

Department of Computer Science

Andreas Lövgren, Thomas Persson

An investigation of component testing techniques

in Base development and Connectivity Packet

Platform development

D-level thesis (15 ECTS)

Date/Term: 2005-01-11

Supervisor: Andreas Kassler

Examiner: Donald F. Ross

Serial Number: 2005:12

 iii

This report is submitted in partial fulfillment of the requirements for the

Master’s degree in Computer Science. All material in this report which is

not my own work has been identified and no material is included for which

a degree has previously been conferred.

Thomas Persson

Andreas Lövgren

Approved, 2005-01-11

Opponent: Kerstin Andersson

Advisor: Andreas Kassler

Examiner: Donald F. Ross

 v

Abstract

 The goal with the essay is to describe a common way of working regarding component

testing on Base and Connectivity Packet Platform (CPP), two development departments at

TietoEnator. From this research TietoEnator expects a guideline document, which describes

the proposed way of testing. The company’s main reason for wanting this research is that, by

using the same strategies for testing, the testing departments will be able to make use of each

other’s work and it will also be easier moving personnel between the departments.

Structure, testing strategies, different tools and advantages/disadvantages with the different

testing departments are analysed. The report aims to take the best parts from both areas and

looks at what can be improved on respective department, in order to improve testing and

reach a common way of working to the extent possible.

.

 vi

Contents

1 Introduction ...1

1.1 Background ..1

1.2 Goals ..3

1.3 Working strategy ..4

2 Introduction to testing ...5

2.1 Reasons for testing ...5

2.2 Testing explained ...5

2.3 Test-Driven development ...7

2.4 Testing levels ...8
2.4.1 Unit/Component Testing.. 8
2.4.2 Integration Testing ... 9
2.4.3 External Function Testing .. 9
2.4.4 System Testing... 9
2.4.5 Acceptance Testing .. 9
2.4.6 Regression Testing... 9

2.5 Testing Methods...10
2.5.1 Dynamic Testing ...10

2.5.1.1 Black Box testing .. 10
2.5.1.2 White Box testing.. 10
2.5.1.3 Gray Box testing.. 11

2.5.2 Static Testing ..12
2.5.2.1 Code review... 12
2.5.2.2 Pair programming.. 12

3 Overview of the departments ..15

3.1 The signaling Base development...15

3.2 Connectivity Packet Platform – CPP...15

3.3 Testing tools ...17
3.3.1 X-Unit ...17
3.3.2 Purify...18
3.3.3 PureCoverage ..18
3.3.4 FlexeLint ...18
3.3.5 Quantify ..18
3.3.6 Doxygen..19

4 Analysis of Testing Environments...21

4.1 Base testing environment..21
4.1.1 Structure..21

 vii

4.1.2 Black Box Library...22
4.1.3 Deficiencies prior to the introduction of Black Box library..23
4.1.4 Testing strategies today...26
4.1.5 Associated Tools ...31

4.1.5.1 CNF-Builder.. 31
4.1.5.2 Sesam .. 32
4.1.5.3 BTR-tool ... 32

4.2 Connectivity Packet Platform testing environment..33
4.2.1 Structure..33
4.2.2 Testing strategies...35

5 Improvement plan ...41

5.1 Evaluation criteria ..41
5.1.1 Test creation..41
5.1.2 Test maintenance...41
5.1.3 Test running ..41
5.1.4 Functionality coverage ..41
5.1.5 Automation ...41
5.1.6 Error detection...42
5.1.7 Common way of working..42

5.2 Possible improvements ...42
5.2.1 Testing strategies...42

5.2.1.1 Configuration-files .. 42
5.2.1.2 Test setups/teardowns.. 43
5.2.1.3 Test case functionality coverage.. 45
5.2.1.4 Structuring of test cases and suites .. 45
5.2.1.5 Time control .. 47
5.2.1.6 Simplicity of TC´s ... 47

5.2.2 Testing tools..48
5.2.2.1 CNF-builder .. 48
5.2.2.2 Sesam .. 48
5.2.2.3 BTR-Tool .. 49

5.3 Advantages and costs of improvements ..51
5.3.1 Explanation of the estimation values ..51
5.3.2 Convert old test cases (Base) ..52
5.3.3 Structure setup/fixtures (general) ..52
5.3.4 Automate version and standard dependent setup/fixture selection (general)52
5.3.5 Implement matrix (CPP) ...53
5.3.6 Register suites automatically to X-unit (CPP) ..54
5.3.7 Group tests according to functionality specification (general)..54
5.3.8 Implement time control (CPP) ..55
5.3.9 Get Sesam in use (Base/general) ...55
5.3.10 Develop merging script for BTR-tool (Base)..56
5.3.11 Summary of the actions...57

5.4 Improvement summary...59

6 Summary of the interviews..63

6.1 Base interviews ..63

6.2 CPP interviews ...64

 viii

7 Recommendations..67

8 Summary of the project...71

References...73

A Requirement Specifications...75

A.1 First Version ...75

A.2 Last Version..76

 ix

List of Figures

Figure 1.1: Stub replacing DB functionality...2

Figure 3.1 CPP - a generic platform...16

Figure 3.2: Cello node ...16

Figure 3.3 Component test structure in Check..17

Figure 4.1 Make Targets ..21

Figure 4.2: Build structure ...22

Figure 4.3: Base module sending a message to BB-lib which responds with the expected

message...23

Figure 4.4: Initialisation of a test case. ...23

Figure 4.5: Configuration file ..24

Figure 4.6: Test case dependencies. ...25

Figure 4.7: Timer expires before reception of message ..25

Figure 4.8: 4x4 default configuration files ...26

Figure 4.9: Standard and version independent configuration file generation27

Figure 4.10: Choosing correct configuration file ..27

Figure 4.11: Transport code to module cfg file...28

Figure 4.12: Module config file read by tested module...28

Figure 4.13: starting links ..28

Figure 4.14: Timer put in table...29

Figure 4.15: Timer removed from table..30

Figure 4.16: Functionality covering issues ...30

Figure 4.17: State-Event matrix ...31

Figure 4.18: Matrix TC’s to separate suite ...31

Figure 4.19: BTR (Basic Test Report)..32

Figure 4.20: Tested/untested req. Report..33

Figure 4.21: Component and its specific make file. ...34

Figure 4.22: Stub functionality...34

 x

Figure 4.23: Make structure on CPP ..35

Figure 4.24: Test cases handled by fixtures..36

Figure 4.25: Fixture ...36

Figure 4.26: Combined/Composite fixture ...37

Figure 4.27: Test case and fixture ..38

Figure 4.28: Standard dependent parts handled by Base. ..38

Figure 5.1: Configuration file generation ...42

Figure 5.2: Structuring of fixtures. ...44

Figure 5.3: Do not trust humans. ..46

Figure 5.4: Report files for each binary on M3...49

Figure 5.5: A BTR for every binary test report..50

Figure 5.6: All BTR’s merged into one document ..50

Figure 5.7: Merging report documents ...50

Figure 5.8: Merging script ...51

 xi

List of tables

Table 2.1: On what levels Black Box, White Box and Code review can be applied.13

Table 5.1: Actions and the criteria they fulfil ...57

Table 5.2: Actions and their costs ..58

Table 5.3: Calculation of relevance values ...58

Table 5.4: Actions and their relevance values ..59

 1

1 Introduction

1.1 Background

TietoEnator is one of the leading suppliers of IT services to telecommunication and media

sector in Europe, with focus on mobile solutions. TietoEnator offers a wide range of services

including R&D-services, consult services, system development and integration for telecom

and media sector. There are, among others, two development departments on TietoEnator

called Base (see chapter 3.1) and CPP (Connectivity Packet Platform) (see chapter 3.2). Like

other software producing companies, testing is an essential part of their development to reach

a higher quality assurance and limit the amount of errors. Having a good testing environment

is essential for high-quality and structured testing. Such testing environments provide tools to

simplify test creation, a self-contained environment and test automation. The environment

should basically perform everything except writing the tests. Component Test is the first test

phase and is written and executed by the software designers writing the code to be tested.

 Historically, the Signalling Base Development department has used a proprietary tool

called Module Test Tool (MTT) for this purpose. While possessing many of the desirable

characteristics of a component test environment (ease of use, ability to automate the running

of large test suites, etc.), MTT had some drawbacks that prompted the development of a new

component test strategy based on the X-Unit framework (see chapter 3.3.1), a framework for

running tests, some years ago. The main problem that needed to be solved was that the turn-

around time for running a test, finding a fault, correcting it, and running the test again was too

long.

The first step was to automatically convert all the MTT test cases to X-Unit test cases in

the C language. The test framework was then extended with stubs. The stubs are substitutes

for external units called by the unit being tested. The interfaces of the stubs, including their

names, are the same as the real units’ interfaces. A simple stub can be an empty function

replacing the real function, where only the function header is the same.

 2

Figure 1.1: Stub replacing DB functionality

Stubs are often used for testing purposes when the external systems are not available.

The next step, which was taken for some of the more complex signaling modules, was to

extract common functionality used by many test cases into a library called BB-lib, Black Box

Library. Test cases written for execution in BB-lib are smaller and less complex than regular

X-Unit test cases, since much of the module set-up and message verification has been moved

into the library.

For CPP5, version 5 of the Connectivity Packet Platform, a decision was made to also

move to X-Unit based testing. Prior to CPP5 all component testing was based on a platform

called SimCello, which is basically comprised of a set of configurable simulators representing

all the subsystems in CPP.

SimCello suffers from several drawbacks from a component-testing point of view. The

SimCello platform is built into one large binary containing all the simulators and the test

object. Just to build and link this binary takes a lot of time on anything but really high-end

machines. This does not fit well with component testing where building and executing tests

should be as quick as possible.

Tests are written in a script language, which stimulates a test driver written in C, which in

turn operates on the test object. The script then looks in a log to see if the test object logged

what was expected. This is less than optimal for several reasons; designers have to write tests

in a language which is not the same as the test object is written in; there is a level of

indirection between the tests (scripts) and the test object which is the C driver (which needs to

 3

be updated when the test object is updated). The tests check that the test object logs what is

expected, not that it does what is expected.

There are dependencies both towards the simulators, which are developed by other

subsystems, and towards the SimCello build support, which is quite complex. Interface or

behavioural changes in subsystems have to be delivered before they may be tested by other

subsystems.

White box testing is pretty much impossible. Without modifying the intermediary test

driver, there is no way to test a specific section of code. The designer have to write test cases

that send signals to the test object which, hopefully, will result in the intended section of code

to execute. This makes it very hard to get coverage of some parts of the code.

The move to X-Unit based testing in CPP started off with creating simple stubs of the

external interfaces used by the SS7-related modules developed in Karlstad. These stubs

replace some of the simulators earlier found in SimCello. Then, the various teams started to

build test cases for the SS7 components. In the beginning there were no direct guidelines

available for this, which resulted in the component tests being somewhat dissimilar. Except

for the stubs, which are shared by the component tests, there is no glue code or library (like

BB-Lib in Signaling Base Development). CPP uses the Check X-Unit library directly.

1.2 Goals

The main goal is a common way of working regarding component testing for both Base

development and CPP development. By using same system for testing, Base and CPP can

make use of each other’s work. It will also be easier moving personnel between the

developments because they recognize the test code.

An investigation of the two testing environments is required to find out the differences

between them and advantages/disadvantages with the strategies used on respective

environment. This investigation will look at what can be improved and if it is possible to use

the same way of working for both environments. In general, testing strategies and testing tools

used should be analysed but focus should be aimed at the following areas.

Can the fundamental ideas and strengths of Black Box Library, the glue code library used

on Base, be applied on CPP as well?

 BTR-tool (Basic Test Report) is a tool used on Base to create test reports which show how

well testing has been going. There are some problems with using this tool today, therefore

BTR-tool should be investigated to try and solve the issues.

 4

1.3 Working strategy

The research work is mainly based on interviews with employees on TietoEnator. Many

employees at both departments have been interviewed and questioned regarding their testing

environment. The cunning front people of each environment has been interviewed as well as

common employees, in order to get everyone’s perspective on different matters. The main

reason for the interviews was to gain knowledge of the testing environments in general and

also their strengths and weaknesses. Most of the interviews were been recorded on tape in

order to be able to extract most of the information brought up at the interviews. Aside from

the interviews, parts of the testing code have been examined, in order to get a more detailed

picture of the work of the testers. The work does not include any implementation efforts from

the authors of the essay, this is left to the ones that should bring the ideas of this essay to

reality.

 5

2 Introduction to testing

In this chapter, the importance of testing, what testing means and different testing

techniques are described.

