action was success-

ful. These random numbers are meant to simulate the roll of the dices in ordinary

paper RPG[17]. This is called a skillroll.

A typical RPG is set in a science fiction of fantasy world. This is because

spells and high technology are just more suitable for gaining in power when the

character gains experience.

It is quite common for RPG to be licensed by a real board role playing game, an

example is Dungeons & Dragons. These games use the same rules and systems

as the corresponding board game. A example of this is Baldur’s Gate, a game set

in Forgotten Realms . But most games use its own game system that has nothing

to do with a board game. Fallout is a successful game that used its own “rules”

so to say.

3.4. GAME GENRES 47

Hack n’ slash

Hack n’ slash is a sub genre of RPG. The main purpose of a hack n’ slash game is

to kill enemies and collect the treasures they drop when they die. Also the player

gains experience for each kill. Some very simple puzzles and problems are included

in most cases. The story is not that important in hack n’ slash games.

The concept of just killing everything that appears on the screen sound boring

in theory but it is exceptionally entertaining because it talks to a basic instinct

within us, hunt and gather, when the player kills a enemy, gains experience from

the killing and collect the things the enemy drops the players instinct of hunt and

gather is satisfied.

The most popular hack n’ slash game today is Diablo 2 , it is a relatively old

game but it is was a so big hit when it was released that it still is the most popular

hack n’ slash game in Sweden[20].

3.4.4 Adventure games

Like RPG the telling of a story is a important part of adventure games. One

of the most important trait of adventure games is exploration, the player gets to

explore the game freely in any order chosen just like in RPG. It is hard to draw

a explicit line between adventure games and RPG because they share so many

games that have the characteristics of both genres.

Since there are many sub genres of adventure games it is no standard gameplay

or control system. Some adventure games have the gameplay of a platform game,

some are in first person perspective, some of the earliest were entirely text based,

some controlled by clicking the mouse and some are viewed from above the head

of the main character.

48 CHAPTER 3. INTRODUCTION TO GAME PROGRAMMING

Action adventure

Adventure games are a lot like RPG but have one important difference! There

are no experience points. So the character development and statistics of the main

character is not so important, and in some cases not important at all.

Action adventure games focus more on the reflexes of the player then or-

dinary adventure games and RPG. Although some games, like the The Legend

of Zelda series have all the traits of a RPG except experience points9. Action

adventure games are sometimes just like any other action game with a complex

story and are hard to point to either category. Some adventure games are like a

2D or 3D platform game where the player is free to explore the the game in any

order chosen rather then linear. It is discussed what genre these games are but

since platform games are more of a gameplay genre then a game genre, those

games are considered adventure games by this author.

Point and Click

Point and click games are adventure games focused entirely on puzzle solving.

This is the games where the main character walks to the point of the screen that

the player clicks. The most common way to perform actions in the old point and

click games were to click on a action then on the object to perform the action.

The Secret of Monkey IslandTM, released 1990 in see Figure 3.7, is the stereotype

of point and click games with its panel of actions, inventory and mouse cursor in

the lover left part of the screen.

Conversation is a important part of point and click games. When the player

engage in a conversation with a NPC10 a number of alternative things to say

is displayed on the screen and the player can choose in which way to guide the

9Zelda II: The Adventure of Link used experience points but it was the only game in the
series that did this.

10Non Playing Character.

3.4. GAME GENRES 49

Figure 3.7: The Secret of Monkey IslandTM, a classic point and click game.

conversation.

3.4.5 Strategy games

Strategy games are games where the player has to plan the actions in forehand.

The most common strategy games are combat strategy when the player controls

an army and has to collect resorters of some kind in order to get new troops and

pay for the upkeep of the existing ones. In battle with enemy troops the player

has to place the controlled troops in a favorable position, mostly this means on

high ground or behind some kind of shelter.

Most strategy games consist of an equal amount of combat planing and resource

gathering. The games are normally controlled with the mouse pointer. The player

clicks a unit to select it then gives the unit an order by clicking again somewhere

on the map or on another unit. The view is typically from above or slightly angled

from above.

50 CHAPTER 3. INTRODUCTION TO GAME PROGRAMMING

Figure 3.8: Dune II: The Battle for Akkaris, the first Realtime Strategy game.

Realtime Strategy games

Realtime Strategy games, or RTS for short, are strategy games everything hap-

pen in realtime and the players reflexes and quick thinking mater for the outcome

of the game, contrary to turn based where only planing matter. Realtime strategy

often consist of more fast combat action then the planing of collecting resource,

collecting resources is often very simple since the focus of the game is on the

combat.

Turn based strategy games

Turn based strategy games was the first kind of strategy games. This was

because turn based strategy games do not need fast calculation by the AI agents

in the game. The AI could get all the time it needed between turns. This meant

that turned based gamed do not have as high hardware requires as RTS games

and thus occurred earlier in history. The concept is simple, the player have an

3.4. GAME GENRES 51

infinitive amount of time to plan the moves and balance the production11 and

when the player feel finished the player press the next turn button.The economy

in turn based strategy is much more in focus then in RTS games. This is because

in turn based strategy the player often controls the entire production of recourses

then rather just a small combat unit or a military base. Turn based strategy

games often do not contain levels but the entire game contain of one large level.

In Masters of Orion 3 this is a galaxy.

3.4.6 Beat’em up

Fighting games or beat’em up games are action games where the purpose is to

defeat your opponent in hand to hand combat. The first games of this kind were

single player games where the player walked forward and faced hordes of enemies

that were relatively easy to defeat. In later years it has become more common

that these games are pure versus battle games, meaning that there are only two

characters on the screen at once. These games are popular when human players

play against other human player instead of only the AI agent. The combat in

beat’em up games are often inspired by real marshal arts and the characters are

often portrayed as masters of their marshal art.

3.4.7 Shoot’em up

Shoot’em up games are games where the the player controls a small spaceship

or equitant that fly forward on a self scrolling screen swarming with enemies. The

challenge is to shoot down the enemies without being shot self. In the greatest

majority of shoot’em up games there is at least one kind of ammunition that is

infinite so the player can focus entirely on the action. The path taken in a shoot’em

11When played in multiplayer the players often have a time limit.

52 CHAPTER 3. INTRODUCTION TO GAME PROGRAMMING

Figure 3.9: Gradius, a side scrolling 2D shot’em up game.

up game is largely predetermined, the screen scrolls all the time and the player

cannot alter i very much except sometimes in only one dimension perpendicular

to the direction the screen is scrolling.

The first shoot’em up game ever, Space Invaders, did not, like some other

of the older games, scroll the screen. Instead, the player could only move in one

dimension with all the enemies on the screen at the start of the level.

New shoot’em up games scroll the screen and the player can move in all direc-

tions in the two dimensional plane. There are however exceptions, Star Fox 12 is

a 3D shoot em up game that has not crossed the line to be a simulator because of

the fixed path the planes take and that the view is not from inside of the planes

but from behind.

12Star Fox were renamed to Starwing or Lylat Wars in Europe because of a Danish vacuum
cleaner called Star Fox.

3.4. GAME GENRES 53

3.4.8 Simulator games

This is the kind of games where the player once again sees the game world from the

eyes of the main character, like in FPS games, but this time it is from inside the

cockpit of a plane or from the driver seat of a car. As the name of the genre, the

purpose of the game is to simulate the feeling of really flying a plane or driving a

car. These games are often played with a large force feedback joystick or steering

wheel to add to the experience of flying or driving. Some simulators resemble

cockpits of real airplanes and some fictional planes. As well as some joysticks

resemble the controls in real airplanes. Simulator that simulate a car race is

called a racing game, but it still falls in the category of a simulator. These

games often have the option of viewing the vehicle from behind and can be played

with a steering wheelgas/break pedals and gearshift stick accessory.

Simulators that overdo it with fancy equipment and large props can be found

in the arcade halls. Examples are arcade games where the players sit on a natural

size motorcycle and control the game with the switches and pedals resembling

those of a real motorcycle. It is these kind of gimmicks that have made arcade

games survive today.

3.4.9 Sim games

Sim games are special kind of simulator/strategy games that simulates something

else then a real simulator. They are strategy games with a special touch. The

first Sim game SimCity simulated a city. When SimCity first was released it was

considered a strategy game, which it actually is, but over time Sim games has

become a sub genre of its own. In SimCity the player was the major of a city and

had to plan the economy and build the buildings in the city. The player could

raise and lower taxes, build and demolish buildings, build roads and much more.

54 CHAPTER 3. INTRODUCTION TO GAME PROGRAMMING

SimCity has no real goal to complete. The purpose is just to play the game and

build a so large city as possible.

There are a lot more Sim games simulation different this. Sim games include

Sim Earth, Sim Ant, Sim Farm, Sim Town, Sim Copter, Sim Park, Sim Life,

Streets of Sim City and The Sims.

3.4.10 Sports games

Sport games are as the name suggests games where the player takes control of

an athlete or a team and plays a sports game in the computer. Since sports games

are not based on the concept of computers it attracts a lot of players that would

not normally play computer games to start playing computer games. Thus making

sports games one of the best selling computer game genres.

The games themselves use the rules of the sport it is trying to simulate.

3.4.11 Massive Multiplayer Online games

These are games played entirely on the internet. This is not really a game genre

itself but a way of implementing the playing. The difference between a ordinary

multiplayer game over a network and a Massive Multiplayer Online Game,

MMOG, is that all players playing the same game can interact at the same time.

Contrary to a ordinary multiplayer game where only players connected to the same

private server can play together. Usually not more than at about 50 players play

on the same server in an ordinary multiplayer game. In a MMOG, all players

connect to the same server so thousands of players “are on the same server” and

playing together in cooperative play or against each other. This of course demands

a special kind of game architecture and financing. Most MMOG require a monthly

fee in order to play. This is for paying for the internet server that need constant

upkeep.

3.4. GAME GENRES 55

The gameplay of a MMOG is just like a ordinary game of the genre except the

important fact that it is not possible to finish a MMOG in the same sense it is

possible to finish a single player game. The game continues without end even if

only one player is online and playing since the game itself only exist on the central

game server or servers and not on all the different players computers.

The most common for of MMOG are Massive Multiplayer Online Role

Playing Games, or MMORPG. A MMORPG is RPG that it played online on a

massive server together with thousands of other players. This is the most common

form of MMOG because of the character building element in RPGs i suitable for

online gaming. When a player plays the players character becomes a little more

powerful for each time the player plays the game. Thus the competition against

other player about who has the most powerful character is a exiting element in

MMORPG.

3.4.12 Puzzle games

Puzzle games are games that have a very different gameplay then the games

mentioned abode. Puzzle games are, as can be figured out from the name, games

where the player solves puzzles. This genre attracts other kind of players that

would not play any other kind of games and only plays puzzle games. My mother,

for example, only plays puzzle games and no other games. The purpose of most

puzzle games is not to finish the game in the traditional way a game is “beat” but

rather to collect as many points as possible or just solve the puzzle quickly.

A popular puzzle game is Tetris , see figure 3.10. In Tetris the player collect

points by making a whole line from the pieces falling down.

56 CHAPTER 3. INTRODUCTION TO GAME PROGRAMMING

Figure 3.10: Tetris, a simple but popular puzzle game.

3.5 Game Application Programming Interface

There are a few Application Programming Interface, API for short, available

for programmers wanting to make their own games. some of them contain all the

tools needed for creating games and some only contains the graphics libraries.

Here the three most common API used in game programming will be described.

3.5.1 DirectX

DirectX is Microsoft’s API for making computer games. DirectX was created for

developing games on the Windows 95 platform. The purpose was to make games

run faster and game development easier in the windows environment. The benefit

of DirectX over older libraries was that all the hardware specific code was put

in the backend so the game developers do not need to write a specific function

for every hardware manufacturers specification. Before DirectX players needed

to setup their own hardware configuration themselves. This also made DirectX

compatible with all older DirectX games. The problem with 640k13 was still there

13It was a common problem for DOS games that the games required very much of the com-
mercial memory and did nor run on newer operating systems because the operating systems used
a lot of the commercial memory.

3.5. GAME APPLICATION PROGRAMMING INTERFACE 57

in 1994, with DirectX, or any other graphics API, that problem will newer occur

again with newer games.

DirectX is also used on Microsoft’s game console X-Box.

3.5.2 SDL

SDL is a acronym for Simple DirectMedia Layer, witch is an abstraction of

several platforms graphics, sound and input API. SDL is in its basic idea very

similar to DirectX but the major difference is that SDL is platform independent.

So when you write a SDL game all you need to do i recompile the code in on

another platform in order for it to run on that platform[16].

SDL i nothing more then a wrapper outside other API:s. In Windows the SDL

functions call DirectX functions.

3.5.3 OpenGL

OpenGL is short for Open Graphics Library and is a cross platform API

developed by Silicon Graphics for the purpose of creating 3D applications. But

as can be figured out from the name, OpenGL if a open source library free to

be modified and used by anyone. OpenGL was originally designed as the name

implies a graphics library only. The library did not contain any functions for input

or audio.

The library itself contain of about 250 function which cover the basic needs for

3D rendering. These functions can be used to build the most complex 3D shapes

using simple primitives.

Unlike DirectX and SDL, which is used almost purely in game programming,

OpenGL is used in the industry to visualize CAD projects and in scientific simu-

lations to visualize the results.

58 CHAPTER 3. INTRODUCTION TO GAME PROGRAMMING

Figure 3.11: Diagram of a main event loop.

3.6 Programming games

Games can be programmed using a main event loop[1]. The technique is very

simple, the game program consists of a big loop that is repeated once every frame.

In the main event loop all input, physics, AI and everything else handled by the

game engine i gone though at least once, see Figure 3.11[1]. The enemies, blocks

and the player are each stored in objects in the level. In the main event loop

the input the player is sending in stored, each enemy calls its AI function to give

instructions about what input the enemies should send. In the physics part all the

calculations for velocity and the collision detect is done and in the graphics part

all the graphics is done.[1] When the game is started up a special sequence have

to be run in order to load the graphics and level architecture and when the game

is shut down another sequence is run that deallocate all the memory used.[1]

3.6. PROGRAMMING GAMES 59

Since the frame rate need to be at least 40 fps in order for making the game

run smoothly the code in the game engine have to be efficient and cannot be to

advanced. This used to the bottleneck that kept game AI in realtime games at

relatively low quality when the game industry was young. If the AI, graphics or

physics were to advanced in old games the game would run to slow to be playable.

Now, when processing speed and memory capacity have doubled many times since

the first games AI, graphics and game physics can be much more advanced.

An alternative way is to have the graphics and physics in two different threads.

One tread would handle the input, AI and physics and the other tread would

handle the graphics. This means that the frame rate is dynamic because of that

the graphic do not have to wait for a fixed time for the AI and physics to finish their

processing. This software architecture is used in 3D games and can be observed

when the graphics settings in a game is set to be more detailed then the computer

hardware can handle. Then the game still runs in normal speed but the frame rate

is so low that the game is not playable.

3.6.1 Modifications

Modifications, or Mod for short, is a home made upgrade to a existing game

using the engine of a existing game. A mod is made using a special language

that was created only for the purpose of making the game and was released to

the general public alongside with the game or to be downloadable from a website

later on. Making a mod to a existing game require skills in programming since the

modification language often is quite advanced. A level editor must be included

in order make the maps for the own, homemade, scenarios.

Modding, as it is called when someone modify a exiting game using the script

language and tools provided with the game, have spawned a lot of big communities

on the internet. The people doing the modification are called modders. The

60 CHAPTER 3. INTRODUCTION TO GAME PROGRAMMING

Halflife mod Counter Strike was a mod that was realest as a game of its own.

Developed in home by armatures just having fun and later be realest just like a

commercial game.

3.7 Summary

Games is a great source of entertainment for some and a complete waste of time

for others. But with all the many different kind of games genres it is almost certain

that anyone with a interest in computer games will have a kind of game suitable

for them. And if there is no games suitable for there taste, there is a lot of API:s

designed for the purpose of game programming. So there is nothing that stops

anyone with programming skill from making a game of there own.

