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Abstract 

Capturing the quality of software and detecting sections for further scrutiny within are of high 

interest for industry as well as for education. Project managers request quality reports in 

order to evaluate the current status and to initiate appropriate improvement actions and 

teachers feel the need of detecting students which need extra attention and help in certain 

programming aspects. By means of software measurement software characteristics can be 

quantified and the produced measures analyzed to gain an understanding about the 

underlying software quality.  

In this study, the technique of code profiling (being the activity of creating a summary of 

distinctive characteristics of software code) was inspected, formulized and conducted by 

means of a sample group of 19 industry and 37 student programs. When software projects are 

analyzed by means of software measurements, a considerable amount of data is produced. 

The task is to organize the data and draw meaningful information from the measures 

produced, quickly and without high expenses. 

The results of this study indicated that code profiling can be a useful technique for quick 

program comparisons and continuous quality observations with several application scenarios 

in both industry and education. 
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1 Introduction 

In industry, with increasing demands for shorter turnaround in constructing and programming 

computer systems, it is important to quickly identify the parts of a system which may need 

further scrutiny in order to improve the system. One technique to achieve this is code 

profiling i.e. using a selection of metrics to build a description, or profile, of the program. 

This in turn requires tools to produce software measures, each of which is a value for a given 

metric, for example the number of lines of code, Cyclomatic Complexity and Maintainability 

Index. These measures may then be combined to produce a profile of the program. In this 

project the goal is to produce a static profile for a given program i.e. measures derived from 

the program text. This profiling technique may also be applied to student programs in order to 

detect those students who may need extra help in laboratory assignments. Finally, the profiles 

for both student and industry programs may be compared in order to ascertain whether the 

teaching of programming in the university environment is actually preparing the student for 

industrial scale programming. This project has been undertaken in two parts: (i) an 

investigation into available tools for software measurement and (ii) a study of how such 

measures may be combined to produce a profile for a single program. 
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1.1 The project 

In this dissertation, the feasibility of using software measurement for both industry and 

computer science education is examined. The preparations as well as the measurement 

process required are explained and the use of code profile generation in order to compare 

student programs is discussed. Figure 1.1 gives an overview of the project. 
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Figure 1.1: The dissertation project 
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1.2 Methodology 

In this study a quantitative research methodology was followed. The first step was to 

undertake a literature study in the area of software measurement followed by a survey of 

software metrics for static code analysis. The next step was a survey of the available tools for 

producing software measures and the suitability of these tools for this project. The third step 

was to select industry and student programs as a test sample and derive a number of software 

measures for each program. Finally, a study was undertaken on how these measures could be 

combined to create a profile for each program. 

1.3 Motivation 

The motivation for this dissertation can be summarized by the following key questions: 

 

(1) Is it useful to perform static software measures on programs for use in education and 

industry? 

(2) How does student source code differ from industry source code and are students 

prepared for industrial scale programming? 

(3) Is student code profiling feasible as a means of quick program comparison? 

 

The first question suggests a deeper view into and understanding of the discipline of 

software measurement. When performed, additional questions might arise such as: 

• Which software metrics are available and useful for the analysis of source code?  

• Which software measurement tools are available and how do they differ?  

• Are the measures produced by different tools comparable?  

In order to answer the second question, not only an understanding of software measurement is 

required, but also knowledge about the general differences between the two areas (student vs. 

industry programming). Here subsidiary questions similar to the following might be asked: 

• What code characteristics can be compared?  

• When may code be defined as complex, and what does complex in this sense mean?  

The third and last key question raises another set of subsidiary questions:   

• What is a code profile?  

• What is needed for a code profile?  

• Can code profiling be used to improve the students’ awareness of programming? 
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 These three main questions and their subsidiary questions will be considered and answered 

in the course of this dissertation project. The following sections present the way in which the 

reader will be directed through the dissertation and the questions presented. 
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1.4 Organization 

This section gives an overview on the 

organization of the dissertation. The 

dissertation can be viewed as consisting of 

two parts. Part 1 describes the generation of 

the measures and part 2 the analysis of these 

measures.  The first part of the dissertation 

is divided as follows (see Figure 1.2): 

Chapter 2 presents an introduction and 

background to software measurement as 

well as the terminology used in this 

dissertation. Chapter 3 serves as a more 

detailed background of code analysis within 

the area of software measurement; special 

focus is placed on software complexity.  

Chapter 4 presents and discusses the survey 

of software metrics for static code analysis. 

Chapter 5 gives a survey of software 

measurement tools available. In addition, a 
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Figure 1.2: Dissertation organization 

selection of tools is compared in terms of usability and applicability for this study. Chapter 6 

deals the student and industry code measurements themselves and the preparations for them. 

