Department of Computer Science

Guillermo Alonso Pequefio
Javier Rocha Rivera

Extension to MAC 802.11 for
performance improvement in
MANET

Computer Science
D-level thesis (20p)

Date: 061221
Supervisor: Andreas Kassler
Examiner: Kerstin Andersson

Serial Number: D2007:06

Karlstads universitet 651 88 Karlstad
Tfn 054-700 10 00 Fax 054-700 14 60
Information@kau.se www.kau.se

Computer Science

Guillermo Alonso Pequefio

Javier Rocha Rivera

Extension to MAC 802.11 for performance
Improvement in MANET

Master's Project
2007:06

Extension to MAC 802.11 for performance
Improvement in MANET

Guillermo Alonso Pequefio

Javier Rocha Rivera

© 2007, Guillermo Alonso Pequefio, Javier Rocha Rivead Karlstad University

This report is submitted in partial fulfilment dhe requirements for the
Master’'s degree in Computer Science. All matemathis report which is
not our own work has been identified and no mat&iacluded for which

a degree has previously been conferred.

Guillermo Alonso Pequefio

Javier Rocha Rivera

Approved, 2006-12-21

Supervisor: Andreas J. Kassler

Examiner: Kerstin Andersson

Abstract

In the last few years, the exploit of ad hoc wissl@etworks has increased thanks to their
commercial and military potential. An applicatiohwireless ad hoc networks is Bluetooth
technology, which allows wireless communication amalifferent devices. As a military
application, we can report the establishment ofroomications between groups of soldiers in
a not safe territory. Additionally, ad hoc netwoek® useful in emergency operations, where
no fixed infrastructure is feasible.

A mobile ad hoc network (MANET) represents a systdmvireless mobile nodes that can
self-organize freely and dynamically into arbitranyd temporary network topology. On one
hand, they can be quick deployed anywhere at aeyimthey eliminate the complexity of
infrastructure setup. On the other hand, other lprob arise, such as route errors or higher
overhead, caused by the mobility of nodes.

The main goal of this master's thesis has beenirtigovement of the communication
between MAC 802.11 protocol and DSR (Dynamic So&oating) protocol, to run in the ns-

2 network simulator.

vi

Contents

1

T 0o ¥ Tox 1o o ISP 1
I I Y o =P 1
1.2 Proposed goals and accompliShments ... 2
1.3 DOCUMENT OVEIVIEWceeiiiiieeeeeitiiiieeee e e e e e e e e e eeeeeaaetaas s s e s e e e e e eeaaeeaaaaaaeeaaeeeeennnnnnes 3
o FoTed (o [{011 Lo TSSO 4
2.1 Mobile ad NOC NEIWOIKS.......ccciiiii i 4
P22 00 R 101 o T [T 1o o PP PEPP 4
P A O - T T 1T o PP PEPP 4
P2 I B @ T o 1= = 11T] o F TP P PRSPPI 5
2.1.4 Applications of Ad HOC WireleSS NEWOIKS e eeeeeeeeieeeiaeiiiaiieieiiiiiiee et 7
2.1.5 Criticial @ValUationciiiiii i 9
2.2 The medium access coNntrol SUDIAYETcccoevvvvieeeiviiiiiiicie e eeeee 9
P22 N 101 o T [Tox 1o o PP PERP 9
2.2.2 1ssues and deSIgN QOAISciiiiiiiieeeeeiee e ———————————————— 9
2 T © T o =1 - 11T] o U EURRRRR 10
2.2.4 MAC protocols in ad hoc wireless NetWOIKS...........oooiiiiiiiiiiiieeee e 10
A S R 11 (o o [N o3 1o o [P UPUPPPPPRTPRPP 10
2.2.4.2 Issues and desSign QOAlS.couuiiiiiiiiiiii i 10
A e B @ o 1T =i [o] o USSP 12
2.2.4.4 MAGCA ... et eee— et a e s —— e e ——araa e s anaraaaas 12
2.2.45 IMACAW ..ottt e+ttt e e e e e e e et e e e e e aaae e e e e traeaaeaennrres 13
2246 [EEE BO2.11coiiiiiiiiiieee ettt 15
2.2.5 CritiCal @VAIUALIONeiiiiiiiiii et e e snb e e s e e 18
2.3 RoUtING IN MANET ..ot e e e e e e e e et aee e e e e e eennen 18
P22 70 N 01 o To [1 Tox 1o [P RSUPPPPPPIN 18
2.3.2 ClaSSIfICALIONuuiiiiiii i et e e et aaaeaaaaaaanes 19
PR B B o (o] o1 [PP PPPRTRTTT 19
2.3.4 DYNAMIC SOUICE ROULINGvvvvveeesimmmmsmeeeeeeseesesssneneiestesseeeeeeeeaeseessessssnssnsnnssssensseeees 20
PZRC TR 3 [1o To [T i o] o R PR PPRP 20
P B @ o 1T - Vo] o S P 20
2.3.4.3 Critical @VAIUALIONooiiiiiiieeeeeie et 23
PR I A |] o] T A=Y T (o= 0] 1 Vo 23
2.4 The Transport layer in MANET ... 24
2 3 R 01 o To [1Tox i o] [URSRPPPPPPIN 24
2.4.2 1ssues and deSigN QOAIScovviieieeiiii e ——————————— 25
pZ T T © T o =T - 11T o R 26
244 TP FEW oottt ettt e e e sttt e s e et b e e e e s e bb e e e e e s breeeee e e e 27
P o R 11 {0 Yo 111 1o) o PP 27
S @ o T - (o) o [T 27
2.4.4.3 Critical @VAIUALIONcoiiiiiiiiceeee ettt 29
2.4.5 UDP in Wireless NEtWOTKScooiiiiee i e e e e e e e e e eeaanees 31
2.4.5.1 INrOAUCTION ... eememe e e e e e e e e e e e e e et e s e e e eeaeeeeeeesennes 31
2.4.5.2 OPEIALION ...ttt ettt ettt e e e e e ettt e e et e e e e e e e e e e e aab b b e aae e 31
2.4.5.3 Critical eValUatioNuuuiiie e e 32

vii

3 The NS-2 NetWOrk SIMUIATOL 33

1 200 | 1 U o (1o o) o 33
3.2 RUNNING SIMUIALIONS.....cciiiiiiiie e e e e e e e e e 34
T R Yo7 = o T- 1 [0 1 USSR 34
C J7 N N[0 To =TSRSS 34
P B Vo = o 1 U SPRPPP 38
TG N I = Tt {11 PP 38
3.3.1 Trace CONFIGUIATIONeiiiiiiiiieiit e ettt ettt et e e e e e e e e e s e nnnae et eseeeeeeeeeaaaaaaanns 38
T T I - Vol (o] 1 -\ TSP 39
3.4 ANalysis Of traCe fileSccoo it 42
3.5 802.11 MAC in Network Simulator........ccceeeevveiiiiiiiiiiiie e, 46
G 7R 700 R a1 o o [N ox 1o o [PPSR 45
3.5.2 MAC FEALUIES ...ttt e e e ettt e e e e e e e aaaeeeeeeeeetetb s e seeeaeaaaaeees 45
3.5.3 MAC funCtion BENAVIOULuviiiices e e e 47
3.6 DSR in NetWork SIMUIALONci oo ee et e e e e ee s 53
G 78 700 R [g1 o To [8 Tox 1o] [P0 PSSR 53
3.6.2 DSR 0Peration iN NS-2......coiiiiiiieeeeeeeiiie ettt ettt e e e e e e e e e e e e e s e e e aaannnnenes 54
3.6.3 The DSR functions behaviour implementersit?ccccuiiiiiiiiiiiiiiiii e e 54
3.7 Radio propagation MOAEIS...........oevuuieeiiii e 59
R 00 R [011 o o U T o o RS 59
T A =TI o - Tt 0 T Yo 1= PR 59
3.7.3 Two-ray ground refleCtioN e eeeeeiiee e e e e e e e e e e 60
3.7.4 Shadowing MOEl ... 61
4 Cross layer design for MANEToooviiiiiiiis e s 63
o R 1 1 (U o [711 o o PSPPI 63
v N 1 [o | o F= L (o I g (o Y= = o S 63
s R [1 {0 Yo [o 1o o PP REEERPRR 63
A © T o T= T - o] o PSR 64
4.3 Extensions to MAC 802.11 for cross layer design.............eeeeeeiiiniiieeeeeeneeeene. 6.6
0 T A Vg 1 {0 T [V i 1T o PR 66
4.3.2 Challenges N0 CONCEPL.....ceiiiiii ittt e e e e e e ettt e eaaaaaaaaeesaaeaaaannnnennnene 66
4.4 Extensions to DSR for cross layer deSigNu . ooceeveviriieeeeiiiiiiiiieeeeiiiiiiieenen. 07
0 T A Vg 1 {0 T [V i 1T o SRR 67
4.3.2 Challenges N0 CONCEPL.....ceiiiiii ittt e e e e ettt e eaaaaaaaaeesaaaaaaannnnnnnrene 67
N 0] 0] (=T g =T o1 = 11 o] o PP UPPRRR 68
4.4.1 EXtension t0 NS-2 - MAC JQYETcoeeeeiiiiiiiiiite ettt e e e e e e e e e e e e s e e nennes 68
4.4.2 EXIENSION t0 NS-2 = DSuuiitiees i s eeneattatteseeeeeeeeaaaaaeaeaeessssassssstasaesereeeeaaaaeaaaeesses 73
5 SIMUIALION FESUILSui e e e e e e e e e e e eaaaans 75
5.1 Description Of the SCENAIIOS...........iceccceeeeeeiiiiiis s e e e e e e e e e e e e eeeeeareeennneeeeennnes 75
Lot I S - [o =T o= - T T 1P 75
5.1.2 MODIlItY SCENAIIOS ...ttt ittt e e e e e e e e e e e e e e bbb bbb e e e eeees 77
I I - o2 Yo 10| o= PSSR 78
5.2.1 File transfer protoCol (TCP)ico oo coeeeeiieiiieiee et e e e e e e e e e e e e e e s e e e 78
5.2.2 Constant bir rat€ (CBR)......ciiieiii ittt r e e e e e e e e e e e e s s e s s e nnnnnenne 79
5.3 Performance parameters and graphical rapssm................ccccevvieeeeveeennnna 9

viii

L0 700 R I] 0] o |] o 11 | PP EEEEREPR 79

Lo T2 = o 10 1] 0o Ko 1Y/ =1 ¢ g T=T T I PSR 79
L T T I 1S3 A o - T =3 PR 79
TR T |V Y O =T ¢ (o] £ F P TSP PSTRUPPPRN 80
SRS T T = {0101 (=N =] 1 o] £ T PSPPSR 80
5.3.6 ROULE CRABNQGES.....uutiiiiiiiieii ettt ettt e e et e e e e e e e e e e e e e e s aa e e nnnnennes 80
5.3.7 Route changes between two nodes along@&imitime.............ccccooviiiiiiiiiiieeeeceen 80
5.4 Chain SCENAIIOccvvuiiieeiieiiii e commmms e e e e e e e eaaaa e e e e eaeataaeeeeesssaanaaeaaaeesssssnnaeaseesnes 81
B4 L TCP oottt et ettt ettt ettt ettt ettt e et et et et ne et et et reere et 81
5.4.2 UDP ...ttt ettt ettt ettt a et ettt et ettt et et ne et et et reere et 83
SR I €1 {0 =Yoo =1 o PR 85
D5, TCP ettt ettt ettt ettt ettt et ettt et et et et et et ereete et et et eneereerennas 85
B.5.2 UDP ..ottt e ettt ettt ettt ettt e et et e ne et et et et e ae et et et e eae et e e e 88
5.6 Random waypOoint SCENATOiieiiiiiieeeeeiiiiie e e e ee s e e e et e e e s e esbeeeeeeeeeenen 90
5.6.1 TCP
5.6.2 UDP
5.7 Manhattan SCENAIIOuuuiiiiiiiiiieeeieee e ee e e e et e e e e et e e eeeeeeesssaeaeeeeens 94
D7 L TCP ettt ettt ettt ettt ettt ettt et et et et et et ereete et et et eneereetennas 94
B.7. 2 UDP ..o ettt ettt ettt et e ettt e ettt et et anete et nnns 96
6 Conclusion and fULUIE WOIKuiiiiiiiiice e e e e e 98
6.1 CONCIUSION ...eiiiiicii e emee e e et e e ettt e e et e e e e et e e e eabn e e s eennnaeeeesaneeesaneeesans 98
6.2 FULUIE WOTK oeuuii it e e e et i s+t e e e e e e et e e e e e e eaba e e e e e seennnssaa e eeeeesnaannas 99
[(=T (=] o =TT 101
Appendix A - Rest of simulation graphiCs........e oo 104
Appendix B - Configuration of the SimulationS.........cccveeeieiiiiiiicee e, 132
APPENTIX C = SOUIMCE COUR.....uuiiiiiiiiiiiieee ettt ettt e e e e e e e e e e e e r e e e e e eeeeas 193

List of Figures

Figure 1: Hidden and exposed terminal problems...............coovvviiiiiiieiii e, 12
Figure 2: Backoff problem in MACA ... e 13
Figure 3: RRTS packet retranSmiSSIONcccooo i eeeeeee e 14
Figure 4: RTS/CTS mechanism in IEEE 802.11 ..ceeeeeriiiiiiiiiieiieeeeeeeeeeeeeeeeeeiiies 16
Figure 5: DSR OPEratioNcccoiiiiiiiieeeeier ettt e e e e e e e e e e e e e e eeeeeeneeeeeneeennnnn 22
Figure 6: The connection blackout cycle for chaipalogiescccccviiiiiiinnennn. 8.2
Figure 7: RTS-CTS-DATA-ACK dialog in IEEE 802.11.cc.......oiiiiiiiiiiiieeeeeiiiieeeeeeees 64
Figure 8: MAC 802.11 MOdifiCatiONuuueeeeeeeiiiiiiieeiiiiiicrre e e e e e e e e e e eeeee e 69
Figure 9: Communication with the upper l[ayer ..o 70
Figure 10: Proposed approach USiNg an AVEIrage. . ..uerrrreniaaaaeeeaaaaaaeeeeeeeeeeeeens 73
Figures 11,12,13: Chain scenario and flOWS e cveeeeiiiiiiiiiiiiiinieeeeeeeeeeeeeeeeeeeee 76
Figures 14,15,16,17,18,19: Grid 7x7 scenarios Bwesfcccceceeeeeiiveeeeeeeenennn 9
Figure 20: Throughput TCP Chainicoemmme et e e e e e e veeeeneeeeenes 82
Figure 21: Routing overhead TCP ChaiN.......cccooeciiiiiiiiie e 82
Figure 22: Lost packets TCP Chainoooiiiiiiiiiii s 82
Figure 23: MAC errors TCP Chainiiiioiiee i veeeene e 82
Figure 24: Route errors TCP Chaincoooeiiiiiiiiiiie e 82
Figure 25: Route changes TCP Chainccceeiiiiiiii e 82
Figure 26: Throughput UDP CRaiNeieeieei e 84
Figure 27: Routing overhead UDP Chaincccccovvvviiiiiiiiiiiiiiiiee e eeeeveeeeeee 84
Figure 28: Lost packets UDP Chain...........cocemmeuiiiiiiiiieeeeeeececceeee s 84
Figure 29: MAC errors UDP CRaiNcoooo i 84
Figure 30: Route errors UDP Chain...........cooommmuiiiii e 84
Figure 31: Route changes UDP Chaincoeeecmmiiiieieieceiiieeeeeee e 84
Figure 32: Throughput TCP gridccooiiiiieeeeieee e 86
Figure 33: Routing overhead TCP grid........cocccceoiiiiiiiiiieiiiieeeeeeeiii e 86
Figure 34: LOSt PACKELS TCP Griduu e eee e eee ettt 86
Figure 35: MAC errors TCP gridc...uuuuuuimmmmmeeeeeeees e e e e e e e eeeeeeeeeaesnnnn s s 86

Figure 36: Route errors TCP gridi e e eeeeeeeiiiiiiiiiss s s e e e e eeeeseeeeeesseseeeeeeeesnnnns 86
Figure 37: Route changes TCP grido oo 86
Figures 38, 39, 40, 41: Length of the route in GGENAIIOuvvvuiiiiiiieeeeeeeiieeens 87
Figure 42: Throughput UDP gridoeiicoommeiii e 89
Figure 43: Routing overhead UDP grideeceeeeeeeeeeeeeeeeeeeeinninnnnnnees 89
Figure 44: Lost packets UDP grid..........ooiceeeeeiioii e 89
Figure 45: MAC errors UDP griduuuueiiieieeiiiiiiiiee e e e e eeeeesveeeeeeeeeeees 89
Figure 46: Route errors UDP gridooioceeeemiiieeeeeeeeeeeeeeeeeeeti e 89
Figure 47: Route changes UDP gridoooieeeeeiiiiieeeeeiir e eeeeeee e 89
Figure 48: Throughput random TCPuicemm i 91
Figure 49: Routing overhead random TCPo« oorreeaaeeeeeeeeeeeeeeiiiisenn e 91
Figure 50: Lost packets random TCP.........uiiiiiieeeiiiiir e 91
Figure 51: MAC errors random TCPoiii e e e e e 91
Figure 52: Route errors random TCPueeiiiieeeeeeeesrs e eeeeeee e 91
Figure 53: Route changes random TCP ...t 91
Figure 54: Throughput random UDPcoeeeeie e eeeeeeeeiiiieeneeees 93
Figure 55: Routing overhead random UDP.......cccceiiiiiiiiiiie e 93
Figure 56: Lost packets random UDPcciiiiiiiiiiiieecceceeeeees e 93
Figure 57: MAC errors random UDPooiiiiiiiiiiiiiiin e 93
Figure 58: Route errors random UDPeuiiiiiiiiieeeeeeeeeii e 93
Figure 59: Route changes random UDP.........ccccooviiiiiiiiiiiiiiiiiee e veeeeeee 93
Figure 60: Throughput manhattan TCP ... eeeee e 95
Figure 61: Routing overhead manhattan TCP ... 95
Figure 62: Lost packets manhattan TCP ..o 95
Figure 63: MAC errors manhattan TCP ... eeeee e 95
Figure 64: Route errors manhattan TCPccccceeeriiiiiiiiiie e 95
Figure 65: Route changes manhattan TCPccc oo 95
Figure 66: Throughput manhattan UDP ... e 97
Figure 67: Routing overhead manhattan UDPooovviiiiiiiiiiiie e 97
Figure 68: Lost packets manhattan UDP...... oeeeeiiiiiiieeeeeeeiceeeeceiiiiinnees 97
Figure 69: MAC errors manhattan UDP ... oieeeeeeeiiiieeieece e 97
Figure 70: Route errors manhattan UDPo eeeeiiinecieeeceeeiiii e 97
Figure 71: Route changes manhattan UDP oorieeeieeeiiiiiiieiiiiiiiiinnneeeeen. 97

Xi

List of tables

Table 1:
Table 2:
Table 3:
Table 4:
Table 5:
Table 6:
Table 7:
Table 8:
Table 9:

IEEE 802.11 PAramMEetErScccvuuicceemme ettt ea e 16
Comparison of TCP solutions for ad ho@lgss networks.............ccccceeeeeeennn.
Old fOrmat Of trACESeeveiiiiiiiieeee e ee e e e e e e eeeeeeeees 39
New format Of trACESoiiiiiieeeeeiii s 40
Formula 1 eXplanationceemeeooeeeeeeeieeeeeeeeiiir e e e e eereeeeeeeeeaaes 59
Formula 2 eXplanationceecceoeeeeeeeeieeeeeeeiirrr e eere e e e e e eeea e 60
Typical path 10SS eXponent ValUES ..o 61
Typical shadowing deviation VAIUES . .ceeeeeiiiiiiiiiiiiiiieeeeeee e 61
Equation explanation of formula 4............cooeevviiiiiiiiie e, 61

Xii

1 Introduction

1.1 Overview

In the 1970’s and the 1980’s, computer networksewmmsidered an infrastructure of fixed
form. In the latest years, the proliferation of n@bcomputing devices, such as laptops,
personal digital assistance (PDA’s), or mobile pdgyrhas led to a revolutionary change in the
computer world. To communicate all those devicewjrad network is not feasible, since it
has no mobility. Thereby, a new technology, wirglegtworks, is needed [35]. Wireless
networks use electromagnetic radio waves for exgingndata. However, in the last years, a
demand of mobility by users is increasing; hencepacial kind of networks is needed:
wireless mobile ad-hoc networks.

In wireless ad-hoc networks, the nodes themsédbres the network, and they do not need
fixed infrastructure, therefore each node executesing functionalities, such as forwarding
network traffic. Before designing an ad hoc wirslese should consider different features,
such as the use of MAC protocol, routing protot@nsport layer protocol, quality of service,
or support of security.

To work properly, the different protocols in wiesk ad-hoc networks must handle
different issues, such as noise of the networktimgunformation, transmission ranges, etc.
Sometimes in one node, only part of the informatiotkected by one protocol is delivered to
another protocol and a misinterpretation amongeth@®stocols may happen. To deal with
this, we propose a modification in the MAC 802.k#&tpcol to avoid launching unnecessary
operations in the DSR (Dynamic Source Routing)quok, achieving better performance in
the network, i.e. less routing overhead, less nguthanges, less collision of packets, less
route errors, less mac errors, and more throughput.

Concretely, DSR protocol launches route error wheneighbouring node is still near,
because it understands the information receivedh ftbe MAC layer as a broken link.
Usually, the interferences among radio ranges deaaould lead to this misunderstanding.
The proposed approach tracks the signal strengdach node, informing the routing layer

that the node has enough signal strength, skigp@goute error launched by DSR.

1.2 Proposed goals and accomplishments

The proposed goals of this master’s thesis are:

- To detect in MAC 802.11 [48] the presence ofghbbur nodes for each node
within its reachable radio transmission, using na&€work simulator [11]. This is
achieved by tracking the signal strength of neighiog nodes, that is, storing the signal
strength of neighbouring nodes for each transmistsiey make.

- To inform the upper layer, routing protocol DE3] in this case, when a
transmission was not successful, and if a neighbgurode is in the transmission range of
each other.

- To adapt routing protocol DSR using this infation, detecting error links and
avoiding unnecessary route maintenance processes.

- To compare the achieved results with previolges performing simulations in

several (static and mobility) scenarios, and féfiedent type of traffic (cbr,ftp,..)

The main goals were achieved successfully. Thauedgower of each neighbour node at
MAC layer was stored away in every node and usked ta inform the routing protocol when
a transmission among nodes was unsuccessful. D&Bcpt may conclude mistakenly that
there was an error link and triggers a “route neiahce” process upon receiving the
information about broken link from the MAC layen dur approach, DSR protocol is able to
distinguish if either link errors in MAC 802.11 aidlee to interferences among radio ranges of
the nodes, or neighbouring nodes are moving awagtHer words, if packet retransmission is
not possible at MAC layer because of the interfeesramong radio ranges of the nodes, our
approach detects if the node is still present,meanough to transmit. If so, to send a route
error packet is skipped and not triggered. Hermatjmg overhead is decreased and the overall

performance in the network is increased.

1.3 Document overview

The rest of the documentation is outlined as fadow
- Chapter 2 introduces the background about mahilaoc networks, MAC layer operation,
routing operation, and transport layer.

- Chapter 2.1 introduces mobile ad-hoc netwonkgeneral, describing its operation and

applications from a practical outlook.

- Chapter 2.2 introduces MAC layer in mobile a:imetworks, describing particularly
802.11 protocols, which are used in the currengigarof network simulator.

- Chapter 2.3 describes the routing operatiomabile ad-hoc networks; concretely it
analyzes the performance of DSR protocol.

- Chapter 2.4 gives an overview about the traridpger protocol, and describes TCP and
UDP protocols in wireless networks.

- Chapter 2.5 describes previous work in netvgamkulator as base of this project.

- Chapter 3 introduces the ns-2 network simulalioprovides a description of several
functionalities and examples about node configaratitrace files, agents, and scripts.
Afterwards, the rest of the chapters is outlinetbdews.

- Chapter 3.4 gives an overview of the MAC protaoathe ns-2 network simulator, and
describes different features and operations ofetlpstocols from a language-programmed
point of view.

- Chapter 3.5 describes DSR protocol in ns-2 ndtwsimulator from a language-
programmed point of view.

- Chapter 3.6 introduces the different radio pggten models that can be set in ns-2
network simulator
- Chapter 4 describes a cross layer design for EANThis chapter focuses on the
importance of interactions between the layers feotheoretical point of view. In addition, it
describes the interaction layer of MAC 802.11 pecotoand DSR protocol in ns-2 network
simulator.

- Chapter 5 shows and explains the simulationlt®sising ns-2 network simulator.

2 Background

2.1 Mobile Ad Hoc Networks

2.1.1 Introduction
A Mobile ad-hoc wireless network (MANET) is a systeof wireless mobile nodes that
dynamically self-organize in arbitrary and tempgraretwork topologies [16]. Ad-hoc
wireless networks can be located in networks trs®t onulti-hop radio relaying and may
operate without any support of fixed infrastructuks multi-hop, we refer to routes between
nodes that may contain multiple hops. In mobilehad networks, the system may operate in
isolation, or may include gateways to interfacethwiired networks, such as internet [35].
The remaining part of this chapter describes thessification of ad-hoc networks,
depending on their coverage area: operation, mahcissues, main objectives, and
contemporary applications. Finally, we provide aailgtion of advantages and disadvantages

compared to other type of networks as a critical@ation

2.1.2 Classification
We may classify mobile ad-hoc wireless networks itfiree sub-types [16]: Body, Personal,

and Local area networks.

Body area network
A body area network (BAN) provides connectivityween wearable devices, such as mobile
phones, earphones, microphones or mp3 playersméherequirements of a BAN are:

- Interconnection between heterogeneous devicgsntabile phones with microphone.

- Auto configuration. It should be easy add or reendevices in a BAN

- Services integration. Data transfer of audio a0 should be compatible with non-
real time data, such as internet traffic.

- Interconnection with other BAN’s or personal am@mputers (PAN’s) to exchange
information
The radio covered for BAN may be 2-3 meters, bezaussially they are devices to use close
to the body.

Personal area network

Personal area networks (PAN) connect mobile dewoesto each other, usually in a range of
10 meters around a person. It is possible to canaegRAN with a BAN dealing to the
possibility to make ad hoc networks with any eleait device, such as laptops, PDA’s or

mobile phones.

Wireless local area network

Wireless Local Area Networks (WLAN) have a rangewhbl00-500 meters; therefore, they

achieve more flexibility than wired LAN. It is a gd solution for home and office networks.

On the implementation of a WLAN, we can target thfferent approaches: an infrastructure-

based approach or an ad-hoc approach. An infrastatbased approach is based on the
existence of an access point that provides acaasthé mobile devices towards a fixed

network, such as internet. On the other hand, khadwireless networks a centralized

infrastructure is not required.

2.1.3 Operation

The main issues in an ad hoc network design arfellsvs [35]: medium access scheme,
routing, multicasting, transport layer protocol, ality of service provisioning, self-
organization, security, energy management, addmgssind service discovery, energy

management and deployment considerations.

Medium access control

The main responsibility of a medium access confddRC) protocol in ad hoc wireless
networks is the distributed arbitration for the rgéftachannel for transmission of packets. In

the chapter 2.2, we will discuss this protocol.

Routing

The main objective of the routing protocols is eaying route information finding a feasible
path to a destination based on different critexierh as hop length, minimum power required,
or lifetime of the wireless link. The foremost dealges of routing protocol in ad hoc wireless

networks are explained in the next section [35]:

- Mobility: The mobility associated with the nodiesds to path breaks, packet collision,
transient loops, stale routing information, andficlifity in resource reservation. A good
routing protocol should be able to minimize thesseies.

- Bandwidth constraint: In the same radio rangenatles share the channel, but only an
amount of bandwidth is assigned to each one.

- Error-prone and shared channel: The bit errag (BER) in a wireless channel is very
high, compared to wired networks. The bit erroe riatthe percentage of bits that have errors
relative to the total number of bits received itransmission. A fair routing protocol should
consider this handicap, since a high BER valuectfféhe limited energy resources of a
wireless network leading to lost packets.

- Location-dependent contention: When the numberoalfes increases in the network, the
load on the wireless channel varies and the cadotergoes up. High contention leads to
higher packet collision and wasted bandwidth. Rauprotocols should be able to avoid this
issue.

- Minimal route acquisition delay: When we needoate, the time to acquire the path
towards a node should be as minimal as possible.

- Quick route reconfiguration: The mobility of nadm wireless ad-hoc networks leads to
broken paths. Routing protocols should be ableetmonfigure broken paths as quick as
possible.

- Loop-free routing: The mobility of nodes in mabibd-hoc networks may lead to
temporary loops formed in the routes. A routingtpcol should detect such loops and correct
them as soon as possible.

- Distributed routing approach: usually, a centoaiting approach is not useful in a mobile
ad-hoc network, where the mobility of nodes is hi§hould be proposed a distributed routing
approach.

- Minimum control overhead: Control packets aredusefind and maintain routes in the
network. A routing protocol should be able to miraenthe use of control packets, because it
consumes resources of the network.

- Scalability: When the number of nodes grows inetwork, a routing protocol should
perform well in the new topology with minimum cooltoverhead.

- Qo0S: Routing protocols should be able to prowdeality of service (QoS). QoS is a
network guarantee that satisfies a set of predatedrservice performance constraints for a
client in terms of the end-to-end delay, availdtdmdwidth, and probability of lost packets

[16]. For example, QoS is required for multimediplécations.

- Security and privacy: Routing protocols shouldaée to avoid vulnerability threats or

any kind of attacks suffered by an ad hoc network.

Transport layer protocols

The principal responsibilities of the transportdayrotocols are congestion control, flow
control, and the order delivery of the packets [3Vhe major problem with transport
protocols in mobile ad-hoc networks arises due reguent path breaks, stale routing
information, high channel error rate, and netwoaktiions. A common transport protocol in

ad hoc networks is TCP (transport control protqashich will be discuss in chapter 2.4

2.1.4 Applications of Ad Hoc Wireless Networks

The principal applications of ad hoc wireless neksare [35]:

- Military applications: In a military environmentould be not feasible to establish a fixed
network, due to topology and hazard constraintssuoh environments, it is preferable a
mobile and fast to develop infrastructure.

- Collaborative and distributed computing: Ad heaeless networks are also useful in
temporary communication infrastructure, such aderences. In this kind of events, security
is not as crucial as in military environments, vz the reliability of data transfer is highly
importance.

- Emergency operations: In any disaster, the comcation infrastructure can be destroyer.
Usually, in these environments time and resources lenited, thereby to set up a
communication network as quick as possible is meguiThe main advantages of ad hoc
networks in these environments are self-configaratf the system with minimal overhead
and fast set up of network configuration.

- Wireless mesh networks are ad hoc wireless m&Bvdo provide an alternate
communication infrastructure for mobile or fixed des/users, without the requirement
constraints of cellular networks. Cellular netwoeke a type of wireless networks composed
of cells that cover an operator territory [16]. BEydes of mesh networks are mesh networks
over highways, over university campus, or overdesiial zones, where each roof operates
like a node in the network.

- Wireless sensor networks: Sensor networks &recaof ad hoc networks used to provide a

wireless infrastructure among the sensors deplayadspecific application domain [35]. The

sensors can be used measuring parameters, suempsrature, humidity, smoke, etc. The
major differences between sensor networks and adavireless networks are listed below:

- Mobility of nodes: in sensor networks, mobildf nodes is not always present. A sensor
network monitoring the temperature in an area igx@ample of no mobility of nodes,
whereas sensors installed in vehicles across apwis working as sensor nodes is an
example of mobility of nodes.

- Size of the network: The number of nodes in senstworks can be much larger than in
ad hoc wireless networks.

- Data-centric: sensor networks focus on the dateerated by sensors [8]. For example, if
we are interested in those nodes achieving 25 degretemperature, data from nodes
with less temperature will not be important.

- Power constraints: The sensor network may workarmful conditions. In these cases,
such as emergency operations, there is no humagerssipn, and recharging the
battery of nodes is almost impossible. Hence, pawestraints are higher than in ad
hoc networks.

- .Data information fusion: data fusion referstiie aggregation of multiple packets into
one before retransmitting it. This leads to minienikandwidth consumed by redundant
headers of the packets and smaller medium accdayg geovoked by transmitting

multiple packets.

- Hybrid ad hoc networks are hybrid wireless amatiures between ad hoc wireless
networks and cellular networks. These kind of neksacombines advantages of fixed
stations with multi-hop features of ad hoc wirelassvorks. The principal feature of these
networks compared with ad hoc wireless or cellaktworks is the channel reuse. Several
methodologies are used to achieve this objectiveh s cell sectoring, cell resizing, and
multi-tier cells. The main advantages achieved Higher capacity than cellular networks
obtained due to better channel usage. Increasedbifiy and reliability in routing:
flexibility is achieved from selecting the best nlelmode or base station. Reliability is
obtained from multi-hop paths in the case a baaBost fails. Better coverage: due to
multi-hop performance over the cell, the connettiin areas with transmission difficulties

is improved.

2.15 Critical evaluation

We may evaluate ad-hoc wireless networks compdheg with cellular networks, as they
are wireless networks as well. The main differenlcesveen cellular networks and ad-hoc
wireless networks are as follows:

In cellular networks, routing decisions are takana centralized manner with more
information about the available destination nodbgmeas in ad-hoc wireless networks those
decisions are taken in the node due to absencéda$ea station. Consequently, nodes have to
manage routing information and host informationaimistributed manner. For the reasons
exposed above, routing performance is more corniplex-hoc wireless networks [35].

In ad-hoc wireless networks, paths break frequdmlyause of the mobility of nodes. The
routing protocols employed in cellular networks dm®e obsolete, because they cannot
manage a good performance searching paths amorgg nath high mobility. Additionally,

routing protocols should fulfil both lost packetsdebattery constraint challenges [38].

2.2 The medium access control sublayer

2.2.1 Introduction

Networks can be divided into two categories: thasiag point-to-point connections and those
using broadcast channels. Broadcast networks hamegée communication channel that is
shared by all the nodes in the network, and paifgeint networks include many connections
between individual pairs of nodes.

In every network, there is a channel where dateaissmitted. In a broadcast network, the
protocols that determine who gets to use the cHaamee called Medium Access Control
(MAC) protocols, which belong to a sub layer of thta link layer. The data link layer is
responsible of providing service interface to thework layer, dealing with transmission

errors and regulating the flow of data [37].

2.2.2 Issues and design goals
The main challenge in the MAC layer is how to aditecthe channel among competing users.
Before discussing the major protocols used in teCMayer, there are several key issues to
be noted [37]:

- Single channel assumption: just one single chHasravailable for all stations.

- Collision assumption: if two frames are transmgtat the same tame, they overlap in

time and the signal becomes garbled.

- Slotted time: Time is divided into intervals eall slots. Transmission of frames always
starts in the beginning of a slot.

- Carrier sense: Stations are able to realizeeifctiannel is busy or not. If so, a station will
not attempt to use the channel until it becomes idl

- No carrier sense: Stations cannot sense the ehdmefore using it. Only after

transmission, a station may verify whether thegnaission was successful or not.

2.2.3 Operation

The classical Local Area Networks (LANs) use Carrgense Multiple Access with
Collision Detection (CSMA/CD) in the MAC layer fochannel allocation [37]. Using
CSMA/CD, if two stations try to get the channelta same time, they will detect a collision
and will abort the transmission. After the collisiecs detected, a station waits a random
period, and then it tries again to get the channel.

This protocol cannot be used in wireless netwokeahse the range of the nodes must to
be considered. In wireless networks, the interfegermay happen in the receiver, whereas
CSMA/CD only considers interference in the sendéhis will be explained in the
hidden/exposed terminal problem (chapter 2.2.4.2).

224 MAC protocols in wireless networks

224.1 Introduction
A common radio channel is shared in ad-hoc wirelestsvorks. Over this radio channel,
access channel protocols used in wired networksrbe®bsolete and new challenges must be
managed, such as mobility of nodes, limited bantwadailability, quality of service support,

and hidden/exposed station problems.

2.2.4.2 Issues and design goals
Bandwidth efficiency: The radio spectrum where ad-tvireless networks operate is limited.
Therefore, the MAC protocol must be designed irhsaignanner that all nodes receive a fair
share from the bandwidth available. In additiore MAC protocol should grant channel
access to a node only when its transmission daesffeet any ongoing other transmission.
Quality of service support: It is quite complicatex provide quality of service in ad-hoc
wireless networks since bandwidth reservation peréal at a concrete instant of time may

become invalid once the node moves towards outergogitions. In addition, the bandwidth

10

reservation is hindered by the lack of a centrdlig@tion. The MAC protocol should be able

to manage those constraints.

Synchronization: Synchronization is crucial for damdth reservation, since time slots

assigned to the nodes cannot be assigned in amarelmanner. In chapter 2.2.4.6 is showed
an example of synchronization and channel resenvati a wireless environment, where the
order in which a node gets the channel is very iamd

Mobility of nodes and no fixed infrastructure: Irellolar networks, the base station

coordinates the bandwidth reservation among thesidd ad-hoc wireless networks, there is
not a base station, therefore nodes must schedoéssto the medium sharing more control
information. The MAC protocol must minimize thisesload.

Hidden and exposed problem: The hidden stationl@nolarises when there is collision of

packets at the receiving node, because when noddasaasmitting, they are not within the

transmission range of each other, but they aréentiansmission range of the receiver [35].
Consider figure 1, where S1 is transmitting to Rdl &2 can potentially interfere with R1 but

not with S1. If S2 sense the channel, it will netah S1 because it is out of range, and
therefore mistakenly conclude that it can transtoitR1.At this moment, if S1 starts to

transmit, it will collide at node S2, resulting iost packets. The exposed station problem
happens when a node concludes mistakenly that tdrarmsmit, because a nearly node is
transmitting to another node. Consider again figurevhere S1 is transmitting to R1. If S3

sense the channel, it will hear an ongoing transioms and it will falsely conclude that cannot

transmit to R2. In this case, collision could happely in the zone between S1 and R1.

11

Legend
..... » packet transmission
——» transmission not alowed

O transmission range of node Sl

%+ transmission range of node S2

Figure 1:Hidden and exposed terminal problems [35].

2243 Operation
MAC protocols for ad hoc wireless networks are sifeed into three types [42]: contention-
based protocols, contention-based protocols wibrkation mechanism and scheduled-based
protocols. In contention-based protocols, a nodesdwt make any resource reservation a
priori; therefore, its periodic access to the clerne not guaranteed. In contention-based
protocols with reservation mechanism, nodes are tbteserve bandwidth a priori; therefore,
they can support quality of service. In this kinidpootocols, if synchronization exists, all
nodes in the network are advised when another rogerforming a reservation. Finally,
scheduled-based protocols are based on schedoforgiation exchange among the nodes.
Into contention-based protocols suitable for MANE.Tmost important protocols are
MACA[19], MACAWI[3], and IEEE 802.11[35].

2244 MACA
Since CSMA protocol sense the channel only atrdnesmitter, the interference may still take
place in the receiver, therefore the hidden stgtimilem does not occur.
MACA protocol uses request-to-send (RTS) and deaend (CTS) dialog. Each node
upon receiving a RTS or CTS packet, avoids usirgg dhannel. Let us now consider A
sending a frame to B. A sends a RTS packet to & pécket contains the length of the data,

12

and its size is only 30 bytes. Then, B replies witB TS packet, which also contains the data
length, copied from the RTS packet. Afterwards, mwhe receives the CTS packet, the
transmission starts.

Since there is no carrier sense in MACA, each a@tatvaits a random amount of time
before trying to get the channel when it has he@alRT'S or CTS packet. A binary exponential
back off (BEB) algorithm performs the amount of ¢ito wait. BEB has not always the same
value: a node increases it each time a collisiatetected [19]. In MACA, most of collisions
occur among RTS packets. Since RTS packet size msush smaller than data packet, there
are fewer overloads compared to CSMA. However, dallesion is not guaranteed.

