Department of Computer Science

Kang Chung
Mathilda Gustafsson

Prototyping and evaluation of
TCAPsec

Degree Project of 20 credit points
Master’s in Computer Science and Engineering

Date: 2006-02-01
Supervisor: Katarina Asplund
Examiner: Donald F. Ross

Serial Number: D2007:04

Karlstad University 651 88 Karlstad
Telephone 054-700 10 00 Fax 054-700 14 60
Information@kau.se www.kau.se

Prototyping and evaluation of TCAPsec

Kang Chung

Mathilda Gustafsson

This report is submitted in partial fulflment ofid requirements for the
Master's degree in Computer Science. All materiahis report which is not
our own work has been identified and no materiah@duded for which a

degree has previously been conferred.

Kang Chung

Approved, February 1, 2006.

Advisor: Katarina Asplund

Examiner: Donald F. Ross

iii

Abstract

Today, the most frequently used signaling systentdtcommunication is called Signaling
System No. 7 (SS7). The growing usage of mobileptednes and mobile data communica-
tion, and the development of new services meanthigatisk of intrusion and exploitation of
the SS7 signaling networks increases. The incrggsioblem with unauthorized access to
sensitive information and the operators’ growingndad for security is the origin of our
work. This thesis presents a prototype design and impl@atien of a Security Gateway
(SEG), which is a fundamental part of the TCAP ws=aurity (TCAPsec) concept. TCAPsec
is a security concept for introducing security meabms to the signaling system. The proto-
type includes three different protection modes tratvide security services, ranging from
almost no protection to full protection with theeusf encryption algorithms. The thesis also
contains an evaluation study of the delay penatéesed by the use of these security services.
With regards to the restrictions on the prototyihe, conclusion drawn from the evaluation
results was that the protection mechanisms in tfierent protection modes did not inflict
any significant time penalties. Instead, the resoltthe study indicate that the routing process
of messages in the network is a more significatayiley part in the communication between
different nodes. This result implies thhe routing process takes longer time than therggcu
services. The thesis also presents a number obwiised features that will require further

investigation and development before the TCAPsecept can be realized.

Acknowledgements

The project was undertaken at TietoEnator R&D SewiAB in Karlstad. The project work
was performed jointly with Mathilda Gustafsson, whidl also be presenting a separate report

to Mid Sweden University in Sundsvall as a Mastdegree project.

We would like to give thanks to everyone who hadgéd us during our Master’s thesis. First
and foremost we would like to thank Robert Lockd &aniel Raad, our supervisors at Tie-
toEnator, for sharing their knowledge and guidirsgimi the right direction when problems
occurred. We would also like to give particularrtkato Rafael Espino, Robert Locke, Karl-

Johan Grinnemo and Ulf Melin, from who we had tkedfit to borrow books.

We would also like to express our gratitude to LAin and Peter Torpman for their pro-
gramming help and to Malin Abrahamsson and Rafagirt® for their encouragement and
support. Furthermore, we would like to give thatdd<arl-Johan Grinnemo for his helpful-

ness and deep commitment during our thesis woflkeadEnator.

Special thanks go to our supervisor Katarina Asplainthe Department of Computer Science,

Karlstad University, for devoting so much time Falping us with our thesis.

Last, but not least, we would like to thank Annad for giving us the opportunity of per-

forming our Master’s thesis at TietoEnator.

vii

Table of Contents

1

11
1.2
1.3
1.4

2

2.1
2.11
2.2
2.3
23.1
2.3.2

2.4
2.5
2.6

3

3.1
3.2
3.2.1
3.2.2

3.2.3
3.3

4.1
4.2
4.3
4.4
44.1
4.4.2

pYigoTo [UToli o] o H TP PPPPRTO 1
D 00T P 2
OULIINE ..ttt e e a e e et e e e e e e e e e annne s 3
L©70] o] (1100110 1S UPPURRPRRRRN 3
POSt-OPPOSItION CRANGES ...t et e e e 4

BaCKgIrOUNG.... ...ttt e e e 5
TeleCOMMUNICALIONcceiiiiiiie et e e e e e 5
][0 11211 T TP UT PP PP PTPPPP 6
Signaling SYStem NO. 7 (SS7) ..ccceii i 7
Open System INterconNection (OSI).......oeueceeuiiiiiiiiieeee e 9
The TCP/IP MO e 11
The SS7 MOAEL ... e nennee 13

Message Transfer Part (MTP)uuuiiieieiee e 14
Signaling Connection Control Part (SCCP)cccceeeiiiiiiiiiiiiiiiiiieecee e 15
Transaction Capabilities Application Part (TCAR)............covvvvvvvvvvvivviennnns 16
Mobile Application Part (MAP)..........uuuiiiiieeiiiieee e 19
NETWOTK SECUITY ... e e sttt ettt et e e e e e e e e e e e e e e e e s e aannnee e 21
1Yo 10AYZ= L1 [o] PP P PP PPPP PP 24
SUIMIMABIY ettt e e e e e e e e e e e e e e e et e et ettt et eeeee e e e sesesssesssnnnnneeeeennsennnnnnnnnes 32

Description of TCAP user security (TCAPSEC).....ccuuiiiiiiiiiiiiiiiiieieee e 33
OVEBIVIBW ...ttt mmmme et e et e e e ettt e e e s e e e eemr et e e e ennn e e e e e e 33
TCAPsec - detailed deSCrPLioNccueemmeeeeiiiieeiaiiiiiiii e mnneee e 34
Databases and attributesc.eeeeiiiiiiii e 35
ProteCtion MOUEScoviiiiiiiieiiitceceeee ettt seens e e 37

Protection MOde O.........ooviiiiiiiiiie e iereeee e ee e 39

Protection Mode L......cooooiiiiioiei e 39

Protection MOAE 2..........ooiiiiiiiiiie e icreeee e ee e 40
Message ProteCtion PrOCEAUIE.........aceeerrriiiiieae et e e e e e merene e e e 40
SUMIMABIY ettt e e et e e e e e e e e e e e et e et ettt et et ee e e eeaesessse st snnnmneseeseesnnnnnnnnnnns 42

Design and ProtOtyPiNGg.......ceeeieiueieriiiet et e e e e e e e e e e e e e e eeeerereeeeeeas 43
DeSIgN MELNOM.ot eee e e e e aeaeaenes 43
Y070] o] PP P PP PPPPPPPPPPPTPRTTRIN 44
Functional reqUIFEMENTSooi ittt eeee e 44
ProtOtYPE ESION ..ceeiiiiiiiiiiiieie e ettt e e e e e e et e e e e e e een e e e e e aeeeee s 47
Prototype Network arChiteCtUIE........coeeeeevevviiiiiiiiiie e 47
Prototype SOftWare deSIgNc.uuueieieeiiiiie e 49

NOGE A et e e e e e 49

ix

SEGAANA SEG B ...t smeeemee sttt 51

N0 0 L = PP 52

4.5 Functionality testing reqUIrEMENLSccceamiiiiieeiiiiiiiiieii e e e 53
4.6 Prototype teSting reSUILSco i s 54
4.6.1 Prototype lIMITAIONSoeiiiii i eeeeeeeeeeee e s st e e e e e e e e e s smnmee e e e e e e e s annnes 55
4.7 IS [] 4= PP 56

5 Performance evaluation StUAY.............ooiiceeriieii e 57
5.1 Performance testing Parametersccceeeeerererireerrrrieieiriei e 57

5.2 Performance testing procedure deSCription.............oooeviiiiiiiiiiiiieeeee e 59
5.3 TESHNG FESUILS ...ttt 61
54 DiSCUSSION Of the rESUILS......ueeeie e ettt 64

6 Problems and experience gaiNed.............oooiuiiiiiiiiiieee e 69
6.1 PrODIEIMS ... e e e 69
6.2 EXPErienCe QaINEMcoooiiiiiiiiceeeeee et e e e 72
7 SUIMIMATY .ot 75
7.1 (©70] o T (11T 1S PSS PPPRPRUPPRR 75

7.2 Recommendations for futUre WOTK......... .o eeeeeermmmmmenee e eeeeeeens 76
I =T =] o =L PP PPRPRR T 81
Y 0] 01 o) PP PUPTP PP 83
A F Y o] o =2V = 1T 83
B TESHNQG FESUILSceeiiiiiiieeeiiee et eeeeee et s s nnnnnsssasssnnsnnnnnnes 87
C Message flOW Chart..........coiiiei e e 89
1= T [T PP PEPPTTR T 89

R GBIV .ot 90

D Y= To [1=T g [of= N0 1= Vo = T o PP 91

Protection mode O, 1 @nd 2........ooveiiiiiieeeeeeee e e e en e 91
ProteCtion MOUE 3........uuiiiiiiiiieee e ceeree et e s s st eeeeae s 92

E Yo 10| (o= o Lo [P 93

List of Figures

11

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13

3.1
3.2
3.3

4.1
4.2
4.3

5.1
5.2

Secure inter-network COMMUNICALION ... ccaecec it 2
Main components in a SS7 signaling NEetWOrK.vvviviiiiiiiiiieiee e 8
Communication between station A and B usiggaing links Q..
The OSI ProtoCOl SLACKuuuuiiiieeeeee e eeaeaeees 10
A side-by-side layer comparison of the OStlstand the TCP/IP stack....................... 12
A side-by-side layer comparison of the OStlstand the SS7 protocol stack............... 13
The internal structure of the TCAP layer e .viiiiiieieeee e 18

A simplified illustration of a mobile netwoskibsystemccoooiiiiiiins e 21
Requesting routing information for a short 88&® (SM)........ccoovviiiiiiiiiiiiiiiiiiiiien, 25
Sending a short message (SM) and registehagying information............................ 26
ASMS SPAMMING SCENAIIOceeiieiiiiiiiiiie e ee e e e e e e e et e e e e e e e e e e s e nnnreeeeeeeaaanes 27
Forwarding SM data in an unprotected dialogue.............cccuuviiiiiiiiieeniiniieeeeeen. 29
The TCAP handShakeooiiiiieeeeeee e 30
Circumventing the TCAP handshake proteCtiQnu.............cvvvvvevvviviieieiiiiiiiinnnnns 31
SS7 SEGs location at the border between aparatworks..............cococvviiiiieine 34
One SADB and one SPD for each SS7 SEGccceeiiiiiiiiiiiiieee e 35
The process of protecting an inter-operatBIAGE...........uvururniiriiierieeeeeeeee e e 41

Four serial connected nodes with protectestHoperator communication using SEGs.45

The structure of the implementation compaoeithé CoNCept...........ceveveeerrriiiiiinnnn 48
An abstraction of the prototype nodal struetamd routing paths..............cccoeeeiii 49.
Routing paths for the different protection re®dh the prototype.............cccoeeeee. 59
The one-way sending procedure in the StACK cce........ovvvviiiiiiiiiiii s 60

xi

5.3 Comparison of the performance between pratectiode 0, 1 and 2ccceeeeeee.

5.4 Comparison of the performance between pratectiode 3 and 1cccceeevviinnnnnnne.

5.5 Comparison of the performance of all protectimodes

xii

List of Tables

5.1 The mean round-trip-time for each parameteinsget

xiii

1 Introduction

The global telecommunication network could argudi#ythe largest and most complex tech-
nical system that has ever been created. Thismyistémportant for people’s local to global
communication and for countries’ development worttkyv In recent years, the development

of telecommunication has accelerated.

A telecommunication network is, opposite to a cotapmetwork, made up of two different
networks. The first part of the network is respblesior carrying voice, video and data traffic.
The second part handles control information arkdh@wvn as the signaling network. The main
purpose of the signaling network is to transfeersal information for managing connections

between different nodes in a network.

Today, the telecommunication signaling system dalignaling System No.(3S7) is proba-
bly the most used signaling system. It is a stahttzait is used in all modern telecommunica-
tion networks. Signaling in ordinary telephony ®atively uncomplicated in opposite to
mobile telephony, where the system has to retagation information on the mobile tele-
phones. The growing usage of mobile telephonesnaolile data communication, and the
development of new services mean that the demanchfmacity, flexibility, rate and security
in signaling networks increase. Because of theees®d communication in networks, network
security is a hot topic these days. More sensitif@mation is sent in the networks (such as
bank transaction information), which in turn couwaltiract fraudulent actors that exploits the
system. A number of telephone operators have beg@riencing an increase Bhort Mes-
sage ServicdSMS) frauds in 2004 (described in Section 2.3)e Qrowing problem with
unauthorized access to sensitive information isotiigin of our work. To counter the increas-
ing number of frauds, security mechanisms weredhiced to théransaction Capabilities

Application Part(TCAP) in SS7 to form a concept callE@AP user securityT CAPsec).

Network A Network B

Unsecure
communication

Unsecure
r communication

Secure
communication

Figure 1.1: Secure inter-network communication.

The TCAPsec concept includes different protectioodes to provide different levels of
protection when protecting the inter-network comiation, see Figure 1.1. These protection
modes provide security services ranging from alnmostprotection to full integrity and
encryption protection with the use of standardizsttryption algorithms. By applying
services such as integrity calculations and enimypin the routed messages, SMS-spamming
can be prevented and discouraged. The thesis aigaigs an evaluation study of the delay

penalties caused by these protection modes wherdirding TCAPsec.

1.1 Purpose

The purpose of this thesis will be to perform asigrement given by TietoEnator. The as-

signment consisted of a problem statement withrivagor parts.

1. Investigate how &ecurity GatewaySEG, part of the TCAPsec concept) could be re-

alized with TietoEnator's SS7 signaling stack.

2. Evaluate the delay penalties caused by the enorypcryption mechanisms when in-

troducing TCAPsec.

To solve the problems stated, the thesis work wasiged in two steps.

1. A prototype of a SEG was built. Since the primagentive with the prototype was to
evaluate performance penalties, the only part@ptiototype that had to be realisti-
cally implemented is the encryption/decryption fiime. The rest of the prototype

could be built around stubs.

2. An evaluation study was conducted. The study censithe delay penalties inherent

with various encryption and integrity algorithms.

Including the above described steps, the thesi& waonsists of three major parts. At first we
describe TCAP user security (TCAPsec) and the marpaf introducing TCAPsec in tele-
communication networks. The second part is to eranthe feasibility of implementing

TCAPsec by designing a prototype of a SEG. Theltpart of our work is to perform an

evaluation study of the penalties due to encrypdiecryption of introducing TCAPsec.

1.2 Outline

This thesis is organized in the following way. Cleai2 presents background information for
telecommunication and Signaling System no. 7 (SAIgp, information regarding the Open
System Interconnection (OSI) model is includeddomparison, together with a brief presen-
tation of network security and the motivation foe texistence of the TCAPsec concept. Chap-
ter 3 contains the description of the TCAP useussc(TCAPsec) concept. Chapter 4 con-
tains the requirements and the design of the TCAPs®otype. In Chapter 5 the performance
evaluation is presented with a discussion of tisellte. Chapter 6 contains a presentation of
the encountered problems and a discussion of tpheriences we have gained during this
thesis work. Finally, in Chapter 7, we present camclusions, and a number of investigation

and evaluation recommendations for future work.

This thesis contains a large number of abbreviatthat can be found in Appendix A.

1.3 Contributions

This Master’s thesis is performed by Kang Chung, Karlstad University, and Mathilda
Gustafsson, for Mid Sweden University. The planramgl designing of the TCAPsec proto-

type was a joint effort. The work was divided sattthe different parts of the work could be
done in parallel. The thesis consists of a numbehapters, where the main responsibility for
each chapter is solely placed on one author odéd/ibetween the authors. Help has been
offered by the co-author, but the main responsybibr a single chapter is assigned to one of
the authors. The responsibility was divided afeli. Gustafsson had the main responsibility
for Abstract, Acknowledgement, Abbreviations, Referes and the contents of the Appendix
A to C. Furthermore Gustafsson was responsibleCfaapter 1, and 5. Chung had the main
responsibility for Chapter 4, 6, 7, and AppendixdCE. The responsibility for Chapters 2 and

3 were divided between the authors.

TietoEnator provided us with the hardware and saftwrequired to perform the thesis work.
Two computers were configured as two stacks. Thisfiguration was performed by Lars
Ahlin at TietoEnator. A program skeleton containihg callback functions required by the
TCAP module was provided by our supervisor at Hettor, Daniel Raad. The implementa-
tion was also divided up between the two authois iamolved approximately four weeks
work for each. Gustafsson was responsible for implting the routing between the end
nodes via the two SEGs. Chung was then responfgiblienplementing the security mecha-

nisms into the prototype SEGs. The implementatésulits are the property of TietoEnator.

1.4 Post-opposition changes

After the opposition on Karlstad University on ttitof February 2006, the following changes
to the thesis were requested by the examiner Dddass and performed by Chung:

- A summary were added to the end of chapters ZyB4do facilitate the reading of the

thesis.

- Subchapter 1.3 were added for separating and daotingehe separate responsibili-

ties of the authors.

- Subchapter 1.4 were added for documenting the eésamgde in the thesis by Chung

after the opposition in Karlstad University.

2 Background

This chapter gives a background to the projectti@e@.1 describes the history of telecom-
munication and signaling. In Section 2.2 the SigigaBystem no. 7 is explained. Section 2.3
contains information about the Open System Intereotion (OSI) model. This model is

further compared with both the TCP/IP model and 3% model. The SS7 model is com-
posed of the layers MTP, SCCP, TCAP and MAP, wlaith described later in Section 2.3.
Section 2.4 presents a brief overview on netwodkusty and contains both information about
fraudulent actors and the protection against thection 2.5 completes this chapter and
describes the motivation behind the TCAPsec coneept this thesis. In this section, the

scenario of SMS spamming is explained in detalil.

2.1 Telecommunication

Antonio Meucci [1] developed the first modern télepe in the late 1840s. This construction
was used for connecting his bedroom and his offitdortunately, Meucci was destitute and
could not pay for the patent application. At thensatime, a boy named Alexander Graham
Bell [2] was born in England. In the early 1870glIBnade a working telephone with both a
sender and a receiver in the same unit. Since Nleoctd not afford the patent application,
Bell was in the year 1876 free to apply for a patam his invention. Ever since this day in
1876 thePublic Switched Telephone NetwdBSTN) has been under constant development.

In early telephony, numbers couldn’t be used whentacting a specific person [3, 4, 5].
Instead, a cable had to be directly connected lestwiee sender’'s and the receiver's equip-
ments. This means that everyone has to have ote cafinected per person he/she wishes to
speak with. This solution was naturally both extemsnd costly and therefore new solutions
were in demand. One solution was the switch. Wienswitch was introduced, only one
cable was needed to connect the equipment to thehswhe switch then put the conversa-

tion through using other cables connected to it.

At the beginning, the switch was operated by tedeyghoperators that asked the callers who
they wanted to talk with [3, 4, 5]. The telephome@tors then connected the cables attached
to the two persons’ equipment and they could starbnversation. This was an early sort of
signaling. A number of years later, automatic s took over the connecting part. This
automatization had an effect on the signaling imftiorf, which was moved to a separate
network inside the PSTN-network. This split medrdttthe conversation and the signaling

information were transmitted in separate channels.

2.1.1 Signaling

Signaling [3, 4] in a technical context is abountrolling processes. The main purpose with
signaling in modern telecommunication networksoidransfer control information between

nodes.

In former times, signaling between the subscrilet the local station was manual. When the
subscriber turned the handle on its telephone aniglternating voltage was generated and a
signal was triggered at the telephone operator.t&lephone operator and the subscriber then
orally exchanged the number to the receiver. Tisrmation was then exchanged between

telephone operators in different stations.

When automation of the telecommunication network wéroduced, the subscriber no longer
needed to perform this oral exchange of informatigtn a telephone operator before a call
could be established. The telephone was insteaigpepiwith a hook and a rotary dial. The
communication between the subscriber and the kiatibn has since that day been performed

by different tones, for example dial tone, ringeé@nd occupied tone.

Telephony has changed over time. Earlier, the conication was made up of pulses and
tones. But in today’s digital networks, packetbmiary data are used for carrying signals. The
exchange of control information is a form of datenenunication. In signaling, there are both
similarities and differences in related servicest\{leen data communication and telecommu-
nication), but the main purpose is to transfer mseinformation for handling the telecom-

munication connection. Signaling in ordinary telepy is relatively uncomplicated in oppo-

! That is, the information that is needed for cotingcand routing of a telephone call between theem sender
and receiver.

site to mobile telephony, where the system, fomgXa, has to maintain location information
of the mobile telephones. This information is stoie a special database that is caléame

Location Registe(HLR) [3], see MAP in Section 2.3.2 for more detail

The increased usage of mobile telephones and madaike communication, and the develop-
ment of new services mean that the demand for dgpéexibility, rate and security in sig-
naling systems increase. One well-developed siggalystem is thénternational Telecom-
munication Union’qITU’s) [4] SS7, which is described in Section B&low.

2.2 Signaling System no. 7 (SS7)

International Telecommunication Union (ITU) [5, éjeated a standard in 1980 for digital
signaling communication. This standard is callegh8iing System no.7 (SS7) [3, 4, 5] and is
a global standard for signaling in telecommunicati@tworks. The reason behind the devel-
opment of SS7 was to make the network more efficaal maximize the utilization of the

resources. The development of SS7 led to a cordijeimproved performance in the PSTN.

SS7 is a reliable packet-switched data network lilagt an important part in both wired and
wireless networks. SS7 is also a separate netwmrkrénsmission of control information,

working in an existing voice network.

The SS7 network consists of three main componesitshawn inFigure 2.1. Telephone

switches connected by SS7 links are calBmivice Switching Point6SSP). SSP manages
calls and sends SS7 messages for transferring satian related information to other SSPs.
A conversation can be routed only if tBervice Control Poin(SCP) supplies the SSP with

routing information.

A Signal Transfer Poin(STP) is a switch that forwards messages betwesvorie switches
and databases. The messages are routed to thet®grealing link using information found

in SS7 data messages.

SCP is a database containing central network dsgéabdesigned to make reliable information
available. SCP receives a request from a SSP amchsethe information that was asked for.
We can take the 020-number for example. When and@@ber is called, the SCP checks the

number in a table and gives SSP the actual nunobeoditing the conversation. This number

can vary depending on, for example, day and time.