Chapter 4

Introduction to game AI

H
ow smart the computer controlled characters in a game is play a great

part in determining how entertaining the game is. This chapter will

describe techniques commonly used in game AI. It will give a descrip-

tion of what game AI is and then discuss the differences between

game and conventional academic AI. That section will also include description

of three common techniques of conventional AI that are also used in game AI.

Following that is a section that describes the technique fussy logic. Finally there

will be a description of the algorithm pathfinding with A*, a very common one in

Figure 4.1: The ghosts from Pac-Man. Blinky, Pinky, Inky and Clyde.

61

62 CHAPTER 4. INTRODUCTION TO GAME AI

game AI.

4.1 Introduction

The purpose of game AI is not to make the enemies in the game intelligent but

rather to give the illusion of intelligence[4]. That is to make the enemies behave

in a way that makes the player unable do decide if he or she is playing against

another human player or against a AI agent.

Game AI falls under the category of weak AI[3]. Many of the techniques used in

mainstream AI are also used in game AI. But actually the most simple techniques

finite state machines, production systems and decision trees have proven to be

most successful[4].

4.2 Mainstream AI and game AI

Mainstream AI covers the topics of AI that is researched in the academic

world[4]. Since the field of game AI in only a part of all other AI basic know-

ledge of mainstream AI is needed for programming game AI.

Not all the techniques used in mainstream AI are used in game AI and some

are used frequently. A short description of a couple common techniques used in

game AI will be given.

4.2.1 Expert systems and production systems

According to the book “AI game programming wisdom 2”[5] production systems

and expert systems are just two different terms for the same technique. In this

dissertation both the terms will be used interchangeably.

Expert systems are AI agents that attempt to solve problems just like a human

4.2. MAINSTREAM AI AND GAME AI 63

Figure 4.2: A basic production system.

expert in a given situation. Expert systems are based on knowledge and experience

from human experts. The output from an expert systems shall be the same as from

human experts for the same question[4].

Expert systems contain two parts which is the knowledge database and the

logic rules or the reasoning[25].

The knowledge database and the production rules are implemented se-

parately and are modular so they can be designed independent from each other.

Later when they are finished they can be modified separately without disturbing

the other[3].

The system’s production rules are basically a large set of if-then-statements

and the knowledge database is the parameters in the statements and the actions

performed is the knowledge. The rules in system are often in the form of a chain.

Meaning that when one decision is made one more is immediately made and pos-

sibly one more in a chain of reactions of rules. These depictions often have a

certainty factor that increases by a certain amount for every step in the chain.

Table 4.1 show the knowledge database and Table 4.2 show the production rules

for a given system. The knowledge database and the production rules are used

64 CHAPTER 4. INTRODUCTION TO GAME AI

Table 4.1: The knowledge database for a system expert system

Table 4.2: The production rules for a system expert system

together by a inference engine. The production rules can take any knowledge

from the knowledge database and apply it to the object of choice. The production

rule ’Is’ is applied to the knowledge ’Group’, it checks what group a subject belong

to. The production rule ’Can’ is applied to the knowledge ’skill’, it checks what a

subject can do. The production rule ’Have’ is applied to the knowledge ’Attribute’

to check what properties a subject have.

The code for the inference engine may look something like this:

bool i n f e r e n c e (ru le , sub ject , i n f o)

{

switch (r u l e . type)

{

4.2. MAINSTREAM AI AND GAME AI 65

case I s : return (sub j e c t . type&i n f o . type) ;

case Can : return (sub j e c t . s k i l l&i n f o . s k i l l) ;

case Have : return (sub j e c t . a t t r i b&i n f o . a t t r i b) ;

default : a s s e r t (0) ;

}

}

Where rule is what type of production rule that shall be used, subject is the

object that we are gathering information about and info is the knowledge we have

an want to test. This inference function could be used by a recursive function thus

creating a chain of tests.

In an practical example, lets say that we have one object named Fred[26]. For

simplicity, lets assume that the system also has a knowledge database containing

the animals Horse, Bat, Rabbit, Lizard, Monkey, Cat, Frog, Turtle, Fish, Snail,

Duck and Snake. If we apply the set of rules and knowledge on Fred we can figure

out what Fred is:

• Question 1: Is Fred a animal? Yes.

Then Fred could be a horse, a bat, a rabbit, a lizard, a monkey, a cat, a frog

a, a turtle, a fish, a snail, a duck or a snake.

• Question 2: Can Fred fly? No.

Then Fred be be a horse, a rabbit, a lizard, a monkey, a cat, a frog a, a

turtle, a fish, a snail or a snake.

• Question 3: Can Fred jump? Yes.

Then Fred be be a horse, a rabbit, a monkey, a cat or a frog.

• Question 4: Can Fred climb? Yes.

Then Fred be be a monkey, a cat or a frog.

66 CHAPTER 4. INTRODUCTION TO GAME AI

• Question 5: Do Fred have fur? No.

Then Fred can only be a frog.

This kind of guessing game is a example of rules using knowledge in a chain.

The knowledge database used here was absolute minimum for the example, but

more knowledge can be added in the form of animals, attributes and skills without

affecting the rules. And more rules can be added later to get a more detailed

answer. If we assume that question 5 was the last question in the chain but the

answer to the question had been “Yes” it should have resulted in two possible

answers, monkey and cat. Both are animals that cannot fly but can jump, climb

and have fur. If we add the attribute “claws” then the system can figure out if it is

a monkey or cat but in the current state it cannot. This same principle used in this

simple biology example can be applied in any situation that require human expert

knowledge, like combat strategy in a game or disease identification and treatment

in a hospital medical system.

A large database of knowledge of the specific topic is required for a expert

system to work properly. There would be no point of an expert system to exist if

they did not contain more knowledge then what a human professional can keep in

the head. But in game AI it is sometimes not required for a good result, a smaller

database will give better performance in speed.

4.2.2 Artificial life

Artificial life, A-life for short, is a technique that simulates the behavior of

life for animals in an artificial world or robot animals in the real world. It is

commonly used on background critters in games and in simulations and robotics

in mainstream AI. For example a little rabbit can run away and hide when the

player comes close or a shoal of fishes keep their formation when they escape from

4.2. MAINSTREAM AI AND GAME AI 67

a player when he or she jumps into the water.

Since A-life is not really useful for enemies in a 2D platform game other then

background critters and since A-life is more of an implementation specific result

then a technique this will not be discussed more in the dissertation.

Flocking

Flocking is a special case of A-life where many single agents move in a simple

manner but the result is a complex pattern for the entire group of animals. The

technique is simply based on reacting to the movement of other members in flock

by simple rules[5]. But in games there has to be a little random delay before the

reaction because if the reaction was exactly afterwards it would be only one frame

in between the reaction of each flock member and that would look mechanical and

artificial. However, the purpose is to make it look natural.

Flocking can be applied to all kinds of animals that move in groups. Even

human riots can be simulated using flocking.

In games flocking can be used combined with line of sight, see Chapter 5. It

could be enough that only one enemy AI agent needs to see the player for all

enemy AI agents to react on it. It could be done by enemy AI agents giving each

other orders like move left, fire weapons at the shrubbery and flee if the player is

considered to dangerous for the group of enemies, for how this can be decided see

Section 4.3.

4.2.3 Finite state machine

A finite state machine is an abstract machine that can exist in one of several

predefined states. A Finite state machine can also define the conditions that

determine when the state should change. The states can also be triggered to change

after time intervals. The actual state determines how state machine behaves[3]. A

68 CHAPTER 4. INTRODUCTION TO GAME AI

finite state machine consist of:

1. A finite set of states, denoted Q.

2. A finite set of input symbols, denoted Σ.

3. A translation function that takes as arguments a state and an input symbol

and returns a state. The translation function is denoted δ. If q is a state,

and a is an input symbol, then δ(q, a) is a state p such that there is an acre

labeled a from q to p.

4. A start state, one of the states in Q.

5. A set of final or accepting states F . The set F is a subset of Q.

A finite state machine is thus formally defined as a 5-tuple:

A = (Q, Σ, δ, q0, F)

where A is the name of the finite state machine, Q is its states, Σ is its input

symbols ,δ it its transition functions, q0 its start state, F its set of accepting

states[9].

Finite state machines are one of the oldest forms of game AI. The ghosts from

Pac-Man, see Figure 4.1, were finite state machines. There behavior changed

depending on what Pac-Man did. For example did the ghosts change from chasing

to evading when Pac-Man ate a super pill [3].

Even though finite state machines are old technology they are frequently used

games because they are simple to use and give good result for enemy behavior.

4.2. MAINSTREAM AI AND GAME AI 69

Figure 4.3: A simple finite state machine for a enemy AI agent.

A finite state machine for a castle guard

Figure 4.3 is a diagram of a simple finite state machine for an enemy. In the

initial state, patrol, the enemy just patrols the closest area where is stands. If the

player gets within the enemies line of sight, explained in Chapter 5, the state is

changed to follow where the enemy is chasing the player. If the player gets out of

the enemies line of sight the enemy starts patrolling again. But if the enemy gets

within attack range of the player the state is again changed but now it is changed

into the attack state. Where the enemy attacks the player until the player is either

dead or gets out of attack range then the state is changed back to patrol if the

player dies and to follow if the player tried to escape and succeeds.

This simple example can provide a good end result for enemies in games. Even

though this state machine would not work very well as a AI agent in a finished

game it would still be a enemy that reacts to what the player does in the game

which was the desired result.

One fine attribute with finite state machines is that they are extremely easy to

modify. All that is needed to do with the existing machine is to add a state and

one single condition in one of the existing states that change state to the new one.

Then the new one can have conditions that take changes the state to any of the

70 CHAPTER 4. INTRODUCTION TO GAME AI

exiting states. There could be any number of new state change condition in the

new stage.

This simple change would not do much in the given example of the guard but

in a large finite state machine a new stage could result in a dramatic change in

the behavior of the machine.

Finite state machines and production systems

Finite state machines is not a technique used only by artificial intelligence. In

computer science is used in several other applications, like bottom up parsers

and realtime systems. Since finite state machines are such a useful technique in

computing in general there are a lot of weak AI applications that can get a good

result with a finite state machine.

The example given above about the guard contains simple conditions that

change with single if-then statements. But if each state in the finite state machine

were a production system, then really complex state changes could be made. Re-

sulting in even better artificial intelligence.

4.3 Fuzzy logic

Fussy logic vas introduced in 1965 by Lotfi Zadeh in the article “Fuzzy Sets”[12].

What he wanted to do was to make computers solve problems in a similar way as

humans do[3].

Fuzzy logic is an extension of boolean algebra using one more value to the two

original true and false. The new value is maybe, truth to a degree. If a car has

one door painted red but the rest of the car is painted blue it is true to say that

the car is blue but it would also be true to say that the car is red. It is all a matter

of degree. A common word to describe fuzzy logic is to use the term fuzzy set

4.3. FUZZY LOGIC 71

theory. The blue car with one red door is member of both the set of blue cars

and the set of red cars. In fuzzy logic everything is a mater of degree. With the

car the car is more blue then red so if a choice had to be made about the color

of the car, the choice would be blue because the car is more blue then red even

though is is a member of both sets.

In computer games the fuzziness can be the health of a enemy AI agent, see

Section 3.3. If the enemy have 100 hitpoints the health if the enemy is fussily

defined because there are 100 possible health levels. The fuzzy thing is to decide

at what health level the enemy AI agent should consider it as having low health.

Depending on how many hitpoints the enemy AI agent have left the more aggres-

sively the enemy AI agent will act and the lower health the enemy AI agent has

the more defensively the enemy AI agent will act.

Lets define three sets of health that the enemy can be part of. The sets are

unhurt, injured and wounded. Which set the enemy is a member of is decided

by the the current number of hitpoints that the enemy have.

4.3.1 Fussy sets

Fuzzy logic is based on fuzzy set membership. The example with the car was

simple and the answer was just as simple but the colors of the car does not vary

over time, but the hitpoint of a enemy can change. The fuzzy member value is a

value between 0 and 1. Figure 4.5 shows a graph of how the value varies depending

on how much health the AI has. As the figure shows it is possible for the enemy

AI agent to be member of several sets at once but in this example it is just as

possible to be member of two at once. The different sets are defined by trapezoids.

The prototype for the function for getting the set memberships is defined as:

float fuzzyTrapezoid(value, x1, x2, x3, x4);

72 CHAPTER 4. INTRODUCTION TO GAME AI

Figure 4.4: A fuzzy trapezoid set.

Where value is the value is the number of hitpoints in this case and x1, x2, x3

and x4 are the values that define the points of the trapezoid. x1 is the leftmost

point on the trapezoid that indicate that the membership of the set begins if the

value is higher than the value of x1, x2 is the point on the trapezoid that indicate

that the membership is now 1 if the value is greater than it, x3 is the end of the of

the full membership and x4 indicate that the end. If value is somewhere between

x1 and x2 than the membership is somewhere between 0 and 1, if value is between

x2 and x3 than the membership is 1 and if value is x3 and x4 than the membership

is somewhere between 0 and 1. If value is smaller than x1 or larger than x4 than

the fuzzy membership is 0. Figure 4.4 show where the different points is on a

trapezoid.

If the enemy AI agent is mostly a member of the wounded set in Figure 4.5

the AI will attempt to run away, if the AI is mostly a member of the injured set

the AI will stand guard and if the AI is mostly a member of the unhurt set the AI

will attempt to attack.

If the enemy has all hitpoints left it is in the unhurt set and if only a few

hitpoints left the enemy is in the wounded set. In these examples the membership

in the sets [wounded, injured, unhurt] is [0, 0, 1] and [1,0,0].

4.3. FUZZY LOGIC 73

Figure 4.5: Graph displaying the membership in fuzzy sets of a enemy AI agent
depending on how much health it has.

4.3.2 Defuzzification

In this example it is simple to decide what to, it is just a matter of picking the set

with the greatest member value and do the corresponding action. But if several

fuzzy sets are variables in the fuzzy logic mathematical formulas is needed. If

the memberships are [0, 0.3, 0.7] the AI has lost a little of its hitpoints. This

information was gained with the function fuzzyTrapezoid(value, x1, x2, x3, x4),

Factors are attached to the sets to determine how strong they are. The factor will

be called x. Wounded gets x = −10 injured gets x = 1 and unhurt gets x = 10.

The set membership value is represented by µ.

The factors have value because the different set memberships are different im-

portant to the decision making. For example the health is more important than

the eventual armor of the character so set memberships strong armor and weak

armor would have the factors 5 and −5 which is less powerful then the factors the

74 CHAPTER 4. INTRODUCTION TO GAME AI

different health sets have.

The formula for the defuzzification is:

output =

n∑
i=1

µi · xi

n∑
i=1

µi

If the output is negative then the enemy will run away. In this case the output

will be:

output =
0.3 · 1 + 0.7 · 10

0.3 + .0.7
= 7.3

The result of 7.3 will result in the enemy AI agent attacking.

This was a simple example but if more fuzzy sets are added to the formula,

like armor, ammunition, weapon type and the status of the player, there will be

many variables that need an automated process. If more fuzzy sets are added to

the decision making all that have to be done is add more terms to the equation.

4.4 Pathfinding with A*

A*, pronounced a-star, is a common algorithm for finding the shortest paths in

game programming. The A* algorithm is a greedy algorithm for exploring. If

there exists a path between two nodes in a map the A* algorithm will find it.

Pathfinding with A* is much faster then ordinary shortest path algorith1m which

is used in game programming[4].

4.4.1 Terms

Before Pathfinding with A* can be explained in detail, a few special terms is need

to be explained.

4.4. PATHFINDING WITH A* 75

Map

The map is equitant to level in Section 3.3. This is simply the area at which the

AI agent finds its path between two given points[4].

Node

These are the waypoints on the map that the AI agents use as reference points

when they move in the level. They are located on the map or level depending on

what word you like best. Nodes on the map are just like any nodes in any graph

that are connected with undirected connections. But each node is connected to

only the closest nodes on the map. Unlike ordinary nodes in graphs the nodes

on the map have a fixed position on the map and are not allowed to be morphed

around like an ordinary graph[4].

These nodes contain information critical for the A* algorithm[4].

