
Department of Computer Science

Magnus Persson

A Comparative Study of Security Features

in FreeBSD and OpenBSD

Master’s Thesis

2006:02

A Comparative Study of Security Features

in FreeBSD and OpenBSD

Magnus Persson

c© 2006 The author and Karlstad University

This thesis is submitted in partial fulfillment of the requirements

for the Masters degree in Computer Science. All material in this

thesis which is not my own work has been identified and no mate-

rial is included for which a degree has previously been conferred.

Magnus Persson

Approved, March 1, 2006

Opponent: Thijs Holleboom

Advisor: Simone Fischer-Hubner

Examiner: Donald F. Ross

iii

Abstract

Security in operating systems is a highly topical subject nowadays as the Internet keeps

expanding. The larger the Internet gets the more systems, with valuable information, get

connected, which could be subjects of attacks. An operating system needs to protect its

information from these attacks. Many servers are using UNIX based operating systems

and the security in these systems is a widely discussed topic. This project is going to

test and investigate the security in two of the most common UNIX distributions, both

based on the Berkley Software Distribution (BSD). The selected systems are FreeBSD and

OpenBSD. The Add-on called TrustedBSD/SEBSD for FreeBSD will also be a subject for

this project. A comparison of the security features in the two systems was performed both

theoretically and practically and this report reflects the results of these experiments and

comparisons. A conclusion is that each system suits best in different environments with

different needs. The selected distributions also have different level of security in specific

areas. An introduction to security in operating systems on a general basis is provided

before the actual comparison begins.

v

Contents

1 Background 1

1.1 Introduction . 1

1.2 About the Project . 2

1.2.1 Selected Systems . 2

1.2.2 Security Aspects . 3

1.2.3 Comparison Method . 4

1.3 Structure of the Thesis . 5

2 Operating Systems and Network Security 7

2.1 Design Principles and Features of Secure Operating System 7

2.2 Access Control . 13

2.3 Authentication . 17

2.4 Auditing and Logging . 20

2.5 Cryptography . 22

2.6 Network Security . 26

2.6.1 Firewalls . 26

2.6.2 Intrusion Detection Systems . 28

2.7 Encryption Protocols . 29

2.7.1 IPSec . 29

2.7.2 SSH . 32

vii

2.7.3 Kerberos . 33

2.8 Common Criteria . 34

2.9 Summary . 36

3 Security Enhanced UNIX Systems 39

3.1 SELinux and Flask . 39

3.2 TrustedBSD and SEBSD . 40

3.3 RSBAC . 43

3.4 Summary . 45

4 Attacks and Defense 47

4.1 Attacks . 47

4.2 Defense Tactics . 51

4.3 Vulnerbility Analysis Tools . 52

4.3.1 Nessus . 52

4.3.2 SARA . 53

4.4 Summary . 54

5 Comparison of Security 55

5.1 Introduction . 55

5.1.1 OpenBSD . 55

5.1.2 FreeBSD . 56

5.1.3 TrustedBSD . 56

5.2 Authentication . 57

5.3 Access Control . 59

5.4 Cryptography . 61

5.5 Auditing and Logging . 63

5.6 Firewalls . 65

5.7 Discussion . 67

viii

5.8 Summary . 69

6 Vulnerability Experiment 71

6.1 Experiment Configuration . 71

6.2 FreeBSD . 73

6.2.1 Open Ports . 73

6.2.2 Security Risks (FreeBSD 5.3-BETA2) 73

6.2.3 Security Risks (FreeBSD 5.4) . 74

6.2.4 SARA Vulnerability Test . 75

6.2.5 Summary and Discussion . 75

6.3 OpenBSD . 76

6.3.1 Open Ports . 76

6.3.2 Security Risks (OpenBSD 3.6) . 76

6.3.3 SARA Vulnerability Test . 77

6.3.4 Summary and Discussion . 77

6.4 Experiment Results . 78

6.5 Summary . 80

7 Discussion 81

7.1 Project Description . 81

7.2 Project Results . 82

7.3 Author’s Point of View . 85

7.4 Further Investigation . 88

7.5 Conclusions . 89

References 91

A Wordlist 95

ix

List of Figures

1.1 The BSD hierarchy. 4

2.1 The security mechanisms for a secure operating system.[35] 10

2.2 Security kernel and operating system intergrated. [35] 12

2.3 Security kernel and operating system separated. [35] 13

2.4 A backup of the logs may be stored on a another host. [17] 21

2.5 Illustration of Cipher Block Chaining. 23

2.6 A firewall protects the internal network from an external network like the

Internet.[17] . 27

2.7 Authentication Header for IPSec. 30

2.8 Encapsulated Security Payload for IPSec. 30

2.9 Security Association with the use of Authentication Header (Transport Mode). 31

2.10 SA with the use of Authentication Header (Tunnel Mode). 31

2.11 ESP with the use of encryption and authentication (Transport Mode) . . . 31

2.12 ESP with the use of encryption and authentication (Tunnel Mode) 32

2.13 Kerberos mechanism for user authentication and ticket passing. 34

3.1 SELinux Framework structure. [8] . 41

3.2 SEBSD Framework structure. [8] . 42

3.3 RSBAC security mechanism structure. [34] 44

4.1 The Nessus client user interface after a scan has been performed. 53

xi

List of Tables

5.1 Summary of the security in the systems. 70

6.1 Open ports for the FreeBSD 5.3-BETA2 distribution. 73

6.2 Open ports for the FreeBSD 5.4 distribution. 73

6.3 Open ports for the OpenBSD 3.6 distribution. 76

xiii

Chapter 1

Background

This chapter will explain the purpose of this project and present the selected systems that

were used in the experiment and explain how the comparison was conducted. Also the

structure for the thesis is presented.

1.1 Introduction

UNIX based operating systems are today widely used both by private users as well as by

companies.[23] There are many threats against an operating system. Often the threats

are from attackers that want to gain administrator access to the computer. In a UNIX

operating system the administrator account which has full access rights to the system is

called root, also known as super-user account. Gaining administrator access will make the

attacker get full control over the attacked computer. This threat may come from both

remote and local directions. To get administrator access is just one way of many to attack

an operating system. For example daemons, i.e. applications that run in the background

as services, with super-user permission, may have so called backdoors. Backdoors are flaws

in the software that the developers have left there by purpose or by mistake. A backdoor

is like an open hole in an application that may give and attacker administrator access or

1

2 CHAPTER 1. BACKGROUND

may let the attacker get hold of information from the system. There are many other attack

methods for getting root access and there are a lot of different methods to prevent this

from happening, but some systems do not have this protection by default. This project is

going to compare the security features in two selected UNIX distributions and one security

add-on for one of the systems. UNIX distributions will from now on be referred to as UNIX

systems, which in this report mainly refer to the selected distributions. The purpose of

this comparison is to analyze if the selected UNIX systems are secure in an installation

with minimal configurations made.

1.2 About the Project

1.2.1 Selected Systems

There are many different UNIX systems today, but some of the most common systems for

private users as well as for companies are the BSD systems. As BSD is a free alternative

to other operating systems many private users finds them attractive. But new users may

use the systems without really knowing much about them and are not having too much

experience with security concerning operating systems. This is the main reason for inves-

tigating the security in these systems. Companies are often aiming for higher security in

their systems compared to most private users. But security for private users is also very

important with today’s highly expanding networks and accessibility through Internet. A

system that is not secure may be hijacked by an attacker and used to attack other systems.

The hijacked system may as well act as an e-mail spamming host or as a branch for other

illegal activities. Hence an unsecured private system may not be a major problem for the

owner, but if the system is used by an attacker to obtain control over other systems, which

may be company systems, it may be a problem for other people.

The BSD distributions are under active development and have many contributions

from users. As the distributions are developed under open source license there could be

1.2. ABOUT THE PROJECT 3

more exploitable flaws discovered faster but at the same time the flaws could be found

by attackers first, which would use them to gain access to a system. Also systems that

are widely used are having a higher risk to be attacked. With this in mind this project is

going to investigate which of the BSD systems selected below are most secure with as little

configuration as possible, which for example means configuration of network interface and

keyboard. The definition of default installation in this project is that it should be a regular

installation of the system, with the minimum of configuration made. The applications

and services that have been installed depend on what has been included in the default

installation for each system. The selected operating systems that will be compared for

security features are the two UNIX systems FreeBSD[1], OpenBSD[2] and the add-on for

FreeBSD called TrustedBSD[3]. Figure 1.1 show the BSD family hierarchy. Even though

the TrustedBSD distribution is an add-on for FreeBSD it will in this project be treated as

an own system in some parts, because of its major difference in security. Another reason

for these selected UNIX systems is that FreeBSD and OpenBSD are both siblings from the

same system, NetBSD. TrustedBSD may be seen as a sibling from both FreeBSD as well

as from SELinux[26]. The base of TrustedBSD is FreeBSD and the add-on parts are from

SELinux.

A comparison between these three systems will hopefully show which of them are most

secure by default and perhaps what system to use if high security is needed. The developers

of OpenBSD have a main goal of very strict security. FreeBSD is aiming more to user-

friendly system administration and stability but of course to security as well. The study

will show which of these systems to prefer depending on different situations. For a more

detailed description of the selected operating systems see chapter 5.

1.2.2 Security Aspects

The definition of security in a system includes three different aspects, which is system

availability, data integrity and data confidentiality. These three aspects are the backbone

4 CHAPTER 1. BACKGROUND

Figure 1.1: The BSD hierarchy.

in operating system security. System availability is whether the system and resources

are available for use and should only be available for the intended users. Downtime of

the system may be very costly and perhaps stop users to be able to do their work. An

attacker may not break into the system, but the attacker may stop users to login or access

a service, which could be just as bad as downtime or a system crash. Data integrity is

whether the information on the system is unmodified. The user should be able to trust

that the information is correct and has not been altered in an unauthorized manner. The

last aspect is data confidentiality where the information on the system should be protected

against unauthorized people. This is a measure of the ability of the system to protect the

secrecy of its data.[35]

1.2.3 Comparison Method

The comparison in the project was performed theoretically and practically. The theoretical

part consists of literature studies for the systems and the different areas of security. The

1.3. STRUCTURE OF THE THESIS 5

practical part was based on experiments to the selected systems. The method of compari-

son was consisting of several sub comparisons of different security aspects. Some tests will

be done to the different systems with vulnerability scanners to see what system has highest

security by default according to known security issues. The details of the tests will be pre-

sented in chapter 6. The main security features that will be compared are Access Control,

Authentication, Auditing and Logging, Encryption and some network security features in-

cluding firewall installations. Also a general comparison will be done to the systems to

see if there exists any major difference that may impact the results. The reason for the

choice of security features is based on the most common and most important security areas

that may exist on operating and networked systems. Access control manages the access

of subjects (users, processes) to objects (files, directories, IPC, processes). Authentication

manages the access to the system itself in different ways that is verifying the identity of

a user. Logging is a way to collect information about what is happening or what has

happened in the system and for different services that are running on the system. These

logs may contain information about possible attacks or security breaches. Encryption is

used for encryption of data over network, on the hard disk drive or other devices. Network

security is about how to protect against remote threats like DoS (Denial of Service), how

to deny specific IP addresses from accessing the system and how to transfer data secure

over the network. A detailed description of the security features can be found in chapter

2.

1.3 Structure of the Thesis

Chapter 2 describes the design and structure of a secure operating system. It also describes

a number of different security aspects to a system; Access Control, Authentication, Audit-

ing and Logging, Cryptography, Firewalls and Intrusion Detection Systems as well as some

cryptographically based network protocols. An introduction to the Common Criteria[33]

6 CHAPTER 1. BACKGROUND

for IT evaluation is also described in this chapter. Chapter 3 describes the security en-

hanced UNIX and Linux[30] add-ons that are discussed in this project. The chapter 4

discusses possible attacks to an operating system and gives an introduction how to secure

a system against these attacks. Vulnerability analysis tools are used in this project to

test the selected systems for exploitable bugs or weaknesses. These tools are described

in a general introduction and then each selected tool that was used during this project

is described. Chapter 5 is the chapter that compares the systems in the different areas

described in chapter 2. It first gives a brief introduction to the selected UNIX systems

and then the comparison is discussed for each area. A discussion for the comparison is

given at the end of this chapter. This chapter is more of a theoretically comparison than

the following experiment chapter 6, which is more practical. The experiment chapter is

about the tests that were performed. Information about the experiment setup and the

experiment results are given in this chapter. The last chapter, chapter 7, is discussing the

project results and the authors point of view. Besides, it gives a short listing about what

could be further tested to perform a in depth security analysis of the operating systems.

Chapter 2

Operating Systems and Network

Security

This chapter explains each area of operating systems and network security in detail. The

topics that are explained are the ones that will be compared for the selected operating sys-

tems. An introduction to how secure operating systems are structured and a brief introduc-

tion to the Common Criteria for IT-security evaluation is given.

2.1 Design Principles and Features of Secure Operat-

ing System

A secure operating system should not only be implemented with security in mind, it should

also be checked for the security it provides after the implementation. This makes it hard to

create a secure operating system from an already existing operating system that was not

designed with this security from scratch. The TrustedBSD project made its own framework

for the FreeBSD kernel (MAC-Framework) that was implemented after the FreeBSD was

developed, which made it a hard task to create a secure operating system based on an

already existing one. There are several design principles that make a secure operating

7

8 CHAPTER 2. OPERATING SYSTEMS AND NETWORK SECURITY

system more secure than a regular operating system. A regular operating system could be

seen as an operating system that has been developed for functionality with less security in

mind. The design principles are for example the following[40]:

• Least privilege

• Economy of mechanisms

• Open Design

• Complete mediation

• Permission Based

• Separation of privilege

• Least common mechanism

• Easy of use

All users in a system should operate with the least privilege possible at all time. This

prevents malicious software from gaining resources on the system and stops them from

doing any harm. The design of the security in the system should be as simple as possible

as the system should be easy to be tested and analysed and of course reliable (Economy of

mechanisms). The protection mechanisms in the system should not ignore possible attacks

and should be open for the public so the design of the security mechanisms can be confirmed

by independent people (Open Design). All access to the system should be carefully checked

and there should not be any way to go around the access paths in the system (Complete

mediation). The system should be built up on permissions (Permission based) and as

the default scheme for the system there should be denial of access for resources in the

system. The objects that may be accessed should be identified. The access for these

objects should preferably not rely on one condition but at least two conditions before access

2.1. DESIGN PRINCIPLES AND FEATURES OF SECURE OPERATING SYSTEM 9

to the objects can be granted (Separation of privilege). As these objects may be shared

between users or processes the information flow creates channels that may be attacked.

Therefore the separation of logical and/or physical environment is needed to reduce these

risks (Least common mechanism). Logical separation separates the objects of one user from

those of another. Physical separation is when processes use different hardware facilities

like separation between sensitive computation and non-sensitive computation. Temporal

separation is also a choice where the sensitive and non-sensitive computation is computed

in different time periods. A security mechanism should be easy to use, so that it is actually

used, which is the last general design issue in a secure operating system. The figure 2.1

show the security mechanisms in a secure operating system with its secure access control

for hardware and services.