Subscriber

v

/
Jj STP
)
\ |
St{bcrlber \ STP
/ \
M ssp
e
SCP

SS7 Signaling Links
=umnmt\/oice Circuits

SSP = Service Switching Points
STP = Signal Transfer Points
SCP = Service Control Points

Figure 2.1: Main components in a SS7 signaling network [6].

In the SS7 networkSignaling Point{SPs) [3, 4, 6, 7] are communicating by using digga
links. The SPs are identified usingSignaling Point Cod¢SPC) address, unique for each
network. Every message that is sent in the netwarskan originating address and a destina-
tion address. These addresses are c@llgginating Point Cod¢OPC) andestination Point

Code(DPC). By using these addresses the messagdsengint to the correct destination.

Since SS7 has a large transmission capacity, diksido not need to be connected with sig-
naling links. Figure 2.2 belowhows that station A and station B can communieatieout
having a direct signaling link between the statideesch of them has a direct link to station C

and the signaling between the two stations caretbier be routed through station C.

Station A Station B
Signaling Point Signaling Point

Signaling link Signaling link

=

Signaling Point
Station C

Figure 2.2: Communication between station A and B using siggdinks [3].

The SS7 software is designed as a protocol staxkadilitate the understanding of the stack,
the SS7 stack and thEransmission Control Protocol/Internet Protoc@ICP/IP) stack is
briefly compared with th®©pen System Interconnectig®SI) stack, which is a commonly
approved protocol stack and is described in Se@i8nTCP/IP is compared in Section 2.3.1
and SS7 in Section 2.3.2.

2.3 Open System Interconnection (OSI)

The need for communication between different compaystems led to the development of
an international standard. This development woriabein 1977 by thénternational Stan-
dard Organization(ISO) [3, 4, 8, 9]. The goal was to create a saatided interface for inter-
connecting computer communication systems arouaedmbrid. The standard they presented

was called Open System Interconnection (OSI) [B, 9].

One purpose with the development of OSI was tdifaid the work and the communication
between different companies. By using a standaodhpatibility issues between different
implementations could be eliminated. The OSI madeld be used by companies that use the

same interface, but have individual implementations

A protocol stack consists of several layers ofwgafe where each layer provides the upper
layers with services. Each layer has its own serwgsponsibilities. The protocol stack of the

OSI model consists of seven layers, as shown iar&ig.3 below.

Application Layer

Presentation Layer

Session Layer

Transport Layer

Network Layer

Data Link Layer

Physical Layer

Figure 2.3: The OSI protocol stack.

The top layer is called the application layer, Begure 2.3 above, and it provides the users’
applications with network services and controlsdbmmunication between distributed appli-

cations.

The main task for the presentation layer, see Ei@u8, is to translate application data to a

common syntax. Translation is necessary, otherhis@pplications cannot communicate.

The session layer, see Figure 2.3, establishes caioation between presentation layers in
different systems. It maintains, synchronizes aads down the actual dialogue. The session
layer renders the possibility for the presentatayer to calculate a checkpoint in the data-

stream for resending if the connection is broken.

The transport layer, see Figure 2.3 above, suppliesess-to-process communication. The
transport layer guarantees that the carrier fulfits current application’s requirements. Func-
tions in the transport layer are for instance floowntrol, error-detection and correction. The
transport layer also optimizes the data commuranaby using multiplexing, or dividing data

into smaller packets before it reaches the network.

10

The network layer’'s (see Figure 2.3) main funci®mo transport data packets between hosts
in the network. The network layer decides the pakien by packets on their way from sender

to receiver. This layer is accordingly responsfblethe addressing of hosts.

The data link layer (see Figure 2.3) is responditdanoving a data-packet between adjacent
nodes through an individual link in the network. dlarify this, the network layer is responsi-
ble of moving packets from the transport layethat$ending node to the transport layer at the

receiving node.

Layer one is called the physical layer (see FiQu. It contains functions for converting data

to signals to make it compatible with the transmissnedia.

The OSI model is used as a reference model whetirngeother protocol stacks. Today, there
are several protocol stacks that are implementedsimilar fashion as the OSI model. Two of
these stack models are the TCP/IP- and the SS7ihwlklieh are described in Section 2.3.1
and Section 2.3.2.

2.3.1 The TCP/IP model

The Transmission Control Protocol/Internet ProtofoCP/IP) [8, 10] model is a protocol

stack, implemented in a similar approach as therd®lel. See Figure 2.4 below.

11

(ON] TCP/IP

Application Layer Application Layer
Presentation Layer
(Transparent)
Session Layer
Transport Layer Transport Layer
Network Layer Network Layer
Data Link Layer Data Link Layer
Physical Layer Physical Layer

Figure 2.4: A side-by-side layer comparison of the OSI stawit he TCP/IP stack.

Neither the presentation layer nor the sessiorr layists in the TCP/IP model. The TCP/IP
model provides circuitless packet-switched commation. The network layer supplies a best

effort service.

Protocols that work in the TCP/IP stack are, fetamce Hypertext Transfer Protoc§HTTP)
[11], Simple Mail Transfer ProtocdlSMTP) [12] andFile Transfer ProtocoFTP) [13] in
the application layer. Two protocols that work lire transport layer areransmission Control
Protocol (TCP)[14] andUser Datagram Protoco{(UDP) [15]. TCP is used when a reliable
transport of messages is required or favourableekample when sending e-mail. In the
situation when speed is more desirable than rébgbUDP is used; an example is when
streaming multimediaThe protocol that works in the network layer is theernet Protocol
(IP), which supplies a best effort service. Proteesed in the data link layer vary and depend

on the type of network used.

12

2.3.2 The SS7 model

When SS7 [5] was introduced, telecommunication iec@acket-switched and circuitless.

The SS7 model was created nearly at the same 8rtteeaDSI model, but SS7 was developed
for use in telecommunication and therefore the i@oiogy used is very different, see Figure

2.5 below.

oSl SS7
L MAP
Application Layer
PP Y TCAP
Presentation Layer
Session Layer TUP | ISUP (Transparent)
Transport Layer
Network Layer SeelP
MTP Layer 3
Data Link Layer MTP Layer 2
Physical Layer MTP Layer 1

Figure 2.5: A side-by-side layer comparison of the OSI stault the SS7 protocol stack.

Each layer in the SS7 stack has a specific role. @Bl-model layers 1-3 represent functions
for transferring information between different ned€hese functions essentially constitute the
communication networkMessage Transfer PafMTP) [5, 10] andSignaling Connection
Control Part(SCCP) are, as is shown in Figure 2.5 above, etgnit¢o layer 1-3 in the OSI-
model. Layers 4-7 in the OSI-model define functioaekated to end-to-end communication.
The SS7 protocol stack does not have any protdbatscan be mapped directly into the OSI
layers 4-6. However, some protocols, such agtiephony User ParfTUP) andiSDN User
Part (ISUP), covers their functionality to some exteiihe TUP, ISUP, Transaction
Capabilities Application Part (TCAP), arMobile Application Part(MAP) supply some of

the services in the OSI-model’s layer 7.

13

ISUP [5, 10] and TUP are circuit-related signalipigtocols. They are responsible for the
signaling when setting up, maintaining and teadogvn telephone calls. TUP only support
old telephone service and has in most cases bedaced by ISUP, which supports both
telephone calls anbhtegrated Services Digital NetwofkSDN) -calls. We will not describe

these two protocols further, as they are not withascope of our work.

The following subsections provide an outline of 887 protocols found in the SS7 model,

see Figure 2.5.

Message Transfer Part (MTP)

The Message Transfer Part (MTP) [4, 5, 7] is adpant protocol that is used in SS7-
networks. It is responsible for the transmissiorsighal units and it provides an error-free

communication between two SPs.

As shown in Figure 2.5, MTP consists of three pawvtsich cover the first three layers of the
OSI stack (Physical-, Data Link- and Network lay@fTP layer one (MTP1) represents the
OSI's physical layer and it has full responsibility the connection between the SPs and the
transmission network. This layer also decides wiphlgsical link that is going to be used

during the transmission.

MTP layer two (MTP2) works under MTP layer threeTRB) and follows directions from

that layer. MTP2 supplies a reliable transmissibgeignaling information between the SPs in
the network. To achieve this, MTP2 uses error-detecand error-correction, but also flow
control. An advantage in MTP2 is the possibilitydiiding outgoing messages into smaller

packets.

MTP layer three (MTP3) is responsible for messaggimg and the related network selection.
It distributes incoming messages to upper layensekample TUP, ISUP and SCCP, and it
routes outgoing messages toward their destinaldrP3 uses routing control and error han-
dling when the messages are directed to the codestination. Each message has both an
OPC and a DPC. Based on this information, MTP3 aeliver the messages to the correct

destination.

14

MTP3 is also responsible for selecting the best fiam transmitting messages. This is done by
distribution of messages out on different availaliés. In this approach, congestion is

avoided in a particular link, and if the link wildil, MTP3 is able to handle errors.

Signaling Connection Control Part (SCCP)

The Signaling Connection Control Part (SQQR 7, 16] is located above the MTP in the SS7
signaling stack and is, together with the MTP,ezhlheNetwork Service PartNSP). As the
signaling network evolved, new requirements arase @ew protocols were developed to
meet these requirements. SCCP is a prime examplecbfa protocol. The SCCP implements
two kinds of transfer capabilities: circuit relateinaling and non-circuit related signaling.
The circuit related signaling is not that commounsed, as the MTP was designed to do this.
Instead, the main reason for this part’s existesi¢be non-circuit related signaling. This way
of signaling implies that, unlike a common phon# tteat requires a path or a circuit to be
exclusively allocated, communication is achievetiieen the end nodes without creating an
exclusive circuit. An example of usage for non-gitcelated signaling is data communication
between databases. Such communication implies statet bursts and quick queries, for

example location updates for mobile stations dutzel phones.

SCCP also introduces two modes of communicatiorsifpmaling:connectionles¢CL) mode
andconnection-orientedCO) mode. These modes are similar to UDP and {@&Bcribed in
Section 2.3.1) in an IP-based network. In CL mdbe,packets contain all the information to
route the packets without setting up a logical emtion before sending the packet (similar to
the UDP traffic in TCP/IP-based networks). This mad favourable for short and bursty
traffic such as short database queries. ContratypeoCL mode, the CO mode requires an
initial set-up phase for creating a logical conietbetween the end nodes (similar to TCP).
During the set-up phase, a local reference nunsbetored in the nodes along the set route.
Using this reference number for all the messagkmbig to a specific connection makes the
routing faster than in the CL mode. The speed adganmakes the CO signaling mode more
suitable for larger packets and for larger numbigrackets, such as maintenance communica-

tion for downloading test results from nodes.

As a node is capable of having several differemliegtions and users (for example data-

bases), the SCCP was designed to handle the distribof incoming messages to the differ-

15

ent users in the upper layer. Here, SCCP introdtieesbility to distinguish between several
upper layer applications, usingsabsystem NumbéBSN) to identify each application or user

in the terminating nodes/end nodes.

One of the most important functions of SCCP is @iebal Title Translation(GTT) using
Global Titles(GT). As MTP uses Originating Point Code (OPC) amstination Point Code
(DPC, see Section 2.2) within a sindgteiblic Land Mobile NetworKPLMN, described in
MAP below), SCCP complements this with GTs to comivate with other PLMNs. Aoint
Code(PC) addressing a single node is unique withirLslIR. But the same PC address can
reoccur in other PLMNs, causing confusion when caomicating across more than one
PLMN. The solution to the inter-PLMN communicatisthe GT that is unique for all nodes
globally by identifying a node with both a netwadckand the PC. A simplified description of
the GTT is that it translates a GT to a PC and &8N)outing within the operator network.

Transaction Capabilities Application Part (TCAP)

The Transaction Capabilities Application Part (TGA#®| is located in the application layer
according to the OSI model. As new services areldged, so are the needs for faster and
more efficient data transfers of larger amountfi@ut going through the process of allocating
a circuit. The main purpose of TCAP is to provitie upper applications with generalized
services to send information over the network usii@ogues and non-circuit related signal-
ing. Before TCAP was developed, each applicatiopléemented its own dialogue handling
separately. Therefore, a standardized dialoguelimgnfilinction was created to minimize the
need for creating new services and protocols talleasialogues. TCAP provides the services
to transfer information between nodes, independérpplications. TCAP is defined as an
end-to-end protocol, which implies that the protosdl not process the message other than
in the sending and receiving end nodes. Also, treaircuit related signaling that TCAP uses
implies that the protocol requires the support ssvices of the NSP (SCCP and MTP com-

bined) to function properly.

The functionality in TCAP requires the introductioha number of terms, such as the follow-

ing:

» TC user: denotes the application that uses TCAP’s services.

16

» Dialogue: an association created between two TC users fosfearing messages.

» Dialogue ID: an identifier to separate a dialogue from othafadjues. The dialogue id
is a value between zero and 65536. The value isoslew when sending down the

stack and high when receiving from the stack.
» Transaction: anassociation created between two TCAP protocolsfiardnt nodes.

* Transaction ID: an identifier to associate a message to the atleseribed transac-

tion.
« Operation: an action requested by the local TC user for ¢éineote end to perform.

« Component: a data unit that is sent between two TC usersnally containing an

operation request or result.

« TC primitive: a message sent internally between the TC useff@adP. The primi-
tive is either arequest sent from the TC user to TCAP, or atication sent from
TCAP to the TC user. There are many types of prmst but this thesis will only de-

scribe the dialogue-related primitives

TCAP uses only SCCP’s connectionless services, hwhieans that TCAP does not set up
persistent connections. Therefore, the intermedaters between TCAP and SCCP (Presen-
tation, Session, and Transport layer accordindgp¢oQSI standard) that holds connections are

completely transparent.

17

TC user

TC priql‘nitives TC priqlnitives
| |
TCAP | |
Compon:‘lent Sub-Layer (C:SL)
Dialogue Component
handling (DHA) | | handling (CHA)

Transaction Sub-Layer (CSL)

:
:
TCAP mlessages

SCCP

Figure 2.6: The internal structure of the TCAP layer [4].

Functionally, TCAP can be divided into two partssorcalled sub-layers: tfi@omponent Sub-
Layer (CSL) and theTransaction Sub-Laye(TSL), shown in Figure 2.6 above. The CSL
handles the interface between the TC user and T&#Pthe TSL handles the interface be-
tween SCCP and TCARhe CSL provides the functionality to keep multigialogues with
several operations active simultaneously. The CISa anables the TC user to send and re-

ceive components (operation invokes or results).

In the CSL, two facilities are provideBialogue Handling(DHA) and Component Handling
(CHA).

The DHA handles dialogues by offering two typesli@logues to send the information:

- Structured dialogueare more suitable for transferring larger amowfitdata, as in re-

quests and results. The simplified lifecycle oi@abue can be described by setting up

a dialogue, sending information in the dialogued &rminating the dialogue. The

18

structured dialogues also make it possible to fs@weral parallel dialogues active si-

multaneously.

- Unstructured dialoguesre more suitable for sending operations thatataequire re-

plies, as it does not do initiations, results emieations. These dialogues are termi-

nated as soon as the component is sent.

The CHA handles the requests to perform operatigrisagging the operation with an Invoke

ID. This makes it possible to have several invacetiactive simultaneously.

The TSL handles the connectionless communicatioseofling TCAP messages from one

TCAP node to another and tags the messages witaresdction ID.

TCAP handles several types of primitives when comigating with the SCCP or the TC
user. In this thesis, we will only make use of Ustured Dialogue Primitives” between the
TC user and the Dialogue Handling sub-function noseid above. This group of primitives

consists of three types of primitives:
e« TC_BEGIN: This initiates a dialogue with the recipient.

« TC_CONTINUE: This primitive is used after a dialogue has begtiated

and before the same dialogue is terminated.

« TC_END: Any side of the connection can send this primitveerminate the

dialogue.

Common for all three dialogues is that they aredahtified by a dialogue id, and they can be
either a request or an indication. The dialoguassiociates the primitive with a specific dia-

logue and distinguishes them from other ongointpdizes.

Mobile Application Part (MAP)

The Mobile Application Part (MAP) [4, 7] is placed the application layer together with
TCAP and uses TCAP for its dialogue and componaptbilities. The protocol also uses
SCCP for its connectionless signaling services édopm peer-to-peer signaling between
MAP enabled nodes in a PLMN (Public Land Mobile Wwetk). A PLMN is a network

19

(owned by a single operator) that provides basitextended telecommunication services for

mobile terminals, such as cellular phones.

MAP was specifically designed to meet the signaleguirements of th&lobal System for
Mobile CommunicatioiGSM). A few examples of these requirements ardnémdlingShort
Message(SM) forwarding forShort Message Servig€MS), and subscriber data manage-
ment. Some of the main services include locati@isteation forMobile StationgMSs, de-
fined below), handling and management for subsciitiermation, “handovers”, and trans-
ferring of security data. Location registratiorpisssible by keepinyisitor Location Registers
(VLRs) and Home Location Registers (HLRS) up toedas$ the MS is roaming between dif-
ferent networks (HLR and VLR described below). Suiber information is stored for service
and billing purposes. A “handover” refers to thegass of seamlessly transferring the MS’s
radio connection from one radio base station taheraluring an ongoing call, without break-
ing the call connection. The differences betweentthndover procedure and roaming is that
the MS is idle or free for calls during roaming aheé handover requires additional amounts

of signaling to keep the radio and call connectibthe MS.

The VLR and HLR mentioned above are databasegppfication Entities(AES) in MAP,
storing the location information of subscriberghe network. See Figure 2.7. The VLR stores
the visiting subscriber’s location as soon as imes within its network, and then notifies the
subscriber’s HLR of its location. When the subseriis called, its HLR is queried first to find
out in which network the subscriber currently residAn MS, as mentioned above, is a mo-
bile terminal that the subscriber uses to commueioathe network, for example a cellular

phone.

The Mobile services Switching Cent@SC) [4, 5] is the central component in a mobile
network subsystem. Figure 2.7 illustrates a singalifand limited version of this subsystem.
This center is responsible for routing all signakated to call processing. The MSC is inter-
faced with theBase Station ControllerBSCs, which maintains the radio connection with
MSs), the HLR, the VLR, any external networks (fixer mobile) and more that we will not

describe here, as it is not within the scope of thesis. The MSC, in combination with the

HLR and VLR, handles the call routing and roamingcedures.

For routing Short Messages (SMs), the MSC intedfda® additionahetwork entitiegNES):

20

* The Short Message Service Interworking M$EMS-IWMSC) [5, 17] is
placed in the same network as the MSC. This ceataives and processes the
SMs that come from the same network as the MSCqages that originates
from the MSC'’s network).

* The Short Message Service Cen{&MSC [5, 17] that the MSC interfaces is
located in a remote network. This center forwaldsrhessages from an exter-
nal network to the MSC, that is, messages thatraigs from an external net-

work.

Operator X

BSC

Base Station

Base Station

SMS-IWMSC

Operator Y

>

S

SMSC

Figure 2.7: A simplified illustration of a mobile network sufsgem.

2.4 Network Security

Today, network security [18] is a hot topic. Monedamore sensitive information is being

communicated, which in turn attracts an increasingiber of fraudulent actors and more

21

complex exploits of the network. These actors &tthe network to gain valuable information
or to invoke disruptive operations. The attacks barclassified as either passive attacks or

active attacks.

The passive attack’s purpose is to gain sensitif@mation and do not necessarily disrupt the

ongoing communication. A couple of examples of pasattacks are:

- Eavesdroppingn the communication traffic to gain sensitiveconfidential informa-

tion.

- Analyzing the traffi¢o gain information such as location and identitghe communi-
cating parts and also the nature of the commumwicatdften applied when the traffic

is encrypted or somehow scrambled.

Active attacks are meant to cause changes in timencmication by modifying existing traffic

or creating their own fraudulent traffic. Some eetattacks are:

- Masqueradingoy impersonating a valid originator and making destination believe

that the traffic is legitimate.

- Replayingby capturing a pre-authorized and properly eneyphessage and then re-
sending it later to the receiver, making the reeebelieve that the message or invoca-

tion is legitimate.

- Modification of the messadgy taking a legitimate message and making chaimgis
to cause harmful or exploitative effects on theenegr. The changes are done without

disrupting the message too much so that it sihselegitimate.

A few types of security services have been cretdqurevent both of these kinds of attacks.
Some examples of types of services @aga confidentiality data integrity data origin au-

thorization andreplay protection
Data confidentiality

Data confidentiality is used to hide the conterftshe message so that a third party cannot
read the contents. This confidentiality is achiebgdencrypting the data that is to be sent.

Encryption is accomplished by the use of complexheraatical algorithms and relatively

22

large encryption keys. The keys should be 56 bitsrgger since a shorter key is considered to
be too easy to crack. Two different types of entoypalgorithms can be usesymmetricor

asymmetriencryption algorithms.

The main difference between these two types ofrdlgos is that the symmetric kind uses the
same key to encrypt and decrypt the message widlagymmetric encryption uses key-pairs.
The key-pairs are designed in a way that if a texhessage is encrypted with one key, then it
can only be decrypted with the other correspondiegin the pair. This type of encryption
algorithm is more complex and has a major advantage symmetric algorithms, namely key
distribution. The key-pair consists of opablic key accessible by the general public, and a
private key accessible only to the entity that generatedkthes. The public key can be dis-
tributed freely without compromising the securify.drawback of asymmetric algorithms is
the computational overhead of generating the kdggmmetric encryption will not be de-

scribed further in this thesis, as we will only @lse symmetric algorithms specified in [19].

The symmetric algorithms can be publicly known thé keys must be kept secret to preserve
confidentiality. This secrecy requirement introdsiseme requirements on the algorithm. The
algorithm must be strong enough so that an adwecsamot decipher the data by only having
knowledge of the algorithm. The algorithm must ab&so strong that an adversary cannot
calculate the key (within reasonable time) by krmaybnly the ciphertektand the algorithm.
Another requirement (or problem) is that both teader and the receiver must have the key
and store it securely so that no outsider can hawgess to it. Anyone who attains access to the

key can read all the messages that have been &dnyh the (no longer secret) key.