Heuristic distance

Heuristic distance, or just distance, is how good it is to explore a particular

node[4]. It is not possible to know exactly how suitable a particular node is to

explore in the algorithm. Based on machine learning or preprogrammed knowledge

a qualified guess have to be done. This guess is heuristic, see Section 2.2.

Cost

The cost of a node is the distance between the particular node and the staring

node[4]. This is totaly application specific and cannot be formally defined.

76 CHAPTER 4. INTRODUCTION TO GAME AI

4.4.2 The algorithm

The A* algorithm needs a starting node and a destination node in order to work

and it finds the shortest path between them. The nodes used in the algorithm

do not only hold the position on the map but also three attributes called f ,g and

h refereed to as fitness, goal and heuristic. The following definitions is directly

stolen from ‘‘AI Game Programming Wisdom’’[4].

• g is the cost to get from the starting node to this node. Many different

paths go from the start node to to this map location, but this cost represent

a single path to it.

• h is the estimated cost to get from this node to the goal. In this setting h

stands for heuristic and means educated guess, since we do not really know

the cost (that’s why we’re looking for a path).

• f is the sum of g and h. f represents our best guess for the cost of its path

going through this node. The lower the value of f , the better we think the

path is.

The only problem with these attributes is h, which cannot be known for certain

at this time. g is known absolutely and f is uncertain due to that h is uncertain.

The A* algorithm keeps two lists, these are called the open list and the closed

list. The open list contains all the nodes that have not been explored yet and the

closed list contains all nodes that have explored. A node is explored if the g,h and

f values have been calculated for all nodes connected to it and added to the open

list for future exploration. The open and closed lists are needed because if it were

not for them it would be possible to move back the way to a node which is not

good for performance purposes.

4.4. PATHFINDING WITH A* 77

4.4.3 Pseudo code for the algorithm

This is a listing of the pseudo code for the A* algorithm[4].

1 . Let P = the s t a r i n g po int .

2 . Assign f , g , an h va lue s to P.

3 . Add P to the open l i s t . At t h i s po int P i s the only

node in the open l i s t .

4 . Let B = the best node from the the open l i s t (bes t

node have the lowest f va lue) .

a . I f B i s the goa l node , then qu i t − a path have

been found .

b . I f the open l i s t i s empty , then qu i t − a path

cannot be found .

5 . Let C = a va l i d node connected to B.

a . Assign f , g , and h va lue s to C.

b . Check whether C i s on the open or c l o s ed l i s t .

i . I f so , check whether the new path i s more

e f f i c i e n t (lower f−value) .

1 . I f so , update the path .

i i . Else , add C to the open l i s t .

c . Repeat s tep 5 f o r a l l v a l i d ch i l d r en o f B.

6 . Move B from the open l i s t to the c l o s ed l i s t and

repeat from step 4 .

No example will be given since this dissertation will give an alternative solution

to pathfinding. See the literature for more details.

78 CHAPTER 4. INTRODUCTION TO GAME AI

4.5 A complete enemy AI agent

A complete AI agent in a game would be implemented using the three techniques

described above. The base of the agent could be a finite state machine. Each state

in the finite state machine would be a independent production system that is used

to make the decisions in the current state or decide what state transition should

be done if a change of state is needed. The result gained from the fuzzy logic set

membership equation could be used as parameters in the production system or

simply decide when a stage transition should be done.

4.6 Summary

Good game AI will always be praised by players when it give a balanced and

natural behavior of the enemies, cursed when the enemies have unnaturally good

skills and laughed at when it is stupidly predictable. In any case it is a challenging

and important part of all modern games.

Game AI is a subset to mainstream AI and a few of the techniques used in

mainstream AI is used equally much in game AI. Some techniques have found

special usage in game AI.

Part II

Experiment

79

Chapter 5

Line of sight

D
etermining what the enemies in a game can see is important for

making them act naturally. This chapter will describe the theory

and techniques used for determining what is within the line of sight

of an enemy AI agent in a 2D computer game.

First there will be an introduction that will explain the problem and how it

was like in older 2D games. After the introduction a section about theory that will

describe the three techniques used in making a 2D line of sight algorithm for AI

agents within the game and give a brief explanation about the differences between

2D and 3D line of sight. Finally there will be a section tying the things together

making a complete line of sight technique for AI agents in 2D computer games.

See Appendix A for the implementation of this technique.

5.1 Introduction

The area within the enemies line of sight is the part of the level the enemies can

see. It is used in game AI to determine if the enemy AI agent knows where the

player is and if the enemy AI agent can see the player or other objects in the game.

81

82 CHAPTER 5. LINE OF SIGHT

In really old 2D platform games the enemies always saw the player, even if the

player and the enemy AI agent had a wall between them or if they were too far

apart that there were several screen widths between them. Some games had line

of sight triggered to rooms or large areas, which meant that the enemies saw the

player when the player entered the room that the enemy AI agent was in. Some

games had the enemies totaly inanimated until they become visible on the players

screen and then they know where the player was until the player left the level.

This is of course unacceptable in new games and since this dissertation is about

2D games the line of sight for enemies will be the same one as the player plus the

limitation of the blocks if there is any between the enemy and the player or any

other object that can be seen by the enemy AI agent.

5.2 Theory

The techniques for line of sight in 2D games is actually quite simple but it has

had low priority in old computer games therefore there were no 2D games with

complex line of sight techniques. In newer games, which have been mostly 3D

games, designers and programmers have put effort into more complex line of sight

algorithms. But in 3D games there are so many points to handle that an exact

line of sight have been almost impossible to implement so they have had to make

approximations and the line of sight have not been exact. But in 2D games with

today’s computers we can afford to have an exact line of sight algorithm without

loosing performance. Even the later 2D games that had more complex line of sight

still used approximations.

Blackthorne, see Figure 5.1, is a 2D game that used advanced line of sight for

its time. But the enemy AI agents could not see diagonally on the screen, they

could only see the player then they were parallel in the x-axis. However, it was

5.2. THEORY 83

Figure 5.1: Blackthorne, released in 1994, a 2D platform game where the enemies
only reacted on what they saw.

still an advanced AI for its time in a 2D platform game.

5.2.1 Visual limit

The theoretical limit of what the enemy can see in a 2D game is what is inside the

screen of the enemy if the enemy was a player. When the player moves around

the level the only things that the player can see is what is on the screen. Now

imagine that the enemy was a player and the screen showed the objects that was

on the enemy’s screen. This means a limit to how much the enemy can see in both

dimensions. The player, or any other object for that matter, cannot be seen by

the enemy if it is further away from the enemy then half a screen width or height.

The distance is half a screen width or height because the player is almost always in

the center of the screen and the border of what is on the screen is half the distance

84 CHAPTER 5. LINE OF SIGHT

Figure 5.2: This picture shows a screenshot of a level with the a character in the
center.

from the center of the screen. This is the visual limit.

Since the screen is limited in size the entire level cannot be displayed at the

same time. It is a limit to what the player can see when the game is played. Figure

5.2 shows the limit of what a character can see. The image has the character in

the center of the screen. This means that this picture shows what is shown on the

screen when the game is running.

Figure 5.3 shows a screenshot of the same level but everything has been panned

a little to the right so the character with the hat is no longer on the screen. But

the bush on the ground still is but it have moved a bit to the left on the screen

and another character is visible. The limit for how far the character with the hat

can see is marked with a dotted line in the picture. The bush is visible to both

the characters but they cannot see each other because they are too far apart.

The reason for this limit is so that the enemy AI agents would not get an unfair

advantage on the player or players if there were no limit for how far the AI agents

could see. The player can only sees what is on the screen and since the AI agents

have access to the position of the player all the time, since they are part of the

computer, this limit is needed otherwise the enemy AI agents and the player would

5.2. THEORY 85

Figure 5.3: This picture shows the same level as Figure 5.2 but is shows what
would be on the screen if everything were moved a bit to the left.

not play on equal terms.

See Appendix A.3 for the implementation of this technique.

5.2.2 Free sight

The sight between two objects is free if there is no other object in between the

objects, then it is free sight between the objects. Just like that you cannot see

what is on the other side of the wall in front of you1, an AI agent in the game

cannot see the player if there is a wall, floor or any other object in between them.

To be absolutely certain that there are no opaque objects each single pixel

between the enemy AI agent and the player have to be checked. This is done from

a single point, preferably the eyes for realism, of the enemy and the player forming

a cone, see Section 5.3.

Figure 5.4 shows two characters, it can be the player and one enemy AI agent

or two enemy AI agents, it does not matter, on the same screen with a terrain

block between them. The fact that there is a block between them means that the

1Assuming that you are inside and the walls are not transparent.

86 CHAPTER 5. LINE OF SIGHT

Figure 5.4: Free sight example 1. Two characters on the same screen.

two characters cannot see each other. Figure 5.5 shows the area of the screen that

the lower character can see, the visible area is highlighted and the non visible area

is plain white. As it can be seen on the picture it is possible do draw a straight line

from all points in the highlighted area and a point in the lower characters head.

However, in the non highlighted area the platform is in the way blocking the line

of sight.

If it is possible to draw to just one single line from the enemy AI agent to the

player then it means that the enemy can see the player. It is this kind of details

that has never been done in 2D games.

See appendix A.5 for the implementation of the technique.

5.2.3 Bresenham’s algorithm

To have the description of an ordinary algorithm in a section about the theory

about AI might seem odd to begin with. But this algorithm is very necessary for

implementing line of sight in games, which will be explained in Section 5.3, that

it deserves to be part of the theory of this chapter.

5.2. THEORY 87

Figure 5.5: Free sight example 2. Highlighting the area of the screen that is within
the line of sight of the character below the block.

The algorithm is called Bresenham’s line scan algorithm or just Bresen-

ham’s algorithm and was originally published in 1965 in one of IBM internal

documents[11].

Drawing exact lines on a computer is impossible, since lines are defined as an

infinite number of zero-area points which lie between two end points. The smallest

unit on a computer screen is the pixel, and its area is quite a lot more than zero.

Approximations on the other hand, are quite easy to draw if you use floating point

operations:

void draw l ine (int x1 , int y1 , int x2 , int y2)

{

int dx = x2−x1 ;

int dy = y2−y1 ;

f l o a t m = dy/dx ;

for (int x = x1 ; x<x2 ; x++)

88 CHAPTER 5. LINE OF SIGHT

{

int y = m ∗ x + y 1 + 0 . 5 ;

pu tp ixe l (x , y) ;

}

}

This, however is too slow to be acceptable in a game where speed is of the

essence. The solution is Bresenham’s algorithm that will compute the point coor-

dinates correctly, using only integer math.

Figure 5.6: Line Approximations[1].

Figure 5.6 shows how pixel positions (the dots in the corners of the grid) are

chosen depending on the true line’s (the line between the bottom left corner and

the top right corner of the grid) position relative to a midpoint (short horizontal

lines). If the line is below the current midline, we plot the next pixel to the right.

If, however, the blue line is above the midline, we should plot above and to the

right:

5.3. IMPLEMENTATION 89

i f (BlueLine < Midpoint)

P l o t R igh t P ix e l () ;

else

Plot AboveRight Pixe l () ;

This is in essence the basic idea of the Bresenham’s algorithm. See [11] or [1]

for more details. A example for how a Bresenham line function is implemented is

given in appendix A.1.

5.2.4 Efficiency

The efficiency of the line of sight technique depends on two variables, the length

of the Bresenham line and the number of object forming the terrain. But also

the number of enemies in the level, although this is not caused by the technique

itself but rather a variable depending on the architecture of the level. In total it

is O(NML) where N it is the number of objects in the terrain, M is the length

of the line and L is the number of enemies that have the player on its screen.

See Appendix A for details about the efficiency of the different part of the

implemented technique.

5.3 Implementation

The theories of line of sight in 2D games, visual limit, free sight and Bresenham’s

algorithm, is used together to give the enemy AI agents a natural behavior in the

game. To check if the player is seen by the enemy AI agent the first check is if the

player is on the enemies “screen”, explained in Section 5.2.1.

90 CHAPTER 5. LINE OF SIGHT

Figure 5.7: Illustration of that several lines can be drawn between two characters
in a game.

If the player, or any other object for that matter, is on the enemy AI agents

screen a free sight check, explained in Section 5.2.2, to the object is done.

The line drawn between the characters is done using Bresenham’s algorithm,

described in Section 5.2.3. But instead of drawing a pixel on every point between

the enemy AI agent and the player a collision detection is done on every point

between the AI agent and the player. If there is a collision with a block in the

terrain on a single point between the player and the AI agent it means that there

is not a free sight between the player and the AI agent on that particular line.

But several lines can, most of the time, be drawn between the enemy AI agent

and the player as shown in Figure 5.7. It is possible for several more lines to be

drawn between the characters to blocked by the terrain or other objects and the

enemy AI agent might still see the player. Because it is enough that only one

single of all possible lines between the enemy AI agent to have no obstacles in its

path for the player, or any other object for that matter, to be within the enemy

AI agents line of sight. As seen in the picture in Figure 5.7 three of the five drawn

lines are blocked by the tree stub between them but two of the drawn lines have

5.3. IMPLEMENTATION 91

Table 5.1: Table over the statistics for average time it took to complete a frame
with visible debug lines.

no objects disrupting them resulting in that the left character can see the right

character.

Appendix A gives a detailed description of how this technique was implemented.

5.3.1 One problem

One problem with this brute-force line of sight technique is which of all the possible

lines between the characters should be chosen to check for free sight. If the player

was large, say 253 pixels wide and high, then there would be a lot of possible lines

to draw between the player and the enemy AI agent, 253+253− 1 = 505 different

lines in the worst case scenario. 505 lines are too many to check every frame even

with a computer for a 1 GHz processor, it runs too slow, so obviously all possible

lines cannot be checked.

5.3.2 Statistics

Table 5.1 shows statistics of the average time it took for a certain number of frames

to complete on a small level. The desired time was 30, the time is measured in

milliseconds. The test computer had a 1 GHz Pentium III processor with 256

MB RAM and a ATI Radeon 7500 graphics card. The screen resolution was

1600× 1200. The statistics for this table was gathered with the line of sight lines

actually visible on the screen during gameplay. The purpose for this test was to

92 CHAPTER 5. LINE OF SIGHT

Table 5.2: Table over the statistics for the same level as in Table 5.1 but no lines
are drawn.

Table 5.3: Table of the average time between frames with the number of object in
the level greatly increased.

demonstrate the time difference with and without the lines visible. Without the

lines the time between the frames is much shorter.

Table 5.2 shows statistics for the same level as the statistics in Table 5.1 but

this time the lines were not drawn on the screen and as a result the time between

the frames is much shorter. Even with 56 lines, there were no notable lagging in

the game.

In the statistics of Table 5.3 the level was changed into a level with more than

100 terrain blocks. This means that the collisions checks in the collision detection

described in Section 5.2.2 will increase. As far as up to this test there have only

been one single enemy AI agent and one player in the level. But for the test for

Table 5.3 the enemies were increased to 40 but only one line per enemy. With 100

blocks it is possible to build very big levels if the blocks themselves are large.

5.4. SUMMARY 93

5.3.3 Solution

From the statistics it is possible to read that about 40 free sight checks is the

maximum amount that can be checked per second. That means that one enemy

AI agent can perform 40 checks or that 40 enemy AI agents can perform one check,

or any combination in between. As shown in Figure 5.7 some lines, between the

player and enemy AI agent, have free line of sight and some may not have free

line of sight. As mentioned in Section 5.3.1 many more lines than 40 can often be

drawn between the player and the enemy. If all the lines chosen to be checked are

blocked by the terrain, but there exist lines that are free, the result will be that

the enemy AI agent will not see the player but the player is actually within the

line of sight of the enemy.

If we assume that only one line per enemy will be checked per enemy and

frame, the problem is to choose what line to check. Since one frame only lasts for

30 milliseconds it means that if one line is checked every frame then 33 checks are

preformed every second. The solution is to check one random line between the

enemy AI agent.

The fact that line of sight is not one hundred percent accurate gives a more

human behavior because a human will not notice everything exactly when it ap-

pears all the time. A test run with the chosen point being a random point within

the player the game gave a very natural result.

5.4 Summary

Line of sight is an important part of any game and is very simple when it is the

player we think about. The player’s line of sight is what is shown on the screen.