The previous listed parts of a secure operating system were the design principles of a

secure operating system. Security features such a system applies are [35]:

• User identification and authentication

• Access Control

• Object reuse protection

• Complete Meditation

• Audit

• Audit log reduction

• Trusted path

• Intrusion detection

A regular operating system usually has password authentication. In a secure operating

system the authentication are performed with more secure methods that are explained in

10 CHAPTER 2. OPERATING SYSTEMS AND NETWORK SECURITY

Figure 2.1: The security mechanisms for a secure operating system.[35]

chapter 2.3, Authentication. Another security issue in an operating system is to protect

the memory from unauthorized access, i.e. Users reading other users/system data. This is

usually done by virtual memory management or segmentation on hardware level. Access

control is usually used to handle the access of subjects to objects such as directories, I/O

devices, files and to prevent unauthorized access. Objects in an operating system needs to

be protected as it may be shared objects between users and between processes. The allo-

cation and access of objects can be done by lookup tables and the system needs to control

the integrity and consistency of the objects. Scheduling algorithms make sure that users

do not starve, that is running out of resources, while other users may hog resources. The

2.1. DESIGN PRINCIPLES AND FEATURES OF SECURE OPERATING SYSTEM11

inter-process communication and synchronization is managed with access control tables

for processes and users. All this protection and security attributes managed by a regular

operating system is stored in databases. This data needs to be highly protected as if this

data is changed the basic security in the system may fail to work. The protection of this

security data is managed by hardware control, encryption and isolation that prevents the

data to be deleted or modified.

A huge difference between a regular and a secure operating system is the separation and

isolation of the security mechanisms. In a regular operating system the security kernel and

operating system are used together, which creates security activities at several places in

the system. This makes it harder to control all the security relevant issues and makes the

system a lot more open for attacks, see figure 2.2 to get an overview of this issues. Figure

2.2 also illustrates the different places where security management is handled and there

are many places where security breaches may arise.

In a secure operating system the security kernel is separated from the operating system

activities and all security activities in the system is performed at one place in the system,

in the security kernel. Having the security related issues handled at one single place in

the system makes it a lot easier to control the system resources and services, it is also

a lot more secure against attacks as it can be monitored and has only one access point.

See figure 2.3 for an overview of the operating system with separated security kernel. The

figure shows how the security is handled in just one place, the security kernel, instead of

having security management in several different places in the design.[35]

There are even more strict specifications of an operating system than the secure oper-

ating system specification. A system with even stricter security specifications is called a

trusted operating system. There are special demands for a secure operating system to be

called a trusted operating system. All implementations of the security mechanisms need

12 CHAPTER 2. OPERATING SYSTEMS AND NETWORK SECURITY

Figure 2.2: Security kernel and operating system intergrated. [35]

to be specified and verified. These verifications are very strict and there are a lot to verify

before a secure operating system may be called trusted. This may be accomplished with

the Common Criteria[33] by following the directives in Common Criteria and choose a level

of evaluation that suites the specific project. The Common Criteria provide guidelines how

to build a secure system and is explained in more detail in chapter 2.8.

2.2. ACCESS CONTROL 13

Figure 2.3: Security kernel and operating system separated. [35]

2.2 Access Control

Access control is not just access to the system itself (see chapter 2.3, ”Authentication”)

but rather access to different objects, such as files in the file system. Not only files need to

be controlled for access but also interprocess communication objects , devices, directories

and other objects in a system. Many of these objects could be represented as files, for

example in a UNIX operating system. Files have several types of attributes including;

• Name - Symbolic name for a file.

• Identifier - A unique tag for the file known to the file system.

• Type - The file suffix, depends if the file system support different types.

• Location - On which device a file is located.

• Size - The size of the file, usually in bytes.

14 CHAPTER 2. OPERATING SYSTEMS AND NETWORK SECURITY

• Protection - Access control information for the file.

• Time, date, User identification - Information about creation, modification and

usage of the file.

The attributes that are important to access control are protection, time, date and user

identification. The protection mechanism determines who can read, write and execute

the specific files. The time and date at when a file was created, modified or used may be

important for monitoring access to certain files. Monitoring of file access may be important

in systems with high security. Operating systems can have seven basic file operations;

append, create, write, read, repositioning, deleting and truncating of files. All of these

seven operations need to be protected from users that should not have access to apply any

of these operations. The most common approach to manage these access rights is by letting

the access to the files depend on the identity of the user (known as discretionary access

control, which is explained further in this chapter). Different users may need different

access rights to same files or directory. The most general way to apply this user-identity

access control is with Access Control Lists (ACL), which specifies the user name and access

rights to each file or directory. If a user wants access to a file, the operating system searches

for the access list associated with that specific file. If the user is included in the access

control list for that file with the requested access, the user is allowed access. Otherwise

the user is denied access to perform the specified operation to the file. The problem with

access control lists is their length. With many users in the system the size of the access

lists would be very long. The UNIX systems solution for this problem is by having three

different classifications of subject groupings[43];

• Owner - The user that created the file is the owner of the file.

• Group - A set of users that needs the same access to the file.

• Universe (world) - All other users in the system.

2.2. ACCESS CONTROL 15

Combining this access scheme with access control lists will give much smaller access lists

for each file or directory as the access control lists do not have to contain all users if a file

only has permissions for one group.

Capabilities is another way to control access rights to files or devices by giving a list

to each user on the system that state what permissions the user has to each file on the

system. Capabilities are more suitable for distributed systems but are still hard to give

a good overview of the access rights for a given object. Another issue with capabilities is

that it is hard to revoke a capability. A more lightweight protection scheme is the three

field’s protection used in UNIX. In this protection scheme there are only three fields that

specify the access control for each file or directory. Each field are a collection of bits, which

each prevent or allow access. Read, write and execute are the most common bits that can

be set (rwx). r controls the read access, w controls the write access and x controls the

execution access of the file. The three fields that contain these set of bits are for owner,

group and universe (also called world in some operating systems). There are nine bits

needed to have access control of the files or directory’s with this scheme. This scheme is

usually used in combination with access control lists in most UNIX systems. Some UNIX

system has a + after the access rights (rwx) for the files if an access control list is present.

The disadvantage with the three field’s protection scheme is that it is not very fine-grained

access control.[43]

Access control can also be controlled with security policy models. These can be grouped

into two main classes [35]:

• DAC - Discretionary Access Control

• MAC - Mandatory Access Control

Access with DAC is based on the identity of the requestor (user) and access rules for the

requestor. The access rights with MAC are based on a centralized control authority that

sets the permissions. DAC does not distinguish between a user and a process executed by

16 CHAPTER 2. OPERATING SYSTEMS AND NETWORK SECURITY

the user in the means of access control. This is mainly the problem with DAC because

malicious software like Trojan horses may execute programs on the user’s behalf that

may gather information or abusing of the system. Even if every single access request is

controlled against the authorizations information may leak through a process, as DAC does

not enforce any control on the flow of information.

Access control with MAC enforces the security policy by having a centralized authority

that set the rules. The most common MAC policy is multilevel security policy which

is based on subjects and objects in a system. Objects are files, directories or devices

while subjects are divided into two subcategories, users and processes. With this type of

access control the system is more secure against malicious software but MAC is not totally

secure, as there could exists so-called covert channels. This is an information channel that

is not intended to perform a normal communication, which could be exploited to get hold

of information. A programmer should never be able to get secret information from an

application when it is deployed for usage. But a programmer can always find ways to get

hold of this information from the application covertly. The programmer may alter the

output for a application by changing only small parts of the output that would not be

noticeable by the users. An example of this change could be the word ’TOTALS’ which

the programmer may output as ’TOTAL’ and the users would not notice the difference

that leaves 1-bit of information open for the programmer. This is one way of many how to

create covert channels.

RBAC (Role Based Access Control) could either be based on DAC or MAC. RBAC

is constructed with different roles that have specific permissions. RBAC is more used in

organizations as it maps to the organizations structure. This policy handles more of the

responsibilities that each user has than who the person really is as this is more important

in an organizational view. Each role has its responsibilities and each role could consist

of many different users. The roles are building up a hierarchy and users belong to the

different roles.[36] There are other ways of access control for files and directory’s. One

2.3. AUTHENTICATION 17

way is to use passwords for each file. If the password is changed often and is randomly

generated this could be an effective way of access control but there are some disadvantages

of this protection mechanism. If there are many files that need protection, there will also

be a lot of different passwords to remember for the users. If only one password is used for

all the files, and this password is discovered, the access is granted to all of these protected

files.[43]

2.3 Authentication

There are many different types of authentication systems when it comes to computers in

general. The most common security issues deal with the access to the operating system

itself.

In general the authentication may be performed with something the user knows (pass-

words), something the user is (biometric) or something a user has (smartcards). This is

the identification of the user. The most common way to authenticate is by using a login

name combined with a password. Once the identification has been made, the next step is

to authenticate the user so it is actually the real user. This is actually a verification of the

identification, which is traditionally accomplished with a password that matches the iden-

tification. The passwords should be properly formed to be secure, usually with a length

of at least eight characters mixed with numbers. This password is kept secret from others

and only the user should know it. These passwords are secure, if they are properly formed

and if only the user knows it, usually the operating system only knows the encrypted form

of the password.

But there are several ways to get hold of the password. One way is by a dictionary

attack. Another way is through social engineering, which means that the attacker is trying

to find out relevant information about the person and then for example trying to guess the

password. If the attacker succeeds, access to the system is possible with the users account.

18 CHAPTER 2. OPERATING SYSTEMS AND NETWORK SECURITY

It is also important that the authentication process is secure with no plain-text pass-

words passed over network. Only encrypted connections are secure, as long as the attacker

cannot decrypt the data that have been sent. Encrypted connections are protecting against

packet sniffing, in the way that the attacker cannot read the password without decrypting

the packets.

To get a more secure login system to the computer a biometric fingerprint scanner could

be used to access the system. The advantages to use biometric fingerprint recognition are

that users do not need to remember passwords and login names. Users that need to

remember such details usually write it down, which implies a risk that intruders get hold

of this information. However biometric fingerprint recognition is not totally secure and has

disadvantages. They are very costly to implement because they need special equipment.

Intruders can still get hold of a fake fingerprint of some person that has access to the

system through the fingerprint scanner. This might be accomplished by collecting the

persons fingerprint and reconstruct a fake fingerprint out of plastic that is added to the

intruders own finger. Some people also think biometric scanning violates their privacy.

Having a biometric scanner before the usual login phase with passwords could be a good

solution, but costly. When using both techniques it is harder for an intruder to get access

to the system as the intruder needs both a fake fingerprint and the login information.

A more secure biometric scanner is an iris scanner that scans the human eye for unique

patterns. This device is a lot more expensive than a fingerprint scanner and not as common.

Another way to secure the authentication for the system is to use smart cards. A smart

card is a small plastic card with embedded microprocessor and memory. Smart cards

could be used to login to the system both locally and remotely. There are applications

that could be used together with smart cards to get access with SSH [48] to a system, one

application that allows this is SSH-smart [12]. SSH is a protocol that provides encryp-

tion while connecting to remote computers, see chapter 2.7.2. There are also pluggable

authentication modules (PAM)[27] that support smart cards on UNIX systems, which use

2.3. AUTHENTICATION 19

RSA[7] cryptography. Combining smart cards with biometric scanning is the best way of

authentication but it is very expensive.

Another common way to authenticate users to a server is by using an authentication

system named Kerberos[18]. This authentication system is used to eliminate the risk of an

attacker pretending to be a authorized user of the system, or an attacker that alters the

network address or perhaps is trying to get into the system by eavesdropping the connection

and then is doing a replay attack. Kerberos provides a centralized authentication server

that is used to authenticate users to servers or servers to users. The authentication system

uses symmetric encryption (see chapter 2.5 Cryptography) for this purpose. The idea is

that the server generates so-called tickets that the user receives when the user connects to

the server for the first time in the session. The user than decrypts the ticket and sends it

backs to the server to verify the identity of the user. Figure 2.13 shows an overview how

the kerberos system works. The chapter 2.7.3 explains more in detail how the Kerberos

system works.

There are also a lot of security issues concerning the authentication for system services

like the File Transfer Protocol (FTP), which is a common way to share files between

computers. Access to FTP server is usually performed with authentication such as a login

name and password. Some systems have anonymous FTP as default, which is a potential

security risk. A default configuration of the FTP server could make the anonymous login

to have access to files that should not be allowed to be accessed through the FTP login or

make anonymous users upload files to the computer. Another way of sharing files between

computers is distributed file systems (DFS). DFS is more complex compared to FTP. The

server in distributed file systems share files to clients that are specified on the server side.

With this method there needs to be strong authentication and not only by IP which can be

spoofed (imitated). This is usually solved with encrypted keys. In UNIX the distributed

file system is called network file system (NFS). The authentication in NFS is accomplished

through the client networking information by default. In this type of authentication the

20 CHAPTER 2. OPERATING SYSTEMS AND NETWORK SECURITY

users ID must match on the client and server. If this is not the case the server would be

unable to determine the access rights to the files.[43]

2.4 Auditing and Logging

After a system has been installed and configured it needs to be monitored for all the

security relevant activism to detect and determine intruders on the system. This is a way

to make sure that the security in the system is actually working. Monitoring the system will

also make the administrator aware of any failures or abnormal behaviours in the system.

Monitoring is also called auditing. In an operating system there are usually a lot of different

log files that keep track of what has been going on in the system. In the first operating

systems there were only some logging facilities to keep track on what users did and for who

logged in and out in the system. In more recent operating systems there are a lot more

logging performed. There are logs for what files have been transferred over the network,

users that changed to super-user, hardware events, and almost all services on the system

that runs as server are logging much of its activities. The logs are divided into operating

system level, application level and network level of logging. On the operating system level

there are logs about hardware behaviours, kernel messages and also login failures as well

as succeeded logins. On the application level the applications that are running on the

system collect information about different events and failures. There are usually different

logs for each application. The network level is logging incoming and outgoing packets on

the network interface.

Log files are forming an audit trail, which is a recorded history of events that has

happened in the system. These log files are a good way to keep track of possible problems

or attacks to the system. The logs are also a source of information to see what caused the

failure and perhaps what to do to insure that it will not happen again. These detailed logs

are always a subject for an attack. Deleting or alteration of the logs makes the attacker

2.4. AUDITING AND LOGGING 21

invisible for the system administrator. But there are ways to make it harder for the attacker

to overcome the log files. To have strict access control to the log files is one way. Another

way is to send the logs to another machine, so the system logs are always on a backup. The

backup machine could be an even harder system to break through. The backup machine

could also be connected directly to the log host and not over a network. [17] Figure 2.4

illustrates a log backup host that is not connected over any network but directly with a

serial line, which would be a more secure way to perform backup of logs.

Figure 2.4: A backup of the logs may be stored on a another host. [17]

In UNIX there is a service called syslog, which was first developed for the Berkley

sendmail[10] application by the University of California at Berkley software division. The

system that uses syslog has a centralized system logging process running as a service.

22 CHAPTER 2. OPERATING SYSTEMS AND NETWORK SECURITY

Other applications that need to have information logged send the information to this syslog

service. The log messages can be stored to files locally or on other computers depending of

the sender and configuration of syslog. The information that is sent to the syslog service is

the following; program name, facility, priority and log message. There is also the possibility

to log over network with syslog, which is a good way to have backup of the logs.