In this thesis, we will be using thedvanced Encryption StandafdES) algorithm in counter
mode with a 128-bit key. For more information or tAES algorithm, see [18, 20]. The

counter mode is described in [21].
Data origin authentication & data integrity

Origin authentication mechanisms are needed tdwirat the two communicating nodes are
who they claim themselves to be. This service, ecimanism, is applied mainly to avoid the

case of a masquerading attack from an unauthonedd. Authenticating nodes is critical for

2 A ciphertext [18] is the result of a plaintext tias been encrypted and is unintelligible. Thaeitext is
dependent on the plaintext message and the ermnyiiy.

23

handling charging information. There are severaysve implement origin authentication
without encryption of the message. One exampleriigo is theMessage Authentication
Code(MAC) [18]. This algorithm calculates a checksuhe MAC, based on the message and
a mutually known secret key. The checksum is thpgeaded to the message. The receiver of
the message performs the same calculation and cemfig result with the appended MAC.

A positive comparison confirms an authorized origirthe message.

The fact that the MAC is dependent on the messadeaasecret key makes it similar to en-
cryption. The main difference is that the algoritfotn MAC does not need to be reversible,

unlike the encryption algorithm.

Data integrity mechanisms are used to verify thatrhessage contents have not been changed
since the message left the originating node. Datgrityis dependent on origin authentica-
tion. Without authenticating the origin, the integritgamanisms would only be able to protect
against malicious modifications, but not againsticieus data sent directly from the arbitrary
and unauthenticated origin. Data integrity algenshare based on encryption algorithms to
calculate and encrypt the checksum of the messagesimilar fashion as MAC, mentioned
above. In this thesis we will use the AES algoritinma so-calledCipher Block Chaining
(CBC) [18] mode. For a description of this modes 22].

Replay protection

Replay protection is used to prevent a third péxyn taking a properly authenticated, en-
crypted and integrity calculated message from téi¢ stream and resending the message at
a later, potentially disruptive, time to invoke uttzorized operations. To prevent this destruc-
tive behaviour, the message is tagged with a tinest The timestamp is included into the
content that goes through the integrity calculatjomhich make the timestamp hard to change
without the message failing the integrity checkhké receiver receives a message with an old

timestamp, it can simply discard the message withoy harm done.

2.5 Motivation

In the few months prior to the creation of [28]June 2004, there was a rise in the number of
SMS frauds (described in [23]). There are many &iofifraudulent SMS usage, but we will

only describe one scenario here, namely SMS spagimin

24

To understand the procedure of SMS spamming, onst mmoderstand the inter-operator
communication routines. The process of sending@t3lessage (SM) between two mobile

operators using MAP is done in two steps:

1. The Short Message Service Cenf@MSC) that receives the SM from its own network
sends a routing information request to the HLR (Seetion 2.3.2) of the receiving
MS. The request is a MAP message called “sendRglnfmForSM” and contains a
Mobile Station Integrated Service Digital NetwadSISDN) number, basically a
mobile telephone number. Given that the MSISDN neimi a valid subscriber’s
number, the HLR replies with the receiving M8isernational Mobile Station Identity
(IMSI) and the currently valid MSC address whosevoek the MS currently resides

in. Figure 2.8 illustrates this step.

2. SendRoutingInfo
ForSM(MSISDN)>

< |
3. IMSI & MSC
address

Destination

HLR

Originating
SMSC

1. Incoming SM

Figure 2.8: Requesting routing information for a short mesq&id).

2. After receiving the reply, the SMSC has the neagssdormation to send a SM di-
rectly to the MSC that the MS resides in. To sdmel $M, the SMSC uses a MAP
message called Forward Short Message (mt-forwardSMe receiving MSC ac-
knowledges the message and generates the relexfannation to store, which in-

cludes charging information and the address obtiggnating SMSC. See Figure 2.9.

25

1. mt-forward
SM(IMSI & MSC

address)

Destination

MSC

Originating
SMSC

2. Store charging
information and
originating
SMSC address

Figure 2.9: Sending a short message (SM) and registering icltpirgformation.

It is important to know that these two steps areincany way bound to each other. That
means that the steps can be performed completd#ypendent of each other in an unregulated

number of times.

The result of this independence is that it is gwesto create a large database containing
MSISDN, IMSI and MSC address numbers by performstep 1 (Figure 2.8) over a large
range of MSISDN numbers. The information will als® highly accurate as the information is
taken directly from the recipients HLR and all fhgalid MSISDN numbers will be sorted
out by the HLR.

In the scenario of SMS spamming, step 1 is perfdrrepeatedly to create the database. After
acquiring the information, step 2 (Figure 2.9) &fprmed by a fraudulent SMSC that starts
sending out mt-forwardSMs containing a fake origm@a SMSC address. The receiving MSC

receives the message and simply forwards it onwtarttsee MSs.

A side effect of this fraudulent behaviour is tia charging information will be incorrect as
the MSC stores the information based on the fakd8G address, resulting in that the opera-
tor of the faked SMSC address will be charged irestily. See Figure 2.10.

26

Fraudulent operator
1. mt-

forwardSM

with faked

address of
SMSCY

SMSC X

Receiving operator

MSC

2. Charge the
affected
operator for
the routing
service

Affected operator

SMSCY

Figure 2.10: A SMS spamming scenario.

The affected operators are eager to find a solutidhis problem. SS7 was designed based on
complete trust between all operators and due ® rtiindset when designing SS7, there is
nothing preventing anyone with access to the ittesnal SS7 network from sending fraudu-

lent signaling messages.
In [23] three alternative solutions were presented to evaat these kinds of fraudulent acts.

1. SS7 over IP uses tt&ignaling Transpor{SIGTRAN) protocol together with security
mechanisms based on IP networks that was spebjfitesigned for handling IP traf-
fic (described in [24]). This method is by far stipeas it provides end-to-end protec-
tion for all the information from, in this caseetMAP message payload to the SCCP

addresses.

2. Mobile Application Part securitMAPsec) (described in [25]) protects specific
groups of MAP messages (sendRoutinglnfoForSM anfomtardSM not included)

27

with specified protection profiles. This solutioequires the use of a centtaty Ad-
ministration Center(KAC) that interfaces all the MAP nodes with a ol called

the “Ze-interface” to securely distribute secregke all MAP nodes.

3. The third alternative is to create a correlatiotwleen sendRoutinginfoForSM and mt-
forwardSM by using a token with a limited lifetim&€he token is returned after the
sendRoutingIinfoForSM request and replaces the M&®@eas the SMSC receives.

This token must be used when sending an mt-forvMraféssage.

The first alternative is unlikely to be realizedyaime soon, as SIGTRAN is not yet standard-
ized in thelnternet Engineering Task ForgéETF, an international standardization organiza-
tion for these kinds of protocols). Also, the méjoof the operators are not yet willing to

install SIGTRAN and this will probably not changethe near future.

The second alternative had not yet been complstalydardized (as the document at the time
was an older version [26]) and, as mentioned, didhandle the specific type of SMS fraud
described above. Also, the “Ze-interface” was atillis far from complete. Completing the

interface would require a major workload.

The third alternative was of little interest, adid not protect against the described scenario of
SMS fraud and also required major changes in @ latgnber of NEs. The token allocation,

which is a major part of the solution, was nevandardized.

Given the three alternatives, the MAPsec solutieensed the most realistic. The “Ze-
interface” was not yet standardized, but it woudgossible to create “MAPsec gateways”
with a limited KAC functionality that would protect the inter-operatmmmunication and it
may be added later to the SIGTRAN solution.

Since the creation of [23{he specification on MAPsec has evolved, and a s@eeification
called TCAP user security (TCAPsec) [19] has entrimt replaces MAPsec. This new

specification is what the authors are supposediild b prototype of.

Another solution worth mentioning is the TCAP hamalee described in [27] and later com-
mented in [28]. This solution was designed to ceratt the specific scenario illustrated in
Figure 2.10. The dialogue in an unprotected traimaof SM is illustrated in Figure 2.11

below.

28

SMSC X MSC Y

TC_Begin(Address, mt-forwardSM with payload)

>

TC_End(Address,mt-forwardSM ack)

A

Figure 2.11: Forwarding SM data in an unprotected dialogue.

The idea behind the TCAP handshake is to forcesdmler to establish a dialogue before
sending any kind of SM information. This is done feguiring the sender to first send an
empty TC_Begin request message to the recipienhawihg the recipient send a reply on that

request. It is only after this dialogue initiatitirat the sending of the SM can begin. See Fig-
ure 2.12.

29

SMSC X MSCY

TC_Begin(Address, no payload)

TC_Continue(Address, no payload)

TC_Continue(mt-forwardSM with payload)

TC_End(mt-forwardSM ack)

Figure 2.12: The TCAP handshake.

Establishing this dialogue guarantees that theraigr is using the correct originator address.

Therefore, this should counteract the fraud of fipgdthe originating address.

The TCAP handshake is a fairly simple procedurenflement, as all the required functional-

ities already exist in the current MAP and TCAP lempentations.

Although this may seem like a good solution, there still a few problems that need to be

considered:

» The TCAP handshake effectively increases the traffithe network with the initial

dialogue setup.

* In [28], it is described how a fraudulent sendelyragcumvent this security mecha-
nism by spoofing an originator address, predictheytransaction id, and sending the
message. Upon arrival of the TC_Begin, the recipmih send a TC_Continue to the

spoofed address. The fraudulent sender can themaittto predict the transaction id

% Spoofing refers to the act of deceiving the ramipby inserting a falsified originator addresshie message.

30

sent to the spoofed address. Using the transaictjdhe fraudster can send the mes-
sage with the payload and carry out an mt-forward@®guest. This must be done
within a limited time window as the spoofed addrassle will detect the erroneous

dialogue and send an abort for the dialogue. Sparéi2.13.

* The protection the TCAP handshake offers is seydiraited as it is designed only to

prevent the specific fraud scenario described above

Given the simplicity of standardizing this solutjahis a good fast-to-deploy alternative for
protection. However, with the problems mentionedvay TCAP handshake can only be a
temporary solution until a better and more compmehe solution is implemented to replace
it (such as TCAPsec).

Fraudulent SMSC X Recipient MSC Y Affected SMSC Z

TC_Begin(Spoofed address, no payload)

»

TC_Continue(Address, no payload)

TC_Continue(mt-forwardSM with payload)

L

TC_Abort()

Figure 2.13: Circumventing the TCAP handshake protection.

31

2.6 Summary

In this chapter, some background information was@nted to help understand the TCAPsec
concept and the prototype design. The history amdldmentals of telecommunication and
signaling has been briefly described. Furthermibre structure of the SS7 signaling stack has
been explained and compared to the OSI and TCR{tR.sEach layer in the SS7 stack that is
related to the TCAPsec concept has been presenttdiescribed. Some of the essential
aspects of network security have been presentgiéoan overview of the subject. Finally,

the motivations and problems that led to the comatf TCAPsec have been described to
facilitate the understanding of the TCAPsec concAf#o, some alternative solutions were

presented.

32

3 Description of TCAP user security (TCAPsec)

This chapter describes the TCAPsec concept basdteonCAP user security technical speci-
fication [19]. A brief overview of the concept witle given in Section 3.1. Then a more de-
tailed description will be presented in Section, 3vBere all the related entities will be identi-

fied and described in detail. In Section 3.2.1 filnection of the databases will be described
together with the contained attributes. In SecB8dh2 the message structure of the different
protection modes are explained and the processotégiing messages is illustrated and sum-

marized.

3.1 Overview

The TCAP user security (TCAPsec) [1&ncept was initially created to provide signaling
traffic security between security domains to allARC users, independently of application
protocol type. A security domain is defined as aviRL (described in Section 2.3.2) or an
operator network. A TCAP user is defined as antetttiat is assigned an SSN (see SCCP in
Section 2.3.2). The basic protection requirementssist of confidentiality, integrity,
authentication (for both origin and entity), andtiaaplay protection. These services are
provided using cryptographic techniques. The setlldhe enhancements and extensions used

to provide protection for TCAP messages is call€d\Psec.

The TCAPsec specification is based on a gatewagegin This concept implies that all
traffic, inbound or outbound, from a security domhas to traverse &S7 Security Gateway
(SS7 SEGQG) for inter-operator or inter-PLMN protenti The SS7 SEG then inserts or removes
protection of the messages based on pre-negotjaides regarding other operators or
PLMNs.

33

3.2 TCAPsec - detailed description

TCAPsec defines security mechanisms used for gioteall TCAP users from inter-operator
active attacks. An alternative to TCAPsec is NDS{#3cribed in [24] which is used for IP-

based networks.

TCAPsec requires at least one SS7 SEG in eaclcam@nunicating PLMN. These SEGs will
be located at the border of the PLMN for protectathe inbound and outbound inter-
domain messages. Each of these SEGs will contdioygaformation known to both sides.
The policy information is important in order to symonize the level of protection for both
sides and must be negotiated and set before anyages are sent between the operators.
Also, a number ofSecurity Association§SAs), known only to the two communicating
operators, must be negotiated before any messaggattion can begin. An SA contains a set

of parameters required to initiate and maintaie@ige connection between two SS7 SEGs.

For routing purposes, the protected traffic will medistinguishable to all NEs except the

sending and receiving SEGs.

A protected network has one or more SS7 SEGs obdtder of the network for the incoming
and outgoing messages to traverse. The SS7 SEGspwiVide protection for the
communication channel between the PLMNs, as ilistt in Figure 3.1 below. A SEG can
be co-located with another TCAP user, but [19] odbscribes the case of stand-alone

gateways.

Operator A Operator B
network network
SEGC
NE b
G A

Figure 3.1: SS7 SEGs location at the border between operataonks.

34

3.2.1 Databases and attributes

The SS7 SEG contains or has access to two datalbasestoring and accessing the
information required to establish a secure conaacillustrated in Figure 3.2 below. The first
database is th8ecurity Policy Databasé€SPD). The SPD contains one entry for each of the
PLMN where communication is allowed. The entriestie SPD define the mode of
protection to use towards one remote PLMN and rbastonsistent in all SS7 SEGs in both
its own PLMN and the corresponding SS7 SEGs ofr¢éimeote PLMN. Another attribute in
the entry is the parameter called “fallback to wtgcted mode”. This parameter shows
whether or not the secure connection is allowef@ltdack to unprotected mode, in case of a
failed security mechanism. The use of this paramisteshown in Appendix C. TCAPsec can

only be fully secure if this parameter is disabled.

The use of policies prevents the act of spoofingdayiring the incoming message to have a
certain mode of protection, by using the pre-negeti SAs. If an incoming message does not
fulfil the negotiated policy, the message is drappehe policies are explicitly configured as
to one policy per communicating PLMN. This way oihfiguration implies that if a remote
PLMN that wishes to communicate does not have dry en the SPD, its messages are

rejected.

The exact contents and attributes of the SPD hat/tybe defined.

Operator A Operator B
network network
¢/ sADB SPD
SEGB

Secure

Figure 3.2: One SADB and one SPD for each SS7 SEG.

35

The second database is tBecurity Associations Databa§8ADB). This database contains
attributes used for applying protection to the imbd and outbound messages. The policy
entries in the SPD define a set of valid SAs usetbtnmunicate with a remote PLMN. Each
SA is expendable and the SADB needs to be contslyaar regularly refilled in order to
preserve key freshness and avoid reuse of oldikeylsl SAs. If a key is reused, it will render
a decreased level of protection against crackemspared to using new keys. New SAs are
negotiated via an external and centralized netwemkty called the Key Administration

Center (KAC). This center has yet to be defined staddardized.
All the attributes in an SA are presented and desdrbelow:

- Destination Network IdThis is an identifier for the originating netwook the

message. The id consists o€Cauntry Codg(CC) and a\ational Destination
Code(NDC). This attribute is used to identify the Séed to apply protection

on an outbound message.

- Security Parameter IndefSPI): The SPI is an identifier used in combination

with the Destination Network Id to identify the SFhe identified SA is in turn

used for removing the protection on the inboundsagss.

- Sending Network tdThe Sending Network Id has the same format as the

Destination Network Id. This attribute identifidgetoriginating network of the

message.

- SS7 SEG Encryption Algorithm identifiBEA): This attribute identifies an

encryption algorithm from a predefined table ofetfiries (0-15). The mode of
encryption is implicitly defined together with tlagorithm identifier. So far
only one encryption algorithm has been defined -SAkcounter(CTR) mode
with a 128-bit key andhnitiation Vector(lV, for more information, see [18]).
For more information on this algorithm and modes §20, 29].The empty
fields in the table are available for future entiyp algorithm definitions and

modes.

- SS7 SEG Encryption Key identifié8EK): This attribute contains the key for

the encryption algorithm.

36

- SS7 SEG Integrity Algorithm identifi¢BIA): The SIA identifies an integrity

algorithm from a predefined table of 16 entrieslf)- Similarly to the SEA,
the encryption mode is implicitly defined in thgatithm identifier. This table
also only has one entry defined so far: AES in QB&C-M mode with a 128-
bit key, without IV. This mode of block cipher igstribed in [22]. MAC-M
refers to Message Authentication Code used for TQ#éts. The empty fields

in the table are available for future integrityaighm definitions and modes.

- SS7 SEG Integrity Key identifiéB1K): This attribute contains the key for the
integrity algorithm.

- SA hard expiry timeThe hard expiry time defines the actual expiryetiof the
SA.

- SA soft expiry timeThe soft expiry time defines the expiry time ofngsthe

SA on outgoing messages.

After the hard expiry time has passed, the SA aafonger be used for any kind of traffic,
inbound or outbound. After the soft expiry time ha@sssed, the SA will not be used for
protecting outbound messages, but still for inboumessages, unless all stored SAs in the
SADB are expired.

3.2.2 Protection modes

TCAPsec offers three modes of protection. Thes¢eption modes provide three different

levels of protection for the messages by usingtogiaphy.

The protected payload or message will have a sgdweader prepended to the message. The

content of the header depends on the protectiorerand is always in plaintext.

Security Header Protected payload

37

The header can contain a number of attributes itbestbelow:

- Security Parameter IndgSPI): Described above.

- Original component IdThis attribute identifies the type of TCAP primaiiin

the protected payload, such as Invoke-, ResultErmr-requests (see TCAP in
Section 2.3.2). (This attribute was removed congiyen version 1.0.0 of the

technical specification of TCAP user security rekghin November 2005.)

- Time Variant ParameteTVP): This is a 32-bit timestamp used for anti-replay

protection. The messages must arrive at the receithin a defined time-

window to be valid. Otherwise the message is deeavttednd is dropped.
- SS7 SEG IdA unique identifier used to create an IV.

- Proprietary Field(Prop): This field is used to create an IV. The exact ofse

this field has yet to be standardized.

Common for all the protection modes is that theeineng SS7 SEG checks the TVP on the
message and ensures that the message has thmodgtof protection according to set policy.
If the TVP is too old or if the message has thengrprotection mode, the message is simply

dropped.
The three modes of protection that TCAPsec offegslze following:
* Protection mode 0: The lowest level of protection offers no protentat all.

» Protection mode 1: The next level of protection offers integrity anatteentication

services by the use of MACs.

* Protection mode 2: The highest level of protection offers the sanmiggy services
as mode 1 with the addition of confidentiality bgrfmrming

total encryption of the message.

38

Protection mode 0

The security header of the messages in protectmoter is very simple and contains only the

SPI and Original component Id.
Security header = SPI || Original component Id

The messages using protection mode 0 securityowiyf have a security header prepended to
it. (In version 1.0.0 of the technical specificati¢17], the Original component Id was

removed from the header and replaced by a TVPatagriti-replay protection.)

Protection mode 1

Protection mode 1 provides integrity and authetibcaservices. The security header for this
mode contains the SPI, Original component id (remdow version 1.0.0 of the TCAP user

security technical specification [17]), TVP, SS7GHE and a proprietary field.
Security header = SPI || Original component IdYH || SS7 SEG Id || Prop

Integrity and authentication is achieved by proicesshe security header and the message
with the integrity algorithm defined by SIA in tlsending SS7 SEG. After the algorithm has
been executed, the resulting last 32 bits (MAC-Mappended to the end of the plaintext

message before sending it.

Security Header Plaintext | | MAC-M(Security Header | | Plaintext)

The receiving SS7 SEG will then extract the MAC-Mm the message, perform the same
integrity calculation on the message and securgder, and compare the result with the
extracted MAC-M. A positive comparison confirms tthlae message is unchanged and that
the message originator really is whoever it clabm$e, as the SIK is secret to all but the
communicating operators. This way the integrity banconfirmed and the authentication is

confirmed by usage of the correct SIK.

39

Protection mode 2

Protection mode 2 is the most secure mode. Thisemottoduces confidentiality to the
message. The security header in this mode is whrtt the header in mode 1. The first step
in applying protection in this mode is to performce/ption on the message with the
encryption algorithm in SEA, the key in SEK, anc th/. This procedure provides the
message with full confidentiality. The second sepo perform the integrity calculation on
the security header and the ciphertext. The resulMAC-M is then appended to the

ciphertext before forwarding the protected message.

Security Header Ciphertext | | MAC-M(Security Header | | Ciphertext)

On the receiving end, the process is reversed.fif$testep is to extract the MAC-M and
perform the integrity calculation on the securigater and ciphertext. The next step is to

perform the decryption on the ciphertext beforevimding the message to the end node.
The IV is created using the previously describedupeters in a sequential form:
Initiation Vector = TVP || SS7 SEG Id || Prop ||dPa

The padding is appended to get the right size ef/éittor. The padding consists of a string of

ZEeros.

3.2.3 Message protection procedure

The complete flow of inbound and outbound messagdlustrated in two flowcharts in

Appendix C.

The process of protecting a message can be desdénilsex very simplified steps. These steps
are illustrated in Figure 3.3. This description ipegvhen an outgoing, unprotected message
arrives at SEG A, and ends when SEG B has procekseshessage and its protection has

been removed.

40

Operator A Operator B
network network

Secure

Figure 3.3: The process of protecting an inter-operator messag

. The destination network address of the messagetracted and compared to the

entries in the SPD.
. Using the security policy read from the SPD, thdd®As checked for a valid SA.

. The unprotected message is processed with thecfiomtanode defined in the policy
using the obtained SA. The protected message risftimne/arded towards the SS7 SEG

of the destination network, in this case SEG B.

. The protected message is received at SEG B. TheiSétizcked to verify the security

policy associated with the originating network.

. With the policy verified, the SADB is checked tdrieve the SA identified by the SPI

in the security header of the protected message.