2.1 Reasons for testing

Software products are mostly very complex, which increases the probability of bugs. One

small error in a program can potentially make it worthless for the intended users. To minimize

the chance of errors, testing is very important both during and after the development of a

piece of software. If testing is not taken seriously, there is a great risk that program bugs make

it to the market. This can result in time- and money consuming efforts and may also damage

the reputation of a company. If a customer’s business relies on a piece of software which fails

then there could be repercussions such as lawsuits. Effective software testing helps to deliver

quality software products that satisfy users’ requirements, needs and expectations. If a piece

of software is supposed to be run at an airport or aeroplane then it is extremely important that

the program works according to its specification else it might endanger peoples lives.

Testing is both time and money consuming but in the long term it is the most economical

choice. Very few organizations use a formal testing methodology. The majority treat testing

as something that just happens after coding. Rather, if test planning begins early enough, and

is treated as a parallel rather than a terminal effort, it can point out errors in interpreting

specifications by the implementation team. What to test, how to test it, and who takes testing

responsibility are all part of the testing methodology. [1,2.20]

2.2 Testing explained

There are two principal aims in testing software; defect detection and validation. The

system probably has bugs in it and testing aims to find them, and subsequently correct them.

Testing can be used to demonstrate that the system fulfils its specification. Testing

involves actions to find errors and faults in software and also actions to isolate errors during

development. The main objective of testing is to help clearly describe system behaviour and

to find defects in requirements, design, documentation and code as early as possible. Testing

involves devising a set of inputs to a given piece of software that will cause the software to

 6

exercise some portion of its code. The developer of the software can then check that the

results produced by the software are in accord with his or her expectations. Software testing is

a process used to identify the correctness, completeness and quality of developed computer

software. Actually, testing can never establish the correctness of computer software, as this

can only be done by formal verification (and only when there is no mistake in the formal

verification process). It can only find defects, not prove that there are none. In general,

software engineers distinguish software faults and software failures. In case of a failure, the

software does not do what the user expects. A fault is a programming error that may or may

not actually manifest as a failure. A fault can also be described as an error in the correctness

of the semantic of a computer program. A fault will become a failure if the exact computation

conditions are met, one of them being that the faulty portion of computer software executes

on the CPU. A fault can also turn into a failure when the software is ported to a different

hardware platform or a different compiler, or when the software gets extended.

Software testing may be viewed as a sub-field of software quality assurance but typically

exists independently (and there may be no SQA areas in some companies). In SQA, software

process specialists and auditors take a broader view on software and its development. They

examine and change the software engineering process itself to reduce the amount of faults that

end up in the code or deliver faster.

Regardless of the methods used or level of formality involved the desired result of testing

is a level of confidence in the software so that the developers are confident that the software

has an acceptable defect rate. What constitutes an acceptable defect rate depends on the nature

of the software. An arcade video game designed to simulate flying an airplane would

presumably have a much higher tolerance for defects than software used to control an actual

airliner.

A problem with software testing is that the number of defects in a software product can be

very large, and the number of configurations of the product even larger. Bugs that occur

infrequently are difficult to find in testing. A rule of thumb is that a system that is expected to

function without faults for a certain length of time must have already been tested for at least

that length of time. This has severe consequences for projects to write long-lived reliable

software.

A common practice of software testing is that it is performed by an independent group of

testers after finishing the software product and before it is shipped to the customer. This

practice often results in the testing phase being used as project buffer to compensate for

project delays. Another practice is to start software testing at the same moment the project

 7

starts and it is a continuous process until the project finishes. It is common knowledge that

the earlier a defect is found, the cheaper it is to fix it. [3,4,12]

2.3 Test-Driven development

Test-driven development (TDD) is a programming technique heavily emphasized in

Extreme Programming and is used by TietoEnator. Essentially the technique involves writing

tests first then implementing the code to make them pass. The goal of TDD is to achieve rapid

feedback. In order for TDD to work in practice, the system must be flexible enough to allow

for automated testing of code. The system must also have testcases in place before TDD can

be used. These tests must also be simple enough to return a simple true or false evaluation of

correctness. These properties allow for rapid feedback of correctness and design.

It first begins with writing a test. In order to write a test, the specification and requirements

must be clearly understood. The next step is to make the test pass by writing the code. This

step forces the programmer to take the perspective of a client by seeing the code through its

interfaces. This is the design driven part of TDD. The next step is to run the automated

testcases and observe if they pass or fail. If they pass, the programmer can be guaranteed that

the code meets the testcases written. If there are failures, the code did not meet the testcases.

The final step is the refactoring step and any code clean-up necessary will occur here. The

testcases are then re-run and observed. The cycle will then repeat itself and start with either

adding additional functionality or fixing any errors.

Despite the initial requirements, TDD can provide great value to building software better

and faster. It offers more than just simple validation of correctness, but can also drive the

design of a program. By focusing on the testcases first, the programmers must imagine how

the functionality will be used by clients (in this case, the testcases). Therefore, the

programmer is only concerned with the interface and not the implementation. This benefit is

similar to Design by Contract but approaches it through testcases rather than mathematical

assertions.

The power of TDD offers is the ability to take small steps when required. It allows a

programmer to focus on the task at hand and often the first goal is to make the test pass.

Exceptional cases and error handling are not considered initially. These extraneous

circumstances are implemented after the main functionality has been achieved.

As a nice side-effect of TDD, the system will gain a large catalog of regression tests which

can fully test the system at a moments notice.

 8

A part of the Extreme Programming method is the unit testing concept. Various unit testing

frameworks, based on a design by Kent Beck, have come to be known as xUnit testing

frameworks and are available for many programming languages and development platforms.

Unit testing is the building block to test driven development. Extreme Programming and most

other methods use unit tests to perform black box testing. [1,12,14]

2.4 Testing levels

In this chapter, different levels of testing are presented. Testing occurs at every stage of

system construction. The different levels of testing reflect that testing is not a single phase of

the software lifecycle. It is a set of activities performed throughout the entire software

lifecycle. This information is given to the reader to show that there are different levels of

testing, but the focus on this essay is only Component Testing (the first level of testing). Facts

are taken from [4] if nothing else is stated in the separate sub-chapters.

2.4.1 Unit/Component Testing

Unit (or Component) tests aim at testing a unit in isolation from the rest of the system. It

may be a class or a cluster of classes that are tightly coupled, but it is always a conceptually

atomic unit. For example, it might be the set of classes that provide the functionality of a

binary tree. This would include an iterator class and a link class in addition to the tree class.

The intent is that the coupling among internals of this component is more intense than the

coupling of the component with any external objects. Unit testing is usually done by

programmers. The main characteristic that distinguishes a unit is that it is small enough to test

thoroughly, if not exhaustively. It is easier to locate and remove bugs at this level of testing.

The objective of unit testing is to verify that individual units, the smallest compilable

components, function correctly. Unit testing is also called component testing. However,

component testing is sometimes considered to be a level of testing above unit testing. This

may be the case with a system that contains individually testable components that are

composed of multiple units. Unit tests are normally white box tests (see chapter 2.4.1.2).

It is important to realize that unit-testing will not catch every error in the program. By

definition, it only tests the functionality of the units themselves. Therefore, it will not catch

integration errors, performance problems and any other system-wide issues. Unit testing is

only effective if it is used in conjunction with other software testing activities. [4,8,9].

 9

2.4.2 Integration Testing

Integration testing exercises several units that have been combined to form a module,

subsystem, or system. Integration testing focuses on the interfaces between units, to make

sure the units work together. White box tests are used here because certain knowledge of the

units is required to recognize if the combining of units was successful.

Integration tests can use stubs, which during testing replaces finished subroutines or sub-

systems. A stub might consist of a function header with no body, or it may read and return test

data from a file, for instance.

2.4.3 External Function Testing

The external function test is a black box test (see 2.4.1.1) to verify that the system works

according to the specifications. This phase is sometimes called an alpha test. Testers will run

tests that they believe reflect the end use of the system.

2.4.4 System Testing

The system test is a more robust version of the external function test, and also called an

alpha test. The main difference between system and external function testing is the test

platform. In system testing, the platform is as close to production use in the customer’s

environment as possible. By putting the product in the customer’s environment, it is easier to

test, and be confident that the piece of software actually meets its requirements.

2.4.5 Acceptance Testing

An acceptance (or beta) test involves testing of a completed piece of software by a group

of end users. The test is used to determine if the product is ready for deployment. Since the

end users normally have a better idea of how the developed product will be used, the system

will meet a more realistic testing phase than the system testers could offer.

2.4.6 Regression Testing

During development, there will be, at some stage, a working program that performs part of

the final system functionality. As developing of the system proceeds, there is a risk of

breaking the existing functionality. After any significant update to a program, existing test

should be run again to see if the latest product changes have resulted in any new errors. This

so-called regression testing is a good way to isolate errors.

 10

2.5 Testing Methods

This chapter brings up some of the most common dynamic and static testing methods used.

The dynamic methods discussed are Black Box testing and White Box testing and the static

methods discussed are Code Review and Pair Programming. Facts are taken from [1], [4]

and [20] if nothing else are stated in the sub-chapters.

2.5.1 Dynamic Testing

Dynamic testing is testing which involves software execution. In this sub-chapter, two

common dynamic testing techniques, black box and white box testing, are discussed.

2.5.1.1 Black Box testing

Black box testing (also known as functional testing) is a testing technique whereby the

tester does not examine the internal implementation of the program being executed. The

method is used to validate that the software meets the requirements irrespective of the paths

of execution taken to meet each requirement. Testing is performed against the specification

and will discover faults of omission, indicating that part of the specification has not been

fulfilled. The tester only knows the inputs and what the expected outcomes should be. The

tester does not ever examine the programming code and does not need any further knowledge

of the program other than its specification. The tester does not need to have knowledge of any

specific programming languages to be able to write the test cases. The tester can also begin to

design the test cases as soon as the specification is completed.

Black box testing is not 100 % reliable since it is unrealistic to test every possible input

stream to the program it would take a inordinate amount of time; therefore, many program

paths will go untested. Black box testing is not a technique where one writes a lot of test cases

and hopes for the best. The aim of black box testing is to test as much as possible of the

program, it cannot guarantee that all parts of the implementation have been tested.

Black box testing can be performed at the system level, external function level or unit

level.

2.5.1.2 White Box testing

Also known as glass box, structural, clear box and open box testing. White box testing is

performed to reveal problems within the structure of a program. This requires detailed

knowledge of the internal structure of the program. A common goal of white-box testing is to

ensure that every path of a program is exercised. A fundamental strength of white box testing

is that the entire software implementation is taken into account during testing, which

 11

facilitates error detection even when the software specification is vague or incomplete. The

effectiveness or thoroughness of white-box testing is commonly expressed in terms of test or

code coverage metrics, which measure the fraction of code exercised by test cases. Common

white box tests are Statement testing, Loop testing, Path testing and Branch testing. Statement

testing involves tests of single statements. Loop testing test loops and the test includes

skipping of loop completely, cause loop to be executed exactly once and cause loop to be

executed more than once. Path testing makes sure that all paths in the program are executed.

Branch testing makes sure that each possible outcome from a condition is tested at least once.

White box tests are well suited in finding typo errors, logic errors and endless loops. White-

box test cases are easily invalidated by changes in implementation details, but it results in

very high levels of code coverage. White Box test can be applied on the unit and integration

level.

2.5.1.3 Gray Box testing

Gray box testing means tests involving inputs and outputs, but test design is educated by

information about the code or the program operation of a kind that would normally be out of

scope of view of the tester. Test designed based on the knowledge of algorithm, internal

states, architectures, or other high level descriptions of the program behaviour. Gray box

testing examines the activity of back-end components during test case execution. There are

two kinds of problems that can be encountered during gray box testing. One is when a

component encounters a failure of some kind, causing the operation to be aborted. The user

interface will typically indicate that an error has occurred. The other is when a test executes in

full, but the content of the results is incorrect. Somewhere in the system, a component

processed data incorrectly, causing the error in the results.

Even though testers normally do not have full knowledge of the internals of the product

they are testing, a test strategy based partly on internals is a powerful idea. This is called gray

box testing. The concept is simple: If you know something about how the product works on

the inside, you can test it better from the outside. This is not to be confused with white box

testing, which attempts to cover the internals of the product in detail. Gray box analysis

combines white box techniques with black box input testing. In gray box mode, testing occurs

from the outside of the product, just as with black box, but the testing choices are informed by

the knowledge of how the underlying components operate and interact. Gray box testing is

especially important with Web and Internet applications, because the Internet is built around

loosely integrated components that connect via relatively well-defined interfaces. A good

 12

example of a simple gray box analysis is running a target program within a debugger and then

supplying particular sets of inputs to the program. In this way, the program is exercised while

the debugger is used to detect any failures or faulty behaviour. Rational's Purify (see chapter

3.3.2) is a commercial tool that can provide detailed runtime analysis focused on memory use

and consumption. This is particularly important for C and C++ programs, in which memory

problems are rampant.

2.5.2 Static Testing

Static testing is testing not including any software execution. In this sub chapter, two

common static techniques, code review and pair programming, are discussed.