As RTS and CTS packets carry the expected duratiodata transmission, each node
hearing them will defer its transmission until ddtivers to the destination. Based on this
approach, MACA will solve hidden station problenb]3

2245 MACAW
The binary exponential backoff mechanism used inQAAperforms several disadvantages.
For example, consider figure 2, where S1 is tratisigi packets. In this case, the packets
transmitted by S2 are collided, and its backoff dew is incremented. Afterwards, the
probability of S2 to obtain the channel decreabespming blocked after a period. To rectify
this, in the packet header is attached the cuwralie of the backoff counter. When a node
receives the packet, it copies this value intows backoff counter. A fairest mechanism to
allocate bandwidth is obtained with this modifioati
Another improvement at MACAW from MACA is a contrphcket called acknowledgment
(ACK). In MACA, transport layer deals with transmien errors, but the typical
implementations of the transport layer have a tub@eriod of about 0.5 seconds; hence, it is
slow recovering errors. In MACAW, the data link émg manage that responsibility. Its
performance starts when the sender receives an p&tket once data has successfully
delivered. If ACK packet is lost in transmissiohetsender retransmits a RTS for the same
packet. In this case, the receiver does not seckl & TS packet; instead, it sends an ACK

for the packet received.

13

Figure 2: Backoff problem in MACA

There are two more control packets used by MACAWAtaBsending (DS) carries
information such as the duration of the data trassion. An exposed node hearing the DS
packet realizes that the previous RTS-CTS exchavagesuccessful. Therefore, it defers to
transmit until the expected duration of DATA-ACKatange.

Request-for-request-to-send (RRTS) packet is usedadhieve synchronization [3].
Consider figure 3. If there is a current transnoisdietween S1 and R1, and node, S2 wants to
transmit to node R2; R1 hears CTS packets from nRde Therefore, R1 defers its
transmission. Node S2 does not know anything atfmitontention periods during which it
can contend for the channel, and it continues gryiimcrementing its backoff counter. We can
solve this problem by having R2 do the contendindpehalf of S2. Then, if a station receives
a RTS packet to which cannot respond, it contendsg the next contention period and
sends a RRTS packet. Neighbouring nodes hearinBRES packet wait for two successive
slots, enough to hear for a successful RTS-CTSamngdh S2, upon receipt the RRTS packet
transmits a RTS to node R2, and the common packehaege (RTS-CTS-Data-ACK)

continues.

@ RRTS -
82 ‘——_*' ------------ »RD+ (s1)

Figure 3:RRTS packet transmission

14

2.24.6 IEEE 802.11

I ntroduction

Among all these protocols, IEEE 802.11 [48] is ¢@ndard for wireless LAN’s. Nowadays,
IEEE 802.11b and IEEE 802.11g are plentifully usedaptops and personal computers.
Using IEEE 802.11g, one communication achieveoupitMbit/s of data rate at the physical
layer. In 2007 it is expected that IEEE launches 802.11n standard, which will enable

transmission rates of 540Mbit/s in wireless LAN's.

Operation

Classical LAN uses CSMA/CD protocol to access thmanoel, listening for other
transmission and only transmitting if no one etsdoing so. However, this approach does not
work in wireless networks, because the interfereneg occur at the receiver, instead of the
sender, as we explained in hidden and exposedrsatoblem [37].

To deal with this, 802.11 MAC protocol supports twmdels of operation, distributed
coordination function (DCF), and point coordinatimmction (PCF). Whereas DCF does not
use a centralized control, PCF needs an access (Adth to coordinate the activity of nodes

in its area. PCF is an optional feature at diffe@92.11 implementations, DCF is obligatory.

DCF
DCF is based on CSMA/CA. Two methods of operatiensapported by CSMA/CA [37].

In the first one, when a station wants to transingenses the channel. If the channel is idle, it
starts to transmit. If the channel is not idle, semder defers until the channel gets idle and
then starts transmitting. When a collision arigés, station involved waits a random time,
using the backoff algorithm, and then tries again.

The second mode bases on MACAW and uses virtuaingtasensing (figure 4) [18].
Here, before sending data to a destination, theceosends a control packet (RTS) to the
destination. In this packet, the length of the draission is attached, hence every station
receiving this packet stores this information iloaal variable named network allocation
vector (NAV). The NAV of a station specifies therlesst time when the station is permitted
to attempt transmission. After waiting a SIFS (Bgere 4), the destination replies with a CTS
packet. This CTS packet also contains the duraifahe transmission, therefore any station
hearing this packet will set its NAV. All stationgithin the range of the source and the

destination are informed that the medium is alledatThe sender, after waiting for SIFS,

15

starts the data transmission. Then, the receivBer another SIFS, sends back the

acknowledgment (ACK) packet. Afterwards, when ttaasmission is over, the NAV in each

node marks the medium as free, and the processtadragain.

DIFS SIFS
Source RTS ‘ [DATA]
SIES SIFS
Destination . ‘
CTS ACK
s DIFS ==
Other T e
stations BACKOFF
I NAV RTS
NAV CTS
| NAV DATA

A

-
v ot

Figure 4: RTS/CTS mechanism in IEEE 802.11[16]

Inter-frame spacing (IFS) is the time interval bedw the transmissions of two consecutive
frames. We can differentiate four IFS in IEEE 802[35]:
o Short IFS (SIFS): it is the shortest interval, whigllows the highest priority to

access the medium. For example, before a statmiesea CTS packet.
o PCF IFS (PIFS): its value lies between SIFS andDIF
o DCF IFS (DIFS): it is used by stations operatinglemthe DCF mode to transmit

packets.

o0 Extended IFS (EIFS): it is the longest time intérvehich allows the least priority

to access the medium. It is used only when a stdi#s to report a bad or unknown

frame.
Table 1: IEEE 802.11 parameters [35]
Parameter 802.11(FHS$802.11 (DSSS) 802.11(IR)802.11b 802.11a
tsiot 50 usec 2Qusec 8usec 2Qusec 9usec
SIFS 28usec 1Qusec 1Qusec 1Qusec l6usec
PIFS SIFS + §ot
DIFS SIFS + (2 X dioy)

16

Table 1 shows different values of time slots anBSSHepending on the 802.11 parameter
used. However, we may realize that for any parambBi€&S will always be larger than PIFS,
since the value of PIFS lies between SIFS and DIFS.

To reduce the collision probability, the IEEE 8QRuses a backoff mechanism, which leads
to fair time distribution of the transmissionsalfstation senses the medium as busy, it defers
until the ongoing transmission finishes. At thisid, the station initializes a backoff timer by
selecting a random interval (backoff interval). Thackoff timer is decreasing when the
channel is sensed as idle, and stopped when aningngg@nsmission is heard. It is re-
activated again when the channel is idle an amotitime bigger than DIFS. Afterwards,
when the backoff reaches zero, the station stamsinitting [16].

Another improvement from this approach is to sergires depending on the time spent by a
station waiting for the medium. 802.11 DCF usesirary-exponential backoff for this
purpose. The initial backoff window (also calledntantion window) is established at
(0,CWmin). The interval is important, since chogsatoo large interval could result in more
overload, and choosing a too short interval cowddult in more collisions. The main
advantage of DCF is that contention window is chodgnamically depending on collision

occurrence [35].

PCF
PCF [37], defined by IEEE 802.11, allows the acdesthe medium with different priority

access. This access method uses a point coordif®@9r which operates at an access point;
therefore, PCF operates only in infrastructure-basstworks. The point coordinator asks the
other stations if they have any packets to semteSiransmission order is organized from the
point coordinator, there are no collisions usingFP@ode. PCF was never deployed

commercially [39].

QoS

Besides these protocols, the current 802.11 MAQopod has been enhanced to support
multimedia applications and quality of service. B@2.11 Task Group (TGe) has developed
the virtual distributed coordination function (VDLH13], as an enhanced distributed
coordination function (EDCF) to be incorporatecbitEEE 802.11e standard. The TGe also
has specified a hybrid coordination function (HCE] [4].

17

2.2.5 Critical evaluation

The main goal of MAC protocols is to share a simgiannel for all communications. When

the state of the channel can be sensed, statiangdsbe able to avoid starting transmissions
while another station is transmitting. This objeetis achieved by CSMA/CD, which is used

in classical LAN's. Different approaches are neeiedireless environments.

The hidden and exposed terminal problem is onehefltiggest problems to solve for
wireless environments. Classical MAC protocols usedired networks cannot manage this
problem, since they are sensing the channel onllgeasender [37]. Several approaches were
proposed in ad hoc wireless networks. MACA triesstve the hidden problem with
RTS/CTS dialog, but it cannot be solved completélgditionally, the responsibility of
recovering data lies at the transport layer, dubedack of acknowledgments at MAC layer.

MACAW protocol is an improvement from MACA protoctthat achieves faster error
recovery than MACA using acknowledgments packetsCKA Additionally, better
performance of hidden and exposed problem is obdafinom RTS/CTS/DS/DATA/ACK
dialog.

The last wireless protocol analyzed is IEEE 802%idtocol. This protocol is based on
CSMA with collision avoidance for channel accesise Tollision avoidance is performed by
adding a network allocation vector to the RTS-CT&ad). Although CSMA/CA works well,
its performance is better with few terminals. AEE 802.11 DCF, widely used in ad hoc
wireless networks, a binary backoff algorithm iediso achieve better use of the time among
all stations. This algorithm, however, bears sdvéisadvantages. The time spent counting
down in the backoff algorithm increases the ovedh@athe network. Although the backoff
interval chosen should be appropriate for efficien802.11 DCF is far away from this
purpose. Moreover, the 802.11 DCF leads to higlpester consumption, and collision

avoidance is not completely achieved [38].

2.3 Routing in ad hoc wireless networks

23.1 Introduction

The main goal of the network layer [37] is to cheas correct path to transmit packets
from a source towards a destination. For this psgpoouting protocols set up and maintain
routing tables, which store information on wherekss should be sent next to reach their
destinations. Routing protocols should be ablehtmose the appropriate paths and deals with

different network topologies from a source throagthestination of data.

18

Due to the high mobility of nodes in ad-hoc wirelegtworks, traditional routing protocols
used in wired networks cannot be applied dire@Bj[Moreover, other characteristics should
be considered before choosing a wireless routiogopol, as we have discussed in chapter
2.1.3.

2.3.2 Classification

In wireless ad hoc networks, for unicast routingréhis a single source node and a single
destination node. In unicast routing two types obt@cols are identified: proactive and
reactive.

- Proactive or table-driven protocols: In proaetiouting protocols, the topology information
of the network is stored in routing tables at evaoge. Therefore, when a node wants to send
packets towards a destination, it obtains immelyiatee path information from its routing
table. However, if routing changes happen freqyerktteping and updating routing tables
leads to additional overhead in the network. Someagiive protocols are Destination
Sequenced Distance Vector (DSDV) [31], OptimizénkLState Routing (OLSR) [16], Path-
Finding Algorithms (WRP) [27], or Source-Tree AdaptRouting (STAR) [12].

- Reactive or on-demand protocols: In reactiveéquols, when a node attempts to transmit, it
calculates the path before data transmission. @nhamd, reactive protocols could achieve
less overhead since routes are calculated onlgatled. On the other hand, the mechanism to
discover and maintain routing paths leads to amldhii overhead than table-driven approach.
In addition, the connection setup delay is highé&hwn-demand protocols. The principal
reactive protocols are Dynamic Source Routing (DBR) (which is used in our simulations
and it is described below), Ad Hoc On Demand DistaWector (AODV) [1], Adaptive
Distance Vector (ADV) [16], Temporally Ordered Rimgt Algorithm (TORA) [30],
Associative Based Routing Algorithm (ABR) [16], laion-Aided Routing (LAR) [22],
Signal Stability-Based Adaptive Routing (SSA) [@ihd Flow Oriented Routing[36].

There also exist hybrid protocols, combining bdik proactive and the reactive approach
[35].

2.3.3 Properties of ad-hoc routing protocols

Ad-hoc routing protocols are desired to accompinghfollowing issues [35].

- Distributed operations: A distributed routingnmore fault-tolerant than centralized routing,
since the stability of the network is not suppoigdust one single point.

- Minimum setup: Quick access to routes by nodesqsired

19

- Loop-free: Stale routes should be avoided, witictsually happens when paths are stored
in the cache of each node.

- Packet collision: The number of broadcasts madedzh node to discover routes should be
minimized.

- Mobility: Routing protocols should be adaptivetbpology changes. However, the changes
in a part of the network that not affects the nskdeuld be avoided. Additionally, it should be
able to cover optimal routes once the network bexsostable.

- Best uses of resources: It should achieve amaptuse of resources, such as bandwidth,
computing power, memory, and battery power.

- Quality of service: It should be able to provaleertain level of quality of service (Qo0S).
2.34 Dynamic source routing protocol

234.1 Introduction
The Dynamic Source Routing protocol (DSR) is andemand routing protocol used in ad
hoc wireless networks to allow communication ovetltiple hops among nodes. As other on-
demand routing protocols, the path-finding prodedaunched only when a path is required
by a node to communicate with a destination [35].

2.3.4.2 Operation
DSR was designed to restrict the bandwidth consunyecbntrol packets in ad hoc wireless
networks, by eliminating the periodic table-updaessages used in proactive protocols.
DSR protocol is based on two mechanisms: Rout®desy and route maintenance.

Route discovery

Route discovery is the mechanism by which a nodesBing to send a packet to a destination
D obtains a route to D. Route discovery is launahelg when S wants to send a packet to D
and it does not know a route to D.

Consider figure 5a). S attempts to discover a Bléiteoute to D. The process starts with S
broadcasting a route request packet (RREQ), wisickdeived by all nodes within the range
of S (B and H in this case). Here, a route requmestsage is composed of the following fields:
- Initiator (sender), and target (destinationjief route discovery.

- 1d: Unique identifier for the request.
- List record: stores all the intermediate addresdenodes through which the route request

has been forwarded.

20

This route request packet is flooded to all itsghbours. Once a node receives a route
request, if it is an intermediate nodegjpends its own address to the route record inothte
request packet, and forwards it by broadcastingwéyer, the route request packet is
discarded if the same route request has alreadyfbegarded, or its own address is in the list
record of addresses attached to the route reqaekéep

Afterwards, a destination upon receiving a routpuest packet, replies to the sender with
the reverse route attached into the route requatep. Consider figure 5a.The node D upon
receiving a request packet from S, replies withrth#e S-B-C-F-D.

Several DSR implementations have been improvedgusiating cache at intermediate

nodes, as it is explained on the coming section

Optimizations
Using routing cache, a node S will initiate theteodiscovery process whenever cannot find a
good source route in its cache. Routing cacheteclanique by which a node learns routes
from packets that were forwarded. The cache ofdeemoay learn either from the source route
used in a data packet, the accumulated route réc@doute request, or the route returned in
a route reply.

If no route is found in its cache, S will initiatbe route discovery process to find
dynamically a new route to D. An intermediate ndltigt is receiving a route request, could
reply with route reply message (RREP) wheneverténget node is already in its cache
routing.

In the route reply packet, it is appended the gadm the list record where the route
request has been forwarded, concatenated withatretpat was found in its cache towards
the destination node.

If the node is the target of the route discovebyr{ the example), it replies by sending a
route reply packet (RREP) towards the source 3y aitopy of the route list saved from the
route request. In figure 5a), the list is S-B-C-F{pon hearing the route reply packet, the
sender and the intermediate nodes save the rowatehie route cache for future operations.
For example, consider again figure 5a. If node @irureceiving a route request packet, has
already a route towards node D in its cache, it teagend back a route replay message to
node S with that route

21

a) Data delivery in DSR

. -
. -

RouteERRor [F-D]

b) Route Error in DSR

Figure 5:DSR operation

Route maintenance

Sometimes a node cannot deliver the packet in theeps of forwarding the packets toward
the destination, usually due to the mobility of esdin these cases, the adjacent node to the
broken link must return a route error packet (RERRJ)ards the original sender of the packet,
identifying the link on which the data could not delivered. When the sender node receives
the RERR with the broken link, it removes the linkm its cache, and all the intermediate
nodes as well. In figure 5b, each intermediateenedl remove the link F-D from its routing
cache upon receiving the route error packet . Atsime instance, if the sender node wants to
send data towards the same destination, it seaichies route cache for another route for this

destination; otherwise, the source performs a reuerdiscovery process [18].

22

2343 Critical evaluation
The main advantages are enumerated below [18] [35]:
- DSR, as reactive protocol, avoids the need ajding periodically the network with table
update messages. The route is set up only whes neéded, and using routing cache at
intermediate nodes leads to less control overhsamte the route discovery process is
triggered less frequently.
- When a node is forwarding packets, it may keejpsicache the routes stored in the packets
for future requests. Hence, a single route disgowan produce many routes towards the
destination, since intermediate nodes may repliy filoeir local caches.
- Due to its on-demand approach, routing packetheaa automatically scales when mobility

or network topology increases.

The main disadvantages are enumerated as folld»}$38]:

-The ability for intermediate nodes to reply froneir caches would lead to route reply storms
in some cases. As an example, in figure 5a, if 8 Rralready have a path for a destination D
in their cache, they will attempt to send a routply message, wasting bandwidth and
increasing the possibility of collision. A collisiccan also happen among nodes in the route
request phase, when nodes are flooding the rogtes¢ packet to the entire neighbourhood.
-At high mobility, the routing cache could contaisome stale routes, leading to
inconsistencies when those routes are used.

-The route maintenance process does not localbiraegroken link.

-The packet header size and per packet overheads guith route length, because the source
length is into the header of the packet.

-The connection setup delay is higher than in greaprotocols.

2344 Implicit source routing

I ntroduction

Using DSR, the source route is stored in the healdigre packet. Hence, all routing decisions
for a packet are made by the sender, avoiding ¢leel to update information at intermediate

nodes. On the other hand, per-packet overheadcisagsed each time the packet with the

23

source route is originated or forwarded. Impligtsce routing [15] keeps the advantages of

DSR source routing and avoids the per-packet oaerhe

Operation

Using implicit source routing, each packet is mdrkath a flow identifier when the sender
sends the packet. The flow identifier indicates thate to be followed by all packets
belonging to a logical flow from the sender to tlestination. Intermediate nodes store a soft
state indicating the next hop in the route for tit@w, therefore they do not need to save the
whole route in the packet and less overhead iaeti

A source can set up a flow by sending a flow eshblient packet. When an intermediate
node forwards a packet, it creates a flow tablsttwe information about the flow and the
source route. The flow establishment packet costawo headers: the flow identifier and a
source route with the timeout of the flow. Whenimtermediate node receives a packet sent
by implicit source routing, it checks its flow tablWhenever the flow identifier into the
packet matches with a flow identifier in the flombte, the node forwards the packet setting
the MAC layer destination address to the MAC adsliesthe next hop indicated in the flow
table entry. Otherwise, the node sends a flow unknerror towards the source.

When the source of the packet receives a flow uwknmessage, it marks the flow table

for this packet as flow must be re-established.

Critical evaluation

Compared with DSR, Implicit source routing achieiraprovements in packet delivery ratio.
Additionally, although routing packet overhead gased around 12.3 % with implicit source

routing, total bytes of overhead decreases betwéén- 80% [15].

2.4 Transport layer in ad hoc wireless networks

241 Introduction

The main function of the transport layer is to pdevreliable and cost-effective data transport
from the source towards the destination, indepethgdehthe physical and network protocols

used. Normally, these services are provided tasees in the application layer.

The Transport Control Protocol (TCP) [35] is aable, connection-oriented and full duplex

protocol used extensively in wired and wirelessvoeks.

24

Connection-oriented refers to the service thattituesport layer offers to the upper layers.
A connection-oriented service follows the next @saghe sender establishes a connection,
the sender use the connection, and finally the exerelease the connection. In some cases,
before a connection is established, negotiatiopasbmeters is performed [37].Full duplex
means that traffic can go in both directions atdhme time. The main responsibilities of TCP
protocol are congestion control, flow control, amdlered delivery of packets. The network
layer does not guarantee that packets are propetlyered , neither in the correct order.
Thereby TCP builds the right sequence of packetmaging network congestion as well.
From these responsibilities, reliability is achidve

Although the transport layer should not care alhether the network layer is working in
wireless or wired networks, in the reality it doeatters Transport protocols, such as TCP, are
not suitable for wireless networks, due to mobibfynodes, energy constraints, or length of

paths [35]. Therefore, new approaches are needetfitahese challenges.

2.4.2 Issues and design goals

The main constraints of ad hoc wireless networfectihg TCP performance are explained as
follows [9][35]:

- Misinterpretation of congestion window: In wirstenetworks, TCP interprets all data lost as
congestion in the network, because in wired nete/at&ta lost are provoked mostly due to
congestion in the network than transmission errAssa response of congestion, TCP slows
down the transmission of packets. In wireless netsidinks are not reliable at all, because
the mobility of nodes leads to frequently brokarkd. Therefore, it is not effective to slow
down the transmission of packets, since the probgenot the congestion. In this case, the
proper approach is to send that information agaisc@n as possible.

- Path length: The TCP throughput rapidly decreage=n the path length increase in wireless
ad hoc networks. The drop is caused by link lodsichvin turn is caused by interference
between neighbours.

- Channel asymmetry: Resolving channel contensamsually asymmetric because the sender
takes more time to transmit than the receiver dokerefore, TCP acknowledgments can be
gueued at the receiver and they can be dropped tiegnare sent back to the sender. This
performance reduces the throughput of the TCP cxtiome

- Uni-directional path: TCP use acknowledgment pé&skio ensure reliability. In wired
networks, ACKs packet size is short, thereforensumes low bandwidth. In ad hoc wireless
networks using 802.11 protocol in the MAC layeregvTCP ACK packet requires RTS-

25

CTS-DATA-ACK exchange among the nodes. In consecgiethe overhead in the network

increases up to 70 bytes without retransmissions.

- Multipath routing: Some routing protocols use tplé paths between source and
destination to transmit packets. TCP with multippapproach can increase out-of-order
packets, which provokes duplicate acknowledgmdeta]ing to launch congestion control

and degrading the performance of the network.

- Network partitioning: Due to the mobility of naglead hoc wireless networks can be divided
in several networks, leading to a partitioned nekw®CP should be able to not merge these
networks when the sender and the receiver of the $€ssion remain in different networks
after the partition.

- The sliding-window: When a sender transmits ansag, a timer is also started.. The
destination, upon receiving a segment, replies wittegment bearing an acknowledgment,
which indicates the next segment expected. If ithe £xpires before the acknowledgment is
received, the sender transmits again. In ad hoelegs networks, the sliding-window leads to
degraded performance, due to bandwidth constrawitgre the MAC protocol could not

perform correctly.

2.4.3 Operation

There are several TCP enhancements in ad hoc ssreletworks. The main protocols are
feedback-based TCP [4], TCP with explicit link & notification [14], TCP-Bus [20], ad-
hoc TCP [25] and split TCP [23].

NewReno TCP

The presented results in this master’'s thesis grdjave been obtained using NewReno
TCP enhancement in the transport layer. NewReno i§G improvement of Reno TCP in
ad hoc wireless networks used by Nahm, Helmy andoKi28]. Reno TCP is, as well, an
improvement from TCP that incorporates Fast Regoard Fast Retransmit algorithm [17]..

With fast retransmit, the sender, upon receivingltimle duplicate acknowledgments,
concludes packet has been lost and retransmifsattieet without waiting for timeout.

Fast recovery operates together with fast retrandboiring Fast Recovery, the sender is
able to estimate the amount of outstanding datat Fecovery starts receiving an initial
threshold of duplicate ACK’s. Upon receiving theetbhold, the sender retransmits one packet
and reduces its congestion window by one half. muthe whole process, the sender increase

its congestion window by the number of duplicateKASCwas received. Fast Recovery is

26

optimized to work with a single packet dropped framwindow of data. However, its
performance is not so good when multiple packetslawpped from a window of data [10].
Some problems of Reno are that it cannot distinghetween random loss, usual in wireless
environments, and congestion. Therefore, the caiogesvindow is reduced in wireless
environments, decreasing the overall throughputaddition, Reno does not handle loss of
packets during Fast Recovery phase.

NewReno incorporates partial acknowledgments @aftCK). If there is a single packet
dropped from a window of data, the acknowledgenienthis packet will acknowledge all
the packets before Fast Retransmit was startedelenyvwe call partial ACK when there are
multiple packets lost, and the acknowledgment f& tetransmit packet will acknowledge
some, but not all of the packets transmitted bettoed~ast Retransmit.

In Reno, partial ACK’s take TCP out of Fast Recgwéecreasing the usable window back
to the size of the congestion window. In NewRenstdad, partial ACK’s are understood as
lost packets, leading to retransmit the packetrdfioee, NewReno can recover all lost packets

without a retransmission timeout.
24.4 TCP FeW

24.4.1 Introduction
Nahm et al. research [28] aims to evaluate thecetié congestion and MAC contention
from the interaction between routing and transpayer. We already discussed in chapter
2.4.2 the constraints of congestion window algamitin TCP. Nahm et al. proposes a
fractional window increment (FeW) scheme to imprd@P performance over 802.11 ad hoc

wireless networks.

2442 Operation

In several previous works based on 802.11 multihepworking, it is analysed how the
transport layer is affected by routing protocolshi et al. treat this problem from another
point of view; the routing layer is affected by th&nsport mechanism. Usually, TCP
consumes almost all resources in the network, gakesources destindédr the routing
protocol. Lack of resource in the routing proce$iecés the quality of the end-to-end
connection, and decrease the TCP performance.

Figure 6 shows the connection blackout cycle, whegplains the problem of the bad
interaction among the layers. The loop starts waeérCP sender sends more data than the

network can manage (step A). Then, the networkhmad provokes MAC contention at the

27

link layer (step B), which is interpreted as rogtiailure by the routing protocol (step C). The
routing layer triggers routing maintenance prodsssp D), leading to network overload (step

E). The loop repeats until TCP timeouts, or as lasghe MAC contention is persistent.

F o G
1L ;:c_:_u.ue-:mu = TCP timeout
faihure
C Mamtenance maffic | D
Bouting failure = (Be-routing, emor
messaging, etc)
[]
L
B MAC Tns E
C — l':' = . - Network overload
L l.'J.Il_E-E'-.-ﬂI’.‘].‘l)
]
A PR H
Network overload
iitiated by TCP L5

Figure 6: The connection blackout cycle for chaipdlogies [29].

Nahm et al. propose a fractional window incremectiesne (FeW), that keeps TCP
congestion window in an interval<= 1 at every round-time. Consider formula 1. TP

sender updates the window W upon receiving theespondent acknowledgments.

a

W new :VV current + W —

(1)

Here, o represents the growth rate of the TCP window Véwvary round-trip-timed =
AW). Foro =1, legacy TCP is performed, and TCP windoweaases one packet at every
round-trip-time. This value ofi performs well in wired networks, where the baratviis
high. However, the value ef could be too aggressive in 802.11 ad-hoc wiralessorks.

The fractional window interval can be 0<W<=1, buscaW>=1. Afterwards, W is
updating according formula 1. With = 0.01, Nahm et al. have found an optimal thrqugh
for the congestion window.

From the results [28], using chain topology, FeWerodynamic routing achieves better

throughput than basic TCP for 1 flow (90% more ingps). In grid topology, the results also

28

show the improvement of the FeW, achieving betésults in 7x7 grid than 13x13 grid.

Finally, random waypoint shows an improvement of@%or 32 flows.

2443

Critical evaluation

Table 2: Comparison of TCP solutions for ad hocaless networks [35]

Issue

TCP-F

TcP-ELFEN

TCP-Bus

ATCP

Split-TCP

Lost packets due
to BER or

collision

Same as TCP

Same as TCP

Same as TC

P
lost packets
without
invoking
congestion

control

Retransmi

t<Stme as TCP

Path breaks

RFN is sent tg
the TCP sende
and state
changes to

snooze

ELFN is sent to
the TCP sender
and state

changes to

standby

ERDN is sent
to the TCP
sender, state
changes to
snooze, ICMP
DUR is sent to

the TCP sender,

and ATCP puts
TCP into
persist state,
where TCP's
congestion
window size is
set to one in
order to ensure
thatTCP does
not continue
using the old
congestion

window value

Same as TCP

Same as TCP)

Out-of-order

packets

Same as TCP

Same as TCP

Out-of-orde
packets reache
after a path

recovery are

ATCP reorders
 packets and
hence TCP

avoids sending

Same as TCP

29

handled duplicates
Congestion Same as TCP Same as TCP Explicit ECN is used to | Since the
messages such| notify TCP connection is
as ICMP sourcg sender of split, the
quench are usef congestion. congestion
Congestion control is
control is same | handled within
as TCP a zone by proxy
nodes
Congestion Same as before Same as beforg Same as beforg Recomputed for] Proxy nodes
window after path| the path breaks| the path breaks| the path breaks| new route maintain
reestablishment congestion
window and
handle
congestion
Explicit path Yes Yes Yes Yes No
break notification
Explicit pathre- | Yes No Yes No No
establish
notification
Dependency on | Yes Yes Yes Yes No
routing protocol
End-to-end Yes Yes Yes Yes No
semantics
Packets buffered | No No Yes No Yes

at intermediate

nodes

- Feedback-based TCP [4]: The main advantage of-F@Pthe ability to restore a broken

path in a short amount of time. Furthermore, aufailpoint is able to send a route failure
notification to the sender noticing a broken p&n. the other hand, the main disadvantages

are that its implementation requires modificatitnesn TCP, and the congestion window used

(after a new route is obtained), could not achi@w@nsmission rate suitable for the network.
- TCP with explicit link failure notification [14]:The advantage of TCP-ELFN is an

improvement from TCP by using a link failure natétion upon detecting a link failure to the

TCP sender. The disadvantages are wasting of bdtitand resources, because of the use of

probe packets to check the route reestablishmedditidnally, like TCP-F, the congestion

window used after a new route is obtained couldhbefficient for the network.

30

- TCP-Bus [20]: The advantages of TCP-Bus are thprovement and avoidance of fast
retransmission by using buffering, sequence numbeend selective acknowledgments. The
disadvantages include high dependency from theinguprotocol, and its decreased
performance when path breaks at intermediate nodes.

- Ad Hoc TCP [25]: One of the advantages of ad TiG® is its compatible performance with
TCP, allowing it work with the internet. In additip other advantage is the improvement
achieved to work over ad hoc wireless networks. &dieadvantages include the dependency
on the routing protocol, and the addition of a rlayer to the TCP/IP protocol stack that
requires some changes in the interface functioed.us

- Split TCP [23]: The main advantages of Split T&e the improvement of throughput and
less impact of mobility. We have been discussedeantion 2.4.2 how TCP throughput
decreases due to the path lengths. Using split S@éttest path segments operates at its own
range, increasing the throughput and minimizing ititgbof nodes problems. The main
disadvantage of split-TCP is that requires severatlifications from TCP protocol. Since
TCP uses end-to-end approach, it does not perfd@id mechanisms at intermediate nodes.
Using split-TCP, the intermediate nodes process T@ekets, therefore certain security
mechanisms that require IP payload encryption dabeoused. Additionally, split-TCP is
affected by frequent path breaks.

245 UDP IN WIRELESS NETWOKS

245.1 Introduction
The User Datagram Protocol (UDP) is a connectientesnsport protocol, which transmits
packets of 8 bytes of header followed by data [377]does guarantee neither datagram
delivery, nor the right order. Using connectionlessvice, it is not required a session

connection between the sender and the receivenrasction-oriented does.

2.45.2 Operation
UDP does not perform flow control, error controt, retransmission upon receiving a bad
packet; but it is applicable in communications vehérss overhead is required, due to the
small size of the UDP header.
For example, in client-server situations, the dlieends a short request to the server, which

replies with a message back. If some message tisthesclient just tries again the request.

31

With this approach, less overhead is achievedessaot needed an initial connection setup
as other protocols performs.

UDP header is composed by four fields: source piastination port, UDP length, and UDP

checksum. The ports are required for the translpgdr to deliver packets correctly. UDP

length indicates the length of the packet, and dbEtksum is an optional field.

Although UDP does not suffer from the same problémas TCP in wireless networks, it also

decreases its efficiency in this kind of networ&g]|

2453 Critical evaluation
The main disadvantage of UDP includes that is eballle, does not guarantee delivery of
packets, and does not guarantee ordered delivergh®other hand, its low overhead makes
it suitable for client-server communications, sashDomain Name System (DNS) [5].
A useful study comparing UDP performance in wirglasad wired networks is provided by
Adigum, M. and Akintola, A. [2].

32

3 The ns-2 Network Simulator

3.1 Introduction

The use of network simulations could be unders@®d cheaper way of protocol validations
(both money and time), where the experimental dardi can be controlled. The last version
of the network simulator, ns- 2 [51], provides magmptocols like TCP, UDP or HTTP,
different traffic source behaviour like CBR, FTP W¥BR, propagation models, MAC layer
protocols, tools for topology generation and vigatlon [11]. In this master’s thesis project,
we focused on MAC 802.11 implementation and DSRimgyprotocol.

The network simulator ns-2 was developed as calilmm among researchers at UC
Berkeley, USC/ISI, LBL and Xerox PARC with the maiarpose of simulating the behaviour
of networks. The version 2 of network simulatorwsitten in C++ and OTcl, and it is
continuously evolving.

The main reason for using two languages is timéenga¥C++ is a powerful programming
language, which enables fast execution of apptioati but some modifications may be
requested in order to perform several simulatidingt is, keeping the main structure of the
simulation but modifying some parameters, with plepose of comparing different results.
That implies additional time recompiling C++ codeery time a modification is requested.
OTcl is an interpreted language, and the main adgeanis that these modifications do not
need additional time recompiling but on the oth&ndy the execution time for an interpreted
language is slower than compiled languages. Nst&amk simulator makes feasible this
unification through tclcl, i.e. OTcl linkage. Theam objects of a simulation such as nodes
and protocols are implemented using C++ and thdigumation of the parameters such as
number or position of nodes, time of the simulatiete. are implemented in OTcl.

In the last years, ns-2 became in the most popoddiin MANET research [24], because it
includes wireless and ad hoc networking support easly configuration files and scripts.
Basically, the network simulator is an interpretérOTcl with network simulator's object
libraries [52].

33

3.2 Running Simulations

The components of the ns-2 are the network objédutsevent scheduler, an input simulation
program and the simulation results. To manage tbbgets and the event scheduler an OTcl
script should be defined, i.e. the input simulafoogram. The event scheduler keeps a record
of simulation time triggering all events in the eveueue scheduled at this moment. The
communication among network components does naswoae simulation time, except the
necessary time that a node needs for handling leepamplying a delay, which is managed
by the event scheduler. The event scheduler is at®#wl as a timer, e.g. in a packet
retransmission.
The execution of the ns-2 is mainly the executibram OTcl script. In this section, an

overview about these concepts is described.

3.2.1 Scenarios

Since the simulation scenarios are scripts, itasessary to define them. The simulation
scenario is composed of topology, agent and routiftgmation. The first step is to initiate a
simulator instance and choose the output for teelt®and the position and numbers of nodes
are configured. Later it should be defined thegpamt protocol agent and links among nodes.
The last step is to define the routing protocob&used in the simulation. The result of the
simulation is one or more text files containingailed simulation data. These files can be
used for simulation analysis or as an input forisualization tool called NAM (Network
Animator). [11][52].

3.2.2 Nodes
In the network simulator, nodes are crucial for ttesmission of packets. Upon receiving a
packet in a node, the fields of the packet areyaed| which include the destination address,
that is, the receiver node.
All the nodes contain at least the following comeuwts [11]:

* An address or id_, monotonically increasing by rbr(f initial value 0) across the

simulation namespace as nodes are created

» Alist of neighbours (neighbour)

* Alist of agents (agent_)

* A node type identifier (nodetype)

* A routing module

34

The configuration of nodes takes place in the d&im of the scenario. Here, we can set up
important parameters for our simulation, such gsetpf addressing structure, network
components for mobile nodes and the type of rguised.

As an example of the configuration of nodes:

$ns_ node-config -addressType hierarchical \ -phyType Phy/WirelessPhy \

-adhocRouting DSR \ -topologylnstance $topo \

-lIType LL\ -channel Channel/WirelessChannel \
-macType Mac/802_11\ -agentTrace ON \

-ifgType Queue/DropTail/PriQueue \ -routerTrace ON \

-ifgLen 50 \ -macTrace OFF \

-antType Antenna/OmniAntenna \ -movementTrace OFF

-propType Propagation/TwoRayGround \

This configuration file can take the following veki from the options of the network

simulator [11]:

general

addressType Flat (Node address is the same thatidpd flat
hierarchical (Node address in form of string: “2%.

MPLS ON, OFF OFF

both satellite and wireless oriented

wiredRouting ON (in the case of a base station), OFF
OFF (mobile nodes)
[IType: LL (data link layer. Functionalities: queg and link-level *”

retransmission),
LL/Sat (link layer for satellite links. “The transimand receive
interfaces must be connected to different chanraeld, there is no

ARP implementation.”)

macType Mac/802_11, Mac/Csmal/ca, Mac/Sat, Mac/@atdttedAloha,
Mac/Tdma

Medium access protocol between the link layer dngigal layer. It
may content carrier sense or collision avoidangeedding on the

physical layer.

35

ifqType

Queue/dropTalil, Interface queue type,
Queue/DropTail/PriQueue (It gives priority to raxgiprotocol
packets, head of queue.)

phyType

Phy/WirelessPhy, Network interface type \ioreless, serves as

hardware interface.

Phy/Sat, Interface for satellite nodes.

satellite-oriented

satNodeType

Polar: the polar orbiting satellites:\$ have purely circular orbit
defined by altitude, latitude and inclination.
Terminal: A terminal is specified by its latitudedalongitude
Geo: A geostationary satellite is specified byarsgitude above th
equator, for processing satellites.
geo-repeater. Degenerate satellite node, for psowpshent pipe
satellites.

(D

downlinkBW

<bandwidth value for downloading, e.gMb">

wireless-oriented

adhocRouting

DIFFUSION/RATE, DIFFUSION/PROB, DSDV, DSR,
FLOODING, OMNIMCAST, AODV, TORA.
Routing agents implemented for mobile networking.

propType

Propagation model, attached when the palsiyer is defined. Se
section 3.6.

Propagation/TwoRayGround,

Propagation/Shadowing

e 134}

proplnstance

Instance of the propagation models8eton 3.6.
Propagation/TwoRayGround,
Propagation/Shadowing

antType

An omni-directional antenna having unityingas used by
mobilenodes.

Antenna/OmniAntenna

134}

36

Channel

The Channel object simulates the sharedumeand supports the “”

medium access mechanisms of the MAC objects on the
sending side of the transmission.
Channel/WirelessChannel, for wireless nodes

Channel/Sat, for satellite nodes

134}

topolnstance It is used to provide the node withaadle to the topography
object. <topology file>

mobilelP The mobilelP scenario consists of Homew#g@A) and Foreignt OFF
Agents(FA) and have Mobile-Hosts(MH) moving between
their HA and FAs.
ON, OFF

energyModel The energy model represents level efggnin a mobile host.
EnergyModel

initialEnergy Value for the energyModel at the begng of the simulation.
<value in Joules>

rxPower Energy usage for received packet
<value in W>

txPower Energy usage for transmitted packet
<value in W>

idlePower Energy consumption in idle state
<value in W>

agentTrace ON: enables tracing at agent levelalimation of agent events INOFF
the trace file
OFF

routerTrace ON: enables tracing at router levedyaiization of routing eventsOFF
in the trace file
OFF

macTrace ON: enables tracing at MAC level, viswion of MAC events in OFF
the trace file
OFF

movementTrace ON: enables mobilenode movementigggi OFF
OFF

37

errProc Error model simulates link-level errordass by either marking the
packet’s error flag or dumping the packet to a devget.

UniformErrorProc

FECProc ? ?
toraDebug ON: it enables debug messages if totangpprotocol is used. OFF
3.2.3 Agents

Agents are used in ns-2 in the implementation otqmols [11]. These are some protocol
agents available, which we have used in our sinoa CP/Reno, a Reno TCP sender (with
fast recovery); TCPSink, a Reno or Tahoe TCP recdivot used for FullTcp); UDP, a basic
UDP agent; LossMonitor, a packet sink with checks dsisks.