. The protected message is processed and unprotedtesiprotection mode defined by
the policy from SPD. The process uses the SA ketddrom the SADB to remove the
protection. Finally, the TVP of the message is &rddor anti-replay protection. At
this point, the message is unprotected and readg forwarded to its final destination
within the PLMN.

41

3.3 Summary

This chapter has presented the fundamentals oT @&Psec concept. An overview of the
concept was presented together with the offeredriggcservices. Furthermore, the gateway
concept in TCAPsec was explained together with dbetents of the security gateways
(SEGs). The functionality of the databases in tE#€S and the contained attributes were
described in detail. The policy database in the SE@ntains information on the mode of
protection used, and the security association datalsontains attributes used for protecting
the packages. The protection services in form odelprotection modes were specified and

the procedure of protecting messages was explained.

42

4 Design and prototyping

This chapter states the functional requirementsthedlesign of the TCAPsec prototype. The
chapter begins by describing the design method tmredesigning the prototype in Section

4.1. The scope and the limitations made to theopypé are defined in Section 4.2. Section
4.3 identifies the functional requirements that pinetotype has to fulfil. The actual design of
the prototype is described in Section 4.4, withoaerview of the software and hardware
architecture in Section 4.4.1 and a detailed desan of each node in Section 4.4.2. Section
4.5 states a number of testing requirements feinteghe prototype functionality. The proto-

type testing results are presented in Sectionwiité, the discovered limitations described in
Section 4.6.1.

4.1 Design method

It was decided that the design process would miatlgtfollow any known modeling or design
methodologies such as thénified ProcesqUP) [30] or Extreme ProgrammingXP) [31].
This decision was based on the assumption thaiutiers did not have enough experience in
handling design methodologies. The lack of expeeean turn implied that it would be a risk
to take the time needed to learn the methodologyh@ needed time could get unreasonably
long. Based on this assumption, the authors dedioladake the design without the use of
UML or XP. Instead, the improvised design process wimilar to the waterfall method and

consisted of four steps.

1. Investigate and document the requirements on thi@type. This was done by study-
ing the technical specification for TCAPsec andnidging the required entities and

functionalities for creating a prototype.

2. Document the testing procedure requirements foptbeotype. With the entities and
functionalities identified, testing procedures wededined to test the functionality and

stability of the prototype implementation.

43

3. Create the design on the prototype based on thewated requirements. The design

had to follow the functional requirements to pdssdefined tests.

4. Implement and test the prototype iteratively actaydo the design and documenta-

tion.

After the prototype was completed, the performaasés could finally be performed.

4.2 Scope

When we first begun our work, the thought was tdggen a comprehensive study over the
performance costs of introducing TCAPsec. Howeuaéter studying the given material we
realized that the task was too extensive to beopmdd in 20 weeks. When we got a clear

understanding of the task, we started to limitittibuded parts.

The main purpose of the prototype is to be a platffor measuring the performance costs of
routing and integrity calculations and encryptioh tbe routed messages, similar to the
TCAPsec concept. Therefore, the scope of the pqaotlesign is limited to the most basic
and necessary functionality required to route anodiegt the messages. The simulated network
will consist of a minimum of four nodes, simulatibgo or more operator networks. Each
operator network must have at least one securitgwgey (SEG), interfacing the other net-

works. The SEGs will contain the required securgchanisms for protecting the messages.

One major part of the TCAPsec concept that wasnabtided in our prototype design is the
Security Association Database (SADB) and the Sgcklicy Database (SPD), described in
Section 3.2.1. One of the reasons for the exclusiothe databases is the fact that the key
management is not yet standardized. The keys irSthe that are needed for security are

hardcoded instead of collected from these databases

4.3 Functional requirements

The following requirements need to be met for thetqiype to actually perform the given

task properly.

44

The prototype should consist of at least four ndties are interconnected in a serial connec-
tion (see Figure 4.1). All the nodes must have & §8ck that has at least TCAP capabilities.
All messages will be sent as payloads in TCAP diads.

The nodes are divided into two types: end nodesSif@s. The end node will represent any
node in an operator’'s network that wishes to comoate with a node in a different opera-
tor's network. This type of communication betwegrem@tor networks is called inter-operator
communication. All traffic between end nodes wi touted through the SEGs at the border

of the respective operator’s network.

Operator A Operator B
network network

Unsecure Unsecure
communication r communication

Node A Node B

Secure
Inter-Operator
communication

Figure 4.1: Four serial connected nodes with protected inparator communication using SEGs.

* The SEGs will represent nodes on the network bottaltr is traversed by all inter-

operator communication messages.

0 The SEGs will also be responsible for the inserdaod removal of protection
on the messages entering or leaving the operatetisork. After the protec-
tion has been added or removed, the message edréutvard along its path

to the remote end.

o0 All the SEGs should store mutually known 128-bitreé keys and initiation

vectors (IVs) used for authentication, integritygdaAES encryption/decryption.

45

o All the messages from the applications above TCGA&ependent of protocol
(for example MAP), should be protected in the waperator communication.
This application-independent kind of protection medhat the messages, or
the payloads, in the TCAP dialogues should be ptete(that is, when protec-

tion is supposed to be applied).

» There are three different modes of protection (desd in Section 3.2.Zhat the pro-

totype is required to provide:

0 Mode 0 — No protection In this mode there will not be kind of protectidrhe
messages are to be routed between the end nodelsrandgh the SEGs with-

out any interference by the protection mechanisms.

0 Mode 1 — Authentication & Integrity : In this mode the messages will process
the integrity algorithm on the payload and userthg#ually known secret keys
for authentication. The integrity algorithm in thpsototype will be AES in
CBC mode in combination with the secret keys. | 8EG of the originating
network, the result of the integrity calculation32:bit block, will be attached
to the payload and delivered to the designated SH®.receiving SEG will
then take the received message and extract thé BBbk, perform the algo-
rithm with the same key, and compare the resulh whe attached block. A
positive comparison indicates an authenticatediraigr and an unmodified

message.

0 Mode 2- Encryption: This mode will provide the highest level of pretien.
The message will be encrypted with the AES algoriih counter mode and
the mutually known key and IV. Additionally, thestdting ciphertext will go
through the same authentication and integrity ptoces as described above in
Protection mode 1 before being forwarded. The wogiSEG then receives
the message and does the same procedure in theseewaler. The result
should be a plaintext message that has been dedryatithenticated, and in-

tegrity checked.

The user should be able to switch between these timodes of protection by changing a

single value. The SEGs will set the level of pratetbased on interpretation of this value.

46

» Other than providing secure inter-operator commatioa, the prototype also has to
time the routing of the messages using a timers Thito measure the routing time
taken for routing in the different protection mod@$e goal is to measure the time
taken from when the message is sent from the edé no one operator’s network
(Node A in Figure 4.1), to the other end node ef ttmote operator’s network (Node

B in Figure 4.1) receives the message.

4.4 Prototype design

The prototype was designed to meet the requirendassribed in Section 4.3. The descrip-
tion of the prototype is divided into two partsgiwe a better overview of the design. The first
part in Section 4.4.1 will give a brief overviewtbk solution by describing the nodes relative
to the stacks and hardware. The second part inoBet#.2 will give a more detailed descrip-

tion of each node.

4.4.1 Prototype network architecture

Two servers, with one installed and preconfigureatls each, were provided by TietoEnator.
The servers were installed with Sun Microsystenagierating system: Solaris 5.8. The SS7
protocol stacks installed were “Sol R4.0/SS7” @edaThere are more details to the protocol

stacks, but those will not be described here, eg déine TietoEnator’s proprietary solutions.

The prototypes were connected as applicationsed @AP layer in the stack, interfacing the
TCAP Application Programming InterfacAPI) version ITU R5F/C. The Figure 4.2 shows

this connection between application and stack.

47

Operator A Operator B
network network

Local Server Remote Server

Figure 4.2: The structure of the implementation compared ¢octtncept.

Each machine, or stack, symbolizes an operatorarktand each application symbolizes a
node. Each stack is configured to be able to addaes route messages to all of the four
applications (hereby referred to as nodes). Thans¢hat any node, independently of under-

lying stack, can send a message directly to argrathde.
The nodes are divided into two types:

* End nodesThese nodes symbolize any arbitrary node withRL&IN that wishes to

communicate with a node in a different PLMN or @ter network.

» Security Gateway§SEGs): The SEGs are the border-nodes wherelaiuimd or out-
bound messages are routed in and out of the sietLitgierator networks. These nodes

will contain protection mechanisms for processing touted messages. All messages

48

requiring protection will traverse these nodes.additional information will be added

to or removed from the messages.

The nodes can also be classified as active orvymassides. An active node will be under
direct command of the user and will begin and teaté a dialogue. The passive node will
await messages incoming from the stack. The incgmiessages will be processed and for-

warded, after which the passive node will retura twaiting state.

4.4.2 Prototype software design

The nodes will have different functionalities basedthe type of node and its passivity. The
nodes will be described in the order in which thessages arrive. Figure 4.3 illustrates an

abstraction of the nodes without the underlyinglsta

& &

SEG A SEGB

Local Server Remote Server

Figure 4.3: An abstraction of the prototype nodal structuré eouting paths.

Node A

The first node is the active node in which the uses control over the message sending func-
tions. All messages will be sent in individual diglies and will start from this node. Node A
will also be the terminating node, as the messaggesn after traversing all nodes. The tra-

versal of the messages will be described in Se&idn

49

There are three variable parameters, which theazeset when executing the prototype:

- Size of payloadThis parameter will set the size of the payldst ts to
be protected. This will set a variable load on fetection mecha-
nisms. The maximum size of this parameter is lichiby the TCAP

module implementation.

- Number of dialoguesThis is the number of dialogues that is to bd sen
in parallel for each test. Its purpose is to cdrttie load on the network
and the protection mechanisms. The maximum valugisfparameter

is limited by the SS7 stack configuration.

- Protection mode This parameter signals the protection mode to the
SEGs. The SEGs examines this parameter to decidétiorprotection
mode to apply to the received message. The pradtgplementation

defines the values that are valid for this paramete

The messages with payload will be sent as an Inveaest, carried by a Begin request to
start a new dialogue. There are two parametersshwhill store arbitrary data in the Invoke
request: theoperation codeand theoperation parameterThe payload will be stored in the
operation codgparameter and the protection mode parameter wilitbred in th@peration

parameter

When sending a message, the message will not hessgd to the final destination due to
some problems with routing the messages throughS&& applications. The problem is
described in Section 6.1. Instead, the message sivilply be addressed directly to the
neighbouring node. This solution requires that & wkalogue will be established between
each neighbouring nodes. The three dialogue idsinemtjfor sending a single message would

all have related dialogue ids.

In addition to the requirements in Section 4.3,thaeofunction was added: sending the mes-
sage directly to the remote end node without pgstie SEGs. This was implemented to
examine if the actual routing through the SEGs ddatey significant delay to the messages.

This route will only require one dialogue id perssage.

50

Node A also has a timing functionality, measuringniilliseconds. The node starts by starting
the timer and sending all the messages. Then ittew®e return of the messages from the
remote end. At the arrival of the last messagetither is stopped and the control is returned

to the user. The time measured is calledRband-Trip TimgRTT).

SEG A and SEG B

The SEG A is the security gateway of the local $atad network. This node is passive and
waits for inbound and outbound messages to prodéssnode has cryptographic capabilities
for applying and removing protection of the messadde capabilities will be added through

the use of a cryptographic library known as “Bot§32].

At the initialization of the node, a secret key amitlation vector (IV) is generated and stored.
The generation of the key and IV is based on apgtaease known to both the SEGs. This key
and IV will be used to apply or remove protectidnal the passing messages that requires

protection.

At the arrival of a message, the operation parametehecked to verify the protection mode.
By examining the value of the dialogue id or thigioating node address, the address of the
next node destination can be determined. Beforedating the message, the payload must be

processed according to the set protection mode.

- Protection mode 0The operation code and parameter is simply for-

warded to the next destination.

- Protection mode 1The message payload will be processed with integ-

rity mechanisms. But instead of performing the gnity calculation to
get a 32-bit MAC-M block (as described in the regoients in Section
4.3), the payload is encrypted using the AES allgoriin CBC mode.

The resulting ciphertext is then forwarded to th&trdestination.

- Protection mode 2First the message will be encrypted with AES in

counter mode, using the generated key. Then thdtires ciphertext

will be processed with the same security mechangsns Protection

51

mode 1 before forwarding the message. This willlteés a double en-

cryption with two different modes of encryption.

The difference in using a MAC-M compared to simginding the ciphertext is that the mes-
sage is sent encrypted and a MAC-M is not appetm#te message. Also, the time it takes to
compare the MAC-M and the calculated 32-bit blotkhe receiving end is removed. Al-

though the alternative solution weakens the intggmotection, the time difference caused by

this alternative solution is assumed to be smallgh to be disregarded.

When forwarding the message, a new message isrptepath the determined destination

address. The ciphertext or the plaintext is insetbgether with the operation parameters into
the new message. Also, the dialogue id is conveadedrelative value based on the direction
of the message. When ready, the message is séntheitsame primitive type as it was re-

ceived (Invoke request or Result request).

When receiving a protected message the encryptioceps is reversed. First, the operation
parameter is checked and then the message is procekecrypt according to the protection

mode before forwarding the plaintext.

SEG B is almost identical to SEG A. The only difiece is the address of the node in the
network. Other than that, the mechanisms work énetkeict same way.

Node B

The last remote node is also passive. The onlytiomof this node is to receive incoming
Begin indications followed by Invoke indicationshd node answers by sending back Result
requests for the Invoke indications, and End reguesend the dialogues. The Result requests
will contain the same operation code and operaparameters as received in the Invoke
indication. These requests are routed back aloags#ime path to Node A for ending the

dialogues and stopping the timer.

This design offers variations in form of:
- Two different routing paths.

- Three modes of protection.

52

- Variable load on routing and protection mechanisms.

By using this design, a difference in performanae be measured for the different protection

modes, parameters, and routing paths.

4.5 Functionality testing requirements

To confirm that the functional requirements desmliin Section 4.3 have been met, a number
of tests need to be designed to test that the fgp®a@ctually upholds these requirements. A

description of these tests is stated here:

» The first part to be tested is the basic routimgulgh the four nodes. A simple way to
test this requirement is by printing out a notifica as the messages arrive at each of
the nodes. This printout should also show thatha&imessages are routed without los-

ing any messages on the way.
» The different modes of protection need to be testenvidually.
0 Mode 0: The basic routing will test this protection modiequately.

0 Mode 1: The authentication and integrity mechanisms mugesied. This test
will be carried out in two steps. The first stegagperform the integrity calcu-
lations in the SEG of the originating network amt&ehing the 128-bit block to
the message. The second step is done in the SHf& okceiving network,
where the same integrity calculations are performedhe received message

and the result is compared with the attached 12Blbck.

o0 Mode 2: The highest level of protection will be testeddg®yforming printouts
of the message in the SEGs and end nodes. The geestsauld be printed out

before and after the encryption/decryption to yettie protection mechanisms.

» Lastly, the time measurement mechanism needs tedted. This is done by timing
the routing of a single message through the seomahected nodes. The test on time
measurement must be performed on all three modpsotéction without causing any

major variations in the measured time within theegrotection mode.

53

By doing the above-mentioned tests on the requinésnéhe prototype should be able to do a
performance measurement of routing messages ithrak different protection modes. The
testing results of the prototype will be descritbedSection 4.6. The performance measure-

ments and results will be described in Chapter 5.

4.6 Prototype testing results

The prototype was tested in accordance to thentgséiquirements described in Section. 4.5
There were three main features that were testedbdkic routing of the messages, the differ-

ent protection modes, and the timer functionality.

Regarding the basic routing, the prototype routassnaller amount of unmodified plaintext
messages without problems. The content of the rgessgrinted out at each node, confirm-
ing that the whole message was routed throughdbde without anything added or subtracted

from the contents.

Testing the protection modes was not quite as aasywould seem. Protection mode 0 was
easy to test, as it was practically the same gsontine as testing the basic routing. Protec-
tion mode 1 could not be tested as described itid®ed.5, as the prototype design did not
achieve the functional requirement stated for mtode mode 1 (see Section 4.4.2 when de-
scribing the SEGS). Instead of performing the daltan and comparison of the MAC, the
length of the message was printed out before atet #fe encryption. Also, the plaintext
message was printed out before the encryption #iadthe decryption, but the ciphertext was
not. The reason for this way of printing was thanting the ciphertext caused the program
and the development environment to fail. The déffexe in the length of the plaintext and the
ciphertext showed that at least the padding meshanf the encryption was performed on the
message, which in turn indicated that the encryptitechanism was performed. Different
steps in each protection mode were also printedirogach node. Protection mode 2 was
tested in the same way as mode 1. The parametéfarsmdicating the protection mode was
also printed out in each node to verify that thetgetion mechanism chosen in each node was

based on the correct value.

To test the timer functionality, the message wagpli routed with the three different protec-

tion modes and the two different routes (see Seetid.2) while running the timer.

54

4.6.1 Prototype limitations

While testing the functionality and stability, wame across a number of limitations on the

prototype.

The message size in the “operation code”-paramet® Section 4.4.2) is limited by the
TCAP module implementation. The parameter was déichib 255 bytes in the configuration,
but adding the padding from the encryption mechmsiand message tags (required by the
TCAP module), the message size sent from the tim¢janode was limited to 236 bytes. This

limited the operation code content to be set betveeso and 236.

The SS7 stack configuration limited the number arfafiel dialogues sent between the stacks.
The limit was set to 1000 dialogues. When testargd amounts of parallel dialogues (ap-
proximately 300 or more), packets would be losirdurouting. The packet loss would in turn

cause the timer to fail. Closer examination ofglgmaling traffic between the stacks revealed
that the load on the network caused the receiviagksto be congested. This problem is as-
sumed to arise due to inferior servers, as thewsal used for the prototype was not dimen-
sioned for routing large amounts of data traffiecBuse of the impending risk of congestion,
a delay was deliberately placed in the sending n@tle duration of the delay was set to at
least one millisecond between each message senttfi® first node. This delay would accu-

mulate when sending a large number of messagesx&mnple when sending 1000 messages,
a delay of at least 1000 milliseconds would beouhficed into the timer result. This deliberate
delay must be taken into consideration when viewhsy results of the performance tests.
Despite the insertion of the delay, the network Midoe congested when sending approxi-
mately 600 messages. Considering this upper liwat,set the number of dialogues to be

between one and 500 to avoid congesting the network

With these limitations in mind, the prototype wasady for the performance tests described in
Chapter 5.

55

4.7 Summary

In this chapter, the creation process and the desfithe prototype was presented. The design
method was improvised and done in three steps.stbpe of the prototype was defined and
limited to the most basic protection mechanismsiired to protect messages. The prototype
functionality requirements were listed and the gcobn mechanisms were defined. With the
requirements set, the hardware and software acthreeof the prototype implementation was

presented and each node was described in detamlmber of functionality testing require-

ments were defined and the results from applyiegéltests on the prototype implementation
were presented. Also, a few limitations on the qiggie implementation were discovered after

performing the tests.

56

5 Performance evaluation study

This chapter describes the performance testingpsamtd procedures. Also, the performance
results are presented, interpreted and discus$edcHapter begins with a presentation of the
test environment configuration and parameters icti®@e 5.1. Section 5.2 describes the per-
formance testing procedure when testing the paemeeimbinations. The results of the per-
formance tests are presented and interpreted o8éc3 and finally the results are discussed

and evaluated in Section 5.4.

5.1 Performance testing parameters

First we describe the testing environment configoreand the available variable parameters.

The stack software was provided by TietoEnatoriartiefly described in Section 4.4.1. The

hardware consisted of two UNIX SPARCengine servatis the following configuration.

Operative System: SunOS 5.8
Processor: UltraSPARC-lli-cEngine
Primary memory: 128 Megabyte

The processor of the first server was specifie@6@8t MHz and the second server at 333 MHz.
Aside from the clock frequency, the servers weraost identical. The two servers were
directly interconnected with a 100 Megabit Ethero@tnection to avoid burdening the Tie-

toEnator internal network and to eliminate any mdeinterference.

Before the testing part could be carried out, tpplieations needed to be started and con-
nected to the two stacks. At first, two applicaipnode A and SEG A would be started and
connected to the first stack. Then two other apgibmis, node B and SEG B, would be started

and connected to the second stack.

57

The program contains three variable parameterstrabe set by the user:

Message length parametéeFhis parameter could be set to a value be-

tween zero and 236. This given interval is dueht® ¢onfiguration in
the stacks described in Section 4.6tlwas decided to keep this pa-
rameter constant to 200 bytes in all the test casdssary the other two
variables instead. This decision was made to lihetnumber of vari-
ables when testing the performance. The value Wasen because it

was assumed to be a suitable value that was naintadl or too large.

Number of parallel dialoguesThe number of parallel dialogues was

limited to a value between one and 500 dialogues tduthe risk of
congestion (see Section 4.6.1). The number of giieds per test case
was set to 1, 10, 50, 100, 200, 300, 400 and 586.fdur protection
modes were tested individually with these varyingmbers of dia-

logues.

Protection modeThe protection mode could be set to a value betwee

zero and 3. The values 0, 1, and 2 would make ttb®type route the
messages through the SEGs and notify the SEGsply Hye selected
protection mode mechanisms on the messages. The 8alvould in-
struct the prototype to set the routing path toasgthe SEGs and route
the messages directly to the end node on the restat& without ap-
plying protection. The routing paths are illustthte Figure 5.1 below.
All the protection modes were tested with all tliéedent numbers of

dialogues mentioned above.

58

Operator A Operator B
network network

Unsecure Unsecure
communication communication
Protection mode 0,1,2 Protection mode 0,1,2

Node A Node B

Protection mode 3

Protection
mode 0,1,2

Secure
Inter-Operator
communication

Figure 5.1: Routing paths for the different protection modethie prototype.

5.2 Performance testing procedure description

The test was performed in the following steps:

1. Node A and SEG A, see Figure 5.1 above, was coadd¢otstack A.

Node B and SEG B was connected to stack B.

2. The addresses and SSN were automatically setlféoualnodes according to the im-

plementation.

3. The applications of the four nodes were automdyidadund to TCAP and the simu-

lated network was then ready for performance tgstin

4. The test was prepared by setting the vectors: heoigthe message, the number of par-

allel dialogues, and the protection mode.