But when it is about the enemy AI agents line of sight the problem is to limit

what they cannot see. The first limit is to limit the distance how far the AI can

94 CHAPTER 5. LINE OF SIGHT

Figure 5.8: Summary of line of sight, the shaded area within the rectangle is the
area of the level that the enemy AI agent can see.

see then it is a matter to limit what is blocked by the objects in the terrain and

then to speed things up by an algorithm for checking if the line of sight is free.

Figure 5.8 pretty much summarizes this entire chapter. The entire picture is

the level, the funny looking thing right of the mushroom is the enemy AI agent,

the rectangle around the enemy is the enemies screen and the shaded area is what

the enemy can see, or the enemy’s line of sight.

Chapter 6

Image recognition of the level

I
mage recognition is the technique used for identifying what the AI agent

can see. This chapter describes how AI agents within a game can use a

form of image recognition to “see” the terrain in the level.

After the introduction a general description of how collision detection can be

used to to know what is in the AI agents closest surroundings. The next section

describes how an enemy AI agent knows that it shall jump when it reaches a gorge

or a cliff. The section after that one describes how an AI agent predicts if the jump

will be successful. After that follows a section about jumping over high objects.

What is described in this chapter is only a part of all possible combinations

that can be done with this technique but they cover a lot of behavior in a 2D

platform game.

See Appendig B for the implementation of this technique.

6.1 Introduction

Making the enemy AI agents see their closest surroundings is related to image

recognition in mainstream AI. The purpose is to make the enemy AI agents act

95

96 CHAPTER 6. IMAGE RECOGNITION OF THE LEVEL

like a human player would when things appear on the screen. Chapter 5 discussed

when the enemy AI agent sees the player but the topic image recognition of the

level is about seeing the terrain.

When the enemy AI agent shall move between two points on the level and there

are terrain blocks in the way blocking the straight path a technique for knowing

when to jump, duck and do all other kinds of evasion maneuvers that are needed.

It is possible to know if the enemy AI agents can visually analyze the level of their

own without cheating triggers that tell the enemy AI agents what todo, which was

common in old games, but then the enemies movement became too predictable.

6.2 Collision detection for making AI agents “see”

Collision detection is an important feature in game AI because it is the only

technique an enemy can use to know where the objects are in the virtual world.

The technique itself is very simple, it is just a matter of checking if an object is in

a certain area defined by the enemy.

Some argue that collision detection does not fall under the category of game

AI[4][5] but if that was the case then image recognition would not be a part of

AI either because collision detection is the technique used by enemies to visually

recognize the virtual world. The player use human eyes to see what happens on

the screen in order to visually analyze the virtual world.

6.3 Jump over gorges

The first and most simple form of collision detection in 2D platform games is to

detect when the enemy AI agent has reached a position where it is necessary to

either jump or change direction in order not to fall down, see Figure 6.1.

6.3. JUMP OVER GORGES 97

Figure 6.1: The enemy AI agent standing in front of a gorge.

Figure 6.2: The enemy AI agent checking the ground in front of it.

6.3.1 To know when to jump

This can be done with collision detection in front of the character all of the time

as Figure 6.2 shows. The area that is checked is represented by a rectangle in the

picture. If the AI agent reaches a gorge that is too wide for it to step over it must

either jump or turn around. The technique is simply about checking if there are

any terrain blocks or platforms in the area directly in front of the AI agent. If

there is no collision at that particular check then it means that there is nothing to

walk on before the feet of the AI agent. Figure 6.2 illustrates what area that an

AI agent moving right in the screen would check. Note that this rectangle is not

98 CHAPTER 6. IMAGE RECOGNITION OF THE LEVEL

Figure 6.3: The enemy AI agent checking if there is something to stand on within
the distance of how far the enemy AI agent can jump.

the exact area that will be checked, the rectangle is only drawn there to illustrate

an approximate area that will be checked. In this case there is no collision because

there is no terrain block of any kind within the small rectangle in front the AI

agent. When there is no collision in the rectangle in front and below of the AI

agent it will fall down if it continues without doing anything so it has to jump.

See Appendix B.1 and B.2 for the implementation of this technique.

6.3.2 To know if it is possible to jump

After the AI agent knows that it has to jump in order to continue in its path. This

is done by a second collision detection with the size equal of the distance the AI

agent can jump. Figure 6.3 shows this by the rectangle covering the gorge and

some of the platform to the eight side of the picture. If it is a platform or other

kind of terrain block that it is possible to stand on within the area checked, it is

possible for the AI agent to jump over the gorge and land on the other side.

See Appendix B.3 for the implementation of this technique.

6.3. JUMP OVER GORGES 99

Figure 6.4: The enemy AI agent checking how far it have to jump in order land
on a platform.

6.3.3 To know how far to jump

The next problem is to know how far to jump. This is done with several checks

with width equal to the maximum width that the AI agents just walk over. This

way the minimal number of checks will be done, but the position of the platform

it is possible to stand on will still be found. Figure 6.4 illustrates how an enemy

AI agent can check the gorge in order to know how far it has to jump to land on

the other side. Compared with Figure 6.3, the rightmost rectangles right side in

Figure 6.4 is at the same position as the rectangles right side in Figure 6.3.

See Appendix B.4 for the implementation of this technique.

6.3.4 Summary

Figure 6.5 shows a summary of how an AI agent in a 2D platform game can check

the ground in front of it. The small horizontal rectangle is checked every frame.

If there is no collision in that rectangle it means that there is a hole in the ground

that is to large to step over and the AI agent have to jump. If the AI agent have

to jump a second check is done, the large rectangle with curved corners, if there

100 CHAPTER 6. IMAGE RECOGNITION OF THE LEVEL

Figure 6.5: Collision detect used by a AI agent in a game.

is a collision with the ground or an other platform it means that it is possible for

the AI agent to jump to the platform. Then additional checks is done in order

to check how long the distance is between the platforms, illustrated by the small

vertical rectangles in Figure6.5.

6.4 Free jump trajectory

The scenario in Section 6.3 assumes that there is nothing above the gorge hindering

the AI agent in the jump trajectory. But what if there is a terrain block that will

stop the character in mid air and then fall down the gorge? In the technique

described above the enemy AI agent will jump, hit the block and fall down the

gorge. In most cases this is not desirable and a technique used to check if the path

the AI agent will take in the jump is unblocked by anything. In order to know if

the trajectory i free the AI agent have to know many things.

6.4.1 To know if there is jump area is free

If there is no block in the way of the trajectory the AI agent can jump without any

problem. But if the situation is as Figure 6.6 illustrates the trajectory is not free

6.4. FREE JUMP TRAJECTORY 101

Figure 6.6: A scenario where a bock i blocking the jump trajectory of the AI agent.

and it is not possible to jump over the gorge even though the technique described

in Section 6.3 will think that it is possible to jump over the gorge.

First of all a large area is checked to see if there is any terrain block within the

area of the trajectory, see Figure 6.7. If there is no collision then it means that the

trajectory is free and no further checks are needed. But if there is a block within

that area it means that the the trajectory maybe is blocked and the jump cannot

be done but it may still be possible that the AI agent does not know this yet so

more checks are needed before it is possible to know.

See Appendix B.5 for the implementation of this technique.

6.4.2 To know if the trajectory path is free

The large rectangle in Figure 6.7 covers more then the actual area that the AI

agent will cover in the actual jump trajectory. So in this case more checks have

102 CHAPTER 6. IMAGE RECOGNITION OF THE LEVEL

Figure 6.7: The AI agent checking the area that it will jump through over the
gorge.

to be done before the AI agent can know if it is possible to jump over the gorge

without hitting an obstacle and fall down. Since the jump trajectory that the AI

agent, as well as all characters in the game when they jump, will take is a parabola

the small checks will be made in somewhat a parabola.

Figure 6.8 shows how the enemy AI agent checks the path it will take in the

jump over the gorge. The exact position of the checks varies by some pixels each

time to not make the AI agent to predictable. This performs many more then

the large check in Figure 6.7 but it covers less area. These checks overlap each

other and do not cover the exact path the AI agent will take in the jump, because

an exact prediction of the path would take too much time to complete and the

game would run slow. If there had been no collision with the checks in Figure

6.8 the jump might be successful and it might fail due to the truncation of float

number in the formula used to calculate the distance the enemy can jump. This

6.5. JUMP OVER OBJECTS 103

Figure 6.8: The AI agent checking the approximate path it will take in the jump
trajectory.

particular problem can be made so it never occur with smart level design, this of

course requires that the level designers know what they are doing.

In the scenario in Figure 6.9 where the blocks are inside the large rectangle but

outside all the small checks. All the checks are drawn as rectangles in this picture.

The small blocks will make the AI perform the second set of checks but in this

scenario the second set of checks will tell the AI agent that there are blocks in the

way in the second test and it will be possible to jump over the gorge.

See Appendix B.6 for the implementation of this technique.

6.5 Jump over objects

Another kind of obstacle in a 2D platform game are blocks in the path of the AI

that have hight and are needed to be jumped over. Figure 6.10 shows an AI agent

104 CHAPTER 6. IMAGE RECOGNITION OF THE LEVEL

Figure 6.9: A gorge where it is possible for the enemy AI agent jump over it even
though there it blocks in the large check.

6.5. JUMP OVER OBJECTS 105

Figure 6.10: The AI agent and a obstacle with height.

with a block of which it has to predict the height of before it knows if it can jump

over it.

6.5.1 To know the obstacle is not too high

To get the most natural look, the AI agent has to predict that it will have to jump

before it actually reaches the block. Otherwise the AI agent will not jump until it

stands too close to the block and the trajectory will not be good.

Figure 6.11 shows what path the AI agent will take if it does not make the

jump to get over the obstacle before it reaches it. The solution is to make a check

a bit in front of the AI agent. The check have to be made at the position in front

of the character at which the character will be at its maximum height if it would

jump. Figure 6.12 show where the collision detection should be made. This check

is done a little above the ground because it is possible to just walk over small

106 CHAPTER 6. IMAGE RECOGNITION OF THE LEVEL

Figure 6.11: Displaying the path the AI agent will take if it do not predict when
to jump.

obstacles1. The width of the area checked has to be equal or greater than the

horizontal velocity2 of the character otherwise a problem similar to the Running

through walls problem[1] would occur. The running through walls problem

occurs when a character in a game moves faster in pixels per frame then its width

and is i simply moved by addition or substraction its velocity to its positions.

Then is is possible to pass though a wall if no check is done within the area it is

moved. In this case the area checked in front of the character must cover every

single pixel that the character will pass. If not it is possible to miss an obstacle

and the AI agent will look stupid and the players will laugh at the programmers,

which it a very bad thing.

See Appendix B.7 for the implementation of the technique.

When the AI agent in Figure 6.12 gets a true returned from the collision de-

tection it has in front of itself, then it will know that it has to jump in order to

continue its path. Figure 6.13 shows the trajectory path that the AI agent will

take if it jumps before it reaches the obstacle, compare with the Figure 6.11 when

1Or at least that is the goal.
2Measured in pixels per frame.

6.5. JUMP OVER OBJECTS 107

Figure 6.12: The AI agent is checking the path in front of it in case it is a obstacle
in the way.

the AI did not jump until it actually reached the obstacle. The path in Figure 6.13

does not only look better, it makes the enemy move faster to because in Figure

6.11 the horizontal movement stops when the AI agent jumps and starts to move

vertical and does not start to move horizontal until it gets above the obstacle. In

Figure 6.13 the horizontal movement never stops but is constant throughout the

entire jump.

6.5.2 To know if it is possible to jump over a obstacle

Sometimes obstacles are too high for the character to jump over and the height of

the obstacle has to be measured. If for example the AI agent reaches a wall that

it is impossible to jump over then a prediction that the object is too high has to

be done. Since the AI agent is part of the game, the computer system, and knows

108 CHAPTER 6. IMAGE RECOGNITION OF THE LEVEL

Figure 6.13: Path of the AI agent if the jump hade been predicted before it reached
the wall.

everything about every object in the game the size of the object is known. If the

block does not reach higher than the character can jump, then the character can

jump over it.

See Appendix B.8 for the implentation of this technique.

6.5.3 To know if the opening is big enough

In some cases there might be an opening in a wall that the AI agent has to jump

up to in order to get through it with a terrain block that is above the one found

with the first check. Then the distance between the blocks may be too small so

that the character cannot get through it.

Since this time it is a matter of not hitting objects compared to Section 6.3.3

where the goal was to land on platforms, the purpose here is pass freely over it.

If there is a block that stops the enemy AI agent from pass through the opening

in the wall the technique described in Section 6.5.2 will not find that the block

is there. Figure 6.14 illustrates the AI agent standing in front of a wall with a

opening in it. To know if the opening is wide enough the AI has to check an

6.6. TRIGGERS ON THE MAP 109

Figure 6.14: A enemy character standing in front of a wall with a opening in it.

area with the size equal to the size of the AI character. This is illustrated by the

rectangle in Figure 6.14 where the check is made exactly over the block that the

AI agent shall jump over. In this case it is not possible for the AI agent to jump

into the opening. If the upper edge of the block that is blocking the way in is

below the upper limit of how high the character can jump a second check to see if

it is possible to jump over the upper block.

See Appendix B.8 for the implementation of this technique.

6.6 Triggers on the map

Another more common way of making the enemies jump when they are supposed

to is to put special triggers events on the map telling the enemy AI agents exactly

how to act. This is often done by putting the artificial intelligence itself in the

110 CHAPTER 6. IMAGE RECOGNITION OF THE LEVEL

Figure 6.15: An AI agent and a jump trigger.

objects in the game[4], The Sims used this technique. Figure 6.15 shows an enemy

AI agent in front of a gorge with a trigger, placed at the edge of the gorge, telling

the AI agent to jump. In Figure 6.16 it is not possible for a character to jump

because there is an object in the air blocking the jump trajectory. So the trigger

will give the AI agent the instruction to turn left when it reaches the edge of the

gorge. In these two cases the AI agent does no calculation itself, it just does what

the triggers tell it to do.

The advocates of this technique point out that it makes the AI agents more

flexible when it comes to upgrades. In some cases this is desirable but in 2D

platform games that would mean a lot more objects, the triggers, on the map

since every little instruction for the enemies would require a trigger. But this

would mean that the enemies would move in predictable patterns which is not

good in a platform game.

6.6. TRIGGERS ON THE MAP 111

Figure 6.16: An AI agent and a turn left trigger.

It is better if every enemy AI agent acts independently in any part of the

map on any map and this can be done with the special form of image recognition

described below. In 2D platform games the AI agents have only a couple of simple

moves that it is programmed to do. And enemies in games are in most of the

time not in need of upgrades. Enemies are what they are and when it is time for

the player to meet tougher resistance then new kind of enemies, with different AI

techniques, are introduced to make things harder.

6.6.1 Fixed points on the map

In finite state machines when the enemy AI agent needs a few triggers or adjacency

points then it is in the state patrol because it needs to know what to patrol. In

most cases only one point on the map and a value of how big area should be

patrolled is needed. These points can easily be a node used in pathfinding so no

112 CHAPTER 6. IMAGE RECOGNITION OF THE LEVEL

extra points are needed.

6.7 Summary

These techniques described in this section are really simple when given thought but

they cover the most common scenarios in 2D platform games. These techniques

are not really image recognition, as stated in the chapter title, because they do not

really visually analyze the graphics in the game like the player does in the human

brain, but they “see” the abstract objects that is the platforms in the game. These

general techniques of recognizing the level works with only the terrain itself but it

is also possible to cheat even more by placing triggers on the level telling the AI

agents what to do when they get there[4].

If these techniques were to be combined at the same time a quite good behavior

in a 2D platform game could be archived.

Level design can and should be made to help the AI agents but it should not

be too obvious for the player. Good level design can really help the AI agents.

But on the other hand crappy level design can make any AI look stupid.

Chapter 7

Pathfinding

P
athfinding is the technique used by the AI agents when they move

in non straight lines on a large scale. This chapter will describe

a technique for pathfinding that is more efficient and accurate in

runtime than the pathfinding with A* algorithm for an 2D platform

games. First the basic theory of pathfinding will be described. After that the

reason that the architecture of 2D platform games can be the way it is from a

pathfinding perspective is discussed. Then the technique itself is described.