Within OTcl, it is possible to create and modifyjextis of type agent. In ns-2, it is also
possible to create a new Agent class, composedtefnal state and methods, supporting

packet generation and reception [11].

3.3 Traces files

The main objective of the traces files is to prevdifferent types of information from the
simulation. In ns-2, there are three types of sa¢ke old format, the new format, and a

tagged trace format.

3.3.1 Trace configuration

In the ns-2 network simulator, the next commanesuaged to configure the trace format:

use-newtraceselects the new trace format.
use-taggedtraceselects the tagged trace format.

trace-all $fd means that tracing referring to a trace file stidué performed by the fd fil

(4%

descriptor.

namtrace-all $namfdneans that tracing should be performed to a NABtwork animator
trace file referenced by the namfd file descriptor.

nametrace-all-wireless $namfd <x> <yis similar to namtrace-all, but it extends the NAM
trace with information about the size of the togdy (its X and y dimensions).
flush-tracebehaves like a pipe, flushing all open traces tliisk. Must be used in the end |of

the simulation.

38

As an example of trace configuration:

set val(x) 6000 ;# X dimension of the topography
set val(y) 3000 ;# Y dimension of the topography
set val(stop) 200.0 ;# simulation time
set tracefd [open $val(tr) w]
set namtrace [open $val(nam) w]
$ns_ trace-all $tracefd
$ns_ namtrace-all-wireless $namtrace $val(x) $yal(y
$ns_ node-config -agentTrace OFF \

-routerTrace ON \

-macTrace ON\

proc finish {} {

global ns__ tracefd namtrace
$ns_ flush-trace

close $tracefd

close $namtrace

$ns_ halt

}
$ns_ at $val(stop) “finish"

3.3.2 Trace formats

In ns-2, we can choose between two types of tragedt, the old format and the new format.

Old format

In the old format, we can notice that it is eastetunderstand than the new format. Wireless
traces starts with one of four characters followgane of two different trace formats (X or Y
coordinates of the mobile node).

Table 3 : Old format of traces

Event Abbreviation| Type Value

%.9f %d (%6.2f %6.2f) %3s %4s %d %s %d [Y%ox %x %X Yox
%.9f _%d_ %3s %4s %d %s %d [Yx %X %X %0X]

double Time
int Node ID

39

double X Coordinate (if Logging Position)
double Y Coordinate (if Logging Position)
s: Send string Trace name
Wireless r. Received | string Reason
Event d: Drop int Event identifier
f: Forward | string Packet type
int Packet size
hexadecimal Time to send data
hexadecimal Destination MAC address
hexadecimal Source MAC address
hexadecimal Type (ARP, IP)
New format

The simplicity of the old trace format has as amaiawback that it is needed a different
trace for each wireless protocol. The new tracen&trwas introduced aiming to merge these

wireless traces using cmu-trace objects [11]. Tédw trace format is compatible with the old

trace format.

In ns-2, it is possible to set up this feature witle command $ns use-newtrace. In our
simulations, we used the new format of traces, wihllow us to offer all the information

about simulation traffic. The next table explaimgetly the meaning of each field [11]:

Table 4 : New format of traces

ssendr received dropf forward // describes the type of event in thedra

-t
-t*

time

global setting

Node properties

-Ni node id

-Nx node’x-coordinate
-Ny node’s y-coordinate
-Nz node’s z-coordinate

40

-Ne node energy level

-NI trace level (AGT, RTR, MAC)

-Nw "END" DROP_END_OF_SIMULATION i.e. indicates that the siation has finished.
"COL" DROP_MAC_COLLISION i.e. there was a collision in MAayer

"DUP"
"ERR"
"RET"
attempts in MAC reached.

function: state = sending.

nodes outside its domain.

DROP_MAC_DUPLICATE i.e. there is already the saraeket in MAC
DROP_MAC_PACKET_ERROR i.e. incoming packet withoesrin MAC
DROP_MAC_RETRY_COUNT_EXCEEDED i.e. maximum numbg&rairansmission

"STA" DROP_MAC_INVALID_STATE i.e. Internal MAC state i®hvalid, e.g. in receiving

"BSY" DROP_MAC_BUSY i.e. MAC is occupied in other task.
"NRTE" DROP_RTR_NO_ROUTE, i.e. no route is available.
"LOOP" DROP_RTR_ROUTE_LOORP i.e. there is a routing loop
"TTL" DROP_RTR_TTL i.e. TTL has reached zero.

"TOUT" DROP_RTR_QTIMEOUT i.e. packet has expired.
"CBK" DROP_RTR_MAC_CALLBACK

"IFQ" DROP_IFQ_QFULL i.e. no buffer space in IFQ.

"ARP" DROP_IFQ_ARP_FULL i.e. dropped by ARP

"OUT" DROP_OUTSIDE_SUBNET i.e. dropped by base statianseoeiving routing updates fror

Packet information at IP level Packet information at app. level (Cont.)
-Is source address source port | -Pa | destination mac address
number
-Id dest address dest port numbePd | destination address
-It packet type -Pn | how many nodes traversed
-1l packet size -Pq | routing request flag
-If flow id -Pi | route request sequence number
-li unique id -Pp | routing reply flag
-lv ttl value -Pl | reply length
Next hop info -Pe | source of srcrouting->dst of the source rout
-Hs id for this node -Pw | error report flag
-Hd id for next hop towards the | -Pm | number of errors
destination
Packet info at MAC level -Pc | report to whom
-Ma | duration -Pb | link error from linka->linkb
-Md | dst’s ethernet address -Pi | sequence number
-Ms | src’s ethernet address -Pf | how many times this packet was forwarded
-Mt Ethernet type -Po | optimal numbers of forwards
Packet information at app. level | -Ps | sequence number
-Po ARP request/reply -Pa | acknowledgment number

41

=

ng

-Pm | source mac address -Pf | how many times this packet was forwarded

-Ps source address -Po | optimal numbers of forwards

3.4 Analysis of trace files

The NS-2 [51] network simulator produces a trade, fivhich may include all information
available within the packets transmitted alongdimeulation, like sender and receiver node id,
position, time, energy, etc., and their presenadidgigurable in the set up “main.tcl” file and
in the file “cmu-trace.cc”. The analysis of theded in our dissertation was performed using
PERL scripts to extract and to present the inforonain a graphical view with the help of
Excel, giving a result better to understand thanttace files.

In this chapter, we present how we performed thayars of the trace files. For more
information about the analysis files or the modifions in the source code from ns-2,
Appendix C should be consulted.

Note that the following sections of PERL are basedur setup files and the index of the
parameters in the trace files may vary. First, werothe trace file, and, iteratively, each line
is introduced in an array “II” using the blank spaxs separator for each element in the line:

open TRACE, "result/scenario/tracefile.tr";
while (STRACE>) {
@Il = split(" *);

All scripts we used for different scenarios shdre same basis and only some parameters
were modified, for instance, for calculating theotlghput all received packets were counted,
the only difference could be the number of flowsedign different scenarios, but they share

the same basis.

if ($II[0] eq "s" && $II[18] eq "AGT")
{$nsend +=1;}

if ($I[0] eq "r" && $II[18] eq "AGT")
{$nrecv +=1;}

42

In the code above, all sent and received packethdwgent are stored in variables, later on,
the bytes per packet will be multiplied by thos&al® The throughput is the received bytes
(divided by 1024 for getting Kilobytes) divided bye time of simulation (KB/sec).
The number of lost packets is a subtraction betvssgtt and received packets. All sent
packets should reach their destinations, if thepalodo it is because these packets were lost.
In order to calculate the routing overhead in teework the number of routing packets is

also needed. This is obtained introducing the Yalhg line inside the analysis script:

if ($I[18] eq "RTR" && $I[34] eq "DSR")
{ $NRTR_OH++}

Routing overhead is the number of additional infation used for a transmission of data
divided by the total of bytes for the complete smassion.. For instance, if there are needed 5
additional bytes for sending 10 bytes of data thaans that 33% of the information is
routing overhead, this should be minimized.

At MAC layer can be found four types of discardedhkets depending on the reasons like
collisions, duplicated packet, retry exceeded caunmnac busy. Most of dropped packets at
MAC layer are due to collisions, approximately 9rqent. These collisions may affect to
routing layer, therefore it is important to knowetreasons of dropped packets and in which

situations that may happen.

if ($II[0] eq "d" && $II[18] eq "MAC"){
elsif ($li[20] eq "COL")
{$col++;}
elsif ($ll[20] eq "DUP")
{$dup++3}
elsif ($ll[20] eq "RET")
{$ret++;}
elsif ($ll[20] eq "BSY")
{Sbsy++;}

The number of route errors triggered by DSR is ohéhe main parts of our work. We
added special information in the trace producedhieyDSR exactly when they are detected,

for analyzing then the trace file generated.

if ($1I[0] eq "RERR")
{$rerr +=1;}

43

In order to define this information in the tracke fithe following code must be included in
the method “xmitFailed”, in the file dsragent.cchelvariable “gamma” was used to switch
between normal DSR and DSR-AR approach. Note thatte error will not be triggered in
DSR-AR if the “xmit_reason” is “high power”, that eans that communication to the
neighbouring node was not possible, but it is rabt# that is, the route exists. Therefore, a

route error should not be triggered and that rebtmuld not be deleted from the cache.

if (gamma_) {
if (cmh->xmit_reason_ == XMIT_REASON_HIGH_POWER
&& strcemp(reason, "DROP_RTR_MAC_CALLBACK") ==0) {
Packet::free(pkt);
pkt = 0;

return;

trace ("RERR %.5f %s -> %s -GH %d", Scheduler:in stance().clock(), from_id.dump(),
to_id.dump(),God::instance()->hops(from_id.getNSAdd r_t(), to_id.getNSAddr_t())

link_down *deadlink = &(srh->down_links()[srh->num_ route_errors()]);
deadlink->addr_type = srh->addrs()[srh->cur_addr()] .addr_type;

Each time a route error is triggered, the routeetixh the destination node changes. Note
that the process to discover a route from a sendée to a destination may include several
changes in the route, which are counted as well.

In the code below for route changes in chain scendne variable "H” indicates the
number of hops.

if ($l1[0] eq "RChange"){
if (BN == 2){
if ($11[4] eq "0" && $II[6] eq $H)
{$RChangeFlows++;}
Jelsif (N == 4){
if ($I[4] eq "0" && $II[6] eq $H)
{$RChangeFlows++;}
Jelsif (N == 8){
it ($I[4] eq "0" && $I[6] eq $H)
{$RChangeFlows++;}

44

It is possible as well to track the number of rochi@nges for a specific route between two
nodes. For instance in the following code, we @@at graphic along the simulation time for
the route changes between node 21 and node 2helfil¢ defined by RT_CHG will be
saved the time, the length of the route in hopsthedoptimal length of the route, which is

also called “god hops”.

if ($ll[0] eq "RChange"){
if ($li[4] eq "21" && $I[6] eq "27")
print RT_CHG "$lI[1] "$lI[3] "$II[8\n";

The new trace format of the ns-2 contains a spéeieé for these cases called SFEST, but
if a user wants to personalize a new messageptlosving code can be useful (method
“sendOutPacketWithRoute"):

if (srh->num_addrs()) {
trace ("RChange %.9f h: %d %s -> %s -god %d",
Scheduler::instance().clock(),p.route.length()-1,
p.src.dump(), p.dest.dump(),
God::instance()->hops(p.src.getNSAddr_t(), p.dest .getNSAddr_t());

In the code above, the actual time, actual hopgcsodestination and god hops are written
into the trace file.

The final step after analyzing the trace file iglisplay the results in a graphical view. We
used excel for most of the graphics and gnuplotiferlength of the route between source and

destination along the simulation time.

45

3.5 802.11 MAC in Network Simulator

3.5.1 Introduction

We can choose between two MAC protocols in ns-2.8D and TDMA. Our simulations
results are obtained using 802.11 protocol. In ,nthe& MAC layer performs an important
function, since it has the responsibility to managed to understand the packet information.
The MAC layer can receive different kind of packetsch as RTS, CTS, ACK or data. The
response of the MAC layer depends on the kind ek@areceived. The 802.11 protocol
follows the dialog RTS-CTS-data-ACK, which was eipékd in section 2.2.5

3.5.2 MAC features
The code can follow four different paths in ns4&nsmitting a packet, receiving a packet
destined for itself, overhearing a packet not destifor itself or packet colliding.

Transmitting a packet takes the following patm@t errors or congestion):

recv()->send()->sendDATA() and sendRTS()-> startfeddimer-> deferHandler
-> check _pktRTS()-> transmit()-> recv()-> receivedr started-> recv_timer()-> recvCTS
-> tx_resume()-> start defer_timer ->rx_resume()eeferHandler()-> check_pktTx()
-> transmit()-> recv()-> receive_timer started -ecv_timer()-> recvACK()-> tx_resume()

-> callback-> rx_resume()

When the first RTS fails:

recv()-> send()-> sendDATA() and sendRTS()-> stddfer_timer-> deferHandler()
-> check pktRTS()-> transmit-> start send_timer-end timer()-> RetransmitRTS()
-> tx_resume()-> backofftimer started backoffHan(le check pktRTS()-> transmit
-> recv()-> receive_timer started-> recv_timer(yecvACK()-> tx_resume()-> callback_

-> rx_resume()

Receiving a packet takes the following path (if eobrs or congestion):
recv()-> receive timer started-> recv_timer()->we&S()-> sendCTS()-> tx_resume()->
start defer_timer-> rx_resume()-> deferHandler@+reck pktCTRL()-> transmit()-> recv()

-> receive_timer started-> recv_timer()-> recvDA)A(sendACK()-> tx_resume()-> start

46

defer_timer-> uptarget_-> recv()-> deferHandler(gbeck pktCTRL()-> transmit()-> start

send_timer-> send_timer()-> tx_resume()

3.5.3 MAC functions behaviour implemented in NS-2
One of each function summarizes above is explaasddllows [45]:

recv (down): This function checks the direction saved in thekpaheader. If the direction is
down, it means that the packet comes from an uyer, hence the packet is followed to the
send() function.

recv (up): In this case, the packet is received from a |lolager, and different threads can be
followed on depending what the MAC is doing in sunbment. If the packet is received
while the MAC is already transmitting other packbgn the received packet will be ignored.
If the MAC is idle not receiving any packets, then state is changed to RECV and
checkBackoffTimer process is called. After thag thcoming packet is assigned to pktRx_,
and the receiver timer is set for the txtime() led packet. If the MAC is receiving any packet
when the new packet arrives, the power of both @igcis compared. At this moment, if the
power of the new packet is smaller than the olckgiby at least the capture threshold, the
new packet is ignored, calling the capture() fumctiwhen the power of both two nodes is
too close, there will be a collision and collisipfignction is called, which will drop the new
packet and the old packet (this last one whendbeption is completed).

send() First, this function checks the energy modelthi# packet is in sleep mode, then is
dropped. Afterwards, sendData() and sendRTS() aled; which build the MAC header for
the data packet and the RTS packet. Meanwhilegaesee number is assigned to the MAC
header. At this moment, the MAC checks if the medis idle (using is_idle() function, and
only if the backofftimer is not currently countidgwn). If so, the node will defer a DIFS time
plus a random time chosen from the interval [O(cangestion windows)]. If the node is
already waiting on it's defer time, it will conti@wvaiting; but if the medium is busy, the node
will start its backoff timer. The flow of controlf the send function ends at this point, where
deferHandler() or backoffHandler() functions wake it.

sendData() Sets up the MAC header for the data packet aadt#iblishes the packet type as
data. Additionally, txtime() function saves theitx¢ of the packet. Txtime refers to the size
of the packet multiplied by the data rate. Whea fiacket is not a broadcast packet, the
duration field of the MAC header is calculated. STHield refers to the time that the

communication needs after the data packet has tvaeamitted. If this packet is a data

47

packet, it refers to the time to transmit an ACKigh short inter-frame spacing. Wherever
seems to be a broadcast, the duration is set tg kence no ACK is needed in a broadcast.
Finally, the MAC header for the packet has beerit,baind this is noticed with the pktTx_
variable. At this point, the flow of control ret@ro the send() function.

sendRTS() The purpose of this function is to create an Ragket with the destination plus
the data packet that the MAC is sending. First,RA& threshold is checked. Wherever is a
broadcast packet, or smaller than the threshol&/RTS mechanism is avoided and control
is returned to send() function. Otherwise, a newkpt is created as a MAC packet
complemented with the RTS fields provided by tiseframe. In this case, the duration field is
calculated as the time to transmit a CTS, the datket (pktTx) and a ACK (plus 3 SIFS).
After the RTS has been built, the control leadth&send() function again.

sendCTS(): in this function, the CTS packet is created witpkdCTL_. In this case, the
duration value is set to be the same as RTS mhusxtime of a CTS and a sift_time. Once
the packet is built, pktCLT _ points to the new patcland flow of control returns to
recvRTS().

sendACK(): When the data packet arrives successfully tod#stination, an ACK packet is
set up and sent towards the sender. This proceslaehieved by sendACK(). The duration
field is marked as zero, suggesting to other ndlggisonce the ACK is sent, they do not have
to delay other communication. When the packet i, lpktCLT_ points to the new ACK and
flow of control goes back to recvDATA().

deferHandler(): This function is called when defer time expirksthis case, the node was
waiting an amount of time before to proceed with transmission, and now it will try to
transmit. First, the function calls check pktCTREg)check if the backoff timer is already
running. check pktRTS() and check pktTx() are dalte check if these functions are
managing the current packet transmission; if stertiandle stops. After the expiration of the
interface timer, the control will be resumed. Aduhglly, control will be resume if another
packet is received from recv() (can be a CTS, datket or ACK), or upon expiration of the
send timer, sendHandler(), which will call send dr(.

check pktCTRL(): The major purpose of this function is to transenid check CTS and
ACK packets. For CTS packet, first the MAC sen$esmedium calling is_idle() function. If
the medium is busy, CTS will be dropped; otherwtise function set tx_state () to MAC
transmitting a CTS and checkBackoffTimer() is adllafter that, function calculates timeout
value, this is, the time for how long MAC decidés packet was not delivered successfully.

If the control packet is an ACK, the MAC perfornfeetsame except sensing the medium.

48

Finally, transmit() is called with pktCTRL_ and thieneout as arguments. Afterwards, the
physical layer starts the transmission of the admacket.

check pktRTS(x This function aims to transmitting a RTS packeirst, the channel is
sensed before sending the packet. If the channkelsy, the congestion window (cw_) is
doubled (with inc_cw()), and the backoff timer mrted again. If the channel is idle, the
tx_state_ of the MAC is set up to RTS and the fiamctheckBackoffTimer() is called. In
addition, timeout value is calculated, hence theQ&ill know for how long it has to wait
until the CTS confirms the packet. Afterwards, thaction transmit() is called with RTS
packet and the timeout as arguments. Finally, thesipal layer starts the transmission of the
RTS packet.

check_pktTx(): This function is used to transmit the actual geteket. If the channel is busy,
sendRTS is called, which means that despite the/ &S dialog, another node is using the
channel. Otherwise, if RTS is not used, sendRT8dsilnothing. Furthermore, the congestion
window (cw_) is doubled with inc_cw() and the baitkmer is started, so the MAC will be
idle until the other node finishes the transmissilbrthe channel is idle, tx_state is set to
MAC_SEND and checkBackoffTimer is called. The time® calculated depending if it is a
broadcast or not. If it is a broadcast packet,timeout will be the transmission time of the
packet. Otherwise, the timeout is just how longt#C should wait until it decides the ACK
was not delivered. Finally, transmit() function ¢alled with data packet and timeout as
arguments.

checkBackoffTimer (). This function checks two options. First, if thedum is idle and the
backoff timer is already paused, it will contindne ttimer. Second, if the medium is busy and
the backoff is running, then the function will paufie timer. Briefly, the MAC only counts
down its backofftimer if the channel is idle; otiwese, the timer is not running.

transmit(): this function receives two arguments, the packed the timeout value. If the
MAC is already sending a packet (tx), then the fiamcchecks if the packet is an ACK packet
to know when the node is receiving a packet. Iftee,packet would be missed. In the case
that the MAC is receiving a packet and an ACK padkebeing transmitted, the packet
received is marked as having errors. Afterwardg, placket is sent to the lower layer
(downtarget). Finally, two times are set up, teader time with the timeout value (which
alert the MAC when the transmission fails), and ititerface timer, which advise the MAC
when the packet has been transmitted.

send_timer(} At the expiration of the TxTimer, send_timer()called. In this function, there

are several options depending of the kind of pattkee treated. If the last packet sent was an

49

RTS and time expires, then a CTS was not delivdrratransmitRTS() is called (collision of
RTS packet or deferring node). If the last pacleitsvas a CTS packet and time expires,
means that no data packet was received, therdierdMAC just re-setting itself to an idle
state. If the last packet was a data, means th#t W&s not received and RetransmitDATA()
is called. Finally, if the last packet was an ACHKdatime expires, means that ACK was
transmitted without response.

After all checks, the packet is ready to transroissand tx_resume() takes the control. If a
packet is going to be retransmitted, the backafieti is started with an increased congestion
window.
retransmitRTS(): This function is called when a CTS was not reediafter a RTS packet. In
this case, the MAC increment the ssrc_ (short retynt). When ssrc (short retry count)
reaches the value of ShortRetryLimit in the MAC MiBe MAC knows when to drop the
packet. Dropping the packet is managed by the Bd¢céunction. At this moment, the ssrc_
is reset to zero and the congestion window is raséts established value. Otherwise, the
pktRTS pointer to RTS is not modified, but a refigtd in RTS is incremented. Finally, the
congestion window is doubled and the backoff tingetriggered with the new congestion
window.
retransmitDATA() : Once an ACK is missed after a data has been tentfunction aims to
retransmit the data packet. If the data packetaMaoadcast packet, an ACK is not expected
and the transmission is treated as successfullg. aunters are used to manage depending if
a RTS is used to send the data packet. If it is,RiTshort retry limit is used, otherwise a large
retry limit is used. If the retry count exceeds theeshold, the data packet is discarded calling
discard() function and the counter and congestiomdows are reset. Otherwise, the data
packet is ready to be sent, retry field is increteénn the mac header, congestion window is
doubled, and backofftimer is started. Afterwards)jtool of flow returns to backoffHandler()
tx_resume() This function is called when the MAQeady to send data, but needs to set more
some timers. If a CTS or ACK packet is waiting dent, tx_resume() starts the defer time
for a sifs_ amount of time (the time that a nodeeht wait before transmitting). In the case
of a RTS packet, the MAC checks if the backoff tinrseebusy. If so, the MAC will wait to
start the defer timer; otherwise, the defer timest@rted for a random time between the
threshold [0,cw_) plus a difs time. In the caseaotlata packet, whenever the MAC is
currently backing off, the defer time will startutbdepending if it is used a RTS or not, the
defer time is set as sifs_time for the first asstuomp(channel already reserved), and the

interval [0,cw_) for the second assumption.

50

If there are no packets to be sent, but the cdlbas defined, then it is managed like
successfully packet transmission. After all, txtestais set to idle, control of flow returns the
MAC after defer times expires (deferHandler())goes back to the caller function.

capture(): This function is called if the MAC, receiving omecket, is receiving another
packet, week enough to be dropped. In this cas&/ MAipdate, so it is well known that the
channel is still busy. Afterwards, capture() alsxdrds the captured packet.

collision(): First, this function checks the rx_state_ and gab MAC_COLL if this collision

is the first collision during the current packdt.other packet collides, then rx_state_ will
already be set as MAC_COLL. After that, the MAC dksefor how much longer the new and
the old packet will remain alive. If the new paclgethe one that will remain alive longer, the
MAC builds the new packet pktRx_ and resets thesivectimer, and the old packet is
discarder here. However, if the old packet will esmalive longer, then the new packet is just
discarded and pktTx_ does not change.

recv_timer(): This function is one of the most important andaed when mhRecv__ expires,
this means that the packet has been successfuilewds. First, the MAC checks with
tx_active_ if there is a packet transmitting. Imstiase, the incoming packet is discarded
without updating the NAV. After that, if rx_state™C_COLL, then pktRx is the colliding
packet that remains longest and then should beadied, setting the NAV for an eifs_ time.
Then, the MAC checks the packet for errors, andadds it if any errors are detected, and
NAV is again set for an eifs_ time. After this, MAChecks if the packet is for itself;
otherwise, the NAV is updated looking in the dwatfield in the MAC header. Next check
aims to sending the packet to any taps, if it data packet. Next two checks are the last
operations of this function; the first one is tegdracking of the nodes within the radio range
of the node; and the second one refers to additesstnf), where the packets that are not for
the current node are discarded.

recvRTS(): this function is called by recv_timer() upon reteg a RTS packet. When the
tx_state is not idle, it means the packet could N heard, therefore is discarded.
Additionally, if the MAC is responding to other nrmdhe RTS packet will be ignored;
otherwise, the MAC is ready to receive a packet endble to call sendCTS() function.
Afterwards, the MAC stops the defer time, callsresume() and flow of control returns to
recv_timer().

recvCTS(): This function is called by recv_timer() after & & packet has been received.
Since the RTS packet that is transmitting is nefuldor the MAC, it is freed and pktRTS_is

51

set to zero. Finally, the control goes forwardxdorésume() setting the defer time and flow of
control returns back to recv_timer().

recvACK(): This function is also called by recv_timer afien ACK packet has been
received, indicating a successfully data transmisdrirst, the MAC checks if the data that it
sent is really a data packet, otherwise it discrdsACK packet. Since MAC knows the data
packet was delivered, it frees pktTx_ and sets itdro. Furthermore, the retry count is reset
as short if an RTS was not used; and is resetrgs iban RTS was used. Congestion window
is also reset and the MAC starts its backofftinteatoid send data again so soon. Finally,
flow of control goes first to tx_resume() and tiggnback to recv_timer().

recvData(). This function is called by the recv_timer oncedata packet was delivered,
indicating that the transmission has been sucde$sfst, the MAC takes out the header from
the packet to be sent to the upper layers. If noadicast was used, RTS was used; therefore
tx_state_ indicates that the last packet the MAG seas a CTS. Then, CTS is freed and
pktCTRL_ set to zero. If the packet was not droppgbd MAC already has received the
packet and is ready to send the ACK calling sendBC#&nd then tx_resume() to start the
defer time. If a CTS packet was not sent, becafisghenabsence of RTS packet, then the
MAC checks pktCTRL_. Checking the packet, one af typtions can be chosen: If there is a
control packet, the MAC will drop the data pacl#herwise sendACK() is called. After this,
tx_resume() is called to start the defer time.

To avoid duplicate packets, MAC updates the sequenmber and checks it against the last
sequence number received. If they match, it mdaatstihe packet is duplicated and therefore
is discarded. Finally, the data packet is serhéoupper layer (usually Logical Link Control

sublayer),

rx_resume() this function is called after recv_timer, it justt the rx_state to idle, and it
calls checkBackoffTime() function.

backoffHandler(): This function is called when the backofftimer ggp. First, the function
checks if there is a control packet ready to s&iiS or ACK). If so, it also checks that the
MAC is either sending the packet or deferring befeending the packet. If no control packet
is found, check pktRTS() is called. If there wasRiS packet, check pktTx() is called. This
means that when backoff time expires, RTS or datkgt will be transmitted if one of them
IS waiting.

txHandler(): This function is a handler for IFTimer and itselown a flag in the MAC to

indicate that the radio is not longer active.

52

3.6 DSR in Network Simulator

3.6.1 Introduction

The Dynamic Source Routing protocol (DSR) is arcedht routing protocol designed for use

in multi-hop wireless ad hoc networks of mobile e@dDSR allows the network to be

completely self-organizing and self-configuring,tlvaut the need for any existing network

infrastructure or administration. DSR has been éemmnted by numerous groups, and
deployed on several testbeds. This protocol wad aséase for other protocols as well. Some

implementations of the DSR are:

 The Click DSR Router Project at the PecoLab at W@l&er [55].. A user level
and open source implementation of DSR implememtextcordance with the IETF
draft specifications of DSR. It is ready on Linuxdaa 802.11g Wi-Fi card

» The Microsoft Research Mesh Connectivity Layer (MGACL [56]: It implements
a layer between link layer and network layer mhdip routing protocol on
Windows XP. This protocol is derived from the DSRtpcol and is called Link
Quality Source Routing (LQSR) protocol that meahsttDSR was widely
modified.

* The Monarch Project implementation [57]: It is & skekernel patches that supports
FreeBSD 3.3 and 2.2.7. It is a pre-alpha releagk ianavailable because of
educational purposes and for researchers.

* Alex Tzu-Yu Song [58] has implemented DSR accordmghe fifth draft of THE
IETF DSR.

* The National Institute of Standards and Technol¢yyST) [59] developed a
simulation model for the DSR for MANETSs based oa thternet Draft version 4
with the purpose of using it at OPNET in their eoumications system simulation

software.
Since networks using the DSR protocol have beemexed to the Internet, DSR can

interoperate with Mobile IP. Nodes using Mobile dAd DSR have seamlessly migrated
between WLANS, cellular data services, and DSR tedi hoc networks [50].

53

3.6.2 DSR Operation in NS-2.

The DSR agent checks every data packet for soorge-iinformation [51]. It forwards the
packet in accordance with the routing informatiinthe DSR agent does not find routing
information in the packet, one of two options can fbllowed. If the route is known, it
provides the source route. Otherwise, if the rasitenknown, it caches the packet and sends
out route queries. Route queries messages aredasiad to all neighbours whenever there is
no route to reach the destination. Then, routei@gphessages are sent back either by the
intermediate nodes, if they have such path in tbaahe, or by the destination node. The
source files for implementation of DSR protocolng-2 belongs to the ns-2/dsr directory.

More details can be found in tcl/mobility/dsr.tcl.

3.6.3 The DSR functions behaviour implemented in ns-2 netork simulator
The DSR strategy for ns-2 network simulator waggabfrom the CMU/Monarch’s code and
it is as follows [47]:

* It is only worth discovering bidirectional routesince all data paths must be
bidirectional to work properly for 802.11 ACKs.

* Reply to all route requests in destination nodes,rbply to them by reversing the
route and unicasting. Then, do not trigger a roetpiest. By reversing the discovered
route for the route reply, only routes that areirbitional will make it back the
original requestor.

* Once a packet goes into the sendbuffer, it canaqtiggybacked on a route request.
The code assumes that the only reason that renpaweksts from the send buffer is the
StickPktIn routine, or the route reply arrives inat

The OTcl variables that the programmer wants to inséhe source code must follow a
binding process to get the expected results. Bhlaandled in the class creation. The variables
bound to the OTcl variables must be also declargtle C++ header files, and in the tcl main

file, where all the OTcl variables are stored tdbend into the C++ code.

Packets

The first step when a packet is received by DS®& nlethod ecv(Packet* packet, Handler*)
handles mainly packets which MAC address matchegmruhost or MAC broadcast address.
First, it checks if the packet has a source robexking then, if the destination of the packet
is the node's net_id or the broadcast address deraio forward finally the packet to

54

handlePacketReceipt(p). Otherwise, the packet is classified among roaguest, calling
handleRouteRequest(p), route errorprocessBrokenRouteError(p), packet to be forwarded,
handleForwarding(p), or invalid packet, where the packet is droppézhtly.

If no source route is present, it should be a brasdpacket. In this case, it is checked to
know whether an outgoing or incoming broadcast pagk If it was not a broadcast packet
(sendOutBCastPkt(packet)), it must be an outgoing packet, and DSR givabégacket a SR
header, calling thandlePktWithoutSR(p, false).

Therefore, here it is possible to modify packetbedorwarded, inserting code before the call

to handleForwarding(p) or placing code within tlatle Forwarding method.

handlePacketReceipt()
This method handles packets that have as destindtie current node. The first step
performed by DSR is to check if the packet is aeoreply, accepting in this case the new
source route with the methatceptRouteReply(p). If the received packed contains a route
request, DSR respond once for each host, callng the method
returnSrcRouteToRequestor (p).

The received packet may contain a route error, thendead route is registered using

processBrokenRouteError(p). Later, the packet is given to the higher layer.
Ns-2 allows the programmer to drop packets intexatig using the Error Model.
A packet is created giving the sr and ip headdes atsigning the id node. It is sent using

the scheduler: Scheduler::instance().schedulefktp0.0); specifically, this code schedules

the packet p.pkt to be sent immediately (in 0.@gds) to the link layer output.

SRPacket p;
p.src = net_id;

p.pkt = allocpkt();

hdr_sr *srh = hdr_sr::access(p.pkt);
hdr_ip *iph = hdr_ip::access(p.pkt);
hdr_cmn *cmnh = hdr_cmn::access(p.pkt);

55

Routes

The available routes are stored in primary_cach& secondary cache in mobicache.cc.
The routes can be added as the result of receaviogite reply (after sending a route request),
or overhearing a route used (or routing informationa packet destined for another node. If
the programmers want to change the metric for reekection or to use multipath, they should

do that in mobicache.cc

Routes discovered from a route reply are addede@timary cache.

void MobiCache::addRoute(const Path& route, Tinmnst ID& who_from) {
(void) primary_cache->addRoute(rt figrden);

Routes discovered by overhearing a packet are addéeé secondary cache.

Void Mobicache::noticeRouteUsed(const Path& p, Ttneonst ID & who_from){
(void) secondary_cache->addRoute(stub,prefix_len);

That is the way to know the next hop for a packet:

srh->get_next_addr() or cmh->next_hop()

The searchRoute(..) method, selects routes frorablee that fulfil the requested destination.
It is called by findRoute(..)

Each time searchRoute(..) discover a route towduelslestination, findRoute(..) checks if

it is the shortest known route found so far.

Code into findRoute(..) in dsragent.cc:

while (primary_cache->searchRoute(dest, leth,padex)) {

56

min_cache = 2;
if (len < min_length) {
min_length = len;
route = path;
}
index++;

}

“len” is the length of the route just found. “patis”the route found by seachRoute(..). “route”

is the route passed to findRoute(..) by the cafiadex” is used to monitor the route cache

checked..

The secondary cache is treated in a similar mai@me.possible way, in order to purge

these caches, could be

delete primary_cache;

delete secondary_cache;

The route of a packet is stored in srpacket.h
struct SRPacket {

Path route;

The srpacket can be examined or altered using soetkods inthe hdr_sr.h, path.cc and
path.h. For example, the route of a packet can be viemeoute.dump() (where p is a

SRPacket).

The route for a packet can be altered, for a SR#tack
p.route = new_route;
p.route.resetlterator();
cmh->size() -= srh->size();
p.route.fillSR(srh);

57

That is the type of a packetnh->ptype() and it is represented by a string. In order tovkno
which packet is currently being executed, thishis todenet_id.dump(), also used by the
trace mechanism.

Packets, before being delivered to the MAC layes,daced in the cmu-priqueue class

according to their priority.

The DSR implementation of ns-2 offers the possibtio add comments or information into
the trace. Into the trace() function, programmers add the next line in order to see in the

produced trace the information they want.

trace("NewEvent %.5f _%s_ %s",Scheduler::instance@k(),net_id.dump(),
relatedIinformation);

Note that the user can modify this line adding/reimg these parameters.

In dsrgent.cc, important features related to DSRab®ur are implemented, such as
processBrokenRouteError(SRPacket& p) or getRoutdkaket(SRPacket &p, bool retry).
Furthermore, in the xmitFailed()function is implemxd how the DSR protocol reacts against
link failures received from the MAC layer.

xmitFailed(Packet *pkt, const char* reason) In this method the route cache is marked as
failure of the link between: srh[cur_addr] and sedt_addr], sending back the created route
err message to the originator of the packet.

This method may be called frorendOutPacketWithRoute(..) that responds to the
following methods: sendOutRtReq, returnSrcRouteTpRstor, acceptRouteReply,
sendRouteShortening, undeliverablePacket, handiéifHdutSR, handleForwarding,
handleRouteRequest or replyFromRouteCachemitFlowFailed() because of these calls:
handleFlowForwarding(..)->xmitFlowFailureCallbackpr xmitFailureCallback(..) called
from sendOutPacketWithRoute.

58

3.7 Radio propagation models

3.7.1 Introduction
In the physical layer of the wireless model (in2)sthere is a value called the receiving
threshold used to compare against the power ofpteket arriving. When a packet is
received, if its signal power is below the recejyvithreshold, it is marked as “error” and
dropped by the MAC layer. The radio propagation ed@ims to predicting the receive signal
power of each packet.

In ns-2, we may differentiate among three radioppgation models: free space model,
two-ray ground, and shadowing model [11].

3.7.2 Free space model

In the free space model, it is assumed that treemmly one clear line-of-sight path between
the sender and the receiver. The following equaisonsed to calculate the received signal
power free space at distance d from the sender.

_RGG A

Prd) = @an)2d°L

(1)

Table 5: Formula 1 explanation

Pt Transmitted signal power
Gt Antenna gains of the sender
Gr Antenna gains of the receiver

L(L>=1) System loss

Lambda Wave length

In ns-2, it is common to establish Gt=Gr=1 and Lglo configure this model in ns-2 we

can use the node-config command as follows:

59

$ns _node-config —proType Propagation/Freespace

3.7.3 Two-ray ground reflection model

The two-ray ground reflection model focuses ondhiect path and a ground reflection path,
instead of focusing only in the path. It is demamst that this model offers better
performance in long distance among nodes thanrégespace model. The received power at

distance d is predicted by

PG,G, ht?h,?

Pr(d) =
@ d*L

(2)

where the new parameters are ht and hr, and Ladsismed as in the free space model.

Table 6 : Formula 2 explanation

ht Height of the sender antenna
hr Height of the received antenna
Gt Antenna gains of the sender
Gr Antenna gains of the receiver
d Distance

L(L>=1) System loss

The two-ray model does not achieve good resulhort distances due to the oscillation
caused by the constructive and destructive combimaif the two rays. Therefore, from a
theoretical point of view, the free space modemghbetter performance in short distances (d
small). Actually, the two-ray ground reflection nebdn ns-2 calculates a crossover distance,

dc. When d< dtwo-ray model is used. Otherwise, free space id.use

dc=@nhh)/A (3)

60

To configure these nodes in ns-2, we can use nodfgcas follows:

$ns_ node-config —propType Propagation/TwoRayGround

3.74 Shadowing model
The nodes ranges are not ideal circles as freeespaciel and two-ray model assumes. In
reality, the received power depends from the malkigpropagation effect, hence the received

power at certain distance is a random value. Thudehis called the shadow model.

Table 7: Typical path loss exponential values

Environment B
Outdoor; free space 2
Outdoor; shadowed urban area 2.7 -5
Indoor; line-of-sight 1.6-1.8
Indoor, obstructed area 4-6

Table 8: Typical shadowing deviation values

Environment ogs (dB)
Outdoor 4-12
Office, hard partition 7
Office, soft partition 9.6
Factory building, line-of-sight 3-6
Factory building, obstructed 6.8
[R(d) } = —10ﬂlog(iJ + X 4)
P (do) g, d,

Table 9: equation explanation for formula 4

61

Pr(d) Received signal power at the distance d

Pr(a) Received signal power at the reference distapce d

XdB Gaussian random variable with zero average amnudatd

deviationdyg

R path loss exponent

In ns-2, before using the model we should selestvdlues of the path exponent 3 and the

shadowing deviatiopyg.