2.5.2.1 Code review

Code review involves that one or more team members read code for errors before it is

added to the build. This requires developers having their reviewer/reviewers check the code

according to a certain checklist. One criterion in the checklist can for example be “Are all

variables initialised correctly?”. What criteria are chosen depends on what kind of business

the list is being made for. For instance, criterions for testing of a game will not be equal to

criteria for testing of airplane computer software. The list should only contain items that are

frequent errors in that certain business. Not only the reviewer has the checklist but also the

developer so that he/she knows what to keep in mind when writing the code.

2.5.2.2 Pair programming

Pair programming is a concept where two developers work at a single computer. One

developer types the code while the other one looks for errors and improvements. The person

writing the code is called Driver and the other is called Partner. The roles of Driver and

Partner are switched frequently and also partners are switched throughout the project. By

using this practice when programming, the code will be under constant review. Pair

programming also distributes knowledge throughout the entire development team.

 13

Table 2.1: On what levels Black Box, White Box and Code review can be applied.

Testinglevels Black Box White Box Code Review

Unit Testing + + +

Integration Testing + + +

External Function Testing + - +

System Testing + - +

Regression Testing

Acceptance Testing

 14

 15

3 Overview of the departments

In this chapter, the signaling Base department and Connectivity Packet Platform (CPP)

are presented. The chapter also discusses the relation between the two. Tools used for testing

on the developments are described in the end of the chapter.

3.1 The signaling Base development

Base develops signaling systems, which is a collection of protocols for signaling in

telecom networks. The protcols are defined by international standars ITU-T (Europe and

Asia), China (China), ANSI (North America) and TTC (Japan). This collection of protocols

can be viewed as a component, which can be used on different platforms for signaling.

Signaling means all data that needs to be transferred in a telephony system in order to provide

services to its users (traffic control, database connections, network management and basic call

control). The signaling system, which Base develops needs to be as general as possible since

it should be able to run on different platforms. Base signaling system is today used on CPP

and Solaris, among other platforms.

3.2 Connectivity Packet Platform – CPP

The CPP (also called Cello) platform is built to support the multimedia services that

characterize the third-generation cellular systems, such as WCDMA (Wideband Code-

Division Multiple-Access) or UMTS (Universal Mobile Telecommunication System). The

name Cello is derived from the ATM-cell, the cornerstone of ATM (Asynchronous Transfer

Mode), a transfer protocol used in modern networking to combine data, voice and video on

the same link.

The CPP platform can be developed into an ATM cell switching network node, for

example a simple ATM switch, a Radio Base Station (RBS), IP router (Internet Protocol) or a

Radio Network Controller (RNC).

 16

Figure 3.1 CPP - a generic platform

CPP provides tools and instructions to develop custom software and hardware for the

nodes, such as radio algorithms, monitoring programs and device boards.

The CPP platform can be structurally divided into three main system areas within the target

system, that is the core part, the Network Connection Handling (NCH) part and the Operation

and Maintenance (O&M).

The core is responsible for maintaining software and hardware of a multiprocessor

environment and provides methods for execution of application software and application

hardware. O&M has the support function that an operator needs in order to control an

application. NCH adds functionality to core and O&M, which makes CPP a network platform,

based on ATM transport.

A CPP based node could for instance be an RBS, the node would then include the CPP

platform and the application that runs on top of the platform.

Figure 3.2: Cello node

The protocols developed on Base (see previous chapter 3.1) are used for sending signals. CPP

builds functionality around these protocols in order to adapt them to their platform, so they

can be used for signaling.

 17

3.3 Testing tools

In this chapter, testing tools used on TietoEnator are presented. These tools are X-unit,

Purify, PureCoverage, FlexeLint, Quantify and Doxygen.

3.3.1 X-Unit

X-unit is a simple framework and interactive tool used to structure and run unit test cases.

There are a number of X-unit implementations; J-Unit is the X-unit implementation for

testing of Java code, Check for C code and CppUnit for C++ code. The tool therefore makes it

possible to write test cases in Java, C and C++. The tool is suited for companies developing

code in Java, C or C++ since actual code and test code can then be written in the same

language. In Check (which is the implementation used on Base and CPP), created tests are

placed in test cases, which in turn are placed in suites. A complete component test build may

contain several suites.

Figure 3.3 Component test structure in Check

 The X-unit framework runs all test suites and also has the possibility to select individual

suites to run, among the registered ones, so not all suites need to be run every time.

Check has built-in support for forking, which guarantees that every test case gets its own

fresh execution environment. Test cases therefore will not affect each other in any way.

A concept, which often is used within testing is the red green bar, this comes from Junit,

which can be operated through a graphical user interface. With Junit when the run button is

pushed, the framework runs all suites, and if there are no errors the status bar remains green

(If the bar is green the code is clean, said to the cadence of "When the light is green the trap is

 18

clean." from GhostBusters, stated by [7]). If an error is found the bar will turn red. Check and

Cpp-unit are run through a command prompt. [6]

3.3.2 Purify

Purify is a run-time error detection tool for Windows and Unix platforms. The tool checks

for memory leaks and other run-time errors by inserting object code before every load and

store instruction. Purify can detect memory access errors, such as reading or writing beyond

the bounds of an array, using un-initialised memory, reading or writing freed memory,

reading or writing beyond the stack pointer, and reading or writing through null pointers.

Furthermore potentially dangerous errors, such as calls to standard functions with incorrect

parameters and potential core dumps can be detected.

Purify checks all the code in a 32-bit or 64-bit program, including any application, system,

or third-party libraries. Purify supports the shared libraries dlopen (Solaris, IRIX, and 64-bit

HP-UX) and shl_load (HP-UX), and works with complex software applications, including

multi-threaded and multi-process programs. [5]

3.3.3 PureCoverage

PureCoverage measures program coverage by function, block or line. The tool has a

customisable graphical user-interface, which is updated dynamically as tests are run.

PureCoverage supports C, C++ and Java programming environments and can detect untested

code with or without source code. PureCoverage provides code coverage information. This

information can be used to assess how thoroughly testing has been done on C and C++ code,

and to pinpoint the parts of the application that tests have not exercised. PureCoverage can

also collect coverage data for Java applications running on a Solaris SPARC 32-bit Java

virtual machine (JVM). PureCoverage monitors coverage in all the code in an application,

even multi-threaded applications, including third-party libraries. Coverage data can be

analysed in the interactive PureCoverage Viewer and Annotated Source window. Reports can

be generated to help diagnose and handle testing deficiencies. [5]

3.3.4 FlexeLint

FlexeLint checks C/C++ source code and can detect bugs, glitches, inconsistencies, non-

portable constructs and redundant code. The tool can check multiple modules. [5]

3.3.5 Quantify

Quantify is a performance profiling tool available for Windows NT and UNIX platforms.

 19

It provides accurate and repeatable timing data. Quantify provides an analysis of

applications run-time execution. Quantify identifies the portions of applications that dominate

its execution time. Quantify gives information to eliminate performance problems so that

software can run faster. It is possible to compare before and after runs to see the impact of the

changes on performance. The 'Quantify'd Call Graph' graphically displays timing data, while

the 'Function List' and 'Function Detail Windows' provide comprehensive timing data in

tabular format. Each of these windows directs to areas in applications that are taking the most

time to execute. [5]

3.3.6 Doxygen

Doxygen is a tool for generating documentation. With this tool, a CTS (Component Test

Specification) can be generated automatically given a particular configuration specification

for Clear Case (a version control system). The CTS will exactly match the build or delivery.

Automatically generating the CTS will make sure that the CTS and the tested code are always

in synchronization. The CTS can be generated as a hyper linked PDF or HTML. Commenting

of test cases should be done carefully to get trace ability in trouble reports, requirements and

other information. If the comments mention data types, functions, or any other element in the

code, hyperlinks are automatically generated. When generating the HTML-version of the

CTS, it’s possible to specify that the source code should be included in the result. This

documentation makes a good reference for a component since the reader has access to both

the documentation of the tests that describe how the component should work, and the actual

test code that uses the component.

 20

 21

4 Analysis of Testing Environments

In this chapter, the testing environments used on Base development and CPP development

are analysed. The aim of this chapter is to describe the different testing environments and to

bring up strengths and weaknesses within each environment.

4.1 Base testing environment

In this sub-chapter, the testing environment used on Base development is discussed. The

structure of the environment is presented, as are Black Box library and its use. Finally, tools

related to the testing environment are described.

4.1.1 Structure

A complete testing structure on Base involves the module being tested, a module-specific

make file, a general make file and all the related test cases together with Black Box library; a

library, which supplies functionality to simplify creation of test cases. Every module-specific

make file includes the general make file, which allows testers to run certain tools in

combination with the test cases. These tools are PureCoverage, purify, FlexeLint and

Quantify and they are used to get certain statistics over the testing performed, like code

coverage.

Figure 4.1 Make Targets

These tools are added as targets in the general make file, which makes it easy to compile

and run test cases together with the desired tool. The company uses GNU-make (or Clear-

make in GNU-compatible mode) and to build and execute the test cases the command ‘cmake

test’ is used. To run one of the targets together with the test cases, the target is simply added

to the command line, e.g. ‘cmake test purify’.

 22

Figure 4.2: Build structure

The module-specific make file includes the module to be tested, the general make file, all

associated test cases and also BB-lib. All these are linked together into one or more binaries.

Therefore, the binary/binaries contains the module to be tested, the test cases and BB-lib.

X-unit (see chapter 3.3.1) is used to run the tests. Base uses Check, the C-version of X-

unit, which allows forking. The results from tests are stored in a file called SS7tracelog.

4.1.2 Black Box Library

Black Box library (BB-lib) is the testing environment used on Base. BB-lib is a C++

library where common functionality used by test cases have been moved to. Test cases written

in BB-lib are smaller and less complex than regular X-Unit test cases since much of the

advanced instructions have been moved into help classes within the library. Having moved

away advanced details and instructions has also raised the abstraction of test cases.

BB-lib supports functionality, which acts as stubs for the modules being tested. When

messages are sent from the module being tested to some external functionality, such as ATM

protocol, BB-lib answers with the message that the module expects to receive from its normal

environment. This is possible since BB-lib contains stub functionality for all external

interfaces used by the module being tested. Figure 4.3 illustrates a situation where the module

(M3 in this case) sends a message destined to a certain service. BB-lib then responds with the

message expected.

 23

Figure 4.3: Base module sending a message to BB-lib which responds with the expected

message.

The creation of configuration files, handling of different standards and handling of

different versions are taken care of by BB-lib. These terms are discussed deeper in the

following two sub-chapters.

4.1.3 Deficiencies prior to the introduction of Black Box library

Every test case requires a configuration and transport part, which initialises the correct

state of the component being tested so that the test cases can test the behaviour it is supposed

to. The configuration part configures a lot of default values for the tested component such as

message timers and the transport part puts the component in the desired testing state, as an

example a certain net topology.

Figure 4.4: Initialisation of a test case.

Configuration and transport is done through configuration files on Base. Before the creation

of BB-lib, testers had to set up theses configuration files manually. The work involved

locating the necessary configuration files, which could be many, and perform the

configurations needed to specify the correct behaviour and state of the tested component. This

was a tedious and time-consuming process. The configuration files basically consisted, and

still does, of a set of numbers. The numbers in the configuration files do not make sense to a

 24

human reader, which is why documentation labels were used so that testers could understand

the meaning of all the different numbers.

Figure 4.5: Configuration file

The problem with the labels was that there were no standard way to document them so the

labels could often consist of less informative names, as illustrated in figure 4.5. This made

changes in the files hard to perform.

Different configuration files had to be made for the existing standards ITU, ANSI, TTC

and China because configuration had to be set up differently and messages did not look alike

in the different standards.

There are different versions of a system and different versions often require different

configurations. There might also be new features in new versions, which needs to be

configured. This is why there was a need to supply different configuration files for different

versions. Because of the complexity of the configuration files, much of the time that could

have been used to create the actual test case was used to just get the module in the desired

state.

The test cases were dependent on each other so test cases had other test cases as pre

requirements. Testers often had to run several other test cases before the one they actually

wanted to run, just to get the system in the desired configuration. The reason for the

dependency is that a certain configuration setup was associated with each test case and test

cases used the setups of the predecessor test cases and added needed modification. As a

simplified example, setup of TC1 creates a link to test traffic over and TC2 is run after TC1

and adds another link. TC3 needs to test traffic over three links so TC1 and TC2 becomes pre

requirement and setup of TC3 simply adds another link.

 25

Figure 4.6: Test case dependencies.

So test cases always had to be run in a specific order. This made the testing process very

inefficient and time-consuming. The number of test cases that had to be run before the target

test case could often be many.

 No time-control existed so test setups and test cases run successfully on one machine could

fail on another because of performance differences between the machines. The reason for this

is that many timers are involved in test runs, which are used when messages are sent between

testing environment and tested module. A timer is started when a message is sent and the

testing environment waits for a response from the tested module until the timer has expired.