Next to the introduction of the program sample selection a discussion about the student vs. 

industry issue is presented. 

Part two of this dissertation is presented in Chapters 7, and 8. In Chapter 7 the code 

measurement results are presented, discussed and analyzed. Furthermore, group differences 

are pointed out and individual comparisons made. The profile generation and comparison is 

discussed and analyzed in Chapter 8. Here the profile defined is illustrated by comparing two 

programs, for which the results were to a great extent discussed in the chapter before. Chapter 

9 evaluates and reviews the methodology used and the problems experienced, as well as the 

outcome produced.  

In the Appendix Measurement results and profiles generated can be found. 
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2 Background 

A more comprehensive understanding of the area of software measurement is required, before 

specific static code analysis can be discussed in detail. In this chapter a description of 

software measurement is presented and general information on the topic and the related tasks 

is given. 

2.1 Terminology 

The first set of terms consists of measurement, metrics, and measures. Before understanding 

these terms in the context of software measurement, some definitions are presented: 

• “Measurement is the process by which numbers or symbols are assigned to attributes 

of entities in the real world in such a way as to describe them according to clearly 

defined rules.” [1]   

It should be noted at this point that an entity is any object, either real or abstract, 

whose characteristics can be described, and captured as attributes [2].  

•  “Metrics are a system of parameters or ways of quantitative and periodic assessment 

of a process that is to be measured, along with the procedures to carry out such 

measurement and the procedures for the interpretation of the assessment in the light of 

previous or comparable assessments” [3]. 

• A Measure is  

 “a basis for comparison; a reference point against which other things can be 

evaluated; they set the measure for all subsequent work” [4] 

 “how much there is of something that you can measure” [4] 

These terms are quite clear in literature. The terms software measurement and software 

metrics, however, are often used interchangeably [5]. In this paper the understanding of 

software measurement as being the process of quantifying selected characteristics of software 

entities with the goal of gathering meaningful information about these entities, is followed. 

How the selected characteristics are quantified is determined by the software metrics used in 

the measurement process. Applying a software metric results in a measure for the 

characteristic which subsequently must be interpreted. The measure produced is a value that 

can be used as the basis for comparison. Information can be retrieved through the 

interpretation of the software measures. The first set of terms stands in this dissertation for the 
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code measurements and represents a combination of software measurement, metrics and 

measures (see Figure 2.1).  

 

Software

Entities

Source

Code
Software 
Metrics

Software 

Measures

Software Measurement: Code Analysis

1. apply 2. retrieve

 
Figure 2.1: Measurement, Metrics and Measures 

The second set of terms consists of information and profile. The measures produced and the 

metrics applied in the first part of this dissertation require to be understood in order to gain 

information about the measures produced. What does the term information actually mean? A 

general definition says that: 

• “Information is the result of processing, manipulating and organizing data in a way 

that adds to the knowledge of the person receiving it.” [6] 

Within the context of software measurement, information is knowledge about software 

entities together with the understanding of associated software attributes and their 

characteristics. In other words information is retrieved when the measure for the attribute is 

interpreted. In this dissertation, the focus is on gaining an understanding of code 

characteristics. As indicated, the information gained is analyzed to profile the programming 

ability and style of students. 

A profile is “a formal summary or analysis of data, often in the form of a graph or table, 

representing distinctive features or characteristics” [7]. 

The information about selected code characteristics will be summarized and stored in a 

code profile for a particular program.  
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2.2 Software measurement 

2.2.1 The history and development of software measurement 

The practice of measurements in the area of software engineering has a history of almost 25 

years [8]. The idea of creating and defining software metrics started in the 1960s and the 

1970s and was mainly developed in the 1980s and 1990s. 

The following information about the history and development of software measurement 

were mainly gathered from A Frame work of Software Measurement [8] and History of 

Software Measurement [9].  

 

1950 – 1970 

Probably the first step in the area of software measurement was done in 1955 by John Backus. 

He proposed the software metric LOC (Lines of Code) and used the metric to analyze the size 

of a FORTRAN compiler [8]. Counting the lines of a program is a fairly easy process and 

therefore made LOC a widely used metric. However, the problem of LOC lies in possible 

variations in counting LOCs [10] for example by including or excluding comments. However, 

LOC became the basis for several other software metrics as presented in this section as well 

as in Chapter 4. Later in the 1960s, the first cost prediction methods in the area of software 

engineering were introduced; these were namely the Delphi and Nelson's SDC method [8]. 

Probably the first paper in the area of software measurement that dealt with software 

complexity was “Quantitative Measurement Program Quality” [11] in 1968.  