7.1 Introduction

Pathfinding with A* is an established pathfinding algorithm in game programming.

It is good for games where the enemy AI agents can move forewards, backwards,

left and right. But in 2D platform games the characters really move in only one

dimension, left and right. Up and down are dimensions that the enemies no not

move so much and neither does the player. With the techniques for avoiding

obstacles described in Chapter 6 the number of nodes can be greatly reduced.

In reality a search algorithm for pathfinding is only useful for graphs with

113

114 CHAPTER 7. PATHFINDING

very many nodes, but in a 2D platform game where there are relatively few nodes

another approach can be made without loosing performance.

7.2 Theory

The nodes in pathfinding with A* know only the cost to pass them or the cost to

get between the node and its connected nodes. In a system with few nodes the

nodes can contain enough data to know which way is the closest way to all nodes

on in the map. In other words, each node knows which one of its connected nodes

it should choose next in order get to a specific point on the map the fastest way.

This require that each node has an array containing the index for all other

nodes on the map and which of its connected nodes the AI agent should go to next

to go the shortest path.

7.2.1 The graph of nodes

The structure of the nodes on a map would be a directed graph just like any other

directed graph. The graph would most likely be cyclic but do not have to.

The way the list determines which node is the best path to any given node is

calculated can be done with a complete shortest path algorithm when the level is

loaded or can be preprogrammed in the file containing all the map data. In either

way the CPU time during gameplay is minimal at the expense of memory usage.

7.3 2D platform games need only few nodes

As mentioned earlier 2D platform games need only a few nodes, or waypoints, in

order to work. This is due to that the orientation in 2D platform games is so

simple. Characters move only left and right, which is just one dimension, and the

7.3. 2D PLATFORM GAMES NEED ONLY FEW NODES 115

Figure 7.1: A part of a navigation mesh covering a staircase. Each convex polygon
(with an ’X’ in the center) is a node of the navigation mesh. Courtesy of Paul
Tozour and Ion Storm Austin[4].

movement between nodes is in itself extremely simple compared to games with a

birds view or a 3D game, where all the movement is in two dimensions and in

some cases three dimensions. In 3D games the characters mostly move on a two

dimensional surface resembling a floor or something equivalent and thus most of

the movement is in two dimensions.

Figure 7.1 shows part of a large system of navigation nodes. A game of this

type can contain 20000 nodes[4] Each one of these four cornered red polygon with

a ’X’ in the middle work as a node for the AI agents pathfinding. That is very

116 CHAPTER 7. PATHFINDING

Figure 7.2: A map in a 2D platform game with the pathfinding nodes marked as
ellipses.

many nodes on one map which would take up too much of the internal memory if

every node knew about all nodes so a pathfinding algorithm like A* is suitable.

In a 2D platform game the map could look like Figure 7.2. The connections

are not shown in this picture. The little thing within the rectangle is a AI agent,

the rectangle is the AI agent’s screen and the entire picture is the map.

The small, differently shaped ellipses are the nodes used for pathfinding. This

is a pretty small sized map in a 2D platform game and the number of waypoint

nodes, 25, is a lot less then 20,000. If the size of the map were to increase by a

factor of 10 then the number of nodes would still only be less than a fraction of

20,000.

The reason that a 2D platform game can contain so few nodes is first of all

that the distance between them is great. The distance can be so big because the

AI agents can move around the obstacles in its path independently, described in

7.4. IMPLEMENTATION 117

Chapter 6.

7.4 Implementation

The structure of the nodes could look something like this:

struct pathNode

{

// the p o s i t i o n o f the node on the map

int x , y ;

// the g l o b a l unique i d e n t i f i e r o f the node

int index ;

// the l i s t contaning a l l the o ther nodes

// and what o f the non connected nodes i s the

// s h o r t e s t path to each node

int ∗ l i s t [2] ;

// the connected nodes

pathNode ∗nodes [] ;

} ;

The connected nodes and the list are dynamic because they are explicit for

each unique map.

The memory usage is formally defined as O(N2) because each node have infor-

mation about every other node. The table for each node in the case of the map in

118 CHAPTER 7. PATHFINDING

Figure 7.2 with 25 nodes would be 25 lists with 24 rows in each list. If each row in

the list is two integers large, each list would be 4 ·4 ·24 = 192 bytes if integears are

4 bytes large. And all the lists would take up 25 · 192 = 4800 bytes. With the case

of 20,000 nodes the same formula would be 4 · 4 · 19, 999 · 20, 000 = 6, 399, 680, 000

bytes and few personal computers have 5.96 GB of internal memory, but almost

every computer has more than 4.68 KB memory. The technique described here

can for natural reasons not be implemented in a game system with 20,000 nodes

but it is fully possible to be used in a 25 node system.

Figure 7.3 shows the same system as in Figure 7.2 but it has the connections

drawn out as lines and the nodes have index numbers. All connections are un-

directed unless there is an arrow in the line indicating the direction. Those are

directed because of the height differences, the characters cannot jump high enough

to reach the edges so there is only possible to go in one direction between those

nodes.

The list for the node with index 22 would be Table 7.1. It contains all nodes

on the map in Figure 7.3 except itself and which one of its connected nodes is the

closest path to every node on the map.

7.5 Summary

The technique described here, with the nodes having information about all other

nodes, is more efficient when the number of nodes are small because there is no

realtime searching but would be inefficient with a large number of nodes because

the memory usage would be too great.

The technique described in this chapter may have some similarities with a

certain form of technique used for finding routes for digital packets of information

in a form of ethereal network[10]. It is strange that none of the literature mentioned

7.5. SUMMARY 119

Figure 7.3: The same map as in Figure 7.2 but with the node indexes and connec-
tions.

120 CHAPTER 7. PATHFINDING

Table 7.1: The list for node 22 in Figure 7.3.

7.5. SUMMARY 121

the simple technique that is described in this chapter.

This pathfinding technique was not implementid in this dissertation. But look

up any serious book about computer communication and look up link-state routing

for a description about how it can be implemented.

122 CHAPTER 7. PATHFINDING

Part III

Discussion

123

Chapter 8

Evaluation

T
his chapter describe the evaluation of the three techniques line of

sight, image recognition and pathfinding. After the introduction

there is a section describing the main results. The next section is

an evaluation of the implemented techniques compared to the expectations. Then

there is a section about cell phones and palm pilots since most of the games for

them are in 2D, which makes them worth mentioning.

8.1 Introduction

This dissertation aimed to improve what have stood still for a long time. Hopefully

this will change in the future and 2D platform games will become as popular as it

was in the middle of the 90:s.

The evaluation of the topics in this dissertation compares the result with the

goals that were set when the work started. The goals was simply to make the

techniques fulfill the specifications for each technique. The overall results of the

techniques have been satisfying. The line of sight technique makes the enemies

see the player under the same conditions that the players can see what is on the

125

126 CHAPTER 8. EVALUATION

screen. The image recognition of the levels makes the enemies act without any

pre-programmed movement patterns. Pathfinding was the one technique that was

not implemented but in theory it will work since link-state routing works and it

uses the same algorithm and link-state routing works.

8.2 Achievements

There have been mechanisms implemented in this dissertation. It is for genre 2D

platform games that have not been improved for a long time.

The expectations were to have the foundation of an AI system for a 2D platform

game and this has been achieved. The enemy AI agents act independently on

the level and can be placed on any 2D platform game map. The pathfinding

waypoints still need to be placed on the map but that cannot be avoided with

today’s computers.

This section will discuss the results compared to the expectations. In line of

sight the expectations were to have a working technique that made the enemies

only notice the player when it were nothing blocking the way between the player

and the enemy. In the image recognition of the level technique the expectation was

to have a technique that made the enemies adapt to there surroundings and do

not need to be pre programmed for each situation. In pathfinding the expectation

was just to make the enemies find their way on the level.

8.2.1 Line of sight

The line of sight technique is detailed, exact and gives a good result during ga-

meplay. It makes the enemies only notice the player when the player is on the

enemy’s screen. If the player hides behind big blocks the enemy AI agent cannot

see the player. It is possible for 40 enemies at a time to be on the screen and

8.2. ACHIEVEMENTS 127

perform a line of sight check each without any lagging. In fact, even more enemies

can be on the screen simultaneously if the line of sight check is turned of when the

enemies have seen the player. If the enemies then can communicate through an

observer system[15] then no checks will be needed for all the close by enemies.

Overall the line of sight technique works satisfyingly.

The line of sight technique is much more detailed than the line of sight techni-

ques used in the old 2D games from the 1980:s and 90:s. Once the algorithm was

done all that is needed is a function call in the AI function call during runtime.

The only requirement is that the AI agent has knowledge of the terrain, just like

the requirement for the physics within the game.

8.2.2 Image recognition of the level

This was not a set goal when this dissertation started but it turned out to be such

an important compliment to making pathfinding work that it became a topic of

itself. The goal was to make the enemy AI agents move independently on the

map across the level. The AI agents can move in both directions and find their

ways around simple obstacles and change their direction when they cannot pass

an obstacle.

This technique is both simple and rather complicated at the same time. It is

simple because in theory it is just a matter of checking a certain area and see if

there is nothing within that area. It is complicated when it comes to calculating

where exactly these areas are.

The checks needed in image recognition of the level are less then a fraction

of what is needed in line of sight even though these checks are done even by the

enemies that are not on the player’s screen. So all enemies on the level need to do

the checks all the time but there are so few checks that there is no lagging.

Compared to triggers image recognition of the level makes the enemy AI agents

128 CHAPTER 8. EVALUATION

more independent. It is possible for the level designers to place any enemy on any

map without spending work on placing the triggers on the map. And when it

comes to home made maps the amateur level designers will not be pleased when

they have to do some semi-programming when they place the instructions on the

map. Of course this is a matter of taste among the different modding communities

but in general it is popular when as little as possible is needed to be done.

The examples in this dissertation cover only moves when jumping is involved.

But the technique can easily be extended to involve other kind of moves.

8.2.3 Pathfinding

The pathfinding technique is a simple brute-force technique that saves processing

power at the cost of memory. This technique for finding paths or routes has

been applied for a long time but not in games. It is surprising that none of the

literature about game programming and game design mentions that the algorithm

for link-state routing[10] could be used in game pathfinding to increase the frame

rate.

In games with few nodes this technique is useful because it saves processing

during runtime and give the same result as a search algorithm. But in games with

many nodes the memory usage weights over the search time for the algorithm and

it is better to search then to keep record of what is the best way. There is no

exact number set when it is better to keep record of a path like with the technique

presented in this dissertation or when it is better to search each for a path time

it is needed likw with pathfinding with A*. The technique of choice have to be

decided by the programmers in each case.

It is much simpler then the pathfinding with A* algorithm. And it does not

require more work of placing the nodes on the map then the pathfinding with A*

needs because a shortest path algorithm can fill in the table needed for each node

8.3. CELL PHONES AND PALM PILOTS 129

when the map is designed by the level designers.

The fact that this kind of pathfinding always chooses the best path in the map

can by some people be compared with triggers on the map and give the enemy

AI agents a preprogrammed perfect path to follow, just like triggers do, but on

a larger scale. But remember that these are enemies in a game on a map and

that they are supposed to have knowledge, meaning that the enemies have already

explored the level before the player got there.

8.3 Cell phones and palm pilots

2D games have gained some popularity again after almost ten years of silence in

the form of games for cell phones and palm pilots, with Nokia’s N-Gage as one

of the most specialized for playing games. The hardware in cell phones and palm

pilots is a lot less powerful then the hardware on computers and game consoles.

This of course means a limitation on how advanced the games can be compared

to computers and game consoles.

8.3.1 Line of sight

The main issue with the line of sight technique is that it requires so many collision

detection checks, one for each line between the enemy AI agent doing the check

and the character or object that it is trying to see. But the screen resolution on

cell phones and palm pilots are a lot less then the screen resolution on a computer.

The line of sight algorithm was test run with 1600×1200 which is much compared

to games of today standards, the PAL system use 800 × 600 which means the

console games are limited to that resolution. Computers on the other hand do not

have that resolution restriction but since most of the 2D games were released on

consoles that did not have that great resolution.

130 CHAPTER 8. EVALUATION

Cell phones and palm pilots have only a couple of hundred pixels resolution in

each dimension which means a lot less collision detection so the checks will not

drain so much of the CPU power.

8.3.2 Image recognition of the level

The number of checks needed for this technique will not decrease if the screen

resolution decrease. The area that is checked will be smaller but that fact does

not matter, it is the number of checks that drain the CPU power. But the number

of checks is only a couple of dozen in worst-case scenarios when several enemies AI

agents reach an obstacle in the exact same frame. So the problem of less powerful

hardware will not occur with this technique.

8.3.3 Pathfinding

Since this technique has nothing to do with what is shown on the screen it will not

be affected by that the screen is smaller on cell phones and palm pilots. But since

the hardware for cell phones and palm pilots is less powerful than on computers

and game consoles, the pathfinding with A* algorithm will probably drain so

much CPU power that it might be better to use the technique described in this

dissertation.

8.4 Summary

The line of site technique does not give the enemy any unfair advantage on the

player. The image recognition of the level technique do not make the enemies

move in pre programmed patterns but it still gets them across the level to the

given destination. The pathfinding technique makes the enemies move around on

the level like it was their home field and saves CPU power.

8.4. SUMMARY 131

The line of sight technique can handle about 40 enemies on the screen at the

same time which is more then most there will be in most games. The image recog-

nition have fulfilled the goal of making the AI agents find its way around simple

obstacles but only covers movement in left and right and jumping. The pathfin-

ding technique gets the job done even though the path is pre programmed but the

path the AI agent would take with pathfinding with A* is also pre programmed so

it will give no more mechanical feeling to the enemies than pathfinding with A*

would.

The techniques are assumed to work well on games on cell phones and palm

pilots because they are so simple and do not drain the CPU unnecessary much and

in the case of line of sight the limited visual limit cuts down the cost for calculating

it.

Chapter 9

Conclusions

T
his chapter provides the conclusions for all techniques in the experi-

ment part. First there will be a discussion about whether the result

of each technique is good or not. Then the different problems with

each technique will be mentioned and how they were solved.

9.1 Conclusion

AI techniques needed in game AI do not need to be perfect all the time. An enemy

AI agent that is too good will be impossible to beat and not fun to play against.

The results of the three techniques affect the backend behaviour of the AI agents.

The line of sight is used to collect information about hostile characters. Image

recognition of the level is used to check if a obstacle is passable and pathfinding is

used to choose what way to go.

9.1.1 Line of sight

The line of sight techniques mentioned in the literature were designed for 3D games

where approximation is needed for not slowing down the game. In 3D games there

133

134 CHAPTER 9. CONCLUSIONS

is no visual limit to the free sight checks so there is no theoretical length limit so

all enemies have to check for free sight all the time. That would take drain too

much of the CPU power and would cause lagging.

The technique is good in 2D games but not so good in 3D games.

9.1.2 Image recognition of the level

This is a topic of game AI that never can be proven to be perfect. But as long

as it gets the job done it will be considered good. And no players wants the AI

agent to make the perfect decision all the time. The feeling of being better than

the enemies when an enemy gets stuck at an obstacle when it is chasing the player

and the player have low health is something all game makers want their players to

experience.

9.1.3 Pathfinding

Compared to pathfinding with A* algorithm the technique described in this dis-

sertation will give the best choice of path each time which the A* algorithm will

not.

Pathfinding with A* is preferable when there are a lot of nodes but in systems

with few nodes it is faster to have a technique when all nodes know the best path

to all other nodes, because it will not drain CPU power. But with a system with

too many nodes the nodes will need too much of the internal memory and the

system will run slow.

9.2 Problems

Since the techniques described use mainly brute-force in one form or the other the

main problem is hardware restriction which can be solved with more memory and

9.2. PROBLEMS 135

faster processors.

9.2.1 Line of sight

The main problem with this technique is that it requires so many collision detection

checks which makes the game lag if they are to numerous. A perfect line of sight

would need to check every single possible line between the AI agent and the player.