59

5. After these settings were made, a timer was aufoaligt started and the messages
were sent. The sending procedure is divided intalgferent steps that are described

below (see Figure 5.2 below).

Stack A Stack B
User SEG A SEGB User
A A A
1 2 3 4 5 6
TCAP TCAP
Y scep Y scep
MTP MTP
Y

Figure 5.2: The one-way sending procedure in the stack.

1. Messages are sent from node A to SEG A.

2. Each message is treated depending on the chosettmn mode. If,
for example, protection mode 2 with full encryptisnused, the mes-

sages are individually encrypted in SEG A.
3. The messages are passed on to their destinatioch 8SEG B.

4. The messages reach SEG B and this node checksotieetppn mode.
If, for example, protection mode 2 with full enctigm is used, SEG

B’s task is to decrypt each message.
5. The messages are passed on to the user in StadkoBs the receiver.
6. The user in Stack B receives the messages.

6. When the user in Stack B received a message, iretasied and the described send-

ing procedure was repeated in the reversed order.

60

7. When the last message had reached the user in Stdlck timer was stopped and the

sending was completed.

A sequence diagram of sending a single dialoguebeaiound in Appendix D. The first dia-
gram illustrates the case when sending in proteatimdes 0 to 2, which is when routing
through the SEGs. The second diagram illustratescéise when addressing the remote end
node directly, without traversing the SEGs. Whendsgg more than one dialogue, the se-
qguence of sending an Invoke_Req() followed by aiBégeq() was repeated for the given
number of dialogues. This sequence caused one emamuest (containing the payload) to be

sent for each begin request, which begins a neloglia.

5.3 Testing results

In this section, we will present and describe #mt tesults. First the table with the average
RTT of each parameter combination is described.nTihe graphs based on the table are

presented and described in a comparative manner.

Each test case, or parameter combination, wagltésgetimes to get an average value of the
tests. This iteration is due to seemingly randomatians in the measured round-trip time
(RTT). Table 5.1 shows the average values of tasex The complete table of results is

presented in Appendix B.

Number of dialogues| RTT for each protection mode (ms)
0 1 2 3

1 1186,8| 1189,0f 1187,8 384p
10 1331,6| 1176,4 1317,8 4868
50 1173,0| 1396,6/ 1322,0 8880
100 1957,0| 1769,4) 1740,4 1385/6
200 2829,4 | 2860,6| 2643,6 2326)8
300 3749,2 | 3811,6/ 3891,8 3406,2
400 4792,6 | 4850,2] 4906,8 4357,6
500 5698,6 | 5787,8| 5957,8 5447)8

Table 5.1: The mean round-trip-time for each parameter coathn.

61

Considering the set number of iterations for eafameter combination, it is of great impor-

tance to bear in mind that it is difficult to dramy definitive conclusions based on these test
results. The results and drawn conclusions inttiesis will be regarding the tested prototype,
with the specific hardware and software configamtiand may indicate the behaviour of the

future TCAPsec implementation.

Protection mode 0, 1 and 2

7000

6000

T 5000 +—— * 0 —Z
_

E --m--1 /

g 4000 +—— Z

- — - & 72 Vs 1

= P

=3 W

—

T 3000

ke

c

>

o]

X 2000

1000

1 10 50 100 200 300 400 500

Number of dialogues

Figure 5.3: Comparison of the performance between protectioden®, 1 and 2.

In the first graph in Figure 5.3 above we can seemparison between the protection modes
0, 1 and 2. Common for these three protection maslébat they all route the messages
through the SEGs. The graph over protection modthd is without any security mecha-
nisms) indicates a seemingly insignificant diffeserwhen between one to 50 dialogues are
sent in parallel. The curve suggests that the RsT¢onstant when sending 50 parallel dia-
logues or less. The constant RTT could be causeahhyitial delay in the routing mecha-
nisms that is greater than the actual RTT. Beydhdi&logues, the increase in the RTT seems
to be linear relative to the number of active djales.This linear increase is probably due to

the increase in network workload caused by thesamed number of dialogues.

62

The graph over protection mode 1, when authentioaind integrity is used, shows a similar
inclination as the graph over mode 0. Despite ¢atimns in both the sending SEG and the
receiving SEG, no distinctive differences can bewsh by our measurement of protection
mode 0 and 1. This similarity could indicate thia¢ tprotection mechanisms of protection

mode 1 do not add any significant delays to the RTT

The graph over protection mode 2 (that is the ragkevel of protection) indicates a slightly
bigger difference in time, compared to the grapérquotection mode 0, but the difference is
still too small to be considered significant. Arteiresting observation is that the curve for
protection mode 2 seems to have a slightly ste@pine at the rightmost end than the curve

for protection mode 0 and 1, but this could be aenoeincidence.

Other than the minor differences in the right-harde of the graph, protection mode 1 and 2

would seem to have very similar RTTS.

Protection mode 3 and 1

7000

6000 -

a
o
o
o

4000 -

3000 -

Round-trip-time (ms)

2000 H

1000

1 10 50 100 200 300 400 500

Number of dialogues

Figure 5.4: Comparison of the performance between protectiode"8 and 1.

63

Figure 5.4 shows the difference between protectimwde 3, when routing unprotected
messages directly to the remote node, and protenimde 1, when routing through the SEGs
and applying integrity and authentication secuityhe message. Protection mode 3 in Figure
5.4 indicates a difference in time compared to gipirotection mode 1 in the same figuree
round-trip-time is lower when the messages areeabdirectly between sender and receiver.
The graph indicates, just like in the previous braplinear increase in the RTT relative to the
number of dialogues. This measurements shows thétqiion mode 3 routes packets faster
than protection mode 1. The difference could be ttu¢he delay caused by the routing
mechanisms when routing through the SEGs. Althotlnghtime difference is palpable, it
would seem that the difference is also relativaipstant. The case of routing one to ten
messages indicates that the extra routing linksutiit the SEGs causes a delay difference that
is greater than the time taken to route the fewsagss directly. This is not necessarily
important as the probability of the traffic loadttgeg this low is assumed to be relatively

small.

5.4 Discussion of the results

By observing the first one to 50 parallel dialogests, we assume that there is an initial delay
caused by the basic routing mechanisms in the stddks delay seems to be greater than the
time taken to route less than 50 messages, whitirincauses the RTT to be the same when

routing one message and routing 50 messages.

Two types of delays can be identified by the rasulbhe delay caused by the protection
mechanisms and the delay caused by the routinganesths. The difference in time between
the protection modes 0 to 2 seem too small to Imsidered of greater importance, at least in
the small amounts of dialogues tested. Insteadjeley caused by the alternative routing path
through the SEGs seems to have a greater impabeasverall RTT than the different protec-

tion mechanisms in protection modes 0 to 2. Seer€if.5 below.

64

Protection mode 0 throught 2 and direct routing

7000 -

6000
--e--0 <

@’ 5000 — /,

S ~

~ —a—1 s

() P

g 4000 —) &

2 e

T 3000 +— z

'g v

= g

o)

@ 2000

1000
0 ' ' ' ' ' ' '

1 10 50 100 200 300 400 500

Number of dialogues

Figure 5.5: Comparison of the performance of all protectiorde®

The similarities in the RTT of protection mode (2tare probably due to the efficiency of the
encryption algorithm implementations. The encryptémd decryption implementations where
designed to process larger amounts of data thaartfueints we used in the prototype. In the
case of encrypting and decrypting the small datkets that the prototype uses, the key gen-
eration process would probably take more time thanencryption/decryption process. How-
ever, the key generation and management is suppodss located in an external entity (the
KAC; see Section 2.5) and is beyond the scopeisfttiesis. Considering the generation and
storage of the SAs, the retrieval of the SAs fréra SADB and the policies from the SPD
could cause a significant delay penalty, but agawgstigating this is not within the scope of

this thesis.

In terms of time, it would be disadvantageous t® pi®tection mode 0, 1 and 2 compared to
protection mode 3. Both protection mode 0 and ¥igdminsecure routing, but mode 3 has a
lower RTT than mode 0. A conclusion drawn from tbdsnparison is that there is a signifi-
cant delay when routing through the SEGs. Howeter delay difference is relatively small

and appears to be relatively constant in terms ibisetonds. If this delay difference would

65

stay constant at a greater number of dialoguegjelsy difference, in percent, would become
insignificantly small in comparison to the total RWhen routing vast amounts of messages.
Based on this assumption, the delays caused lyrdivection mechanisms in the SEGs would
have a low significance in comparison with the gelaaused by the basic routing mecha-
nisms. If it is the routing mechanisms that calmedreatest delay, then routing the message
through several nodes in a network would make #laydcaused by the protection mecha-
nisms seem even smaller. To get at clearer pictutee behaviour of the prototype, a larger

number of dialogues should be tested (see Sect)n 7

The added delay from an alternative routing pathlddndicate that the deployment of gate-
ways and configurations of the routing paths iroparator’'s network would cause the great-
est delay, as the messages must traverse the gatewstead of getting routed directly to the
remote destination. It would then be most vitatlitmension the network accordingly to set up
enough security gateways to avoid unnecessartldeviations in the routing path compared

to direct routing.

The conclusions drawn above are based on the sesbikn measuring the RTT. What the
prototype does not measure is the additional warkiout on the processors in the nodes. This
measurement might be necessary in the future tpeplgodimension the networks for han-

dling the protection mechanisms. See Section 7.2.

One interesting observation is the slightly steepeline of protection mode 2 when routing

more than 300 dialogues. When looking closely atgtaphs in Figure 5.3, a very small but
visible increase in difference of the RTT, in compan to protection mode 0 and 1, is

noticeable. If this increase is kept constant,difierence might grow larger and larger when
sending greater numbers of dialogues. If the difiee does increase, it would indicate that
the protection mechanism could cause a very lasgesven intolerable, delay in the RTT

when routing vast amounts of dialogues. If thigrise, the delay might be countered by
deploying more gateways to lower and balance theradivioad on the gateways. This

protection mode should be thoroughly tested tofwewr repudiate the assumption. See
Section 7.2.

66

To summarize the discussion, we can say that tes®ly dominant delay sources have
been identified: the protection mechanisms andrtiiting mechanisms. By comparing the
delay penalties caused by these two sources, wesagnthe implemented protection
mechanisms do not produce any major delay penalitistead, the routing mechanisms would

seem to cause a more significant delay penaltytti@protection mechanisms.

67

6 Problems and experience gained

This chapter contains the encountered problemstla@xperience gained during the thesis
work. Section 6.1 presents the problems we encoethtduring the thesis work and Section

6.2 summarizes the gained experiences.

6.1 Problems

While writing the thesis, we encountered a numbiigroblems. The problems were not only
of technical nature, but also formal and physickdre are some of the problems stated with a

short description of the solution we used.

In Section 4.1, we describe the design method chuselesign the prototype. In retrospect,
this might not have been such a good choice. Inritiel phase of the design, when investi-
gating the requirements on the prototype, the levedonfusion was very high. Due to the
relatively improvised and unstructured design méttwee were uncertain in how to conduct
the requirements investigation properly. This utaiety caused more time to be spent on the
design process than necessary. We are still unteftthe extra time spent were more than
the time it would take to study and implement tHfe & XP procedures. But if we did follow
the methodologies, it would definitely result inmauch better and more detailed documenta-

tion of the prototype.

During the work of designing the TCAPsec prototyp@&umber of implementation problems
occurred. Most of the discovered problems whereegsbWith a compromising solution due to
the scope and time limitations of the thesis wadlany of the problems will be mentioned
again in Section 7.2 to encourage correction ofctirapromising solutions and implementa-
tion of proper solutions of the problems. The disred problems and the temporary solu-

tions are described below.

69

* The biggest problem is in the routing aspect. Duthé design of the TCAPsec secu-
rity gateway concept, the messages are supposedite upwards to the TCAP layer
in the security gateways (SEGs). This way of rautonflicts with the design of the
TCAP layer and the routing mechanisms of the SGperl(see Section 2.3.2). Firstly,
TCAP was designed to be an end-to-end protocolghvimplies that the layer is only
involved in the end nodes (that is, the sendingerentt the receiving node). When in-
troducing SEGs into the network, the end-to-endcephwill be broken, as the mes-
sages must be routed to the TCAP layer in thenmgdiate SEGs. Secondly, the SCCP
was designed to address the remote destination dicefetly. Forcing the message to
be routed up to the TCAP layer in the intermed&Hi&s could imply that changes has
to be made in the SCCP address configuration. Sie&CCP addressing procedures
are highly complex and out of the scope of thisigethe problem was not properly
solved. Instead, a compromised solution was impigete In this solution, the nodes
only have knowledge of the address of the neighbguyend or SEG) nodes. The node
could then create connections to the neighbourodges. With this solution, the path
to the remote node was created by linking connestietween the nodes into a chain.
By using this solution, the addressing transpareixyproken and the message can
only traverse a predefined path defined in the @am@ntation. This is an inflexible so-
lution, but it works for a small prototype such@ss. A suggested solution was to
modify the routing tables in the SCCP layer to éotite messages to be routed towards
a SEG regardless of the set destination addredj@to the TCAP layer before leav-

ing or entering the protected network.

» During the implementation and continuous testinghef prototype, an error was dis-
covered in the SS7 protocol stacks provided byoHeator. The original plan was to
use a parameter in the begin request primitivedaker informatioras a payload car-
rier. The user information parameter is used tdharge information between TCAP
users and could contain an arbitrary data payldadether with the payload, the begin
request would single-handedly start a dialogue withneighbouring node while car-
rying the message payload and no other primitivaldvbave had to be sent from the

node. However the parameter did not work as planBgdeading the logs generated

* Addressing transparency is upheld when the noalesiddress the messages to the remote end nogeiwith
having to be aware of the message traversing taenediate SEGs.

70

by the SS7 stack manager, it was discovered teatdba in the parameter still existed
when sending the message from the applicationad @AP module in the SS7 stack.
When forwarding the message from the TCAP modulinéoSCCP module, the user
information data was not included in the primitiVénis was identified and reported as
a bug in the TCAP module. The alternative solutimed was to send an invoke re-
quest containing the payload along with the begiuest (see Section 4.4.2). It was
later discovered that this solution might not beeay realistic one according to the

TCAPsec specification. See Section 7.2 for morerimftion on this issue.

When executing the performance tests, the stadiesl a@ry unpredictably. At first,

when the prototype was halfway implemented, weelbelil that the behaviour was
normal. When testing the complete prototype, theredictable behaviour would

prove to cause unreasonably large delays. The slelayld be so large that they were
longer than the actual RTT of the messages. Thubl@m was caused by inefficient
configurations in the stacks. The stack configoratiwere beyond the scope of this
thesis, and the scope of our knowledge. Theretaresupervisors at TietoEnator had
to provide us with the solution. The supervisoraaeed the major delays in the con-
figurations and optimized them as much as possilile. stacks were still a bit unsta-
ble at the time of the performance tests, but @mations were considerably smaller
than before the optimization. By performing enotggts and calculating the result sta-
tistically, the results could provide a fairly acate picture of the prototype’s perform-

ance. See Section 7.2.

The testing hardware (two UNIX servers) providedTigtoEnator does not appear to
be powerful enough to perform larger tests. Whetirtg the finished prototype with

the optimized configurations (described in the pres point), it was discovered that
the traffic line between the two servers would getgested at higher loads than 300
dialogues. The first solution to this problem wasirtroduce a delay between the
sending of the dialogues. This delay was set tonaifissecond. Even though the delay
was introduced, the line would still get congesae®00 dialogues. It was decided to
limit the tests to a maximum of 500 simultaneousladjues. It should be mentioned
that the stack configurations were specified tosximum of 1000 simultaneous dia-
logues. Also, depending on the location of a node ieal network, the load could get

up to over 60000 dialogues.

71

» The TCAPsec technical specification does not spepifictly where in the SS7 stack
the solution should be implemented. Either the tsmiucould be implemented as a
TCAP application above the TCAP layer, interfacing TCAP API, or it could be in-
tegrated into the TCAP layer itself. On one harsihg the TCAP API would signify a
considerable limitation to the TCAPsec possib#iti©n the other hand, the TCAP
implementation is enormous and its documentatiavés 1000 pages long. After dis-
cussing the subject with our supervisors at Tietd&n it was decided that our proto-
type would be designed as a TCAP application,zinigj the TCAP API. Just like the
payload problem mentioned above, it was later disd that this might not be a real-

istic solution. See Section 7@ more details.

6.2 Experience gained

The extent of this Master’s thesis is larger thaytliing else we have done before. Since we
did not have any knowledge of SS7, it took a lantetto get an overview of the task. We had
to perform an extensive research part. This wa®at ghallenge since it was a large amount
of literature to read and it was not easy to soittthe essential information for our work.
From the study and programming work, we have lehthat it is very important with a pre-

cise and detailed documentation of the APl andcsoode.

From the beginning of our work, we made an extengian for the solution of the prototype
design. The lack of experience made it very diffita know where to set the limits of our
work. However, as the work progressed, we decided suitable scope and learned to limit

this scope as we got closer and closer to the nhead|

One of the most interesting aspects of this thesik was to experience the differences be-
tween the studying situation at the university #mal real-life working situation. One of the

most palpable differences between the environmamdssituations is that a simple or exact
solution is not necessarily available in the wogksituation. Instead, the solutions to the
problems sometimes have to be improvised. Thisbeacompared with the studying situation
where, most of the times, there is an easily addeskey or a teacher with the correct an-

Swers.

72

We have also had the opportunity to experiencefabepaced changes that can occur in an
active project. The workplan for this thesis haarged several times during the progress of
the work. This caused a large amount of work tabex unnecessary, as the result from the
work was no longer within the scope of the new wtak. This has not only been a bad ex-
perience, but also a very educational one as shisare realistic in a real-life working situa-

tion than the strict workplan specifications usedhe universities. The fast paced changes

show the importance of an open dialogue, good canations, and clear goals.

73

7 Summary

In this chapter we present a summary of the draamelasions of the whole thesis work and a
number of recommendations for future work. In Setf.1 we present the conclusions and in

Section 7.2 the future work recommendations arerdesi.

7.1 Conclusions

Computer security is a hot topic these days andithem information is constantly sent in
networks around the world. This has attracted ameasing number of fraudulent actors.
However, due to the growing problem with unauthediaccess to sensitive information, it is
likely that security will be implemented in netwsrko make communication and signaling

more reliable in the future.

We have described a security concept called TCABs#dntroduces protection mechanisms
to the SS7 signaling network. We have also shownhitlis possible to implement a prototype
of this concept. We have made a prototype, whidvides security for messages in the sig-
naling network. The prototype incorporates the ofssecurity gateways (SEGs), which are
limited to the most basic protection mechanismgifipe in the TCAPsec specification. The
basic mechanisms consist of integrity calculatiand encryption/decryption. The prototype
SEG is designed as an application to the TCAP lagdrutilizes the TCAP API. This design
implies some limitations to the SEG’s range of ectibn, see Section 7.2 for details. Mes-
sages can be routed between different nodes watiegiron, but there are some limitations to
the testing environment. There are, for examplgtrictions affecting the maximum number
of parallel dialogues. When a large number of dja&s are sent in parallel, congestion occurs
in the network and packet loss is a fact. Anotimaitdtion in our prototype is the lack of SA
negotiation and distribution mechanisms. This omisss due to the overwhelming workload

required to realize them. This problem is furthiscdssed in Section 7.2.

75

With a complete implementation of the prototypeigiesthe performance penalties could be
studied. We have made an evaluation study of thealpes caused by the encryp-
tion/decryption mechanisms when introducing TCAP&®ben studying the costs of routing
each message via SEGs, with or without protecttoayesults indicated no significadiffer-
ence when sending protected or unprotected mesdage=ad, the results indicate that there
is a difference between routing messages via a 8E@rectly. When routing directly be-
tween two nodes, the RTT is shorter than if thesagss were routed via a SEG. Another
result, drawn by studying the graphs over diffeqgatection modes, is that when the number

of dialogues increases, the RTT increases linearly.

The summarized results of the performed tests ateithat the routing process in the network
causes a more significant delay in the RTT, compé#oethe delay caused by the protection
mechanisms. That is, the delay-induced cost optbe&ection modes is smaller than the cost
of the alternative routing path. The results wefegknt than expected. We had imagined that
the protection mechanisms would be responsibl¢hi®mgreater delay in the RTT when using
TCAPsec in the network. In retrospect, the resughinhave been different if the prototype

was tested with a greater amount of parameter guatibns and iterations.

Working on this thesis has lead to an identifioated a number of items that can be closer

examined, see the recommendations in Section 7.2.

The main purpose of this thesis, examine the féagibf implementing TCAPsec and meas-
ure the performance costs of using TCAPsec, islladf It should be mentioned that the
results are only valid when using the specifiedlhare and software. In a larger network and

using another hardware setup, the results coutliffezent. See Section 7.2.

7.2 Recommendations for future work

Considering the limitations that were put on thetptype, there are still many aspects to

expand and test. Below are a few points that cbaltboked into when developing the proto-

type.

* A suggestion would be to correct the protection maetsms for protection mode 1.
That is, to use MAC-M instead of simply encryptitig message to make this func-

tionality more accurate according to the TCAPsetneal specification in [17] and

76

[19]. There is a slight risk that the, rather crusielution of protection mode 1 in the
current design could cause an unexpected and ngosficant difference in the delay
compared to the MAC-M solution. Also, the use af thme variant parameter (TVP)
should be implemented into all protection modeg Section 3.2.2). The load added
to the CPU and network by the TVP will probably watise any considerable delays

in the performance of the SEGs.

Another point of interest would be to change thsting environment to a larger and
more stable network with greater capacity. Thisngeawould enable the prototype to
be tested with a greater workload (with more diaksyand messages) and a larger
number of end nodes. Another aspect of this igéoifsmultiple end nodes would have

any unforeseen side effect on the performance.

It would be interesting to see more accurate redulim the prototype by testing the
prototype exhaustively to get a greater numbeesf tesults. The test results should
then be calculated statistically to acquire a nameurate picture of how the prototype
actually performs. If the testing environment werde expanded, as described above,
then a greater number of dialogues should alsedted. An interesting detail in these
results would be to see if the RTT of protectiondm@ has a greater increase in time

compared to mode 0 and 3. See Sectiorids.4 description of this observation.