Log watchers are good add-ons for the logging and auditing of the system. Log watchers

allow the administrator to view logs in an effective way. There are also log watchers that let

the administrator see the logs in real-time for active surveillance. These log watchers are

usually shell scripts combined from different basic UNIX applications like awk [14], sed [15]

and wc[16] but could also be more complex applications. An intrusion detection system

is one example of a more complex application for this purpose, which also provides other

features for system monitoring. Intrusion detection systems is described in more detail in

chapter 2.6.2.

2.5 Cryptography

Cryptography is all about securing information. Encryption is where a message in plain-

text is transformed into another message in cipher text using a mathematical function and

a special password for the encryption process. This password is usually referred to as the

key for the algorithm. Decryption is the opposite of encryption. The encrypted message

is transformed from cipher text into plaintext through the mathematical function with the

key. There are two types of encryption, symmetric and asymmetric. Symmetric encryp-

tion can be used to have a secure encrypted connection over networks, e.g. the Internet.

Symmetric encryption is using the same key for encryption as for decryption. A symmetric

encryption algorithm often uses Feistel (Horst Feistel, IBM 1973) cipher structure, confu-

sion, diffusion and mode of operation. Diffusion means that a small change in the message

gives a big change in the cipher text. With confusion, the key and cipher text should have

2.5. CRYPTOGRAPHY 23

as small relationship as possible. Feistel cipher structure is a method to encrypt a mes-

sage with diffusion and confusion applied. The mode of operation may be an Electronic

Code Book (ECB). This electronic codebook is always producing the same block of cipher

code for the same given plain text. ECB is not very secure and Cipher Block Chaining

(CBC) could be used instead. Figure 2.5 illustrates how CBC works. In the figure IV is

the initialization vector, K is the key, P is the raw data and C is the encrypted data.

The initialization vector for the next encryption is the previous output except for the first

encryption. By using the previous initialization vector makes the encryption more secure

as the initialization vector is different every stage in the process.

Figure 2.5: Illustration of Cipher Block Chaining.

Some algorithms that use symmetric encryption are DES[41], 3DES[41] and AES[11].

The last algorithm, AES, does not use Feistel cipher structure. 3DES is a lot better to use

than the regular DES because it uses 168 bit (56*3 bit) keys instead of 56 bit keys, which

DES does..

Asymmetric encryption is using two keys, one for encryption and the other one for

decryption. Both keys can also switch places, at one time the first key can be used to

24 CHAPTER 2. OPERATING SYSTEMS AND NETWORK SECURITY

encrypt, and at another time the same key can be used for decryption. The most used

asymmetric algorithms are RSA (Rivest, Shamir, Aldeman) and Diffie-Hellman[13]. This

encryption method is also known as public-key cryptography. The key to encrypt the

message with is open for public and the key to decrypt the message is private.

There is a cryptography method that is called ”One-way Hash”, which is used for

creating a fingerprint for a message. This is used to see if someone has changed the

information in the message or to create a digital signature for the message that proves the

identity of the author. The most common algorithms that are using this type of fingerprint

encryption are MD5[41] and SHA-1[41]. The cryptographic hash functions have several

properties for it to work, but two of the most important features are that inputs should

not have the same output and a different input for a given input should not give the same

output. Regarding hashed passwords, there is only one way to get hold of the hashed

password and that is to brute force search the whole domain of possible passwords. That

is searching all possible passwords to get hold of the corresponding hash value as the same

plain text always generates the same hash value.

”Digital Signatures” is using the one-way hash method. One commonly used digital

signature algorithm is DSS[19]. An authenticator is created by using hash-value of the

message and is in turn encrypted by the sender’s private key. The receiver decrypts the

authenticator using the sender’s public key. If the authenticators do not match, the message

has been altered. The message could be sent in clear text. The problem with symmetric

encryption is that the key need to be shipped to the receiver and cannot be encrypted

with symmetric encryption itself. But combining both these encryption techniques, sym-

metric and asymmetric, will create a rather secure information flow. The symmetric key

would be encrypted with the public asymmetric key. There are four desirable properties

of cryptography, which are:

• Confidentiality - Only the authorized person or application should be able to de-

crypt an encrypted message.

2.5. CRYPTOGRAPHY 25

• Integrity - It should be able to detect any type of alteration of the message during

transfer from one source to another.

• Authentication - It should be able to identify the sender of the message, so it is

really the supposed sender.

• Non-repudiation - The sender should not be able to deny that the message was

sent.

These four properties are not always needed in all areas of cryptography. For example if

the sender would like to be anonymous after he sent the message, non-repudiation is not

desirable.

There are many types of usage for cryptography within an operating system. First

there is usually some sort of encryption of passwords for the system and for other services.

Second there is encryption of data over network and third there is encryption of hard disk

drives. In all of these three cases, it is all about protecting data from unauthorized people.

The only person that can access all files in a UNIX system is the administrator, i.e. root.

But the administrator can be an attacker that has gained administrator privileges. This is

where cryptography is good, even if the administrator is authorized to view all files in the

system, the administrator cannot read the encrypted files even if he can access the files.

The key is needed to decrypt the encrypted files and is not stored on the system. The

algorithm that has been used is usually known and not kept secret.

Cryptography can also be used to detect alteration in data that may be accidental or

intentional. By using digital signatures, the author of a document can be proven. Even if

the data is encrypted there are ways for an attacker to get hold of the data. The attacker

may try to brute force search for the used key. Depending on what the country allows in

encryption techniques there are different algorithms used. United States has very strict laws

that operating system need to obey when it comes to cryptography. The export of strong

encryption is not legal in U.S. This is why some systems use other cryptography algorithms

26 CHAPTER 2. OPERATING SYSTEMS AND NETWORK SECURITY

in their US versions that are not as strong as the newer algorithms used, for example

AES. The information that is protected with encryption is protected with the strength of

the key, the strength of the encryption algorithm and the specific implementation of the

algorithm.[17]

2.6 Network Security

This section will discuss security regarding the network parts of the operating system, which

includes firewalls and intrusion detection systems.

2.6.1 Firewalls

Firewalls are used to defend both systems and whole computer networks. The name firewall

comes from the construction industry where they place special walls between sections in

houses that are resistant to fire, which will slow the process of spreading of fire. The same

idea is behind computer firewalls where the firewall is used to slow down or stop a possible

attack. Firewalls also have other usages. Some of them are:

• Block access to specific Internet sites

• Block access to system services like ftpd or httpd

• Monitor network traffic between networks or the network traffic on a local machine

• Block specific IP addresses to access the machine

Even though firewalls are powerful tools, they should never be used instead of other security

mechanisms. An attack may not come from a remote host but to the computer itself. The

attack could also come from a trusted host, which the firewall lets through. Firewalls

should be used in addition with all other security mechanisms that are used on a system.

Firewalls are often used in company networks and other large networks to protect their

2.6. NETWORK SECURITY 27

local network from outside threats. But firewalls can also be used, and are often used, on

the system itself. This is to protect the machine from attacks aimed for different services

that the machine offers. Attacks are often targeting specific services like httpd or ftpd.

If a firewall only lets through IP addresses that are specified by the system administrator

the firewall will not accept incoming connections from other hosts, which are one way to

improve the system security. Firewalls (usually personal firewalls) may also protect against

worms and other malicious software in one aspect. This is by blocking malicious software

from opening new ports, connect to remote hosts or let other remote hosts connects to the

local host, which is something a worm usually do.

Figure 2.6: A firewall protects the internal network from an external network like the
Internet.[17]

28 CHAPTER 2. OPERATING SYSTEMS AND NETWORK SECURITY

The main function of a firewall is to restrict the information flow between two networks,

often local and global network, as mentioned above. Figure 2.6 illustrates how a firewall

protects an internal network from an external, usually the Internet. The information

control is controlled by different policies that the administrator set up. There are two basic

ways of defining a policy for a firewall, which are default permit and default deny. With the

first policy it is defined to let information that is not denied to pass through. The second

strategy is to deny all information that is not specific defined to pass. Both these strategies

have advantages and disadvantages. The ”permit-all” strategy is easy to maintain but not

that secure. The second strategy is hardening the security but may cause programs not to

function correctly and users might need to use protocols that the policy deny. Combining

these two strategies will create a good filter for packets streaming in and out on the system.

There are different types of firewalls for networks and operating systems. There are chokes,

gates and personal firewalls. Chokes are firewalls that might be a computer, a router or

other communication device. The choke controls the flow of packets between networks.

Gates are applications, devices or a computer that get incoming connections from external

networks and forwards them by specific rule sets. Personal firewall is a system firewall that

controls the flow of information in and out on a single computer by controlling the network

interface. It acts as a gate but is only used for the system itself.

2.6.2 Intrusion Detection Systems

An intrusion detection system inspects all network traffic and identifies different specified

patterns that may be a system or network attack. There are several different types of an

IDS system. There is misuse detection where the IDS analyzes the information gathered

from the network traffic and compares it to a database of attack signatures. The signatures

in the database are for already known attacks. An IDS that use misuse detection is as

good as the database is filled with signatures. Another type of IDS are anomaly detection

where the system administrator defines the usual amount of network traffic, protocols,

2.7. ENCRYPTION PROTOCOLS 29

typical packet size etc, and the IDS look for anomalies from the specified settings. These

definitions can also be based on statistics that the IDS itself gather from the network or

system. These statistics are the regular amount of traffic and usual system behaviour.

An IDS can be network based or host based. An networked intrusion detection system is

checking network traffic over the whole network and the host based IDS are only checking

the system activities on the particular host. The IDS can also be passive or reactive.

The passive IDS detects an attack or security breach and sends an alert to the system

administrator. The reactive IDS will take actions to the attack like logging off a user from

the system, or perhaps changing the firewall rules to stop the current attack. Changing

firewall rules may also provide protection against further attacks.[46] One of the most

commonly used intrusion detection systems at the moment is Snort[32].

2.7 Encryption Protocols

This section will discuss encrypted protocols and login systems like secure IP packets, ker-

beros and secure remote connections through SSH.

2.7.1 IPSec

IPSec[47] is a protocol that supports encryption of its data packets on the IP-layer. IPSec

consists of three parts:

• Authentication Header - Authentication between hosts

• Encapsulated Security Payload - Encryption of the packets payload

• Security Association - Connection between two hosts over network like the Inter-

net.

IPSec has some important features that the regular IP protocol lacks. IPSec supports

access control, connectionless integrity, data origin authentication, and rejection of replayed

30 CHAPTER 2. OPERATING SYSTEMS AND NETWORK SECURITY

packets, confidentiality and limited traffic flow confidentiality. The Security Association

is a connection between two hosts that can offer security services to the traffic. Security

Association can either be used for Authentication Header (AH, figure 2.7) or Encapsulated

Security Payload (ESP, figure 2.8) but not both on the same Security Association.

Figure 2.7: Authentication Header for IPSec.

Figure 2.8: Encapsulated Security Payload for IPSec.

There are two types of Security Associations, which are Transport Mode and Tunnelling

Mode. Transport mode creates an association between two hosts while Tunnelling mode

lets the Security Association be applied to an IP tunnel. The figure 2.9 and 2.10 are

illustrating how the Security Association is handled for IPv4 (IP version 4) in transport

2.7. ENCRYPTION PROTOCOLS 31

mode and tunnel mode for the use of Authentication Header. The same principle is applied

for IPv6 (IP version 6).

Figure 2.9: Security Association with the use of Authentication Header (Transport Mode).

Figure 2.10: SA with the use of Authentication Header (Tunnel Mode).

Another way to use IPSec is by using the Encrypted Security Payload functionality,

which provides confidentiality services and encrypts the payload of the IP-packets. Figure

2.11 and 2.12 illustrates how this is accomplished over IP-packets for IPv4, which is the

same way as IPv6 packets are treated.

Figure 2.11: ESP with the use of encryption and authentication (Transport Mode)

Authentication Header and Encrypted Security Payload can be combined if several

overlaying tunnels of Security Associations are used. IPSec is mandatory for IPv6 but

could be used with IPv4 as well.

32 CHAPTER 2. OPERATING SYSTEMS AND NETWORK SECURITY

Figure 2.12: ESP with the use of encryption and authentication (Tunnel Mode)

2.7.2 SSH

Secure SHell is a protocol for securely connecting to remote hosts. It provides encrypted

data transfer and let the user execute commands on the remote host. The SSH protocol

is a replacement for the old rsh[39] and rlogin[38] which are not encrypted protocols.

Connections to X-Windows[29] servers can also be forwarded over the secure connection,

which means that the user can execute X-Windows based application on the remote host

but view them on the local host through SSH. The user that connects to a SSH server needs

to prove the identity before the login may succeed. How this is accomplished depends on

which version of the protocol is being used. It is possible to just execute one command

on the remote host if the command option is specified. This makes the server execute the

command instead of starting a remote shell for the user.

The SSH protocol version 1 is based on RSA host authentication. This encryption

method is based on public-key cryptography. The authentication method is secure against

IP spoofing, domain name system (DNS) spoofing and routing spoofing. The user can

automatically login if the user generates the RSA key with the key generator (ssh-keygen)

and stores the key information files in the users home directory. SSH protocol version 2

has three ways of authentication for the user. First the client tries to authenticate using

host based method, if this method fails the public-key method is used and at last the

password authentication with user input is acquired. The password is sent encrypted to

the remote host. The public-key method is using both RSA (as protocol version 1) and

DSA[19] algorithm. The data sent between the hosts when using protocol version 2 is

2.7. ENCRYPTION PROTOCOLS 33

encrypted with AES, 3DES, Blowfish[41], CAST128 or Arcfour[31].

The differences between protocol version 1 and protocol version 2 are that the first

protocol is lacking a strong mechanism for ensuring the integrity of the connection while

the second protocol are using MD5[41], SHA1[41] and RIPEMD-160[41] for ensuring the

integrity. The second protocol is supporting a wide range of encryption algorithms for the

data transfer that the first protocol do not. [48]

2.7.3 Kerberos

One way to authenticate users to a server is by using a system named Kerberos[18]. This

authentication system is used to eliminate the risk of an attacker pretending to be an

authorized user of the system. It also eliminates the risk of an attacker that alters the net-

work address or perhaps by trying to get into the system by eavesdropping the connection

and then to do a replay attack. Kerberos provides a centralized authentication server that

is used to authenticate users to servers or servers to users. The authentication system uses

symmetric encryption (see chapter 2.5 Cryptography) for this purpose. To provide secure

transferring of the keys for the symmetric encryption, asymmetric encryption can be used.

The idea is that the server generates so-called tickets that the users receive when the users

connect to the server for the first time in the session. The user then decrypts the ticket

and sends it backs to the server to verify the identity of the user. Figure 2.13 illustrates

how the Kerberos system works. First the user has to request (1) a ticket that the user

needs to decrypt (2). The authentication ticket is sent back to the ticket granting service

(3). If the user has access with a correct ticket the ticket granting service sends back a

ticket to the network services (4). The user can then authenticate with this ticket to the

network service (5) and a regular client/server session is established between the user and

the network service. Another authentication system like Kerberos is X.509 [4] which is

based on certificate authentication with public key cryptography.