In addition, the Otcl interface uses the node-gpofimmand. An example is showed as

follows:

first set values of shadowing model

Propagation/Shadowing set pathlossExp_ 2.0 ;#lpathexponent
Propagation/Shadowing set std_db_ 4.0 ;# shadosergation (dB)
Propagation/Shadowing set dist0_ 1.0 ;# referermstartte (m)
Propagation/Shadowing set seed_ 0 ;# seed for RNG

$ns_ node-config -propType Propagation/Shadowing

The code above sets a random number generator (RiM®@&)e seed value. Another seed

value can be set as follows:

set prop [new Propagation/Shadowing]

$prop set pathlossExp_ 2.0

$prop set std_db_ 4.0

$prop set dist0_ 1.0

$prop seed <seed-type> 0 ;# user can specify spatkthod

$ns_ node-config -propinstance $prop

Where <seed-type> above can be raw, predef ordiuri

62

4 Cross Layer Design for MANET

4.1 Introduction to cross layer design

The success of layered architecture lies in itp@rty to provide modularity and transparency
[34]. Modularity refers to the high level of unifaity of the method, and transparency refers
to the clear separation between the functions oh éayer. The modularity can be highly
affected by the cross-layer design, since changesthe layer implementation can affected
the stability of the whole network due to unexpdatellateral effects. The cross-layer design
leads to improve the overall performance of thevoek in a low coupling manner, where low
coupling refers to the desired low level of intgreiedency between the method modified and
the rest of the methods or classes. This chaptes 8 explain the modifications proposed in
the MAC and routing layer with respect to crosselagiesign. The goal is that by achieving
better coordination among the layers, better perémce can be achieved.

The main problem between MAC and routing layehat the routing layer misunderstands
the information provided by the MAC layer. Whenemder node attempts to communicate
with another neighbouring node, the communicatioray mfail. This unsuccessful
communication may happen because either the recende is unreachable by the sender
node (broken link), or there is collision of packet the receiver node. However, the routing
layer always interprets this failure as broken .li@ur purpose in this project is to clarify for
the routing layer that information in order to knainthe node is still reachable. If so, the

receiver node does not need to send back the eoutetowards the sender node.

4.2 Signal to noise ratio

42.1 Introduction

Signal to noise ratio (SNR) is the ratio of thensigpower to the noise level of a transmission
medium, and it is used to categorize the qualityadfransmission [35]. The cross layer
concept is also related with SNR, since upper Ryee the channel information obtained

from the physical layer to improve the overall peniance of the network.

63

4.2.2 Operation

Consider figure 10 [43]. The SNR of a link is obtadl in the physical layer. The SNikelps
the sender to choose an adequate transmissioiRrat®here this rate affects, as well, the
packet delay Dof the link. Additionally, the rate is considerby the routing protocol in its
decisions, which affect the overhead of the netwarkd influence the values; R, and

SNR on individual links.

Network

A

Di

PHY

4

|] SNRi
Channel

Figure 7: Cross layer communication

An example of how to improve the network throughjpuivireless networks using SNR is
described by Velayos&Karlsson in techniques to cedine 802.11 handoff time [40], which
is explained as follows. Link-layer handoff is ttleange of the access point (AP) to which a
station is connected. However, in wireless IEEE.8D2the handoff refers to the actions that
interrupt the transmission of data, such as chafgadio channel or exchange of signalling
messages. The signalling to perform the handoffpiscified by the 802.11 MAC protocol
Signal strength is an important measure to caretaiefore launching the handoff, since the
search phase of the handoff could start when tieagth of the received signal radio is below
a certain threshold.

The detection phase of the handoff can be launblgetie network, consisting of a single
disassociation message sent by an access poim &tdtion. However, normally the handoff
is launched by a station, upon detecting a lackadfo connectivity based on weak signal
received from the physical layer.

In the analysis of the detection of failed frantbg reasons can be collision, radio signal
fading, or station out of range. The stations lffratonsider collision, but after several

unsuccessful retransmissions, radios signal fagirgssumed and probe requests are sent to

64

check the link. Only after several unanswered rsgjumit of range status is assumed and the
start phase is called.

Once the detection is completed, the search phasleeohandoff is performed. In the
search phase, the main purpose of the station iBntbthe access point in the range.
Afterwards, the last step is the execution of tlemdoff, where the station sends a re-
association request to the new access point. Aftetsy the access point confirms the
reassociation sending back a successful request.

Additional improvements are achieved from the dignanoise ratio in cellular wireless
networks [41]. In IEEE 802.11, an access pointeg@an area of a limited radio range. When
the capacity of an access point is not enoughhfercbvered area, more access points can be
installed. However, it does not mean that the a#pavailable of the network increases
automatically, because the stations usually s¢hectccess point with the strongest signal to
noise ratio. As the stations tend to concentrate¢henaccess point closest, a load balancing
mechanism is necessary

The signal strength is also an important featur¢henrange estimation techniques [39].
These techniques were extensively used in outdaetess, such as GPS. In indoor wireless,
the range estimation techniques are less develdpedto the radio propagation, which
provokes a limitation in the range estimation teghas. The received signal strength is the
principal option for range estimation in wirelestworks. The energy of the signal tends to
decrease from the access point towards the regestation. The range to the AP can be
deduced if a station measures the received signahgth, and knowing how the signal
strength reduces with distance (i.e. the propagatiodel).

Signal strength is also helpful to predict link bjiyain ad hoc wireless networks [6]. It is
observed that the successful reception of a paidgeends on SNR at the receiver. Shortest
links with high signal strength in the receiver aqutoduces higher delivery rates than longer

links, which achieves low signal strength.

65

4.3 Extensions to MAC 802.11 for cross layer design

4.3.1 Introduction
In ad hoc wireless networks, we deal with nodes lthae different power capabilities; hence,
there is a considerable likelihood to transmit wdtfierent power levels. The link asymmetry
arises when a node with high power transmits toveet power node, and the high power
node cannot sense an ongoing transmission triggereélde low power node. Because of the
asymmetry, traditional protocols that assume links bidirectional perform poorly.
Concretely, the hidden terminal problem is exadedha

IEEE 802.11 MAC protocol offers a lower throughjputthe presence of link asymmetry,
which influences on routing protocols primarily ggeed for wireless ad hoc networks with
bidirectional links, such as DSR. The principal seof this problem is that high power nodes
cannot sense the RTS/CTS dialog among low poweesio@ihereby, the hidden terminal
problem is exacerbated, which provokes more fdlde failures, increasing the times that

route discovery process is launched [33].

4.3.2 Challenges and concept

The link asymmetry problem is a good example camnogrbad interaction among layers.
Similarly, other parameters can improve the pertoroe in the cross layer design from the
MAC layer. Using RTS/CTS communication among nodesew problem arises: a sender
node attempting to establish a communication witfeonodes receives no answer, because
the destination node is communicating with othedtleadrhen, the sender node stops trying to
communicate after a while, and the MAC layer sendsthe upper layer that the
communication is not possible. The main objectivéhis master’s thesis project for the MAC
layer is to extend that information, clarifyingttee upper layer why the communication is not

possible.

66

4.4 Extensions to DSR for cross layer design

44.1 Theoretical Viewpoint

In the cross layer design, the modifications inM&C layer affect to the routing protocols as
well. Moreover, direct modifications in the routingrotocol affect to the MAC layer,
improving the whole performance of the networkhiése modifications are good enough. For
example, the behaviour at MAC layer for a proactmating protocol, sending hello messages
periodically, will be completely different from fa reactive routing protocol, since proactive
routing protocols keep routes updated in each neden if the routes are not required and
reactive routing protocols update routes on demarn the path is needed. In the DSR
protocol, a better interpretation of the informatimbtained from the MAC layer may achieve
several improvements in the throughput, delay afkpts to the destination, and packet

delivery ratio [43].

4.4.2 Challenges and concept

A bad interaction between DSR protocols and the M&y@r could decrease the throughput
in wireless 802.11 networks [28]. Once the MAC lalias been improved with a table of
received powers of neighbouring nodes with the psegracking their distances to the sender
node, our goal in this thesis is to handle thabrimiation in the routing layer to avoid that
DSR triggers a route error process or route maarntea if it is not required.

DSR protocol triggers a route error when the remenode of the communication did not
reply after several attempts of RTS in the MAC lay@onsequently, DSR assumes ‘link
error’, manages that link error as broken link dnggers the route maintenance process.
However, as we discussed earlier in chapter 4.8uagessful communication among nodes
may arise because of different reasons than brikks: In such case, the route maintenance
process is not necessary when a neighbouring redglli reachable. A cross layer design
should identify when a link error was due to brokek (node not reachable), triggering the

route maintenance process only in such case, er odasons such as increased contention.

67

4.5 Implementation

The implementation and later results presentedleémext section are referred to:

- DSR-AR: it refers to the results using the modiiima proposed in this dissertation
from DSR simulations. ‘A’ comes from Alonso and ‘fRom Rocha (our surnames).
- DSRB1: it refers to the original implementation of DSR.
- DSR2 (Dampen policy): it refers to the improvementgoeed by Nahm et al.
[28][29].
Nahm et al. use a new parameter to control theliggabf the connections. DSR Routing

maintenance process is called only after the nurmbeauccessive link failure L exceeds a
certain limitp, which indicates the toleration limit of successiwk failures.

- If transmission fails and L $, the current packet is dropped and the curraneris
kept. Thereafter, L is increased by 1.
- If transmission fails and L 8, DSR routing maintenance process can be launaid a
L is resetto O.
- If transmission is successful, L is reset to 0.
Usually, the routing protocol responds to link diaél after RTS packet is retransmitted up to

7B times in the 802.11 MAC layer. Thereforigs1l refers to the original policy of DSR
protocol.

45.1 Extension to ns-2 - MAC layer

The main reasons for lost packets are high levelsoagestion (high traffic), equipment
failures (power problems) or errors due to noiselaw signal (mobility). It would be
beneficial for DSR the ability to distinguish thesasons, adjusting transmission rate in case
of congestion, or deleting old routes in case obitity.

Normal DSR interprets a link failure (in MAC layeas a broken link, even when it was
caused by congestion at receiver. The sender rfamlddsknow why communication was not
possible. In this master’s thesis project, we impated an approach that tracks the received
signal strength of each neighbouring node in otdénow when a neighbouring node is near
enough for a successful transmission. If lost peckee due to congestion and high traffic,
normal DSR triggers route error but this is coymeductive because it adds more. If lost
packets is due to low signal quality or misroutedkets, then route error is needed because
receiver is not reachable. Then, the signal stregtneighbouring nodes can be used to
detect the reason for lost packets, distinguishietyveen congestion and broken links due to
mobility, because in broken links due to mobilitiye receiver is not reachable and its signal
strength is now available. The implementation \8d#id into two parts; the first one keeps the
last twenty received signals from a node in anyaraad the second part decides the kind of

68

message (link failure, either due to errors or dmecongestion using signal strength of
neighbouring nodes) to be sent to the upper laydenever the communication is not

possible but the destination node is in the trassion range of the sender.

Packet reception
inMAC layer

'

Search for sender
node [D inside packet

Y

Was a packet
from this node

received before?

Y

Y
Create new entry Insert received power
for received node at |————————— from physic layer for
MAC layer this node.

Y

Discard or send
it to up laver.

Figure 8: MAC layer at receiver node. A packetaseived even when current node is not

the destination node. See Code 1.

In the graphic above, the received power of neighibg nodes is tracked with the purpose
of using it later for distinguishing if neighbougnnodes are reachable or not. These

modifications are made at the sender.

void
Mac802_11::recv(Packet *p, Handler *h)
{

if(tx_active_ && hdr->error() == 0) {
hdr->error() = 1;

hdr_mac802_11 *mh = HDR_MAC802_11(p);
u_int32_t idNode = ETHER_ADDR(mh->dh_ta);
double power = p->txinfo_.RxPr;

insertNode (idNode,power,nodesPower);

Code 1: Modifications at “mac802-11.cc” when ackat is received from physic layer.

69

struct time_power {
int pos;
double power[20];
u_int32_t idNode;

Code 2: Modifications at MAC layer (in the file n882-11.h) where the last 20 received

signal strength from neighbouring nodes are stored.

Retransmut g n SRR AR
RTS /DATA

¥

Is the current number
of retransmit greater

\

or equal than the
¥ i allowed” St] ;
In the case of RTS Retransmit- 1t <t talure the
Betry mit_reason will be XMVIT REASON RTS
If DATA Retransmut: f it failure the
v xmit_reason will be XMIT REASON ACK
; »
Back oft
(Fet last recenved | wer for
{3t fadure) the node from phvsie bver

. ¥

Kt req
i

XMIT_REASON HIGH POWER

recerve threshold”

mit reason =
SMIT_REASON_RTS
MSMIT_REASON ACK

Y

A J

Send packet to up laver -

Figure 9: This diagram shows how MAC layer infortnghe routing layer, when several

attempts to communicate to the receiver node fa$ee¢ Code 3.

The normal behaviour of MAC layer in order to tramisinformation to a neighbouring node
is to send a Request To Send (RTS). If this comaoatioin fails, the MAC layer waits (back
off time) and tries it again later. After severaldaunsuccessful attempts, the MAC layer
informs to the routing layer that communication wassuccessful. In our dissertation, the
reason for that unsuccessful communication is serithe routing layer, that is, if the last
received power of the destination node indicateg this reachable, the routing layer is

70

informed, using the variable xmit_reason with tredue XMIT _REASON_HIGH_POWER

(See Code 3). In this case, the routing layer shmiérpret that communication to destination
was not possible, not because of a broken link ratlher congestion, therefore route
maintenance is not needed. If that is not the realdivered to the routing layer, a route

maintenance process is required.

if (ch->xmit_failure_) {
struct hdr_mac802_11* dh = HDR_MAC802_11(pktTx_);
uint32_t idNode = ETHER_ADDR(dh->dh_ra);
double received_Power = pktTx_->txinfo_.RxPr;
int i = findNode(idNode, nodesPower);
if (i1=-1)
received_Power = nodesPower[i].power[nodesPowe rli].pos];
if (received_Power > RxThreshold)
{
ch->size() -= phymib_.getHdrLen11();
ch->xmit_reason_ = XMIT_REASON_HIGH_POWER,;
ch->xmit_failure_(pktTx_->copy(),ch->xmit_fail ure_data_);
}
else {
ch->size() -= phymib_.getHdrLen11();
ch->xmit_reason_ = XMIT_REASON_RTS;
ch->xmit_failure_(pktTx_->copy(),
ch->xmit_failure_data_);

}

Code 3: Modifications in the file “mac802-11.ccink error notification. See Figure 9.

(..)
int xmit_reason_;

#define XMIT_REASON_RTS 0x01

#define XMIT_REASON_ACK 0x02

/I kthahm add for DAMPEN policy

#define XMIT_REASON_CONFIRM 0x03

/I Alonso - Rocha

#define XMIT_REASON_HIGH_POWER 0x04

(.)

Code 4: Modifications in the file “packet.h”, defiions of link error.

The proposed approach for future work that we aessigadds new functionalities for every
node in the network. Since each neighbouring nedeacked via its received signal strength,

a sender node is able to discern if neighbourirdga@re moving away or not. In addition, we

71

propose to calculate and use the average signalsodés with the purpose of stop
retransmitting packets when destination is nothieble because it moved away.

The reason of using an average value, instead bf the last received value from
neighbouring nodes, is to adapt this approach teemealistic scenarios, where objects such

as furniture, may interfere temporally in commutima among mobile nodes.

if (average_selected){
u_int32_t idNode = ETHER_ADDR(rf->rf_ra);
int pos =findNode (idNode, nodesPower);
if (pos!=-1){
float av=0; int movAw=0;
average(nodesPower[pos],av,movAw);
if ((movAw >= 18) && (av < RxThreshold)) {
discard(pktRTS_, DROP_MAC_RETRY_COUNT_EXCEEDE D); pktRTS_ =0;
hdr_cmn *ch = HDR_CMN(pktTx_);
if (ch->xmit_failure_) {
ch->size() -= phymib_.getHdrLen11();
ch->xmit_reason_ = XMIT_REASON_RTS;
ch->xmit_failure_(pktTx_->copy(),ch->xmit_fa ilure_data_); }
discard(pktTx_, DROP_MAC_RETRY_COUNT_EXCEEDED);
pktTx_ = 0;ssrc_ = 0;rst_cw();

return;}

Code 5: File “mac802-11.c”: use of average f@transmission of packets.

An accurate study for the number of repeated mowésnef neighbouring nodes moving
away and for the value of the average are needemtder to achieve an optimal performance

in the network. See also source code in Appendix C.

72

Retransout
RTS /DATA

Y

[s the current munber

of retransimit greater
or equal than the

mamn allowed”

i
{amit_fahure)

Y

In the case of RTS Retransnut i st fauhire the
xmit_reason will be XMIT _REASON RTS

If DATA Retransnut: f xiut_failure the
smut_reason will be XMVIT _REASON_ACK *

4

Caloulate average (from its

Y

xnt_reason =
XMIT_REASON RTS
XMIT_REASON_ACK

Y

Back oft

Y

Send packet to up laver |«

Figure 10: The proposed approach that uses an agenaalue is shown here, to improve

performance with object scenarios.

45.2 Extension to ns-2 - DSR

When a node tries to communicate to a neighbounimge and this communication is not
successful (after several attempts, MAC layer semdsrror to the routing layer), the normal
behaviour of DSR is to interpret that the neighibbaynode is not present anymore, that is,
DSR assumes that the communication failure wastalumobility. Once the DSR protocol at
sender interprets that link error as a broken Iwkjch information is delivered for each
intermediate node back to the sender node, whicéives that information as well. A route
error may trigger a route request process (procegsBRouteError or
handlePacketWithoutSR), if the sender does not havealternative route towards the
destination, or there is an alternative route tolwdahe destination, which will be used. In both
cases, the route containing the broken link is neddrom the caches of the nodes involved
in the route error.

In a scenario without mobility communication fagsrmay arise, but DSR will interpret
that it was due to mobility, when actually it wasedto congestion. Therefore, the process of
route error should not be performed since it ineesaeven more the congestion, decreasing
the overall performance in the network. The progosmdifications will make DSR able to

distinguish between both situations, avoiding thete error process when the link error at

73

MAC layer was due to congestion and not due to fitplaf nodes causing broken links. In
the proposed approach, when MAC layer is not ablsotmmunicate to a neighbouring node,
MAC layer informs to the routing layer not only thiaere was a problem, it is also included if
the neighbouring node is still reachable (see Chd&herefore, DSR at the sender realizes
about the real situation and do not perform a reuter if the error received from MAC layer

informs that the node is still reachable.

The DSR modification is showed as follows:

void DSRAgent::xmitFailed(Packet *pkt, const char* reason)
{
()
if (cmh->xmit_reason_ == XMIT_REASON_HIGH_ POWER
&& Istrcmp(reason, "DROP_RTR_MAC_CA LLBACK")) {
Packet::free(pkt);
pkt = 0;

return;
}
()
/* send out the Route Error message */
sendOutPacketWithRoute(p, true);

}

Code 6: File “mac802-11.c”: use of average fotrensmission of packets.

74

5 Simulation Results

5.1 Scenario Description

In this chapter, we describe the number and spatiakion of nodes and their configuration
parameters as such transmission range, carriee shresshold, etc. that we utilized in our
simulations. The time of the simulation, the trams$payer protocol and number of flows are
also described.

In our simulations, we utilized four different segios, with the purpose of evaluating
diverse behaviours of mobile ad hoc networks. Fwstdistinguish between static and mobile
scenarios. We used static scenarios to analyze¢caslow communication in the network,
avoiding changes of routes or disconnections duedbility of nodes. Later, we use mobile
scenarios to verify the adaptability of our apptoat mobility and high mobility scenarios.
The first scenario we deal with is called “Chaimitaall static nodes are positioned describing
a beeline. The communication from a source nodedestination node can use intermediate
nodes and alternative routes are not possiblealtleetseparation among nodes. Therefore, in
this scenario the number of hops is an importamarpater. We utilized Grid scenario to
evaluate how collisions affect overall network penfiance. In this scenario traffic is
generated with the purpose of create collisions|enfumber of hops does not change. For
mobility scenarios, we used “Random way point” sgenwhere the speed and direction of
nodes is randomly set and “Manhattan” scenario,revin@des move along streets and speed

set to a specific value for each simulation of #tsnario.

5.1.1 Static Scenarios
Chain scenario
The chain scenario defines 22 nodes without mghititming a chain with a separation of
200 meters. The carrier sense threshold for eade i® 550 meters and the transmission
range is set to 250 meters.

The simulation results were obtained from two, fand eight simultaneous flows for both
TCP and UDP protocols. The number of hops to rélaeltdestination varies among 4, 5, 6, 7,
8, 10, 12, 14, 16 and 20 hops. The source is alwsysame, where the destination depends

on the number of hops to simulate. For instanag;, T&CP flows and 7 or 12 hops means that

75

there were simulated four TCP flows from node Qu{se) to node 7 or node 12 respectively
(see figures 11, 12, 13). This scenario was deditmelemonstrate the improvements in TCP

when the fractional window [29] is used. Simulattome for this was set to 120 seconds.

A -
P s P _ . B e P <
0000600 0Oeodooeoooeoooeooo
Ll

Figure 11: Two flows from node 0 to 4, examplefdrops

\A/

O—0—@06— @06 18— —@—(1—(12—13—19—(15—16—(17—(18—(19—20—(21)

\A/

Figure 12: Four flows from node 0 to 10, examplelfd hops

YVVYY

(02— a5 (6 (18— —10—1—12—13—14—15—16—(17—(18— /§944.' @n

YVVY

Figure 13: Eight flows from node 0 to 20 examplke2@ hops

Grid7x7 scenario

The grid scenario is composed by 49 nodes situateal square forming 7 rows and 7
columns. Each node is separated 200 meters froneighbours. The carrier sense threshold
is 550m and the transmission range is 250m for eacke. As the chain scenario described
above, this is a static scenario where the nodes ha mobility.

We have been simulated two parallel flows, TCP @i, from node 21 through node 27
with this scenario. In order to check how collisowere managed, they were induced on
purpose, with intersected flows, from node 3 toa#8l from 21 to 27 at the same time. We
decided to increase the number of flows until rethehmaximum of intersections in the grid,
from two vertical flows intersected with two horizal flows until seven flows intersected

with seven flows. Simulation time for this scenasias set to 120 seconds.

76

@ @ a%“ @éﬁ»—@H@H@E‘) @G @ GYd ©® ® ® GY® © G0 @
(35) (36 (3738 (39) (40 (40 (35 (6 (7) \)ﬂ (40F @ (5Go}6)—G 6 fa

L , o L) —————T
@600 66 666 @ <32H33H H ® 90 6@ @9 @
e St ISP Pyl
) @ @ @ @ @ @ = @ @ @le és} ® o 2| o 25 @
21— (22 » © € 21)—@ 4125 2 7

e ——— > P! I PPL It

(15) Qg)f(gH@ 1920

(\1?(\12(\16)—(\17)*{#@—&9} 20 (40s—e—14a8—19 20 (14

 eose socslece sofesele

(7>—(8H\ >410\ @ Qg)ﬁ@) (7%{3)—(9}—(10)— @ ®©

)i i L] |
0000606 00000006 ©0eee've

Figure 14:two parallel) _
. Figure 15:two flows Figure 16:2x2 flows
ows

@) ’A@‘i —?‘ 16)

PA® G4 00 0‘ @ OAOAQAQ‘O W |

4 el al e
(35—Go |61 38) 39 (40) @6 @16 @@ @
= = o 2 8 ‘\\ s & \/7\
@F@%@H@ ;E\ ®le ® O6 @|e ’
i P e ol ‘_/ | JA\\ 4
@@ fQHzﬂ 4)7%26) %l) 0600
| J} (1ay-}as)—(16) | 17 - 1gy | 39—
@*Qg {6‘—(17¥118)—(19r ’20) d hdihd b4 b >
ole-ole o le e
STy @1® O ¢ @ 13)
@@l ©® @ ole ' \[&
g Lo 1] l ROs =Ua mOS 2]
e O 0 0060 >
Figure 17:3x3 flows Figure 18:4x4 flows Figure 1977flows

5.1.2 Mobility Scenarios

Random waypoint

Random way point scenario was created using thentgn” tool provided in the ns-2.29
package. The scengen tool creates n nodes ands pileera randomly. The nodes are moving
during the simulation with random speeds, from 1t/$0m/s. In mobility scenarios there is
a special parameter called pause time, which m#stsa node stops for a while after a
movement. In this scenario, the pause time valug set to five seconds, used mainly for
simulation purposes. The size of this scenari@igs2000x2000 meters, therefore it is quite
probable the existence of, at least, one route feosender to a receiver node. The carrier
sense threshold is 550m and the transmission sng80m for each node. Simulation time

for this scenario was set to 120 seconds.

77

Manhattan
In Manhattan scenario 200 nodes are used. Eachisoi@éined with a carrier sense threshold
of 130m and a transmission range of 60m. The mamgse of this scenario is simulating
different speeds of the nodes, where there isfardift scenario file for each maximum speed
of the nodes. The scenarios used are taken fromnowility: Om/s, 1m/s, 2m/s; to high
mobility: 5 m/s, 10 m/s, 20 m/s.

The Manhattan scenario consists of a square of 50860m where six streets are defined,
3 vertical and 3 horizontal, placed at equal distarThe nodes move along 12 lanes, 2 lanes
for each street. This scenario was taken from imellations of Nahm et al., and the main
goal was to compare the obtained results in séaicmobile scenarios for TCP and UDP in a
different environment with controlled speeds. Siatioin time for this scenario was set to 200

seconds.

5.2 Traffic Source

In order to perform our simulation, a scenario wiefy position and number of nodes, physical
interfaces, routing protocol and a transport prokd€CP/UDP) are needed. Besides this, it is
also needed to attach some traffic to such tramgpotocol. In this section, the traffic sources
are defined for the different transport protocotawdated, FTP traffic for TCP and CBR for
UDP.

5.2.1 File Transfer Protocol (FTP)
FTP is a commonly used protocol for exchangingsfilwer any network that supports the
TCP/IP protocol. There are two parts involved in PP transfer (usually computers): a
server and a client. The FTP server, running FTrResesoftware, listens on the network for
connection requests from other computers. Thetclrenning FTP client software, initiates a
connection to the server. Once connected, the tclmay perform a number of file
manipulation operations such as uploading fileth&oserver, download files from the server,
rename or delete files on the server and so on [B3hobile ad hoc wireless networks, any
node has the capability of being client and ser&#émodes are potentially client and server at
the same time.

The ftp packet size for all simulations was 1024ebyfor TCP. Unfortunately, the only
way to configure parameters of ftp traffic is toaptla free implementation of FTP to a new
Application/FTP source and sink or use real FTHittalherefore, we used the default FTP

parameters (i.e. frequency of sent packets), dtteetscope and goal of this dissertation.

78

5.2.2 Constant Bit Rate (CBR)
CBR is useful for streaming multimedia content suashaudio. Therefore, we evaluated
performance of CBRtraffic [54].

The packet size for all simulations was 512 byiés rate can be set in two ways, defining
packets per second and the rate in KB. For allwfsimulations we used five packets per
second. However, we also simulated a 300kb ratedar to probe the mobile ad hoc wireless

network for capacity constraints.

5.3 Performance parameters and graphical representatio

This chapter aims to elucidate the following resuht this master's thesis project. These
graphics are composed of DSR and DSR-AR resuldd, igh results using normal DSR and
results using our proposed approach, that we cBIfd-AR.

In chain scenario, the horizontal axis shows thelmer of hops between the sender and
receiver nodes. For Grid and Random Waypoint seanait means the number of TCP or
UDP flows. Finally, in Manhattan scenario the hontal axis indicates the maximum speed

of nodes in meters per second.

5.3.1 Throughput

These graphics present the overall rate of tradefenormal DSR (red line) and for DSR-AR
(green line). The vertical axis shows the throughpeasured in kilobytes per second, which
should be maximized.

received_bytes
Time_of _simulation

Throughput=

5.3.2 Routing overhead

These graphics show the number of the routing gagker second for DSR (red line) and for
DSR-AR (green line), which should be minimizedthe vertical axis appears the number of
packets per second, whereas in the horizontalth&isumber of hops or flows.

number_routing _bytes
number_of _(routing + data)bytes

Routing_overhead=

5.3.3 Lost packets
These graphics show for normal DSR (red line) a®REAR (green line) the percentage of
packets that were sent by the sender nodes, bet natreceived by receiver nodes along all

simulation time. This value should be minimized.

79

Lost_ packetss(sentPacket- receivedPaketg

5.34 MAC errors

These graphics show in the vertical axis the drdpgmeckets from the MAC layer for DSR
(red column) and DSR-AR (green column). There vieoad 4 different type of MAC errors:
collision (these errors usually represent up to 989%he total errors), retry exceed count,
MAC busy or duplicate packet. These errors shoeldhimimized.

5.3.5 Route errors

Each time DSR or DSR-AR performs a route error @sscat sender, it is registered and
showed in these graphics. A route error in DSRgetg a route maintenance process
provoking more control traffic in the network. Udlyahese kinds of errors are due to broken
links because of the mobility of nodes, but theyragse from collision of packets, as well.

These errors should be minimized.

5.3.6 Route changes
If the sender and the receiver nodes are not meaugh to communicate one to each other,
they may use intermediate nodes to make a suctesmismission. Due to the mobility of
nodes, this route may change several times.

A route change is a new route used to reach threveacnode. If one of the links between
sender and receiver nodes is broken and is feasilav route, then an optional route is used,
registering the route change and showed in thesphgrs. These changes should be

minimized.

5.3.7 Route changes between two nodes along simulatiomg.

These graphics explain how the length of the rbeteveen a pre-selected sender and receiver
nodes changes along the simulation time. For exantipé optimal length in grid scenario for
nodes 21 to 27 is 6 hops along all simulation tiBecause of packet collisions, this route

changes many times even if no mobility and theeetiecreasing the overall throughput.

80

5.4 Chain scenario

We obtained improvements in throughput and routingrhead for two, four and eight flows

from node 0 to 4, 5...20. Since chain is a statiaade, broken links should not appear like
in mobility scenarios. Therefore, the routing oweatl is also a consequence of the MAC
layer, which informs to DSR about link errors dwecdbllisions of packets instead of the

mobility. Once the routing overhead is reduced ttineughput increases.

54.1 TCP

Using both DSR — AR anpR [28] described in section 4.5, all route erroesavremoved.
The more flows we use, the more MAC errors we ohthecause all flows travel though a
unique path.

MAC errors for eight TCP flows between DSR — ARaisnost the double than using
normal DSR, although these results are becaudgeaidtorious reduction of routing packets
and there is only one path for all flows. DSR—-ARuees routing packets, by identifying the
reason of link errors at MAC layer and avoiding tbate error process. Therefore, the routes
that can still be used are removed from the caehdke intermediate nodes, leading to a
better performance for data packets. Then, MACrlayaest manage additional data packets,
achieving a higher overall throughput, althoughthis scenario more packets are dropped
from the MAC layer.

An important usage of DSR-AR is the reduction afiteoerrors compared with normal
DSR. This is because using normal DSR route em@e mistakenly detected. In normal
DSR, all link errors from MAC layer are treated la®ken links, leading to route errors.
Sometimes this is wrong, because the congestionaauase link errors as well. If a link error
was due to congestion, DSR increases that congesttb a route error process. It should be
noticed that in a static scenario, such as “chah® route errors should be minimized.

A significant improvement of DSR-AR is related thanges of the length of routes (see
changes of the length of routes). In this casesdhahanges become lower and stable. This is
directly derived from the reduction of route erto@nce a route error is detected, routing
protocol DSR triggers “route maintenance”, incregdihe possibility of finding a new route
towards the destination node, therefore, the lenfjthe route may change.

The following graphics are related to the simulataf eight flows during 120 seconds,

results for other number of flows can be founchia appendix.

81

THROUGHPUT

25

O .
15 0 —o—o5 5

KB /sec

0,5

4 5 6 7 8 10 12 14 16 20

Number of hops

‘—K—DSR o DSR-AR‘

Packets / sec

60

50 1

40

301
201

10

ROUTING OVERHEAD

6 7 8 10 12 14 16 20

Number of hops

‘—x—DSR o DSR»AR‘

Figure 20:Throughput

Figure 21:Routing overhead

LOST PACKETS

4
35 -
34 © o
2 551
L~ © o
g .2 .
T AN
0,51 \t——x
0

4 5 6 7 8 10 12 14 16

Number of hops

‘—K—DSR o DSR-AR‘

30.000
25.000
20.000
15.000

10.000
5.000 -

TOTAL MAC ERRORS

6 7 8 10 12 14 16 20

Number of hops

mDSR mDSR - AR

Figure 22: Lost packets

Figure 23: MAC errors

ROUTE ERRORS

100

) 5 6 7 8 10 12 14 16 20

Number of hops

mDSR ODSR - AR

Figure 24: Route errors

300
250
200
150
100

50-

ROUTE CHANGES

s

s 6 7 8 10 12 14 16 20
Number of hops

ODSRODSR - AR

Figure 25: Route changes

Routing overhead, percentage of lost packets ambauof route changes decrease in normal

DSR when the number of hops grows. All route ermese removed using DSR-AR, which

means that they exist due to congestion. Since tiseno alternative route, all packets must

use the same route, which leads to higher congestieen the number of hops is smaller.

However, the MAC errors increases in DSR-AR. Cullis are due to a higher traffic of data

because there are no route error processes, whail aansmission of data. Finally, it is
noticed that the throughput decreases when patjthas increasing in chain topology. This

behaviour was explained in the section 2.4.2 (&fe€path length in TCP).

5.4.2 UDP

This simulation was based on CBR (five packetsgg&ond), whereas TCP simulation was
based on FTP. Hence, the obtained values cannabimpared directly. However, in the

following graphics the strong relationship among adl them is shown. While simulating

normal DSR and UDP, some troubles were found incibm of the NS-2 related to the

memory management in Linux. However, these resudie included, for 14 the number of
hops for instance, and commented, because aftaradesimulation sessions the errors
remained. The same simulation session was perfosmezessfully using DSR-AR.

Ns-2 simulated for 14 hops shows a high numberretry exceed count”, which means
that in the MAC layer some packets were not dedigieafter all possible retransmissions. That
explains the higher number of packets lost (fig28@ Because of this, DSR detects a route
error and triggers the route maintenance procebs;hwprovokes more routing overhead
(figure 27), decreasing the overall throughputhaf hetwork.

The results are according to the amount of traffimulated, that is, there was not much
data simulated, therefore we obtained similar tesusing normal DSR and DSR-AR. The
following graphics are related to the simulatiorBAJDP flows during 120 seconds where the
number of hops to reach the destination variesitseefor other number of flows can be found
in the appendix.

Even in a low traffic scenario, some route errossenfound simulating for normal DSR.
Using DSR-AR, these route errors were removed @&nd eonsequence of that, the routing
overhead was reduced. This is because normal DSRiterprets the information received
from the MAC layer and triggers a route error wieneighbouring node is not reachable.
This route error tries to find a route to reach destination that could lead to increase the
routing overhead. Since chain is a static scenaoate errors should not be triggered.
Therefore, DSR was misinterpreting the informatfoom MAC layer, which leaded to an
increment of the routing overhead.

Because of the low traffic generated, improvemémtthe throughput are not significant,
but it is observed that the number of route eramd routing overhead was reduced. It is
observed that the number of lost packets for suowaraffic scenario is low. Some problems
were experienced simulating normal DSR for 14 ahd@mber of hops; therefore, we did not

take into account these results because they aE)0&6 reliable.

83

ROUTING OVERHEAD

THROUGHPUT
1,35 20
1,34 9 15]
8 1251 2
- o 10
2 12 ¢ g
1,15 & 59
11 T T T T T T T 0
4 6 7 8 10 12 14 16 20 4 5 6 7 8 10 12 14 16 20
Number of hops Number of hops
| —2—DSR —o—DSR - AR| [——DSR —o—DSR - AR]
Figure 26:Throughput Figure 27:Routing overhead
LOST PACKETS TOTAL MAC ERRORS
12 14.000
10 12.000 -
o g A 10.000 A
3 8.000
g : 7\
a 6.000 -
B 4,000 -
2 2.000
0 04
10 12 14 16 20

6 7 8
Number of hops

[—>—DSR —o—DSR - AR|

Figure 28:Lost packets

ROUTE ERRORS

Number of hops

mDSR ODSR - AR

Figure 30:Route errors

84

4 5 6 7 8 10 12 14 16 20
Number of hops

mDSR @DSR- AR

Figure 2%ptal MAC errors

ROUTE CHANGES

250
200
150
100

4 s 6 7 8 10 12 14 16 2
Number of hops

ODSRODSR - AR

Figure 31:Route changes

5.5 Grid scenario

Several improvements were achieved in throughpdtranting overhead for 2 (two parallel
flows from node 21 to node 27), 2 (two cross flolwsm node 21 to node 27 and from node 3
to node 46), 4, 6, 8, 14 flows, see also figure$al49.Since grid is a static scenario, there
should not be broken links like in mobility scemeti The simulation time for grid scenario
was 120 seconds for both TCP and UDP. The througbmbtained as an aggregate and not
per flow. Since the grid topology has much moreurethncy than chain topology, it allows
alternative routes and back-up resources; theretdkehe graphics shown below perform
higher values than the results obtained in chgolomy.

55.1 TCP

Using both DSR-AR anfl2 [28] described in section 4.5, all route erroeyewemoved. The
number of MAC errors in DSR — AR is decreased camgbao normal DSR, because of the
high reduction of routing packets (up to 94% leSsice DSR-AR reduces routing packets,
MAC layer must manage additional data packets,eaaing higher overall throughput (up to
45% more). Furthermore, in this scenario, thera sgnificant reduction of dropped packets
from MAC layer, because there are alternative between sender and receiver nodes.

An important usage of DSR-AR is the reduction afiteoerrors compared with normal
DSR, since route errors were correctly detectedguBiSR-AR, like in chain scenario.

In DSR, the length of the route fluctuates betwbkigh and optimal values, due to a big
amount of route errors and the consequent new gdotend. By reducing route errors in
DSR-AR, the length of the routes becomes optima aonstant. DSR-AR improves the
results obtained using DAMPEN Policy [28] as well.

The lost packets for normal DSR and DSR-AR aregmiesl in figure 34. They are mainly
due to congestion and mobility of nodes. Lost ptecke DSR-AR are higher than normal
DSR because routes are not re-established, dunisgtime more congestion was created,
because more data was transmitted. In normal Di&Rdata could not be transmitted because

the route errors were mistakenly detected.

85

Number of TCP flows

mDSR ODSR - AR

Figure 36: Route errors

86

THROUGHPUT ROUTING OVERHEAD
5 500
44 ° 400 /
o [
2 3 2 300 /(—’_)/
é 2 - g 200
1] € 100
0 T T T T T 0 T T T
1 2 4 6 8 14 1 2 4 6 8 14
Number of TCP flows Number of TCP flows
| >—DSR —o—DSR - AR| [—>—DSR —o—DSR - AR|
Figure 32:Throughput Figure 33:Routing overhead
LOST PACKETS TOTAL MAC ERRORS
8 60.000
w6 / 50.000 4
2 T ———
] 40.000
g — 30.000
g2 P ——— 20.000
o - - ! . . 10.000
1 2 4 6 8 14 0
1 2 4 6 8 14
Number of TCP flows Number of TCP flows
| >—DSR —o—DSR - AR] BDSR BDSR- AR
Figure 34:Lost packets Figure 35:Total MAC errors
ROUTE ERRORS ROUTE CHANGES
2.500
1.500- 2.000
1000 1.500
. 1.000
500 500-
o 0
2 4 6 8 14

Number of TCP flows

ODSR ODSR - AR

Figure 37:Route changes

| L L T

[
[
Longth of routo (hops)

Time (seconds) Tine (soconds)

, Figure 39: Length of the routes (number of hops),
Figure 38: Length of the routes (humber of hops),
from node 21 to node 2DSR — AR: Two

from node 21 to node 27.Normal DSRwvo
parallel TCP flows
parallel TCP flows

2 o
I i
H H
£ £

3 c

Time (seconds) Time (seconds)

Figure 40: Length of the routes (humber of hops), Figure 41:Length of the routes (number of hops),
from node 21 to node 27. Normal DSRvo from node 21 to node 2DSR — AR: two

cross TCP flows cross TCP flows

DSR triggers a route error process when the comration among nodes to reach the
destination fails. This process looks for an akléime route and the length of the route
changes. This process increases routing overhaadiight decrease throughput.

These graphics show the length of the route (inbmmof hops) from node 21 to node 27
during the simulation. The number of hops to retieh destination was extracted from the
trace file and analyzed for two parallel and twosesr flows, figures 14 and 15 respectively,

with the purpose of showing the differences betweamal DSR and DSR-AR.