The timer is used because the system should not hang forever if the response would never

arrive for some reason. If a timer was set on 100 ms for example when a message was sent

from the testing environment to tested module and the response did not arrive until after 105

ms, the timer for the response would expire and an error would be reported. This is illustrated

in figure 4.7 (TE in the picture stands for Testing Environment).

Figure 4.7: Timer expires before reception of message

 26

The reason for the delayed response could be that the test was run on a slow computer or that

the CPU was occupied with other actions at that time.

4.1.4 Testing strategies today

As mentioned in chapter 4.1.3, configuration files are used to initialize the tested module

before the actual testing takes place. The initialization consists of two parts, configuration and

transport. Chapter 4.1.3 also brings up some drawbacks with the configuration files.

The first step to improvement of the configuration files was to decide upon specific tags to

be used in the files. This made it possible for an automated tool to take care of the

configurations. As mentioned in the preceding chapter, this was hard to perform manually

because the configuration files did not have any logical structure. However, the number of

configuration files still were many, hence it was hard to keep track of them, even with this

tool. Different files had to be created for the different standards and different versions. Today

BB-lib takes care of the generation of configuration files. There still are a number of existing

configuration files for different standards and versions, but these only contain default values,

such as message timers. This means that the stored configuration files today only consist of

the configuration part, not the transport part.

Figure 4.8: 4x4 default configuration files

The transport part, like net configuration, is specified in the test cases. BB-lib handles details

involving the transport settings, therefore the setup code is short and lies on a high

abstraction. A function call could for instance be addLink(), which adds a link in the net.

Testers do not need to think about which standard is used or which version is used when

creating test cases, only what to test and under which circumstances. Version and standard of

the module to be tested is not decided until making the test build. BB-lib automatically

configures the parts of the setup that are standard and version dependent. A simplified

example of this is illustrated in the pseudo code below.

 27

Figure 4.9: Standard and version independent configuration file generation

In order to create the configuration file, which should be used by the module to be tested, BB-

lib first chooses correct stored configuration file according to standard and version, for the

configuration part.

Figure 4.10: Choosing correct configuration file

The data in the configuration file is read and written to a new configuration file. The transport

part (regarding net topology) is read from the test case and also written to the new

 28

configuration file. Also here BB-lib uses information about standard and version to configure

details in the setup that is version and standard dependent.

Figure 4.11: Transport code to module cfg file

When the two configuration parts have been written to the configuration file, it is given to the

module to be tested.

Figure 4.12: Module config file read by tested module

Since BB-lib has all configuration data given to the module to be tested stored in runtime

variables, the state of the module is known to BB-lib. Since the state is known (net topology)

BB-lib will always respond as expected on messages sent from the tested module, regardless

of how the net is configured. Also, when writing a test case for a certain configuration, testers

had to adapt the test cases according to the configuration. If for instance a certain net topology

configuration consisted of two links, and the tester needed to start the traffic on the links, both

links had to explicitly be started in the test case. An example of this is shown in the pseudo

code below.

Figure 4.13: starting links

 29

If the topology consisted of four links then four links had to explicitly be started instead.

Today testers do not have to think about topology configuration when writing test cases.

Since BB-lib has information about the topology, testers just need to call startAllTraffic()

which starts traffic over all links, regardless of the number of links. BB-lib knows about

existing links and therefore which links to start.

Today test cases are stand-alone. Test cases no longer use setup instructions from other test

cases. As mentioned earlier in this chapter, BB-lib contains complete setup functions for all

test cases that exist today. The result of this is that test cases no longer need to rely on other

test cases being executed before them in order to reach a desired initialisation.

Testers now write their test cases in the C/C++ programming languages instead of scripts.

This means that it is easier to make the test cases perform desired actions. Also, with the

introduction of X-Unit (see chapter 3.3.1), testers can write both test cases and actual code in

the same language. Before X-Unit, testers wrote test cases in a script language and the actual

code in C/C++ or another programming language. It was therefore with the introduction of X-

Unit that the creation of BB-lib was made possible. The script languages used before X-unit

was too primitive to support development of a testing environment like BB-lib.

Before, regarding the usage of message timers, a function within the operating system was

called by the tested module to start timers. The timer would then expire when the amount of

time the timer was set to have passed. Today this OS function has been stubbed, so instead of

allowing the module to call the OS function, it now calls the stub function. The only thing the

stub function does is to put the timer variable, its value and the time when the timer was

started in a table, as illustrated in figure 4.12.

Figure 4.14: Timer put in table

The module automatically calls the timer start function, as it was before. The difference now

is that the tester can decide exactly when a timer should expire. Since the OS timer never gets

started, a timer will not ever expire until explicitly stated by the tester. This fact makes sure

that performance differences between different machines do not affect the outcome of tests.

 30

When the tester decides that the timer should expire, it is removed from the table, as

illustrated in figure 4.13.

Figure 4.15: Timer removed from table

The table stores the timers in the same order as they should be expired. The usage of the table

is that it is possible to make sure that testers do not expire timers in the wrong order. The

expire function always picks the timer in turn. Still it is possible to choose to expire specific

timers explicitly if desired.

Doxygen (see chapter 3.3.6) is available on Base and Doxygen comments are added in the

test code. HTML and PDF documents can thereby be generated but this is not done today.

Often when testing is performed there is no systematic way in covering the tested product’s

functionality. Test cases are often measured in numbers, not what functionality they cover.

The bag of test cases just keeps growing, but as a tester it is hard to tell what has actually been

tested, if the question comes up.

Figure 4.16: Functionality covering issues

In difference to this, Base has implemented a method to systematically cover functionality

with the test cases. A matrix is used to get an overview of what functionality have been

covered by tests. The matrix consists of a main matrix with sub matrices. Test cases within a

matrix covers related functionality. All states that the module can be in and all events that can

occur within each state are covered.

 31

Figure 4.17: State-Event matrix

The goal is to test every state for all events. When a tester has written a new test case, the test

needs to be registered to be able to show what functionality has been covered by that specific

test case. When registering tests to X-unit, test cases related to a matrix are put in a separate

suite. This is handled by the testing environment and nothing the testers need to take care of.

Test cases therefore automatically get well structured in suites, which are registered to X-unit.

Figure 4.18: Matrix TC’s to separate suite

Base is controlled by Way of Working, which is design rules and principles regarding

testing. Within Way of Working the concept SQR (Software Quality Rank) is used to

appreciate software/module quality. The ranking system goes from 0-3 and the goal for testers

is to reach as high as possible. There are some rules associated with each rank to be able to

reach it. As an example, a requirement can be that certain tools have been run against the

code, such as PureCoverage to check that the level of code coverage is satisfying.

4.1.5 Associated Tools

This sub-chapter describes a number of tools that have been developed on Base since the

development of Black Box library.

4.1.5.1 CNF-Builder

This tool is used to get access to Black Box library without having to write a test case.

Through a CLI (Command Line Interface), commands can be executed. What the tool actually

 32

does is that it manipulates configuration files used for test cases. If, for instance, a setup is

configured to have a certain amount of links, another link can be added directly from the

command prompt or script.

4.1.5.2 Sesam

Sesam is a tool, which allows recreation of a test case execution by executing the file

SS7trace.log, a log file generated from former test execution. This is possible because the log

file contains information about all messages that were sent during the original test run. The

log file works as a stub for the module involved since it knows what messages has been sent

and therefore what messages the module expects to receive. Sesam has functionality for

stepwise debugging, which means that errors can be traced. Sesam has an advantage over

normal debuggers because it is possible to check exactly how the module was configured

when the error occured, what state it was in, since it is an exact playback of what happened.

4.1.5.3 BTR-tool

BTR-tool is a shell-script developed on Base. It is used to get a report on test results

received from PureCoverage, Purify, Quantify and FlexeLint (see chapter 3.3). These tools

generate different files with the results from tests, e.g. amount of code coverage. The path to

these files are specified in a make file so when this make file is run with the BTR-tool option,

these files are automatically included in the BTR. The result is a BTR (Basic Test Report),

including results from all the tools that have been run in combination with the test cases. The

BTR is stored in XML format.

Figure 4.19: BTR (Basic Test Report)

The picture above, figure 4.17, illustrates result from PureCoverage, Purify and Quantify

being included in a BTR generated by BTR-tool. The make file points at the paths to the

results from the different tools, which BTR-tool uses.

 33

In addition to generating the BTR, BTR-tool reports what features have been tested and

what features have not. To every test completed, a tag, which identifies the covered test, is

added. BTR-tool compares these tags with a list, where all required tests have been placed.

An illustration of this can be viewed in figure 4.18.

Figure 4.20: Tested/untested req. Report

It is important that testers do not forget to add the requirement tag as soon as a test has

been written, otherwise BTR-tool will complain on this test being missing, even if it is not.

4.2 Connectivity Packet Platform testing environment

In this sub-chapter, the testing environment used on CPP development is discussed. The

structure of the environment is presented as are the use of X-unit, suites and fixtures. The

usage of Doxygen is also presented.

4.2.1 Structure

As on base, CPP’s structure involves a component, a component-specific make file and a

general make file. The make file for each component includes the general make file (see

figure 4.1), which is used for all components. As on base, targets such as PureCoverage,

purify, FlexeLint and quantify, among others exists in the general make file, which gives the

option to run these tools in combination with tests. The component-specific make file

specifies exactly what needs to be included, it points out specific C-files depending on which

component it is and adds the specific functionality such as databases, nodes, etc.

 34

Figure 4.21: Component and its specific make file.

The make file for each of these components makes sure that the correct stubs are included

to be able to satisfy the external dependencies of a component. A few generic stubs exist for

common services like CLI (Command Line Interface) and DBI (Data Base Interface) that all

component tests can use. The functionality in these stubs can be overridden by the tests if they

wish to replace a particular piece of functionality to test some error condition for instance.

Figure 4.22: Stub functionality

Unlike base, where tests are run on Solaris, CPP tests are run on SoftOSE operating

system, which in turn run on Solaris. SoftOSE, the test cases, the stubs and the component to

be tested are all built into one or more binaries.

 35

Figure 4.23: Make structure on CPP

The tests are built using make files and gmake, which builds exactly what is needed in

order to perform the test. This helps keeping the build times and the test binary size down.

X-unit (see chapter 3.3.1) is used for running the tests. As on Base, the C-version of X-

unit, Check, is used. When the test is finished reports from the tests are stored in a log file.

4.2.2 Testing strategies

Except for the stubs, which are shared by the component tests, there is no glue code or

library (like BB-Lib in Signaling Base Development). CPP uses the Check (X-Unit) library

directly. Test cases that are related to each other are registered in suites that may be executed

separately once the SoftOSE shell, which is linked with the test binary, starts. It is therefore

possible to run a subset of the tests. Testers themselves structure test cases in suites and

register the suites to X-unit. This it different from Base, where the structuring of test cases

into suites is handled automatically by the testing environment. On base, as mentioned in

chapter 4.1.4, test cases related to one matrix are put into a separate suite. Since the various

tests are concentrated to investigating a particular aspect of the test object, it is common that

the test object needs to be in a particular state before the test is run. If each test had the

responsibility of getting the test object into that state, the test code would quickly bloat and

become more incomprehensible. On Base, BB-lib takes care of the complexity of dealing with

configuration files, which are used by the test object to set up the desired testing state. CPP on

the other hand does not use configuration files, so called fixtures take care of the

configurations. A fixture consists of a setup function, which puts the test object in the correct

 36

state and a tear down function, which brings back the object to its initial state. A correct state

varies depending on the test case, which results in a complete component test normally having

several fixtures that may be combined to setup and tear down the test object for each

individual test.

Figure 4.24: Test cases handled by fixtures

A fixture can for instance involve code to setup a number of communication links and a tear

down of the same. The test itself might test that traffic runs as it should over the links and aim

at testing traffic limits. The setup and tear down functions are ordinary C-functions as well as

the tests.

Figure 4.25: Fixture

Fixtures is a general concept within X-Unit (see chapter 3.3.1) based testing and supported

by many implementations, including Check, the C-version of X-unit used on CPP. Check

associates one or more fixtures with a test case. The test case contains a couple of tests that all

will have the setup and teardown functions of the fixture executed before respectively after

the test is executed. The result of this is that tests themselves do not normally have to contain

any logic to initialise the test object or remove any residue left in the test object after it has

executed. Fixtures are normally shared between several tests, which means fixtures are good

 37

to reuse. Created fixtures are therefore stored for future use. Check allows a test case to

contain several fixtures, they may be combined to create composite fixtures. Composite or

combined fixtures can be used when there is a need for a certain fixture to initialise a test, but

there already exist a fixture which contain most of the instructions needed for the new setup.

The tester can then use the existing fixture and combine that fixture with a new fixture so that

the precise setup needed can be achieved. As an example, if fixture 1 sets up five node

communication links and test requires testing on a setup of nine links then a new fixture,

which adds four links, can be created. These two fixtures can be used together to reach the

desired state of nine communication links.