34 CHAPTER 2. OPERATING SYSTEMS AND NETWORK SECURITY

Figure 2.13: Kerberos mechanism for user authentication and ticket passing.

2.8 Common Criteria

The Common Criteria is a criteria catalogue for evaluation of IT security. It is designed to

be used by the international community to have compatible results of a security evaluation

of IT products or systems done by different national evaluation parties. It also provides

an objective yardstick for comparing the levels of security of different systems or products.

There are three parts in the Common Criteria; Introduction and general model, security

functional requirements and security assurance requirements, and all these are applied for

consumers, developers and evaluators in different ways. The security criteria catalogue has

five parts of concepts:

• Security Environment - Laws, Organisation policies etc.

• Security Objectives - Statements for the identified threats and satisfaction of or-

2.8. COMMON CRITERIA 35

ganisational security policies.

• Target of Evaluation Security Requirements - Technical requirements

• Target of Evaluation Security Specifications - Define a implementation scheme

for the target of evaluation.

• Target of Evaluation implementation - Realisation of the Target of Evaluation

according to the specification.

The Target of Evaluation is the objective to secure including its environment. The Common

Criteria are not aiming for only software development but also for evaluation of already

existing systems and applications. When an evaluation is about to be performed usually

a protection profile is identified. The protection profile is defining security requirements

and objectives. The protection profile is implementation-independent and forms the profile

for a certain category of products, which has the same needs for IT security. There has

already been developed protection profile’s for firewalls and databases etc. A security

target contains IT security objectives, requirements and forms the basis of an evaluation

based on the TOE. The security target may need several protection profile’s if the target

of evaluation consists of different categories. There are several areas for the evaluation

that aim for specific environments, for example trusted paths, authentication, auditing,

communications etc. The security assurance for the target of evaluation has seven different

hierarchically structured security levels where each level explains what the evaluated system

needs to fulfil to reach that specific level. These levels are called Evaluation Assurance

Levels.

• EAL1 - Minimal Protection

• EAL2- Discretionary Security Protection

• EAL3- Controlled Access Protection

36 CHAPTER 2. OPERATING SYSTEMS AND NETWORK SECURITY

• EAL4- Labeled Security Protection

• EAL5- Structured Protection

• EAL6- Security Domains

• EAL7- Verified Design

The first four levels of assurance are pretty basic and without specialised security engineer-

ing techniques. These levels are not too hard to reach for developers without too much cost

involved. Though the forth level is quite advanced but everything is relative depending

on resources and economy. The next three levels, five to seven, are much more complex

and are reached if the target of evaluation was designed with strict requirements from the

scratch. These systems are usually military systems and trusted systems. The evaluation

of a system is specified by following the advices in the Common Criteria and see if the sys-

tem follows the evaluation assurance levels and requirement specifications. The protection

profile, security target and target of evaluation are evaluated to see if they correspond to

the defined criteria.[33]

2.9 Summary

This chapter has described the basics in computer security regarding operating systems and

networks. The parts described are the ones that are about to be compared in the chapter

Comparison of Security (chapter 5) and also some parts in the vulnerability experiment

chapter (chapter 6). Access Control, authentication, auditing, logging and cryptography

were briefly described as were the security issues related to these topics. The network

security section describes firewalls and intrusion detection systems that could be used

to prevent or detect attacks. The most common secure protocols were described, which

could be used in the tested operating systems. The cryptographically based protocols that

were discussed were; IPSec that is used for the IP layer, SSH that is the most common

2.9. SUMMARY 37

encrypted remote login protocol and Kerberos, which is a common authentication system.

The last section in this chapter describes Common Criteria, which is a common framework

for evaluating a system or software. This is discussed as it could have been in theory used

for this project but is way too massive to use in this particular case. The main goal for

this chapter was to give an introduction to computer security in general and at the same

time give relevant information about what is going to be compared between the operating

systems.

Chapter 3

Security Enhanced UNIX Systems

The following chapter explains the SELinux/Flask and TrustedBSD/SEBSD security ar-

chitectures. Also a Linux specific security architecture called RSBAC is presented.

3.1 SELinux and Flask

The National Security Agency[5] (NSA) started to develop the SELinux distribution from

the Flask[22] architecture, which had been developed with mandatory access control. There

are also parts taken from the Linux Security Module Framework[28] (LSM). The security

mechanism can decide access control decisions based on configurations by the administrator

in forms of labels. Labels are structured information regarding the security system that

contain error messages and other security specific access control information. SELinux was

at first developed as a set of patches to the existing Linux kernel but has become a more

standalone distribution. In SELinux the policy decision logic and the policy enforcement

logic have been completely separated from each other. The policy decision logic is placed in

the security server, based on Flask, and the policy enforcement logic is implemented with

the LSM framework interface. The Flask architecture has an access vector cache which

provides help to minimize the computation time for the access control system. To make

39

40 CHAPTER 3. SECURITY ENHANCED UNIX SYSTEMS

the system easier to use there are some modified user applications and applications to help

the policy creation. A policy compiler, a file system labelling tool, role management tools

and policy querying tools are some of the help tools to administrate the security system.

User applications like tar, login, sshd and some file utilities have been modified for handling

label information from the security system.[8] The figure 3.1 illustrates the structure of the

SELinux framework and what specific kernel services it supports. The figure also illustrates

the user processes and its interface to the system. The system interface is using different

kernel services, which in their turn go through the LSM framework that is controlled

by SELinux security system, which is based on different security policies. At this place

the security decisions are made before letting the user processes perform the requested

operations.

3.2 TrustedBSD and SEBSD

To add a security enhancement to an operating system is not an easy task. There are

a lot of different concerns regarding the flexibility, maintenance, correctness and costs of

implementing security enhancements to a system. This is why both Linux and the FreeBSD

project started to work out a generic solution to these problems. Network Associates

Laboratories and the TrustedBSD project started to implement a mandatory access control

framework for the FreeBSD kernel. The TrustedBSD project addresses a lot of these

issues, for example regarding flexibility for policy models and costs of using the security

enhancement mechanisms in the system. The Security Enhanced BSD (SEBSD) project

was started after the TrustedBSD project and is actually using the TrustedBSD framework

combined with techniques from the Flask[22] implementation. The security server and

access vector cache were taken from Flask to use for policy decisions. SEBSD project

also added new structure for the kernel with new information for structures, this to have

access control and at the same time generate valuable information. The figure 3.2 show

3.2. TRUSTEDBSD AND SEBSD 41

Figure 3.1: SELinux Framework structure. [8]

the structure of the SEBSD framework and what specific kernel services it supports. The

figure shows the user processes and its interface to the system. The system interface is

using different kernel services, which in their turn go through the MAC framework that is

controlled by one or more security policies. The MAC framework is were the mandatory

access control is managed. At this place the security decisions are made before letting the

user processes perform the requested operations. There is no big difference between the

SELinux and the TrustedBSD/SEBSD framework, which could be seen in the figures 3.1

and 3.2.

42 CHAPTER 3. SECURITY ENHANCED UNIX SYSTEMS

Figure 3.2: SEBSD Framework structure. [8]

Both TrustedBSD and SELinux have the same goals and problems to solve. But the

main goal they have in common is to have modularity between the policy modules so

the system does not get tied up to a specific set of policy models or implementations.

TrustedBSD operates totally transparent for users and applications. Access control denials

are reported as standard errors that the applications are generally taking care of in one

way or another. Applications could be developed to take care of specific error reporting

(labels) from the security system as well, but this is not necessary as general applications

would not work in a TrustedBSD/SEBSD environment. There are some of the general

system commands that have been ported with label aware implementations, for example

3.3. RSBAC 43

ls, ps and login. These labels contain security system specific information regarding errors

and other messages that the security system produce. TrustedBSD was developed to

be tightly connected with the kernel to provide good support for systems with multiple

CPUs. Multiple policy models may be loaded into the security server and the decisions are

combined from all of the loaded policy models. The compositions of the decision making

are performed by the TrustedBSD framework and not by the policy module developers.

SEBSD is a ported version of SELinux and has about the same features. The only thing

that was not ported was the labelling mapping system that SELinux uses, because of the

different file system structure between Linux and UNIX, FreeBSD uses UNIX File System

(UFS) or UNIX File System 2 (UFS2), while SELinux uses Extended file system (Ext) or

Extended file system 2 (Ext2). Both SELinux and SEBSD are using Mandatory Access

Control, Role Based Access Control, Type Enforcement and Multi-Level Security.[8]

3.3 RSBAC

RSBAC[34] (Rule Set Based Access Control) is an extension for the Linux kernels and

it is based on the Generalized Framework for Access Control (GFAC)[24]. GFAC is a

very general framework for access control that both RSBAC and SELinux use. RSBAC is

open source and is reviewed by independent researchers. The extension provides a flexible

system for access control and comes with several modules that implement different security

policies.

RSBAC consist of three elements ADF (Access Decision Control Facility), AEF (Access

Enforcement Facility) and ACI (Access Control Information), which is illustrated in figure

3.3. The elements act between the subject and the objects. The figure 3.3 shows how a

process wants to access some system object, which could be a file, directory, device etc.

The system call goes through the AEF (1) and this element checks the ACI for information

regarding the access rights (2). AEF passes the request to ADF for decision (3), which

44 CHAPTER 3. SECURITY ENHANCED UNIX SYSTEMS

refer to the ACI (4) and makes a decision that is passed back to the AEF (5). The decision

is made and the process gets access or is denied access (6) depending on the decision that

ADF made. If the access is enabled for the process, a notification message is sent from

the AEF to ADF (7), which updates the ACI and sends back an acknowledgement to AEF

that gives the process access to the requested object.

RSBAC is not only adding dynamic security policies for the system, but also adds a

policy independent logging facility that has logging functionality for all used policy models.

The events to be logged may be specified from the request type, user, executable and target

file, FIFO, symlink, directory or device objects. The information that the log gathers are

user, process, object and request information. The models can specify their own access

control scheme for the logging administration that specifies how the logging should be

performed.[34]

Figure 3.3: RSBAC security mechanism structure. [34]

3.4. SUMMARY 45

3.4 Summary

SELinux, which is based on Flask, is the Linux version of SEBSD. TrustedBSD is needed

by SEBSD and is included in the newer versions of FreeBSD. The basics of these systems

and security enhancements has been described in this chapter and forms a ground for

the discussion about these systems in the project results in chapter 7.2. RSBAC has

been explained in this chapter as it is an alternative to SELinux in Linux for security

enhancements. The RSBAC system is discussed in the project result chapter as a possible

alternative for SEBSD, if it becomes ported for BSD.

Chapter 4

Attacks and Defense

This chapter explains attacks to operating systems in general as well some defense tactics.

The last part of the chapter explain vulnerability analysis tools and the tools used for the

experiment in this project.

4.1 Attacks

Attacks fall in to four different categories, who, goal, vulnerabilities and defense. The

categorie who are the ones that perform the attack and these attackers usually have a goal.

The attackers use vulnerabilities in a system to get access and a defense system is needed

to protect the system from these attacks. The people who do this can be subdivided into

three other categories[21]:

• Misfeasors

• Masquerades

• clandestine users

Misfeasors are users that have authorized access to a system but misuse their rights on

the system. This may be a user that tries to gain administrator privileges by attacking the

47

48 CHAPTER 4. ATTACKS AND DEFENSE

operating system from their own account or change data they are not allowed to change.

Masquerades are people that do not have authorized access but have gained it by

cracking a user’s password and acting like the real users in order to perform an attack to

the system from the inside. The clandestine users have gained their own access to a system

by obtaining administrator access and than create their own access paths, e.g. creating

new user accounts.

There are more ways to gain access to a system than these. People may interact with

the hardware where the system is stationed. They may add new connections to the system

or removing storage hardware to obtain information or administrator privileges.

Attackers of a system always have a goal to attack the system, it may not be with the

intention to cause serious damage, but just conquer the system to prove what they can do.

The goals an attacker may have can be the following[21]:

• Trophy grabbing

• Information theft

• Service theft

• Identity theft

• Tampering

• Denial of Service

An attacker that wants to prove his abilities is usually not doing any particular damages

to the system but instead leaves a trophy showing that he managed to attack the system.

A common trophy is to change the Webpage if the system is running an http server.

Information theft is another goal for an attacker. These attackers are looking for passwords,

credit cards numbers and other sensitive information. Attackers can attack a system just

to gain access to its resources. This is called service theft and is usually done to provide

4.1. ATTACKS 49

computers to do new attacks from, or used for storage of illegal software. There are also

attackers that want to obtain other people’s resources such as e-mails and bank accounts.

This is Identity theft and is usually used to get money or other privileges that the attacked

person has. Tampering is when people are not stealing information but instead changing

the information. An employee that changes his salary in the database without anyone

noticing it is just one example of tampering.

Denial of Service (DoS) attacks are rather common nowadays. This is one of the most

dangerous attacks to a system. It may collapse the system and data may be lost that was

meant to be sent to the system. The meaning of this attack type is flooding high amount of

data to a system, which the system cannot handle. When there are several computers that

perform these attacks with the same target it is called Distributed Denial of Service attack

(DDoS). These attacks are usually performed by systems that have been high-jacked by

some intruder.

Some common attacks to an operating system are[21]:

• Backdoors - Create an unauthorized access point to an system

• IP Spoofing - Forge the IP address

• Masquerading - Posing as an authorized user

• Packet sniffing - Read data packets sent to and from the system

• Replay attacks - Record data packets and re-send them to gain access

• Security audit tools - Scan a system for vulnerabilities to exploit

• SYN Flooding - Send TCP initial synchronization without acknowledge them, caus-

ing a lot of open sockets on the attacked system.

• Trojan horses - Software that seems useful but has in addition a hidden malicious

function.

50 CHAPTER 4. ATTACKS AND DEFENSE

• Worms - A program that replicates itself in a network.

• Virus - A program that can infect other programs by modifying them to include an,

possibly evolved, copy of itself.

• Buffer overflows - A program or attacker writes data beyond the allocated buffer

in memory and may execute other malicious code from memory.

These attacks are usually combined and most of them require network connection to

the system. The attacks above are already known attacks, which are easier to protect the

system from. But attackers may find new ways to attack a system.

The causes of the category vulnerability may be subdivided into five new categories[21]:

• Implicit trust

• Configuration error

• information leakage

• Weak design

• Carelessness

The first vulnerability, implicit trust, is if a person is accepted without any question of

identity, for example that the system does not require any further authentication if the IP

address is what was expected. This may be forged with social engineering, IP spoofing,

masquerading, Trojan etc. Configuration errors may lead to security holes in a system,

which attackers can use to exploit the system. An attacker can give out information

(information leakage) to others to show the weaknesses of a system and open for attacks.

Also a common mistake in software engineering is to have a weak design when it comes to

security. The software may function correct, but can have buffers that may be exploited

with buffer overflow. The category carelessness includes systems that have been badly

4.2. DEFENSE TACTICS 51

patched. Those are systems that run old software with known security breaches. A system

where users have chosen weak passwords or perhaps even the system administrator has

chosen a weak password is another example or carelessness.