If the sprite of the player is 255 × 255 the worst-case scenario would require 509

checks. If the player is as far away as possible from the enemy this would require

255×(800−255)+255×(600−255) = 226950 single collision detection checks which

are too much to today’s processors to handle in 30 milliseconds. Even though there

may exist a line that is free between the AI agent and the player there is no way

to know if the line has free sight unless it is checked. The problem was to choose

which one of the lines to check.

To pick a random line of all possibilities is not perfect but it still means that

there will be 33 checks per second, which means that statistically every line will

be checked in 16 seconds. Which means that when only one pixel of the player

is visible to the enemy it will take some time for the enemy to notice the player.

This actually turned out to be a good thing because it means that if the player

hides behind an object, the enemy will not see the player immediately. Just like

in reality it takes some time to find objects that are hidden.

Compared to approximation techniques where is it possible to be within the

enemy’s line of sight for an infinite amount of time without being seen[4], this gives

a natural feeling to the enemies at the same time as it is more detailed.

9.2.2 Image recognition of the level

There were really no problems with this technique unless the check is expected to

be perfect. Which would mean checking every possible path that the enemy AI

136 CHAPTER 9. CONCLUSIONS

agent could take in the jump trajectory in the case with jumping. The problem

with approximations makes the enemies sometimes do clumsy things, which is

funny for the players to watch unless it is predictable. It will seldom do the

clumsy things, unlike when a trigger was misplaced on the map which would make

the AI agent do the same mistake every time.

9.2.3 Pathfinding

Since an existing pathfinding technique was used no problem existed at all. The

technique is the same as the one used for finding routes but it works well for paths

as well.

Someone who is into computer communications might feel tempted to try the

pathfinding with A* algorithm on routing and see how well that works. I leave it

as an unanswered question.

Chapter 10

Plans for Future work

F
uture work is a very open subject with the techniques described in

this dissertation. The techniques described cover far from all that is

needed in a complete 2D platform game and there is a lot of room

left for improvement. This dissertation covered only some basic

techniques that, if they were to be the only techniques in the AI of a game, would

be very much of a challenge to a player. What is needed is a complex finite state

machine that handles combat with the player.

10.1 Line of sight

This technique is more or less complete. If the player is only partly visible to the

enemy then it will take some time before the enemy sees the player because only

one single line is checked every frame and that line is picked at random. In the

future when the computers are fast enough to check every single line between the

enemy AI agent and the player the technique will be perfect and the enemies will

see the player immediately when it is possible for the enemies to see the player.

Then it is possible to make the perception of the enemies into a skill just like any

137

138 CHAPTER 10. PLANS FOR FUTURE WORK

other skill of the characters in the game. The enemies have to do a skillroll every

tenth second or see if they have noticed the player just like in ordinary paper RPG.

10.2 Image recognition of the level

This is the topic that is in most need of improvement and also the topic that has

the greatest possibilities to be improved.

One of the level analyzation with image recognition and, corresponding move

that can be added is crouching. The enemy can if it reaches a wall check if there is

an opening big enough for it to crawl through. Then if there is an opening in the

wall the AI agent can crawl, crouch or stand on its knees. This of course requires

a more complex finite state machine for the enemy that have the state crouching.

Additionally special moves like grabbing the edges of cliffs and rooftops. This

check needed for this would just be a simple collision detection check in the re-

achable area to see if there is an edge of something that it climbs up on.

There is a lot more things that can be measured with image recognition of the

level. Just like in mainstream AI there is no theoretical limit for what information

can be gained with image recognition there is no limit for what information can

be gained with image recognition of the level in game AI.

When the computer hardware is powerful enough to give a perfect simulation of

the jump trajectory and make several simulations with different jump trajectories

at different speeds and heights it would be good to add the skill jump to the

enemy AI agent’s skills just like it could be done with perception. If the skillroll is

successful the enemy AI agent will jump, if the roll is unsuccessful the enemy AI

agent will not jump and if the roll is a critical failure the enemy will fall down. This

way there will be unpredictable clumsiness among the enemies, which is something

that will add to the gaming experience for the player.

10.3. PATHFINDING 139

10.3 Pathfinding

There is really no possible way for improving this technique itself. But adding

more nodes to the level would make the technique more precise, but that would

consume more memory. When the computers are fast enough and have enough

memory a perfect shortest path algorithm will replace this technique because the

computer could calculate it without any lagging and pathfinding with A* would

stop being used because it is not perfect.

Like the two other techniques, line of sight and image recognition of the level,

an intentional stupid decision can make the AI less mechanical. If the enemy is

in a stressful situation, like when it has low health, low ammunition and is being

chased by the player, it might take the wrong path in the level resulting in not

escaping. In this scenario fuzzy logic can be useful to determine if it is a stressful

situation or not.

References

[1] Daniel Lindsäth and Martin Persson, Implementation of a 2D Game Engine
Using DirectX 8.1, Karlstad Univerisy, Bachelor’s Project 2004:24, 2004.

[2] Robert L. Glass, Facts and Fallacies about Software Engineering, Addison
Wesley, ISBN 0321117425, 2004.

[3] David M. Bourg, AI for Game Developers, O’Reilly & Associates, ISBN
0596005555, 2004.

[4] Steve Rabin, AI Game Programming Wisdom, Charles River Media, ISBN
1584500778, 2002.

[5] Steve Rabin, AI Game Programming Wisdom 2, Charles River Media, ISBN
1584502894, 2003.

[6] Stuart Russell and Peter Norvig, Artificial Intelligence: A Modern Approach,
Prentice Hall, 2st Edition, ISBN 0130803022, 2003.

[7] André LaMothe Tricks of the Windows Game Programming GURUS, Sams,
2nd Edition, ISBN 0-672-32369-9, 2002.

[8] André LaMothe Windows Spelprogrammering för DUMMIES, IDG AB, ISBN
91-7241-006-X, 1999.

[9] John E. Hopcroft, Rajeev Motwani and Jeffery D. Ullman, Introduction to
Automata Theory, Languages, and Computation, Addison Wesley, 2st Edition,
2000.

[10] James F. Kurose and Keith W. Ross, Computer Networking: A Top-Down Ap-
proach Featuring the Internet, Addison Wesley, 2st Edition, ISBN 0201976994.
2002.

[11] Jack Bresenham, Algorithm for Computer Control of a Digital Plotter, IBM
Systems Journal Volume 4 Number 1 pp 25-30, 1965.

141

142 REFERENCES

[12] Lotfi A. Zadeh, Fuzzy sets, Inf. Control 8, 338-353, 1965.

[13] Julian Gold, Object-Oriented Game Development, Addison Wesley, ISBN
032117660X, 2004.

[14] Ayn Rand, Introduction to Objectivist Epistemology, Meridian, ISBN
0452010306, 1990.

[15] Erich Gamma, Richard Helm, Ralph Johnson and John Vilssides, Design
Patterns, Addison Wesley, ISBN 0201633612, 2004.

[16] Ernest Parza, Focus on SDL, Premier Press, ISBN 1592000304, 2003.

[17] Bill Slavicsek, Rich Baker and Kim Mohan, Dungeons & Dragons For Dum-
mies, Pagina, ISBN 0764584596, 2005.

[18] George Orwell, Nineteen eighty-four.

[19] Retro Gamer, Live Publishing, Issue 12 p 28.

[20] Svenska PC Gamer, Hjemmet Mortensen AB, Issue 98 pp 44-53.

[21] American Heritage Dictionarie, The American Heritage Dictionary of the
English Language, Houghton Mifflin, 4th Edition, ISBN 0395825172, 2000.

[22] Alan Turing, Computing machinery and intelligence, Mind, vol. LIX, no. 236,
pp. 433-460, October 1950.

[23] Kurt Gödel, Über formal unentscheidbare Sätze der Principia Mathematica
und verwandter Systeme, I. Monatshefte für Mathematik und Physik 38,
(1931), pp. 173-198. Translated by Harvard University Press, 1971.

[24] www.dictionary.com, http://dictionary.reference.com/search?q=agent, 2005-
02-21.

[25] The American Assosiation of Artificial Intelligence, http://www.aaai.org, ar-
ticle Expert Systems And Artificial Intelligence.

[26] www.wikipedia.org, http://en.wikipedia.org/wiki/Expert system, 2005-05-10.

[27] www.wikipedia.org, http://en.wikipedia.org/wiki/Turing test, 2005-04-04.

[28] Google Scholar, http://scholar.google.com/.

[29] Deep Blue, http://en.wikipedia.org/wiki/Deep Blue, 2005-05-05.

[30] Guinness World Records http://www.guinnessworldrecords.com, 2005-12-12.

http://dictionary.reference.com/search?q=agent
file:www.aaai.org
http://en.wikipedia.org/wiki/Expert_system
http://en.wikipedia.org/wiki/Turing_test
http://scholar.google.com/
http://en.wikipedia.org/wiki/Deep_Blue
http://www.guinnessworldrecords.com

Part IV

Appendixes

143

Appendix A

Line of sight

T
his appendix will describe the functions used to implement the te-

chnique described in Chapter 5. Bresenham’s algorithm is such an

important part for optimizing the implementation of the technique

that it is included in this appendix.

The functions Free Sight() and Simple Ground Collision() are the bottle-

necks of the line of sight technique. Because Simple Ground Collision() is de-

pendent of the number of objects in the terrain the efficiency is O(N) where N is

the number of objects in the terrain. Free Sight() uses the Bresenham algorithm

and is dependent of the size of enemies screen, se Section 5.2.1 for details about

this, so the efficiency for Free Sight() is O(M) where M is the absolute value of

the distance between the player and the enemy, this is half the diagonal of the

screen in the worst case scenario. So the efficiency for the line of sight technique is

O(MN). But for the entire AI system, which also have a number of enemies that

use the line of sight technique, the efficiency is O(NML) where L is the number

of enemies on the screen.

All the variables and constants that are used in the code but not are in the

arguments or is defined in the functions are protected data members of the object

145

146 APPENDIX A. LINE OF SIGHT

Enemy.

See Chapter 5 for the theory this technique.

A.1 Bresenham’s algorithm

This function is an example of how Bresenham’s line algorithm can be implemen-

ted. This function only draws a line between two points but a modified version

of this can be used for any type of line scanning, like detailed movement in game

physics and line of sight checks in game AI. This code is simply a C++ implemen-

tation of the algorithm described in Section 5.2.3. The function putpixel() simply

draws a pixel on the screen at the coordinates x0 and y0 the 8-bit color color.

The theory for this function is described in Section 5.2.3.

A.1.1 Code

void Bresenham (int x0 , int y0 , int x1 , int y1 , int c o l o r)

{

i f (x0==x1&&y0==y1)

{

putp ixe l (x0 , y0 , 0) ;

return ;

}

int s t eep = 1 ;

int sx , sy ;

int dx , dy ;

int e ;

// i n l i n e swap fo r opt imation purposes

int tmpswap ;

#define SWAP(a , b) tmpswap=a ; a=b ; b=tmpswap ;

// opt imize f o r v e r t i c a l and ho r i z on t a l l i n e s here

dx = abs (x1 − x0) ;

sx = ((x1 − x0) > 0) ? 1 : −1;

A.2. LINE OF SIGHT 147

dy = abs (y1 − y0) ;

sy = ((y1 − y0) > 0) ? 1 : −1;

i f (dy > dx)

{

s t eep = 0 ;

SWAP(x0 , y0) ;

SWAP(dx , dy) ;

SWAP(sx , sy) ;

}

e=(dy<<1)−dx ;

for (int i = 0 ; i <= dx ; i++)

{

i f (s t eep)

{

putp ixe l (x0 , y0 , c o l o r) ;

}

else

{

putp ixe l (y0 , x0 , c o l o r) ;

}

while (e >= 0)

{

y0 += sy ;

e −= (dx << 1) ;

}

x0 += sx ;

e += (dy << 1) ;

}

}

A.2 Line of sight

It is this function that is called in the enemies AI function. The first values

calculated in the function is the virtual screen of the enemy. After that it cal-

culates the coordinates of the rectangle of the character it shall check if it can

148 APPENDIX A. LINE OF SIGHT

see. The coordinates are not the coordinates of a rectangle in the normal sense,

that it, the x and y coordinates and a height and a width, but the position of the

four one dimensional straight lines for drawing the rectangle. Then the function

Character On Screen() is called to se if the player is inside the enemy’s screen. If

so there are four independent checks to see if any part of the player’s rectangle is

outside the screen. If so the rectangle is recalculated so that only the part of the

player’s rectangle that is inside the screen of the enemy will be used for the next

part of the function. Then it is time to check if it is possible to draw a line between

the enemy and the player without hitting any object in the terrain. The position

of the target point of the line is picked at random within the player because of the

result of Section 5.3.3.

A.2.1 Code

bool Enemy : : L ine Of S ight (Character ∗ cha r a c t e r a r g)

{

// c a l c u l a t e the corners o f the enemies screen

int l e f t , r i ght , up , down ;

l e f t=x−SCREEN WIDTH/2 ;

r i g h t=x+SCREEN WIDTH/2 ;

up=y−SCREEN HEIGHT/2 ;

down=y+SCREEN HEIGHT/2 ;

// c a l c u l a t e the p l aye r s r e c t ang l e

int vansterkant=charac t e r a rg−>x ,

hogerkant=charac t e r a rg−>x+charac t e r a rg−>width−3,

bredd=charac t e r a rg−>width−2,

overkant=charac t e r a rg−>y ,

underkant=charac t e r a rg−>y+charac t e r a rg−>height −3,

hojd=charac t e r a rg−>height −2;

// check i f the p l ayer i s on the enemies ” screen ”

i f (Character On Screen (cha r a c t e r a r g))

{

// f i r s t , co r r e c t the checkabe l area to t ha t i t

A.2. LINE OF SIGHT 149

// only i s the par t o f the enemy tha t i s i n s i d e

// the enemies ” screen ”

// check i f t he re i s any par t o f the p l ayer t ha t i s

// ou t s i d e o f the enemies ” screen ”

i f (r i ght <hogerkant)

{

// the p l ay e r s r i g h t edge i s ou t s i d e

// the enemies ” screen ”

bredd−=hogerkant−r i g h t ;

}

i f (vansterkant< l e f t)

{

// the p l ay e r s l e f t edge i s ou t s i d e

// the enemies ” screen ”

bredd−=l e f t −vansterkant ;

vansterkant=l e f t ;

}

i f (down<underkant)

{

// the p l ay e r s lower edge i s ou t s i d e

// the enemies ” screen ”

hojd−=underkant−down ;

}

i f (overkant<up)

{

// the p l ay e r s upper edge i s ou t s i d e

// the enemies ” screen ”

hojd−=up−overkant ;

overkant=up ;

}

// check i f t he re i s f r e e s i g h t between the enemy

// and the area o f the p layer t ha t i s on the

// enemies ” screen ”

i f (Free S ight (vansterkant+rand ()%bredd ,

overkant+rand ()%hojd))

{

return (t rue) ;

}

}

150 APPENDIX A. LINE OF SIGHT

return (f a l s e) ;

}

A.3 Character on screen

This function checks if the character in the argument is on the enemies virtual

screen. It simply checks if there is a collision between the rectangle of the character

in the argument and the rectangle formed by the visual limit, se Section 5.2.1, of

the enemy using the function Collision Test2() with the lines of the rectangle of

the player and the lines of the rectangle of the enemy’s screen as arguments. If

there is a collision the function returns true if not it returns false.

The theory for this function is described in Section 5.2.1.

A.3.1 Code

bool Enemy : : Character On Screen (Character ∗ cha r a c t e r a r g)

{

return (Co l l i s i o n Te s t 2 (charac t e r a rg−>x ,

cha rac t e r a rg−>y ,

cha rac t e r a rg−>x+charac t e r a rg−>width−3,

cha rac t e r a rg−>y+charac t e r a rg−>height −3,

x−SCREEN WIDTH/2 ,

y−SCREEN HEIGHT/2 ,

x+SCREEN WIDTH/2 ,

y+SCREEN HEIGHT/2)) ;

}

A.4 Collision test

This function is named Collision Test2() instead of just Collision Test() because

it is version 2 of the collision function used in the game engine. This function takes

eight parameters, these are the one dimensional lines used to draw the rectangles

it is checking for collision of. It starts by subtracting two from coordinates of

A.5. FREE SIGHT 151

the left and lower lines of the both rectangles. This is due to the implementation

of the graphics engine. So in another graphics engine this subtraction should

perhaps not be done. But with the engine written by André LaMothe in Tricks

of the Windows Game Programming GURUS [7] and Windows Spelprogrammering

för DUMMIES [8] used for the experiment in this dissertation this subtraction

is necessary. The collision test itself it just a large number of comparisons and

boolean algebra.