When changing or extending the testing network, grablem with routing must be
addressed. The addressing should be changed tal gkid (GT) routing instead of the
direct point code (PC) routing used on the curmototype. See Section 6.1 for a

more detailed description of the problem and a esiggl solution.

When designing the TCAPsec prototype, some elentbatscould potentially cause

significant costs were left out. The Security Ppltatabase (SPD) and Security Asso-
ciation Database (SADB) are examples of such elesn@he data query and retrieval
time of the databases could cause major delaysegsare required to be performed
frequently. Such elements should therefore be impfeged and tested to investigate

the cost significance.

When testing the prototype, the only thing measumetthis thesis was the round-trip

time (RTT) with a defined encryption algorithm. Asifrom the RTT, the workload in

77

terms of CPU load and memory usage on the SEG rsema@uld also be of interest.
Other encryption algorithms might also be of ins¢r® test as some algorithms are

faster than others and some exerts a smaller lodkeoprocessor.

The prototype was originally intended to simulate tbasic functionality of a complete

TCAPsec solution. While designing the prototypehvite restrictive limitations, a number of

implementation aspects were uncovered that wasaoloided into the prototype design due to

the limitations. Those aspects may have to be takenconsideration when designing and

implementing the complete TCAPsec solution. Belogvafew aspects and details described.

As mentioned above, the TCAP layer concept wasduighe a completely transparent
end-to-end service to the upper layer applicativvisen deploying the TCAPsec, the
transparency might not be maintained, as the mesdaaye to be routed up to at least
the TCAP layer in the SEGs. This routing needseésblved somehow. See Section

6.10on a description of this problem.

The prototype of TCAPsec was implemented as anrmedt@pplication to the TCAP
layer. This solution might not be the same as tireptete TCAPsec solution, because
the TCAP user security specification does not $pexiactly what part of the message
or dialogue that is to be encrypted. Since thegbypt is implemented as an applica-
tion to the TCAP module, the implementation is éfsr limited by the TCAP API.
That is why only the payload in the invoke requestncrypted. There are three sug-
gested solutions on how the SEG could be implendefitee first suggestion is to im-
plement it as the prototype and somehow adaptet@\Bl limitations. The second sug-
gestion is to keep the SEG implementation as a T@pHlication, but expand the
TCAP API to give the security application greatecess and possibility to protect the
whole dialogue instead of just the internal paramsedf the message. The third sug-
gested solution is to integrate the TCAPsec funetiity directly into the TCAP layer
itself, creating a specialized security gatewagoer of the TCAP layer. The first sug-
gestion would seem to be the simplest, but ledsttfe. The second and third solu-
tion could be more complex. The complexity of exgiag the TCAP API or integrat-
ing the TCAPsec functionality into the TCAP moduokseds to be investigated to see if

it is feasible.

78

A major part required to realize the TCAPsec cohéephe Security Association ne-
gotiation and distribution. The key generation aadure distribution is not yet defined
and must be implemented to complete the TCAPsdiza&an. If a centralized key
administration center is to be used, the centet imeislesigned and the generation and
inter-operator distribution routines (the “Ze-irfeare” mentioned in Section 2.5) must

be defined. This part will probably require the mesrk before completion of the
TCAPsec realization.

79

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]
[8]

[9]
[10]

[11]

[12]
[13]
[14]

[15]

Wikipedia.http://sv.wikipedia.org/wiki/Antonio_Meucci
Retrieved December 12, 2005.

Wikipedia.http://sv.wikipedia.org/wiki/Telefon
Retrieved December 12, 2005.

A. Olsson, M. Narup, C. Helgeson, T. Eriksson, untdberg, A. Lindberg, J. Carlbom,
U. Vallenor, L. Bergquist, S. JohanssoAtt forsta telekommunikationLund:
Studentlitteratur, 1996.

TietoEnator Internal SS7 course material.

L. Dryburgh and J. Hewett. Signaling System NoSBT{/C7): Protocol, Architecture,
and Services. Indianapolis USA: Cisco Press, 2005.

Intel Signaling System 7 Solutiori&nabling Intelligent and Wireless Networks... Voice
Portals and BeyondJSA: Intel Corporation, 2001. White Paper.

G. Redmill.An Introduction to SSTUSA, 2001. White Paper.

J.F. Kurose and K.W. Ros€omputer Networking: A Top-Down Approach Featuring
the InternetUSA: Addison Wesley, 2001.

P. Gralla.How wireless workdndianapolis USA: Que Publishing, 2002.

Protocol Dictionaryhttp://www.protocols.com
Retrieved December 12, 2005.

R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. 8ilster, P. Leach, T. Berners-Lee.
Hypertext Transfer Protocol -- HTTP/1.RFC 2616. IETF, 1999.

J. PostelSimple Mail Transfer ProtocoRFC 821. IETF, 1982.
J. Postel, J.K. ReynoldBile Transfer Protocol (FTP)RFC 959. IETF, 1985.
J. PostelTransmission Control ProtocoRFC 793. IETF, 1981.

J. PostelUser Datagram ProtocoRFC 768. IETF, 1981.

81

[16]

[17]

[18]

[19]

[20]
[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

T.RusselSignaling system #7, third editiodSA: McGraw-Hill Companies, Inc, 2000.

Technical Specification, release 7, version 1.09.33.204 - TCAP user securi8GPP
Organization Partners, 2005.

W. Stallings.Network Security Essentials, 2nd EditidiSA: Prentice Hall, 2002.

Technical Specification, release 7, version 0.I9.33.204 - TCAP user securi8BGPP
Organization Partners, 2005.

FIPS Publication 1975pecification for the Advanced Encryption StandaidS).2001.
FIPS 800-38ARecommendation for Block Cipher Modes of Opera6023.

Technical SpecificatiolSO/IEC 9797 - Information technology -- Securéghniques -
- Message Authentication Codes (MACs) -- Part 1cihémisms using a block cipher.
ISO Standard, 1999.

Technical Specification, release §SGS#24(04)0279 Revitalization of MAPsec
specification workSouth Korea: Technical Specification Group Serviaed System

Aspects, 2004. Work in progress.

Technical Specification, release 5, version 5.5%.33.210 — IP network layer security
3GPP Organization Partners, 2003.

Technical Specification, release 6, version 6.198.33.200 — MAP application layer
security 3GPP Organization Partners, 2005.

Technical Specification, release 4, version 4.39.33.200 — MAP application layer
security 3GPP Organization Partners, 2001.

Technical SpecificationS3-040581 - SMS Fraud countermeasueapulco, Mexico:
3GPP Organization Partners, 2004. Work in progress.

Technical Specificatior§3-040802 - SMS Fraud countermeasure
St Paul's Bay, Malta: 3GPP Organization Partr#84. Work in progress.

M. Dworkin. Recommendation for Block Cipher Modes of Operatidme CCM Mode
for Authentication and Confidentialitzaithersburg: NIST, 2004.
Special Publication.

K. Scott.The Unified Process ExplainedSA: Addison Wesley, 2001.

K. Beck and C. AndresExtreme Programming Explained: Embrace Changé 2
Edition. USA: Addison Wesley, 2004.

Crypto library Botanhttp://botan.randombit.net
Retrieved December 16, 2005.

82

Appendix

A Abbreviations

AE Application Entity

AES Advanced Encryption Standard
API Application Programming Interface
BSC Base Station Controller

CBC Cipher Block Chaining

cC Country Code

CHA Component Handling

CL Connectionless

CO Connection-oriented

CSL Component Sub-Layer

CTR Counter

DHA Dialogue Handling

DPC Destination Point Code

FTP File Transfer Protocol

GSM Global System for Mobile Communication
GT Global Title

GTT Global Title Translation

HLR Home Location Register

HTTP Hypertext Transfer Protocol

83

IETF Internet Engineering Task Force

IMSI International Mobile Station Identity
IP Internet Protocol

ISDN Integrated Services Digital Network
ISO International Standard Organization
ISUP ISDN User Part

ITU International Telecommunication Union
v Initiation Vector

KAC Key Administration Center

MAC Message Authentication Code

MAP Mobile Application Part

MAPsec Mobile Application Part security

MS Mobile Station

MSC Mobile services Switching Center
MSISDN Mobile Station Integrated Service Digitattork
MTP Message Transfer Part

NDC National Destination Code

NE Network Entity

NSP Network Service Part

OPC Originating Point Code

(ON]| Open System Interconnection

PC Point Code

PLMN Public Land Mobile Network

PSTN Public Switched Telephone Network
RTT Round-Trip Time

SA Security Association

SADB Security Association Database

84

SCCP Signaling Connection Control Part

SCP Service Control Point

SEA SS7 SEG Encryption Algorithm identifier
SEG Security Gateway

SEK SS7 SEG Encryption Key identifier

SIA SS7 SEG Integrity Algorithm identifier
SIGTRAN Signaling Transport

SIK SS7 SEG Integrity Key identifier

SM Short Message

SMS Short Message Service

SMSC Short Message Service Center

SMS-IWMSC Short Message Service Interworking MSC

SMTP Simple Mail Transfer Protocol

SP Signaling Point

SPC Signaling Point Code

SPD Security Policy Database

SPI Security Parameter Index

SS7 Signaling System No. 7

SSN Subsystem Number

SSP Service Switching Point

STP Signal Transfer Point

TCAP Transaction Capabilities Application Part
TCAPsec TCAP user security

TCP Transmission Control Protocol

TCP/IP Transmission Control Protocol/Internet Beot
TSL Transaction Sub-Layer

TUP Telephony User Part

85

TVP

UDP

upP

VLR

XP

Time Variant Parameter
User Datagram Protocol
Unified Process

Visitor Location Register

Extreme Programming

86

B Testing results

RTT for each protection mode (ms)
Number of
dialogues 0 1 2 3

1 1198] 1203 1188 38B
1190 1190 1188 381
1183 1184 119(¢ 384
1181 1181 11868 381
1182 1187 11884 38y
1186,8 1189 1187,8 384,2
10 1183 1102 1397 400
1205 1195 1295 509
1390 1193 1295 401
1389 1200 130(50y
1491 1192 13072 608
1331,6| 1176,4 1317,8 4868
50 1161 1451 1162 88p
1055 1283 1396 894
1286 1604 1438 88y
1086 1224 135(88b
1277 1421 1264 888
1173| 1396,6 1322 888
100 1881 1993 158y 1386
1974 1872 1776 1390
1974 1588 1791 1383
1977 1976 1775 1384
1979 1418 1773 1385
1957| 1769,4 1740,4 1385|6
200 3000 2973 26138 2399
2988 2778 2604 238p
2590 2587 2791 2288
2973 2980, 2594 2285
2596 2985 2604 2290
2829,4| 2860,6 2643,6 23268
300 3739 3928 4202 3421
3847 3834 3761 341p
3728 3694 3674 336R
3737 3994 4054 3418
3695 3608 3767 341
3749,2| 3811,6 3891,8 34062
400 4622 457¢ 4991 4319
4849 4880 4733 441P
4829 4844 4974 4318
4840 5228 5064 4420
4823 4729 4764 431y
4792,6] 4850,2 4906,8 4357\6
500 5744 5874 6265 5454
5588 5728 5924 5495
5706 5789 580(5488
5696 5637 5886 54883
5759 5911 5914 5319
5698,6| 5787, 5957,8 5447|8

87

C Message flow chart

Sender

SS7-SEG A SS7-SEG B

SPD SAD < SPD) C SAD>

No use of No valid entry

TCAPsec 1 for SEG Bin

required SS7-SEGA \ SPD

checks SPD for policy
\ towards SEG B J ¢
TCAPsec Discard message

SA exists, and is required :

no protection 2

red Protection not
require SS7-SEG A \ possible

checks SAD for valid SA

SA exists and
protection required

o

SS7-SEG A creates
messages by means of
SA-parameters

A

enerates a TCAPsec-
message or forwards an

»_ unprotected message

o\“

89

Receiver

5
SS7-SEG B
receives message
\
Protected
message
U;ngictgd Check SPI and Original
g component Id
6 4 ¢
SS7-SEG B
checks SPD

Fallback
allowed

(U nprotected TCAP-
message received

Fallback not allowed
and protection is
required

Protected TCAP-
message received

SPD indicates
that no protection
is required

Protection is
required

SPI not in SPD
or no valid entry
for SEG B

SPI points to
unvalid SA

Old TVP, decryption

calculations failed

7/
\Check SAD for SA

SPI points
to valid SA

or integrity

Discard message <

/Check TVP. Apply
encryption and integrity

by means of SA

Encryption
and integrity
calculations

‘ﬁcleartext message is
"\ available at SEG B

was successful

90

L6

|
Node A Stack A SEG A : SEG B Stack B Node B
|
start Timer()l |
|
l_) Invoke Req() |
Begin_Req() 3 :
1 (Begin_Ind() |
Invoke_Ind() :
l.
Invoke Req() g I encrygltlon process
Begin_Req() |
Protected TbAP message «
4
B : Begin_Ind()
: [Invoke_Ind()
decryption pr:ocess | ;
| Invoke_Req() o
5 : Begin_Req() >]
£, Begin_Ind() i
E : Invoke_Ind()
é : L< Result_Req()
g End_Ind() ¢—EndRed0
: \E Result_Ind()
. |
encryption pr:ocess | ; Result Req()
| End Req() (
| 7
L, Protected TCAP message
€ -
End_Ind()
Result_Ind()

stopTimer()

—

End_Ind()
Result_Ind()

1

E Result_Req()

P End Req()
N\

tion process

E I decry

———— e e . T — — — —

Z pue T ‘0 9pow uondal0id

welbelp aouanbas

6

€ 9pow uonda0id

Q|
Node A Stack A SEG A E: SEGB Stack B Node B
Q
el
start Timer()l E |
ol
Invoke Req() gl
Begin Req() %:
Unprotected TCAP message N
L | 7 Begin_Ind()
| Invoke_Ind()
|
| , Result_Req()
' S End_Req()
Unprotected J[CAP message|
End Ind() |
|
stop Timer()| € Result_Ind() :
|
1 |

E Source code

/* */
/*

* File: tcapSec.c

*

* Copyright (C) TietoEnator AB 2005 - All rights r eserved.
*

* No part of this program may be reproduced in any form without the written
* permission of the copyright owner.
*

* The contents of this program are subject to revi sion without notice due to
* continued progress in methodology, design and ma nufacturing.

* TietoEnator shall have no liability for any erro r or damage of any kind

* resulting from the use of this program.

*

* Authors: Kang Chung & Mathilda Gustafsson. Octob er 28, 2005.
* Skeleton provided by: Daniel R4ad. October 27, 2 005.

*

/

I* */

[* */

I* INCLUDES */

[* */

#include <botan/botan.h> /* Includes the A ES library */
#include <sys/time.h>

#include "ss7cp.h"
#include "i97tcapapi.h”
#include "string.h"

I* */
I* CONSTANTS *
I* */

#define MSG_TRACE_ON FALSE
#define BYPASS_SEG 3

#define PASSPHRASE "passphrase"

#define MESSAGE "IThis is an arbitrary m essage of arbitrary length!"
#define INVOKE_TIMEOUT 100

#define NOOFITERATIONS 1024 //4096

#define SIZEOF_KEY_AND_IV 16

#define INTEGR_ALGOR "AES/CBC/PKCS7"
#define CRYPTO_ALGOR "AES/CTR-BE"

/* M
1* GLOBAL VARIABLES */
I* %

using namespace Botan;

/*W16 Userld = USERO01_ID;*/

W16 Userld;

UCHAR_T Ssn; /* = 20;*/

UINT_T Testcase;

INT_T Running = 0;

INT_T Bound = 0;

ULONG_T noOfParallelDialogues = 0;

USHORT_T dialoguelD; /* Between 1-65535 */
UCHAR_T invokelD;

EINSS7INSTANCE_T tcaplnstanceld = O; /* Only one in stance */
UCHAR_T priOrder = 0; /* Olika varden pa sid 511 T CAP API */

93

UCHAR_T qualityOfService = 1,
UCHAR_T destAdrLength = 4;
UCHAR_T orgAdrLength = 4;
UCHAR_T appContextLength = 0O;
UCHAR_T *appContext_p = NULL;

int noOfRecvs = 0;

UCHAR_T nodeAdrLength = 4;

UCHAR_T myNodeAdr[4] ={ 0x43,0,0,0};

/* Observe: the octet order of the address */
UCHAR_T nodelAdr[4] = { 0x43, 0x34, 0x12, 0x14 };
UCHAR_T node2Adr[4] = { 0x43, 0x34, 0x12, 0x13 };
UCHAR_T node3Adr[4] = { 0x43, 0x47, 0x03, 0x09 };
UCHAR_T node4Adr[4] = { 0x43, 0x47, 0x03, 0x15 };

INT_T invokes = 0;
INT_T results = 0;

/* Crypto globals */

SymmetricKey* key = NULL;
InitializationVector* iv = NULL;

Jx

I* FUNCTION PROTOTYP

ES

*

*/

I

#if TRUE

#define debug_printf(X)

#else

#define debug_printf(X) printf X
#endif

#define printf_array(prefix, ptr, len) \
if (((len) > 0) && ((ptr) != NULL)) \
{

int idx; \
printf("%s", (prefix)); \
for (idx = 0; idx < len; idx++) \

{

printf("%c ", ptr[idx]); \
\

printf("\n"); \

const UINT_T InvalidTestCase = 0;
const UINT_T UnbindTestCase = 2;

static void TCO(void); /* Error */
static void TC1(void); /* Bind */
static void TC2(void); /* Unbind */
static void TC3(void); /* Send */
static void TC4(void); /* Read */

void (*TestCaseFunc[])(void) = { TCO, TC1, TC2, TC3

void signalHandler(int sig);

static void setUp(W16 userld);

static void tearDown(W16 userld);

static void chooseTestCase(INT_T *going);

static void runTestCase(UINT_T number);

static void ShowMenu(void);

int initAppld(char *argv[]);

void beginListening(void);

void arrayCopy(UCHAR_T address[], UCHAR_T nodeXAdr[
INT_T getTagLen(int msgLen);

94

, TC4 };

], int size);

*/

%,

*/

/
I* FUNCTION DEFINITI

ONS */

*/

/
USHORT _T getTagLen(UINT_T msgLen)
USHORT_T tagLen = 0;

if(msgLen <130) // 130 == 128 max

tagLen = 2;

}
else if(msgLen < 258) /l 258 == 255 max
tagLen = 3;

}
else // Payload < 65536

tagLen = 4;

return taglLen;

}

int initAppld(char *argv[])
{

int inParam = atoi(argv[1]);
printf("initAppld:\tReceived inparameter: %d\n",

switch(inParam){

case 1: /* This is the
Userld = USERO1_ID;
Ssn = 20;
arrayCopy(myNodeAdr, nodelAdr, 4);
break;

case 2: /* This is the SEG
Userld = USERO02_ID;
Ssn =19;
arrayCopy(myNodeAdr, node2Adr, 4);
break;

case 3: [* This is the SE
Userld = USERO03_ID;
Ssn=09;
arrayCopy(myNodeAdr, node3Adr, 4);
break;

case 4: [* This is the en
Userld = USERO04_ID;
Ssn =21;
arrayCopy(myNodeAdr, node4Adr, 4);
break;

default:
printf("initAppld:\tError in inparameter! C
exit(0);

printf("initAppld:\tGiven SSN = %d\n", Ssn);
return inParam;

}

void signalHandler(int sig)

tearDown(Userld);
exit(sig);

95

payload + 2 octets tags

payload + 3 octets tags

octets

inParam);

end node A */

node B (SEcurity Gateway)*/

G node C (SEcurity Gateway)*/

d node D */

hoose between 1-4.\n");

static void setUp(W16 userld)
{
printf("Init = %d\n", Msglnit(50));
printf("Open = %d\n", MsgOpen(userld));
if(MSG_TRACE_ON)

MsgTraceOn(userld);
fprintf(stderr, "Message Trace is *On*.\n");

else

fprintf(stderr, "Message Trace is *Off*.\n");

if(XMeminit(Userld, 0, 0, 0) '= RETURN_OK)
printf("\tXMemlnit failed!\n");
exit(0);

}
}

static void tearDown(W16 userld)
printf("UnbindReq = %d\n", EINSS7_197TUnBindReq(Ss n, Userld, 0));
printf("Rel = %d\n", MsgRel(Userld, TCAP_ID));
printf("Close = %d\n", MsgClose(userld));

sleep(1);
MsgEXxit();

static void chooseTestCase(INT_T *going)
static UCHAR_T string[10];

printf("\nTestlist(t) quit(qg) or test case numbe r:");
gets((CHAR_T*)string);

Testcase = atoi((const CHAR_T*)string);
if (string[0] == 'q" || string[0] =='Q")
{
*going = 0;
return;
}
if (string[0] == 't' || string[0] == 'T")

ShowMenu();
return;

}

runTestCase(Testcase);

}

static void runTestCase(UINT_T number)
{
Running = 1;
if (number >= sizeof(TestCaseFunc)/sizeof(void (*)(void)))

number = InvalidTestCase;

}
(*TestCaseFunc[number])();
if ((number == UnbindTestCase) || (number == Inv alidTestCase))

return;

}
}

96

static void ShowMenu(void)

printf(" 1: Bind\n");
printf(" 2: Unbind\n");
printf(" 3: Send\n");
printf(" 4: Read\n");

static void TCO(void)

printf("lllegal test case. Please try again.\n"
Running = 0;

}

static void TC1(void)
USHORT_T result;
printf("Connect = %d <> TC1\n", MsgConn(Userld,

result = EINSS7_I97TBindReq(Ssn,
Userld,
0, /* tcapln
1); [* versio

printf("BindReq = %d\n", result);

while(result != 0)

{
printf("Failed to bind to TCAP\n");
TC2();
sleep(2);
printf("Attempting to rebind\n");
result = EINSS7_I97TBindReq(Ssn,
Userld,
0, [*tc
1); /* ve
printf("BindReq = %d\n", result);

static void TC2(void)
USHORT _T result;

result = EINSS7_I97TUnBindReq(Ssn, Userld, 0);
printf("UnbindReq = %d\n", result);

if (result == 0)
printf("Rel = %d\n", MsgRel(Userld, TCAP_ID));
else
{ printf("Failed to unbind to TCAP\n");