4.2 Defense Tactics

The previous chapter explained different attacks to a system, but a system needs to

have some defense against the attacks. The defense category can be divided into five

strategies[21]:

• Obfuscation

• Authentication and authorization

• Monitoring and auditing

• Up to date software

• Education and enforcement

These five categories are what an administrator can use to defend a system against at-

tackers. Obfuscation is hiding of information, usually applied with cryptography. The

first three categories have been discussed in the previous chapter (chapter 2). To avoid

carelessness in the system, up to date software is very important. It is important to al-

ways have the latest updates of software that runs on the system, upgrading the system

if it is necessary and to review the processes that the system executes. New versions of

software has bugs corrected, which before the update could have been exploitable. The

software that the systems are using should be developed with security in mind. So educa-

tion and enforcement is important in that way so new software is developed from scratch

with high security. [21] Other tools that could be used are vulnerability testing tools that

may prevent attacks, such tools are described in the next section 4.3.

52 CHAPTER 4. ATTACKS AND DEFENSE

4.3 Vulnerbility Analysis Tools

There are a lot of different vulnerability analysis tools that could scan a system for possible

flaws and exploitable bugs. The problem with these tools is that they need to be constantly

updated to find all security breaches. Nessus[42] and SARA[9] are two of the most updated

and used applications for security evalutation of UNIX systems, which were for this reason

chosen as vulnerability testing tools in this project. Beside these two tools, there are a

lot of other vulnerability testing tools that have been combined with intrusion detection

systems. Examples of such tools are Sentarus [25] and ISS [44]. Sentarus has not been

updated for a very long time which makes it pretty useless for this sort of test and ISS is

not freeware, which means that it needs to be bought and registered. If this was not the

case ISS would have been used for another vulnerability test on the selected systems.

4.3.1 Nessus

Nessus is an open-source vulnerability scanner and is used by many organizations. The

project was started in 1998 by Renaud Deraison and was aiming to be a free and powerful

remote security scanner. Nessus provides both remote and local security checks. It checks

for flaws in both the system as well as in specific applications and services that are running

on the system. Nessus provides network scanning as well as single host scanning. The

developers focus on developing up-to-date security checks for the recent security holes.

Nessus consists of portscanners, tests of pseudonumber generators and other parts which

could be used stand-alone for testing. Nessus makes it easy with its collection of security

testing applications in form of scripts. Nessus is installed as a daemon that runs in the

background on a targeted system. A client program is used to connect to this daemon

and execute the actual vulnerability test. It is the client that decides what plug-ins to use

and how to scan the target system. These plug-ins are vulnerability testing scripts that

execute on the server. These scripts may have been written by contributors to Nessus or

4.3. VULNERBILITY ANALYSIS TOOLS 53

the developers of Nessus.[42] The picture 4.1 show the NessusWX client user interface that

executes under Windows[6].

Figure 4.1: The Nessus client user interface after a scan has been performed.

4.3.2 SARA

SARA stands for Security Auditor’s Research Assistant and is a tool for auditing the

system security. SARA is based on the other system security tool named SATAN. SARA

operates under UNIX, Linux, MAC OS/X[20] and Microsoft Windows. It is free and with

open source code. SARA may be used not as only a complete system analysis tool but as

well for specific applications. It supports security analysis for SAMBA, NMAP and other

software. It is pretty much like Nessus even though it seems a little more out of date with

security issues. The developers of SARA state that they try to update SARA twice every

month, but this may not be enough for the ever-growing system exploits.[9]

54 CHAPTER 4. ATTACKS AND DEFENSE

4.4 Summary

Common attacks and how to defend a system against them was the main goal of this

chapter. Some common attacks and the general purpose of the attacks were described.

The second part of the chapter describes some basic defense tactics that could be used in

an operating system. The vulnerability analysis tools that were used in the vulnerability

experiment has been shortly described and a general introduction to vulnerability analysis

tools was given. It is good to know the target of protection. Defending a target is not

just something that has to be done but has to be done for special reasons. If the system

stores a lot of secret or important information there could be many attacks from intruders

that want to get hold of this information, therefore heavy security should be applied. A

web-server could be a target for trophy grabbing as it has web pages open for the public.

This are just two examples of attacks to different systems in different environments. The

chapter has explained different attacks and an introduction how to protect a system against

them.

Chapter 5

Comparison of Security

This chapter provides an introduction to the tested operating systems OpenBSD, FreeBSD

and TrustedBSD. Each security area will then be discussed with the selected systems as

targets and a short review of the comparison follows.

5.1 Introduction

5.1.1 OpenBSD

The founder of OpenBSD was Theo de Raadt, who was a developer for the NetBSD project

back in 1990s. OpenBSD diverged from NetBSD in November 1995. As the OpenBSD

project was developed in Canada the project was not under the influence of United States

export laws, which made it legal to use strong cryptography in OpenBSD.

OpenBSD is a distribution based on BSD 4.4. The developers state that OpenBSD

is the most secure UNIX-like operating system[2], whether this is true will be discussed

in the following chapters. The goals of the OpenBSD project are to have correctness,

security, standardization and portability. The system is only dealing with encrypted data

over network and is said to be no non-secure connections in a default installation of the

system. The cryptography is exported with OpenBSD as default. The development team

55

56 CHAPTER 5. COMPARISON OF SECURITY

has a group that audits all files for the system and analyze the code for not just possible

exploits but for code flaws that could be exploited in the future. As the files are audited by

several professional developers the source code is stated to be very correct and secure. With

this technique the exploits that may be found in other systems are usually already fixed in

OpenBSD by the time they are found in the other systems. OpenBSD is said to be secure

by default, which means that the novice users do not have to learn everything directly. It

is also said that all services that are not needed to run the system have been disabled as

default, also this will be investigated. As the administrator is learning the system, the

administrator is also learning about security considerations in the system, according to the

developers.[2]

5.1.2 FreeBSD

The FreeBSD project started out as a patch for the 386BSD project. The patch was in the

end large and acted as an own operating system, which was later renamed to FreeBSD.

FreeBSD is just like OpenBSD a UNIX distribution based on BSD 4.4. The distribution

is supporting a wide range of different hardware platforms. The goal of the FreeBSD project

is to provide an operating system that may be used for any purpose without any obligations

for the user. FreeBSD is developed under the GNU General Public License (GPL) and

some parts are developed under their own FreeBSD License. This license is used so other

people cannot claim that it was their project or that FreeBSD project has stolen their code.

The source code for FreeBSD is open for public in the terms of GPL and FreeBSD License.

FreeBSD is designed to provide a full-featured and stable environment for applications. It

is said to be suitable for both a workstation and a server.[1]

5.1.3 TrustedBSD

TrustedBSD was first a standalone distribution that was built from the FreeBSD distribu-

tion. The project was creating a framework that supported access control lists and security

5.2. AUTHENTICATION 57

policies based on mandatory access control, for example the MLS confidentiality, Type En-

forcement and the SEBSD module supporting other security policies from SELinux. In

later versions of FreeBSD the framework has been integrated into the FreeBSD distribu-

tion. The framework is adding trusted operating system extensions to FreeBSD. The main

features of the TrustedBSD are to add extensible and audited authorization framework to

support access control modules and also to have a centralized policy management. It al-

lows support for a variety of access control methods, which adds a special form of labelling

for domains and types as well a special access control decision method. The SELinux (see

chapter 3.2) security models have been ported to FreeBSD, called SEBSD, and the secu-

rity models can be enforced with the SEBSD module trough the TrustedBSD framework.

TrustedBSD improves system privilege to reduce the risk of common system management.

The framework also adds support for better event auditing and single-host intrusion de-

tection system to monitor security events.[3] Chapter 2.1 explains more in detailed what

the difference between a regular operating system and a trusted operating system is.

5.2 Authentication

The authentication in all tested systems is based on login name and password, both through

console and remote connection services like SSH. Having authentication to the system with

login and password makes the system a lot more vulnerable for social attacks where other

people may get hold of the password and login. Often users write down their passwords to

remember them. A better solution would be to use one time passwords as default, at least

for the super user account (root). Both FreeBSD and OpenBSD provide one time password

support for users, which means that the users get a key output at the login session and the

users generates the passwords from that key in another application. There is also support

for rlogin and telnet but these services do not provide any encryption of the connection

and cannot be trusted, they are not started as default in any of the systems.

58 CHAPTER 5. COMPARISON OF SECURITY

What should be noticed is that OpenBSD has configured SSH by default to let root

login over network with SSH. FreeBSD does not let root login over an SSH connection by

default, which is a lot more secure. This is more secure because it is not hard to see if

a new connection over SSH is initialized by scanning the network with a packet sniffer.

If then root login at the beginning of the SSH session, the attacker may try to decrypt

the first packages as he know that the root password is hidden there. When login with

root is performed through SSH on the OpenBSD system there is a warning displayed in

the console that the super user, root, should not login through network connections but

instead use the su (Super-User) command. This is done by logging in with another user

account that is in the same group as root and than use the su command to change to super

user privileges. By the time the system administrator sees this warning message it could

already be too late and the system would be open for attacks. The root login should be

disabled for SSH in OpenBSD by default. As mentioned earlier the developers of OpenBSD

state that they aim for very high security regarding remote connections, but letting root

login through SSH is not following that statement.

Kerberos is supported in all of the tested systems and in FreeBSD version 5.1 or later

and OpenBSD 3.6, Kerberos version V is only included. Kerberos V is not secure for

binary streams over telnet or rlogin, which should not be used. A combination of Kerberos

with SSH is the most secure way to connect remotely. All of the tested systems could

use pluggable authentication module (PAM)[27] to get support for smart cards, biometric

devices and other authentication techniques but there is no default support for these devices

in neither of the systems. Authentication techniques, other than login combined with a

password, are getting much more common nowadays. Support for at least smart cards

should be included as default in all of the systems to get a wider usage of the systems in

different environments. The authentication methods in the systems should also be easier

to install instead of letting the system administrator edit a lot of configuration files that

may be hard to configure correctly.

5.3. ACCESS CONTROL 59

5.3 Access Control

Discretionary Access Control (DAC) is the standard to enforce the permissions on FreeBSD.

This is not a very secure access control scheme as it is vulnerable for Trojans and other

malicious software. For example a Trojan could change the privileges of important files to

reject the original owner of the files to read them. The Trojan could then set the privileges

of the files to allow other users to read them, who should not be able to read them. A

system using DAC is much more sensitive for attacks than a system that uses MAC or

MAC combined with DAC. The various modules, based on MAC, which the TrustedBSD

framework provides in FreeBSD, could be used to protect the network and file systems to

block users from using different types of services or even block specific socket ports on the

system. The best security is achieved by using several of these modules together. But there

are downsides from the administrator’s point of view because the administrator needs to

set the network access control user by user and all other rules manually. This creates a lot

of extra work to get a secure system. This might be easier to perform by creating scripts

that do this automatically. But overall it is a lot more work for the administrator.

A wrong configuration of the framework could also stop authorized users to get in to

the system, and perhaps even lock out the admin from the system. But if the framework is

correct configured this extra work will hopefully pay off in a much more secure system There

is several known security models used in the framework, LOMAC, Multi Level Security

(MLS), fixed and floating Biba[37] integrity model. The LOMAC module is almost like

Biba but permits access to lower integrity objects. These are the standard modules that

are included with the MAC framework. For a small scaled system without too many users

these models seem more than enough but for a system with a lot more users the SEBSD

module could be installed, which adds more security models based on SELinux/Flask

implementation. SEBSD adds Role Based Access Control (RBAC) for example. RBAC is

much more appropriate for commercial applications then Biba and MLS, which usually suits

for military applications. The TrustedBSD framework is not used as default in FreeBSD

60 CHAPTER 5. COMPARISON OF SECURITY

and should be activated as an option to the kernel before it could be used. During the

installation of the system there should be an option if the installation should include the

framework and if so, compile the kernel automatically from the installation options given

by the system administrator.

The Access Control Lists included in the newer versions of FreeBSD extend the standard

UNIX permission model as chapter 2.3 ”Authentication” described. The ACL is included

in the generic compilation of the kernel. Extended Attributes are needed for ACL to

function. These attributes are extra information for files and directories in the file system.

For example if a file has ACL combined with it, there is + sign after the access control rights

in the file information. Extended attributes for ACL are supported for the new version

of the UNIX file system, UFS2. A lot more configurations are needed to use extended

ACL attributes with a UFS1 file system, so UFS2 is the recommended file system to use

with extended ACL attributes. When ACL is activated for a file system in FreeBSD there

cannot be any change to the disposition of the file system when it is in use. There is a flag,

called super block flag that could be set for a file system. Once this flag is set the file system

will always boot with ACL even if the file system is removed from fstab (configuration file

for device mount). This is to prevent that the file system is accidentally booted without

ACL enabled. In OpenBSD there is currently no Access Control List support for the file

system. The developers seem to have no plans for this to come. The OpenBSD system

is using the three fields protection scheme that were explained in detailed in chapter 2.2

”Access Control”. This makes the OpenBSD much more vulnerable for attacks from inside

the system by users or masquerading users. It would be enough to have a Trojan on a

user account to change privileges for the user’s files. As OpenBSD also lacks mandatory

access control it is not suitable for many users that should have different privileges to files,

devices and directories. [1][2]

5.4. CRYPTOGRAPHY 61

5.4 Cryptography

FreeBSD is using a library (libcrypt.a) that supports configurable password authentication

hashing. The library supports the encryption and hashing algorithms DES, MD5 and

Blowfish. The default algorithm for encryption of passwords is MD5. US law restricts the

source code of the DES algorithm to be exported which the FreeBSD developers has solved

by letting users in US use DES encryption and users outside US use MD5. This is also

why MD5 is used as default encryption algorithm in FreeBSD. MD5 is said to be more

secure [1] than DES but for some compatibility reasons DES is offered as a choice. The

algorithms are used in both kernels as well as user land applications. There is difference

between MD5 and DES even if they are used for the same purpose in this case. DES is an

encryption algorithm and MD5 is a one-way hash algorithm. MD5 is creating a hash code

for the password and stores the hashed value into password lists. The system itself only

knows the hash code and not the plaintext password.

Recently there was a collision detected for MD5, which means that MD5 was considered

broken. A collision appears when same MD5 value is returned from different input. The

way this collision detection was performed does not reflect on the security of using MD5

as a password encryption technique in UNIX systems. But even if this is the case for this

specific collision detection another encryption technique should be used for the passwords

in the system. Next time a flaw in MD5 is found, the system may be vulnerable for attacks.

Blowfish is a good alternative for MD5 and has not yet been broken. Some parts of the

algorithm have been broken but not the whole algorithm and it is considered as a trusted

encryption algorithm at this time. DES is a symmetric encryption algorithm and is only

using 56 bit keys and has recently been broken within 22 hours, so 56 bit keys is vulnerable

to exhaustive brute-force search of the key space. Another symmetric encryption algorithm

AES (Advanced Encryption Standard) could be an alternative for DES as AES is using up

to 256 bit keys in contrast to 56 bit keys and is considered as secure.

FreeBSD and OpenBSD are using OpenSSH, which is supporting SSH version 1, 1.5 and

62 CHAPTER 5. COMPARISON OF SECURITY

2. All cryptographic restrictive components in the client have been removed and support

for Kerberos authentication and ticket passing is included. To have a secure SSH session,

SSH protocol version 2 should be used. OpenSSH have support for Blowfish, 3DES[41],

Arcfour and AES.