87

5.5.2 UDP

On one hand, we may notice a reduction of the mgutiverhead in figure 43 for all flows
using DSR-AR. This is because normal DSR triggersroate error process when
communication among nodes to reach the destinédits) increasing the routing overhead as
was explained in the section above. The improvensenot so good as using TCP, since the
amount of data injected in the network is highengi§ CP than UDP.

On the other hand, there are not important imprearemfor throughput or MAC errors
when low UDP traffic is generated in grid and chsgenarios.

Besides Fig. 46, for each graphic it can be notiteat when more TCP flows are
simulated, higher results are obtained. This iseratisual, since the number of flows directly
affects to the amount of data and therefore, taekalts obtained.

Finally, it is observable that some results at flbdvare quite high. As we explained in the
section above, this behaviour may be a consequareeesult magnification made by ns-2 in

some Linux environments.

88

Number of UDP flows

—>—DSR —o-—DSR- AR

Figure 44: Lost packets

THROUGHPUT ROUTING OVERHEAD
25 50
2 / 40 /
8 1,5 ? 30 /
5] g N MWA/Q
ol
” S E/ﬁﬂ
0 : : : 0 ‘ ‘ ‘ ‘ ‘
1 2 4 6 8 14 1 2 4 6 8 14
Number of UDP flows Number of UDP flows
Figure 42:Throughput Figure 43:Routing overhead
LOST PACKETS
TOTAL MAC ERRORS
18
e 25.000
14 /a 20.000
o 12
i / 15.000
3 o8 7
a 8‘§ 7/ 10.000
: o4 //\ / 5.000
02l g YA, ol
° ' ' ' ' 1 2 4 6 8 14
1 2 4 6 8 14

Number of TCP flows

B DSR @DSR - AR

Figure 45:Total MAC errors

ROUTE ERRORS

80
70
60
50
40
30
20
10

1 2 4 6 8 14
Number of TCP flows

mDSR OoDSR - AR

ROUTE CHANGES

800
700
600
500
400
300
200
100

1 2 4 6 8 14
Number of TCP flows

ODSR ODSR - AR

Figure 46:Route errors

89

Figure 47:Route changes

5.6 Random Waypoint scenario

5.6.1 TCP

In TCP random waypoint scenario, MAC errors argaasing using normal DSR (figure 51),

because of the mobility of nodes (from a minimunmOai/s to a maximum of 10m/s). This

mobility, as well, causes a high number of routersrand therefore more routing overhead
and packet loss. Moreover, the throughput decreaseanwhile the number of flows

increases.

Figure 48 shows better results for throughput usd&R-AR for all flows (except for 8
flows). Like in grid scenario, the throughput ineses upon skipping unnecessary routing
maintenance process at routing layer. Relateddbpackets, figure 50 shows that more lost
packets are achieved using DSR-AR. If we compageethiesults to figure 48 we realize that
the more throughput is achieved, the more lost @aclare obtained. For 8 flows, the
throughput of normal DSR is better, but in thisezdsst packets is lower.

Figure 49 shows how routing overhead is severetluged, since there is less routing

activity at routing layer using DSR-AR. We seenfrd-igure 51 that MAC errors are
decreased for all flows (up to 66% errors less5@rflows). We can see that the number of
MAC errors is higher than those errors in statensgios. Usually, in mobility scenarios there
are more MAC errors. This is because the link failwith congestion over multiple hops is
more usual, due to node mobility.
Figure 52 and figure 53 show route errors and rebhenges respectively. Although a route
error not always provokes a route change, it isrdglar behaviour. Using DSR-AR, the
more number of flows are used, the more improvesant obtained compared to normal
DSR.

As conclusion, it is worthwhile to point out thatet graphics are related between
themselves, since less MAC errors, less route €reord less route changes provokes lower
routing overhead in the network. As the routingrbead is decreasing, the nodes are able to
transmit more data packets; therefore, a higheyutjitput is obtained (up to 300% for 50
flows). Furthermore, we can see how the improvenoémMSR-AR decreases when the flow
number is 8. This can be explained as follows. Laggressive TCP traffic leads to less
routing activity. Therefore, the improvement of D8R avoiding routing activity is not so

good as simulating 16 or 32 TCP flows.

90

8 16 32 50
Number of TCP flows

—%—DSR —o—DSR - AR

THROUGHPUT ROUTING OVERHEAD
14 5.000
4.500
2 4.000 /
10 » 3.500 e
g s ///' % 3.000
2 9 2500
2 6 e £ 2000 2
4 \N & 1500
1.000
] 0
8 16 32 50 8 16 32 50
Number of TCP flows Number of TCP flows
[-—DsR ——DSR - AR] [-—DSR ——DsR-AR]
Figure 48:Throughput Figure 49:Routing overhead
LOST PACKETS TOTAL MAC ERRORS
25 180.000
/ 160.000
2 140.000
” 120.000
T 15 100.000
g, / 80.000
8 60.000
05 40.000
' 20.000 +
0 0
8 16 32 50

Number of TCP flows

EDSR @DSR - AR

Figure 50:Lost packets

Figure 51:Total MAC errors

ROUTE ERRORS

6.000
5.000
4.000
3.000
2.000
1.000

8 16 32 50
Number of TCP flows

mDSR ODSR - AR

ROUTE CHANGES

1.200
1.000 _
800
600
400
200

8 16 32 50
Number of TCP flows

ODSR ODSR - AR

Figure 52:Route errors

91

Figure 53:Route changes

5.6.2 UDP

Figure 54 shows an improvement for all flows redat® the throughput. The main
improvement is achieved for 16 flows up to 128%hybughput performance. However, for
32 flows the improvement is not so high.

If we compare these graphics with those got inrclzeid grid scenarios, we may notice
that better results are achieved. For instanceugiput using DSR-AR for 8 UDP flows
reaches about 2 KB/s (figure 54), while for 8 UD&Ms in grid scenario DSR-AR reaches
1.25 KB/s approximately. In this case, DSR-AR wadbktter with node mobility, where more
link failures occur; therefore, DSR-AR is able tlemtify higher number of correct links that
should not be removed, achieving better results.

On the other hand, mobility of nodes and the laageunt of traffic (300KB/s for each
flow) also leads to higher percentage of packets (figure 56). However, these lost packets
can be reduced using DSR-AR up to 4.5% for 8 flo\gmin, this graphic shows better results
using DSR-AR for mobile scenario compared to dcstatenario (figure 44).

In any case, the rest of the flows perform welb%% less of MAC errors (figure 57) were
obtained using DSR-AR. Additionally, using DSR-AtRere was achieved between 47% and
58% less number of route changes (figure 59) ttmmal DSR and between 49% and 62%

less route errors (figure 58).

92

THROUGHPUT
25
2 “—"\\/a
g 15
3
§ . ,\/ \
05
0
8 16 32 50
Number of UDP flows
Figure 54:Throughput
LOST PACKETS
100
/(
[—°
9% —
2 o /
<
S o2
o
£ 9
88
86
84
8 16 32 50

Number of UDP flows

—>—DSR —o— DSR - AR

Figure 56:Lost packets

ROUTE ERRORS
8.000
6.000
4.000
2.000
(o]
8 16 32 50

Number of UDP flows

BDSR ODSR - AR

Figure 58: Total errors

93

ROUTING OVERHEAD

6.000
5.000 /
g 4.000
k4 —
% 3.000
E 2.000 /
1.000 S
0
8 16 32 50
Number of UDP flow s
Figure 55: Routing overhead
TOTAL MAC ERRORS
2.000
3 1.500
2]
é 1.000
& 500
ol
8 16 32 50
Number of UDP flows
Figure 57: Total MAC errors
ROUTE CHANGES
10.000
8.000 .
6.000
4.000
2.000
0
8 16 32 50

Number of UDP flows

ODSR ODSR - AR

Figure 59: Route changes

5.7 Manhattan scenario

5.7.1 TCP

In this scenario, 20 flows were simulated. FigudesBows the throughput in Manhattan. We
can notice that with high mobility (10, 20 m/s) ttneoughput drastically decreases for both
DSR-AR and normal DSR.

Figure 61 shows how routing overhead increaseddtih DSR-AR and normal DSR when
the mobility is higher (5, 10, 20 m/s). This betvav is a bit different compared to random
mobile scenario, where the routing overhead alsceases at higher number of TCP flows
(figure 49). On the other hand, the throughput waseased for DSR-AR. It is meaningful to
point out that higher speed simulations negatiaéigcts DSR-AR throughput.

The relationship among the graphics can be analfroed more MAC errors (figure 63). As
long as nodes speed increases, MAC collisions mamguently, thus, it causes higher
number of route errors, therefore more routing bead and more lost packets (figures 61,
62). However, the number of route changes (figled®creases at high speed of the nodes,
since they are not able to create new routes quidkkcause of this, the throughput is
negatively affected and decreases.

Even when high speed affects DSR-AR, we see thagU3SR-AR better results were
achieved compared to normal DSR. Since MAC errasewproperly identified (up to 83%
less errors for 5 m/s), there are less route effysres 63, 64). Furthermore, the number of
route changes is also decreased (figure 65), uthesspeed goes up to 10 m/s, where DSR-
AR and normal DSR perform similar. Hence, lower tiogi overhead in the network.
Moreover, the nodes are able to transmit more gatkets and a higher throughput is
obtained (figure 60) in all scenarios (up to 107%%63m/s). However, the improvement with

10, 20m/s is not so good, since route errors aget@unobility and not to congestion.

94

ROUTING OVERHEAD

THROUGHPUT
1,2 120
1,0 Q, 100
g 08 +—X 8 w0 /
206 | 2 60
$ 04 4 2 w0
0,2 1 g 20
0,0 ‘ ‘ ‘ ‘ o L —
0 1 2 5 10 20 0 1 2 5 10 20
Maximum speed (m/s) Maximum speed (m/s)
Figure 60:Throughput Figure 61:Routing overhead
LOST PACKETS TOTAL MAC ERRORS
12 12.000
10 ¢ 10.000
g 8 ~ % 8000
S 64 / 2 6.000
'5: 4 " % 4.000 -
S ol / o 2.000 4
0 ‘ ; : ‘ 0
0 1 2 5 10 20 1 2 5 10 20
Maximum speed (m/s) Maximum speed (m/s)
Figure 62:Packet loss Figure 63:Total MAC errors
ROUTE ERRORS ROUTE CHANGES
30.000 3.000
25.000 2.500
20.000 2.000
15.000 1.500
10.000 1.000
5.000 500
0 0
0 1 2 5 10 20 0 1 2 5 10 20

Maximum speed (m/s)

EDSR ODSR - AR

Maximum speed (m/s)

ODSR ODSR - AR

Figure 64: Route errors

95

Figure 65: Route changes

5.7.2 UDP

In this scenario, 20 flows were simulated. FiguBesBows similar throughput results for both
DSR-AR and normal DSR. In this case, DSR-AR in N&ttan UDP cannot improve as well
as Random mobile scenario (Figure 54). This israsequence of the big amount of traffic
generated and the high number of lost packets.r&i§d shows improvements in all speeds
using DSR-AR compared to normal DSR. We can seavids high speed, more node
mobility, and more routing overhead. If we lookfigilure 69, we can see as MAC errors
increase for both DSR-AR and normal DSR when spsdugher. In any case, DSR-AR
shows better results for MAC errors. MAC errors higher because at high node speed,
MAC collisions happen more often. MAC collisionsadeto higher number of route errors,
increasing the routing overhead as well.

Using DSR-AR in Manhattan UDP, similar results waohieved compared to normal DSR.
Since MAC errors (figure 69) were properly idertifi(up to 54% errors less for 5 m/s), there
are less route errors and thus, lower routing ceamthin the network. Because of the mobility
of nodes, there are many route changes even witR-BS, which makes DSR-AR more
suitable for static scenarios but not decreasimfppaance for mobility scenarios.

96

THROUGHPUT
0,30
0,25 N
$ 0,20 A
2 015 4
€ 0,10
0,05 1
0,00 ‘ ‘ ‘ : :
0 1 2 5 10 20
Maximum speed (m/s)
Figure 66:Throughput
LOST PACKETS
102
. — —
£ 9 //
©
§ o4 o
s 92
90
88 : : : ‘ ‘
0 1 2 5 10 20
Maximum speed (m/s)
Figure 68: Lost packets
ROUTE ERRORS
30.000
25.000
20.000
15.000
10.000
5.000
0
0 1 2 5 10 20

Maximum speed (m/s)

BDSR ODSR - AR

Figure 70: Route errors

97

ROUTING OVERHEAD

120
© 100
2 60 e
Q
g @ ///B/a
©
PR =
0
0 1 2 5 10 20
Maximum speed (m/s)
Figure 67:Routing overhead
TOTAL MAC ERRORS
2.500.000
2.000.000
1.500.000
1.000.000
500.000
ol

0 1 2 5 10 20

Maximum speed (m/s)

mDSR @DSR -AR

Figure 69: Total MAC errors

ROUTE CHANGES

|
I I
2 5

Maximum speed (m/s)

ODSR ODSR - AR

10 20

Figure 71: Route changes

6 Conclusions and Future Work

The purpose of this chapter is to summarize theamné of the master’s thesis. The results
have been obtained using the proposed goals asemete Afterward, an additional

improvement in DSR protocol is proposed as futuoekw

6.1 Conclusions

The key issue treated in this master's thesis ptofgas been the improvement of the
throughput and reduction of routing overhead in meobd hoc networks using the ns-2
network simulator. We performed several simulationisoth static and mobile scenarios with
two transport protocols, TCP and UDP, in order heak the adaptability of proposed
approach for different contexts. We focused ourkwomn 2 layers; these are MAC 802.11
protocol in the data link layer and DSR protocothie routing layer.

In the situation of congestion, the MAC 802.11 poail does not perform well enough
using the RTS/CTS/DATA/ACK dialog because RTS pézkem a sender to a receiver may
collide and communication fails, leading to bacerattion with the routing layer. The MAC
layer could mistakenly inform the routing layer abbroken links when the communication
among nodes is still possible, when, however, conioation failed due to the collisions of
RTS packets caused by congestion. Thus, the roptiopcol interprets broken links in the
MAC layer as route errors, triggering the route memance process, therefore increasing the
overhead in the network. Our main purpose in thesis is to avoid this misinterpretation by
determining the cause of the broken links. To dati this, the signal strength of each node
is tracked. This information is used to notify tlm&iting protocol if the node is still reachable
but the communication was dropped. Then, at rouaggr it is possible to distinguish if the
route exists and do not trigger a route error pecavoiding routing packets which would
increase more the congestion in the network.

For every received packet in the MAC layer, thenalgstrength of the node is stored (the
last 20 receptions). After attempting to send a Ra&ket to a neighbouring node seven times
without receiving CTS [48], a node concludes thahmunication is not possible. The last
signal strength of the receiver node is comparethéotransmission threshold. If the signal
strength determines that the node is near enobhghVIAC layer informs the routing protocol

that it is not necessary to trigger a route maiaee process. At this moment, the routing

98

protocol knows that the error was due to collisionshe MAC layer and the node is within
the transmission threshold. The routing protocatsdaot interpret this link error at MAC
layer as a broken link due to mobility and doestnigger a route error process because the
route still exists.

In static scenarios, such as chain and grid, soers routing overhead is reduced, and
therefore, the throughput of the network increaseshain scenario, the length of the route
varies between high and normal values, due to & rfamber of route errors and the
consequent new routes found. By reducing router®iroDSR-AR, the length of the routes
becomes optimal.

In mobility scenarios, we may distinguish amongfedént node speeds. For low and
medium speeds of nodes (up to 10 m/s), the DSR-pBtoach achieves optimal results,
obtaining up to 80 % less routing overhead in ramdeay point and 80% in Manhattan.
Additionally, the throughput is improved by up @ % in Manhattan.

The performance for high mobility scenarios is sighificant, since from 20m/s network
performance does not improve. However, using DSRtAd&knetwork performance does not
decrease, either. Interestingly, in a crowded odtvas Manhattan, DSR-AR performance is
not as good as Random mobile scenario.

Ideally, DSR-AR should be more effective in sta@enarios, where misinterpretation of
broken links is more common than in mobility scéwgrThis can be deduced independently
from the transport protocol used or the traffic graed.

Finally, it should be noticed that a real systertwoek might use more network resources
than the simulations. Thus, the results tend toWer for both DSR-AR and normal DSR in

a real environment.

6.2 Future work

Besides the DSR-AR scheme proposed, we have dexklmew feature with the objective
of avoiding disconnections in scenarios with olgetttat interfere with the communication
among nodes. The main idea makes sense in mofdégarios, for example an office with
mobile nodes. Here the connection can be interdupssily due to furniture obstructing the
communication.

If the receiver node is not moving away from thangmitter node, it is possible to avoid

disconnection by making an average of the recesigdals. This new approach makes a

99

prediction based on the last twenty movements aterprets if the receiver node is not
reachable anymore. We should be careful choosireg wiethod of average (arithmetic mean,
geometric mean, harmonic mean, etc.) offers a tbbgbaviour according to the different
speeds or scenarios. Moreover, it is importantdoide on the value of the average which
determines if the protocol continues trying to aesmit or not, and on the number of times

that this node was moving away.

100

References

[1]
[2]

[3]
[4]

[5]
[6]

[7]
[8]
[9]

[10]
[11]

[12]
[13]
[14]

[15]
[16]
[17]

[18]

[19]
[20]

[21]

[22]
[23]

[24]

Abolhasan, M. & Wysocki, T. & Dutkiewicz, E. (2003) review of routing protocols
for mobile ad hoc networks

Akintola, A.& Aderounmu, A. & Owojori, A. & Adiguriy.0.(2006) Performance
modelling of UDP over IP-Based wireline and Wirsl&&etworks

Bharghavan, VMACAW, a media access protocol for wireless LAN’s

Chandran, K. & Raghunathan, S. & Venkatesan, Srakash, R. (2001)A feedback-
based scheme for improving TCP performance in adnedwoks.

Chandramouli, R. & Rose, Secure domain name system (DNS) deployment guide

Douglas, S. & Aguayo, D. & Benjamin, A.& Morris, R2003) Performance of
multihop wireless networks; shortest path is natugn

Dube, R. & Rasi, C & Wang, K. & Tripathi, K. (199%jgnal stability-based adaptive
routing for ad hoc mobile networks

Estrin, D & Govindan, R. & Heidenman, J. & Kumar, I$ext century challenges:
scalable coordination in sensor networks

Fahmy, S. & Prabhakar, V. & Avasarala, S. & Your@s, TCP over wireless links,
mechanisms and implications

Fall, K. & Floyd, S. Simulation-based comparisons of Tahoe, Reno, a@KSECP

Fall, K. & Varadhan, K.The ns manual (formerly ns Notes and Documentation)
Retrieved April 20, 2006 from http://www.isi.edsham/ns/ns-documentation.html

Garcia-Luna-Aceves, J.J. & Spohn, M. (19%0urce-tree routing in wireless networks
Grilo, A. & Nunes, M.Performance evaluation of IEEE 802.11e

Holland, G. & Vaidya, N. (1999)Analysis of TCP performance over mobile ad hoc
networks

Hu, Y. & Johnson, Dimplicit source routes for on-demand ad hoc networking
llyas, M. (2003).The Handbook of Ad Hoc Wireless Networks

Jacobson, V. (1999)Modified TCP Congestion Avoidance AlgorithiRetrieved
October 20, 2006 frorfip:/ftp.ee.lbl.gov/email/vanj.90apr30.txt

Johnson, D. & Maltz, D. & Broch, J.DSRhe Dynamic Source Routing Protocol for
Multi-Hop Wireless Ad Hoc Networks

Karn, P.MACA, a new channel access method for packet radio

Kim, D. & Toh, K. & Choi, Y. (2001). TCP-Bus: impving TCP performance in
wireless ad hoc networks

Klark, N. Perl. Retrieved April, 20, 2006 from
http://search.cpan.org/dist/perl/pod/perldsc.pod

Ko, Y. & Vaidya, H. (1998) ocation-aided routing (LAR) in mobile ad hoc netkso

Kopparty, S. & Krishnamurthy, & V. T Faloutsos, §2002).Split TCP for mobile ad
hoc networks

Kurkowsky, S. & Camp, T. & Colagrosso, MMANET Simulation Studies: The
incredibles

101

[25]
[26]
[27]
[28]
[29]

[30]
[31]

[32]
[33]

[34]
[35]

[36]

[37]
[38]
[39]
[40]
[41]
[42]

[43]

[44]
[45]

[46]
[47]

[48]
[49]

Liu, J. & Sigh, S. (2001 ATCP: TCP for mobile ad hoc networks

Macker,J. & Corson, S. (199®)obile Ad hoc Networking (MANET): Routing Protocol
Performance Issues and evaluation consideratioRstrieved October, 06, from
http://www.ietf.org/rfc/rfc2501.txt

Murty, S. & Garcia-Luna-Aceves, J.J.(1998) efficient routing protocol for Wireless
networks

Nahm, K, & Helmy, A. & Kuo, JTCP over multihop 802.11 networks: Issues and
performance enhancement

Nahm, K & Helmy, A. & Jay Kuo, Cimproving Stability and Performance of Multihop
802.11 Networks

Park, V. & Corson, S. (199Memporally ordered routing algorithm (TORA)

Perkins, C. & Bhagwat, P. (1994Jighly dynamic destination-sequenced distance-
vector routing (DSDV) for mobile computers.

Rom,R. & Sidi, M.Multiple access protocols, performance and analysis

Shah, V. & Krishnamurthy, SHandling asymmetry in power heterogeneous ad hoc
networks: a cross layer approach

Shroff, N. .Cross-Layer Design for Multihop Wireless Networks

Siva Ram, C. & Murthy, B.S. Manoj (2004Ad Hoc Wireless Networks, Architectures
and Protocols

Su, W. & Gerla, M. (1999)Pv6 flow handoff in ad hoc wireless networks usimapile
prediction

Tanenbaum, A. (2003Computer Networks 4th edition

Vaidya, N. (2004). Mobile Ad Hoc Networks, RoutifdAC and Transport Issues
Velayos, H. (2005Autonomic wireless networking

Velayos, H. & Karlsson, Gl'echniques to reduce the IEEE 802.11b handoff ¢atle
Velayos, H. & Karlsson, G. & Aleo, M.oad Balancing in Overlapping Wireless LAN

Wang,Y. (2004)Medium Access Control in ad hoc wireless networkt®h vwmni-
directional and directional antennas

Yuen, W.& Lee, H. & Andersen, .TA simple and effective cross layer networking
system for mobile ad hoc networks

Zhou, L. & Haas, Z. Securing ad hoc networks

802.11 MAC code in NS-2.28. Retrieved April 20, 800http://www-
ece.rice.edu/~jpr/ns/docs/802 11.html

AMS glossary. Retrieved October 06, 2006 from
http://amsglossary.allenpress.com/glossary/browse

Bryan's ns2 DSR fag. Retrieved May 12, 2006 from
http://www.geocities.com/b_| hogan/
IEEE www.ieee.org

The data link layer. Retrieved, October 10, 2006 omfr
http://mia.ece.uic.edu/~papers/ece333/spring04h8tppt

102

[50] The dynamic source routing protocol. Retrieved Rpr25, 2006 from
http://www.cs.cmu.edu/~dmaltz/dsr.html

[51] The network simulator. Retrieved May 05, 2006 frottp://www.isi.edu/nsnam/ns/
[52] The NS by example. Retrieved May 01, 2006 fitdip://nile.wpi.edu/NS/

[53] File Transport Protocol. Retrieved May 01, 2006 nfro
http://en.wikipedia.org/wiki/File_Transfer Protocol
[54] Constant Bit Rate. Retrieved May 01, 2006 from

http://en.wikipedia.org/wiki/Constant bit rate

[55] The Click DSR Router Project. Retreived Octobel0, 2006 from
http://pecolab.colorado.edu/DSR.html

[56] The Microsoft Research Mesh Connectivity LayRetreived October 10, 2006 from
http://research.microsoft.com/mesh/

[57] The Monarch Project implementation. Retreive@ctober 10, 2006 from
http://www.monarch.cs.rice.edu/dsr-impl.html

[58] Piconet Il mobile router, implementing an aochrouting protocol. Retreived October
10, 2006 fromhttp://piconet.sourceforge.net/thesis/main.html

[59] OPNET, Retreived October 10, 2006 from
http://w3.antd.nist.gov/wctg/prd dsrfiles.html

103

Appendix A

A.1 Chain scenario

A.1.1TCP

Two TCP flows

0

e
250 :
N\
\
\\\
200 -
-
£ T
o
0
Throughput
e
e
N
3
2
H .
H
: 0.002 ya
A
0.0015 / \
\
/A /\\\ //\\
mlf
/ \ // \(/
\/
n

Humber of hops

Lost packets (1 = 100%)

[—
AR On
o A
/\
/
,/ \ /K\
s 8 I\
g \
i \ / \
H \ \
£ \/
g 5 % \\ //\
/N
i \\ / \
= e \ / \
/ AN
\ / \
~/ — |
2
0
4 G s 10 12 1 5 1 «
Hamber of hops
Routing overhead
TOTAL MAC ERRORS
20000
15000
10000 -
5000
04
4 5 6 7 8 10 12 14 16 20
Number of hops

104

Dropped packets at MACrlaye

COLLISIONS

B DSR mDSR - AR

20000

15000

10000 -

5000

4 5 6 7 8

10
Number of hops

12 14 16 20

RETRY EXCEED COUNT

EDSR BDSR - AR

4 5 6 7 8 10

Number of hops

12 14 16 20

Number of collisions at MAC layer

Number of dropped packets due to retry

exceed count

MAC BUSY

mDSR mDSR - AR

4 5 6 7 8 10

Number of hops

12 14 16 20

DUPLICATE PACKETS

EDSR mDSR - AR

0,8

0,6

0,4

0,2

4 5 6 7 8 10

Number of hops

12 14 16 20

Packets dropped because of MAC busy

Duplicate packeVIAC

ROUTE ERRORS

BDSRODSR - AR

4 5 6 7 8 10 12 14 16 20
Number of hops

ROUTE CHANGES

ODSR ODSR - AR

0.
20
4 5 6 7 8 10 12 14 16 20

Number of hops.

Number of route errors in DSR

Aggregate of the number of changes in the

105

length of the route

Dampem policy by Nahmp2 (AR off) and DSR-AR in collaboration with 2 (AR on)

% Lost packets

Throughput (Kais)

0.004

0.0035

0.003

0.0025

0002

00015

0001

0.0005

G —
on

nnnnnnnnnnn

Throughput

AROff
AR On

Number of hops.

Lost packets

)
H
g
3
Routing overhead
TOTAL MAC ERRORS
20.000
15.000
10.000 -
5.000 -
o
4 5 6 7 8 10 12 14 16 20
Number of hops

Total dropped packets at MAC

ROUTE ERRORS

mDSR ODSR - AR

0.8
0.6
0,4
0.2

4 s 6 7 8 10 12 14 16 20
Number of hops

Number of route errors in DSR

ROUTE CHANGES

ODSR ODSR - AR

H
&
[[[1
[[1
[[1
1
L[1
[[[1
1
L[1
[[[1
T 1T

4 5 6 7 8 10 12 14 16 20
Number of hops

Aggregate of the number of changes in the

106

length of the route

Four TCP flows

‘Throughput (KBis)

% Lost packets

£

250

20

150

100

AR Off
ARON

Humber of hops.

Throughput

adoff
AROn

Humber of hops.

Lost packets

S
. A
A\
\\
14 \
\
PR 3 \
§ 10 \\‘\
] N
§ AN
3 & N
H
£ 6
.
.
.
Routing overhead
TOTAL MAC ERRORS
25000
20000
15000
10000
5000
0
4 5 6 7 8 10 12 14 16 20
Number of hops

107

Total of MAC errors

COLLISIONS

mDSR ®mDSR - AR

20000

15000

10000 -

5000

4 5 6 7 8 10 12 14 16 20

Number of hops

RETRY EXCEED COUNT

mDSR BDSR - AR

200

150

100

50

4 5 6 7 8 10 12 14

Number of hops

16 20

Number of collisions at MAC layer

Number of erralge to retry exceed count

MAC BUSY

EDSR mDSR -AR

20

154

101

4 5 6 7 8 10 12 14 16 20

Number of hops

DUPLICATE PACKETS

mDSR mDSR - AR

0,8
0,6

0,4

0,2

T T T T T
4 5 6 7 8 10 12 14

Number of hops

T
16 20

Dropped packets because of MAC busy

ROUTE ERRORS

mDSR 0 DSR - AR

4 5 6 7 8 10 12 14 16 20
Number of hops

Number of route errors in DSR

Number of dropped packets due to

duplicate packets

ROUTE CHANGES

oDSR O DSR - AR

250

200

150-

100-
50-

4 5 6 7 8 10 12 14 16 20

Number of hops.

108

Aggregate of the number of changes in

the length of the route

Dampem policy by Nahmp2 (AR off) and DSR-AR in collaboration with 2 (AR on)

o e
S
£]
]
H H
- £
&
R I .
Throughput Routing overhead
-
e —
o
o TOTAL MAC ERRORS
-
e 20.000
3 0005
E‘ — 15.000
3
T 10.000
0003 5.000
0
-
4 5 6 7 8 10 12 14 16 20
Number of hops
o
.
Lost packets Total of MAC errors
ROUTE ERRORS ROUTE CHANGES
1. 30
0,8 25-
0,6 20]]] [] | []] N
, =HBIHIERIBEIH BIBIE
o4 o T Tttt et
0,2 5 1]] 1]] 1] 1 —
4 5 6 7 8 10 12 14 16 20 4 5 6 7 8 10 12 14 16 20
Number of hops Number of hops

. Aggregate of the number of changes in the
Number of route errors in DSR
length of the route

109

A.1.2 UDP

Two UDP flows

Throughput (KB/s)

% Lost packats

0

AR Off
AROn

0.002

0.0015

0001

0.0005

Number of hops.

Throughput

ARON
AROn

Number of hops

Lost packets

AR off
AROn

3
i s
2
H
‘§ 05
;

:

Routing overhead
COLLISIONS

1400

1200 -

1000

800

600

400 1

200

o]

5 6 7 8 10 12 14 16 20
Number of hops

Dropped packets due to collisions

08
0,6
0,4
0,2

ROUTE ERRORS

mDSR ODSR - AR

Number of route errors

ROUTE CHANGES

ODSRODSR - AR

4 5 6 7 8 10 12 14 16 20

Number of hops

110

Number of route changes

Dampem policy by Nahmp2 (AR off) and DSR-AR in collaboration with 2 (AR on)

&0 1

g 30 i 05
Throughput Routing overhead
COLLISIONS
|
1400
H 1200 1
§ 0001 1000
5 800
600
400
200
00005 | 0
4 5 6 7 8 10 12 14 16 20
Number of hops
Lost packets Dropped packets due to collisions
ROUTE ERRORS ROUTE CHANGES
4 5 6 7 Numﬁberml:ops 12 14 16 20 4 5 6 7 Numie’ufl:(ms 12 14 16 20
Number of route errors Number of route changes

111

Four UDP flows

120

100

i 60
£
E

@

0003

0.0025 |-

o002

% Lost packets

L —
AROn

Humber of hops.

Throughput

AROIT

AR On

.
Lost packets
ROUTE ERRORS
1
0,8
0,6
0,4
0,2

) 5 6 7 8 10 12 14 16 20

Number of hops

[

AROn

Number of hops

E 06
i 0.5
H T
3 —
T
) 03 .
.
Routing overhead
TOTAL MAC ERRORS
4000
3000 -1
2000 -1
1000
ol
4 6 7 8 10 12 14 16 20
Number of hops
Number of MAC error
ROUTE CHANGES
30-
25-
20- [[[B [B B [[N
15- B B B B B B B B B B
10- B B B B B B B B B B
AHEEEBHERBE

Number of route errors

112

Number of route changes

A.2 Grid 7xX7 scenario

A21TCP
COLLISIONS RETRY EXCEED COUNT
60000 4000
50000 2000 |

40000
30000 -
20000 -
10000 -

1 2 4 6 8 14 10
(random)

Number of TCP flows

2000 -
1000 -

1 2 4 6 8 14 10
(random)

Number of TCP flows

Dropped packets due to collisions

Dropped packetstd retry exceed count

DUPLICATE PACKETS

BDSR BDSR - AR

200

1 2 4 6 8 14 10
(random)

Number of TCP flows

MAC BUSY
300
250
200

150 1
100
50

1 2 4 6 8 14 10
(random)

Number of TCP flows

Dropped packets due to duplicate packets

Length of route (hops)
_—

Time (seconds))

Length of route (number of hops) for six Length of route (number of hops) for six

cross flows normal DSR

113

Droppekipadue to MAC busy

|

Length of routs (hops)

Time (seconds))

cross flows DSR-AR

Dampem policy by Nahmp2 (AR off) and DSR-AR in collaboration with 2 (AR on)

Throughput (KE/s)

00

70

600

500

0

£

0

100

aRoft
aRon
e
S
o \
4 —
- R .,
2 4 5 ° o 2 4
Humber of TCP comections
A orr
Amon
_—
—_—
//
e

\ e
\ p
H \ g
! \
: \ /
y
nnnnnnnnnnnnnnnnn
Lost packets
ROUTE ERRORS
50
40
30
20
10
0
1 2 4 6 8 14 10

(random)
Number of TCP flows

Number of route errors

AR Off

V/VAR(M/
-
E3 ///
/S
30 ///
§ & 4
2 /
F /
§ /
5 /
2
£ o /
H /
///
10 F /
O\J/
5
0
0 2 4 6 8 10 12 14
Nanber of TCPcomnections
Routing overhead
TOTAL MAC ERRORS
EBDSR @DSR - AR
50000
40000
30000 -
20000 -
10000
04 [
1 2 4 6 8 14 10
(random)
Number of TCP flows

Dropped packets due to MAC errors

ROUTE CHANGES

ODSRODSR - AR

1 2 4 6 8

Number of TCP flows

14

IEIIE

10
(random)

114

Number of route changes

COLLISIONS

50000
40000
30000
20000
10000

O 4

1 2 4 6 8 14 10
(random)

Number of TCP flows

RETRY EXCEED COUNT
2500
2000
1500
1000 -
500
0 |

1 2 4 6 8 14 10
(random)

Number of TCP flows

Dropped packets due to collisions

Dropped packegstd retry exceed count

DUPLICATE PACKETS

100
80
60 1
40 +
201
O 4
1 2 4 6 8 14 10
(random)

Number of TCP flows

MAC BUSY
200
150
100
50
0
1 2 4 6 8 14 10

(random)
Number of TCP flows

Dropped packets due to duplicate packets

Longth of raute (hops)

Tine (soconds)

Length of the route (number of hops) for

six cross flows DSR32

115

Droppekipadue to MAC busy

Length of route (hops)

Time (seconds)

Length of the route (hnumber of hops) for

six cross flows DSR-AR32

A.2.2 UDP
(300kb CBR)

THROUGHPUT ROUTING OVERHEAD
35 800
3 700 —X
251 . 6001 /
9 & 500 A
@ 2 2 400
2 1,i] % 300 { //
a 2004
05 100 o ’_s_’_e//\\s
0 0 : . .
1 2 4 6 8 14 1 2 4 6 8 14
Number of UDP flows Number of UDP flows
Throughput Routing overhead
LOST PACKETS
TOTAL MAC ERRORS
100 _57" 70.000
80 60.000
@ M 50.000
% 60 40.000 1
& 4 30.000
8 20.000 A
20 10.000
0 07
T T T T 1 2 4 6 8 14
1 2 4 6 8 14
Number of UDP flows
Number of UDP flows
Lost packets Total MAC errors
ROUTE ERRORS ROUTE CHANGES
5000
4000
3000
2000
1000
0
1 2 4 6 8 14 1 2 4 6 8 14
Number of UDP flows Number of UDP flows

Number of route errors

116

Number of route changes

COLLISIONS

EDSR @BDSR - AR

70000
60000
50000 -

40000 -
30000 -
20000 A
10000 -

1 2 4 6 8 14 10
(random)

Number of UDP flows

6000

RETRY EXCEED COUNT

B DSR mDSR - AR

5000
4000 -
3000 -
2000 ~
1000 ~

2 4 6 8 14 10
(random)

Number of UDP flows

Dropped packets due to collisions

Dropped packegstd retry exceed count

DUPLICATE PACKETS

mDSR BDSR - AR

250
200
150
100
50

04

1 2 4 6 8 14 10
(random)

Number of UDP flows

500

MAC BUSY

mDSR BDSR - AR

400

300 -
200
100 +

2 4 6 8 14 10
(random)

Number of UDP flows

Dropped packets due to duplicate packets

117

Droppekipadue to MAC busy

Dampem policy by Nahmp2 (AR off) and DSR-AR in collaboration with 2 (AR on)

1 2 4 6 8 14
Number of UDP flows

| >—DSR —o—DSR - AR

Lost packets

THROUGHPUT ROUTING OVERHEAD
30 300
25 A\ 250 //x///*
20 o 200
8 G //
8. N L J~_
o o
2 g /
1,0 | 3 100
a / /
05 50
00 : : : : : 0 A"’/—/ : :
1 2 4 6 8 14 1 2 4 6 8 14
Number of UDP flows Number of UDP flows
| ——DSR —o—DSR- AR| | ——DSR —o—DSR- AR|
Throughput Routing overhead
LOST PACKETS
TOTAL MAC ERRORS
100 60.000
90 1
o b/ 50.000 4
70
40.000 1
2 60
% 50 30.000 -
S 401 20.000 4
301
20 10.000

[N

2 4 6 8 14
Number of UDP flows

BDSR @DSR - AR

Total dropped packets at MAC layer

ROUTE ERRORS

300
250
200
150
100

50

1 2 4 6 8 14
Number of UDP flows

BDSR ODSR - AR

ROUTE CHANGES

1400
1200
1000

1 2 4 6 8 14
Number of UDP flows

ODSR ODSR - AR

Number of route errors

118

Number of route changes

COLLISIONS RETRY EXCEED COUNT

60.000 6000

50.000 - 5000 -
40.000 4000

30.000 - 3000 -

20.000 - 2000 -

10.000 1000 -
0+ 0

1 2 4 6 8 14 1 2 4 6 8 14
Number of UDP flows Number of UDP flows
Dropped packets due to collisions Dropped packegstd retry exceed count
DUPLICATE PACKETS MAC BUSY

100 6000
80 5000

60 4000 -

3000

40 2000 -

20 1000 -
0 0

1 2 4 6 8 14 1 2 4 6 8 14
Number of UDP flows Number of UDP flows
Dropped packets due to duplicate packets Droppekiepadue to MAC busy
Two cross flows DSR2 Two cross flows DSR-AR

119

A.3 Random waypoint scenario

A3.1TCP
COLLISIONS DUPLICATE PACKETS
120000 200
100000
150
80000 -
60000 100
40000 -
50 1
20000 -
[0 -
8 16 32 50 8 16 32 50
Number of TCP flows Number of TCP flows
Dropped packets due to collisions Dropped packetstd duplicate packets
RETRY EXCEED COUNT MAC BUSY
5000 200
4000 150
3000
100
2000
1000 501
0 0 -

8 16 32 50
Number of TCP flows

8 16 32 50
Number of TCP flows

Dropped packets due to retry exceed count

120

Droppekgts due to MAC busy

Dampem policy by Nahmp2 (AR off) and DSR-AR in collaboration with 2 (AR on)

Throughput (KB/s)

% Lost packets

S
Vi
Vi
J
/
/

1000 / /

/

/
13’——’/
Throughput
o0) /\\

/ \ //,/ -
\ B —
N\ B
\\/'/
« 2 0 3 ® = s
tanbor ot TCPcomctions

Lost packets

2500

o
kil 1500
£
i
H
:
F 1000
i
-
:
T
Routing overhead
TOTAL MAC ERRORS
EDSR @DSR - AR
50000
40000
30000
20000 -
10000 -
o
16 32 50
Number of TCP flows