Figure 4.26: Combined/Composite fixture

Since CPP, as Base, uses X-unit it means that also testers on CPP has the possibility to write

program code and test code in the same language, instead of scripts. Since tests only contain

the logic related to the actual test and no setup code, tests are easier to write, read and

understand. Tests could for example require that the test object contain the maximum allowed

number of links to be available in the test object before they execute. The setup function for

this particular fixture would then make sure that all the links are created and the tear down

function would remove them.

 38

Figure 4.27: Test case and fixture

If the test is supposed to check what happens if the maximum number of links is exceeded,

the only responsibility for the actual test case would be to simply add a link and expect a

reject.

As on Base, test cases on CPP are stand-alone, no test cases need to be run before others to

reach a desired configuration. This is because of the use of the fixtures, which has the full

responsibility to set up the environments for the individual test cases.

Version dependent settings regarding the configuration files on Base is taken care of by

BB-lib (see chapter 4.1.4). Testers therefore normally do not need to think about which

version they are writing tests for. On CPP there are no automatic handling of version

dependency. Fixtures and test cases need to be adapted manually according to version.

On base BB-lib performs configuration depending on standard. Testers on CPP do not

normally need to handle different standards. This is mainly because CPP uses Base (see

chapter 3.2), which takes care of the standard independent parts.

Figure 4.28: Standard dependent parts handled by Base.

 39

Figure 4.26 shows an example where a CPP module sends a signal to a Base module. Before

the signal is sent, it is converted to base signal structure so it can be understood by Base. The

standard-specific configurations needed are taken care of by base. When the desired task is

done, the signal is sent back to CPP, which receives the signal and converts it back. Some

modules on CPP still needs to handle standard dependent parts however so testers can not

completely overlook standard.

On CPP there is no fast way to check what functionality has been covered, it is hard for a

tester to tell what has actually been tested. CPP does not have a matrix like base or anything

likewise so there is no easy way to point out exactly what have been tested. CPP however has

a good way of documenting the test cases. Since documentation is an essential part of TDD

(Test Driven Development) and since one of the keys of TDD’s work is to keep the time it

takes from adding a test, running the test, adding the feature or fix, running the test again, and

finally documenting the test, down to a minimum, the documentation also needs to be done as

fast as possible. The old method was to maintain a Frame Maker document. A big drawback

with the Frame Maker documents was that they needed to be kept synchronized with the

actual test code. Today Doxygen (see chapter 3.3.6) is used. With this tool, a CTS

(Component Test Specification) can be generated automatically from the test code.

Automatically generating the CTS will make sure that the CTS and the tested code are always

in synchronization and thereby eliminate the need to manually synchronize them. There is no

easy way to find individual test documentations. If an error report comes from a customer, it

is important to check if there is a test case that covers the specific error situation. On CPP

testers normally have to look through a lot of documentation to find individual test

documentation, which can be very time-consuming.

As mentioned in chapter 4.1.4, on Base, time no longer flows and testers themselves can

decide when timers should start and expire. This way the results of tests do not differ on

machines with different performance. On CPP, time still flows but since the test builds are

very small, the outcome of tests does not vary on different machines. If a test build for some

reason would get big enough, machine performance differences could affect the result of the

tests.

CPP, as Base, is controlled by Way of Working (see chapter 4.1.4).

 40

 41

5 Improvement plan

In this chapter the criteria used for evaluation of testing strategies are explained as well as

the proposed actions for improving testing. In the last part of the chapter the criteria are used

to evaluate the actions proposed.

5.1 Evaluation criteria

In this sub chapter the criteria used for evaluation of testing strategies are explained.

5.1.1 Test creation

Test creation involves how much technical details are required and how much effort is

needed to create tests. Writing a test should not require lots of work aside from writing the

actual test case.

5.1.2 Test maintenance

This criterion looks at the effort required to maintain old tests when newer versions of

systems are developed.

5.1.3 Test running

Test running involves the difficulty in choosing desired tests to run. The criterion also

looks at whether or not tests are required to be run in a specific order to be executed as

intended on the test object.

5.1.4 Functionality coverage

This criterion looks at how well tests cover the specified functionality of the system being

tested. Having a good way of covering functionality with tests means that it is easier to

prevent bugs and to assure that a certain feature is supported.

5.1.5 Automation

This criterion looks at how well testing is automated. Testers should not manually perform

tasks that obviously can be handled by a tool.

 42

5.1.6 Error detection

 Fault detection/prevention involves how well testing techniques can find faults and/or

prevent faults.

5.1.7 Common way of working

Common way of working is the criterion, which pervades the whole investigation. The

criterion aims at having as equal testing methods as possible on Base development and CPP.

As mentioned in chapter 1.2, having a common way of working will make it easier moving

personnel between the testing departments and to make use of each other’s work.

5.2 Possible improvements

This chapter analyses strategies and tools used for testing on Base and CPP. Both

strengths and weaknesses are explained in order to see what ideas could be moved between

the development areas and what needs to be improved. The chapter also aims at enabling use

of same strategies on Base and CPP to the extent possible.

5.2.1 Testing strategies

In this subchapter, strengths and weaknesses of testing strategies used on Base and CPP

are described and improvement suggestions are presented.

5.2.1.1 Configuration-files

Configuration on Base is, as mentioned in chapter 4.1.4, taken care of by Black Box

library. Configuration files are created according to the setup instructions before the execution

of a test case. The module to be tested reads the settings from configuration files to be able to

setup the desired testing state. Configuration files are, however, still in use only because of

backward compatibility with old test cases, which communicate the setup instructions to the

module through files.

Figure 5.1: Configuration file generation

If all old test cases were to be converted, the generation of configuration files could be

skipped completely and thereby all unnecessary intermediate steps would be avoided. Instead

 43

of delivering files to the module with setup instructions, test cases could instead give the

instructions to the module directly. CPP, as mentioned in chapter 4.2.2, does not use

configuration files at all. The testing environment performs configuration of the test object

directly, which is handled by the fixtures used. All old test cases on CPP have been converted

so there is no issue with backward compatibility. Doing same on Base will take some time

since there are many test cases, but if the company works towards this, eventually all old test

cases can be replaced by new ones and the usage of configuration files can be removed. Also,

since the old tests are much more complex to understand than the new ones, maintenance of

these tests are harder to perform. Therefore, converting old test cases will make maintenance

of test cases easier. In addition to that, the old test cases has to be run in a separate framework

and also might have to be run in an specific order, which is why it will also be easier to run

the test cases.

5.2.1.2 Test setups/teardowns

BB-lib has been developed far in order to get a good structure and simplify testing on

Base. BB-lib contains stub functionality and performs test case configuration regardless of

standard and version. As mentioned in chapter 4.1.4, this is possible because BB-lib contains

configuration settings for all versions and standards and automatically chooses correct

configuration by checking current version/standard. On CPP test object does not need nearly

as much configuration as on Base, so they also can lay most focus on the test setup part (e.g.

net topology and traffic). On both Base and CPP, testers need to create setups, which are to be

executed before the actual test in order to be able to test the desired state. On CPP the setups

(together with the teardowns) are called fixtures, as mentioned in chapter 4.2.2. Fixtures are

saved as they are created so they can be reused. When a tester on CPP writes a new test case,

the first thing needed to be done is to check if a fixture already exists that fits the current test

case. If no fitting fixture is found the tester needs to create a new one. There are no certain

rules for naming saved fixtures, which is a problem. An approach to simplify the work on

CPP is to use a well-structured hierarchy of fixtures, where fixtures have names decided

according to some rule to reach uniformity and avoid overlapping fixtures. Fixtures should be

catalogisized according to the version (for some parts of CPP also standard) it is designed for

so they easily can be located.

 44

Figure 5.2: Structuring of fixtures.

The same thing could be done on Base, that testers begin to store their created setups for

future reuse. To ensure a uniform non-overlapping amount of well-structured fixtures/setups,

the best would be to assign one or more persons to perform the task. This would require alot

of work from the persons assigned so from that perspective it would be best if testers could be

ensured to follow the rules and guidelines for creating and storing fixtures/setups themselves.

The problem with letting testers themselves create their fixture when needed is that there is a

great chance that structure and names will not be uniform and thereby it will be hard to

localize specific fixtures.

Another way to make the work easier for testers regarding setup is to make it more

automatic. This can be done by putting related setups/fixtures in separate functions and within

the functions use some conditional structure in order to choose correct setup/fixture

depending on which version that is runing. The result of this is that testers would only need to

specify the required setup function (and in the case of CPP also teardown function). For

example calling a function createNodes would result in a call to the correct function for the

present version. Pseudo code for this function is shown below.

function createNodes()

{

 if(V1)

 createNodesV1()

 else if(V2)

 createNodesV2()

 else if

}

Creation and structuring of setups/fixtures will require some time and effort but when it is

done for a module it will be easier to write tests since locating and reusing setups/fixtures will

be more straight forward. Working this way will also result in a more common way of

working between Base and CPP.

 45

5.2.1.3 Test case functionality coverage

To cover functionality, Base uses a state-event matrix, as mentioned in chapter 4.1.4. This

is a good way to get an overview of covered and uncovered functionality. Since the matrix

gives an overview of what functionality has not been tested, it results in more effective error

prevention. The more functionality has been covered by tests the lesser is the chance of errors

remaining unseen. CPP does not have any way to cover functionality like the matrix on Base.

As mentioned in chapter 4.2.2, the only way to find out what functionality has been covered

by test cases is to look at the documentation. There is no fast way to find out whether or not

certain functionality has been covered by test cases. It is obvious that it would be very useful

for CPP to also use a matrix for test case coverage overview. CPP however has a good way of

documenting test cases using Doxygen, as mentioned in chapter 4.2.2. With Doxygen (see

chapter 3.3.6) it is possible to generate a CTS (Component Test Specification) as a

hyperlinked PDF or HTML. Together with the matrix the CTS's would become more useful

since the matrix could work as a search engine for the documentation. If for instance an error

occurs, the matrix is checked to see if there is a test case that covers that specific error. If

there is a test case then it is easy to look it up in the documentation.

Base also uses Doxygen, as mentioned in chapter 4.1.4, but no CTS's are generated.

Towards a common way of working and a more effective way of covering functionality CPP

should work towards the usage of a matrix and on Base, Doxygen should be used to same

extent used on CPP.

5.2.1.4 Structuring of test cases and suites

As mentioned in chapter 4.2.2, CPP uses the concept fixtures, where a fixture can work as

setup for a number of test cases. The test cases are placed in suites and a test build can contain

several suites. Testers themselves structure related test cases in separate suites. It is possible

to execute individual suites, which means it is possible to just run some of the tests and not all

of them each time.

On Base (see chapter 4.1.4), all test cases are registered in matrices, which in turn are

registered in separate suites and then built together with the rest of the testing environment. In

difference to CPP, testers on Base do not structure test cases into suites themselves, instead

this is handled automatically by the testing environment. Every matrix becomes a separate

suite, which is registered to X-unit. The advantage of having this automated is that the

structure of the suites will have a logical and uniform structure (presuming that the test case

matrices are well structured) and there will be no space for testers to perform their own

 46

structuring which probably will not always be uniform. It is possible to run sub sets of test

cases, either a specific test case or a range of test cases.

Not every tester on CPP structures suites and test cases as they are supposed to with X-

unit. It is not uncommon that there is a suite, which contains one single test case. Suites are

meant to group test cases, which test related functionality, and if testers use suites this

minimal way then much of the purpose of X-unit is lost. By implementing matrix to handle

functionality coverage (as mentioned in chapter 4.1.4) CPP will automatically get a more

uniform and better structure regarding what the suites should contain. If also the process of

registering suites to X-unit is made automatic on CPP as it is on Base, a uniform and logical

structure of test cases in suites is ensured. Computers do not have their own will so the

instructions given will be performed exactly as expected (without any presence of bugs of

course) but when the human hand is involved there is no way to be sure on how the result will

look.

Figure 5.3: Do not trust humans.

One or more well skilled persons with good knowledge of the system should perform the

grouping of test cases info matrices. The grouping should be done according to some

predefined functionality specification. Doing so will make it easier for testers to check if

certain functionality has been tested. As an example of this, on Base there is a function

specification called SoC (State of Compliance), which tells exactly what should be supported.

The SoC is split into chapters where each chapter covers related functionality. Using a

guideline as the SoC when grouping test cases into the matrices results in a logical structure.

Following the SoC/function specification makes it easier to run desired test cases. If there is a

need to check if a module implementation supports the functionality described in a certain

chapter in the SoC, the test case matrix covering that chapter can simply be run. If the test

cases run through without errors, the functionality is supported. Since grouping according to a

function specification will result in all described functionality being covered by tests, it also

 47

helps detect errors. Today, matrix test cases are not grouped according to the SoC on Base.