As the OpenBSD project is based in Canada there are no laws against exportation of

cryptography in software. OpenBSD does not use any patented cryptography only free

cryptography is used. The OpenBSD project is using IPsec and Kerberos V for different

purposes in the system. The cryptography is used in several areas;

• ssh (OpenSSH)

• PseudoRandom Number Generators (PRNG)

• Cryptographic Hash Functions

• Cryptographic Transforms

• Cryptographic Hardware Support.

As mentioned earlier in this chapter OpenSSH is used in both FreeBSD and OpenBSD

as the default SSH package. The PRNG is used to provide applications with randomly

generated numbers that is used for different security relevant purposes in the system. The

PRNG is constructed in a way that the same input gives the same output. An attacker

should not be able to guess the next sequence of numbers by looking at previous output.

Some applications for PRNG are random padding in IPsec, RPC transaction IDs, PIDs of

processes etc. In OpenBSD the algorithms MD5, SHA-1 and RIPEMD-160 [41] are used

for this purpose. The Cryptographic Transform is used to encrypt and decrypt data. In

OpenBSD the algorithms for this purpose are DES, 3DES, Blowfish and Cast. These are

used in both kernels as well as user programs. The last area of cryptography in OpenBSD

is the Hardware Support with cryptography where there is different hardware that needs

support for cryptography. MD5 is used in OpenBSD as well and the discussion earlier

5.5. AUDITING AND LOGGING 63

in this chapter explained why MD5 should not be used as a default hash code generator

(encryption) technique. AES with 128 bit key length is used in some areas like hardware

encryption and the secure socket layer (SSL)[45]. SHA-1 and RIPEMD-160 are two hash

code algorithms like MD5. But SHA-1 has recently been broken and should not be used for

password encryption. RIPEMD-160 has not yet been broken and could be a fair alternative

for both MD5 and SHA-1. But the same weakness that has been found in MD5 and SHA-1

has also been discovered in RIPEMD-160 but it has still not been broken.

IPSec is included in both FreeBSD and OpenBSD but needs to be compiled into the

kernel before it could be used. IPSec should be an alternative in the installation process

that let the administrator choose if this should be installed by default. A novice system

administrator may forget IPSec if it is not an option during the installation.

5.5 Auditing and Logging

Both FreeBSD and OpenBSD are using the syslog service to provide log functionality to

the system. As described in the chapter ”Auditing and Logging” (Chapter 2.4) syslog

provides a logging service for all applications that are used in the system and logs can be

created on local machine as well as over network on another system. All logs are plaintext

files, that makes it easy to read the logs and to use scripts or programs like awk and sed

to process the log files and give a specific output. Both systems have the same logging

provided. Depending on what system configuration is in use and what applications are

used on the system, the logs may look different. The logs are created in the file system

directory /var/log/. In the default installation of the system there is already a default

configuration for the syslog service in the file syslog.conf which is located in /etc/ on both

systems. The system administrator can in the syslog configuration file tell syslog what to

log with regard to what files. Examples of a syslog configuration file (syslog.conf):

• *.notice;kern.debug;lpr.info;mail.crit;news.err /var/log/messages

64 CHAPTER 5. COMPARISON OF SECURITY

• auth.* /var/log/auth.log

• mail.info /var/log/maillog

In this example the log messages that the kernel, printer, mail and news services produce

are saved into /var/log/messages and all authentication to the system through terminal

as well as remote connections are logged in the file /var/log/auth.log. Information that

the mail service provides is logged into another file called maillog in the same file system

directory as the other log files. In both systems this log service is used and could be

configured by the system administrator to log what the administrator wants and thinks is

important. This is a very flexible way of handle the logging of the system and its services.

These log messages could also be specified to output to console, to all users or to web pages

FreeBSD has nine layers of importance for the syslog service compared to the default of

eight layers:

• emerg - Most critical messages, system is very unstable.

• alert - Almost as bad as emerg level, but system could be still operating.

• crit - hardware errors or serious software issues. System could be operating.

• err -Errors that don’t crash the system but should be fixed.

• warning - Different warnings concern applications and system.

• notice - Information that should be logged if needed to analyse behaviour of the

system.

• info - System information about events in the system.

• debug - Information for developers about what a program do during execution.

• none - Does not log anything for the specified service.

5.6. FIREWALLS 65

These nine layers specify how to output to logs, terminals or administrator. While emerg

layer output the messages to all terminals and also to log file, the info just save to log for

further usage if needed. The critical layers are part of the auditing where the administrator

monitors if any high security breach occurs. Syslog only logs what the applications are

implemented to log, so the auditing is as good as the applications are in logging events.

OpenBSD is not implementing any further approach for the syslog service and using the

default scheme. The ninth layer none that FreeBSD adds to the syslog service is used for

wildcard entries that do not need any logging. There is much logging for most services

and applications in both systems but there is not any good tool to process the logs for

example attacks. Some logging is displayed to the standard output (usually the console)

but if login attempts fail there is only logging to file, except for root login failure, which is

displayed to standard output. A default log surfing tool would be very suitable for both

systems, where logs could be overviewed in real-time.

If the SEBSD module is loaded in FreeBSD there is a lot more logging performed to

standard output. Every event that fails is displayed. This is a nice feature as it is much

easier to configure the policy modules if there are messages displayed for events that fail.

These messages could be redirected to a log file when configuration of the modules is

complete.

5.6 Firewalls

FreeBSD has as default three different types of firewalls included in the system. IPFIL-

TER (IPF) , IPFIREWALL (IPFW) and Packet Filter (PF) are the firewall packages

that are included. Why there are three different built-in firewall packages in FreeBSD is

because there may be different demands and requirements for a system depending on which

environment it is going to operate in.

Packet Filter is OpenBSD’s firewall system, which has been ported to FreeBSD. Packet

66 CHAPTER 5. COMPARISON OF SECURITY

filter is a fully featured firewall with Quality of Service functionality. The IPF firewall

contains the basics for creating a firewall framework but also supports modules for creating

a really strong firewall. IPF is also having a built in ftp proxy and is considered to have

less complicated rule set. The last firewall IPFW is the FreeBSD projects own firewall

created by the project members. IPFW is aiming for the professional users because of its

highly sophisticated rule sets and packet filtering techniques. Except these three firewall

packages, FreeBSD has two default bandwidth controllers that control the bandwidth usage

in the system, altq (Alternate Queuing) and dummynet. Altq provides Quality of Service

(QoS) to different applications, which means that the selected applications get a guaranteed

bandwidth. This is done by rule sets. These bandwidth controllers are used together with

the firewall packages to create an environment where to reject a single user from using

full bandwidth. Without this controller a user could make other users bandwith low. The

three firewalls are all using rule sets to control the access of packets in and out in the

system from a network. The differences between them are that they do it in a different

way and have a different rule set syntax as well as being more or less easy to configure for

the system administrator. The different ways they choose which packet filtering rule to

use may be for example first matching rule, where the first rule that match the incoming

packet is used to filter the packet, or last matching rule, where the last matching rule is

used to filter the packet. And these rules have different syntax depending on which firewall

that is used.

The firewalls are included but need to be enabled by the system administrator before

they could be used. The bandwidth controllers need to be compiled into the kernel before

they could be used in the system. OpenBSD is using, as mentioned earlier, Packet Filter

(PF) to filter TCP/IP traffic and to do network address translation (NAT). PF also has

integrated quality of service and can therefore control the bandwidth and packet prioriti-

sation. PF is included as default in the OpenBSD release, since version 3.0. To get the PF

firewall to work, it needs to be enabled in the boot configuration file (rc.conf.local). This

5.7. DISCUSSION 67

is also the file that should be edited on the FreeBSD system to get the firewall to work.

The rule sets that the firewalls, on both systems uses, should be configured by the system

administrator as they have no default configuration that works for all systems.[2][1]

What should be noticed is that during the FreeBSD installation there is a question

asking how high security there should be for the system, but it never mentions if there is a

firewall installed by default. It should be easier to install a firewall during the installation

for both systems. After having a system up for about one day there had already been

login attacks to the system, which could have been blocked with a correct configuration of

a firewall. The freedom of choice for firewalls in FreeBSD is good as the system adminis-

trators may have different skill levels and the different firewalls features different types of

configurations. A system may also need a heavy firewall setup and then the IPFW could

be used. OpenBSD only features their own developed firewall, but as its including the

important parts it is enough with just PF, even if it could be harder to configure for the

system administrator.

5.7 Discussion

All tested systems have login name combined with a password as default authentication

method. An alternative for this would be to use one-time passwords that at least make the

accounts more secure against social engineering attacks. The only system for remote login

should be SSH and even better combined with Kerberos. SSH is dealing with encrypted

data transfers, which makes the connections a lot more secure against sniffing and Kerberos

has ticket authentication, which makes the authentication more secure and makes spoofing

harder to perform for attackers. There is no default support for other authentication

systems like smart-cards and biometrics (e.g fingerprints) logins in neither of the systems.

Smart-cards should at least be supported by default as it is rather common nowadays.

As the FreeBSD project adds the TrustedBSD framework to their distribution, it is

68 CHAPTER 5. COMPARISON OF SECURITY

now a choice to use access control lists and policy based access control rules. OpenBSD

does not support access control lists or mandatory access control. The drawback with

the framework is that it is hard to configure and could make the system less secure if the

configuration is erroneous. The default installation of TrustedBSD framework has enough

policy modules for a simple setup of MAC in the system. Having the SEBSD addon

installed adds even more security models to the framework, which opens up a more wide

use of the system with better support for MLS and DTE. As the framework is a complex

system, the OpenBSD developers do not seem to adapt it in the nearest future, which

makes the OpenBSD distribution less useful in multi-user environments.

The cryptography used in the systems is basically the same, but OpenBSD is not only

using encrypted data for remote connections in the system but encryption for hardware

as well. FreeBSD is using MD5 as default encryption of passwords in the system while

OpenBSD uses MD5, SHA-1 and RIPEMD-160 for this purpose. As OpenBSD is not

restricted by laws for the use of cryptography in their system they could use more secure

algorithms than FreeBSD, which has restrictions by the US law. Both systems have DES

and Blowfish as choice for encryption, but this is usually just for compatibility reasons

with old systems. OpenBSD are using 3DES as alternative. OpenSSH, which is developed

by the OpenBSD developer team, is used in both systems and has support for better

encryption methods than the systems, which seems rather strange. MD5, DES, SHA-1

and RIPEMD-160 have all been either broken or have shown weaknesses. Blowfish and

AES seem like a better alternative for the encryption method of, for example passwords.

The auditing and logging in both of the systems are based on the syslog service. Both

systems are logging the same information by default, like system login information. The

difference between the systems is that FreeBSD adds extensions to syslog with one extra

layer. There is still not a big difference between the logging information. Both systems

lack a good tool for log viewing by default. Such tools could be installed afterwards but

could be good to have installed with the base installation.

5.8. SUMMARY 69

There are three firewalls with QoS extensions available in FreeBSD compared to OpenBSD,

which only has one firewall as default. Which firewall of the three included in FreeBSD

to use, is up to the system administrator and his requirements. Both systems are includ-

ing Packet Filter (PF) firewall, which also adds QoS to the system. FreeBSD adds more

freedom for the system administrator what firewall to choose compared to OpenBSD that

only includes PF. This could affect the system security in the means of system administra-

tor skill levels. If the system administrator has low skills and configuring the PF firewall

incorrect there could be bad consequences to the system and its users. But having a choice

for other firewalls where the syntax for configuration is easier there could lead to much

better security.

5.8 Summary

This chapter has compared the selected operating systems in the different areas regarding

computer security. The basic differences has been covered and a discussion concerning the

results has been given in the end of this chapter. The comparison in this chapter is more

theoretical than practical, even if some parts are based on tests with knowledge about the

systems. For example the root login through SSH was tested on both systems. This chap-

ter could be seen as the first part of the comparison where the other part is the practical

vulnerability experiment in chapter 6.

The table 5.1 illustrates a rather abstract summary over the different areas for each selected

system. The security is measured in three different levels, low, medium and high.

Abstract System Security Overview
Authentication Access Control Cryptography Auditing & Logging Firewalls

TrustedBSD Medium: password High: MAC/TE/RBAC Low: MD5/DES High: syslog/AC-logging High: IPFW/IPF/PF

FreeBSD Medium: password Medium: DAC/ACL Low: MD5/DES Medium: syslog High: IPFW/IPF/PF

OpenBSD Medium: password Low: DAC High: AES Medium: syslog High: PF

Table 5.1: Summary of the security in the systems.

Chapter 6

Vulnerability Experiment

This chapter explains how the experiment was performed and what configuration was used.

The results are documented and briefly discussed.

6.1 Experiment Configuration

The versions of FreeBSD that were tested were 5.3-BETA2 and 5.4 both with a generic

kernel. Since a new release of FreeBSD was published during the project the two versions

were tested. Testing a new version is a good way to see if the security holes in the old

version were handled. TrustedBSD/SEBSD was not tested because it would give the same

results as testing a regular FreeBSD system, this is explained in more detail in chapter 7.1.

The 5.3-BETA2 installation of the FreeBSD system had Emacs installed as the default text

editor. The new version, version 5.4, was using the edit text editor as default and no extra

software installed. The reason for having Emacs installed on the first system were to have

faster and easier configuration of files. The other system that was tested was OpenBSD

3.6 without any extra software installed. Some configurations were made to both systems

to make everything work that was necessary for the test. The network was configured on

both systems as well as basic language and keyboard set-ups.

71

72 CHAPTER 6. VULNERABILITY EXPERIMENT

The hardware configuration has no effect on this particular Nessus vulnerability test but

may be necessary if the test should be recreated. The computer that was used for the test

has the following hardware configuration:

• CPU : 400MHz Intel Pentium II MMX

• RAM : 128MB SDRAM

• HDD : 8GB Wester Digital, Caviar 38400

• HDD : 5GB Quantum Fireball

• HDD : 1.2GB Seagate

• GFC : Geforce2 7700 64MB PRO

• MOB : Intel 440BX/M

• NIC : 10/100 RealTek Ethernet

• KBD : Compaq KB-9965

To connect to the Nessus server on the target system the client NessusWX (version

1.4.5) was used. This client was installed on a Microsoft Windows XP system because of

the user-friendly interface of this particular client. It does not really matter what client to

use. The client for the Nessus server was configured to scan for TCP ports starting at 0 up

to 1024, which are the most common used ports and are restricted to specific applications.

Other configurations for the scan were to scan for SYN vulnerability. All other plug-ins

that Nessus provide were used during the test. The Nessus server was of version 2.2.5 for

UNIX systems. It was configured to let users login with password and not by certificate.

There were no other configurations made to the Nessus server. The other vulnerability

scanner that was used was SARA and the current version at this time was 6.0.6. No actual

configurations to SARA were made. SARA was used on FreeBSD 5.4 and OpenBSD 3.6.

6.2. FREEBSD 73

6.2 FreeBSD

6.2.1 Open Ports

The tables 6.1 and 6.2 show the ports in FreeBSD 5.3-BETA2 and FreeBSD 5.4 that were

open when the system was portscanned with Nessus. The tables show the open port, the

protocol type for the port, service and a short description of the service. The ports marked

with unknown are services that the portscanner did not recognize. Security issues of the

ports and services is explained in chapter 6.2.5.