Total dropped packets

ROUTE ERRORS

mDSR ODSR - AR

8 16 32 50
Number of TCP flows

800

600

400

200

ROUTE CHANGES

ODSR ODSR - AR

8 16 32 50
Number of TCP flows

Number of route errors

121

Number of route changes

A.3.2 UDP

(300Kb)

Number of UDP flows

B DSR BDSR - AR

COLLISIONS

250000
200000
150000

100000 -

50000 -

0

8 16 32 50

RETRY EXCEED COUNT

20000

15000

10000 -

5000

8 16 32 50
Number of UDP flows

B DSR BDSR - AR

Dropped packets due to collisions

Dropped packetstd retry exceed count

500

DUPLICATE PACKETS

Number of UDP flows

EDSR BDSR - AR

400
300
200 ~
o=
0 T T T
8 16 32 50

MAC BUSY

350
300
250

200
150
100 +
50
0+ T T
8 16 32

Number of UDP flows

EmDSR BDSR - AR

50

Dropped packets due to duplicate packets

122

Droppekipadue to MAC busy

Another random waypoint scenario (300Kb)

THROUGHPUT ROUTING OVERHEAD

25 3.000

2.500

2.000

\

15
1.500
1.000 // /
05 500

8 16 32 50 8 16 32 50

KB /sec
Packets / sec

Number of UDP flows Number of UDP flows

——DSR —o—DSR - AR —%—DSR —6—DSR - AR

LOST PACKETS
TOTAL MAC ERRORS

182 mDSR mDSR - AR

200000

150000 -

30 100000 -

/——/—’: 50000 -
0

16

% Packets
BPNwWA OO N
c85883883
®
@ \
I
@
3

04
8 16 32 50
Number of UDP flows

Number of UDP flows

—>—DSR —6— DSR - AR

COLLISIONS RETRY EXCEED COUNT
200000 12000
10000
150000
8000
100000 6000
4000
50000 -
2000
0 0
8 16 32 50 8 16 32 50
Number of UDP flows Number of UDP flows
DUPLICATE PACKETS MAC BUSY

DSR BDSR - AR EBDSR BDSR - AR

350 400
300 4
250 300
200 4
150 200
100 + 100
50
0 0

8 16 32 50 8 16 32 50
Number of UDP flows Number of UDP flows

123

Dampem policy by Nahmp2 (AR off) and DSR-AR in collaboration with 2 (AR on)

ROUTING OVERHEAD

8

16 32 50
Number of UDP flows

—%—DSR ——DSR - AR

THROUGHPUT
35 1000
3 800 A
25 8
g 2 2 600 - /
2 15 £ 400
14 & /b/e/
05 1 200 =
0 T 0 T
8 16 32 50 8 16 32 50
Number of UDP flows Number of UDP flows
Throughput Routing overhead
LOST PACKETS
TOTAL MAC ERRORS
100
80 1
@ 140000
g 604 120000 -
& 0 100000
< /" 80000
20 60000 |
— o000 |
0 : ‘ 20000 -

04
8 16 32 50
Number of UDP flows

Lost packets

Total dropped packets

124

COLLISIONS RETRY EXCEED COUNT
140000 20000
120000
100000 - 15000
ggggg 10000 |
40000 5000 -
20000
0+ 0
8 16 32 50 8 16 32 50
Number of UDP flows Number of UDP flows
Dropped packets due to collisions Dropped packegstd retry exceed count
DUPLICATE PACKETS MAC BUSY
300 400
250
200
150
100 A
50
o
8 16 32 50 8 16 32 50
Number of UDP flows Number of UDP flows
Dropped packets due to duplicate packets Droppekiepsdue to MAC busy
ROUTE ERRORS ROUTE CHANGES
500 3000
400 2500
300 2000
1500
200 1000
100 500
0 0
8 16 32 50 8 16 32 50
Number of UDP flows Number of UDP flows
Number of route errors Number of route changes

125

A.4 Manhattan scenario

COLLISIONS RETRY EXCEED COUNT
B DSR BDSR - AR B DSR BDSR - AR
2.000.000 120.000
100.000
1.500.000
80.000
1.000.000 60.000
40.000
500.000
20.000
0+ 0+
0 1 2 5 10 20 0 1 2 5 10 20
Maximum speed (m/s) Maximum speed (m/s)

Dropped packets due to collisions

Dropped packegstd retry exceed count

DUPLICATE PACKETS

mDSR BDSR - AR

0 1 2 5

Maximum speed (m/s)

MAC BUSY

mDSR BDSR - AR

200

150

100

50

0 1 2 5 10 20

Maximum speed (m/s)

Dropped packets due to duplicate packets

126

Droppekiepadue to MAC busy

Dampem policy by Nahmp2 (AR off) and DSR-AR in collaboration with 2 (AR on)

THROUGHPUT ROUTING OVERHEAD
1,5 3,0
20 W‘Q
g 1.0 1 8 20
2 215
v 0,5 5 1,0
&
05
0,0 T T T T
: 0,0
0 1 2 5 10 20 0 1 2 5 10 20
Maximum speed (m/s) Maximum speed (m/s)
Throughput Routing overhead
LOST PACKETS TOTAL MAC ERRORS
10 500
o 8 8 400
< s > 300
§ 4 @ 200
2, 8 100
o 0
‘ 0 ‘ 1 ‘ 2 ‘ 5 ‘ 10 20 0 ! 2 > 10 20
Maximum speed (m/s) Maximum speed (m/s)

Lost packets Total dropped packets
ROUTE ERRORS ROUTE CHANGES

600 P

500

400 I

300

200

100

0 1 2 5 10 20 0 0 1 2 5 10 20

Maximum speed (m/s)

Maximum speed (m/s)

BDSR ODSR - AR ODSR ODSR - AR

Number of route errors Number of route changes

127

COLLISIONS
100.000
80.000
60.000 -
40.000 ~
20.000 +
0
0 1 2 5 10 20
Maximum speed (m/s)

RETRY EXCEED COUNT

1.500

1.000

500

0 1 2 5 10 20

Maximum speed (m/s)

mDSR mDSR - AR

Dropped packets due to collisions

Dropped packegstd retry exceed count

DUPLICATE PACKETS

o N M O ®

0 1 2 5 10 20

Maximum speed (m/s)

EDSR EDSR-AR

MAC BUSY

60
50
40
30
20
10
0 . —-. . .
0 1 2 5 10 20
Maximum speed (m/s)

EBDSR BDSR - AR

Dropped packets due to duplicate packets

Droppekiepadue to MAC busy

128

A.4.2 UDP

COLLISIONS RETRY EXCEED COUNT
2500000 120000
2000000 100000 -
1500000 80000
60000
1000000 40000 |
500000 20000
0+ 0+
0 1 2 5 10 20 0 1 2 5 10 20
Maximum speed (m/s) Maximum speed (m/s)
Dropped packets due to collisions Dropped packegstd retry exceed count
DUPLICATE PACKETS MAC BUSY

300
250
200 +
150
100 +

50

0 1 2 5 10 20 0 1 2 5 10 20
Maximum speed (m/s) Maximum speed (m/s)

Dropped packets due to duplicate packets Droppekipadue to MAC busy

129

Dampem policy by Nahmp2 (AR off) and DSR-AR in collaboration with 2 (AR on)

Maximum speed (m/s)

BDSRODSR - AR

THROUGHPUT ROUTING OVERHEAD
0,45 16
04 & 14 Pl
035 12
o 03 \ § 10 /
3 025 2
S o2 @ 8 /\/
X 015 \ S 6
oL = g . — e
005 \/ K})
0 0
0 1 2 5 10 20 0 1 2 5 10 20
Maximum speed (m/s) Maximum speed (m/s)
Throughput Routing overhead
LOST PACKETS
TOTAL MAC ERRORS
100
> /(\ﬁ 3.000
9% 2.500
g o 2.000
S o 1.500 1
“\; %0 1.000
% e 500 |
86 0
o ‘ ‘ ‘ ‘ ‘ 0 1 2 5 10 20
0 1 2 5 10 20 Maximum speed (m/s)
Maximum speed (m/s)
——DSR ——DSR - AR
Lost packets Total dropped packets
ROUTE ERRORS ROUTE CHANGES
10.000 10.000
8.000 8.000
6.000 6.000
4.000 4.000
2.000 2.000
0 0
0 1 2 5 10 20 0 1 2 5 10 20

Maximum speed (m/s)

ODSR ODSR - AR

Number of route errors

130

Number of route changes

COLLISIONS
500000
400000
300000
200000
100000
0
0 1 2 5 10 20
Maximum speed (m/s)

RETRY EXCEED COUNT

70000
60000
50000
40000
30000
20000 -
10000 -

0 1 2 5 10 20

Maximum speed (m/s)

mDSR mDSR - AR

Dropped packets due to collisions

Dropped packegstd retry exceed count

DUPLICATE PACKETS

250
200
150
100

0 1 2 5 10 20

Maximum speed (m/s)

EBDSR BDSR - AR

MAC BUSY
400
300
200
100
0
0 1 2 5 10 20

Maximum speed (m/s)

EBDSR BDSR - AR

Dropped packets due to duplicate packets

Droppekiepadue to MAC busy

131

Appendix B

Setup files common for all scenarios
* TCP (main-tcp.tcl)

#
Default Script Options
#

set opt(chan) Channel/WirelessChannel

set opt(prop) Propagation/TwoRayGround
set opt(netif) Phy/WirelessPhy

set opt(mac) Mac/802_11

set opt(ifq) CMUPriQueue ;# for dsr

set opt(ifglen) 50

setopt(ll) LL

set opt(ant) Antenna/OmniAntenna

setopt(x) 6000 # X dimension of the t opography

setopt(y) 3000 #Y dimension of the t opography

setopt(cp) "™ # traffic TCP/TFRC/etc

set opt(sc) "'; # topology scenario

set opt(nn) 0 ;# number of nodes -- ch anges according to opt(sc)

set opt(seed) 0.0
set opt(stop) 200.0 ;# simulation time

set opt(tr) out.tr ;#trace file

set opt(rp) dsr ;# routing protocol script (dsr or dsdv)

set opt(Im) "off" # log movement

set opt(err) ™" ;# if needed, check MyE rrorProc below

set opt(alpha) 1.0

set opt(beta) 1 # DSR beta (0: static, 1: DSR, >2:DSR++DAMPEN)

set opt(gamma) O ;# DSR gamma (0 without signal power, >0 using signal power to

differentiate retry count exceed from link error)
set opt(rate) 2e6
set opt(dist) 250 ;# receiving range

set opt(ntcp) 0 ;# opt(cp) related para meter: number of TCPs
set opt(hops) 1 i# opt(cp) related para meter: E2E hops

#

set AgentTrace ON

set RouterTrace ON

set MacTrace ON

CMUTrace set newtrace_ 1

132

LL set mindelay_ 50us
LL set delay_ 25us
LL set bandwidth_ 0 ;# notused

Agent/Null set sport_ 0

Agent/Null set dport_ 0

Agent/CBR set sport_ 0

Agent/CBR set dport_ 0

Agent/TCPSink set sport_ 0

Agent/TCPSink set dport_ 0

Agent/TCP set sport_ 0

Agent/TCP set dport_ 0

Agent/TCP set packetSize_ 1024
Queue/DropTail/PriQueue set Prefer_Routing_Protocol

unity gain, omni-directional antennas

set up the antennas to be centered in the node an
Antenna/OmniAntenna set X_ 0
Antenna/OmniAntenna set Y_ 0
Antenna/OmniAntenna set Z_ 1.5
Antenna/OmniAntenna set Gt_ 1.0
Antenna/OmniAntenna set Gr_ 1.0

Initialize the SharedMedia interface with paramet

it work like the 914MHz Lucent WaveLAN DSSS radio
Phy/WirelessPhy set CPThresh_ 10.0

Phy/WirelessPhy set CSThresh_ 1.559e-11; # 550m
Phy/WirelessPhy set RXThresh_ 3.652e-10; # 250m
Phy/WirelessPhy set Pt_ 0.281838

Phy/WirelessPhy set freq_ 2.4e+9

Phy/WirelessPhy set L_ 1.0

ErrorModel set enable_ 1
ErrorModel set markecn_ false
ErrorModel set bandwidth_ 2Mb

d 1.5 meters above it

ers to make
interface

#source [lindex $argv 0]; # override the default se

ttings

proc usage { argv0 } {
puts "Usage: $argv0"
puts "\tmandatory arguments:"
puts "\\W\[-x MAXX\] \[-y MAXY\]"
puts "\toptional arguments:"
puts "\t\t\[-cp conn pattern\] \[-sc scenario\]
puts "\t\t\[-seed seed\] \[-stop sec\] \[-tr tr

133

\[-nn nodes\]"
acefile\|\n"

proc getopt {argc argv} {

global opt
lappend optlist cp nn seed sc stop tr x y ntcp
for {set i 0} {$i < $argc} {incr i} {

set arg [lindex $argv $i]

if {[string range $arg 0 0] !="-"} continu

set name [string range $arg 1 end]
set opt($name) [lindex $argv [expr $i+1]]
puts "opt($name) = $opt($name)"
}

proc create_tcp_connection {src dst log_file_prefix

}

global ns_ tcp_ node_iiik tcptrace_ opt
if I[info exists iiik] {
set iiik O
}
set tcp_($iiik) [new Agent/TCP/Newreno]
set tcpsink_($iiik) [new Agent/TCPSink]
$ns_ attach-agent $node_($src) $tep_($iiik)
$ns_ attach-agent $node_($dst) $tcpsink_($iiik)
$ns_ connect $tcp_(Siiik) $tepsink_($iiik)

$tep_($iiik) set fid_ 1
$tep_($iiik) set window_ 64
$tcp_($iiik) set nodeid_ [$node_($src) id]
$tepsink_($iiik) set nodeid_ [$node_($src) id]
if { $log_file_prefix 1= """} {
$tcpsink_($iiik) set total_bytes_ 0
$ns_ register_record $tcpsink_($iiik) $log_file_pr
set tcptrace_($iiik) [open $log_file_prefixSiiik.|
$tcp_($iiik) set trace_all_oneline_ false
$tep_($iiik) trace cwnd_
$tep_($iiik) trace rtt_
$tep_($iiik) trace srtt_
$tep_($iiik) trace ssthresh_
$tcp_($iiik) attach $teptrace_(Siiik)
$ns_ at $opt(stop) “flush $tcptrace_(Siiik)"
$ns_ at $opt(stop) “close $tcptrace_(Siiik)"
}
set ftp_($iiik) [$tcp_($iiik) attach-source FTP
$ns_ at $start "$ftp_($iiik) start”
$ns_ rtmodel-at $start down $node_($src)
incr iiik

proc MyErrorProc {} {

set errObj [new ErrorModel]
$errObj FECstrength 0

134

hops gamma beta alpha glen rate

start} {

efix$iiik.tr
og w]

$errObj set rate_ 0.001
$errObj set unit pkt
return $errObj

Simulator instproc register_record {agent file} {
$self instvar agent_list log_file_list
lappend agent_list $agent
lappend log_file_list [open $file w]

set total_thr_file [open "thr.log" w]

Simulator instproc record {} {
$self instvar agent_list log_file_list
global total_thr_file opt
set nnn [llength $agent_list]
set now [$self now]
set interval $opt(stop)
setbw_tcp 0
set bw_tfrc 0
for {set i 0} {$i < $nnn} {incr i} {
set agent [lindex $agent_list $i]
set bytes [$agent set total_bytes_]
set file [lindex $log_file_list $i]
set bw [expr $bytes/$interval*8.0/1024.0]
set bw_tcp [expr $bw_tcp + $Shw]
$agent set total_bytes_ 0
puts $file "$now $bw"
}
if { $interval == $opt(stop) } {
if { $now == $opt(stop) } {
puts $total_thr_file "$bw_tcp"
}
}else {
puts $total_thr_file "$now $bw_tcp"
}

$self at [expr $now+Sinterval] "$self record"

proc log-movement {} {
global logtimer ns_ ns

set ns $ns_

source /tcl/timer.tcl

Class LogTimer -superclass Timer
LogTimer instproc timeout {} {
global opt node_;

for {set i 0} {$i < $opt(nn)} {incr i} {

135

$node_($i) log-movement
}
$self sched 0.1
}
set logtimer [new LogTimer]
$logtimer sched 0.1

proc finish {3} {
global ns_
$ns_ flush-trace

#close $nf

#

Main Program

#

getopt $argc $argv

if { $opt(x) == 0 || $opt(y) == 0 } {
usage $argv0
exit1

if {$opt(seed) > 0} {
puts "Seeding Random number generator with $opt
ns-random $opt(seed)

#

Initialize Global Variables

#

setns_ [new Simulator]

set chan [new $opt(chan)]

set prop [new $opt(prop)]
settopo [new Topography]
set tracefd [open $opt(tr) w]
#setnf [open $opt(namfile) w]

#%ns_ namtrace-all $nf

$topo load_flatgrid $opt(x) Sopt(y)

$prop topography $topo

#
Create God

136

(seed)\n"

#
set god__ [create-god $opt(nn)]

#
log the mobile nodes movements if desired
#
if { $opt(Im) =="on" } {
log-movement

if { $opt(dist) == 60 } {
Phy/WirelessPhy set CSThresh_ 1.65011e-9; # 130m # 140! change
Phy/WirelessPhy set RXThresh_ 7.74635e-9; # 60m

if { [string compare $opt(rp) "dsr'] == 0} {
Agent/DSRAgent set beta_ $opt(beta)
Agent/DSRAgent set gamma_ $opt(gamma)
Mac/802_11 set basicRate_ $opt(rate)
Mac/802_11 set dataRate_ $opt(rate)
Phy/WirelessPhy set bandwidth_ $opt(rate)
Phy/WirelessPhy set Rb_ $opt(rate)

for {set i 0} {$i < $opt(nn) } {incr i} {
dsr-create-mobile-node $i
}

} elseif { [string compare $opt(rp) "dsdv"] == 0} {
Mac/802_11 set basicRate_ $opt(rate)
Mac/802_11 set dataRate_ $opt(rate)
Phy/WirelessPhy set bandwidth_ $opt(rate)
Phy/WirelessPhy set Rb_ $opt(rate)

for {set i 0} {$i < $opt(nn) } {incr i} {
dsdv-create-mobile-node $i

#
Source the Connection and Movement scripts
#
if { $opt(cp) ==""}{
puts "*** NOTE: no connection pattern specified
set opt(cp) "none"
}else {
Agent/TCP set increase_num_ $opt(alpha)
puts "Loading connection pattern... $opt(cp)"
source $opt(cp)

137

Tell all the nodes when the simulation ends
#
for {set i 0} {$i < $opt(nn) } {incr i} {
$ns_ at $opt(stop).000000001 "$node_($i) reset”

}
$ns_ at $opt(stop).00000001 "puts \"NS EXITING...\"

if { $opt(sc) ==""}{
puts "*** NOTE: no scenario file specified."
set opt(sc) "none"
}else {
puts "Loading scenario file... $opt(sc)"
source $opt(sc)
puts "Load complete..."

$ns_ at 0.0 "$ns_ record”
puts "Starting Simulation..."
$ns_ run

138

; finish ; $ns_ halt"

* UDP (main-udp.tcl)

#

Default Script Options

#

set opt(chan) Channel/WirelessChannel

set opt(prop) Propagation/TwoRayGround

set opt(netif) Phy/WirelessPhy
Mac/802_11
CMUPriQueue ;# for dsr
set opt(ifglen) 50

setopt(ll) LL
set opt(ant)

set opt(mac)
set opt(ifq)

Antenna/OmniAntenna

setopt(x) 6000
setopt(y) 3000
setopt(cp) "™ # traffic TCP/TFRC/etc
set opt(sc) "'; # topology scenario

set opt(nn) 0 ;# number of nodes -- ch

set opt(seed) 0.0

set opt(stop) 200.0 ;# simulation time

set opt(tr) outtr ;#trace file
set opt(rp) dsr ;# routing protocol
set opt(Im) "off" # log movement

set opt(err) "™

set opt(alpha) 1.0

set opt(beta) 1 ;# DSR beta (0: static,
;# DSR gamma (0 without

set opt(gamma) O
differentiate retry count exceed from link error)

set opt(rate) 2e6

set opt(dist) 250 ;# receiving range

set opt(ntcp) 0 ;# opt(cp) related para
set opt(hops) 1 i# opt(cp) related para

X dimension of the t
#Y dimension of the t

if needed, check MyE

opography
opography

anges according to opt(sc)

script (dsr or dsdv)

rrorProc below

1: DSR, >2:DSR++DAMPEN)
signal power, >0 using signal power to

meter: number of TCPs
meter: E2E hops

#

set AgentTrace ON
set RouterTrace ON
set MacTrace ON

CMUTrace set newtrace_ 1

LL set mindelay_ 50us
LL set delay_ 25us
LL set bandwidth_ 0 ;# notused

Agent/Null set sport_ 0
Agent/Null set dport_ 0
Agent/CBR set sport_ 0
Agent/CBR set dport_ 0

139

Agent/TCPSink set sport_ 0

Agent/TCPSink set dport_ 0

Agent/TCP set sport_ 0

Agent/TCP set dport_ 0

Agent/TCP set packetSize_ 1024
Queue/DropTail/PriQueue set Prefer_Routing_Protocol

unity gain, omni-directional antennas

set up the antennas to be centered in the node an
Antenna/OmniAntenna set X_ 0
Antenna/OmniAntenna set Y_ 0
Antenna/OmniAntenna set Z_ 1.5
Antenna/OmniAntenna set Gt_ 1.0

Antenna/OmniAntenna set Gr_ 1.0

Initialize the SharedMedia interface with paramet

it work like the 914MHz Lucent WaveLAN DSSS radio

Phy/WirelessPhy set CPThresh_ 10.0
Phy/WirelessPhy set CSThresh_ 1.559e-11; # 550m
Phy/WirelessPhy set RXThresh_ 3.652e-10; # 250m
Phy/WirelessPhy set Pt_ 0.281838

Phy/WirelessPhy set freq_ 2.4e+9

Phy/WirelessPhy set L_ 1.0

ErrorModel set enable_ 1
ErrorModel set markecn_ false
ErrorModel set bandwidth_ 2Mb

d 1.5 meters above it

ers to make
interface

#

#source [lindex $argv 0]; # override the default se

ttings

#

proc usage { argv0 } {
puts "Usage: $argv0"
puts "\tmandatory arguments:"
puts "\\W\[-x MAXX\] \[-y MAXY\]"
puts "\toptional arguments:"
puts "\t\t\[-cp conn pattern\] \[-sc scenario\]
puts "\t\t\[-seed seed\] \[-stop sec\] \[-tr tr

proc getopt {argc argv} {
global opt
lappend optlist cp nn seed sc stop tr x y ntcp
for {set i 0} {$i < $argc} {incr i} {
set arg [lindex $argv $i]
if {[string range $arg 0 0] != "-"} continu
set name [string range $arg 1 end]
set opt($name) [lindex $argv [expr $i+1]]
puts "opt($name) = $opt($log_file_prefixsnum.los

140

\[-nn nodes\]"
acefile\|\n"

hops gamma beta alpha glen rate

s$name)"”

proc create_udp_connection {src dst log_file_prefix

global ns_ node_ num opt udp_ udptrace_ sink_
if I[info exists num] {

set num O
}
set udp_($num) [new Agent/UDP]
$ns_ attach-agent $node_($src) Sudp_($num)
set cbr($num) [new Application/Traffic/CBR]
$cbr($num) set packetSize_ 512

$cbr($num) set interval_ 0.2

#$cbr($num) set rate_ 300Kb # that is high CBR mod

$cbr($num) attach-agent $udp_($num)

#set null_($iiik) [new Agent/Null]

set sink_($num) [new Agent/LossMonitor]
$ns_ attach-agent $node_($dst) $sink_($num)
$ns_ connect $udp_($num) $sink_($num)

if { $log_file_prefix ="} {

$ns_ register_record $sink_($num) $log_file_prefi

$ns_ at $start "$cbr($num) start"

incr num

proc MyErrorProc {} {
set errObj [new ErrorModel]
$errObj FECstrength 0
$errObj set rate_ 0.001
$errObj set unit pkt
return $errObj

Simulator instproc register_record {agent file} {
$self instvar agent_list log_file_list
lappend agent_list $agent
lappend log_file_list [open $file w]

set total_thr_file [open "thr.log" w]

Simulator instproc record_udp {} {

141

start} {

ification

x$num.tr

$self instvar agent_list log_file_list
global total_thr_file opt sink_

set nnn [llength $agent_list]
set now [$self now]

set interval $opt(stop)

set bw_udp 0

set bl_udp O

#set loss_ nlost_

for {set i 0} {$i < $nnn} {incr i} {

set btes [$sink_($i) set bytes_]

set file [lindex $log_file_list $i]

set bw [expr $btes/$interval*8.0/1024.0]
set bw_udp [expr $bw_udp + $bw]
$sink_($i) set bytes_ 0

puts $file "$now $bw"

}
if { $interval == $opt(stop) } {

if { $now == $opt(stop) } {

puts $total_thr_file "$bw_udp"

}
}else {

puts $total_thr_file "$now $bw_udp"
}

$self at [expr $now+S$interval] "$self record_ud

proc log-movement {} {
global logtimer ns_ ns

set ns $ns_

source /tcl/timer.tcl

Class LogTimer -superclass Timer

LogTimer instproc timeout {} {

global opt node_;

for {set i 0} {$i < $opt(nn)} {incr i} {
$node_($i) log-movement

}
$self sched 0.1

}

set logtimer [new LogTimer]
$logtimer sched 0.1

142

proc finish {3} {
global ns_
$ns_ flush-trace
#close $nf

#

Main Program

#

getopt $argc $argv

if { $opt(x) == 0 || $opt(y) == 0 } {
usage $argv0
exit1

if {$opt(seed) > 0} {
puts "Seeding Random number generator with $opt

ns-random $opt(seed)

#

Initialize Global Variables
#

setns_ [new Simulator]
setchan [new $opt(chan)]
set prop [new $opt(prop)]
settopo [new Topography]
set tracefd [open $opt(tr) w]

#setnf [open $opt(namfile) w]
#%ns_ namtrace-all $nf

$topo load_flatgrid $opt(x) $opt(y)
$prop topography $topo

#

Create God

#
set god__ [create-god $opt(nn)]

#
log the mobile nodes movements if desired

143

(seed)\n"

#
if { $opt(Im) =="on" } {
log-movement

if { $opt(dist) == 60 } {
Phy/WirelessPhy set CSThresh_ 1.65011e-9; # 130m
Phy/WirelessPhy set RXThresh_ 7.74635e-9; # 60m

if { [string compare $opt(rp) "dsr'] == 0} {
Agent/DSRAgent set beta_ $opt(beta)
Agent/DSRAgent set gamma_ $opt(gamma)
Mac/802_11 set basicRate_ $opt(rate)
Mac/802_11 set dataRate_ $opt(rate)
Phy/WirelessPhy set bandwidth_ $opt(rate)
Phy/WirelessPhy set Rb_ $opt(rate)

for {set i 0} {$i < $opt(nn) } {incr i} {
dsr-create-mobile-node $i
}

} elseif { [string compare $opt(rp) "dsdv"] == 0} {
Mac/802_11 set basicRate_ $opt(rate)
Mac/802_11 set dataRate_ $opt(rate)
Phy/WirelessPhy set bandwidth_ $opt(rate)
Phy/WirelessPhy set Rb_ $opt(rate)

for {set i 0} {$i < $opt(nn) } {incr i} {
dsdv-create-mobile-node $i

#
Source the Connection and Movement scripts
#
if { $opt(cp) =="" }{
puts "*** NOTE: no connection pattern specified
set opt(cp) "none"
}else {
Agent/TCP set increase_num_ $opt(alpha)
puts "Loading connection pattern... $opt(cp)"
source $opt(cp)

#
Tell all the nodes when the simulation ends
#
for {set i 0} {$i < $opt(nn) } {incr i} {
$ns_ at $opt(stop).000000001 "$node_($i) reset”

144

}

$ns_ at $opt(stop).00000001 "puts \"NS EXITING...\"

if { $opt(sc) == "} {
puts "*** NOTE: no scenario file specified.”
set opt(sc) "none"
}else {
puts "Loading scenario file... $opt(sc)"
source $opt(sc)
puts "Load complete..."

$ns_at 0.0 "$ns_ record_udp"
puts "Starting Simulation..."
$ns_ run

145

; finish ; $ns_ halt"

Chain scenario - Scripts

» Connections set up
0 TCP (tcp- chain.tcl)

setiO
while { $i < $opt(ntcp) } {
create_tcp_connection 0 $opt(hops) tcp 2.0

incri

0 UDP (udp-chain.tcl)

setiO
while { $i < $opt(ntcp) } {
create_udp_connection 0 $opt(hops) udp 2.0

incri

* Execution
0 TCP (sim-chain-tcp.sh)

#! /bin/sh

export PATH=$PATH:/ns2/bin:/ns2/tcl8.4.11/unix:/ns2
mkdir result

mkdir result/chain_tcp

forBinl2
do
mkdir result/chain_tcp/DSR$B
forGin01
do
forNin 248
do
forHiNn456781012 1416 20
do

if\
ns main-tcp.tcl -alpha 0.01 -beta $B -gamma $G
-cp tcp-chain.tcl -sc chain22.dst -nn 25 -ntcp
then
mkdir result/chain_tcp/DSRB/gG.tcp$N.hop$H
mv *.tr result/chain_tcp/DSRB/gG.tcp$N.hop$SH
mv *.log result/chain_tcp/DSRB/gG.tcp$N.hop$
else
mkdir result/chain_tcp/DSRB/gG.tcp$N.hop$H.f
mv *.tr result/chain_tcp/DSRB/gG.tcp$N.hop$SH
mv *.log result/chain_tcp/DSRB/gG.tcp$N.hop$
fi
done

146

/tk8.4.11/unix

-stop 120\
$N -hops $H ; \

/
H/

ail
fail/
H.fail/

done
done
done

o UDP (sim-chain-udp.sh)

#! /bin/sh

export PATH=$PATH:/ns2/bin:/ns2/tcl8.4.11/unix:/ns2
mkdir result

mkdir result/chain_udp/

forBin1l2
do
mkdir result/chain_udp/DSR$B
forGin01
do
forNin248
do
forHiN456781012 14 16 20
do

if \
ns main-udp.tcl -beta $B -gamma $G -stop 120 \
-cp udp-chain.tcl -sc chain22.dst -nn 25 -ntcp
then
mkdir result/chain_udp/DSRB/gG.udp$N.hop$H

mv *.tr result/chain_udp/DSRB/gG.udp$N.hop$H
mv *.log result/chain_udp/DSRB/gG.udp$N.hop$
else
mkdir result/chain_udp/DSRB/gG.udp$N.hop$H.f
mv *.tr result/chain_udp/DSRB/gG.udp$N.hop$H
mv *.log result/chain_udp/DSRB/gG.udp$N.hop$
fi
done

done
done
done

* Analysis
o TCP (analysis-chain-tcp.pl)

#! Jusr/bin/perl
foreach$B (1,2){
print "beta: $B ";

open MAC_DROPS, "> result/chain_tcp/DSR$B/mac_drop
open RT_ERROR, "> result/chain_tcp/DSR$B/route_err
open RT_CHANGE, "> result/chain_tcp/DSR$B/route_ch

foreach $N (2,4,8){
print "N: $N ";
print RT_CHANGE "$N";

/tk8.4.11/unix

$N -hops $H ; \

H/

ail
fail/
H.fail/

s.log";
ors.log";

anges.log";

print RT_ERROR "$N";
foreach $G ("g0", "g1") {
print "\n gamma $G\n";

foreach $H (4,5,6,7,8,10, 12,14, 16, 20) {
print " $H";
open LOSS, "> result/chain_tcp/DSR$B/$G.tcp$N.h op$H/loss.log";
open Overhead, "> result/chain_tcp/DSR$B/$G.tcp $N.hop$H/overhead.log";

variables for MAC errors
open RT_CHG, "> route_change.$B.$G.tcp$N.hop$H"

print MAC_DROPS "$N $G $H";
variables for MAC errors
$col = 0;
$dup = 0;
$ret = 0;
$bsy = 0;
$cbk = 0; # variable for Route Error
$rerr = 0;
counting data packets (send, drop and recv...)
$nsend = 0;
$nrecv = 0;
#counting the number of packets RTR and MAC
$nRTR_OH =0;
$NMAC_OH = 0;
route changes. . .
$RChange = 0;
$RChangeFlows = 0;
open TRACE, "result/chain_tcp/DSR$B/$G.tcp$N.ho p$H/out.tr";
while (<TRACE>) {
@Il = split(" *);
if packet drop ...
if ($II[0] eq "d" && $II[18] eq "MAC")
collision
elsif ($li[20] eq "COL")
{$col++;}
duplicate
elsif ($i[20] eq "DUP")
{$dup++;}
retry exceeded count
elsif ($li[20] eq "RET")
{$ret++;}
busy
elsif ($li[20] eq "BSY")
{$bsy++;}
MAC callback
elsif ($i[20] eq "CBK")
{$cbk++;}
}
if route error then count
if ($lI[0] eq "RERR")

148

{$rerr +=1;}

if ($II[0] eq "s" && $II[18] eq "AGT")
{$nsend +=1;}

if ($II[0] eq "r" && $I[18] eq "AGT")
{$nrecv +=1;}

may be tcp, ack, dsr. Count only -It (type o f packet) = dsr
if ($I[18] eq "RTR" && $lI[34] eq "DSR")
{$NRTR_OH++;}
ROUTING OVERHEAD IN MAC
if ($II[18] eq "MAC" && $I[34] eq "DSR")
{ SnMAC_OH++;}

calculation of route changes FOR ALL FLOWS!!
if ($1[0] eq "RChange"){

if (SN == 2){
if ($1I[4] eq "0" && $I[6] eq $H)
{$RChangeFlows++;}

Jelsif (3N == 4){
if ($lI[4] eq "0" && $lI[6] eq $H)
{$RChangeFlows++;}

Jelsif (5N == 8){
if ($ll[4] eq "0" && $II[6] eq $H)
{$RChangeFlows++;}

}

close TRACE;

print LOSS "$nsend $nrecv";

close LOSS;

close RT_CHG,; # log for the route changes of on e flow over the time...
print RT_ERROR " $rerr";

$ohl = $nRTR_OH/120;

$oh2 = $SnMAC_OH/120;

print Overhead "RTR: $nRTR_OH MAC: $nMAC_OH => $ohl $oh2\n";

close Overhead;

print MAC_DROPS " end: $end col: $col dup: $dup ret: $ret err: $err; sta: $sta
bsy: $bsy dst: $dst nrte: $nrte loop: $loop ttl: $t tl ifg: $ifg tout: $tout cbk: $cbk sal:
$sal arp: $arp fil: $fil out: $out\n";
print RT_CHANGE " $RChangeFlows";
}
print "\n";
print RT_ERROR "\n";
print RT_CHANGE "\n";

}

149

close RT_ERROR;
close MAC_DROPS;
close RT_CHANGE;

o UDP (analysis-chain-udp.pl)

#! Jusr/bin/perl
foreach$B (1,2){
print "beta: $B *;
open MAC_DROPS, "> result/chain_udp/DSR$B/mac_drop
open RT_ERROR, "> result/chain_udp/DSR$B/route_err
open RT_CHANGE, "> result/chain_udp/DSR$B/route_ch
foreach $N (2,4,8){
print "N: $N ";
print RT_CHANGE "$N";
print RT_ERROR "$N";
foreach $G ("g0", "g1") {
print "\n gamma $G\n";
foreach $H (4,5,6,7,8,10, 12,14,
print " $H";
open LOSS, "> result/chain_udp/DSR$B/$G.udp$N.h
open Overhead, "> result/chain_udp/DSR$B/$G.udp
variables for MAC errors

open RT_CHG, "> route_change.$B.$G.udp$N.hop$H"

print MAC_DROPS "$N $G $H";
variables for MAC errors
$col = 0;
$dup = 0;
$ret =0;
$bsy = 0;
$cbk = 0; # variable for Route Error
$rerr = 0;
counting data packets (send, drop and recv...
$nsend = 0;
$nrecv = 0;
#counting the number of packets RTR and MAC
$nRTR_OH =0;
$nNMAC_OH = 0;
route changes. . .
$RChange = 0;
$RChangeFlows = 0;
open TRACE, "result/chain_udp/DSR$B/$G.udp$N.ho
while (<TRACE>) {

@Il = split(" *);

if packet drop ...

if ($lI[0] eq "d" && $lI[18] eq "MAC")}{

end of simulation
if ($lI[20] eq "END")

150

s.log";
ors.log";
anges.log";

16, 20) {

op$H/loss.log";
$N.hop$H/overhead.log";

p$H/out.tr";

{$end++;}
collision
elsif ($ll[20] eq "COL")
{$col++;}
duplicate
elsif ($i[20] eq "DUP")
{$dup++3}
retry exceeded count
elsif ($li[20] eq "RET")
{$ret++;}
busy
elsif ($li[20] eq "BSY")
{$bsy++;}
MAC callback
elsif ($ll[20] eq "CBK")
{$chk++;}
}
if route error then count
if ($II[0] eq "RERR")
{$rerr +=1;}
if ($ll[0] eq "s" && $II[18] eq "AGT")
{$nsend +=1;}
if ($ll[0] eq "r" && $II[18] eq "AGT")
{$nrecv +=1;}
may be tcp, ack, dsr. Count only -It (type o f packet) = dsr
if ($ll[18] eq "RTR" && $lI[34] eq "DSR")
{$NRTR_OH++;}
ROUTING OVERHEAD IN MAC
if ($l[18] eq "MAC" && $lI[34] eq "DSR")
{ SnMAC_OH++;}
calculation of route changes FOR ALL FLOWS!!
if ($l1[0] eq "RChange"){
if (BN == 2){
if ($lI[4] eq "0" && $II[6] eq $H)
{$RChangeFlows++;}
Yelsif (BN == 4){
if ($ll[4] eq "0" && $lI[6] eq $H)
{$RChangeFlows++;}
lelsif (BN == 8){
if ($ll[4] eq "0" && $lI[6] eq $H)
{$RChangeFlows++;}

}
close TRACE;

print LOSS "$nsend $nrecv",

close LOSS;

close RT_CHG,; # log for the route changes of on e flow over the time...
print RT_ERROR " $rerr";

$ohl = $nRTR_OH/120;

$oh2 = $nMAC_OH/120;

151

print Overhead "RTR: $nRTR_OH MAC: $nMAC_OH => $ohl $oh2\n";
close Overhead;

print MAC_DROPS " end: $end col: $col dup: $dup ret: $ret err: $err; sta: $sta
bsy: $bsy dst: $dst nrte: $nrte loop: $loop ttl: $t tl ifg: $ifg tout: $tout cbk: $cbk sal:
$sal arp: $arp fil: $fil out: $out\n”;
print RT_CHANGE " $RChangeFlows";
}
print "\n";
print RT_ERROR "\n";
print RT_CHANGE "\n";
}

}
close RT_ERROR;

close MAC_DROPS;
close RT_CHANGE;

152

Grid 7x7

» Connections set up
o0 TCP (tcp-grid7x7.tcl)

parallel 1//1

if { $opt(ntcp) == 1 } {
create_tcp_connection 21 27 tcp 3
create_tcp_connection 21 27 tcp 3

cross 1x1

if { $opt(ntcp) == 2 } {
create_tcp_connection 3 45tcp 3
create_tcp_connection 21 27 tcp 3

cross 2x2

if { $opt(ntcp) == 4 } {
create_tcp_connection 1 43 tcp 3
create_tcp_connection 547 tcp 3

create_tcp_connection 7 13 tcp 3
create_tcp_connection 35 41 tcp 3

cross 3x3

if { $opt(ntcp)==6 } {
create_tcp_connection 143 tcp 3
create_tcp_connection 3 45tcp 3
create_tcp_connection 547 tcp 3

create_tcp_connection 7 13 tcp 3
create_tcp_connection 21 27 tcp 3
create_tcp_connection 35 41 tcp 3

cross 4x4

if { $opt(ntcp) == 8 } {
create_tcp_connection 0 42 tcp 5
create_tcp_connection 2 44 tcp 5
create_tcp_connection 4 46 tcp 5
create_tcp_connection 6 48 tcp 5