The matrix test cases are grouped into functionality but not as logically structured as it would

have been if SoC's had been used as guideline. Grouping test cases according to the SoC is an

improvement that should be done on Base. There are function specifications on CPP

corresponding to the SoC, which can be used when structuring matrix test cases.

5.2.1.5 Time control

The outcome of tests can vary on different computers because of differences in

performance. As mentioned in chapter 4.1.3 this is because a lot of message timers are

involved in testing. If a machine is fast enough or slow enough a timer can expire too soon or

too late, which can make a test give an incorrect error report. Base solved this problem by

implementing their system so that testers themselves can decide when timers should expire

(see chapter 4.1.4). On CPP time still flows in the test cases, as mentioned in chapter 4.2.2. If

CPP changes to the way Base work then testers will get better control of the test cases.

Whether or not tests are run on a slow or fast machine will not affect the result of test cases,

as on Base. It will also be easier to create tests since testers do not have to spend time making

sure that timers don not expire before or after they should. Normally tests needs to be

maintained often since computers performance increase fast which results in timers expiring

at wrong times. With the implementation of time control, test cases will not need to be

maintained for this reason anymore. Debugging will also be easier to perform when having

control over timers.

Implementing time-control will be a big step towards a common way of working. A

drawback with working this way is that testers will need to take care of timers in the test

cases, which requires more effort. What is good with having to deal with the timers is that

testers will get a more complete understanding of the module they are testing.

5.2.1.6 Simplicity of TC´s

There are some differences between Base and CPP regarding TC setup and teardown. Base

uses fork when initializing a new test case (see chapter 4.1.1), which allows for each test case

to execute in a new fresh environment. This way testers do not have to spend time coding

teardown functions. Testers on CPP, on the other hand, need to write both setup and teardown

functions. CPP runs upon SoftOSE operating system (as mentioned in chapter 4.2.1), which in

turn run on Solaris. SoftOSE does not support forking of processes. SoftOSE is a real-time

OS and this quality is needed by CPP's service so CPP cannot just run directly on Solaris to

 48

enable the usage of fork. Since it would save time to not be obligated to create teardown

functions, an alternative could be to work towards usage of another real-time OS, which

supports forking. Problem is that it is not trivial to switch from one OS to another, it would

require a lot of effort and result in a lot of changes and there are not a vide range of real-time

OS's. Because of the previous reasons, there is no trivial solution to reach a common way of

working regarding this aspect.

5.2.2 Testing tools

This chapter discusses advantages and disadvantages with different tools. Whether or not

these tools should be used on Base and CPP, is analysed.

5.2.2.1 CNF-builder

CNF-builder (see chapter 4.1.5.1) is a tool used on Base to manipulate configuration files

without having to write a test case. There is no use for this tool on CPP since they no longer

work with configuration files. If Base were to work towards removing the usage of

configuration files there would be no use for CNF-builder either.

As mentioned before, to reach a more common way of working the configuration files

should be removed from base.

5.2.2.2 Sesam

Sesam (see chapter 4.1.5.2) is a tool, which makes it possible to get a replay of a certain

testing run by executing a log file. Sesam has an advantage over normal debuggers because it

is possible to check exactly how the module was configured when the error occurred, what

state it was in, since it is an exact playback of what happened.

BB-lib made the creation of Sesam possible since no time flow exists the time control in

BB-lib has been stubbed out (see chapter 4.1.4). When no time flow exists it is possible to

make an exact playback since timer values can be read from a file. Since no OS time function

is called, the step vice debugging works; the timers will not expire after a certain amount of

time.

Sesam is however almost unknown among the employees on TietoEnator and not in use at

all even though it has been developed to work on Base. The developers of Sesam are certain

that testers will have great advantage of using this tool. People on Base should lay some effort

in trying to get Sesam in use. If Sesam proves to work well on Base then a corresponding tool

could be developed for CPP as well.

 49

Today a creation of a similar tool is not possible on CPP, but if the company decides to

stub out the time on CPP as well, as suggested in chapter 5.2.1.5, an equivalent tool could be

made. This would not only result in a more common way of working regarding the time

control but would also result in both departments having an equivalent debugging tool.

5.2.2.3 BTR-Tool

BTR-tool (see chapter 4.1.5.3) is a tool used to create BTR's (Basic Test Report) and is

written in a script language. The tool is used on Base to generate test results from

PureCoverage, Purify, Quantify and FlexeLint. The BTR is stored in SGML format. BTR-tool

has some drawbacks as it is today. Mainly it still has some bug issues to be solved, even

though many of the bugs have been found and corrected. Another problem is that BTR-tool is

not fully adapted for all modules it is used on. On the M3 module on Base, for instance, about

thirty binaries are created from the test build. Each of these binaries will have their own

separate reports for PureCoverage, Purify, Quantify and FlexeLint.

Figure 5.4: Report files for each binary on M3

BTR-tool only supports creating a BTR from reports for one binary at a time which means

that BTR-tool must be run thirty times in order to get BTR’s covering tests from all binaries.

 50

Figure 5.5: A BTR for every binary test report

All these BTR’s are today manually merged into one document at the end.

Figure 5.6: All BTR’s merged into one document

 A strategy to get rid of the need to run BTR-tool for each and every binary would be to

merge all report documents of the same type (e.g. PureCoverage) into one document. Doing

so would result in only having one document from each of the tools and not thirty.

Figure 5.7: Merging report documents

This way BTR-tool will only be needed to run once to get a BTR covering all the binaries.

The problem is merging these files, PureCoverage result files, for instance, are binary files

specific for PureCoverage and these files cannot just be merged as text files can. There are

 51

however built-in functionality in PureCoverage, and the other tools, to merge the result files,

but this has to be done manually after the tools are done with execution. This involves picking

the result files and merging them, one by one. Because automization is important, an

alternative is to create a script, which automatically performs the merging by running upon

the tools and uses the built-in merge functions, as illustrated in figure 5.8.

Figure 5.8: Merging script

The idea with BTR-tool is good, but as it is today, the tool only works for one binary. As it

is today, reports from PureCoverage etc. are not created very often because it involves too

much effort. If BTR-tool would function properly, BTR's would be created more often, which

would help reaching a higher code quality. Changes need to be done before the tool can be of

any essential use. On CPP there is no equal tool to BTR-tool, gathering of test reports is

performed manually. As BTR-tool today does not function properly and because of that not

much effort is saved using this tool, creating such a tool for CPP would not be worth the

effort. If BTR-tool is changed so that it works well for Base, then developing a similar tool

for CPP can be interesting, following guidelines from Base.

5.3 Advantages and costs of improvements

In chapter 5.2 some actions were suggested in order to improve testing on Base and CPP

and to achieve a more common way of working between them. Following subchapters

discusses the worth and cost of the suggested actions. Worth’s and costs are estimated with a

grade of 1-5. The last chapter summarizes the discussions and presents the result.

5.3.1 Explanation of the estimation values

The estimation of values in the following sub chapters is mainly performed by testers,

which are involved in the different areas. Employees, who were working or had been working

within Base, performed estimations regarding Base and the same way it was done for CPP

related estimations. The testers performing the estimations were not randomly picked, they

were well involved in their areas and all were front persons within respective department.

This means that the reliability of these persons is high. Each of the employees gave a rating

 52

for the different actions, and if the ratings between the employees differed, a middle value

was calculated. However, in many cases discussions led to a value that all could agree on,

bringing up different views of the matter.

5.3.2 Convert old test cases (Base)

This action fulfils two criteria; test maintenance and test running. As mentioned in chapter

5.2.1.1, converting old test cases will make maintenance of test cases easier. This is because

the old test cases are more complex to understand than the new ones. The assignment of

maintaining old test cases of today is extremely time and effort demanding of the testers since

there are many tests cases to maintain. Testers who have worked with maintaining old test

cases rated the effort savings to four out of five regarding the test maintenance criterion. Since

the old test cases has to be run in a separate framework and also might have to be run in an

specific order, it will also be easier to run the test cases. All test cases can simply be run

within same framework without having to think about which order the tests are run in. Testers

who have worked with running old test cases and new test cases rates the effort savings to

three out of five regarding the test running criterion.

There still are a lot of old test cases, converting all of these will therefore require quite a lot

of time and effort. Involved testers estimated this cost to three out of five.

5.3.3 Structure setup/fixtures (general)

This action fulfils one criterion; test creation. Structure setup/fixture reuse will, as

mentioned, ease test creation since the setup part can be reused. Since setups of different tests

often are alike, testers will often be spared the work of creating setups and/or teardowns.

However, setups/teardowns are only one part of test case creation, hence the rating do not get

higher than it does. Testers who have worked with creating test cases rates the effort savings

to three out of five regarding the test creation criterion.

The cost of this action is estimated fairly low since it mainly requires that testers follow

certain rules when storing setups/fixtures, which will not require much more time or effort

than of today. Existing fixtures/setups still needs to be structured however (if they should be

able to be easy to reuse as well) so together with some testers the cost was estimated to two

out of five.

5.3.4 Automate version and standard dependent setup/fixture selection (general)

This action fulfils three criteria; test creation, automation and common way of working.

Since the action results in an easier way for testers to locate existing setups/fixtures, it results

 53

in easier test creation. Choosing the fixture/setup will be faster and also it will make testers

more tempted to use this system with storing and reusing fixtures/setups. Until now many

testers has not bothered with trying to reuse the fixtures because of the hardship in locating

them. This action is a step further to the one discussed in 5.3.2, which is also aiming at

addressing this problem. With this idea testers will not have to think about what version and

standard they are dealing with, just what kind of setup/fixture they need. Testers who have

worked with creating test cases rates the effort savings to three out of five regarding the test

creation criterion. Automation is, as mentioned, viewed as an important aspect for effective

testing. Testers who have worked with locating fixtures/setups for different versions and

standards rated the effort savings to two out of five regarding the test automation criterion.

Since the action proposed is general and directed at both Base and CPP, it results in a more

common way of working. The setup/teardown part of test creation is not the largest part of a

testers world so the testers who have worked with this rates the action to two out of five

regarding the common way of working criterion.

The action will require someone to construct some kind of program, which automatically

chooses correct fixture depending on standard and version. Except from creating the actual

program, someone needs to be assigned to keep this software updated as new fixtures/setups

are created. This person or persons will also have to make sure that the fixtures/setups are

stored at correct locations and have specific names, if the program should work. This will

require quite a lot of effort and together with some testers the cost of this action was estimated

to four out of five.

5.3.5 Implement matrix (CPP)

The implement matrix action fulfils three criteria; functionality coverage, error detection

and common way of working. Since the action results in a systematic way of covering

functionality, it will make it easier to achieve good functionality coverage. Testers who have

worked with functionality coverage rates the effort savings to five out of five regarding the

functionality coverage criterion. Having a good way of covering functionality also results in

better error detection since there is lesser risk for features to remain untested. Bad

functionality coverage is a common reason for bugs making their way out of development.

The involved testers rate the worth of this action to four out of five regarding the error

detection criterion. If CPP would perform this change then it would result in a common way

of working to a great extent since it is a big part of the testing. It would result a lot of changes.

 54

The involved testers rated this action to five out of five regarding the common way of

working criterion.

 This action will require a lot of changes to the testing structure on CPP and the matrix

strategy has to be implemented, which also is far from trivial. Involved testers rates the cost of

this action to five out of five.

5.3.6 Register suites automatically to X-unit (CPP)

This action fulfils three criteria; test running, automation and common way of working. It

simplifies the test running in the way that testers do not have to manually structure test cases

into suites themselves. It will ensure that the structure will be uniform and logical, as long as

the algorithm is well implemented. The involved tested rated the effort savings to one out of

five regarding the test running criteria. The reason for the low rating is that registering suites

is a small part of test running. Regarding the automation criterion the value of the action was

rated to one out of five, this is because it is not that demanding task. Since Base already

register suites automatically today, this action also fulfils the common way of working

criterion. Also regarding this criterion, it will be a small-scale change hence the action is rated

to one out of five by the involved testers.

To make this action a reality, one or more people need to be assigned to implement a

program or routine, which handles the structuring and registration of test cases. Doing this

will not be very complicated but will still require some time. A minor change of the current

structure also needs to be performed. Involved testers rated this action to two out of five.

5.3.7 Group tests according to functionality specification (general)

This action fulfils two criteria; test running and error detection. The test running will be

greatly improved since testers often want to run specific test to make sure certain functionality

is supported/functions correctly. If the tests are grouped according to the functionality

specification, the related tests can more easily be identified and run. Involved testers rates this

action to four out of five regarding the test running criterion. The action affects error detection

positively in the way that necessary tests can more easily chosen when grouping tests

according to functionality specification. This results in lesser chance for bugs to remain

unseen. This is only to a minor extent however since the bugs will often be detected when the

entire test suite is run. Involved testers rates this action to one out of five regarding the error

detection criterion.