FreeBSD v5.3-BETA2
Port Number Type Service Explanation
22 TCP sshd Secure SHell
111 TCP sunrpc SUN Remote Procedure Call
948 TCP unknown unknown
949 TCP unknown unknown
2049 TCP nfsd Network File System

Table 6.1: Open ports for the FreeBSD 5.3-BETA2 distribution.

FreeBSD v5.4
Port Number Type Service Explanation
22 TCP sshd Secure SHell
111 TCP sunrpc SUN Remote Procedure Call

Table 6.2: Open ports for the FreeBSD 5.4 distribution.

6.2.2 Security Risks (FreeBSD 5.3-BETA2)

Name: tiff Library, version 3.6.1.2

Risk: High

Nessus Output: ”The remote version of this software is vulnerable to numerous integer

overflow conditions which may allow a remote attacker to execute arbitrary code on the

74 CHAPTER 6. VULNERABILITY EXPERIMENT

remote host.”

Explanation: tiff is a set of tools and libraries to handle .TIFF files, which is a image

format.

Name: Fetch utility

Risk: High

Nessus Output: ”There is an integer overflow condition in the processing of HTTP head-

ers which may result in a buffer overflow. An attacker may exploit this flaw to execute

arbitrary commands on the remote host. To exploit this flaw, an attacker would need to

lure a victim on the remote host into downloading a URL from a malicious web server

using this utility.”

Explanation: Fetch is a command-line tool used in FreeBSD port collection that is used

for retrieving data at a given URL.

Name: cups-base, version 1.1.21

Risk: Medium

Nessus Output: ”There is a flaw in the remote version of this package which may allow

an attacker to crash the queue browser service by sending a zero-length UDP message to

the remote host.”

Explanation: CUPS is the Common UNIX Printing System, a replacement for lpr. At-

tackers can fabricate UDP packages that contain no data and send them to this service on

the remote system. By doing this they may crash the service and gain root access to the

server.

6.2.3 Security Risks (FreeBSD 5.4)

There were no high security risks found in this version of FreeBSD. This may be a false

positive result as it could be the Nessus scanner that has old scripts and missing some new

6.2. FREEBSD 75

vulnerabilities information, if there is any. It could also be true as it is a new version of

the system that has not been used for as long time as the previous version of the system.

6.2.4 SARA Vulnerability Test

The services that were running according to SARA were bootpc, smtp, SSH, syslog. The

output for SARA was not as detailed as the Nessus output, which shows the ports for the

different services as well as which protocol the services use.

Name: smtp

SARA Output: ”smtp relay.”

Explanation: SARA found possible exploitable relay service in the SMTP server. If the

relay service is not secured, spammers could easily send spam mails through the SMTP

server from any host. If this is the case the server may be blacklisted on many other SMTP

servers and these servers would reject the local server’s e-mails.

6.2.5 Summary and Discussion

The first open port was the sshd service, which is the most common remote access protocol

to use. There was no vulnerability found on this service. The nfsd (network file system

daemon) is used but is not necessary on the system. nfsd is one of the most attacked

services because it is widely used to share files over network with. sunrpc service is needed

by the system for remote procedure calls in the system, no flaws detected for this version.

There were two open ports, with no named application using them. The system does

not have X-Windows system installed that is needed to view graphical files like images.

Why the tiff library is installed may be to support a graphical version of the text editor

Emacs that was installed as default for text editor. Both fetch and tiff library have integer

overflow flaws that are open for exploits. Usually this is patched by applying a new version

of the libraries to the system. Same idea with the other vulnerabilities, upgrading for new

versions will usually solve the problem, as these are already known issues.

76 CHAPTER 6. VULNERABILITY EXPERIMENT

6.3 OpenBSD

6.3.1 Open Ports

The table 6.3 show the ports in OpenBSD 3.6 that were open when the system was

portscanned with Nessus. The table show the port number that was open, what type

of protocol it uses, type of service and a short description of the specific service. Security

issues of the ports and services is explained in chapter 6.3.4.

OpenBSD 3.6
Port Number Type Service Explanation
13 TCP daytime Returns the local time
22 TCP sshd Secure SHell
37 TCP time Synchronize time
113 TCP identd User and process information

Table 6.3: Open ports for the OpenBSD 3.6 distribution.

6.3.2 Security Risks (OpenBSD 3.6)

Name: auth (identd)

Risk: Medium

Nessus Output: ”The ’ident’ service provides sensitive information to potential attack-

ers. It mainly says which accounts are running which services. This helps attackers to

focus on valuable services (those owned by root).”

Explanation: Report what accounts are running which services, giving possible attackers

information, which could be used to attack the system.

Name: sshd, version 1.33 and 1.5

Risk: Medium

Nessus Output: ”These protocols are not completely cryptographically safe so they

6.3. OPENBSD 77

should not be used.”

Explanation: Used to connect to host over network from another computer, with a se-

cure connection (encrypted data transfer). These protocol versions of SSH is vulnerable

for buffer overflows that may let an attacker gain root access to the server.

6.3.3 SARA Vulnerability Test

Same ports and services that were found by Nessus were found with SARA for this test,

but with less information regarding each service.

Name: sendmail

SARA Output: ”EXPN command may provide hacker information”

Explanation: This command used by sendmail is sending information in clear text and

not encrypted, which may be sniffed by an attacker.

Name: sendmail

SARA Output: ”VRFY command may provide hacker information.”

Explanation: This command used by sendmail is sending information in clear text and

not encrypted, which may be sniffed by an attacker.

6.3.4 Summary and Discussion

The OpenBSD default installation is said to be secure by default but when Nessus scanned

the system it found that several services were running that are not actually needed.

Auth(identd) was running which is a pretty common target for attackers, because it gives

away information about which applications users on the system is running. By knowing

this information as an attacker, the attacker can choose a tactic by exploiting a certain

application that is running on the host (if it is exploitable). This information should not

be able to get hold of from outside the system. A daytime server was also found on the

system, which let other hosts get the local time for the system. This is not a necessary

78 CHAPTER 6. VULNERABILITY EXPERIMENT

service as default. Also a time server was running on the system. This service may be

used if there are other hosts on the network and all hosts should have the same time. The

other hosts will then connect to the time server and set their clock to the same time as the

server. This is usually not a necessary service by default. Except from the auth service

that was running there were only one medium security risk found on the system, which

was the SSH server. The SSH server was running protocol 1 for SSH transfer, which is

not a totally secure protocol. This is fixed by changing the protocol to number 2. No high

security risks were found on the system. This could be just as for the FreeBSD version

5.4, a false positive result regarding the Nessus scripts or it could be a true result were the

system has not been used for such a long time, which means that possible vulnerabilities

has not yet been found. Same ports that Nessus found were open according to SARA, but

no security flaws were found on these services. There were two possible security holes in

the sendmail service that was running on the system. These security holes may be false

positive, meaning that the exploits may be fixed in the used version of sendmail. No other

security holes were found on the system. There was not such a detailed report for the

SARA scanner compared to what Nessus reported.

6.4 Experiment Results

The results of the experiment vary for both systems. The systems do not have exactly the

same services installed as default because of the installation programs that are used let the

user choose what to install. Nessus found more security flaws on the systems, but SARA

found other potential security holes than Nessus. The OpenBSD system was running a lot

of different services that are not needed as default. These where daytime, time and identd.

Even if these services are not exploitable at this time, they could be if some, not already

known, vulnerability is found. These services should also be a choice to install during the

installation process as they are not needed. On the FreeBSD system these services were

6.4. EXPERIMENT RESULTS 79

not running as default, which is a lot safer. On both systems SSH version 1 was used, this

protocol is not completely cryptographically safe and protocol version number 2 should be

used instead. This could be easily switched in the configuration file for the SSH daemon.

The cups-base service that were exploitable in the FreeBSD 5.3-BETA2 is not necessary if

there is no printer used on the system. So in this case removing this service would solve

the problem. This exploit was fixed in the later version of the system.

The tiff library that was found as exploitable in the 5.3-BETA2 version was installed

with Emacs and would not be used if this text editor was not installed. As the system do

not have X-Windows installed, the tiff library would not be used anyhow as the tiff library

is used to display images with the format tiff. The fetch utility program that was found as

exploitable is more critical as this utility is used for the port archive. The port archive is

mainly used to download and compile applications in a simple manner. This was fixed in

the later version of FreeBSD but should be updated in an older version of the system. The

fetch utility program was not exploitable in OpenBSD 3.6 and could have already been

fixed in this version of the system.

Some other noticeable security breaches on the OpenBSD system is that it allows root

login through SSH as default. This is not that safe even if the connection is encrypted.

This could be solved by editing the SSH servers configuration file. Also Sendmail is starting

automatically on both systems. Whether it should start automatically should be a choice

during the installation process, because some of the parts in Sendmail sends information in

clear text. Having an insecure Sendmail daemon running on a system could let spam mails

pass through the server. This is not just a local problem but would also create huge amount

of traffic through the Internet or local network. The server could also be blacklisted on

other mail servers, which would cause the server to be unusable for e-mail delivery. This

SMTP relay attacks could be controlled by having secure filtering of e-mails through the

server, which is done by pattern matching.

The vulnerabilities that were found in the 5.3-BETA2 release of FreeBSD were not

80 CHAPTER 6. VULNERABILITY EXPERIMENT

found in version 5.4, which shows that the developers have fixed the security holes.

6.5 Summary

The vulnerability experiments were performed on a relatively old computer, which is de-

scribed in the first part of this chapter, however this should not impact the results. The

first part also gives an explanation about the setup of the system and what tools were used

to perform the tests. The test was performed with two vulnerability analysis tools that

were described in chapter 4 Attacks and defense. The result that these tools reported is

structured into tables with the open ports that were found on the systems. The security

warnings and exploits that were found are displayed in a simpler manner. The chapter

has two parts, one for the FreeBSD tests and one for the OpenBSD tests. Why the tests

were not performed on the TrustedBSD/SEBSD system is explained in chapter 7.1 Project

Description, in more detail. The results of the experiment are described in the end of this

chapter. As mentioned earlier, this chapter is a more practical part of the comparison, but

still very important and a good way to see differences more easily.

Chapter 7

Discussion

This chapter discusses the results for the project. The authors point of view is given as

well as tips for further testing of security features of the systems.

7.1 Project Description

The goal of the project was to see what system of the two selected systems FreeBSD with

its add-on TrustedBSD/SEBSD and OpenBSD was most secure with as little configuration

as possible. The phrase ”Most secure” depends in which environment the system is going

to be used. A company with demands for multi-user environments needs higher system

security than a single user needs. The configuration that was made to the systems depended

on what system was installed. Some basic configurations to the systems were performed,

including configuration of the network interface card (NIC), file systems (partitioning),

choice of which packages to install. The different systems differ in their installations but

the packages that were installed were about the same. The SSH daemon was started as

default on all tested systems, not only because it was used during the tests but also as it is

a widely used remote connection service, which is good to be tested on each system. Other

software that was installed was the Nessus and SARA daemon on both systems, except for

81

82 CHAPTER 7. DISCUSSION

TrustedBSD/SEBSD. SARA had the parser generator Bison as dependencies, which had

to be installed. The port collection was installed on all tested systems.

The vulnerability tests were not performed on SEBSD for several reasons. The first

reason was that a precompiled kernel with SEBSD was used. This kernel was based on

FreeBSD 5.2, which was older than the 5.4 version of FreeBSD that was used for the clean

FreeBSD installation. To test an older version of FreeBSD would not give any important

information regarding security issues as these possible security flaws were hopefully fixed

in the later version. The other reason for not testing SEBSD for vulnerabilities was that

the structure of SEBSD would not work with the Nessus scanner as a default. Nessus

performs tests on the system that checks for known issues with scripts and Nessus needs

control of a lot of different services and files. To allow Nessus to have this access in SEBSD

the system administrator must implement specific rule sets for the Nessus daemon, else

the daemon would not be able to perform the required tests. Allowing the daemon to

do all these tests would be like a regular test performed on a system that does not uses

these rule sets. The point is that even if the SEBSD system was based on FreeBSD 5.4

the results would be exact the same as for the regular FreeBSD installation if the rule set

implementation allowed Nessus daemon to perform all the required tests. So instead of

running these vulnerability tests on the SEBSD installation the system was studied to see

what different features it had and when it could be a good idea to apply such a system.

7.2 Project Results

As a reader you have hopefully already noticed that SEBSD is a strict system that lets the

administrator get much better control of what is permitted in the system. As all programs,

i.e. Services, in the system have a rule set, each explains what is allowed or not allowed to

do, the programs used on the system are very controlled. The system administrator sets

the programs domain or domains and what transitions are allowed for them, if any. These

7.2. PROJECT RESULTS 83

transitions act between domains which let the program change domain from one to another.

The administrator can even allow a program to send data through TCP/IP but disallow

it to receive data through TCP/IP, and there are a lot of similar control mechanisms.

There are a lot of different positive features that this kernel add-on brings to the system.

If a user downloads malicious software or get it by e-mail, the program cannot execute on

the system if it has not gained any needed rule sets from the system administrator and it

might not even be able to get it downloaded in the first place. If the system administrator

installs a software that he think can be trusted but the software contains a backdoor,

the system administrator can set the rule sets so the program cannot go over to another

domain and make any potential damage, or perhaps not even be able to make the backdoor

open for intruders. The rule sets can act as a firewall where the software can be allowed

or disallowed to use the network, or parts of the network. There are also rules against

misbehaviour on the file systems, which may be good to prevent software to read or write

to files that the software should not be able to read or write to. The same rules that

may be set for software may be set for users in the system in the form of roles. With the

use of the policies that the SEBSD system applies, the system is more secure against new

exploits, which also is very positive as updates may not be so necessary to be applied fast.

As the SEBSD system is built up by domains, roles and transitions there is actually a

pretty basic concept behind the SEBSD system. But there is a lot to configure before it

works as it should. Every program that is to be used in the system needs its own rule sets

to work. This means that all new software that is added to the system needs its own rules.

It is easier to add new users to the system once the roles have been created as well as the

domains. SEBSD has a default scheme for the rules but it is far from complete as every

system has different setup regarding software and users.

The SEBSD system with its strict policy rules are securing against threats like worms,

Trojans, backdoors and viruses as well as users that may not be trusted. The time it takes

to configure the system is long but could be a fair trade for a more secure system. Once the

84 CHAPTER 7. DISCUSSION

system is configured and up running it is a stable system but if it is going to be a system

that constantly needs updates and new software but do not have that many users, than it

is not a fair trade as it is taking too much time to create new rules for the applications and

may cause new problems. For a company server it is a very good choice for an operating

system if the system is going to handle many users, as SEBSD has multilevel security with

domains and roles that may protect user’s data from other users and possible intruders.

OpenBSD is said to be the most secure BSD system in the default installation. Some

issues that were found during the tests and analysis of the system was that OpenBSD

allows root login through SSH as a default. This is usually seen as a high security breach

and this is something that FreeBSD does not allow as a default. Instead of disallowing root

login through SSH there is a message at login that tells the user to use the ’su’ command

instead, but to be a default secure system, there is not anything positive by letting root

login through SSH. It is a lot more secure to use ’su’ when already logged in with another

user first. An attacker may listen, i.e. sniffing, to the traffic and when the attacker sees a

TCP connection he can see that the first data that are sent is the login information and if

this information is the root login it could be a lot easier to crack. If the login is performed

through another user and if this user is using su inside its shell it is a lot harder for the

attacker to parse out the correct data from the data stream, which is encrypted.