153

create_tcp_connection 0 6 tcp 5

create_tcp_connection 14 20 tcp 5
create_tcp_connection 28 34 tcp 5
create_tcp_connection 42 48 tcp 5

cross 7x7

if { $opt(ntcp) == 14 } {
create_tcp_connection 0 42 tcp 5
create_tcp_connection 1 43 tcp 5
create_tcp_connection 2 44 tcp 5
create_tcp_connection 3 45 tcp 5
create_tcp_connection 4 46 tcp 5
create_tcp_connection 547 tcp 5
create_tcp_connection 6 48 tcp 5

create_tcp_connection 0 6 tcp 5
create_tcp_connection 7 13 tcp 5
create_tcp_connection 14 20 tcp 5
create_tcp_connection 21 27 tcp 5
create_tcp_connection 28 34 tcp 5
create_tcp_connection 3541 tcp 5
create_tcp_connection 42 48 tcp 5

random 10 we did simulate this but did not show i n results

if { $opt(ntcp) == 10 } {
create_tcp_connection 22 10 tcp 5
create_tcp_connection 23 12 tcp 5
create_tcp_connection 14 21 tcp 5
create_tcp_connection 19 32 tcp 5
create_tcp_connection 151 tcp 5

create_tcp_connection 21 11 tcp 5
create_tcp_connection 533 tcp 5
create_tcp_connection 3 30 tcp 5
create_tcp_connection 15 1 tcp 5
create_tcp_connection 27 20 tcp 5

o UDP (udp-grid7x7.tcl)

parallel 1//1
if { $opt(ntcp) == 1 } {

create_udp_connection 21 27 udp 3
create_udp_connection 21 27 udp 3

154

cross 1x1

if { $opt(ntcp) == 2 } {
create_udp_connection 3 45 udp 3
create_udp_connection 21 27 udp 3

cross 2x2

if { $opt(ntcp) == 4 } {
create_udp_connection 1 43 udp 3
create_udp_connection 5 47 udp 3

create_udp_connection 7 13 udp 3
create_udp_connection 35 41 udp 3

cross 3x3

if { $opt(ntcp)==6 } {
create_udp_connection 143 udp 3
create_udp_connection 3 45 udp 3

create_udp_connection 547 udp 3

create_udp_connection 7 13 udp 3
create_udp_connection 21 27 udp 3
create_udp_connection 35 41 udp 3

cross 4x4

if { $opt(ntcp) == 8 } {
create_udp_connection 0 42 udp 5
create_udp_connection 2 44 udp 5
create_udp_connection 4 46 udp 5
create_udp_connection 6 48 udp 5

create_udp_connection 0 6 udp 5

create_udp_connection 14 20 udp 5
create_udp_connection 28 34 udp 5
create_udp_connection 42 48 udp 5

cross 7x7
if { $opt(ntcp) == 14 } {
create_udp_connection 0 42 udp 5

create_udp_connection 1 43 udp 5
create_udp_connection 2 44 udp 5

155

create_udp_connection 3 45 udp 5
create_udp_connection 4 46 udp 5
create_udp_connection 5 47 udp 5
create_udp_connection 6 48 udp 5

create_udp_connection 0 6 udp 5
create_udp_connection 7 13 udp 5
create_udp_connection 14 20 udp 5
create_udp_connection 21 27 udp 5
create_udp_connection 28 34 udp 5
create_udp_connection 35 41 udp 5
create_udp_connection 42 48 udp 5

random 10

if { $opt(ntcp) == 10 } {
create_udp_connection 22 10 udp 5
create_udp_connection 23 12 udp 5
create_udp_connection 14 21 udp 5
create_udp_connection 19 32 udp 5
create_udp_connection 15 1 udp 5

create_udp_connection 21 11 udp 5
create_udp_connection 5 33 udp 5
create_udp_connection 3 30 udp 5
create_udp_connection 15 1 udp 5

create_udp_connection 27 20 udp 5

» Execution
0o TCP (sim-grid-tcp.sh)

#! /bin/sh

export PATH=$PATH:/ns2/bin:/ns2/tcl8.4.11/unix:/ns2 /tk8.4.11/unix

mkdir result

mkdir result/grid7x7

mkdir result/grid7x7/DSR1
mkdir result/grid7x7/DSR2

forBin12
do
forGin01
do
forNin1246814
do
if \
ns main-tcp.tcl -beta $B -gamma $G -nn 50 -ntcp $N -rate 2e6 \

156

-cp tep-grid7x7.tcl -sc grid7x7.dst -stop 120; \

then

mkdir result/grid7x7/DSRB/gG.tcp$N

mv *.tr result/grid7x7/DSRB/gG.tcpSN/

mv *.loss result/grid7x7/DSRB/gG.tcp$N/

mv *.log result/grid7x7/DSRB/gG.tcp$SN/

else

mkdir result/grid7x7/DSRB/gG.tcp$N.fail

mv *.tr result/grid7x7/DSRB/gG.tcp$N.fail/

mv *.log result/grid7x7/DSRB/gG.tcp$N.fail/

mv *.loss result/grid7x7/DSRB/gG.tcp$N.fail/
fi

done
done
done

o0 UDP (sim-grid-udp.sh)
#! /bin/sh

export PATH=$PATH:/ns2/bin:/ns2/tcl8.4.11/unix:/ns2

mkdir result

mkdir result/grid7x7

mkdir result/grid7x7/DSR1
mkdir result/grid7x7/DSR2

forBinl2
do
forGin01
do

forNin1246814

do

if \
ns main-udp.tcl -beta $B -gamma $G -nn 50 -ntcp
-cp udp-grid7x7.tcl -sc grid7x7.dst -stop 120; \
then
mkdir result/grid7x7/DSRB/gG.udp$N
mv *.tr result/grid7x7/DSRB/gG.udp$N/
mv *.loss result/grid7x7/DSRB/gG.udpSN/
mv *.log result/grid7x7/DSRB/gG.udp$N/
else
mkdir result/grid7x7/DSRB/gG.udp$N.fail
mv *.tr result/grid7x7/DSRB/gG.udp$N.fail/
mv *.log result/grid7x7/DSRB/gG.udp$N.fail/
mv *.loss result/grid7x7/DSRB/gG.udp$N.fail/

fi

done

157

/tk8.4.11/unix

$N -rate 2e6 \

done
done

* Analysis
o TCP (analysis-grid-tcp.pl)

#! Jusr/bin/perl

foreach $B (1, 2) {
print "beta: $B *;

open MAC_DROPS, "> result/grid7x7tcp/DSR$B/mac_dro ps.log";
open RT_ERROR, "> result/grid7x7tcp/DSR$B/route_er rors.log";
open RT_CHANGE, "> result/grid7x7tcp/DSR$B/route_c hanges.log";
foreach $N (1, 2, 4, 6,8 ,14,10){

print "N: $N ";

print RT_CHANGE "$N";
print RT_ERROR "$N";
foreach $G ("g0", "g1") {
print " gamma $G\n";
open LOSS, "> result/grid7x7tcp/DSR$B/$G.tcp$N/I oss.log";
open Overhead, "> result/grid7x7tcp/DSR$B/$G.tcp $N/overhead.log";
variables for MAC errors

print MAC_DROPS "$N $G";
variables for MAC errors
$col = 0;
$dup = 0;
$ret=0;
$bsy = 0;
$cbk = 0;
variable for Route Error
$rerr = 0;
counting data packets (send, drop and recv...)
$nsend = 0;
$nrecv = 0;
#counting the number of packets RTR and MAC
$nRTR_OH = 0;
$NMAC_OH = 0;
route changes. . .
$RChange = 0;
$RChangeFlows = 0;
open TRACE, "result/grid7x7tcp/DSR$B/$G.tcp$ N/out.tr";
while (<TRACE>) {
@Il = split(* *);
if packet drop ...
if ($II[0] eq "d" && $II[18] eq "MAC"){
collision
elsif ($ll[20] eq "COL")
{$col++;}
duplicate

158

elsif ($ll[20] eq "DUP")
{$dup++;}
retry exceeded count
elsif ($ll[20] eq "RET")
busy
elsif ($li[20] eq "BSY")
{$bsy++}
MAC callback
elsif ($ll[20] eq "CBK")
{$cbk++;}
}
if route error then count
if ($1I[0] eq "RERR")
{$rerr +=1;}

if ($I[0] eq "s" && $I[18] eq "AGT")
{$nsend +=1;}

if ($II[0] eq "r" && $II[18] eq "AGT")
{$nrecv +=1;}

may be tcp, ack, dsr. Count only -It (type of

if ($lI[18] eq "RTR" && $Il[34] eq "DSR")
{$nRTR_OH++}

ROUTING OVERHEAD IN MAC

if ($II[18] eq "MAC" && $II[34] eq "DSR")
{$NMAC_OH++;}

calculation of route changes FOR ALL FLOWS!!
if ($lI[0] eq "RChange"){
if (BN ==1){
if ($ll[4] eq "21" && $lI[6] eq "27")
{$RChangeFlows++;}

Jelsif (BN == 2){
if (($ll[4] eq "3" && $I[6] eq "45")
|| ($11[4] eq "21" && $II[6] eq "27"))

{$RChangeFlows++;}

Jelsif (N == 4){
if (($lI[4] eq"1" && $II[6] eq "43")
| ($ll[4] eq "5" && $II[6] eq "47")
| ($lI[4] eq "7" && $lI[6] eq "13")
| ($lI[4] eq "35" && $lI[6] eq "41"))
{$RChangeFlows++;}

Jelsif (N == 6){
if (($l[4] eq"1" && $II[6] eq "43")
| ($lI[4] eq "3" && $II[6] eq "45")
| ($ll[4] eq "5" && $II[6] eq "47")
| ($ll[4] eq "7 && $lI[6] eq "13")
| ($lI[4] eq "21" && $I[6] eq "27")

159

packet) = dsr

[| ($l[4] eq "

35" && $II[6] eq "41"))

{$RChangeFlows++;}

Jelsif ($N == 8){
it (($II[4] eq "0" && $II[6] eq "42")

Il ($N[4] eq "
Il ($N[4] eq "
II ($lI[4] eq "
Il ($lI[4] eq "
Il ($ll[4] eq "
Il ($ll[4] eq "
Il ($N[4] eq "

2" && $II[6] eq "44")
4" && $II[6] eq "46")

6" && $II[6] eq "48")

0" && $II[6] eq "6")

14" && $lI[6] eq "20")
28" && $II[6] eq "34")
42" && $II[6] eq "48"))

{$RChangeFlows++;}

Jelsif ($N == 14){
it (($II[4] eq "0" && $II[6] eq "42")

Il ($N[4] eq "
Il ($N[4] eq "
Il ($ll[4] eq "
I ($[4] eq
Il ($N[4] eq "
II ($ll[4] eq "

II ($1I[4] eq
II ($1I[4] eq
[($I[4] eq
II ($1I[4] eq
II ($1I[4] eq
[($1I[4] eq
II ($1I[4] eq

1
2
3

"4" && $lI[6] eq
5
6

" && $lI[6] eq
" && $lI[6] eq
" && $lI[6] eq

"43")
"44")
"45")
"46")
"47")
"48")

" && $lI[6] eq
" && $lI[6] eq

"0" && $Il[6] eq "6")

"7" && $Il[6] eq "13")
"14" && $II[6] eq "20")
"21" && $l[6] eq "27")
"28" && $lI[6] eq "34")
"35" && $II[6] eq "41")
"42" && $II[6] eq "48"))

{$RChangeFlows++;}

Jelsif (SN == 10){
it (($lI[4] eq "22" && $II[6] eq "10")

Il ($ll[4] eq "
Il ($ll[4] eq "
[| ($li[4] eq "
Il ($ll[4] eq "

Il ($N[4] eq "
Il ($lI[4] eq "
Il ($l[4] eq "
Il ($N[4] eq "
Il ($ll[4] eq "

23" && $II[6] eq "12")
14" && $lI[6] eq "21")
19" && $II[6] eq "32")
15" && $II[6] eq "1")

21" && $II[6] eq "11")
5" && $I[6] eq "33")

3" && $l[6] eq "30")
15" && $II[6] eq "1")
27" && $II[6] eq "20"))

{$RChangeFlows++;}

}
close TRACE;

print LOSS "$nsend $nrecv";

160

close LOSS;

print RT_ERROR " $rerr";

$ohl = $nRTR_OH/120;

$oh2 = $nMAC_OH/120;

print Overhead "RTR: $nRTR_OH MAC: $nMAC_OH => $ oh1 $oh2\n";
close Overhead;

print MAC_DROPS " end: $end col: $col dup: $dup ret: $ret err: $err; sta: $sta
bsy: $bsy dst: $dst nrte: $nrte loop: $loop ttl: $t tl ifg: $ifq tout: $tout cbk: $cbk sal:
$sal arp: $arp fil: $fil out: $out\n";

print RT_CHANGE " $RChangeFlows";

}
print "\n";
print RT_ERROR "\n";
print RT_CHANGE "\n";
}
close RT_ERROR;
close MAC_DROPS;
close RT_CHANGE;

o UDP (analysis-grid-udp.pl)

#! Jusr/bin/perl
foreach $B (1, 2) {
print "beta: $B ";

open MAC_DROPS, "> result/grid7x7udp/DSR$B/mac_dro ps.log";
open RT_ERROR, "> result/grid7x7udp/DSR$B/route_er rors.log";
open RT_CHANGE, "> result/grid7x7udp/DSR$B/route_c hanges.log";
foreach $N (1, 2, 4, 6,8 ,14 ,10){

print "N: $N ";

print RT_CHANGE "$N";
print RT_ERROR "$N";
foreach $G ("g0", "g1") {
print " gamma $G\n";

open LOSS, "> result/grid7x7udp/DSR$B/$G.udp$N/I oss.log";
open Overhead, "> result/grid7x7udp/DSR$B/$G.udp $N/overhead.log";
variables for MAC errors

print MAC_DROPS "$N $G";
variables for MAC errors
$col = 0;

$dup = 0;

$ret =0;

$bsy = 0;

$cbk = 0;

variable for Route Error

161

$rerr = 0;
counting data packets (send, drop and recv...)
$nsend = 0;
$nrecv = 0;
#counting the number of packets RTR and MAC
$nRTR_OH =0;
$nMAC_OH = 0;
route changes. . .
$RChange = 0;
$RChangeFlows = 0;
open TRACE, "result/grid7x7udp/DSR$B/$G.udp$
open CHANGES_ROUTE, "> changesRoute/route_change
while (<TRACE>) {
@Il = split(" *);
if packet drop ...
if ($ll[0] eq "d" && $II[18] eq "MAC"}{
collision
elsif ($ll[20] eq "COL")
{$col++;}
duplicate
elsif ($ll[20] eq "DUP")
{$dup++;}
retry exceeded count
elsif ($ll[20] eq "RET")
{$ret++;}
busy
elsif ($ll[20] eq "BSY")
{Sbsy++;}
MAC callback
elsif ($ll[20] eq "CBK")
{$cbk++;}
}
if route error then count
if ($lI[0] eq "RERR")
{$rerr +=1;}

if ($ll[0] eq "s" && $II[18] eq "AGT")
{$nsend +=1;}
if ($l[0] eq "r" && $II[18] eq "AGT")
{$nrecv +=1;}
may be udp, ack, dsr. Count only -It (type of
if ($ll[18] eq "RTR" && $lI[34] eq "DSR")
{$nRTR_OH++;}
ROUTING OVERHEAD IN MAC
if ($l[18] eq "MAC" && $lI[34] eq "DSR")
{ SnMAC_OH++;}
calculation of route changes FOR ALL FLOWS!!
if ($lI[0] eq "RChange"){
if (BN ==1){
if ($ll[4] eq "21" && $II[6] eq "27")
{$RChangeFlows++;}

162

N/out.tr";
.$B.$G.udp$N";

packet) = dsr

if the source is 21 and dest 27
if ($lI[4] eq "21" && $II[6] eq "27") {
time, routeHops, godHops
print CHANGES_ROUTE "$ll[1] $II[3] $II[8]\n"

Jelsif (BN == 2){
it (($ll[4] eq "3" && $I[6] eq "45")
|| ($11[4] eq "21" && $II[6] eq "27"))

{$RChangeFlows++;}

if the source is 21 and dest 27
if ($ll[4] eq "21" && $lI[6] eq "27") {
time, routeHops, godHops
print CHANGES_ROUTE "$lI[1] $lI[3] $II[8]\n"

Jelsif (SN == 4){
it (($I[4] eq "1" && $[6] eq "43")
I ($11[4] eq "5" && $II[6] eq "47")
| ($lI[4] eq "7" && $lI[6] eq "13")
I ($11[4] eq "35" && $II[6] eq "41"))
{$RChangeFlows++;}

Jelsif (N == 6){
if (($lI[4] eq"1" && $II[6] eq "43")
| ($lI[4] eq "3" && $II[6] eq "45")
| ($ll[4] eq "5" && $II[6] eq "47")
| ($lI[4] eq "7" && $II[6] eq "13")
| ($lI[4] eq "21" && $II[6] eq "27")
| ($ll[4] eq "35" && $II[6] eq "41"))

{$RChangeFlows++;}

if the source is 21 and dest 27
if ($ll[4] eq "21" && $lI[6] eq "27") {
time, routeHops, godHops
print CHANGES_ROUTE "$li[1] $II[3] $!I[8]\n"

Jelsif (N == 8){
if (($lI[4] eq"0" && $II[6] eq "42")
| ($lI[4] eq "2" && $lI[6] eq "44")
| ($lI[4] eq "4" && $lI[6] eq "46")
| ($ll[4] eq "6" && $II[6] eq "48")
| ($1I[4] eq "0" && $I[6] eq "6")
| ($ll[4] eq "14" && $II[6] eq "20")
| ($ll[4] eq "28" && $II[6] eq "34")
| ($lI[4] eq "42" && $I[6] eq "48"))

163

{$RChangeFlows++;}

Jelsif ($N == 14){
if (($lI[4] eq "0" && $II[6] eq "42")

Il ($ll[4] eq "
Il ($ll[4] eq "
Il ($lI[4] eq "
II ($1I[4] eq
Il ($ll[4] eq "
Il ($ll[4] eq "

I ($[4] eq
II ($1I[4] eq
II ($1I[4] eq
I ($[4] eq
II ($1I[4] eq
I ($[4] eq
I ($[4] eq

1
2
3
"4" && $II[6] eq "46")
5
6

" && $II[6] eq "43")
" && $II[6] eq "44")
" && $II[6] eq "45")

" && $II[6] eq "47")
" && $II[6] eq "48")

"0" && $II[6] eq "6")

"7" && $Il[6] eq "13")
"14" && $II[6] eq "20")
"21" && $II[6] eq "27")
"28" && $II[6] eq "34")
"35" && $II[6] eq "41")
"42" && $II[6] eq "48"))

{$RChangeFlows++;}

Jelsif ($N == 10){

it (($l[4] eq "22" && $II[6] eq "10")

Il ($lI[4] eq "
Il ($ll[4] eq "
Il ($ll[4] eq "
Il ($ll[4] eq "

Il ($ll[4] eq "
Il ($N[4] eq "
Il ($ll[4] eq "
Il ($N[4] eq "
Il ($l[4] eq "

23" && $II[6] eq "12")
14" && $lI[6] eq "21")
19" && $lI[6] eq "32")
15" && $II[6] eq "1")

21" && $Il[6] eq "11")
5" && $[6] eq "33")

3" && $II[6] eq "30")
15" && $II[6] eq "1")
27" && $II[6] eq "20"))

{$RChangeFlows++;}

}
close TRACE;
close CHANGES_RO

UTE;

print LOSS "$nsend $nrecv";

close LOSS;

print RT_ERROR " $rerr",;
$ohl = $nRTR_OH/120;

$oh2 = $nMAC_OH/1

print Overhead "RTR: $nRTR_OH MAC: $nMAC_OH =>$

close Overhead;

20;

print MAC_DROPS "col: $col dup: $dup ret: $ret ;
print RT_CHANGE " $RChangeFlows";

164

ohl $oh2\n";

bsy: $bsy cbk: $cbk\n";

print "\n";
print RT_ERROR "\n";
print RT_CHANGE "\n";
}
close RT_ERROR;
close MAC_DROPS;
close RT_CHANGE;

}

165

» Calculation of changes of the length of the route

o0 TCP (route-changes-grid-tcp.pl)

#! Jusr/bin/perl
print "Loss rate calculation takes a long time. N

print "calculating route changes for node 21 to 27,

foreach $N (1,2,6){
foreach $B (1, 2) {
print "beta: $B";

foreach $G ("g0", "g1") {

open RT_CHG, "> route_change.$B.$G.tcp$N";

print " gamma $G\n";

open TRACE, "result/grid7x7tcp/DSR$B/$G.tcp$

while (<TRACE>) {
@Il = split(" *);
if ($lI[0] eq "RChange" }{
if the source is 21 and dest 27

if ($lI[4] eq "21" && $II[6] eq "27") {

time, routeHops, godHops

print RT_CHG "$li[1] $I[3] $l[8]\n";

}
close TRACE;
close RT_CHG;

o0 UDP (route-changes-grid-udp.pl)

#! Jusr/bin/perl
print "Loss rate calculation takes a long time. N

print "calculating route changes for node 21 to 27,

foreach $N (1,2,6){
foreach $B (1, 2){
print "beta: $B";

foreach $G ("g0", "g1") {

open RT_CHG, "> route_change.$B.$G.udp$N";

print " gamma $G\n";

open TRACE, "result/grid7x7udp/DSR$B/$G.udp$

166

ow, running\n“;
=>n1,n2 and n6\n";

N/out.tr";

ow, running\n";
=>n1,n2 and n6\n";

N/out.tr";

while (<TRACE>) {
@Il = split(" *);
if ($Il[0] eq "RChange"){
if the source is 21 and dest 27
if ($lI[4] eq "21" && $II[6] eq "27") {
time, routeHops, godHops
print RT_CHG "$lI[1] $II[3] $II[8]\n";

}
close TRACE;

close RT_CHG;

167

Random way point

» Connections set up
o0 TCP (tcp-randway.tcl)

if { $opt(ntcp) == 8 } {

create_tcp_connection 90 91 tcp 5
create_tcp_connection 138 92 tcp 5
create_tcp_connection 95 96 tcp 5
create_tcp_connection 96 97 tcp 5
create_tcp_connection 16 98 tcp 5
create_tcp_connection 105 106 tcp 5
create_tcp_connection 112 54 tcp 5
create_tcp_connection 113 114 tcp 5

if { $opt(ntcp) == 16 } {

create_tcp_connection 0 12 tcp 5
create_tcp_connection 26 38 tcp 5
create_tcp_connection 52 64 tcp 5
create_tcp_connection 78 90 tcp 5
create_tcp_connection 104 116 tcp 5
create_tcp_connection 130 142 tcp 5
create_tcp_connection 111 68 tcp 5
create_tcp_connection 141 18 tcp 5
create_tcp_connection 17 19 tcp 5
create_tcp_connection 0 15tcp 5
create_tcp_connection 2 18 tcp 5
create_tcp_connection 4 90 tcp 5
create_tcp_connection 6 62 tcp 5
create_tcp_connection 8 104 tcp 5
create_tcp_connection 10 42 tcp 5
create_tcp_connection 12 97 tcp 5

if { $opt(ntcp) == 32 } {
create_tcp_connection 141 18 tcp 5
create_tcp_connection 17 19 tcp 5
create_tcp_connection 20 21 tcp 5
create_tcp_connection 120 22 tcp 5
create_tcp_connection 24 25 tcp 5
create_tcp_connection 28 30 tcp 5
create_tcp_connection 33 34 tcp 5
create_tcp_connection 31 35tcp 5
create_tcp_connection 135 36 tcp 5
create_tcp_connection 148 37 tcp 5
create_tcp_connection 23 38 tcp 5
create_tcp_connection 147 39 tcp 5

168

create_tcp_connection 43 45 tcp 5
create_tcp_connection 44 49 tcp 5
create_tcp_connection 50 46 tcp 5
create_tcp_connection 47 48 tcp 5
create_tcp_connection 60 61 tcp 5
create_tcp_connection 71 72 tcp 5
create_tcp_connection 67 73 tcp 5
create_tcp_connection 66 74 tcp 5
create_tcp_connection 77 78 tcp 5
create_tcp_connection 80 82 tcp 5
create_tcp_connection 52 84 tcp 5
create_tcp_connection 83 85 tcp 5
create_tcp_connection 88 89 tcp 5
create_tcp_connection 90 91 tcp 5
create_tcp_connection 138 92 tcp 5
create_tcp_connection 95 96 tcp 5
create_tcp_connection 96 97 tcp 5
create_tcp_connection 16 98 tcp 5
create_tcp_connection 105 106 tcp 5
create_tcp_connection 112 54 tcp 5

if { $opt(ntcp) == 50 } {
create_tcp_connection 1 2 tcp 5
create_tcp_connection 35tcp 5
create_tcp_connection 4 6 tcp 5
create_tcp_connection 8 9 tcp 5
create_tcp_connection 510 tcp 5
create_tcp_connection 9 11 tcp 5
create_tcp_connection 144 12 tcp 5
create_tcp_connection 16 17 tcp 5
create_tcp_connection 146 142 tcp 5
create_tcp_connection 141 18 tcp 5
create_tcp_connection 17 19 tcp 5
create_tcp_connection 20 21 tcp 5
create_tcp_connection 120 22 tcp 5
create_tcp_connection 24 25 tcp 5
create_tcp_connection 28 30 tcp 5
create_tcp_connection 33 34 tcp 5
create_tcp_connection 31 35tcp 5
create_tcp_connection 135 36 tcp 5
create_tcp_connection 148 37 tcp 5
create_tcp_connection 23 38 tcp 5
create_tcp_connection 147 39 tcp 5
create_tcp_connection 43 45 tcp 5
create_tcp_connection 44 49 tcp 5
create_tcp_connection 50 46 tcp 5
create_tcp_connection 47 48 tcp 5
create_tcp_connection 60 61 tcp 5
create_tcp_connection 71 72 tcp 5

169

create_tcp_connection 67 73 tcp 5
create_tcp_connection 66 74 tcp 5
create_tcp_connection 77 78 tcp 5
create_tcp_connection 80 82 tcp 5
create_tcp_connection 52 84 tcp 5
create_tcp_connection 83 85 tcp 5
create_tcp_connection 88 89 tcp 5
create_tcp_connection 90 91 tcp 5
create_tcp_connection 138 92 tcp 5
create_tcp_connection 95 96 tcp 5
create_tcp_connection 96 97 tcp 5
create_tcp_connection 16 98 tcp 5
create_tcp_connection 105 106 tcp 5
create_tcp_connection 112 54 tcp 5
create_tcp_connection 113 114 tcp 5
create_tcp_connection 55 115 tcp 5
create_tcp_connection 116 117 tcp 5
create_tcp_connection 122 124 tcp 5
create_tcp_connection 56 125 tcp 5
create_tcp_connection 124 126 tcp 5
create_tcp_connection 125 57 tcp 5
create_tcp_connection 131 132 tcp 5
create_tcp_connection 133 134 tcp 5

o0 UDP (udp-randway.tcl)

if { $opt(ntcp) == 8 } {

create_udp_connection 90 91 udp 5
create_udp_connection 138 92 udp 5
create_udp_connection 95 96 udp 5
create_udp_connection 96 97 udp 5
create_udp_connection 16 98 udp 5
create_udp_connection 105 106 udp 5
create_udp_connection 112 54 udp 5
create_udp_connection 113 114 udp 5

if { $opt(ntcp) == 16 } {

create_udp_connection 0 12 udp 5
create_udp_connection 26 38 udp 5
create_udp_connection 52 64 udp 5
create_udp_connection 78 90 udp 5
create_udp_connection 104 116 udp 5
create_udp_connection 130 142 udp 5
create_udp_connection 111 68 udp 5
create_udp_connection 141 18 udp 5
create_udp_connection 17 19 udp 5

170

create_udp_connection 0 15 udp 5
create_udp_connection 2 18 udp 5
create_udp_connection 4 90 udp 5
create_udp_connection 6 62 udp 5
create_udp_connection 8 104 udp 5
create_udp_connection 10 42 udp 5
create_udp_connection 12 97 udp 5

if { $opt(ntcp) == 32 } {

create_udp_connection 141 18 udp 5
create_udp_connection 17 19 udp 5
create_udp_connection 20 21 udp 5
create_udp_connection 120 22 udp 5
create_udp_connection 24 25 udp 5
create_udp_connection 28 30 udp 5
create_udp_connection 33 34 udp 5
create_udp_connection 31 35 udp 5
create_udp_connection 135 36 udp 5
create_udp_connection 148 37 udp 5
create_udp_connection 23 38 udp 5
create_udp_connection 147 39 udp 5
create_udp_connection 43 45 udp 5
create_udp_connection 44 49 udp 5
create_udp_connection 50 46 udp 5
create_udp_connection 47 48 udp 5
create_udp_connection 60 61 udp 5
create_udp_connection 71 72 udp 5
create_udp_connection 67 73 udp 5
create_udp_connection 66 74 udp 5
create_udp_connection 77 78 udp 5
create_udp_connection 80 82 udp 5
create_udp_connection 52 84 udp 5
create_udp_connection 83 85 udp 5
create_udp_connection 88 89 udp 5
create_udp_connection 90 91 udp 5
create_udp_connection 138 92 udp 5
create_udp_connection 95 96 udp 5
create_udp_connection 96 97 udp 5
create_udp_connection 16 98 udp 5
create_udp_connection 105 106 udp 5
create_udp_connection 112 54 udp 5

if { $opt(ntcp) == 50 } {
create_udp_connection 1 2 udp 5
create_udp_connection 3 5 udp 5
create_udp_connection 4 6 udp 5
create_udp_connection 8 9 udp 5

171

create_udp_connection 510 udp 5
create_udp_connection 9 11 udp 5
create_udp_connection 144 12 udp 5
create_udp_connection 16 17 udp 5
create_udp_connection 146 142 udp 5
create_udp_connection 141 18 udp 5
create_udp_connection 17 19 udp 5
create_udp_connection 20 21 udp 5
create_udp_connection 120 22 udp 5
create_udp_connection 24 25 udp 5
create_udp_connection 28 30 udp 5
create_udp_connection 33 34 udp 5
create_udp_connection 31 35 udp 5
create_udp_connection 135 36 udp 5
create_udp_connection 148 37 udp 5
create_udp_connection 23 38 udp 5
create_udp_connection 147 39 udp 5
create_udp_connection 43 45 udp 5
create_udp_connection 44 49 udp 5
create_udp_connection 50 46 udp 5
create_udp_connection 47 48 udp 5
create_udp_connection 60 61 udp 5
create_udp_connection 71 72 udp 5
create_udp_connection 67 73 udp 5
create_udp_connection 66 74 udp 5
create_udp_connection 77 78 udp 5
create_udp_connection 80 82 udp 5
create_udp_connection 52 84 udp 5
create_udp_connection 83 85 udp 5
create_udp_connection 88 89 udp 5
create_udp_connection 90 91 udp 5
create_udp_connection 138 92 udp 5
create_udp_connection 95 96 udp 5
create_udp_connection 96 97 udp 5
create_udp_connection 16 98 udp 5
create_udp_connection 105 106 udp 5
create_udp_connection 112 54 udp 5
create_udp_connection 113 114 udp 5
create_udp_connection 55 115 udp 5
create_udp_connection 116 117 udp 5
create_udp_connection 122 124 udp 5
create_udp_connection 56 125 udp 5
create_udp_connection 124 126 udp 5
create_udp_connection 125 57 udp 5
create_udp_connection 131 132 udp 5
create_udp_connection 133 134 udp 5

172

* Execution
o TCP (sim-rand-tcp.sh)

#! /bin/sh
export PATH=$PATH:/ns2/bin:/ns2/tcl8.4.11/unix:/ns2 /tk8.4.11/unix

mkdir result

mkdir result/randway_tcp

forBin1l2
do
mkdir result/randway_tcp/DSR$B
forGin01
do
for Nin 8 16 32 50
do
if \
ns main-tcp.tcl -alpha 0.01 -beta $B -gamma $G - nn 150 -ntcp $N -rate 2e6 \
-cp tep-randway.tcl -sc randway5.dst -stop 120 > output.$B.$N ;\
then
mkdir result/randway_tcp/DSRB/gG.tcp$N
mv *.tr result/randway_tcp/DSRB/gG.tcp$N/
mv *.log result/randway_tcp/DSRB/gG.tcp$N/

else
mkdir result/randway_tcp/DSRB/gG.tcp$N.fail
mv *.tr result/randway_tcp/DSRB/gG.tcp$N.fail/
mv *.log result/randway_tcp/DSRB/gG.tcp$N.fail /

fi

done

done
done

o UDP (sim-rand-udp.sh)

#! [bin/sh
export PATH=$PATH:/ns2/bin:/ns2/tcl8.4.11/unix:/ns2 /tk8.4.11/unix

mkdir result
mkdir result/randway_udp

forBinl2
do
mkdir result/randway_udp/DSR$B
forGin01
do
for Nin 8 16 32 50
do
if \
ns main-udp.tcl -alpha 0.01 -beta $B -gamma $G - nn 150 -ntcp $N -rate 2e6 \

173

-cp udp-randway.tcl -sc randway5.dst -stop 120 >
then

mkdir result/randway_udp/DSRB/gG.udp$N
mv *.tr result/randway_udp/DSRB/gG.udpSN/
mv *.log result/randway_udp/DSRB/gG.udp$SN/

else
mkdir result/randway_udp/DSRB/gG.udp$N.fail
mv *.tr result/randway_udp/DSRB/gG.udp$N.fail/
mv *.log result/randway_udp/DSRB/gG.udp$N.fail
fi
done
done

done

* Analysis
o TCP (analysis-rand-tcp.pl)

#! Jusr/bin/perl

foreach $B (1, 2) {
print "beta: $B *;
open MAC_DROPS, "> result/randway_tcp/DSR$B/mac_dr
open RT_ERROR, "> result/randway_tcp/DSR$B/route_e
open RT_CHANGE, "> result/randway_tcp/DSR$B/route_

foreach $N (8,16,32,50) {
print "N: $N ";

print RT_CHANGE "$N";
print RT_ERROR "$N";

foreach $G ("g0", "g1") {
print " gamma $G\n";

open LOSS, "> result/randway_tcp/DSR$B/$G.tcp$SN/
open Overhead, "> result/randway_tcp/DSR$B/$G.tc
variables for MAC errors

print MAC_DROPS "$N $G";
variables for MAC errors
$col = 0;

$dup = 0;

$ret=0;

$bsy = 0;

$cbk = 0;

variable for Route Error
$rerr = 0;

counting data packets (send, drop and recv...)
$nsend = 0;

174

output.$B.$N ;\

ops.log";
rrors.log";
changes.log";

loss.log";
p$N/overhead.log";

$nrecv = 0;
#counting the number of packets RTR and MAC
$nRTR_OH =0;
$nMAC_OH = 0;
route changes. . .
$RChangeFlows = 0;
open TRACE, "result/randway_tcp/DSR$B/$G.tcp $N/out.tr";
while (<TRACE>) {
@Il = split(" *);
if packet drop ...
if ($ll[0] eq "d" && $II[18] eq "MAC"}{
collision
elsif ($ll[20] eq "COL")
{$col++;}
duplicate
elsif ($ll[20] eq "DUP")
{$dup++3}
retry exceeded count
elsif ($ll[20] eq "RET")
{$ret++;}
busy
elsif ($ll[20] eq "BSY")
{$bsy++}
MAC callback
elsif ($ll[20] eq "CBK")
{$cbk++;}
}
if route error then count
if ($lI[0] eq "RERR")
{$rerr +=1;}

if ($I[0] eq "s" && $II[18] eq "AGT")
{$nsend +=1;}

if ($II[0] eq "r" && $II[18] eq "AGT")
{$nrecv +=1;}

may be tcp, ack, dsr. Count only -It (type of packet) = dsr
if ($lI[18] eq "RTR" && $II[34] eq "DSR")
{$nRTR_OH++;}
ROUTING OVERHEAD IN MAC
if ($lI[18] eq "MAC" && $1I[34] eq "DSR")
{$NMAC_OH++;}

calculation of route changes FOR ALL FLOWS!!
if ($lI[0] eq "RChange"){

if (BN == 8) {
if (($lI[4] eq "90" && $II[6] eq "91")
|| ($lI[4] eq "138" && $lI[6] eq "92")
| ($ll[4] eq "95" && $II[6] eq "96")
|| ($lI[4] eq "96" && $II[6] eq "97")

175

[l ($ll[4] eq "
Il ($lI[4] eq "
I ($ll[4] eq "
[l ($ll[4] eq "

16" && $II[6] eq "98")
105" && $II[6] eq "106")
112" && $II[6] eq "54")
113" && $II[6] eq "114"))

{$RChangeFlows++;}
Jelsif ($N == 16){

if (($lI[4] eq
II ($1I[4] eq
I ($[4] eq
II ($1I[4] eq
II ($1I[4] eq
I ($[4] eq
II ($1I[4] eq
II ($1I[4] eq

II ($1I[4] eq
I ($[4] eq
I ($[4] eq
II ($1I[4] eq
I ($[4] eq
I ($[4] eq
Il ($ll[4] eq "
Il ($N[4] eq "

"0" && $I[6] eq "12")

"26" && $II[6] eq "38")
"52" && $II[6] eq "64")
"78" && $lI[6] eq "90")
"104" && $II[6] eq "116")
"130" && $I[6] eq "142")
"111" && $I[6] eq "68")
"141" && $l[6] eq "18")

"17" && $II[6] eq "19")
"0" && $II[6] eq "15")
"2" && $II[6] eq "18")
"4 && $II[6] eq "90")
"6" && $II[6] eq "62")
"8" && $II[6] eq "104")

10" && $lI[6] eq "42")
12" && $II[6] eq "97"))

{$RChangeFlows++;}

Jelsif ($N == 32){

if (($lI[4] eq
Il ($ll[4] eq "
Il ($N[4] eq "
Il ($ll[4] eq "
I ($[4] eq
I ($[4] eq
II ($1I[4] eq
I ($[4] eq

II ($1I[4] eq
I ($[4] eq
II ($1I[4] eq
II ($1I[4] eq
I ($[4] eq
II ($1I[4] eq
I ($[4] eq
I ($[4] eq

I ($[4] eq
I ($[4] eq
II ($1I[4] eq
I ($[4] eq
II ($1I[4] eq
II ($1I[4] eq
I ($[4] eq

"141" && $Il[6] eq "18")
17" && $lI[6] eq "19")
20" && $II[6] eq "21")
120" && $lI[6] eq "22")

"24" && $I[6] eq "25")
"28" && $I[6] eq "30")
"33" && $II[6] eq "34")
"31" && $I[6] eq "35")

"135" && $I[6] eq "36")
"148" && $I[6] eq "37")
"23" && $l[6] eq "38")
"147" && $II[6] eq "39")
"43" && $II[6] eq "45")
"44" && $II[6] eq "49")
"50" && $II[6] eq "46")
"47" && $II[6] eq "48")

"60" && $II[6] eq "61")
"71" && $II[6] eq "72")
"67" && $II[6] eq "73")
"66" && $II[6] eq "74")
"77" && $lI[6] eq "78")
"80" && $II[6] eq "82")
"52" && $II[6] eq "84")

176

| ($lI[4] eq "

Il ($N[4] eq "
Il ($N[4] eq "
Il ($ll[4] eq "
Il ($N[4] eq "
Il ($N[4] eq "
Il ($ll[4] eq "
Il ($N[4] eq "
Il ($ll[4] eq "

83" && $II[6] eq "85")

88" && $II[6] eq "89")
90" && $II[6] eq "91")
138" && $II[6] eq "92")
95" && $II[6] eq "96")
96" && $II[6] eq "97")
16" && $II[6] eq "98")
105" && $II[6] eq "106")
112" && $II[6] eq "54"))