A.4.1 Code

int Co l l i s i o n Te s t 2 (int x1 , int y1 , int w1 , int h1 ,

int x2 , int y2 , int w2 , int h2)

{

w1−=2;

h1−=2;

w2−=2;

h2−=2;

return (((x1<=x2 && x2<=w1) && (y1<=y2 && y2<=h1)) | |

((x1<=w2 && w2<=w1) && (y1<=h2 && h2<=h1)) | |

((x1<=x2 && x2<=w1) && (y1<=h2 && h2<=h1)) | |

((y1<=y2 && y2<=h1) && (x1<=w2 && w2<=w1)) | |

((x2<=x1 && x1<=w2) && (y2<=y1 && y1<=h2)) | |

((x2<=w1 && w1<=w2) && (y2<=h1 && h1<=h2)) | |

((x2<=x1 && x1<=w2) && (y2<=h1 && h1<=h2)) | |

((y2<=y1 && y1<=h2) && (x2<=w1 && w1<=w2))) ;

}

A.5 Free sight

This function is an adaption of Bresenham’s algorithm. It checks if it is possible

to draw a line from the enemy and a given point. If there is no terrain objects in

between the sight is free and true is returned, but if there is false is returned. The

code is exactly like the code in Bresenham’s algorithm with the exception that it

152 APPENDIX A. LINE OF SIGHT

checks to se if the point is colliding with the ground instead of drawing a pixel. It

uses Simple Ground Collision() to check if there is no ground object on the line.

The theory for this function is described in Section 5.2.2.

A.5.1 Code

bool Enemy : : Free S ight (int x1 , int y1)

{

int x0=x , y0=y ;

i f (x0==x1&&y0==y1)

{

return (t rue) ;

}

int s t eep = 1 ;

int sx , sy ;

int dx , dy ;

int e ;

// i n l i n e swap fo r opt imation purposes

int tmpswap ;

#define SWAP(a , b) tmpswap=a ; a=b ; b=tmpswap ;

// opt imize f o r v e r t i c a l and ho r i z on t a l l i n e s here

dx = abs (x1 − x0) ;

sx = ((x1 − x0) > 0) ? 1 : −1;

dy = abs (y1 − y0) ;

sy = ((y1 − y0) > 0) ? 1 : −1;

i f (dy > dx)

{

s t eep = 0 ;

SWAP(x0 , y0) ;

SWAP(dx , dy) ;

SWAP(sx , sy) ;

}

e=(dy<<1)−dx ;

A.6. SIMPLE GROUND COLLISION 153

for (int i = 0 ; i <= dx ; i++)

{

i f (s t eep)

{

i f (S imple Ground Col l i s i on (x0 , y0))

{

return (f a l s e) ;

}

}

else

{

i f (S imple Ground Col l i s i on (y0 , x0))

{

return (f a l s e) ;

}

}

while (e >= 0)

{

y0 += sy ;

e −= (dx << 1) ;

}

x0 += sx ;

e += (dy << 1) ;

}

return (t rue) ;

}

A.6 Simple ground collision

The purpose of this function is very simple, it checks if the given points in the

argument list is colliding any of the terrain objects. It is a for-loop that goes

through every terrain object and checks if the position of the given point in the

argument is inside the rectangle formed by the coordinates and size of the terrain

object. If the given point is within any of the terrain blocks the function will

return true otherwise false.

154 APPENDIX A. LINE OF SIGHT

A.6.1 Code

bool Enemy : : S imple Ground Col l i s i on (int x arg , int y arg)

{

// every s i n g l e t e r r a i n b l o c k have to be checked

for (int i =0; i<Ter r a i n S i z e [GROUND] ; i++)

{

i f ((Ground [GROUND] [i]−>x<=x arg &&

x arg<=Ground [GROUND] [i]−>x + Ground [GROUND] [i]−>width−2) &&

(Ground [GROUND] [i]−>y<=y arg &&

y arg<=Ground [GROUND] [i]−>y + Ground [GROUND] [i]−>height −2))

{

return (t rue) ;

}

}

return (f a l s e) ;

}

Appendix B

Image recognition of the level

A
s las appendix to this dissertation this appendix will be the imple-

mentation of the image recognition of the level technique. the fun-

ctins desvribed here are the ones used in the AI function in the object

Enemy in the game.

All the variables and constants that are used in the code but not are in the

arguments or is defined in the functions are protected data members of the object

Enemy.

The theory for this technique is described in Chapter 6.

B.1 Reached left edge

This function checks if the enemy AI agent have reached an edge on the left side in

the virtual world. It checks a area with the with equal to the width of the enemy

since it can just walk over areas smaller then its width. If there is no collision with

any of the terrain blocks within that area it means that the enemy will fall if it

continue without jumping or changing its direction. The Collision Test2() used

is the same Collision Test2() that was described in A.4.

155

156 APPENDIX B. IMAGE RECOGNITION OF THE LEVEL

The theory for this function is described in Section 6.3.1.

B.1.1 Code

bool Enemy : : Reached Left Edge (void)

{

// check every t e r r a i n b l o c k

for (int i =0; i<Ter r a i n S i z e [GROUND] ; i++)

{

i f (Co l l i s i o n Te s t 2 (x−width , y+height ,

x , y+he ight +10,

Ground [GROUND] [i]−>x ,

Ground [GROUND] [i]−>y ,

Ground [GROUND] [i]−>x+Ground [GROUND] [i]−>width ,

Ground [GROUND] [i]−>y+Ground [GROUND] [i]−>he ight))

{

return (f a l s e) ;

}

}

return (t rue) ;

}

B.2 Reached right edge

This function works exactly the same way as Reached Left Edge() except that it

checks the edge on the right side instead of the left.

The theory for this function is described in Section 6.3.1.

B.2.1 Code

bool Enemy : : Reached Right Edge (void)

{

// check every t e r r a i n b l o c k

for (int i =0; i<Ter r a i n S i z e [GROUND] ; i++)

{

i f (Co l l i s i o n Te s t 2 (x+width , y+height ,

B.3. BLOCK WITHIN JUMPRANGE 157

x+width ∗2 , y+he ight +10,

Ground [GROUND] [i]−>x ,

Ground [GROUND] [i]−>y ,

Ground [GROUND] [i]−>x+Ground [GROUND] [i]−>width ,

Ground [GROUND] [i]−>y+Ground [GROUND] [i]−>he ight))

{

return (f a l s e) ;

}

}

// return no c o l l i s i o n

return (t rue) ;

}

B.3 Block within jumprange

This function calculates the distance that the enemy can jump horizontally using

the jumpforce and the velocity if the enemy and the gravity of the level. Then

checks if there is a terrain block within that distance using Collision Test2(). It

returns true if there is a terrain block within the distance it can jump and false

if there is not.

The theory for this function is described in Section 6.3.2.

B.3.1 Code

bool Enemy : : Block Within Jumprange (void)

{

// check what d i r e c t i on the enemy i s moveing

i f (xv>0)

{

f loat alpha=atan (hoppkraft /xv) ;

f loat V 0=hoppkraft / s i n (alpha) ;

int dx=V 0∗V 0∗ s i n (2∗ alpha) / g rav i ty ;

int d i s t ance=x+width+dx ;

// check every t e r r a i n b l o c k

for (int i =0; i<Ter r a i n S i z e [GROUND] ; i++)

158 APPENDIX B. IMAGE RECOGNITION OF THE LEVEL

{

i f (Co l l i s i o n Te s t 2 (x+width , y+height ,

d i s tance , y+he ight +100 ,

Ground [GROUND] [i]−>x ,

Ground [GROUND] [i]−>y ,

Ground [GROUND] [i]−>x+Ground [GROUND] [i]−>width ,

Ground [GROUND] [i]−>y+Ground [GROUND] [i]−>he ight))

{

return (t rue) ;

}

}

}

i f (xv<0)

{

f loat alpha=atan (hoppkraft/−xv) ;

f loat V 0=hoppkraft / s i n (alpha) ;

int dx=V 0∗V 0∗ s i n (2∗ alpha) / g rav i ty ;

int d i s t ance=x−dx ;

// check every t e r r a i n b l o c k

for (int i =0; i<Ter r a i n S i z e [GROUND] ; i++)

{

i f (Co l l i s i o n Te s t 2 (d i s tance , y+height ,

x , y+he ight +100 ,

Ground [GROUND] [i]−>x ,

Ground [GROUND] [i]−>y ,

Ground [GROUND] [i]−>x+Ground [GROUND] [i]−>width ,

Ground [GROUND] [i]−>y+Ground [GROUND] [i]−>he ight))

{

return (t rue) ;

}

}

}

return (f a l s e) ;

}

B.4. MEASURE GAP WIDTH 159

B.4 Measure gap width

This function measures the width of the gorge in front of the enemy. It simply

does a check one pixel at a time on the area in front of the enemy and sees if there

is a collision with any terrain block. If their is a collision it returns the distance

from the enemy to the block. If there is no collision it returns zero to indicate

false.

The theory for this function is described in Section 6.3.3.

B.4.1 Code

int Enemy : : Measure Gap Width (void)

{

i f (D i r e c t i on==FACEING RIGHT)

{

f loat alpha=atan (hoppkraft /xv) ;

f loat V 0=hoppkraft / s i n (alpha) ;

int dx=V 0∗V 0∗ s i n (2∗ alpha) / g rav i ty ;

// check the ground one p i x e l a t a time

for (int i =0; i<dx ; i++)

{

// check every b l o c k

for (int j =0; j<Ter r a i n S i z e [GROUND] ; j++)

{

i f (Co l l i s i o n Te s t 2 (x+width+i , y+height ,

x+width+1+i , y+he ight +10,

Ground [GROUND] [j]−>x ,

Ground [GROUND] [j]−>y ,

Ground [GROUND] [j]−>x+Ground [GROUND] [j]−>width ,

Ground [GROUND] [j]−>y+Ground [GROUND] [j]−>he ight))

{

// return the width o f the gap

return (i) ;

}

}

}

160 APPENDIX B. IMAGE RECOGNITION OF THE LEVEL

}

i f (D i r e c t i on==FACEING LEFT)

{

f loat alpha=atan (hoppkraft/−xv) ;

f loat V 0=hoppkraft / s i n (alpha) ;

int dx=V 0∗V 0∗ s i n (2∗ alpha) / g rav i ty ;

// check the ground one p i x e l a t a time

for (int i =0; i<dx ; i++)

{

// check every b l o c k

for (int j =0; j<Ter r a i n S i z e [GROUND] ; j++)

{

i f (Co l l i s i o n Te s t 2 (x−2−i , y+height ,

x−1−i , y+he ight +10,

Ground [GROUND] [j]−>x ,

Ground [GROUND] [j]−>y ,

Ground [GROUND] [j]−>x+Ground [GROUND] [j]−>width ,

Ground [GROUND] [j]−>y+Ground [GROUND] [j]−>he ight))

{

// return the width o f the gap

return (i) ;

}

}

}

}

return (0) ;

}

B.5 Free jump area

This function checks a large area in front of the enemy to see if there is any blocks

within that area. The possition of the area is right infront of the enemy and the

size the jumpheight and jumplent of enemy, which is calculated from velosoty and

jumpforce. If there is no collosion with any terrain block the function retuns true.

The theory for this function is described in Section 6.4.1.

B.5. FREE JUMP AREA 161

B.5.1 Code

bool Enemy : : Free Jump Area (void)

{

i f (xv>0)

{

f loat alpha=atan (hoppkraft /xv) ;

f loat V 0=hoppkraft / s i n (alpha) ;

int hopphojd=V 0∗V 0∗ s i n (alpha) ∗ s i n (alpha) /(2∗ g rav i ty) ;

int dx=(V 0∗V 0∗ s i n (2∗ alpha) / g rav i ty) ;

// check the l a r g e jump area

for (int i =0; i<Ter r a i n S i z e [GROUND] ; i++)

{

// i s there a c o l i s s i o n with any b l o c k

i f (Co l l i s i o n Te s t 2 (x , y−hopphojd ,

x+width+dx , y+height ,

Ground [GROUND] [i]−>x ,

Ground [GROUND] [i]−>y ,

Ground [GROUND] [i]−>x+Ground [GROUND] [i]−>width ,

Ground [GROUND] [i]−>y+Ground [GROUND] [i]−>he ight))

{

return (f a l s e) ;

}

}

}

else

{

f loat alpha=atan (hoppkraft/−xv) ;

f loat V 0=hoppkraft / s i n (alpha) ;

int hopphojd=V 0∗V 0∗ s i n (alpha) ∗ s i n (alpha) /(2∗ g rav i ty) ;

int dx=(V 0∗V 0∗ s i n (2∗ alpha) / g rav i ty) ;

// check the l a r g e jump area

for (int i =0; i<Ter r a i n S i z e [GROUND] ; i++)

{

// i s there a c o l i s s i o n with any b l o c k

i f (Co l l i s i o n Te s t 2 (x−dx , y−hopphojd ,

x+width , y+height ,

Ground [GROUND] [i]−>x ,

Ground [GROUND] [i]−>y ,

162 APPENDIX B. IMAGE RECOGNITION OF THE LEVEL

Ground [GROUND] [i]−>x+Ground [GROUND] [i]−>width ,

Ground [GROUND] [i]−>y+Ground [GROUND] [i]−>he ight))

{

return (f a l s e) ;

}

}

}

return (t rue) ;

}

B.6 Free jump trajectory

This functions checks the predicted trajectory the enemy will take when it jump.

The function is a more detailed version of Free Jump Area() since it checks the

actual path the enemy will take in the jump. The functions main block i a loop

but instead of increasing a counter it changes the possition of area to be checked.

The theory for this function is described in Section 6.4.2.

B.6.1 Code

bool Enemy : : Free Jump Trajectory (void)

{

int xt=x ;

int yt=y ;

int xvt=xv ;

int yvt=−hoppkraft ;

// whi l e y t i s sma l l e r then y

while (yt<=y)

{

for (int i =0; i<Ter r a i n S i z e [GROUND] ; i++)

{

i f (Co l l i s i o n Te s t 2 (xt , yt ,

xt+width , yt+height ,

Ground [GROUND] [i]−>x ,

Ground [GROUND] [i]−>y ,

Ground [GROUND] [i]−>x+Ground [GROUND] [i]−>width ,

B.7. BLOCK IN PATH 163

Ground [GROUND] [i]−>y+Ground [GROUND] [i]−>he ight))

{

return (f a l s e) ;

}

}

xt+=xvt ;

yt+=yvt ;

yvt+=grav i ty ;

}

return (t rue) ;

}

B.7 Block in path

This function checks the path infront of the enemy AI agent to see if there is a

terrain block that is blocking its path. It is simpley a collision detect, at halv the

distande the enemy can jump horizontally, infront of the enemy.

The theory for this function is described in Section 6.5.1.