 55

The action will require one or more employees to regroup all or most of the test cases,

which will require quite a lot of time and effort. The action will however only affect this area

itself and the work will be fairly straightforward if the assigned people are careful. Involved

testers rates the cost to three out of five.

5.3.8 Implement time control (CPP)

This action fulfils four criteria; test creation, test maintenance, error detection and common

way of working. Test creation will be easier since the testers will not need to worry about

whether or not timers will expire before they should (on other words, they need not worry

about that an action may take longer than expected to execute). Involved testers rates this

action to two out of five regarding the test creation criterion. The reason for the fairly low

rating is that it is not that common that timers expire incorrectly on CPP. It is not that urgent

problem as it was on Base, even though it still occurs. The action will improve error detection

since it will enable the use of debuggers, since timers will no longer be involved. Above all,

this enables the use of Sesam (see chapter 4.1.5.2). Involved testers rates this action to two out

of five regarding the error detection criteria. A common way of working is achieved since this

is the way it is working on Base. Involved testers rates this action to three out of five

regarding the common way of working criterion. A fairly good rating because the action will

result in both uniformity in the creation of tests and also uniformity in debugging (the level of

common way of working this is however also depending on whether or not both departments

are going to use Sesam).

This action will require changes in the way test cases work with timers, which will require

some changes. These changes should however be straightforward and not very complex. The

most demanding part of the work will be to change the existing test cases since testers will

explicitly need to expire timers. The involved testers rate the cost of this action to three out of

five.

5.3.9 Get Sesam in use (Base/general)

This action fulfils one criterion; error detection. This is because Sesam is a tool for step

vice debugging which only needs a test log file as input. The tool makes it possible to view

the exact module configuration when the error occurred. This possibility will greatly improve

the ability to detect errors. Involved testers rate the worth of this action to three out of five.

The cost of getting Sesam in use is low, in essence, what is needed is to spread the tool

among the employees and see to that they learn how to use the tool. What is mainly important

 56

is to explain the advantages with using the tool. The cost of this action is estimated to one oft

of five.

5.3.10 Develop merging script for BTR-tool (Base)

This action fulfils one criterion; automation. Besides that the action also results in other

qualities not measured by the criteria, mentioned in 5.2.2.3. However, since the work of

merging all the result files from PureCoverage and the other tools would be very time and

effort consuming, this action saves a lot of work. Involved testers rates this action to five out

of five regarding the automation criterion.

Developing a merging script would be straightforward and would not require much time. A

tester alone would be able to create such a program within days. The cost of this action is

rated to two out of five.

 57

5.3.11 Summary of the actions

 In the table below the criteria fulfilled by the different actions are summarized. How well

the criteria are fulfilled is estimated with a grade of 1-5, where 5 is the highest grade.

Table 5.1: Actions and the criteria they fulfil

Actions Criteria

 Test

creation

Test

maintena

nce

Test

running

Function

ality

coverage

Automati

on

Error

detection

Common

way of

working

Convert old test
cases (Base)

 4 3

Structure
setups/fixtures
(general)

3

Automate
version and
standard
dependent
setup/fixture
selection
(general)

3 2 2

Implement
matrix (CPP)

 5 4 5

Register
suites
automatically to
X-unit (CPP)

 1 1 1

Group tests
according to
functionality
specification
(general)

 4 1

Implement time-
control
(CPP)

2 1 2 3

Get Sesam in
use
(Base/general)

 3

Develop
merging script
for BTR-tool.
(Base)

 5

 58

Following table summarizes the cost estimation of the actions proposed. The estimation scale

goes from 1 to 5, where 5 is the highest cost.

Table 5.2: Actions and their costs

Action Cost

Convert old test cases 3

Structure fixtures /setups 2

Automate version and standard dependent fixture selection 4

Implement matrix 5

Register suites automatically to X-unit 2

Group tests according to functionality specification 3

Implement time-control 3

Get Sesam in use 1

Develop merging script for BTR-tool. 2

The last table relates the cost of an action with its relevance. This is calculated with the

formula ∑∑∑∑ Ecvn /Ec =Eηηηη where n is the action.

Ecv = Estimated criteria value (see table 5.1)

Ec = Estimated cost (see table 5.2)

Eη = Relevance value of the action

The higher value Eη has implicates that the action is more valuable in relation to it´s cost.

Table 5.3: Calculation of relevance values

Action Applying formula Result (Eηηηη)

Convert old test cases (4+3)/3 2.3

Structure fixtures/setups 3/2 1.5

Automate version and standard dependent fixture
selection

(3+2+2)/4 1.8

Implement matrix (5+4+5)/5 2.8

Register suites automatically to X-unit (1+1+1)/2 1.5

Group tests according to functionality specification. (4+1)/3 1.7

Implement time-control (2+1+2+3)/3 2.7

Get Sesam in use 3/1 3

Develop merging script for BTR-tool. 5/2 2.5

 59

According to the estimations and calculations, the actions are structured in the following

table in the order of relevance. This means that the higher in the table the action are, the more

will the company gain in relation to the cost from that certain action.

Table 5.4: Actions and their relevance values

Action Relevance value

Get Sesam in use 3

Implement matrix 2.8

Implement time-control 2.7

Develop merging script for BTR-tool. 2.5

Convert old test cases 2.3

Automate version and standard dependent

fixture selection.

1.8

Group tests according to functionality
specification.

1.7

Structure fixtures/setups 1.5

Register suites automatically to X-unit 1.5

Even though some actions that obviously result in better changes than others and would seem

to fit better higher up on the list of relevant actions, the cost greatly affect the worth of an

action. If an action results in fairly low profit but is very cheap to perform, the action can be

more worth than an action with good profit but very high cost. As can be viewed in table 5.3,

the action ‘Implement matrix’ results in a much higher improvement value than does the

action ‘Get Sesam in use’. However, since the cost of getting Sesam in use is almost nothing

compared to implementing the matrix, the ‘Get Sesam in use’ action gets a higher relevance

value than ‘Implement matrix’, as can be seen in table 5.4.

5.4 Improvement summary

The preceding chapter aimed at finding areas where improvements could be made and a

uniform way of working could be achieved. A number of improvement ideas has been

presented and rated. There are however some differences between Base and CPP development

that makes it impossible to use the same way of working in all areas. Mainly, Base testing

environment runs directly on Solaris platform whereas CPP runs upon SoftOSE real time OS.

CPP also has external requirements towards Ericsson, which make CPP less controllable.

 60

Testing on Base and testing on CPP also differ because they are intended to test different

functionality. Many areas are however already very much alike as it is now. Regarding the

make system, Base and CPP have a similar structure. Both have a module-specific make file

and a general make file for the different build goals, such as PureCoverage and Purify. Both

have gone from using script languages and FrameMaker documents to using X-unit, which

has enabled both developments to have their testers write program code and test code in the

same languages. Both structure their test cases into suites, which is not strange since it is the

intention of X-unit. Both use SQR (Software Quality Rank) to estimate how well testing is

being performed in order to reach a higher code quality. This implicates that both testing

departments also uses Quantify, FlexeLint, PureCoverage and Purify to measure how well

testing is going. Both have moved advanced functionality away from the test cases so that

writing the actual test cases require few lines of code. Both departments has there by

acknowledged that testers needs to be able to lay focus on the specific test cases, instead of

being held up by technical preparations and such. Both have moved from test cases having

other test cases as pre requisite to test cases being stand-alone. This was a great improvement

to the testing environments.

 Following the aspects discussed in chapter 5 will lead to a more common way of working

than there is today and also lead to a number of improvements to the testing. If Base converts

all old test cases, as have been done on CPP, the configuration files can be removed. This will

remove an unnecessary intermediate step, which is only performed in order to satisfy old test

cases. If Base and CPP change the way they work with setups/fixtures, more can be reused

and automated, which also lets testers focus more on the test cases. The action also results in a

more common way of working between the departments. If CPP begins to work towards the

use of a matrix, they will get a better overview of functionality coverage, as Base has today. A

restructuring of test cases into matrices according to the SoC would be an improvement on

Base and the same approach should be taken by CPP when structuring their test cases into

matrices. CPP can remove the time flow in their test as have been done on Base, which will

ease the work for testers as well as result in a more common way of working.

Regarding BTR-tool, if the tool is developed so it works well on Base, CPP can create an

equivalent tool so that both will have a uniform way of creating test reports. Improvements

made to the tool can henceforth also be exchanged between the departments.

Sesam should be brought into use on Base to see how well it improves testing. If Sesam

proves to work well, a similar tool can be developed for CPP, which would be another step

 61

towards a common way of working. Bringing Sesam into the daily testing will also give the

testing environments a good debugging tool.

 62

 63

6 Summary of the interviews

This chapter summarizes from which persons the different facts has been acquired and

also their respective position at the company.

6.1 Base interviews

The facts presented in the essay, regarding Base in general and their area of production

(see chapter 3.1) is taken from interviews with Fredrik Kastengren at TietoEnator. This

person is a well-educated employee and knows well what he is working with. His task was to

give a general description of what Base is and does on a high level.

The information regarding Base testing environment has been taken mainly from

interviews with five persons; Benny Saxén, Jonas Arvidsson, Daniel Nordkvist, Johan

Torstensson and Peter Heubeck.

Benny Saxén has mainly provided information about Black Box library, the configuration

files, message timers, standards and versions, the test case matrix and all the different tools.

The tools were Sesam, CNF-builder and BTR-tool. (See chapter 4.1). He also showed us the

difference between writing test cases today between writing test cases before Black Box

library. Benny presented most of the facts on a fairly high level in order to give a good picture

of Base since that was what we needed when coming to the company as newcomers. Benny is

one of the head persons at Base and has been involved in developing parts of Black Box

library and Sesam as well as some other tools.

Jonas Arvidson is the leading developer of Black box library, Sesam and some other tools.

He is a highly respected employee and known for his carefulness and knowledge. He has

mainly contributed with developing the requirement specification, judging of our progress,

technical details about Black box library and the tools on Base. He has also confirmed the

information acquired from other interviewed employees at Base.

Daniel Nordkvist provided us with some technical details about Base. He talked about the

test case matrix on a more detailed level than Benny Saxén did (see chapter 4.1.4) and gave

some code examples. He also showed us some examples of test cases on Base.

Johan Torstensson mainly gave us information about BTR-tool (see chapter 4.1.5.3), the

automation tool on Base for creating test reports. Johan Torstensson is one of the developers

of BTR-tool so he has detailed knowledge of the tool. He presented what the tool is used for

 64

and what the current liabilities of the tool are today. Together with him we also discussed

some ideas to improve the tool. This was necessary since we would not have been able

yourselves to say for sure that a certain idea would be able to perform. The interviews with

Johan also brought up the ideas with structuring test cases according to a function

specification, called the SoC (Statement of Compliance) on Base.

Peter Heubeck also provided us with information about BTR-tool and we also discussed

improvement possibilities with him. Peter is the main developer of BTR-tool. It was good to

discuss BTR-tool with both these developers to be able to be more certain that the

improvement ideas were possible to perform. Since both these persons have knowledge on

code level, they can easily tell what can and what cannot be achieved.

6.2 CPP interviews

The facts presented in the essay, regarding CPP in general and their area of production is

(see chapter 3.2) taken from interviews with Fredrik Kastengren at TietoEnator. This person

is a well-educated employee and knows well what he is working with.

The information regarding CPP testing environment has mainly been provided by Jonas

Arvidsson, Greger Olsson, Anders Eriksson, …

Anders Eriksson has mainly contributed with how the old testing environment worked,

with the usage of scripts and he was the person which created the first version of the

requirement specification. He has also presented information about TietoEnator itself and

what they do and also a bit about the structure of the make system. Today Anders Eriksson

works at CPP and has been an employee at the company for many years so he has good

knowledge about the company.

Greger Olsson has given information about the structure of CPP’s testing environment, the

fixtures, usage of X-Unit and test case creation (see chapter 4.2). Greger is one of the front

figures of CPP and has good knowledge of CPP testing environment. Together with Greger

we also discussed a lot of the improvement ideas to see if they were of true interest and if they

were possible to push through.

Jonas Arvidsson has also provided a lot of information regarding CPP. He is a former Base

worker but is now working at the CPP department. Jonas brought up information about X-

Unit on a technical level; how it is incorporated in the CPP testing environment and also what

prompted the usage of X-Unit. He has confirmed the information acquired from other

interviewed employees at CPP, as well as with the Base interviews.

 65

 The persons listed are, as mentioned, the main persons interviewed, which have

contributed with the largest parts of the essay. Other persons have also been interviewed, but

their contribution to the essay is small or even in some cases non-existent.

 66

 67

7 Recommendations

If we have had more time, we would have tried to dig deeper within the different areas to

try and find out other possible improvements and also more details around the improvements

brought up. The make system could have been investigated more through roughly to find out

if any restructuring can be made to improve build time. This was something we started on at

the early stages of the investigation but we felt that we would not have the time to perform

any usable results in this area. We are certain that looking into the make system and the build

structure of the testing environments could make enough work to work as a complete separate

D-dissertation. The are much technical details here to investigate and the project would surely

involve a lot of test running and analysis’s of results regarding differences in execution times

using different approaches of builds.