Running = 0;

}

TCAP_ID));

stld */
nOfTCuser */

aplnstld */
rsionOfTCuser */

97

static void TC3(void)
{

USHORT_T result = 0
UCHAR_T string[10];

ULONG_Ti;
UCHAR_T destAdr[4]; /*={0x43, 0x34, 0x12, 0x13 }; node2Adr; */
UCHAR_T orgAdr[4]; /* ={0x43, 0x34, 0x12, 0x14 }; myNodeAdr; */

CHAR_T* myMessage = NULL;
USHORT_T userinfoLength;
UCHAR_T* userinfo;
USHORT_T protectionLvl = 4;
USHORT_T paramLength = 3;
UCHAR_T* parameters_p;

SIZE_T msglLen = 0;
SIZE_T tagLen = 0;
struct timeval startTime;
struct timeval stopTime;
long timeTaken = 0O;
long startMSec = 0;
long stopMSec = 0;

printf("Choose length of message. (0-236)\n");

gets((char*) string);

msgLen = atoi((const char*) string);

while(msgLen > 236)
printf("Wrong value\nChoose length of mes sage. (0-236)\n");
gets((char*) string);
msgLen = atoi((const char*) string);

myMessage = (CHAR_T*)XMalloc(Userld, msgLen);

tagLen = getTagLen(msgLen);

debug_printf(("\n\tTaglength: %u\n\tMessagelen gth: %u\n", tagLen, msgLen));
userinfoLength = (USHORT_T)msgLen + (USHORT_T)t aglLen;

/* Allocate length of tag octet + lenght octet(s) + message + \0 char */
userinfo = (UCHAR_T*)XMalloc(Userld, msgLen + t agLen);

if(userinfo == NULL)

printf("XMalloc Error!\n");

userinfo[0] = Ox28; /x| nsert first tag */
if(tagLen == 2)

userinfo[1] = msgLen & OxFF;
{else if(tagLen == 3)

userinfo[1] = 0x81;
userinfo[2] = msgLen & OxFF;

}

else
userinfo[1] = 0x82;

userinfo[2] = (msgLen >> 8) & OxFF; / * Most significant byte */
userinfo[3] = msgLen & OxFF; / * Least significant byte */

98

/* Insert message into allocated memory */
memcpy(&userinfo[tagLen], &myMessage[0], msgLen

XFree(Userld, myMessage); /*

memcpy(destAdr, node2Adr, 4);
memcpy(orgAdr, myNodeAdr, 4);

debug_printf(("\ttag: 0x%X, length: 0x%x\n", u
debug_printf(("\tuserinfoLength: %u\n", userin

printf("How many dialogues do you want to send
Choose between 1-1000 \n");

gets((char*) string);
noOfParallelDialogues = atoi((const char*) stri

while(noOfParallelDialogues > 1000 || noOfParal

printf("\nYou have choosen a wrong number
printf("How many dialogues do you want to
Choose between 1-1000 \n");

gets((char*) string);
noOfParallelDialogues = atoi((const char*)

}

while(protectionLvl > 3) //Unsigned variable

printf("What level of protection would you
printf("0: Routing through TCAPsec without
printf("1: Routing through TCAPsec with integri

protection\n");

printf("2: Routing through TCAPsec with ful
authentication\n");

printf("3: Routing directly to end-node wit

printf("Choose between 0-3\n");

gets((char*) string);

protectionLvl = atoi((const char*) string);

}
if (protectionLvl == BYPASS_SEG)
{

memcpy(destAdr, node4Adr, 4);

parameters_p = (UCHAR_T*)XMalloc(Userld, paramL

if(parameters_p == NULL)

printf("XMalloc Error!\n");
parameters_p[0] = 0x28;
parameters_p[1] = 0x01;
parameters_p[2] = protectionLvl & OxFF;
dialoguelD =1,
/I Start timer

result = gettimeofday(&startTime, NULL);
printf("startTime result %d", result);

99

Free the memory */

serInfo[0], userinfo[1]));
foLength));

in parallell?

ng);
leIDialogues < 1)

of dialogues.\n");
send in parallell?

string);

like?\n");
any security\n");

ty & authentication
| encryption, integrity &

hout passing TCAPsec SEGs\n");

ength);

* Insert first tag */
/I The parameter length
/I The parameter

for(i=0; i<noOfParallelDialogues; i++)
debug_printf(("\n\nTC3:\tSending Regs - Di
do

{

result = EINSS7_I97TInvokeReq(Ssn,
Userld,
tcaplnstanc
dialoguelD,
0x01, //inv
0x00, //lin
EINSS7_197T

/NlinkedId

EINSS7_I97T
INVOKE_TIME
EINSS7_I97T

/loperationTag

(msgLen +t

userlinfo, /

paramLength

parameters_
if(result != 0)

printf("Failed InvokeReq %d\n", re
Iwhile(result != 0);

/* destAdr is the address of Node 2. */
do

{

result = EINSS7_I97TBeginReq(Ssn,
Userld,
tcapinstanc
dialoguelD,
priOrder,
qualityOfSe
destAdrLeng
&destAdr[0]
orgAdrLengt
&orgAdr[0],
appContextL
appContext_
0, /luserin
NULL); //u

if(result != 0)

printf("Failed BeginReq %d\n", resul
}
Jwhile(result = 0);
dialoguelD++;

EINSS7CpXSleepMilli(1); // Set at least
/I sending to a
}

XFree(Userld, userinfo); /* Free the memo
/* Every message is sent and the node starts li
while(noOfParallelDialogues !'=0)

beginListening();

/I Stop timer and print elapsed time
gettimeofday(&stopTime, NULL);

startMSec = (startTime.tv_sec * 1000) + (startT
stopMSec = (stopTime.tv_sec * 1000) + (stopTime
timeTaken = stopMSec - startMSec;

printf("\n\tElapsed time in milliseconds: %ld\

100

alogID: %d\n", dialoguelD));

eld,

okeld
kedldUsed
CAP_LINKED_ID_NOT_USED,

CAP_OP_CLASS 1, /lopClass
OUT, /ltimeout
CAP_OPERATION_TAG_GLOBAL,

agLen), /loperationLength
[*operationCode_p

, llparamLength
p); // *parameters_p

sult);

eld,

rvice,

th,

h,

ength,

p,
foLength,
serinfo);

t);

1 millisecond sleep between each
void congestion
ry ¥

stening */

ime.tv_usec / 1000);
.tv_usec / 1000);

n", timeTaken);

static void TC4(void)
while(1)

beginListening();

void beginListening(void)

{
static UCHAR_T buf[400];
USHORT_T result = 0;

MSG_T msg_s;
SHORT_T timeout = MSG_INFTIM;

msg_s.msg_p = &buf[0];
msg_s.receiver = Userld;

result = MsgRecvEvent(&msg_s, NULL, NULL, timeo
if (result == MSG_ERR)

puts("System Error! Exiting...");

tearDown(Userld);

exit(result);
if (msg_s.sender != TCAP_ID)

debug_printf(("Dumping incoming message fr
else

result = EINSS7_I97THandleInd(&msg_s);

if (result !=0)

debug_printf(("Error in calling T_Handl
- result = %d\n", result));

void arrayCopy(UCHAR_T address[], UCHAR_T nodeXAdr[
{

inti;
for(i = 0; i < size; i++)

address[i] = nodeXAdri];

USHORT_T EINSS7_197ThindConf(
UCHAR_T ssn,
USHORT_T userid,
EINSS7INSTANCE_T tcaplnstanceld_q,
UCHAR_T result)

tcaplnstanceld_g = tcaplnstanceld_gq; /* To remo
printf(" Received: T_BIND_conf\n");
printf(" SSN = %d\n", ssn);

printf(" User ID = %d\n", userid);
printf(" Result = %d\n", result);

101

ut);

om %d\n", msg_s.sender));

e_ind from beginListening()

], int size)

ve warnings */

}

if (result != 0)

printf("Failed to bind to TCAP\n");
Bound = 0;
}

else

printf("Success\n");
Bound = 1;
}

Running = 0;
return result;

USHORT_T EINSS7_I97TRRejectind(

}

UCHAR_T localSsn_p,

USHORT_T userid_p,
EINSS7INSTANCE_T tcaplnstanceld_p,
USHORT_T dialogueld_p,

UCHAR_T invokeldUsed_p,

UCHAR_T invokeld_p,

UCHAR_T lastComponent_p,
UCHAR_T problemCodeTag_p,
UCHAR_T problemCode_p)

(void)localSsn_p;
(void)userid_p;
(void)tcaplnstanceld_p;
(void)dialogueld_p;
(void)invokeldUsed_p;
(void)invokeld_p;
(void)lastComponent_p;
(void)problemCodeTag_p;
(void)problemCode_p;

printf("Received: T_R_REJECT _ind\n");
return O;

USHORT_T EINSS7_I97TURejectind(

}

UCHAR_T /*localSsn_o*/,

USHORT_T /*userid_o*/,
EINSS7INSTANCE_T /*tcapInstanceld_o*/,
USHORT _T /*dialogueld_o*/,

UCHAR_T /*invokeldUsed_o*/,

UCHAR_T /*invokeld_o*/,

UCHAR_T /*lastComponent_o*/,
UCHAR_T /*problemCodeTag_o*/,
UCHAR_T /*problemCode_o*/)

printf("Received: T_U_REJECT _ind\n");
return O;

USHORT_T EINSS7_I97TStatelnd(

UCHAR_T /*localSsn_n*/,

USHORT_T /*userid_n*/,
EINSS7INSTANCE_T /*tcaplnstanceld_n*/,
UCHAR_T userState_n,

UCHAR_T affectedSsn_n,

ULONG_T affectedSpc_n,

ULONG_T /*localSpc_n*/,

UCHAR_T /*subsysMultiplicitylnd_n*/)

if(affectedSpc_n == 4660 || affectedSpc_n == 83

printf("AffectedSPC: %lu\n", affectedSpc_n)

102

9)

if(affectedSsn_n == 9 || affectedSsn_n == 19 || aff ectedSsn_n == 20 ||
affectedSsn_n == 21)

printf("Userstate: %u\n", userState_n);

printf("Affected SSN: %u\n", affectedSs n_n);
}
}
printf("\t\t ---- Received T_State_Ind ----\n") ;
return O;

}

USHORT_T EINSS7_I197TPAbortind(UCHAR_T localSsn_m,
USHORT _T userid_m,
EINSS7INSTANCE_T tcap Instanceld_m,
USHORT _T dialogueld_m ,
UCHAR_T priOrder_m,
UCHAR_T gos_m,
UCHAR_T abortCause_m)

printf("\tReceived T_P_Abort_ind\n");
printf("localSsn_m %d\n", localSsn_m);
printf("userid_m %d\n", userid_m);
printf("tcaplnstanceld_m %d\n", tcaplnstanceld_ m);
printf("dialogueld_m %d\n", dialogueld_m);
printf("priOrder_m %d\n", priOrder_m);
printf("gos_m %d\n", gos_m);

printf(" Abort Cause = %d\n\n", abortCause_m);
printf("\tdialogueld_m %d\n", dialogueld_m);
printf("\tAbort Cause = %d\n\n", abortCause_m);
return O;

}

USHORT_T EINSS7_I97TLRejectind(UCHAR_T localSsn_|,
USHORT_T userid_|,
EINSS7INSTANCE_T tca pinstanceld_|,
USHORT_T dialogueld_ I,
UCHAR_T invokeldUsed 1,
UCHAR_T invokeld_|,
UCHAR_T problemCodeT ag_|,
UCHAR_T problemCode_)

printf("Received: T_L_REJECT_ind\n");

printf("localSsn_I %d\n", localSsn_l);

printf("userid_| %d\n", userid_l);

printf("tcaplnstanceld_| %d\n", tcaplnstanceld_);
printf("dialogueld_| %d\n", dialogueld_l);

printf("invokeldUsed_| %d\n", invokeldUsed_]);

printf("invokeld_| %d\n", invokeld_l);

printf("\n");

printf(" Problem Code Tag = %d\n", problemCodeT ag_l);
printf(" Problem Code = %d\n", problemCode_l);

return O;

}

USHORT_T EINSS7_I97TResultNLInd(
UCHAR_T localSsn_k,
USHORT_T userid_k,
EINSS7INSTANCE_T tcaplnstanceld_k,
USHORT_T dialogueld_k,
UCHAR_T invokeld_k,
UCHAR_T lastComponent_K,
UCHAR_T operationTag_K,
USHORT _T operationLength_k,
UCHAR_T *operationCode_p_k,
USHORT_T paramLength_k,
UCHAR_T *parameters_p_Kk)

printf("localSsn_k %c\n", localSsn_k);

printf("userid_k %d\n", userid_Kk);
printf("tcaplnstanceld_k %d\n", tcaplnstanceld_ K);

103

printf("dialogueld_k %d\n", dialogueld_k);
printf("invokeld_k %c\n", invokeld_Kk);

printf("lastComponent_k %c\n", lastComponent_k);
printf("operationTag_k %c\n", operationTag_K);

printf("operationLength_k %d\n", operationLengt h_k);
printf("*operationCode_p_k %c\n", *operationCod e p_k;

printf("paramLength_k %d\n", paramLength_k);
printf("*parameters_p_k %c\n", *parameters_p_k) ;
printf("\n");

printf("Received: T_RESULT_NL_ind\n");

return O;

}

USHORT_T EINSS7_I97TResultLInd(
UCHAR_T localSsn_b,
USHORT_T userid_b,
EINSS7INSTANCE_T tcaplnstanceld_b,
USHORT_T dialogueld_b,
UCHAR_T invokeld_b,
UCHAR_T lastComponent_b,
UCHAR_T operationTag_b,
USHORT_T operationLength_b,
UCHAR_T *operationCode_p_b,
USHORT_T paramLength_b,
UCHAR_T *parameters_p_b)

USHORT_T result;

UCHAR_T destAdr[4];

UINT_T tagLen = 0;

UCHAR_T* newOperationCode_p = NULL;

(void)userid_b;
(void)lastComponent_b;
(void)paramLength_b;

if (Ssn == 20)
printf("\tReceived:; T_RESULT_L_ind\tinvoke s: %d\tResults: %d\n", invokes,
++results);
}
else
{
debug_printf(("\tReceived:; T_RESULT_L_ind\ tinvokes: %d\tResults: %d\n",
invokes, ++results));
}
debug_printf(("operationLength_b %d\n", operati onLength_b));

if(Ssn == 20 || Ssn == 21)

debug_printf(("Message received. Length: % d\n", operationLength_b));
debug_printf(("Protectionlvl = %u\n", parameters_ p_b[2]));
if(operationLength_b < 130)// 130 == 128 max pa yload + 2 octets tags
tagLen = 2;
}else if(operationLength_b <258) // 258 == 2 55 max payload + 3 octets tags
tagLen = 3;
}else /I Payload < 65536 octets
| tagLen = 4,

104

/* Generate key and IV*/
std::string passphrase = PASSPHRASE;

/* Initiate encryption pipes */
if((Ssn == 19 && dialogueld_b >30000) ||

(Ssn == 9 && dialogueld_b < 30000)) // ** Qutgoing msgs **

if(parameters_p_b[2] == 1)
Pipe protPipe(get_cipher(INTEGR_ALGOR,
debug_printf(("\t**Performing Encrypti
protPipe.process_msg(operationCode_p_b,
const u32bit expecting = protPipe.remai
// byte == Botan's typedef for unsigned
byte* output = new byte[expecting];
protPipe.read(output, expecting);
tagLen = getTaglLen(expecting);

newOperationCode_p = (UCHAR_T*)XMalloc(
newOperationCode_p[0] = 0x28;

if(tagLen == 2)
{
newOperationCode_p[1] = expecting &
else if(tagLen == 3)
{

newOperationCode_p[1] = 0x81;
newOperationCode_p[2] = expecting &

else
{ .
newOperationCode_p[1] = 0x82;
/* Most significant byte */
newOperationCode_p[2] = (expecting
/* Least significant byte */

newOperationCode_p[3] = expecting &
}

memcpy(&newOperationCode_p[taglLen], out
operationLength_b = expecting + tagLen;
else if(parameters_p_b[2] == 2)

Pipe protPipe(get_cipher(CRYPTO_ALGOR,
get_cipher(INTEGR_ALGOR,

debug_printf(("\t**Performing Encrypti

protPipe.process_msg(operationCode_p_b,
const u32bit expecting = protPipe.remai

// byte == Botan's typedef for unsigned
byte* output = new byte[expecting];
protPipe.read(output, expecting);
tagLen = getTagLen(expecting);

newOperationCode_p = (UCHAR_T*)XMalloc(
newOperationCode_p[0] = 0x28;

if(tagLen == 2)
{

newOperationCode_p[1] = expecting &
}

105

*key, *iv, ENCRYPTION));
on Ivl 1\n");
operationLength_b);

ning();

char

Userld, expecting + tagLen);

OxXFF;

OxXFF;

>> 8) & OxFF;

OxFF;

put, expecting);

*key, *iv, ENCRYPTION),
*key, *iv, ENCRYPTION));

on Ivl 2\n"));

operationLength_b);
ning();

char

Userld, expecting + tagLen);

OxFF;

else if(tagLen == 3)

newOperationCode_p[1] = 0x81;

newOperationCode_p[2] = expecting & OxFF;
}
else
{ .
newOperationCode_p[1] = 0x82;
/* Most significant byte */
newOperationCode_p[2] = (expecting >> 8) & OxFF;
/* Least significant byte */
newOperationCode_p[3] = expecting & OxFF;
}
memcpy(&newOperationCode_p[tagLen], out put, expecting);
operationLength_b = expecting + tagLen;
}
else

/* no protection*/
newOperationCode_p = operationCode_p_b;
debug_printf(("\t**No protection perfo rmed\n“));

}
else if((Ssn == 19 && dialogueld_b < 30000) ||
(Ssn == 9 && dialogueld_b > 30000)) /** In coming msgs **

if(parameters_p_b[2] == 1)
{

Pipe protPipe(get_cipher(INTEGR_ALGOR, *key, *iv, DECRYPTION));

debug_printf(("\t**Performing Decrypti on Ivl 1\n"));

protPipe.process_msg(&operationCode_p_b [tagLen], operationLength_b
- tagLen);

const u32bit expecting = protPipe.remai ning();

// byte == Botan's typedef for unsigned char

byte* output = new byte[expecting];
protPipe.read(output, expecting);

tagLen = getTaglLen(expecting);

newOperationCode_p = (UCHAR_T*)XMalloc(Userld, expecting);
memcpy(&newOperationCode_p[0], output, expecting);
operationLength_b = expecting;
} .
else if(parameters_p_b[2] == 2)
Pipe protPipe(get_cipher(INTEGR_ALGOR, *ke y, *iv, DECRYPTION),
get_cipher(CRYPTO_ALGOR, *key, *iv, DE CRYPTION));
debug_printf(("\t**Performing Decryption vl 2\n"));
protPipe.process_msg(&operationCode_p_b[tagLen] , operationLength_b
- tagLen);
const u32bit expecting = protPipe.remain ing();
/I byte == Botan's typedef for unsigned char

byte* output = new byte[expecting];
protPipe.read(output, expecting);

tagLen = getTagLen(expecting);

newOperationCode_p = (UCHAR_T*)XMalloc(U serld, expecting + tagLen);
memcpy(&newOperationCode_p[0], output, e xpecting);
operationLength_b = expecting;

106

else

newOperationCode_p = operationCode_p_b;
debug_printf(("\t**No protection perfo

}
if(localSsn_b == 19)
{
if(dialogueld_b > 30000)

dialogueld_b += 2000;
memcpy(destAdr, node3Adr, 4);

else

{
dialogueld_b -= 2000;
memcpy(destAdr, nodelAdr, 4);

else if(localSsn_b ==9)
{
if(dialogueld_b > 30000)

dialogueld_b += 2000;
memcpy(destAdr, node4Adr, 4);

else

{
dialogueld_b -= 2000;
memcpy(destAdr, node2Adr, 4);

else if(localSsn_b == 21)

{
memcpy(destAdr, node3Adr, 4);
newOperationCode_p = operationCode_p_b;

}
else if(Ssn == 20)
/* Reached the beginning */
else

printf("Wrong receiving SSN!'\n");

debug_printf(("--operationLength after processi
debug_printf(("New dialogueld: %u\n", dialoguel

if(Ssn == 19 || Ssn == 9 || Ssn == 21)

if((Ssn == 19 && dialogueld_b > 30000) ||
(Ssn == 9 && dialogueld_b >30000) ||
Ssn == 21)
{
do

{
result = EINSS7_I97TResultLReq(Ssn,
Userld
tcaplins
dialog
invoke
operat
operat
newOpe
paramL
¶m

debug_printf(("ResultReq sent, dialogueld: %u\

107

rmed\n"));

ng: %d\n", operationLength_b));
d_b));

’ tanceld_b,

ueld_b,

Id_b,
ionTag_b,
ionLength_b,
rationCode_p,
ength_b,
eters_p_b[0]);

n", dialogueld_b));

if(result != 0)

printf("Failed ResultReq: %d\n", res
while(result != 0);

if(dialogueld_b > 30000)
{
do

{
result = EINSS7_I97TEndReq(Ssn,
Userld,
tcaplnstan
dialogueld
priOrder,
qualityOofs
EINSS7_197T
appContextLen
appContext_
0, /lu
NULL); /fu

if(result != 0)

printf("Failed EndReq: %d\n", result

Jwhile(result != 0);

debug_printf(("EndReq sent, dialogueld: %u
else if(dialogueld_b > 0)

d{o

result = EINSS7_I97TBeginReq(Ssn,
Userld,
tcaplnst
dialogue
priOrder
qualityO
destAdrL
&destAdr
orgAdrLe
&myNodeA
appConte
appConte

NULL);
if(result != 0)

{ printf("Failed BeginReq: %d\n", resu
}vv}hile(result 1= 0);
debug_printf(("BeginReq sent, dialogueld

}

else
noOfParallelDialogues--; /* Countd
}
if((Ssn == 19 || Ssn == 9) && (parameters_p_b[2