 

1970 – 1980 

In the 1970s and 1980s the area of software measurement was further developed and several 

papers and books were published as well as new software metrics introduced; especially 

metrics trying to quantify the complexity of source code. The complexity aspect of software is 

presented in Chapter 3. 

One of the first metrics trying to quantify programmer productivity was proposed by R.W. 

Wolverton in 1974 and was based on the LOC metric. Wolverton proposed object instructions 

per man-month as a productivity measure and suggested threshold intervals for the metric. In 

the same decade several complexity metrics were introduced. In 1976, the metric Cyclomatic 

Complexity [12] was introduced by Thomas McCabe [8]. This metric tries to quantify the 

complexity of a program by measuring the number of linearly independent paths through a 

 8 



 

program. The Cyclomatic Complexity metric is still widely in use and is discussed further in 

Chapter 4.  

One year later, Maurice Halstead [13] introduced a set of metrics targeting a program’s 

complexity; especially the computational complexity [14]. Halstead based the metrics on 

operators and operands count within the source code of a program as explained in his book 

“Elements of Software Science” [13]. Several companies, including IBM and General Motors, 

have used this metric set in their software measurement processes. Today the Halstead metrics 

are still widely in use, including Halstead Length, Volume, Difficulty and Effort which are the 

most common. Further complexity metrics were introduced by Hecht in 1977 and by McClure 

in 1978 [9]. 

The first book which focussed entirely on software measurement was “Software Metrics” 

by Tom Gilb, was published in 1976 [9]. Also in the 1970s, the terms software physics and 

software science were introduced in order to construct computer programs systematically. The 

former was proposed by Kolence in 1975 and the latter was proposed by Halstead in 1977 in 

the previously mentioned book “Elements of Software Science” [13].  

 Then in the late 1970s (1979), Alan Albrecht introduced his idea of function points at IBM 

[8]. The Function-Point metric captured the size of a system based on the functionality 

provided to the user in order to quantify the application development productivity.  

 

1980 – 1990 

Also in the 1980s several complexity metrics were introduced, including Ruston’s flowchart 

metric [8], which describes a program’s flowchart with the help of the flowchart’s elements 

and underlying structure. In 1981 Harrison et al [8] introduced metrics to determine the 

nesting level of flow graphs. One year later Troy et al defined a set of metrics, which tried to 

quantify modularity, size, complexity, cohesion and coupling of a program [8].  

 In addition to the Function Point method from 1979, another widely spread cost estimation 

metric with the COCOMO (Constructive Cost Model) [15] was introduced two years later in 

1981. The COCOMO, based on the Metric LOC, estimates the number of man-months it will 

take to finish a software product. A further cost estimation metric is the Bang metric was 

proposed by DeMarco six years later [9]. 

 In 1984, NASA was one of the first institutions to begin with software measurement. In the 

same year the metric GQM (Goal Question Metric) was developed by Victor Basili and the 

NASA Software Engineering Laboratory. GQM is a approach to establish a goal-driven 
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measurement system for software development applicable to applied to all life-cycle products, 

processes, and resources [16] [1] .  

 In 1987, Grady and Castwell established the first company wide metric program at Hewlett 

Packard and published their findings in [17]. 

 Since then, not much attention had been given to object oriented programming in the area 

of software measurement. Yet in 1988, Rocacher [9] undertook early investigations regarding 

the measurement of object oriented designs, while establishing software metrics for the object 

oriented programming language Smalltalk. One year later, Kenneth Morris followed by 

discussing software metrics for an object oriented system in his publication “Metrics for 

Object-Oriented Software Development Environments” [9]. Bigger breakthroughs in object 

oriented measurement were made in the 1990s. 

 

Since 1990  

As object-oriented programming became a more widely accepted programming methodology 

during the 90s [18], the focus also changed within software measurement toward object 

oriented programs. Thus, several books and papers on object oriented software measurement 

were published as well as many object oriented metrics were introduced [19]. Furthermore, 

methods to quantify external attributes such as maintainability, readability and quality were 

introduced. The following is a brief presentation of events related to the field of software 

measurement since 1990. 

In 1992, the first IEEE-Standard for quality metrics, namely „ IEEE Std 1061-1992 IEEE 

Standard for a Software Quality Metrics Methodology”, was established [9]. The standard 

depicts methods for establishing quality specifications as well as the identification, analysis 

and validation of quality metrics. 

In 1994, the first book about object oriented software metrics, written by Lorenz et al., was 

published [9]. In the same year, Chidamber and Kemerer [20] introduced a set of object 

oriented metric set, widely known as CK metrics. The CK metrics are widely used as metrics 

to quantify object oriented design approaches. The MOOD metric set, introduced by Abreu et 

al. [21], followed in 1995. Chapter 4 gives a more detailed description of the CK as well as 

the MOOD set and other object oriented metrics. 