B.7.1 Code

bool Enemy : : Block In Path (void)

{

i f (D i r e c t i on==FACEING RIGHT&&xv>0)

{

f loat alpha=atan (hoppkraft /xv) ;

f loat V 0=hoppkraft / s i n (alpha) ;

int dx=(V 0∗V 0∗ s i n (2∗ alpha) / g rav i ty) /2 ;

for (int i =0; i<Ter r a i n S i z e [GROUND] ; i++)

{

i f (Co l l i s i o n Te s t 2 (x+width+dx−xv , y ,

x+width+dx , y+height ,

Ground [GROUND] [i]−>x ,

Ground [GROUND] [i]−>y ,

Ground [GROUND] [i]−>x+Ground [GROUND] [i]−>width ,

Ground [GROUND] [i]−>y+Ground [GROUND] [i]−>he ight))

{

return (t rue) ;

164 APPENDIX B. IMAGE RECOGNITION OF THE LEVEL

}

}

}

else

{

f loat alpha=atan (hoppkraft/−xv) ;

f loat V 0=hoppkraft / s i n (alpha) ;

int dx=(V 0∗V 0∗ s i n (2∗ alpha) / g rav i ty) /2 ;

for (int i =0; i<Ter r a i n S i z e [GROUND] ; i++)

{

i f (Co l l i s i o n Te s t 2 (x−dx , y ,

x−dx−xv , y+height ,

Ground [GROUND] [i]−>x ,

Ground [GROUND] [i]−>y ,

Ground [GROUND] [i]−>x+Ground [GROUND] [i]−>width ,

Ground [GROUND] [i]−>y+Ground [GROUND] [i]−>he ight))

{

return (t rue) ;

}

}

}

return (f a l s e) ;

}

B.8 Obstacle low enough

This function checks if the obstacle in front of the enemy AI agent is low enough

for the enemy to jump over. The height of the area is equal to the height of the

enemy of if it returns true is also means that it is no terrain object in the air

blocking the path the enemy have to take over the obstacle.

This function covers two techniques at ones unlike the rest of the functions that

only have one assignment. The theory for the techniques are described in Sections

6.5.2 and 6.5.3.

B.8.1 Code

B.8. OBSTACLE LOW ENOUGH 165

bool Enemy : : Obstackle Low Enought (void)

{

i f (xv>0)

{

f loat alpha=atan (hoppkraft /xv) ;

f loat V 0=hoppkraft / s i n (alpha) ;

int hopphojd=(V 0∗V 0∗ s i n (alpha) ∗ s i n (alpha)) /(2∗ g rav i ty) ;

int dx=(V 0∗V 0∗ s i n (2∗ alpha) / g rav i ty) /2 ;

for (int i =0; i<=hopphojd ; i++)

{

bool f l a g=f a l s e ;

for (int j =0; j<Ter r a i n S i z e [GROUND] ; j++)

{

i f (Co l l i s i o n Te s t 2 (x+width+dx−xv , y−i ,

x+width+dx , y+height−i ,

Ground [GROUND] [j]−>x ,

Ground [GROUND] [j]−>y ,

Ground [GROUND] [j]−>x+Ground [GROUND] [j]−>width ,

Ground [GROUND] [j]−>y+Ground [GROUND] [j]−>he ight))

{

f l a g=true ;

}

}

i f (f l a g==f a l s e)

{

return (t rue) ;

}

}

}

else

{

f loat alpha=atan (hoppkraft/−xv) ;

f loat V 0=hoppkraft / s i n (alpha) ;

int hopphojd=(V 0∗V 0∗ s i n (alpha) ∗ s i n (alpha)) /(2∗ g rav i ty) ;

int dx=(V 0∗V 0∗ s i n (2∗ alpha) / g rav i ty) /2 ;

for (int i =0; i<=hopphojd ; i++)

{

bool f l a g=f a l s e ;

for (int j =0; j<Ter r a i n S i z e [GROUND] ; j++)

{

i f (Co l l i s i o n Te s t 2 (x−dx , y−i , x−dx−xv , y+height−i ,

166 APPENDIX B. IMAGE RECOGNITION OF THE LEVEL

Ground [GROUND] [j]−>x ,

Ground [GROUND] [j]−>y ,

Ground [GROUND] [j]−>x+Ground [GROUND] [j]−>width ,

Ground [GROUND] [j]−>y+Ground [GROUND] [j]−>he ight))

{

f l a g=true ;

}

}

i f (f l a g==f a l s e)

{

return (t rue) ;

}

}

}

return (f a l s e) ;

}

Index

#
2D, 1, 35–37, 42, 134, 137

3D, 1, 35–37, 42, 45, 133, 134

A
A-life, 66

Abstraction, 26

Achievements, 126

Action adventure, 48

Active Talker, 18

Adventure games, 47

Agent, 10

AI, 9

deffinition of, 9

game, 61, 134

strong, 11

weak, 11

AI agent, 10, 18

AI winter, 20

Alan Turing, 13

Algorithm

Bresenham’s, 146

pathfinding with A*, 76, 77

ANALOGY, 18

API, 56

Application Programming Interface, 56

Arcade games, 32, 38

Arcade hall, 33

Arcage games, 33

Aristotle, 15

Artificial Intelligence, 1

Artificial intelligence, 9

Artificial life, 66

B
Baldur’s Gate, 46

Bayesian filtering, 22

Beat’em up, 51

Bitmap, 40

Blackthorne, 82

Blocks, 42

Board game, 36

Bombjack, 32

Boolean algebra, 15, 70

Bresenham’s algorithm, 86, 146

167

168 INDEX

Brute-force, 91

C
Cartridge, 33

Castlevania: Aria of Sorrow, 3

Castlevania: Symphony of the Night, 44

Category, 43

CD, 33

Cell phone, 129, 130

Collision detect, 96

Compact disc, 33

Computer game, 32, 34, 38

Computer vision, 23

Concept, 26

Conclusions, 133

Console, 32, 33, 129

Console games, 33, 38

Control theory, 17

Counter Strike, 60

D
Dartmouth Collage, 17

Dartmouth Workshop, 18

Deep blue, 28

Defender, 32

Deffinition of AI, 9

Defuzzification, 73

formula, 74

DENDRAL, 19

Diablo 2, 47

DirectX, 56, 57

Disposition, 5

Donkey Kong, 32

DooM3, 45

Dreamcast, 34

Dungeon Sedge, 37

Dungeons & Dragons, 46

E
Efficiency

line of sight, 89, 145

Enemy, 39

Euclid’s algorithm, 15

Evaluation, 125

Event, 109

Experience level, 46

Experience points, 46

Expert systems, 62

F
Fallout, 46

Fantasy, 46

Fighting games, 51

Finite state machine, 67, 111

First person perspective, 37

First Person Shooter, 44

INDEX 169

First-order logic, 16

Flocking, 67

Forgotten Realms, 46

FPS, 44

fps, 41

Frame, 41

Frame rate, 41, 59, 128

Free sight, 85, 134

Fussy logic, 70, 139

Fussy sets, 71

Fuzziness, 71

Fuzzy set theory, 71

G
Galaxian, 32

Game AI, 21, 61, 62, 134

Game cartridge, 33

Game console, 44

Game Consoles, 33

Game engine, 38, 59

Game genre, 43

adventure, 47

action, 48

point and click, 48

beat’em up, 51

fighting games, 51

first person shooter, 44

massive multiplayer online, 54

Massive Multiplayer Online Role Play-

ing Games, 55

MMOG, 54

MMORPG, 55

platform, 43

puzzle, 55

racing game, 53

role playing games, 45

hack n’ slash, 47

shoot’em up, 51

sim, 53

simulator, 53

sports, 54

strategy, 49

realtime, 50

turn based, 50

Game platforms, 32

Game programming, 58

Gameboy, 34

Gamecube, 34

Gamepad, 41

Gameplay, 37

Gameplay genre, 48

Gamer, 39

Games, 53

Baldur’s Gate, 46

170 INDEX

Blackthorne, 82

Bombjack, 32

Castlevania: Aria of Sorrow, 3

Castlevania: Symphony of the Night,

44

Counter Strike, 60

Defender, 32

Diablo 2, 47

Donkey Kong, 32

DooM3, 45

Dungeon Sedge, 37

Fallout, 46

Galaxian, 32

Half Life 2, 45

Halflife, 60

Halo 2, 45

Lylat Wars, 52

Mario64, 37

Masters of Orion 3, 51

Pac-Man, 32, 68

Pitfall!, 35, 36

Sim Ant, 54

Sim Copter, 54

Sim Earth, 54

Sim Farm, 54

Sim Life, 54

Sim Park, 54

Sim Town, 54

Snake Rattle Roll, 37

Space Invaders, 32, 52

Star Fox, 52

Starwing, 52

Street fighter II, 32

Streets of Sim City, 54

Super Mario Bros, 35

Tetris, 55

The Legend of Zelda, 48

The Secret of Monkey IslandTM, 48

The Sims, 54

Ultima Underworld, 37

Wolfenstein 3D, 45

Zelda II: The Adventure of Link, 48

Genres, 43

George Boolean, 15

Goal, 5

Graph, 75, 114

H
Hack n’ slash, 47

Half Life 2, 45

Halflife, 60

Halo 2, 45

Health, 39, 71

Heuristic, 11

INDEX 171

Heuristic distance, 75

History, 17

Hitpoints, 39, 71

I
Image recognition, 4, 23, 96, 125, 127,

130, 134, 135, 138

Inference engine, 64

Input, 41

Introduction, 1

Introduction to game programming, 31

J
Joystick, 41

K
Kernel, 39

Keyboard, 41

Knowledge database, 63

L
Lagging, 42, 127

Landscape, 41

Level, 41, 46

Level editor, 59

Limitation, 3

Line of sight, 4, 81, 125–127, 129, 133,

135, 137, 145

efficiency, 89, 145

statistics, 91

Link-state routing, 128

Logic

first-order, 16

Lylat Wars, 52

M
Main event loop, 58

Mainstream AI, 21, 62

Map, 41, 128

Mario64, 37

Massive Multiplayer Online games, 54

Massive Multiplayer Online Role Play-

ing Games, 55

Masters of Orion 3, 51

Mathematics, 16

MMOG, 54

MMORPG, 55

Mod, 59

Modders, 59

Modding, 59

Modifications, 59

Motivation, 2

Mouse, 41

MYCIN, 19

172 INDEX

N
N-Gage, 129

Neuropsychology, 16

New techniques, 4

Nintendo, 34, 35

Nintendo64, 33, 44

Node, 75, 111, 114, 128

Nokia, 129

Non Playing Character, 48

NPC, 48

O
Object recognition, 23

Observer, 127

Open Graphics Library, 57

OpenGL, 57

Operating system, 39

P
Pac-Man, 32, 68

Palm pilot, 129, 130

Pathfinding, 5, 77, 111, 113, 125, 128,

130, 134, 136, 139

Pathfinding with A*, 61, 114, 128

algorithm, 76

Perception, 23

Philosophy, 15

Pitfall!, 35, 36

Pixel, 23

Plans for Future work, 137

Platform game, 43, 137

Player, 39

Playstation, 33, 44

Point and Click, 48

Polygon, 36

Production rules, 19, 63, 64

Production systems, 62

Programming games, 58

Purpose, 1

Puzzle games, 55

R
R1, 20

Racing game, 53

Raster graphics, 23, 25, 40

Realtime Strategy games, 50

Realtime systems, 16

Riots, 67

Robotics, 22

Role Playing Games, 45

Routing, 136

RPG, 45, 47, 138

RTS, 50

Running through walls problem, 106

INDEX 173

S
SAINT, 18

Science fiction, 46

SDL, 57

Security agent, 23

SEGA, 34

Self reference

see Self reference

Shoot’em up, 51, 52

SHRDLU, 18

Sim Ant, 54

Sim Copter, 54

Sim Earth, 54

Sim Farm, 54

Sim games, 53

Sim Life, 54

Sim Park, 54

Sim Town, 54

Simple DirectMedia Layer, 57

Simulator games, 53

Skill, 46, 138

Skillroll, 46, 138

Smoothing algorithm, 25

Snake Rattle Roll, 37

Software, 34

Sony, 44

Sony Playstation, 33

Space Invaders, 32, 52

Spam, 22

Sports games, 54

Sprite, 40

Spyware, 35

Stage, 41

Star Fox, 52

Starwing, 52

Strategy games, 49, 53

Streep Figther II, 32

Streets of Sim City, 54

Strong AI, 11

STUDENT, 18

Summary

evaluation, 130

image recognition of the level, 112

introductino to AI, 29

introduction to game AI, 78

introduction to game programming,

60

line of sight, 93

pathfinding, 118

Super Mario Bros, 35

T
Terminology, 38

bitmap, 40

174 INDEX

blocks, 42

computer game, 38

enemy, 39

frame, 41

game engine, 38

hitpoints, 39

input, 41

lagging, 42

level, 41

player, 39

sprite, 40

stage, 41

Terrain objects, 42

Tetris, 55

Text based games, 47

The Legend of Zelda, 48

The Secret of Monkey IslandTM, 48

The Sims, 54, 110

The Turing test, 13–15

Third party manufacturer, 34

Third person perspective, 37

Thread, 59

Trigger, 109, 127

Trojan, 35

Turn based strategy games, 50

TV-spel, 32, 33

TV-spelskonsoll, 33

U
Ultima Underworld, 37

V
Video game, 33

Virus, 22, 35

Visual limit, 83

W
Weak AI, 11

Wolfenstein 3D, 45

X
X-Box, 33, 34, 57

Z
Zelda II: The Adventure of Link, 48

	Introduction
	Purpose
	Motivation
	Limitation
	New techniques
	Line of sight
	Image recognition of the level
	Pathfinding

	Goal
	Disposition

	I Background
	Introduction to artificial intelligence
	What is artificial intelligence?
	AI agent

	Heuristics
	Weak and strong AI
	The Turing test
	The history of the Turing test
	Objections to the Turing test

	The Foundation of artificial intelligence
	Philosophy
	Mathematics
	Neuropsychology
	Control theory

	The history of Artificial Intelligence
	The birth
	The first AI agents
	Setback
	Knowledge based systems
	The AI winter
	AI becomes a science

	AI today
	Robotics
	Spam filters
	Virus scanners
	Security agents

	Image recognition
	Introduction
	Reading a image
	Transforming the image into data
	Recognizing objects

	Deep Blue
	Summary

	Introduction to game programming
	Game platforms
	Arcade games
	Console games
	Computer games

	2D and 3D games
	Terminology
	Game Genres
	Platform games
	First Person Shooter games
	Role Playing Games
	Adventure games
	Strategy games
	Beat'em up
	Shoot'em up
	Simulator games
	Sim games
	Sports games
	Massive Multiplayer Online games
	Puzzle games

	Game Application Programming Interface
	DirectX
	SDL
	OpenGL

	Programming games
	Modifications

	Summary

	Introduction to game AI
	Introduction
	Mainstream AI and game AI
	Expert systems and production systems
	Artificial life
	Finite state machine

	Fuzzy logic
	Fussy sets
	Defuzzification

	Pathfinding with A*
	Terms
	The algorithm
	Pseudo code for the algorithm

	A complete enemy AI agent
	Summary

	II Experiment
	Line of sight
	Introduction
	Theory
	Visual limit
	Free sight
	Bresenham's algorithm
	Efficiency

	Implementation
	One problem
	Statistics
	Solution

	Summary

	Image recognition of the level
	Introduction
	Collision detection for making AI agents ``see''
	Jump over gorges
	To know when to jump
	To know if it is possible to jump
	To know how far to jump
	Summary

	Free jump trajectory
	To know if there is jump area is free
	To know if the trajectory path is free

	Jump over objects
	To know the obstacle is not too high
	To know if it is possible to jump over a obstacle
	To know if the opening is big enough

	Triggers on the map
	Fixed points on the map

	Summary

	Pathfinding
	Introduction
	Theory
	The graph of nodes

	2D platform games need only few nodes
	Implementation
	Summary

	III Discussion
	Evaluation
	Introduction
	Achievements
	Line of sight
	Image recognition of the level
	Pathfinding

	Cell phones and palm pilots
	Line of sight
	Image recognition of the level
	Pathfinding

	Summary

	Conclusions
	Conclusion
	Line of sight
	Image recognition of the level
	Pathfinding

	Problems
	Line of sight
	Image recognition of the level
	Pathfinding

	Plans for Future work
	Line of sight
	Image recognition of the level
	Pathfinding

	References

	IV Appendixes
	Line of sight
	Bresenham's algorithm
	Code

	Line of sight
	Code

	Character on screen
	Code

	Collision test
	Code

	Free sight
	Code

	Simple ground collision
	Code

	Image recognition of the level
	Reached left edge
	Code

	Reached right edge
	Code

	Block within jumprange
	Code

	Measure gap width
	Code

	Free jump area
	Code

	Free jump trajectory
	Code

	Block in path
	Code

	Obstacle low enough
	Code