On all three systems the sendmail daemon was running as a default. As there is not any

exploits for this service at the moment the vulnerability tests did not react to this service.

But having this daemon running may be a security risk if the system is not continuously

updated and someone finds a bug that could be exploited in the sendmail daemon. In

OpenBSD there are a lot of system reports and events reported through sendmail to the

administrator (root user) account. FreeBSD does not have the same reporting through

local e-mail but still the sendmail daemon is running as a default.

What makes the biggest difference between OpenBSD and FreeBSD is that FreeBSD

adds the MAC framework which enables ACL and policy models to be used. Without the

7.3. AUTHOR’S POINT OF VIEW 85

MAC framework, FreeBSD basically uses the same access control mechanisms as OpenBSD

does. But when it comes to cryptography FreeBSD is more restricted due to the US law,

OpenBSD can use different cryptography algorithms more freely. Beyond that there are not

that many differences between the systems as both has support for authentication methods

and secure connections through networks as well IPSec. The cryptography that was used

in both systems are rather weak as many of the algorithms used has been recently broken

or detected as weak. OpenBSD has other more algorithms included to choose from than

what FreeBSD has. Some of these algorithms are at the moment safer than the default

algorithms.

7.3 Author’s Point of View

This project has analysed and evaluated two different BSD distributions and they have

different features that make them more or less secure compared to each other. Even if one

of the systems is less secure in some areas the same system can be more suitable in some

environments than a system that does not lack this specific security feature. FreeBSD with

SEBSD can be a very secure system if it is configured correctly, but this takes a lot of efforts

for the system administrator. Every time a new application is installed on the system, a

new rule set needs to be set for the specific application. This is a lot of administration

if the system should act as a simple FTP or HTTP server, which many private users are

using the systems for. In this case a system like FreeBSD (without TrustedBSD/SEBSD)

or OpenBSD is a better choice, which is easier to administrate and does not take up to

much time to configure. The security that TrustedBSD/SEBSD offers is very high and

its access control features should be used in a system that has many users, i.e. Multi-

user environment. For a company server this could be a good alternative if the system

are acting as a multiuser environment server. Company systems usually have the same

applications running for longer time and no needs for new software, except updates of the

86 CHAPTER 7. DISCUSSION

current software.

Even if a system like OpenBSD and FreeBSD lacks many of the features that Trust-

edBSD/SEBSD framework adds they are not unsecure systems. But if a new exploit is

discovered, for example in the sendmail daemon, the OpenBSD and FreeBSD systems are

a lot more open for attacks than a FreeBSD system with the framework, which may stop

this attack from happening as the rule sets reject the malicious operations from sendmail.

These two systems are actually a lot different even if they are siblings from the same

system, NetBSD. FreeBSD has a lot easier installation program as well as configuation

utility of the system than OpenBSD. This may be thought of something that has nothing

to do with security, but it actually does. The simple installation program makes it easy for

the system administrator to install the software needed without having too many programs

installed that are not used. By only installing the needed software there is less risk to

accidently install malicious software. The easy configuration program that is intergrated

into the installation program for FreeBSD makes it easy to configure the services needed

and to only start these services. In OpenBSD there is not much of a installation program,

which makes the unexperienced system administrator helpless and there are a lot of security

relevant issues that the administrator may miss. I think that the services that are started

as a default on the systems should be asked for before they are started at installation point.

There is no need for sendmail in FreeBSD and logging and security warnings in OpenBSD

could be addressed to log files instead. TrustedBSD/SEBSD system could be useful for

private users as well, e.g. if the system is expected to run for several years and without

downtime and no more software should be installed, for example an FTP server. If the

rule sets are configured correctly there are not many ways to exploit the services or the

server if no new software is installed (that may contain backdoors or Trojans). As I see

it, this is a way to put up a server without having nightmares. But I would also consider

to use OpenBSD with a good configuration if the server should be a light weight server.

OpenBSD claims to be secure by default and the most secure BSD system, but as I see

7.3. AUTHOR’S POINT OF VIEW 87

it, a FreeBSD system could be just as secure as OpenBSD if all services used are using

cryptography. These services could be the sshd, ftpd and mysqld daemons as examples.

There are some features of OpenBSD that speak against the ”secure by default” policy, like

allowing root login as a default through SSH. The kernel of OpenBSD seems very secure as

the developers have heavy auditing of the source code. But still there could be flaws in the

code. The FreeBSD project does not have the same way of auditing the code, but many

users of the system send in bug reports. As these users may use the bug to exploit systems

instead of reporting it there is a high threat against the system compared to OpenBSD

where the developers hopefully find the bugs first.

RSBAC could be an alternative for SEBSD. This would be the case if RSBAC was

ported to the BSD distributions, which I think would not be that hard to do. As RSBAC

adds great freedom of choice of security policy models, it is like later versions of SELinux

more open for additional models and changes without reinstalling a system from scratch.

An issue with RSBAC would be the verification of security for the protection mechanism

itself as it has not that many users, compared to SELinux. SELinux has many users who

confirm the implementation of the protection mechanism. OpenBSD does not support

any policy mechanisms for the file system. The FreeBSD MAC framework could be used

without the SEBSD add-on and could have some more lightweight security policy modules.

What also should be mentioned as a security fix is to disable all services that have been

enabled in inetd.conf, which is located in /etc/. When a service is needed it is better to

activate this service again instead of having many services running that are not being used.

Even if the security level is very high in a system there are other ways to get hold of

the information on a system. And even if there is strict access control for the hard disk

drives the information could be gathered by removing the storage device (usually hard

disk drive) to another system without this form of security. The information of the hard

disk drive is than viewable by the intruder. This is why storage encryption is a good

alternative for a system where the importance of integrity is vital. As the data and system

88 CHAPTER 7. DISCUSSION

information is usually separated on different storage devices the data information could

easily be gathered from another system once the storage device is installed. Some security

systems have trusted devices which may not be accessed even if the device is connected

to another system. The algorithms for encryption in both systems, especially FreeBSD,

should be changed to more secure ones or at least use keys with 128 bit or more. Blowfish

and AES seem like the best alternative to use or RIPEMD-160 which yet not have been

broken. OpenBSD has more choices and are not restricted to US law as FreeBSD is.

Regarding cryptography OpenBSD is more safe than FreeBSD.

7.4 Further Investigation

The project has tested the selected BSD systems with vulnerability analysis tools and some

basic knowledge about UNIX system security, which includes configuration file analysis and

testing of system services. To get a more in depth investigation of the systems, it would be

a good idea to perform analysis of the implementation of the different security features in

the systems. Specification and verification techniques for the different distributions could

be performed as postulated by the Common Criteria that was described in chapter 2.8.

But these techniques are very complex to perform on larger systems. Another way to get

a more complete study of the security features could be to setup a system and let a lot of

different users test it. This would get a more reality based result where users interact in

the system. As the tests in this project have been performed with vulnerability analysis

tools there could be a lot of different security issues that these tools have missed. The used

tools are only testing already known exploitable issues on the systems. A wide range of

security analysis tools exists but the frequently updated ones usually costs money, which

was an obstacle for this project. An example of such tools is ISS[44] that could be used

for further testing of UNIX system security.

7.5. CONCLUSIONS 89

7.5 Conclusions

A main conclusion of the project is that TrustedBSD combined with SEBSD is most suit-

able in a multi-user environment. A multi-user environment on a UNIX system is usually

deployed in an organization where role based access control could be used to implement

good security policy for the users. Even if the policy models in TrustedBSD and SEBSD

aim towards a multi-user environment, they could also be used on a server without many

users for preventing attacks from exploited services. For a workstation, FreeBSD is the

best choice as it has configuration tools that let the user of the system configure it easily,

which leads to better security. It also has tools included to let the user update applica-

tions, which leads to up to date software and hopefully better security in the system. If

the system is going to act as a server without many users, the choice of system depends

on what are the requirements on the security functionality. As example if strong cryptog-

raphy in the system is important, OpenBSD is a good choice. A FreeBSD system without

the TrustedBSD framework could be used with access control lists to get a better access

control functionality if the system is having a few users.

References

[1] FreeBSD (http://www.freebsd.org).

[2] OpenBSD (http://www.openbsd.org).

[3] TrustedBSD (http://www.trustedbsd.org).

[4] Charlisle Adams and Steve Lloyd. Understanding PKI, 2nd Edition. Addison-Wesley,
2003.

[5] National Security Agency. http://www.nsa.gov. Developers of SELinux.

[6] Eva Ansell. Windows XP. Docendo Sverige AB, Sverige, 2005-01.

[7] Steve Burnett and Stephen Paine. RSA Security’s Official Guide to Cryptography.
McGraw-Hill Osborne Media, 2001.

[8] Robert Watson Chris Vance. Security Enhanced BSD. Network Associates Laborato-
ries, 15204 Omega Drive, Suit 300 Rockville, MD 20850, July 9, 2003.

[9] Advanced Research Corporation. Security Auditor’s Research Assistant.

[10] Bryan Costales and Eric Allman. Sendmail. O’Reilly and Associates, Great Britain,
2003-01-10.

[11] Joan Daemen and Vincent Rijmen. The Design of Rijndael: AES - The Advanced
Encryption Standard. Springer-Verlag, 2002.

[12] Alexandre Dulaunoy. ssh-smart http://www.thinkingsecure.com/ssh-smart.

[13] Niels Ferguson and Bruce Schneier. Practical Cryptography. Wiley, 2003.

[14] GNU Project Free Software Foundation. awk - data formatting utility,
http://www.gnu.org/software/gawk/gawk.html.

[15] GNU Project Free Software Foundation. sed - stream editor
http://www.gnu.org/software/sed/manual/sed.html.

91

92 REFERENCES

[16] GNU Project Free Software Foundation. wc - word counter
http://www.opengroup.org/onlinepubs/007908799/xcu/wc.html.

[17] Simson Garfinkel and Gene Spafford. Practical UNIX and Internet Security. O’Reilly
and Associates, 1996.

[18] Jason Garman. Kerberos - The Definitive Guide. O’Reilly and Associates, Great
Britain, 2003-09-16.

[19] Ben Hammond. Digital Signatures. Osborne/McGraw-Hill, 2002.

[20] Duane Ireland and Robin Williams. MAC OS X 10.4 Tiger. Peachpit Press Publica-
tions, USA, 2005-05.

[21] Ph.D. J. Craig Lowery. Computer System Security. Sebastapol, 2002.

[22] Flux Advanced Security Kernel. http://www.cs.utah.edu/flux/fluke/html/flask.html.
Stephen Smalley, National Security Agency.

[23] Paul Love, Jeremy C. Reed Joe Merlino, Craig Zimmerman, and Paul Weinstein.
Beginning UNIX. John Wiley and Sons LTD, USA, 2005-05-10.

[24] L. J. L. Padula M. D. Abrams, K. W. Eggers and I. M. Olson. A Generalized Frame-
work for Access Control: An Informal Description. Oct, 1990.

[25] Demarc Dynamic Threat Management. Sentarus (http://www.demarc.com/).

[26] Bill McCarty. SELinux. O’Reilly and Associates, Great Britain, 2004-10-26.

[27] SUN Microsystems. Pluggable Authentication Modules.
http://www.sun.com/software/solaris/pam/.

[28] Linux Security Modules. http://lsm.immunix.org/. LSM Project, Great Britain.

[29] Linda Mui and Eric Pearce. X Windows System Administrator’s Guide, Vol 8.
O’Reilly, 1992.

[30] Christopher Negus. Linux Bible. John Wiley and Sons LTD, USA, 2005-02-18.

[31] Luke O’Connor. On the entropy of arcfour keys. IBM T.J. Watson Research Center,
1998.

[32] Angela Orebaugh, Simon Biles, and Jacob Babbin. Snort Cookbook. O’Reilly and
Associates, Great Britain, 2005-04-12.

[33] Common Criteria Project Sponsoring Organisations. Common Criteria - An Intro-
duction. Syntegra.

REFERENCES 93

[34] Amon Ott and Simone Fischer-Hbner. The Rule Set Based Access Control (RSBAC)
Framework for Linux. Karlstad University, Sweden, 2001.

[35] Charles P. Pfleeger. Security In Computing (2:nd Edition). Prentice Hall, Inc, 1997.

[36] Sabrina de Capitani di Vimercati Pierangela Samarati. Access Control: Policies,
Models and Mechanisms. University of Milano and University of Brescia, Italy, 2000.

[37] FreeBSD Project. Manual for Biba integrity model in FreeBSD. Nov 18, 2002.

[38] rlogin remote login. http://linuxcommand.org/manpages/rlogin1.html.

[39] rsh remote shell. http://linuxcommand.org/manpages/rsh1.html.

[40] Jerome H. Saltzer and Michael D. Schroeder. The Protection of Information in
Computer Systems. University of Virginia, Department of Computer Science, Great
Britain, 1975.

[41] Bruce Schneier. Applied Cryptography: Protocols, Algorithms, and Source Code in C,
Second Edition. Wiley, 1995.

[42] Tenable Network SecurityTM. Nessus (http://www.nessus.org/about/).

[43] Gagne Silberschatz, Galvin. Operating System Concepts. John Wiley and Sons, Inc.,
New York, 2003.

[44] Internet Security Systems. ISS vulnerability scanner (http://www.iss.net).

[45] Messier Matt Viega Jon and Chandra Pravir. Network Security with OpenSSL.
O’Reilly and Associates, 2002-06-27.

[46] Webopedia. Intrusion Detection System (http://www.webopedia.com).

[47] Naganand Doraswamy Woburn. IPSec. PRENTICE-HALL, 2003-04-15.

[48] T. Ylonen, T. Kivinen, M. Saarinen, T. Rinne, and S. Lehtinen. ssh - OpenSSH SSH
client. 1999.

Appendix A

Wordlist

ACL - Access Control List

BSD - Berkeley Software Distribution

DAC - Discretionary Access Control

DES - Data Encryption Standard (cryptography, NIST, IBM)

DFS - Distributed File System

DSA - Digital Signature Algorithm (cryptography, NIST)

Ext - Extended file system (Linux)

Ext2 - Extended file system version 2(Linux)

FTP - File Transfer Protocol (Internet, RFC 959)

GPL - General Public Licence (GNU)

HTTP - HyperText Transfer Protocol (WWW, RFC 2068)

HTTPD - HyperText Transfer Protocol DAEMON (WWW, HTTP)

LSM - Linux Security Module

MAC - Mandatory Access Control

MLS - Multi Level Security

NFS - Network File System (Sun, Unix, RFC 1094/1813/3010)

PAM - Pluggable Authentication Module (Linux, LISA)

95

96 APPENDIX A. WORDLIST

PGP - Pretty Good Privacy

QoS - Quality Of Service, Deliver a guaranteed bandwidth

RSA - Rivest, Shamir and Adleman (cryptography, RSA)

UFS - UNIX File System

UFS2 - UNIX File System 2