More books and papers on software measurement and best practices in software 

measurement appeared after the mid 1990s. However, fewer new software metrics were 

created. Examples of books which appeared in the later 1990s are “Object-oriented metrics: 

measures of complexity” by Henderson-Sellers (1996) [18], “A Framework of Software 
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Measurement” by Zuse (1997) [8] and especially “Software Metrics: A Rigorous Approach” 

by Fenton (second edition 1997) [1]. Despite new approaches in the 1980s and 1990s, many 

of the metrics applied in industry were established in the 1970s [22]. 

2.2.2 Reasons for software measurement 

There are several reasons for using software measurement in practice. The key benefits of 

software measurement can be classified as follows [16]: 

• Understanding 

• Evaluation 
Control [1] 

• Prediction 

• Improvement 

 

According to Fenton [1], the categories evaluation and prediction can be combined to 

control and control is essential to any important activity.  
 

“We must control our projects, not just run them” [1]  

 

However, only ongoing software projects require control. A completed project will not 

change in state and therefore does not need to be controlled, but may be compared to other 

projects. Since the final source code (as entity code) itself and not its creation processes is the 

central point in this dissertation, the main focus lies on the aspects of understanding and 

improvement of software. 

Before knowing how to improve an attribute (where to go), we first need to understand the 

meaning of the attribute and its current characteristics (where we are). 

 “If you don’t know where you are a map won’t help” [23]  

In the context of measuring source code, understanding is defined here as to gain 

meaningful information about code attributes (as illustrated in Figure 2.2). With the 

understanding of the code characteristics within their current states, areas of improvement 

[16] can be identified and threshold intervals which should be met can be defined. Threshold 

intervals define a value range in which the measures should occur.  
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2.2.3 Problems and issues of software measurement 

The major problems and issues in the field of software measurement can be pointed out as 

follows: 
 

• Interpretation of measures 

Each measure produced on its own does not give us more than a single value. It requires 

education and experience to make software measures useful [2]. Furthermore, information 

regarding the context in which the measures were produced is needed [8]. For this project, 

the measure of cyclomatic complexity of a student program might have a value x. 

However this measure has to be interpreted in the context of the program size, since a 

longer program is more likely to be more complex, before information about the 

complexity can be retrieved. This point is further discussed in Chapter 3. 
 

• Scale types 

Care has to be taken about the scale types involved. According to measurement theory 

[24], every scale type has a different set of applicable statistics. E.g. the set of statistics for 

the interval scale does not include multiplication. Therefore saying today’s temperature is 

twice as hot as yesterday’s is not a valid statement for Fahrenheit and Celsius, which are 

based on the interval scale [1] (see Chapter 3). This means in the context of software 

measurement that comparing and analyzing the measures produced has to be done with 

caution. More information about measurement scale types are presented in Section 3.2.2. 

   

• Lack of specific standards 

According to Munson [2], the biggest problem in the field of software measurement, for 

each measured object, is the lack of standards. 

“NIST1 is not motivated to establish standards in the field  

of software measurement.”  

Therefore, measures retrieved for the same software entity are not comparable unless 

additional information about the way they were quantified is available and the methods 

are identified as equivalent. This means for this project, that the tools have to be compared 

by analyzing which of the software measures are produced in the same manner. 
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• Issues of people measures 

With software measurement the productivity of programmers can be measured. However, 

judging a programmer’s performance by the use of a metric (such as LOC/hour) can be 

seen as unethical [2]. Furthermore, the outcome can be influenced by the programmer 

measured. For example, the programmer writes unnecessary LOC to increase the measure 

for his productivity. Since not the students but their code is of interest, this does not 

represent a problem in this dissertation project. 

 

• Reliable and valid data 

Gathering measures is not sufficient in order to obtain reliable measurement results, since 

the way the data are collected and analyzed has a great influence on the outcome. As M.J. 

Moroney (1950) said: 

“Data should be collected with a clear purpose in mind. Not only a clear purpose 

but a clear idea as to the precise way in which they will be analyzed so as to yield 

the desired information.” 

In this dissertation, the purpose of data collection is to gain information about the size, 

structure, complexity and quality of the available source code.  

 

2.2.4 Software measurement applied 

Section 2.2.1 presented the history and development of Software Measurement. In that 

section, the reasons for Software Measurement and the related problems were illustrated. This 

section focuses on the application of software measurement; the domains, their entities, and 

the measurement process itself. 

 

Software measurement domains (and their entities) 

Software entities can be classified into product entities, process entities and resource entities 

[1]. Since software measurement tries to quantify software entities, the areas of application 

can be categorized correspondingly as displayed in Figure 2.2. Further examples for software 

entities can be seen in Figure 2.2. 