Regarding BTR-tool, we could have begun to work on the scripts mentioned ourselves,

with a little help from the staff. For someone to continue on the work we have performed, this

is one of the most obvious actions to perform.

We would also have wanted to interview even more people from the staff to find out what

they feel about their testing environment. Since different people have different views, we are

sure that some more issues would have come up in addition to the ones that came up from the

interviews we did. The most interviews we performed were also with well-informed head

persons which daily work mostly consist of project management, testing management and

other leading roles. Having interviewed more of the testers would have proved more if the

picture that the leading persons have actually match the pictures of the persons whose daily

work is the actual testing process.

Most importantly, we would have liked to have the time to experience the testing

environments ourselves to get a feeling of how much effort and time is required to create and

run tests on the different developments, to see if there are any major differences. We already

knew from the start that we would be able to spend much time on digging into code and

getting a thorough feeling for the environments ourselves but mainly would have to rely on

interviews and demonstrations. The problem with doing this is that people, which have

worked with the same assignment and environment for a long time tend to accept and hold the

way of working, which they have learnt, very dear. Generally, people are not happy with

changes. If we, as newcomers, had looked deeper into the environments, we would probably

 68

have found matters that did not come up during interviews, since the long-time employed

personnel overlook them.

If we would redo the entire project, we would have focused more on the requirement

analysis in the beginning of the project. The requirement specification we acquired from

TietoEnator was vague and unspecified. Naturally we brought this matter up for discussion

and saw to that the specification became more clear and specific. Since we are not

experienced developers we could not exactly know how much we could expect from the

specification. After a couple of revisions we accepted the specification and began the

investigation. Further on, it came to evidence that the specification still was too unspecified

and unclear, so we had to move back to square one and bring forth further clarification of the

specification. We had to do this a number of times before we felt that the work we needed to

perform were clear enough to us and that the goals at hand were achievable to us during the

time we had. The reason for the bad communication between us and the persons responsible

for the D-dissertation assignment, as we realized further on, was the great gap of knowledge

difference between us. Whereas the specification was clear enough for them, which had

worked within the testing departments for years, was very unclear to us, which had hardly any

experience of testing at all. Redoing this step we would have trusted our senses more and seen

through that the specification was really clear enough to us before beginning the actual work.

If we had done so, we would have saved us a lot of time and unnecessary work. We had a

hard struggle trying to realize and extract the essentials of the specification and this could

have been avoided by actually trust ourselves when feeling that the information we got to

work with was not enough. The first and the last revision versions of the requirement

specification from TietoEnator are included in the essay as appendixes to show the

differences between them. Even though the difference does not seem that big, it took us a lot

of time to bring forth this further clarification. However, redoing the requirement analysis

today, we would have seen to that the last revision of the specification had been even more

specified. Even though we had heard many times how important it is to spend a great amount

of time on requirement analysis we felt the need to begin the actual work. This is where we

made our biggest mistake in this project.

Basing a research mainly of interviews requires some precautions and has some

complications. One should not perform an interview and then just blindly trust the

information that has been provided by the interviewed person. What is acquired from a single

interview is the view of that single person, which may or may not correspond to reality. For

such a research to be trustworthy in any sense, a number of people need to be interviewed, to

 69

find out if the views of the persons do match. Furthermore, performing several interviews

regarding a certain matter will give different perspectives of that particular matter. One thing

that looks good at first sight may actually be worthless when looking at other perspectives.

 70

 71

8 Summary of the project

Before we began working on this project we had many thoughts about what actually should

be done. We had gotten an assignment, which should aim at improving testing strategies on a

company with personnel that have worked with this for over 15 years. It felt like it would be

hard to come up with improvements when having no background at all and so little time to

learn about the system. Many improvements in this area has also already been done recently.

The project began with analyzing the requirement specification gotten from TietoEnator.

The goals of the assignment were very unclear at the beginning so much effort were required

to find out what the company actually wanted to be done. Truth is that the ones responsible

for the project did not have a clear picture of what should be achieved. What they knew was

that there were some areas that could use improvements and that they wanted a more common

way of working, hence the unspecified assignment. This resulted in us having to lay hard

work in finding out what to aim for. The requirement analysis was also difficult to perform at

the beginning because we did not know much about the testing environments. During the

project we interviewed a lot of personnel on both Base development and CPP development.

Since the persons interviewed had detailed knowledge in their respective areas it was hard to

understand everything that came up. What helped a lot was that we recorded most interviews,

which gave us the possibility to analyze details afterwards. As we interviewed personnel, we

received more knowledge about the testing system and could thereby come up with better

questions regarding the requirements of the project. Every once in a while we had a

discussion with the person responsible for our project to discuss our ideas and his

expectations. When we decided upon ideas to improvements, we discussed them together with

persons having detailed knowledge in the different areas to find out if our ideas would be

useful and possible to apply.

The personnel on TietoEnator were very helpful and they gladly took time to help us

whenever they had time to do so. The interviews therefore went very smoothly.

Through this research the company gained knowledge about some possible improvements

and some ideas on how to get a more common way of working regarding testing on Base and

CPP. Besides that, they also got proof that because the differences between the developments,

it is not possible to work in an entirely uniform way.

 72

 73

References

[1] Kent Beck. Extreme programming explained: embrace change. 20(1):61641-6, 1999.

[2] Why test software, http://www.testline.co.uk/testing_whytest.htm, 2005-02-28

[3] Testing, http://www.stctek.com/faq.html, 2005-02-28

[4] Software Testing, http://sern.ucalgary.ca/~sdyck/courses/seng621/webdoc.html, 2005-
02-29

[5] Testing tools,
http://www.cs.queensu.ca/home/shepard/testing.dir/under.construction/tool_list.html,
2005-03-10

[6] X-unit, http://encyclopedia.thefreedictionary.com/Xunit, 2005-03-10

[7] Erik Meade, http://c2.com/cgi/wiki?ErikMeade, 2005-05-05

[8] Unit/Component testing, http://www.developer.com/java/other/article.php/2217461,
2005-05-11

[9] Component testing, http://www.cs.clemson.edu/~johnmc/joop/col3/column3.html,
2005-05-11

[10] Grey Box testing, http://www.geocities.com/xtremetesting/GreyBox.html, 2005-11-28

[11] Rolf Ejvegård, Vetenskaplig metod, Andra upplagan.

[12] Software testing, http://www.centipedia.com/articles/Software_testing, 2005-12-01

[13] Davis, A. 201 principles of software development, McGraw-Hill, 1995.

[14] Hutcheson, Marnie L. Software testing fundamentals. Wiley, 2003.

[15] Binder, Robert V. Testing object-oriented systems – models, patterns and tools.
Addison-Wesley, 2000.

[16] Kaner, Cem, James Bach and Bret Pettichort. Lessons learned in software testing. Wiley
2002.

[17] Patton, Ron. Software testing. Sams publishing, 2001.

[18] McGregor, John D and David A. Sykes. A practical guide to testing object-oriented
software. Addison-Wesley, 2001.

[19] Sommerville, Ian. Software Engineering. Addison-Wesley, 6th edition, 2001.

[20] Perry, William. Effective Methods for Software testing. John Wiley & Sons, 1995.

 74

 75

A Requirement Specifications

A.1 First Version

Below is the first version of the requirement specification received from TietoEnator.

Revision history

Date Rev Description Prepared

2005-02-14 0.1 First draft Anders Eriksson

2005-02-17 0.2 Updated after
comments

Anders Eriksson

Terminology and Definitions

The following definitions and explanations of certain words and abbreviations are
applicable within this document:

Base development Design organisation developing software common to more than
one platform

BB Black box

Code coverage A value of the amount of code that has been executed during a
test phase

CPP Connectivity Packet Platform – one of Ericsson’s telecom
nodes

CT Component Test – the first level of test

Requirements External expectations on something

Sub business unit (SBU) Organizational unit at the 2nd level, consisting of a set of Units

 76

Background

Base development is today using a black box (BB) oriented approach towards component
testing (CT). There is a black box library (BB-lib) written in C++ used to configure and set
up different prerequisites before the test cases are executed. The lib is also used to perform
some of the test cases and to verify that the tested code behaves as expected. CPP have
implemented both white box and black box test cases. In both environments the test cases
are written in C++.

Goals

• Achieve a common way of working regarding CT for both base development

and CPP development.

• Describe the way of working in a guideline document.

The requirements on CT’s are:

• High code coverage

• Fast execution

• Easy to write new test cases

• Simple maintenance

A.2 Last Version

Below is the last version of the requirement specification.

Revision history

Date Rev Description Prepared

2005-02-14 0.1 First draft Anders Eriksson

2005-02-17 0.2 Updated after
comments

Anders Eriksson

2005-02-22 0.3 Updated title and
chapter 3.1
background

Anders Eriksson

2005-03-07 0.4 Updated chapter
3.2 goals

Jonas Arvidsson

 77

Terminology and Definitions

The following definitions and explanations of certain words and abbreviations are applicable
within this document:

Base development Design organisation developing software common to more than

one platform

BB Black box

Code coverage A value of the amount of code that has been executed during a

test phase

CPP Connectivity Packet Platform – one of Ericsson’s telecom nodes

CT Component Test – the first level of test

Requirements External expectations on something

Sub business unit (SBU) Organizational unit at the 2nd level, consisting of a set of Units

Background

Component Test is the first test phase. It is written and executed by the software designers
writing the code to be tested. Historically, the Signaling Base Development department has
used a proprietary tool called Module Test Tool (MTT) for this purpose. While possessing
many of the desirable characteristics of a component test environment (ease of use, ability
to automate the running of large test suites, etc.), MTT had some drawbacks that prompted
the development of a new component test strategy based on the X-Unit framework some
years ago. The main problem that needed to be solved was that the turn-around time for
running a test, finding a fault, correcting it, and running the test again was too long.

The first step was to automatically convert all the MTT test cases to X-Unit test cases in
the C language. The test framework was then extended with so-called stubs that simulate
the execution environment in which the tested code normally runs. The next step, which
was taken for some of the more complex signaling modules, was to extract common
functionality used by many test cases into a library called BB-lib, Black Box Library. Test
cases written for execution in BB-lib are smaller and less complex than regular X-Unit test
cases, since much of the module set-up and message verification has been moved into the
library.

For CPP5, a decision was made to also move to X-Unit based testing. Prior to CPP5 all
component testing was based on a platform called SimCello, which is basically comprised
of a set of configurable simulators representing all the subsystems in CPP. SimCello
suffers from several drawbacks from a component testing point of view, as described in the
sections below.

The SimCello platform is built into one large binary containing all the simulators and the
test object. Just to build and link this binary takes a lot of time on anything but really high-
end machines. Further, since a lot of ClearCase VOB elements are involved, this also

 78

increases the build time. This does not fit well with component testing where building and
executing tests should be as quick as possible.

Tests are written in the TCL script language, which stimulates a test driver written in C,
which in turn does something with the test object. The TCL script then looks in a log to see
if the test object logged what was expected. This is less than optimal for several reasons;
designers have to write tests in a language which is not the same as the test object is
written in; there is a level of indirection between the tests (TCL scripts) and the test object
which is the C driver (which needs to be updated when the test object is updated); the tests
check that the test object logs what is expected, not that it does what is expected.

There are dependencies both towards the simulators, which are developed by other
subsystems, and towards the SimCello build support, which is quite complex. Interface or
behavioural changes in subsystems have to be delivered before they may be tested by other
subsystems.

White box testing is pretty much impossible. Without modifying the intermediary test
driver, there is no way to test a specific section of code. The designer have to write test
cases that send signals to the test object which, hopefully, will result in the intended
section of code to execute. This makes it very hard to get coverage of some parts of the
code.

The move to X-Unit based testing in CPP started off with creating simple stubs of the
external interfaces used by the SS7-related modules developed in Karlstad. These stubs
replace some of the simulators earlier found in SimCello. Then, the various teams started
to build test cases for the SS7 components. In the beginning there were no direct guidelines
available for this, which resulted in the component tests being somewhat dissimilar. Except
for the stubs, which are shared by the component tests, there is no glue code or library (like
BB-Lib in Signaling Base Development); CPP uses the Check X-Unit library directly.

Goals

Propose a common way of working regarding CT for both Base development and CPP
development and locate areas where improvements can be made. The requirements on CT are:

- High code coverage
- Fast and simple execution
- Easy to write new test cases
- Simple maintenance
- Error detection
- Functionality coverage
- Automation

Describe the way of working in a guideline document. The description shall include details
such as ideas to solve issues regarding automatic reporting of test results with BTR-tool and
the needs and possibilities to use BB-lib on CPP.