XFree(Userld, newOperationCode_p);
}

return O;

ult);

celd_b,
_b,

ervice,
CAP_TERM_BASIC_END,
gth,

P,
serinfoLength
serinfo

\n", dialogueld_b));

anceld,
Id_b,

fService,

ength,

01,

ngth,

dr[0],

xtLength,

Xt_p,
luserinfoLength
/luserInfo

It);

: %u\n", dialogueld_b));

own active dialogues */

1>0))

108

USHORT_T EINSS7_197TNoticelnd(
UCHAR_T localSsn_i,
USHORT_T userid_i,
EINSS7INSTANCE_T tcaplnstanceld_i,
USHORT_T dialogueld_i,
UCHAR_T reportCause_i,
UCHAR_T returnindicator _i,
USHORT_T relDialogueld_i,
UCHAR_T segmind_i,

UCHAR_T destAdrLength_i,
UCHAR_T *destAdr_p_i,
UCHAR_T orgAdrLength_i,
UCHAR_T *orgAdr_p_i)

printf("Received: T_NOTICE_ind\n");

printf("localSsn_i %c\n", localSsn_i);

printf("userid_i %d\n", userid_i);

printf("tcaplnstanceld_i %d\n", tcaplnstanceld_ i);
printf("dialogueld_i %d\n", dialogueld_i);

printf("reportCause_i %c\n", reportCause_i);

printf("returnindicator_i %c\n", returnindicato r_i);
printf("relDialogueld_i %d\n", relDialogueld_i) ;
printf("segmind_i %c\n", segmind_i);

printf("destAdrLength_i %c\n", destAdrLength_i) ;
printf(" *destAdr_p_i %c\n", *destAdr_p_i);

printf("orgAdrLength_i %c\n", orgAdrLength_i);

printf("*orgAdr_p_i %c\n", *orgAdr_p_i);

printf("\n");

return O;

}

USHORT_T EINSS7_I97TUErrorind(
UCHAR_T localSsn_h,
USHORT_T userid_h,
EINSS7INSTANCE_T tcaplnstanceld_h,
USHORT _T dialogueld_h,
UCHAR_T invokeld_h,

UCHAR_T lastComponent_h,
UCHAR_T errorCodeTag_h,
USHORT_T errorCodeLength_h,
UCHAR_T *errorCode_p_h,
USHORT_T paramLength_h,
UCHAR_T *parameters_p_h)

printf("Received: T_U_ERROR_ind\n");

printf("localSsn_h %c\n", localSsn_h);

printf("userid_h %d\n", userid_h);

printf("tcaplnstanceld_h %d\n", tcapinstanceld_ h);
printf("dialogueld_h %d\n", dialogueld_h);

printf("invokeld_h %c\n", invokeld_h);

printf("lastComponent_h %c\n", lastComponent_h) ;
printf("errorCodeTag_h %c\n", errorCodeTag_h);
printf("errorCodeLength_h %d\n", errorCodeLengt h_h);
printf("*errorCode_p_h %c\n", *errorCode_p_h);
printf("paramLength_h %d\n", paramLength_h);
printf("*parameters_p_h %c\n", *parameters_p_h) ;
printf("\n");

printf(" Error Code = %d\n", *errorCode_p_h);
return O;

}

USHORT_T EINSS7_|97TLCancellnd(
UCHAR_T localSsn_g,
USHORT_T userid_g,
EINSS7INSTANCE_T tcaplnstanceld_g,
USHORT_T dialogueld_g,
UCHAR_T invokeld_g)

printf("Received: T_L_CANCEL_ind\n");
printf("localSsn %c\n", localSsn_g);

109

}

printf("userid %d\n", userid_Q);
printf("tcaplnstanceld %d\n", tcaplnstanceld_g)
printf(" dialogueld %d\n", dialogueld_g);
printf("invokeld %c\n", invokeld_g);

printf("\n");

return O;

USHORT _T EINSS7_I97TUAbortInd(

}

UCHAR_T localSsn_f,
USHORT _T userid_f,
EINSS7INSTANCE_T tcaplnstanceld_f,
USHORT_T dialogueld_f,
UCHAR_T priOrder_f,
UCHAR_T qualityOfService_f,
USHORT_T abortinfoLength_f,
UCHAR_T *abortinfo_p_f,
UCHAR_T appContextLength_f,
UCHAR_T *appContext_p_f,
USHORT_T userInfoLength_f,
UCHAR_T *userinfo_p_f)

printf("Received: T_U_ABORT_ind\n");
printf("localSsn %c\n", localSsn_f);
printf("userid %d\n", userid_f);
printf("tcaplnstanceld %d\n", tcaplnstanceld_f)
printf("dialogueld %d\n", dialogueld_f);
printf("priOrder %c\n", priOrder_f);
printf("qualityOfService %c\n", qualityOfServic
printf("abortinfoLength %d\n", abortinfoLength_
printf("*abortinfo_p %c\n", *abortinfo_p_f);
printf("appContextLength %c\n", appContextLengt
printf("*appContext_p %c\n", *appContext_p_f);
printf("userinfoLength %d\n", userinfoLength_f)
printf("*userinfo_p %c\n",*userinfo_p_f);
printf("\n");

return O;

USHORT _T EINSS7_I97TIndError(

}

USHORT_T indLenErr,
MSG_T *mqp_sp)

printf("indLenErr %d\n", indLenErr);
(void)mqgp_sp; /* to
printf("\n");

printf("Received: TIndError\n");
return O;

USHORT_T EINSS7_I97TContinuelnd(

UCHAR_T localSsn_e,
USHORT_T userid_e,
EINSS7INSTANCE_T tcaplnstanceld_e,
USHORT_T dialogueld_e,
UCHAR_T priOrder_e,
UCHAR_T qualityOfService_e,
UCHAR_T compPresent_e,
UCHAR_T appContextLength_e,
UCHAR_T *appContext_p_e,
USHORT_T userInfoLength_e,
UCHAR_T *userinfo_p_e)

printf("localSsn %c\n", localSsn_e);
printf("userid %d\n", userid_e);
printf("tcaplnstanceld %d\n", tcaplnstanceld_e)
printf("dialogueld %d\n", dialogueld_e);

110

e f);
f);
h_f);

remove warning */

printf("priOrder %c\n", priOrder_e);

printf("qualityOfService %c\n", qualityOfServic e_e);
printf("compPresent %c\n", compPresent_e);
printf("appContextLength %c\n", appContextLengt h_e);

printf("*appContext_p %c\n", *appContext_p_e);
printf("userinfoLength %d\n", userinfoLength_e) ;
printf("*userinfo_p %c\n",*userinfo_p_e);

printf("\n");

printf("Received T_CONTINUE_ind\n");
return O;

}

USHORT_T EINSS7_I197TUnilnd(
UCHAR_T localSsn_d,
USHORT_T userid_d,
EINSS7INSTANCE_T tcaplnstanceld_d,
UCHAR_T priOrder_d,
UCHAR_T qgos_d,

UCHAR_T destAdrLength_d,
UCHAR_T *destAdr_p_d,
UCHAR_T orgAdrLength_d,
UCHAR_T *orgAdr_p_d,
UCHAR_T compPresent_d,
UCHAR_T appContextLength_d,
UCHAR_T *appContext_p_d,
USHORT _T userInfoLength_d,
UCHAR_T *userInfo_p_d)

printf("localSsn %c\n", localSsn_d);

printf("userid %d\n", userid_d);

printf("tcaplnstanceld %d\n", tcaplnstanceld_d) ;
printf("priOrder %c\n", priOrder_d);

printf("gos %c\n", qos_d);

printf("destAdrLength %c\n", destAdrLength_d);

printf("*destAdr_p %c\n", *destAdr_p_d);

printf("orgAdrLength %c\n", orgAdrLength_d);

printf("*orgAdr_p %c\n", *orgAdr_p_d);

printf("compPresent %c\n", compPresent_d);
printf("appContextLength %c\n", appContextLengt h_d);
printf("*appContext_p %c\n", *appContext_p_d);
printf("userinfoLength %d\n", userinfoLength_d) ;
printf("*userinfo_p %c\n",*userinfo_p_d);

printf("\n");

printf("Received: T_UNI_ind\n");
return O;

}

USHORT_T EINSS7_|97TBeginInd(
UCHAR_T localSsn_c,
USHORT_T userid_c,
EINSS7INSTANCE_T tcaplnstanceld_c,
USHORT _T dialogueld_c,
UCHAR_T priOrder_c,

UCHAR_T qualityOfService_c,
UCHAR_T destAdrLength_c,
UCHAR_T *destAdr_p_c,
UCHAR_T orgAdrLength_c,
UCHAR_T *orgAdr_p_c,
UCHAR_T compPresent_c,
UCHAR_T appContextLength_c,
UCHAR_T *appContext_p_c,
USHORT _T userInfoLength_c,
UCHAR_T *userInfo_p_c)

debug_printf(("\n\tReceived T_Begin_Req\n"));
debug_printf(("\tdialogueld: %d\n\n", dialoguel d_c));

(void)localSsn_c;
(void)userid_c;

111

}

USHORT_T EINSS7_197TInvokelnd(UCHAR_T localSsn_b,

(void)tcaplnstanceld_c;
(void)dialogueld_c;
(void)priOrder_c;
(void)qualityOfService_c;
(void)destAdrLength_c;
(void)destAdr_p_c;
(void)orgAdrLength_c;
(void)orgAdr_p_c;
(void)compPresent_c;
(void)appContextLength_c;
(void)appContext_p_c;
(void)userinfoLength_c;
(void)*userinfo_p_c;

return O;

USHORT_T userid_b,
EINSS7INSTANCE_T tcap
USHORT_T dialogueld_b
UCHAR_T invokeld_b,
UCHAR_T lastComponent
UCHAR_T linkedldUsed_
UCHAR_T linkedId_b,
UCHAR_T operationTag_
USHORT _T operationLen
UCHAR_T *operationCod
USHORT_T paramLength_
UCHAR_T *parameters_p

USHORT_T result;

UCHAR_T destAdr[4];

UINT_T tagLen = 0;

UCHAR_T* newOperationCode_p = NULL;

(void)userid_b;
(void)lastComponent_b;
(void)paramLength_b;

if (Ssn ==21)
printf("\tReceived: T_INVOKE_ind\tinvokes: %
results);
}
else

debug_printf(("\tReceived: T_INVOKE_ind\tin
++invokes, results));
}

debug_printf(("operationLength_b %d\n", operati
if(Ssn == 20 || Ssn == 21)

debug_printf(("Message received\n"));
debug_printf(("Protectionlvl = %u\n", parameters_

if(operationLength_b < 130) /130 == 128 max
tagLen = 2;
}
else if(operationLength_b < 258) //258 == 255 m

tagLen = 3;
}

112

Instanceld_b,

d\tResults: %d\n", ++invokes,

vokes: %d\tResults: %d\n",

onLength_b));

p_b[2]));

payload + 2 octets tags

ax payload + 3octets tags

else // Payload < 65536 octets

tagLen = 4,
}

/* Initiate encryption pipes */

if((Ssn == 19 && dialogueld_b > 30000) ||

(Ssn == 9 && dialogueld_b < 30000)) I ** Qutgoing msgs **

if(parameters_p_b[2] == 1)
{
Pipe protPipe(get_cipher(INTEGR_ALGOR,
debug_printf(("\t**Performing Encrypti
protPipe.process_msg(operationCode_p_b,
const u32bit expecting = protPipe.remai
// byte == Botan's typedef for unsigned
byte* output = new byte[expecting];
protPipe.read(output, expecting);
tagLen = getTagLen(expecting);

newOperationCode_p = (UCHAR_T*)XMalloc(
newOperationCode_p[0] = 0x28;

if(tagLen == 2)
{
newOperationCode_p[1] = expecting &
else if(tagLen == 3)

{
newOperationCode_p[1] = 0x81;
newOperationCode_p[2] = expecting &

else

{
newOperationCode_p[1] = 0x82;
/* Most significant byte */
newOperationCode_p[2] = (expecting
/* Least significant byte */
newOperationCode_p[3] = expecting &

}

memcpy(&newOperationCode_p[taglLen], out

operationLength_b = expecting + tagLen;
else if(parameters_p_b[2] == 2)

Pipe protPipe(get_cipher(CRYPTO_ALGOR,
get_cipher(INTEGR_ALGOR,

debug_printf(("\t**Performing Encrypti

protPipe.process_msg(operationCode_p_b,
const u32bit expecting = protPipe.remai

// byte == Botan's typedef for unsigned
byte* output = new byte[expecting];
protPipe.read(output, expecting);
tagLen = getTaglLen(expecting);

newOperationCode_p = (UCHAR_T*)XMalloc(
newOperationCode_p[0] = 0x28;

113

*key, *iv, ENCRYPTION));
on vl 1\n"));
operationLength_b);

ning();
char

Userld, expecting + tagLen);

OxXFF;

OxXFF;

>> 8) & OxFF;

OxXFF;

put, expecting);

*key, *iv, ENCRYPTION),
*key, *iv, ENCRYPTION));

on Ivl 2\n"));

operationLength_b);
ning();

char

Userld, expecting + tagLen);

if(tagLen == 2)

newOperationCode_p[1] = expecting & OxFF;
}
else if(tagLen == 3)
{
newOperationCode_p[1] = 0x81;
newOperationCode_p[2] = expecting & OxFF;
}
else
{ .
newOperationCode_p[1] = 0x82;
/* Most significant byte */
newOperationCode_p[2] = (expecting >> 8) & OXFF;
[* Least significant byte */
newOperationCode_p[3] = expecting & OxFF;
memcpy(&newOperationCode_p[tagLen], out put, expecting);
operationLength_b = expecting + tagLen;
}
else

/* no protection*/
newOperationCode_p = operationCode_p_b;

debug_printf(("\t**No protection perfo rmed\n"));
} }
else if((Ssn == 19 && dialogueld_b < 30000) ||
(Ssn == 9 && dialogueld_b > 30000)) //** Incoming msgs **

if(parameters_p_b[2] == 1)
{

Pipe protPipe(get_cipher(INTEGR_ALGOR, *key, *iv, DECRYPTION));

debug_printf(("\t**Performing Decrypti on vl 1\n"));

protPipe.process_msg(&operationCode_p_b [tagLen], operationLength_b
- tagLen);

const u32bit expecting = protPipe.remai ning();

I/ byte == Botan's typedef for unsigned char

byte* output = new byte[expecting];
protPipe.read(output, expecting);

tagLen = getTaglLen(expecting);

newOperationCode_p = (UCHAR_T*)XMalloc(Userld, expecting);

memcpy(&newOperationCode_p[0], output, expecting);

operationLength_b = expecting;

}

else if(parameters_p_b[2] == 2)

{

Pipe protPipe(get_cipher(INTEGR_ALGOR, *key, *iv, DECRYPTION),
get_cipher(CRYPTO_ALGOR, *key, *iv, DECRYPTION));

debug_printf(("\t**Performing Decrypti on Ivl 2\n"));

protPipe.process_msg(&operationCode_p_b [tagLen], operationLength_b
- tagLen);

const u32hit expecting = protPipe.remaining();
I/ byte == Botan's typedef for unsigned char
byte* output = new byte[expecting];
protPipe.read(output, expecting);

tagLen = getTaglLen(expecting);

newOperationCode_p = (UCHAR_T*)XMalloc(Userld, expecting + tagLen);
memcpy(&newOperationCode_p[0], output, expecting);
operationLength_b = expecting;

114

else

/* no protection*/

newOperationCode_p = operationCode_p_b;

debug_printf(("\t**No protection perfo
} }
if(localSsn_b == 19)
{ if(dialogueld_b > 30000)

{
dialogueld_b += 2000;
memcpy(destAdr, node3Adr, 4);

else
{
dialogueld_b -= 2000;
memcpy(destAdr, nodelAdr, 4);
else if(localSsn_b ==9)
{
if(dialogueld_b > 30000)

{

dialogueld_b += 2000;
memcpy(destAdr, node4Adr, 4);
}

else
{
dialogueld_b -= 2000;
memcpy(destAdr, node2Adr, 4);
b
else if(localSsn_b == 21)
if (parameters_p_b[2] == BYPASS_SEG)
memcpy(destAdr, node4Adr, 4);
else
{
memcpy(destAdr, node3Adr, 4);
newOperationCode_p = operationCode_p_b;
}
else if(Ssn == 20)
/* Reached the beginning */
}

else

printf("Wrong receiving SSN!'\n");

debug_printf(("--operationLength after processi
if(Ssn ==19 || Ssn == 9 || Ssh == 21)
if((Ssn == 19 && dialogueld_b < 30000)||(Ss
d{o

{

result = EINSS7_I97TInvokeReq(Ssn,
Userld,
tcaplinst
dialogue
invokeld
linkedld
linkedlId
EINSS7_I
INVOKE_T

115

rmed\n"));

ng: %d\n", operationLength_b));

n == 9 && dialogueld_b < 30000))

anceld_b,

Id_b,

_b,//0x01, //invokeld

Used_b, //linkedldUsed

_b, /NlinkedId
97TCAP_OP_CLASS_1, /lopClass
IMEOUT, //timeout

operatio nTag_b, //operationTag

operatio nLength_b, //operationLength
newOpera tionCode_p, // *operationCode_p
paramLen gth_b, //paramLength
¶met ers_p_b[0]); // *parameters_p
if(result != 0)
printf("Failed InvokeReq: %d\n", res ult);
}
}while(result != 0);
debug_printf(("InvokeReq sent, dialogueld: %u\n ", dialogueld_b));
else if((Ssn == 19 && dialogueld_b > 30000) ||
(Ssn == 9 && dialogueld_b > 30000) || Ssn == 1)
{
do
{
result = EINSS7_I97TResultLReq(Ssn,
Userld,
tcaplns tanceld_b,
dialoguel d_b,
invokeld _b,
operati onTag_b,
operat ionLength_b,
newOpe rationCode_p,
paramL ength_b,
¶m eters_p_b[0]);
if(result != 0)
printf("Failed ResultReq: %d\n", res ult);

Ywhile(result = 0);

}
if(dialogueld_b > 30000)
{

do
{
result = EINSS7_I97TEndReq(Ssn,
Userld,
tcaplnstanc eld_b,
dialogueld_ b,
priOrder,
qualityOfSe rvice,
EINSS7_197T CAP_TERM_BASIC_END,
appContextL ength,
appContext_ p,
0, [/lus erinfoLength,
NULL); //us erinfo);

if(result != 0)

printf("Failed EndReq %d\n", result)
Running = 0;

}]\k/vhile(result 1=0);

debug_printf(("EndReq sent, dialogueld: %u\n", dialogueld_b));

116

else if(dialogueld_b > 0)
do

{

result = EINSS7_I97TBeginReq(Ssn,
Userld,
tcaplnsta
dialoguel
priOrder,
qualityOf
destAdrLe
&destAdr[
orgAdrLen
&myNodeAd
appContex
appContex
0,
NULL);

if(result != 0)
printf("Failed BeginReq %d\n", resul

Running = 0;

}
Ywhile(result != 0);
debug_printf(("BeginReq sent, dialogueld:
}
else

noOfParallelDialogues--; /* Count down act

}
if((Ssn == 19 || Ssn == 9) && (parameters_p_b[2]

XFree(Userld, newOperationCode_p);

}

return O;

USHORT _T EINSS7_I197TEndInd(

UCHAR_T localSsn_a,
USHORT_T userid_a,
EINSS7INSTANCE_T tcaplnstanceld_a,
USHORT_T dialogueld_a,
UCHAR_T priOrder_a,
UCHAR_T gos_a,

UCHAR_T compPresent_a,
UCHAR_T appContextLength_a,
UCHAR_T *appContext_p_a,
USHORT_T userinfoLength_a,
UCHAR_T *userinfo_p_a)

debug_printf(("\n\tReceived: T_END_ind\n"));
debug_printf(("\tDialogue ID = %d\n", dialoguel
(void)localSsn_a;

(void)userid_a;

(void)tcaplnstanceld_a;

(void)dialogueld_a;

(void)priOrder_a;

(void)gos_a;

(void)compPresent_a;
(void)appContextLength_a;
(void)appContext_p_a;
(void)userinfoLength_a;

(void)userinfo_p_a;

return O;

117

nceld,
d_b,

Service,
ngth,

a],

gth,

o],
tLength,
tp,
/luserInfoLength,
/luserlnfo);

t);

%u\n", dialogueld_b));

ive dialogues */

>0))

d_a));

USHORT_T EINSS7_I97TAddressInd(UCHAR_T ssn_|,

}

USHORT_T userld_l,
EINSS7INSTANCE_T tca
USHORT_T dialogueld_
UCHAR_T bitMask_|I,
UCHAR_T addressLengt
UCHAR_T *orgAdr_p_l)

printf("ssn_I %c\n", ssn_l);

printf("userld_| %d\n", userld_l);
printf("tcaplnstanceld_| %d\n", tcapInstanceld_
printf("dialogueld_| %d\n", dialogueld_l);
printf("bitMask_I %c\n", bitMask_l);
printf("addressLength_| %c\n", addressLength_l)
printf("*orgAdr_p_| %c\n", *orgAdr_p_lI);

printf("Received: T_ADDRESS_ind\n");
return O;

int main(int argc, char *argv([])

{

Librarylnitializer init;
INT_T going = 1;

/I Initiate Key & IV
std::string passphrase = PASSPHRASE;

S2K* s2k = get_s2k("PBKDF2(SHA-1)"); /I st
s2k->set_iterations(NOOFITERATIONS);
SecureVector<byte> key and_IV = s2k->derive_key
SymmetricKey newKey(key_and_IV, SIZEOF_KEY_AND _
InitializationVector newlv(key_and_IV + SIZEOF_

key = &newKey;
iv = &newlv;

iftargc > 1 && argc < 3)
{
initAppld(argv);
setUp(Userld);

signal(SIGTERM, signalHandler);
signal(SIGINT, signalHandler);

TC2();
sleep(2);
TC1();

if(*argv[1] == '1")

printf("main:\tl have SSN %d\n", Ssn);
while (going)
{

chooseTestCase(&going);

}
}

else

printf("main:\tSsn %d == Listener\n", S
TCA();

}
}

else
printf("Not the right amount of parameters\

tearDown(Userld);
return O;

118

pinstanceld_],
Iy

hl,

ring-2-key

(32, passphrase).bits_of();
Iv);
KEY_AND_IV, SIZEOF_KEY_AND_IV);

sn);

n");