 

 

                                                                                                                                                         
1 National Institute of Standards and Technology 

 13 



 

 

Software
Measurement

Products

ResourcesPr
oc

es
se

s

 

Figure 2.2: Software Measurement domains 

The Processes domain holds software entities that represent steps in the software 

engineering process. Quantifying and predicting attributes within this domain (such as time, 

effort and cost) is especially of interest for managers and team leaders [1, 8]. Boehm’s 

COCOMO method [15] and Albrecht’s function point model, which are introduced in the 

history and development section of this paper, accomplish this job.  

The Resources domain contains software entities, which are used or required by software 

entities within the Processes domain (such as personnel, software and hardware) [1]. In this 

respect, personnel are required to complete a development process. Attributes of interest for this 

entity are e.g. the number of software engineers involved, their skills and their performance. 

Munson [2] classifies this as an individual area called people measurement domain.  

The Products domain holds software entities that result from a process activity (thus an 

entity within the processes domain). Figure 2.3 illustrates the core software entities within this 

domain, as Fenton [1] sees them.  

 

Products
domain

Designs CodeSpecifications Test data  

Figure 2.3: Core entities for the products domain 

In this dissertation project, software measurement is applied in the products domain and 

focus lies on the entity code and its attributes. Software measurement of the entity code is 

discussed in more detail in Chapter 3.  
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The measurement process 

The term software measurement process can be defined as follows: 

“That portion of the software process that provides for the identification, definition,  

collection, and analysis of measures that are used to understand, evaluate, predict, or control 

software processes or products.” [25] 

According to McAndrews [25], the software measurement process can be split into the four 

activities: planning, collecting data, analyzing data and evolving the process. During the 

planning a purpose and a plan for measuring has to be defined. Furthermore the software 

entities and attributes of interest have to be identified and suitable software metrics selected or 

new ones defined. During the data collecting phase the selected metrics are applied manually 

or by the use of software measurement tools [26]. Software measurement tools are discussed 

later in Section 2.4 and in Chapter 5. The measures/data produced are then analyzed with 

regard to the measurement goals defined.  

In this dissertation the measurement process is split into two stages, namely a measurement 

stage and an analysis stage. The measurement stage includes the planning, preparations for 

code measurements and the code measurements themselves. In the analysis stage, the 

measures produced are analyzed and interpreted for later use in code profiling. 

2.2.5 Application in education 

Despite its age and its application in industry, the discipline of software measurement is not 

often used for the education sector [27]. Some of the related studies about the application of 

software measurement in education were found as follows: 

 

• Using Verilog LOGISCOPE to analyze student programs [28] 

This paper (published in 1998) describes the application of a software measurement tool to 

measure student programs. The results of analyzing programs are given to show the 

diversity of results. In addition a discussion on how the software measurement tool can be 

used to help students improve their programming and help instructors evaluate student 

programs better is presented. 

 

• A case study of the static analysis of the quality of novice student programs [27] 

In this paper (published in 1999) builds up on the paper listed above. The authors used a 

software measurement tool and sample student programs to affirm that static code analysis 
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is a viable methodology for assessing student work. Further work is considered by the 

author to help to confirm the study’s results and their practical application. 

 

• Static analysis of students' Java programs [29] 

This paper (published in 2004) introduces framework for a static analysis. According to 

the author this framework can be used to give beginning students practice in writing better 

programs and to help in the program grading process. The framework suggests both 

software metrics and relative comparison to evaluate the quality of students’ programs. 

 

• Student portfolios and software quality metrics in computer science education [30] 

This paper (published in 2006) discusses the usage of student program collections 

(portfolios) to conduct long term studies of student performance, quantitative curriculum 

and course assessment, and prevention of forms of cheating. The authors suggest the use 

of quality software metrics to analyze the portfolios, however only requirements for those 

are outlined.   
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2.3 Software metrics 

As indicated in Section 2.1 software metrics are instruments applied within the software 

measurement process to quantify attributes of software entities. Each software metric holds 

information about its targeted attribute(s) as well as how the metric can be applied to quantify 

the attribute(s). Thus, software metrics are specific defined instruments for targeting an 

attribute of a software entity and explains the application of the metric within a software 

measurement process. For example, LOC is a metric that targets the source code size (length) 

attribute. As will be explained below in Chapter 4, LOC quantifies the size by counting the 

lines of code. In this dissertation project, the focus is on the source code and source code 

attributes. Source code metrics can be further classified as follows: 

2.3.1 Static source code metrics 

Static code metrics attempt to quantify source code attributes from the program text [2, 31]. 