{$RChangeFlows++;}

Jelsif ($N == 50){

if (($lI[4] eq
I ($ll[4] eq "
Il ($lI[4] eq "
I ($ll[4] eq "
[l ($ll[4] eq "

Il ($N[4] eq "
Il ($N[4] eq "
Il ($ll[4] eq "
Il ($N[4] eq "
Il ($ll[4] eq "

Il ($ll[4] eq "
Il ($ll[4] eq "
Il ($ll[4] eq "
Il ($ll[4] eq "
Il ($ll[4] eq "

Il ($ll[4] eq "
Il ($lI[4] eq "
Il ($ll[4] eq "
Il ($ll[4] eq "
Il ($ll[4] eq "

Il ($ll[4] eq "
II ($1I[4] eq
I ($[4] eq
II ($1I[4] eq
I ($[4] eq

II ($1I[4] eq
I ($[4] eq
I ($[4] eq
II ($1I[4] eq
I ($[4] eq

II ($1I[4] eq
I ($[4] eq

"1" && $II[6] eq "2")
3" && $l[6] eq "5")
4" && $II[6] eq "6")
8" && $l[6] eq "9")
5" && $[6] eq "10")

9" && $l[6] eq "11")
144" && $II[6] eq "12")
16" && $II[6] eq "17")
146" && $II[6] eq "142")
141" && $II[6] eq "18")

17" && $II[6] eq "19")
20" && $II[6] eq "21")
120" && $lI[6] eq "22")
24" && $II[6] eq "25")
28" && $II[6] eq "30")

33" && $II[6] eq "34")
31" && $II[6] eq "35")
135" && $II[6] eq "36")
148" && $lI[6] eq "37")
23" && $II[6] eq "38")

147" && $II[6] eq "39")

"43" && $II[6] eq "45")
"44" && $II[6] eq "49")
"50" && $II[6] eq "46")
"47" && $II[6] eq "48")

"60" && $II[6] eq "61")
"71" && $II[6] eq "72")
"67" && $II[6] eq "73")
"66" && $II[6] eq "74")
"77" && $II[6] eq "78")

"80" && $II[6] eq "82")
"52" && $II[6] eq "84")

177

|| ($1I[4] eq "83" && $II[6] eq "85")
[| ($lI[4] eq "88" && $lI[6] eq "89")
|| ($1I[4] eq "90" && $lI[6] eq "91")

|| ($lI[4] eq "138" && $lI[6] eq "92")
|| ($lI[4] eq "95" && $II[6] eq "96")

|| ($lI[4] eq "96" && $II[6] eq "97")

| ($ll[4] eq "16" && $II[6] eq "98")

| ($lI[4] eq "105" && $II[6] eq "106")

| ($lI[4] eq "112" && $II[6] eq "54")
| ($1I[4] eq "113" && $lI[6] eq "114")
|| ($ll[4] eq "55" && $II[6] eq "115")
| ($ll[4] eq "116" && $I[6] eq "117")
| ($II[4] eq "122" && $lI[6] eq "124")

|| ($lI[4] eq "56" && $lI[6] eq "125")

| ($lI[4] eq "124" && $II[6] eq "126")

|| ($lI[4] eq "125" && $lI[6] eq "57")

| ($lI[4] eq "131" && $lI[6] eq "132")

| ($lI[4] eq "133" && $lI[6] eq "134"))
{$RChangeFlows++;}

}
close TRACE;

print LOSS "$nsend $nrecv";
close LOSS;

print RT_ERROR " $rerr";

$ohl = $nRTR_OH/120;

$oh2 = $nMAC_OH/120;

print Overhead "RTR: $nRTR_OH MAC: $nMAC_OH => $ oh1 $oh2\n";
close Overhead,

print MAC_DROPS " end: $end col: $col dup: $dup ret: $ret err: $err; sta: $sta
bsy: $bsy dst: $dst nrte: $nrte loop: $loop ttl: $t tl ifg: $ifg tout: $tout cbk: $cbk sal:
$sal arp: $arp fil: $fil out: $out\n";

print RT_CHANGE " $RChangeFlows";

}
print "\n";
print RT_ERROR "\n";
print RT_CHANGE "\n";
}
close RT_ERROR;
close MAC_DROPS;
close RT_CHANGE;

178

o UDP (analysis-rand-udp.pl)

#! Jusr/bin/perl

foreach $B (1, 2) {
print "beta: $B *;
open MAC_DROPS, "> result/randway_udp/DSR$B/mac_dr
open RT_ERROR, "> result/randway_udp/DSR$B/route_e
open RT_CHANGE, "> result/randway_udp/DSR$B/route_

foreach $N (8,16,32,50) {
print "N: $N ";

print RT_CHANGE "$N";
print RT_ERROR "$N";

foreach $G ("g0", "g1") {
print " gamma $G\n";

open LOSS, "> result/randway_udp/DSR$B/$G.udp$N/
open Overhead, "> result/randway_udp/DSR$B/$G.ud
variables for MAC errors

print MAC_DROPS "$N $G";
variables for MAC errors
$col = 0;
$dup = 0;
$ret=0;
$bsy = 0;
$cbk = 0;
variable for Route Error
$rerr = 0;
counting data packets (send, drop and recv...)
$nsend = 0;
$nrecv = 0;
#counting the number of packets RTR and MAC
$nRTR_OH =0;
$nNMAC_OH = 0;
route changes. . .
$RChangeFlows = 0;
open TRACE, "result/randway_udp/DSR$B/$G.udp
while (<TRACE>) {
@Il = split(" *);
if packet drop ...
if ($ll[0] eq "d" && $II[18] eq "MAC")}{
collision
elsif ($ll[20] eq "COL")
{$col++;}
duplicate
elsif ($ll[20] eq "DUP")
{$dup++3}
retry exceeded count

179

ops.log";
rrors.log";
changes.log";

loss.log";
p$N/overhead.log";

$N/out.tr";

elsif ($ll[20] eq "RET")
{$ret++;}
busy
elsif ($li[20] eq "BSY")
{Sbsy++}
MAC callback
elsif ($ll[20] eq "CBK")
{$cbk++;}
}
if route error then count
if ($1I[0] eq "RERR")
{$rerr +=1;}

if ($lI[0] eq "s" && $I[18] eq "AGT")
{$nsend +=1;}

if ($lI[0] eq "r" && $II[18] eq "AGT")
{$nrecv +=1;}

may be cbr, ack, dsr. Count only -It (type of
if ($Il[18] eq "RTR" && $lI[34] eq "DSR")
{$nRTR_OH++;}
ROUTING OVERHEAD IN MAC
if ($II[18] eq "MAC" && $II[34] eq "DSR")
{ $SnMAC_OH++;}

calculation of route changes FOR ALL FLOWS!
if ($lI[0] eq "RChange"){

if (3N == 8) {
if (($lI[4] eq "90" && $II[6] eq "91")
|| ($lI[4] eq "138" && $lI[6] eq "92")
|| ($lI[4] eq "95" && $II[6] eq "96")
| ($ll[4] eq "96" && $II[6] eq "97")
|| ($lI[4] eq "16" && $II[6] eq "98")
| ($lI[4] eq "105" && $lI[6] eq "106")
| ($lI[4] eq "112" && $II[6] eq "54")
| ($lI[4] eq "113" && $II[6] eq "114"))
{$RChangeFlows++;}
Jelsif (BN == 16){
if (($lI[4] eq "0" && $lI[6] eq "12")
| ($ll[4] eq "26" && $II[6] eq "38")
|| ($1I[4] eq "52" && $lI[6] eq "64")
|| ($lI[4] eq "78" && $II[6] eq "90")
| ($lI[4] eq "104" && $lI[6] eq "116")
| ($lI[4] eq "130" && $lI[6] eq "142")
| ($lI[4] eq "111" && $lI[6] eq "68")
| ($lI[4] eq "141" && $II[6] eq "18")

II ($1I[4] eq "17" && $II[6] eq "19")

| ($lI[4] eq "0" && $II[6] eq "15")
| ($1I[4] eq "2" && $lI[6] eq "18")

180

packet) = dsr

| ($lI[4] eq "4" && $lI[6] eq "90")
| ($ll[4] eq "6" && $II[6] eq "62")

| ($lI[4] eq "8" && $lI[6] eq "104")
|| ($lI[4] eq "10" && $II[6] eq "42")

|| ($II[4] eq "12" && $II[6] eq "97"))

{$RChangeFlows++;}

Jelsif ($N == 32){

if (($1I[4] eq "141" && $II[6] eq "18")

Il ($ll[4] eq "
Il ($ll[4] eq "
[l ($l[4] eq "
II ($1I[4] eq
II ($1I[4] eq
[($1I[4] eq
II ($1I[4] eq

I ($[4] eq
II ($1I[4] eq
I ($[4] eq
I ($[4] eq
II ($1I[4] eq
I ($[4] eq
II ($1I[4] eq
II ($1I[4] eq

II ($1I[4] eq
II ($1I[4] eq
I ($[4] eq
II ($1I[4] eq
I ($[4] eq
I ($[4] eq
II ($1I[4] eq
I ($[4] eq

II ($1I[4] eq
I ($[4] eq
Il ($ll[4] eq "
I ($lI[4] eq "
Il ($lI[4] eq "
Il ($ll[4] eq "
Il ($ll[4] eq "
Il ($ll[4] eq "

17" && $lI[6] eq "19")
20" && $II[6] eq "21")

120" && $II[6] eq "22")
"24" && $II[6] eq "25")
"28" && $lI[6] eq "30")
"33" && $II[6] eq "34")
"31" && $II[6] eq "35")

.
g
50
o

50"
_
-
66"
-
-
-
g3

nggn
"gQ"

&& $lI[6] eq
&& $lI[6] eq
&& $lI[6] eq
&& $lI[6] eq

&& $lI[6] eq
&& $lI[6] eq
&& $lI[6] eq
&& $lI[6] eq
&& $lI[6] eq
&& $lI[6] eq
&& $lI[6] eq
&& $lI[6] eq

&& $lI[6] eq
&& $lI[6] eq

"135" && $II[6] eq "36")
"148" && $II[6] eq "37")
"23" && $II[6] eq "38")
"147" && $II[6] eq "39")
"45")
"49")
"46")
"48")

"61")
"72")
73"
"74")
78"
"82")
"84")
"85")

"89")
"91")
138" && $lI[6] eq "92")

95" && $II[6] eq "96")
96" && $II[6] eq "97")
16" && $lI[6] eq "98")

105" && $II[6] eq "106")
112" && $II[6] eq "54"))

{$RChangeFlows++;}

Jelsif (BN == 50){
if (($II[4] eq "1" && $II[6] eq "2")
| ($lI[4] eq "3" && $I[6] eq "5")
| ($lI[4] eq "4" && $lI[6] eq "6")
| ($lI[4] eq "8" && $lI[6] eq "9")
|| ($lI[4] eq "5" && $lI[6] eq "10")

181

II ($lI[4] eq "
Il ($N[4] eq "
Il ($N[4] eq "
Il ($ll[4] eq "
Il ($N[4] eq "

Il ($ll[4] eq "
Il ($ll[4] eq "
Il ($ll[4] eq "
Il ($ll[4] eq "
Il ($ll[4] eq "

Il ($ll[4] eq "
Il ($N[4] eq "
Il ($ll[4] eq "
Il ($N[4] eq "
Il ($N[4] eq "

Il ($N[4] eq "
I ($[4] eq
II ($1I[4] eq
I ($[4] eq
II ($1I[4] eq

Il ($11[4] eq
II ($1I[4] eq
II ($1I[4] eq
Il ($11[4] eq
II ($1I[4] eq

Il ($11[4] eq
II ($1I[4] eq
Il ($11[4] eq
II ($1I[4] eq
II ($1I[4] eq

Il ($ll[4] eq "
I ($lI[4] eq "
Il ($lI[4] eq "
Il ($ll[4] eq "
Il ($ll[4] eq "

Il ($ll[4] eq "
Il ($N[4] eq "
Il ($N[4] eq "
Il ($ll[4] eq "
Il ($N[4] eq "

Il ($lI[4] eq "
Il ($ll[4] eq "

9" && $II[6] eq "11")
144" && $II[6] eq "12")
16" && $I[6] eq "17")
146" && $II[6] eq "142")
141" && $II[6] eq "18")

17" && $lI[6] eq "19")
20" && $II[6] eq "21")
120" && $lI[6] eq "22")
24" && $II[6] eq "25")
28" && $II[6] eq "30")

33" && $II[6] eq "34")
31" && $II[6] eq "35")
135" && $II[6] eq "36")
148" && $II[6] eq "37")
23" && $II[6] eq "38")

147" && $II[6] eq "39")

"43" && $I[6] eq "45")
"44" && $II[6] eq "49")
"50" && $I[6] eq "46")
"47" && $II[6] eq "48")

"60" && $I[6] eq "61")
"71" && $II[6] eq "72")
"67" && $II[6] eq "73")
"66" && $I[6] eq "74")
"77" && $II[6] eq "78")

"80" && $II[6] eq "82")
"52" && $II[6] eq "84")
"83" && $II[6] eq "85")
"88" && $I[6] eq "89")
"90" && $II[6] eq "91")

138" && $lI[6] eq "92")
95" && $II[6] eq "96")
96" && $II[6] eq "97")
16" && $lI[6] eq "98")
105" && $II[6] eq "106")

112" && $Il[6] eq "54")
113" && $II[6] eq "114")
55" && $II[6] eq "115")
116" && $II[6] eq "117")
122" && $II[6] eq "124")

56" && $I[6] eq "125")
124" && $II[6] eq "126")

182

| ($1I[4] eq "125" && $lI[6] eq "57")

| ($ll[4] eq "131" && $lI[6] eq "132")

| ($lI[4] eq "133" && $lI[6] eq "134"))
{$RChangeFlows++;}

}

close TRACE;

print LOSS "$nsend $nrecv";
close LOSS;

print RT_ERROR " $rerr";

$ohl = $nRTR_OH/120;

$oh2 = $nMAC_OH/120;

print Overhead "RTR: $nRTR_OH MAC: $nMAC_OH => $ ohl $oh2\n";
close Overhead;

print MAC_DROPS " end: $end col: $col dup: $dup ret: $ret err: $err; sta: $sta
bsy: $bsy dst: $dst nrte: $nrte loop: $loop ttl: $t tl ifg: $ifg tout: $tout cbk: $cbk sal:
$sal arp: $arp fil: $fil out: $out\n”;

print RT_CHANGE " $RChangeFlows";

}
print "\n";
print RT_ERROR "\n";
print RT_CHANGE "\n";
}
close RT_ERROR;
close MAC_DROPS;
close RT_CHANGE;

183

Manhattan

» Connections set up
0 TCP (tcp-man-n200.tcl)

if { $opt(ntcp) == 20 } {
create_tcp_connection 0 82 tcp 3
create_tcp_connection 52 64 tcp 3
create_tcp_connection 104 116 tcp 3
create_tcp_connection 156 168 tcp 3
create_tcp_connection 56 198 tcp 3

create_tcp_connection 192 156 tcp 3
create_tcp_connection 4 160 tcp 3
create_tcp_connection 8 124 tcp 3
create_tcp_connection 12 111 tcp 3
create_tcp_connection 15 168 tcp 3

create_tcp_connection 94 12 tcp 3
create_tcp_connection 52 64 tcp 3
create_tcp_connection 104 116 tcp 3
create_tcp_connection 159 87 tcp 3
create_tcp_connection 133 18 tcp 3

create_tcp_connection 120 156 tcp 3
create_tcp_connection 41 168 tcp 3
create_tcp_connection 81 159 tcp 3
create_tcp_connection 28 179 tcp 3
create_tcp_connection 69 155 tcp 3

0 UDP (tcp-man-n200.tcl)

if { $opt(ntcp) == 20 } {
create_udp_connection 0 82 udp 3
create_udp_connection 52 64 udp 3
create_udp_connection 104 116 udp 3
create_udp_connection 156 168 udp 3
create_udp_connection 56 198 udp 3

create_udp_connection 192 156 udp 3
create_udp_connection 4 160 udp 3
create_udp_connection 8 124 udp 3
create_udp_connection 12 111 udp 3
create_udp_connection 15 168 udp 3

create_udp_connection 94 12 udp 3
create_udp_connection 52 64 udp 3
create_udp_connection 104 116 udp 3

create_udp_connection 159 87 udp 3

184

create_udp_connection 133 18 udp 3

create_udp_connection 120 156 udp 3
create_udp_connection 41 168 udp 3
create_udp_connection 81 159 udp 3
create_udp_connection 28 179 udp 3
create_udp_connection 69 155 udp 3

185

* Execution
o TCP (sim-man-tcp.sh)

#! /bin/sh
export PATH=$PATH:/ns2/bin:/ns2/tcl8.4.11/unix:/ns2 /tk8.4.11/unix

mkdir result

mkdir result/manhattan_tcp

forGin01

do
forBinl2
do

mkdir result/manhattan_tcp/DSR$B
forMin01251020

do
if\
ns main-tcp.tcl -alpha 0.01 -gamma $G -nn 200 - ntcp 20 -beta $B \
-cp tcp-man-n200.tcl -sc man$M-s1.dst\
-stop 200 -seed 0 -rate 2e6 -dist 60; \
then
mkdir result/manhattan_tcp/DSRB/gG.tcp.man$Mm
mv *.tr result/manhattan_tcp/DSRB/gG.tcp.man$ M/
mv *.log result/manhattan_tcp/DSRB/gG.tcp.man $M/
else
mkdir result/manhattan_tcp/DSRB/gG.tcp.man$M. fail
mv *.tr result/manhattan_tcp/DSRB/gG.tcp.man$ M. fail/
mv *.log result/manhattan_tcp/DSRB/gG.tcp.man $M.fail/
fi
date
done
done
done
0 UDP (sim-man-udp.sh)
#! Ibin/sh
export PATH=$PATH:/ns2/bin:/ns2/tcl8.4.11/unix:/ns2 /tk8.4.11/unix
mkdir result

mkdir result/manhattan_udp
forGin01
do
forBin1l2
do
mkdir result/manhattan_udp/DSR$B
forMin01251020
do
if \
ns main-udp.tcl -alpha 0.01 -gamma $G -nn 200 - nudp 20 -beta $B \

186

-cp udp-man-n200.tcl -sc man$M-s1.dst\

-stop 200 -seed 0 -rate 2e6 -dist 60; \

then

mkdir result/manhattan_udp/DSRB/gG.udp.man$M
mv *.tr result/manhattan_udp/DSRB/gG.udp.man$
mv *.log result/manhattan_udp/DSRB/gG.udp.man
else

mkdir result/manhattan_udp/DSRB/gG.udp.man$M.

mv *.tr result/manhattan_udp/DSRB/gG.udp.man$
mv *.log result/manhattan_udp/DSRB/gG.udp.man
fi
done
done

done

* Analysis
o TCP (analysis-man-tcp.pl)

#! Jusr/bin/perl

foreach $B (1, 2) {
print "beta: $B *;
open MAC_DROPS, "> result/manhattan_tcp/DSR$B/mac_
open RT_ERROR, "> result/manhattan_tcp/DSR$B/route
open RT_CHANGE, "> result/manhattan_tcp/DSR$B/rout

foreach $N (0, 1, 2, 5, 10, 20) {
print "N: $N ";

print RT_CHANGE "$N";
print RT_ERROR "$N";

foreach $G ("g0", "g1") {
print " gamma $G\n";
open LOSS, "> result/manhattan_tcp/DSR$B/$G.tcp.
open Overhead, "> result/manhattan_tcp/DSR$B/$G.
variables for MAC errors

print MAC_DROPS "$N $G";
variables for MAC errors
$col = 0;

$dup = 0;

$ret =0;

$bsy = 0;

$cbk = 0;

variable for Route Error
$rerr = 0;

counting data packets (send, drop and recv...)
$nsend = 0;

187

M/
$sMm/

fail
M.fail/
$M.fail/

drops.log";
_errors.log";
e_changes.log";

man$N/loss.log";
tcp.man$N/overhead.log”;

$nrecv = 0;
#counting the number of packets RTR and MAC
$nRTR_OH =0;
$nMAC_OH = 0;
route changes. . .
$RChangeFlows = 0;
open TRACE, "result/manhattan_tcp/DSR$B/$G.t cp.man$N/out.tr";
while (<TRACE>) {
@Il = split(" *);
if packet drop ...
if ($ll[0] eq "d" && $II[18] eq "MAC"}{
collision
elsif ($ll[20] eq "COL")
{$col++;}
duplicate
elsif ($ll[20] eq "DUP")
{$dup++3}
retry exceeded count
elsif ($ll[20] eq "RET")
{$ret++;}
MAC callback
elsif ($ll[20] eq "CBK")
{$cbk++;}
}
if route error then count
if ($lI[0] eq "RERR")
{$rerr +=1;}

if ($NI[0] eq "s" && $I[18] eq "AGT")
{$nsend +=1;}

if ($II[0] eq "r" && $II[18] eq "AGT")
{$nrecv +=1;}

may be tcp, ack, dsr. Count only -It (type of packet) = dsr
if ($lI[18] eq "RTR" && $II[34] eq "DSR")
{$nRTR_OH++;}
ROUTING OVERHEAD IN MAC
if ($lI[18] eq "MAC" && $1I[34] eq "DSR")
{ $SnMAC_OH++;}

calculation of route changes FOR ALL FLOWS!!
if ($lI[0] eq "RChange"){

if (($ll[4] eq "0" && $lI[6] eq "82")

|| ($li[4] eq "52" && $I[6] eq "64")

| ($lI[4] eq "104" && $II[6] eq "116")

| ($lI[4] eq "156" && $II[6] eq "168")

| ($li[4] eq "56" && $II[6] eq "198")

II ($1I[4] eq "192" && $II[6] eq "156")

[| ($lI[4] eq "4" && $I[6] eq "160")
| ($1I[4] eq "8" && $II[6] eq "124")

188

| ($1I[4] eq "12" && $lI[6] eq "111")
| ($1I[4] eq "15" && $I[6] eq "168")

[| ($lI[4] eq "94" && $II[6] eq "12")
| ($ll[4] eq "52" && $II[6] eq "64")

| ($lI[4] eq "104" && $II[6] eq "116")
| ($1I[4] eq "159" && $lI[6] eq "87")
|| ($ll[4] eq "133" && $lI[6] eq "18")

|| ($1I[4] eq "120" && $I[6] eq "156")
|| ($1I[4] eq "41" && $II[6] eq "168")
| ($lI[4] eq "81" && $II[6] eq "159")
|| ($1I[4] eq "28" && $II[6] eq "179")
|| ($1I[4] eq "69" && $II[6] eq "155")
)

{$RChangeFlows++;}

}
close TRACE;

print LOSS "$nsend $nrecv";
close LOSS;

print RT_ERROR " $rerr";

$ohl = $nRTR_OH/150;

$oh2 = $nMAC_OH/150;

print Overhead "RTR: $nRTR_OH MAC: $nMAC_OH => $ ohl $oh2\n";

close Overhead,;

print MAC_DROPS " end: $end col: $col dup: $dup ret: $ret err: $err; sta: $sta
bsy: $bsy dst: $dst nrte: $nrte loop: $loop ttl: $t tl ifg: $ifg tout: $tout cbk: $cbk sal:
$sal arp: $arp fil: $fil out: $out\n”;
print RT_CHANGE " $RChangeFlows";
}
print "\n";
print RT_ERROR "\n";
print RT_CHANGE "\n";
}
close RT_ERROR;
close MAC_DROPS;
close RT_CHANGE;

o UDP (analysis-man-udp.pl)
#! Jusr/bin/perl

foreach $B (1, 2){
print "beta: $B *;
open MAC_DROPS, "> result/manhattan_udp/DSR$B/mac_ drops.log";

189

open RT_ERROR, "> result/manhattan_udp/DSR$B/route _errors.log";
open RT_CHANGE, "> result/manhattan_udp/DSR$B/rout e_changes.log";

foreach $N (0, 1, 2, 5, 10, 20) {
print "N: $N ";

print RT_CHANGE "$N";
print RT_ERROR "$N";

foreach $G ("g0", "g1") {

print " gamma $G\n";

open LOSS, "> result/manhattan_udp/DSR$B/$G.udp. man$N/loss.log";
open Overhead, "> result/manhattan_udp/DSR$B/$G. udp.man$N/overhead.log";
variables for MAC errors

print MAC_DROPS "$N $G";
variables for MAC errors
$col = 0;
$dup = 0;
$ret=0;
$bsy = 0;
$cbk = 0;
variable for Route Error
$rerr = 0;
counting data packets (send, drop and recv...)
$nsend = 0;
$nrecv = 0;
#counting the number of packets RTR and MAC
$nRTR_OH = 0;
$nNMAC_OH = 0;
route changes. . .
$RChangeFlows = 0;
open TRACE, "result/manhattan_udp/DSR$B/$G.u dp.man$N/out.tr";
while (<TRACE>) {
@Il = split(" *);
if packet drop ...
if ($II[0] eq "d" && $II[18] eq "MAC"){
collision
elsif ($ll[20] eq "COL")
{$col++;}
duplicate
elsif ($ll[20] eq "DUP")
{$Sdup++;}
retry exceeded count
elsif ($ll[20] eq "RET")
{$ret++;}
MAC callback
elsif ($ll[20] eq "CBK")
{$cbk++;}

190

if route error then count
if ($ll[0] eq "RERR")
{$rerr +=1;}

if ($II[0] eq "s" && $II[18] eq "AGT")
{$nsend +=1;}

if ($II[0] eq "r" && $II[18] eq "AGT")
{$nrecv +=1;}

may be udp, ack, dsr. Count only -It (type of

if ($I[18] eq "RTR" && $ll[34] eq "DSR")
{ $SnRTR_OH++}

ROUTING OVERHEAD IN MAC

if ($II[18] eq "MAC" && $Il[34] eq "DSR")
{ SNMAC_OH++;}

calculation of route changes FOR ALL FLOWS!

if ($lI[0] eq "RChange"){
if (($lI[4] eq "0" && $lI[6] eq "82")
| ($1I[4] eq "52" && $lI[6] eq "64")
| ($lI[4] eq "104" && $II[6] eq "116")
|| ($ll[4] eq "156" && $lI[6] eq "168")
| ($lI[4] eq "56" && $II[6] eq "198")

|| ($ll[4] eq "192" && $lI[6] eq "156")
| ($lI[4] eq "4" && $II[6] eq "160")

| ($ll[4] eq 8" && $II[6] eq "124")

|| ($ll[4] eq "12" && $II[6] eq "111")
| ($lI[4] eq "15" && $II[6] eq "168")

| ($lI[4] eq "94" && $II[6] eq "12")
| ($1I[4] eq "52" && $lI[6] eq "64")

|| ($ll[4] eq "104" && $lI[6] eq "116")
| ($lI[4] eq "159" && $II[6] eq "87")
|| ($ll[4] eq "133" && $lI[6] eq "18")

| ($lI[4] eq "120" && $lI[6] eq "156")
|| ($ll[4] eq "41" && $II[6] eq "168")
|| ($ll[4] eq "81" && $II[6] eq "159")
| ($1I[4] eq "28" && $II[6] eq "179")
|| ($ll[4] eq "69" && $II[6] eq "155")
)

{$RChangeFlows++;}

}
close TRACE;

print LOSS "$nsend $nrecv";
close LOSS;

print RT_ERROR " $rerr",;

191

packet) = dsr

$ohl = $nRTR_OH/150;

$oh2 = $nMAC_OH/150;

print Overhead "RTR: $nRTR_OH MAC: $nMAC_OH => $ oh1 $oh2\n";
close Overhead;

print MAC_DROPS " end: $end col: $col dup: $dup ret: $ret err: $err; sta: $sta
bsy: $bsy dst: $dst nrte: $nrte loop: $loop ttl: $t tl ifg: $ifg tout: $tout cbk: $cbk sal:
$sal arp: $arp fil: $fil out: $out\n";
print RT_CHANGE " $RChangeFlows",
}
print "\n";
print RT_ERROR "\n";
print RT_CHANGE "\n";
}
close RT_ERROR;
close MAC_DROPS;
close RT_CHANGE;

192

Appendix C

Folder “common”

* File “packet.h

struct hdr_cmn {

#define XMIT_REASON_RTS 0x01
#define XMIT_REASON_ACK 0x02

/I ktnahm add for DAMPEN policy
#define XMIT_REASON_CONFIRM 0x03

/I Alonso - Rocha //cross-layer feature
#define XMIT_REASON_HIGH_POWER 0x04

Folder “dsr”

* File “dsragent.h

private:
/I ktnahm for DAMPEN policy
intbeta_; // bulk loss threshold activating maintenance operation

int nlinkfail; // number of successive link failu re

/I Alonso - Rocha
int gamma_; // activation of cross-layer feature

* File “dsragent.ct

DSRAgent::DSRAgent(): . . .

/I kthahm

193

beta_=1;
bind("beta_", &beta_);
nlinkfail = 0;

/I Alonso - Rocha
gamma_ = 0;
bind("gamma_", &gamma_);

* File “dsragent.ct

DSRAgent::sendOutPacketWithRoute(SRPacket& p, bool
{

trace("SF%ss %.9f _%s_ %d [%s -> %s] %d(%d) to
srh->num_addrs() ? "EST" : "™,
Scheduler::instance().clock(), net_id.dump(), cmnh
p.src.dump(), p.dest.dump(), flow_table[flowidx].f
srh->flow_header(), flow_table[flowidx].nextHop,

srh->num_addrs() ? srh->dump() : "™);

/I Alonso - Rocha: trace route change. Time, ac
if (srh->num_addrs()) {
trace ("RChange %.9f h: %d %s -> %s -god %d",
Scheduler::instance().clock(),p.route.length()-1,
p.src.dump(), p.dest.dump(),
God::instance()->hops(p.src.getNSAddr_t(), p.dest
); // monitoring number of route changes

}
/I Alonso - Rocha END

DSRAgent::xmitFailed(Packet *pkt, const char* reaso

{

if (srh->num_route_errors() >= MAX_ROUTE_ERRORS)
{ trace("SDFU %.5f _%s_ dumping maximall
Scheduler::instance().clock(), net_id.dump(),
from_id.dump(), to_id.dump());
Packet::free(pkt); // no drop needed
pkt =0;
return;

}

194

fresh, Time delay)

%d %s",

->uid(),
lowld,

tual hops, source, destine and god hops

.getNSAddr_t())

n)

y nested error %s %d -> %d",
tell_id.dump(),

/I Alonso - Rocha. If mac informs that the node i
error
if (gamma_) {
if (cmh->xmit_reason_ == XMIT_REASON_HIGH_POWER

&& stremp(reason, "DROP_RTR_MAC_CALLBACK") ==0)
Packet::free(pkt);
pkt = 0;
return;

}
/I monitoring number of route errors
trace ("RERR %.5f %s -> %s -GH %d", Scheduler:in
to_id.dump(),God::instance()->hops(from_id.getNSAdd
)

/I Alonso - Rocha ends

link_down *deadlink = &(srh->down_links()[srh->nu
deadlink->addr_type = srh->addrs()[srh->cur_addr(

Folder “gen”

* File “ns_tcl.c¢

Agent/DSRAgent set dport_ 255\n\
Agent/DSRAgent set beta_ 2
Agent/DSRAgent set gamma_ 1
\n\

Agent/MIPBS set adSize_ 48\n\
Agent/MIPBS set shift_ 0\n\

ktnahm:
Alonso

Folder “mac”
* File “mac-802_11n"

#include "mac-timers.h"
#include "marshall.h"
#include <math.h>

// Added by Alonso - Rocha to support received powe

#include <vector>

195

s still present, do not mark as route

stance().clock(), from_id.dump(),

r_t(), to_id.getNSAddr_t())

m_route_errors()]);
)]-addr_type;

improved robustness for DSR\n\
- Rocha: cross layer feature\n\

r tracing

class EventTrace;

struct hdr_mac802_11 {

/IAlonso - Rocha: structure for keeping the receive
struct time_power {
int pos;
double power[20];
u_int32_t idNode;

#define DSSS_MaxPropagationDelay 0.000002

class PHY_MIB {
public:

Private:

/l Added by Alonso-Rocha
int findNode (uint32_t idNode, vect nodesPower);
void insertNode (u_int32_t idNode, double power, v
void initializePowers(time_power &tp);
void previousPos(int &pos);

void nextPos (int &pos);

void average(time_power tp, float& averag, int &mo

// debug procedures

void viewVector (vect v);

void viewArray (time_power tp);
/I Alonso - Rocha ends

/I Added by Alonso - Rocha to support received pow
vect nodesPower;
/I int average_selected; variable that activates a

196

d power of the nodes

/I 2us XXXX

ect &v);

vingAway);

er storage

verage mode

* File "mac-802_11.cc

/I Added by Alonso - Rocha to support received powe

#include <vector>
#include <stdlib.h>

void

Mac802_11::RetransmitRTS()

{

if(ssrc_ >= macmib_.getShortRetryLimit()) {
discard(pktRTS_, DROP_MAC_RETRY_COUNT_EXCEEDED);
hdr_cmn *ch = HDR_CMN(pktTx_);
if (ch->xmit_failure_) {

struct hdr_mac802_11* dh = HDR_MAC802_11(pktTx_);

//destinity dh_ra

uint32_t idNode = ETHER_ADDR(dh->dh_ra);
double received_Power = pktTx_->txinfo_.RxPr;

int i = findNode(idNode, nodesPower);
if (i 1=-1)

received_Power = nodesPower[i].power[nodesPowe

I/l designed average mode

[lfloat av=0; int movAw=0;

/laverage(nodesPower]i],av,movAw);

if (received_Power > RxThreshold)

{

}

ch->size() -= phymib_.getHdrLen11();

ch->xmit_reason_ = XMIT_REASON_HIGH_POWER,;

ch->xmit_failure_(pktTx_->copy(),
ch->xmit_failure_data_);

/I Alonso - Rocha ends

else {

ch->size() -= phymib_.getHdrLen11();
ch->xmit_reason_ = XMIT_REASON_RTS;
ch->xmit_failure_(pktTx_->copy(),
ch->xmit_failure_data_);

197

r tracing

pktRTS_=0;

rli].pos];

else {
/I Alonso - Rocha begins
/I source rf_ta; dest =rf_ra
if (average_selected){
u_int32_t idNode = ETHER_ADDR(rf->rf_ra);
int pos =findNode (idNode, nodesPower);
if (pos!=-1){
[Itell us if the node is moving away in the las t 1, 2 or n movements
float av=0; int movAw=0;

average(nodesPower[pos],av,movAw);

[lthese values need a deep study to improve results
if ((movAw >= 18) && (av < RxThreshold)) {
/lcout <<"LOW POWER (rts) idnode: "<<idNode<< " av: "<<av << " movaw:
"<<movAw<<" FarFactor: "<<av/RxThreshold<<" retryCo unt: "<<ssrc_<<endl;

discard(pktRTS_, DROP_MAC_RETRY_COUNT_EXCEEDE D); pktRTS_=0;
hdr_cmn *ch = HDR_CMN(pktTx_);
if (ch->xmit_failure_) {

ch->size() -= phymib_.getHdrLen11();

ch->xmit_reason_ = XMIT_REASON_RTS;

ch->xmit_failure_(pktTx_->copy(),

ch->xmit_failure_data_);

}
discard(pktTx_, DROP_MAC_RETRY_COUNT_EXCEEDED);
pktTx_=0;
ssrc_=0;

rst_cw();

return;

}

/I Alonso - Rocha ends
inc_cw();
mhBackoff_.start(cw_, is_idle());

void
Mac802_11::recv(Packet *p, Handler *h)
{

if(tx_active_ && hdr->error() == 0) {
hdr->error() = 1;

}

/I Alonso - Rocha

/linsert here the packet in our array of nodes and powers

hdr_mac802_11 *mh = HDR_MACS802_11(p);

198

/ldh_ra = dest; dh_ta = source

u_int32_t idNode = ETHER_ADDR(mh->dh_ta);
double power = p->txinfo_.RxPr;

insertNode (idNode,power,nodesPower);

/I Alonso — Rocha

199

void
Mac802_11::viewArray (time_power tp)
{
int pos = tp.pos;
cout <<"Nodeld:"<<tp.idNode;
for (int j=0;j<20;j++){
cout <<" "<<tp.power[pos];
previousPos(pos);

}

cout <<endl;

void
Mac802_11::previousPos(int &pos)
{

if (pos == 0) pos = 19;

else pos--;

int // returns the position in the vector nodesPowe r
Mac802_11::findNode (uint32_t idNode, vect nodesPow er){
int tam = nodesPower.size();
/ffind in STL nops
for (int i = O;i<tam;i++){
if (idNode == nodesPower[i].idNode)
return i

}

return -1;

void
Mac802_11::average(time_power tp, float& averag, in t &movingAway)

{
int p = tp.pos;

double av = 0;

double w = 100;

double wTot = 0;

/Imoving Away variable section
int movAw=0;

bool counting=true;

for (int i=1;i<21;i++)

{
double act = tp.power|[p];
previousPos(p);
double prev = tp.power[p];
if (prev !1=0)
{

200

double avPond = prev*w;
[lcout <<i<<" "<<avPond<<"";
/lw = w +(100/i); //progressive
wTot =wTot + w;

w = w/2; //half each time

av = av+avPond;

/lthe move away section
if ((counting) && (i>1)){
/lwhen the previous value is greather than the
/lincrease the moving away factor
if (prev>act){
MOVAW++;
telse{
counting = false;

}
movingAway=movAw;
averag = (av / wTot);

/*
void
Mac802_11::viewVector (vect v){ //changing to back

int tam = v.size();
cout <<"number elements: "<<tam<<endl;
for (int i= O;i<tam;i++){

viewArray(v[i]);

cout <<endl;

*

void
Mac802_11::nextPos (int &pos)
{

if (pos == 19) pos = 0;

else pos++;// = pos + 1,

void
Mac802_11::initializePowers(time_power &tp)}{
for (int i=0;i<20;i++){
tp.power[i]=0;

201

fashion

actual,

void

Mac802_11::insertNode (u_int32_t idNode, double pow

{

time_power tp;
if (v.empty()X{

tp.pos = 0;
initializePowers(tp);

nextPos(tp.pos);
tp.power[tp.pos] = power;
tp.idNode = idNode;

/InextPos(tp.pos);
v.push_back(tp);
/Ireturn O;

else {

/lif not found, insert like empty vector
//if found, recover pos in the array and insert i

/I returns the position in the vector nodesPower
int i = findNode (idNode, v);

if (i 1= -1){
tp = V[i];
nextPos(tp.pos);
tp.power([tp.pos] = power;
V[i] = tp;

Jelse {
tp.pos = 0;
initializePowers(tp);
nextPos(tp.pos);

tp.power([tp.pos] = power;
tp.idNode = idNode;

v.push_back(tp);

202

er, vect &v)

Folder “tcl/lib”
* File “ns_default.tcl

Agent/DSRAgent set dport_ 255
Agent/DSRAgent set beta_ 2 # ktnahm:
Agent/DSRAgent set gamma_ 1 # Alonso

Agent/MIPBS set adSize_ 48

Folder “trace’

* File “cmu-trace.ct

void

CMUTrace::format_mac_common(Packet *p, const char *

{
If (newtrace)

/IAlonso - Rocha: before analysis
/Inere it is possible to get information from the

[[for example: double receivedPower = p->txinfo_.

sprintf(pt_->buffer() + offset,

"%c-t %.9f -Hs %d -Hd %d -Ni %d -Nx%.2f -Ny %.

op, /I event type

Scheduler::instance().clock(), // time

src_, /I this node
ch->next_hop_, /I next h

src_, /I this node

X, /I x coordina

Y, /l'y coordina

z, /I z coordina

energy, /I energy, -1

tracename, /I trace leve
why); /l reason

/I here we could add some information like the rece

// and write this information with the parameter
I that is -Npw (for example), receivedPower
/I Alonso - Rocha: before analysis. End section

203

improved robustness for DSR

- Rocha: cross layer feature

op

why, int offset)

current packet
RxPr

2f -Nz %.2f -Ne %f -NI %3s -Nw %s ",

te

te

te

= not existing
|

ived power signal
%e for double values