Such metrics may quantify control flow graphs, data flows and possible data ranges. Static 

source code metrics are further reviewed in Chapter 4. 

2.3.2 Dynamic source code metrics 

Dynamic source code metrics quantify characteristics of a running system and how it interacts 

with other processes. Compared with the usage of static source code metrics, the measurement 

of a running system is rather resource consuming due to the massive data overhead. However, 

dynamic source code metrics represent a great help in error detection, security aspects and 

program interaction [2].  

2.4 Software measures: Tools to produce them 

There is a large number software measurement tools available [32], most of which are 

commercial. Some of the available tools focus on a specific area of software measurement, 

such as software process or resource measurement. In this dissertation, the focus lies on tools 

suitable for static code analysis. A more detailed description of software measurement tools is 

given in Chapter 5. 
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2.5 Summary 

In conclusion, software measurement is the process of applying software metrics with the goal 

of quantifying specified attributes of software entities to gain meaningful information about 

the entity itself. The main advantages of software measurement are control, understanding and 

improvement. The disadvantages are the lack of standards and the experience required in 

order to gain meaningful information. Software measurement tools exist to simplify and 

automate the application of software metrics within the software measurement process.  
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3 Software measurement: Code analysis 

3.1 Introduction 

In order to measure software, the basic theory about measurement theory has to be known and 

understood. Section 3.2 presents a short introduction and aspects of interest. Since the 

analysis of source code is the major aspect in this dissertation project, a deeper look at the 

entity code and its attributes is presented in Section 3.3. One frequently discussed and 

difficult quantifiable attribute is complexity [5]. The measurement of code complexity and the 

term software complexity itself are discussed in Section 3.4. 

3.2 Measurement theory 

Measurement theory is a branch of applied mathematics and defines a theoretical basis for 

measurement. According to Zuse [8], the major advantages of measurement theory are 

hypotheses about reality, empirical investigations of measures produced, and the 

understanding of the real world through an interpretation of numerical properties. 

3.2.1 Introduction to measurement theory 

As with other measurement disciplines, software measurement also requires to be based on 

measurement theory [33]. For the area of software measurement, measurement theory holds 

the following [8]: (1) clear definitions of terminology, (2) strong basis for software metrics, 

(3) criteria for experimentation, (4) conditions for validating software metrics and (5) criteria 

for measurement scales. Henderson-Sellers [18] points out, that measurement theory in 

addition introduces an understanding of variances, intervals, and types of errors in the 

measurement data through the use of statistics and probabilities. 

In the literature, measurement theory for software measurement has been discussed in 

much detail.  For this dissertation, the works of Zuse [8], Fenton [1] and Henderson-Sellers 

[18] were used to gain an understanding of the aspects of measurement theory for software 

measurement. In the following sections, key aspects of measurement theory are briefly 

presented: 
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• Empirical relations  

The aspect of empirical relations deals with the intuitive or empirical understanding of 

relationships of objects in the real world. The relationships can be expressed in a 

formal relationship system [18]. For example, one might observe the relation of two 

people in terms of height. The comparisons “taller than”, “smaller than”, etc. are 

empirical relations for height [1]. If a term, such as complexity or quality, has different 

meanings to different people, then defining a formal relationship system becomes 

close to impossible [1, 18]. The difficulty of measuring software complexity is further 

discussed in Section 3.4. 

 

• Rules of mapping  

There are different approaches for mapping an attribute from the real world to a 

mathematical system. The mapping has to follow specific rules to make the measures 

reproducible as well as comparable [1]. As an example, several approaches for 

quantifying the size of a software system exist however these measures are not 

comparable unless clear information is presented about the way the measures were 

produced. 

 

• Scale types 

Differences in mapping can limit the possible ways of analysing a given measure [1, 

8].  Measurement scale types exist to help identify the level of statistics applicable. 

The different scale types are further discussed in Section 3.2.2. 

 

• Direct and indirect measurement 

Measurement theory categorizes measures into direct and indirect measures [1]. Direct 

measurement of an attribute does not depend on the mapping of any other attribute. 

Whereas, indirect measurement of an attribute is measurement which involves the 

measurement of one or several other attributes. The same classification applies for 

software metrics.  

 

• Validity and reliability of measurement  

Measurement theory helps to validate the transformation of abstract mapping concepts 

into operational mapping definitions and prove the definitions’ reliability [34, 35]. 
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This means that software metrics definitions can be inspected and validated 

mathematically. However, “theory and practice are travelling very different roads on 

the topic of software metrics “ [36]. The theoretical validation of software metrics is 

often neglected [18, 34]. Several software metrics (such as Cyclomatic Complexity) 

exist without theoretical proof but with analytical analyses verifying the concept [18]. 

Furthermore, Henderson-Sellers [18] complains that the number of experiments 

performed are often not sufficient and the underlying experiment context is too narrow. 

According to Zuse, theory and the application of statistics should be combined for 

validating software metrics [8]. 

 

• Measurement error and inaccuracy 

Measurement errors result in deviations of the measures produced from the true values 

in the real world [34, 37]. Measurement error and inaccuracy in software measurement 

is further discussed in Section 3.2.3.  

 

3.2.2 Measurement scales for code analysis 

Measurement theory provides conditions for applying statistics to the measures produced. The 

measures as well as the mappings used to produce the measures can be connected to certain 

scale levels. This is important for understanding which analyses are appropriate for 

underlying measurement data [8]. Different scale types allow a different set of applicable 

statistical methods. In Table 3.1 the scale types are divided into nominal, ordinal, interval, 

ratio and absolute scale types. The scale types are each successively supersets of the 

preceding sets of scales. The set of defined relations and thereby the applicable analyses 

increase for each such superset [1]. The classification into scale types helps to understand 

which kinds of measurements may be used to derive meaningful results. Stating that a 

software project is twice as big as another, by using the number of lines of code (absolute 

scale), is valid. However, stating that a project is twice as complex with regard to the 

measures produced is problematic, since complexity measures may be defined on an interval 

scale [1].   
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Table 3.1: Scale types 

In this dissertation the interest lies in the static analysis of source code. Therefore the 

restriction to metrics that produce measures on interval scales seems advisable. The nominal 

and ordinal scales, as shown in Table 3.1, would seem less suited to the required types of 

analyses needed to for this project (such as the arithmetic average).  

3.2.3 Software measurement error and inaccuracy 

Errors may occur during measurement, even in simple measurements [23, 37]. Software 

measurement error concerns the deviation and inaccuracy of software measures produced 

from the actual software characteristics in the real world. Several classifications for 

measurement errors exist [34, 37] and in this dissertation a classification into instrumental 

measurement errors and personal errors is made. Instrumental measurement errors are caused 

by imperfections in the measurement instrument used during the measurement process. 

Possible instrumental measurement errors in this dissertation project caused by the 

measurement tools encountered during the measurement process are discussed in Chapter 5. 

Personal errors are caused by human mistakes during the measurement process. These 

errors can include improper selection of software metrics, the incorrect adjustment and 

application of measurement tools as well as incorrect interpretation of the measures produced. 

The metric selection for this dissertation project is discussed in Chapters 5 and 6. 

Measurement results and the interpretation of these follow in Chapter 7. 
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Measurements are highly dependent on the instruments used and on the accuracy these 

provide [24, 36, 37]. For software measurement the inaccuracy of available software metrics 

is an often discussed topic. Some software attributes are harder to quantify more accurately 

than others. Software complexity for example is difficult to quantify [5, 33] because this 

software attribute is influenced by several other not always ascertainable factors. The factors 

themselves can further depend on other aspects, thus making the intended attribute difficult to 

quantify. The problem of quantifying software complexity and the accuracy of software 

metrics is further discussed in Section 3.4. 

3.3 Software entity code 

Software entities can be classified into the three software measurement domains presented in 

Figure 3.1. Each software entity has specific attributes, which are of interest for the 

measurement. According to Fenton [1], attributes of software attributes can be classified into 

internal and external attributes. Internal attributes can be measured directly through its entity, 

whereas external attributes are measured through the entities environment. For external 

attributes the behaviour is of interest rather than the entity itself [1]. Figure 3.1 shows a list of 

example software entities and their corresponding attributes.  
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Figure 3.1: Examples of software entities [1] 
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Source code is the software product created with the combination of software entities from the 

processes and resources domain. It consists of a sequence of statements and/or declarations 

written in one or several programming languages. Source code represents the implementation 

of a software program. In this dissertation project, the code attributes of different software 

projects are analyzed to gain meaningful information about the different code characteristics. 

3.3.1 Code attributes 

Code attributes represent characteristic traits of the source code and will be also classified into 

internal and external.  

 

Internal code attributes 

Internal code attributes hold information about the code itself. The following internal 

attributes are of special interest for this project: size, modularity, coupling, cohesion, control-

flow and other internal aspects that are involved in the structure of the source code. Several 

software metrics exist to quantify these attributes. The measurement of internal code attributes 

can be performed objectively [18] due to their independence from other software entities. 

LOC e.g. is a software metric that quantifies the internal attribute size of the software entity 

code. As further explained in Chapter 4, LOC quantifies the size by counting the lines of 

code.  

 

External code attributes 

External code attributes hold information about the code and the code behaviour or 

characteristics within its environment [1]. These attributes require to be quantified with 

regards to how the code relates to other entities [1]. Thus, external code attributes are difficult 

to grasp and since in this dissertation project only the source code itself is analyzed are 

external attributes not directly of interest.  In this dissertation only the code maintainability, as 

external attribute, is considered.  
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3.4 Measuring code complexity 

Since software complexity was found to be one major contributing factor to the cost of 

developing and maintaining software [12, 15, 38], the interest in quantifying this 

characteristic / software attribute arose after the 1970s [18, 39, 40] and a number of 

complexity metrics have been proposed [5]. In order to measure the complexity the 

researchers first had to understand what software complexity is and means. However, here the 

definitions differ in the software engineering literature, indicating that the aspects of software 

complexity are not yet fully understood 

3.4.1 Different perspectives on software complexity 

In the software engineering literature a number of definitions for software complexity are 

given [5, 18, 41]. 

 

For Evangelisti [5] software complexity is “the degree of complication of a system or 

system component, determined by such factors as the number and intricacy of 

interfaces, the number and intricacy of conditional branches, the degree of nesting, and 

the types of data structures”  

 

Basili [18] defined software complexity as “a measure of resources expended by a 

system (human or other) while interacting with a piece of software to perform a given 

task”. 

 

IEEE [42] defines software complexity as “the degree to which a system or component 

has a design or implementation that is difficult to understand and verify”  

 

For Zuse [5] software complexity is “the difficulty to maintain, change and understand 

software. It deals with the psychological complexity of programs” [5]. 

 

Thus the definition of the term software complexity is difficult to specify precisely, but can 

we still measure the complexity of software? Fenton states that quantifying complexity into a 

single measure is close to impossible or equally difficult as finding the “holy grail” [33]. 

Instead complexity metrics focus on certain aspects of complexity, what complexity consists 

of and what influences the complexity of a system. However, since the term itself is unclear, 
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opinions differ in the software engineering literature also with regard to different aspects of 

software complexity.  

Fenton classified the aspects of complexity into 4 areas: problem complexity, algorithmic 

complexity2, structural complexity and cognitive complexity (cognitive complexity is further 

discussed in Section 3.4.2) [1]. Jones [43] lists 20 different aspects of software complexity. 

Here the approach from Henderson-Sellers [18] is discussed in more detail. He classified 

software complexity as depicted in Figure 3.2 using the following three aspects. 

 

Computational complexity is concerned with the complexity of the computation in terms 

of required time and hardware resources [18, 43]. Algorithms which are difficult to 

understand do not necessarily have to be computationally complex [34]. 

Psychological complexity is related to the difficulty of understanding the software 

program. This aspect of software complexity is also referred to as cognitive complexity and is 

further discussed in Section 3.4.2. 

Representational complexity deals with the tradeoffs between graphical and textual 

notations for unambiguous representations of the software system, its environment and the 

system interactions within [18].  
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Figure 3.2: Classification of software complexity 
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Henderson-Sellers considered Zuse’s view [5] in this approach to software complexity 

(presented above) and introduces the psychological complexity as a major aspect in software 

complexity. As shown in Figure 3.2, psychological complexity now consists of the individual 

programmer characteristics as well as problem complexity and structural complexity. The 

latter two were perceived in other publications (such as [1] and [43]) as direct components of 

software complexity. A model for code complexity applied to product complexity as an 

internal attribute is presented in Section 3.4.3.  

3.4.2 Psychological/cognitive complexity 

Psychological (cognitive) complexity refers to the difficulty for a person/programmer of 

understanding and verifying a software product [5, 18]. This complexity aspect is thus highly 

dependent on the difficulty of the underlying problem, the product complexity including 

software characteristics (such as size, control flow and coupling) and the programmer 

characteristics [18]. 

Problem complexity refers to the difficulty of the underlying problem. It is assumed that 

complex problems are more difficult for a person/programmer to comprehend than simple 

ones. This type of complexity is not controllable and difficult to measure. In this dissertation 

project, the complexity of the underlying problem is classified in terms of class level of the 

student. It is assumed that A-level courses provide easier problems than D-level courses. 

Product complexity (structural complexity) is concerned with the structure of the software 

program. Structural complexity is frequently discussed in the software engineering literature 

[1, 18, 40] and, as it is essential to this dissertation project, will be presented in more detail in 

the following section. 

Programmer characteristics deal with the individual programmer traits that are involved 

when performing tasks on software products. Quantifying the programmer characteristics is 

difficult, especially without adding subjective bias [18]. 
 

3.4.3 Internal code/product complexity 

The structure of a program is measurable through internal attributes of the software code 

(such as size and coupling). Several metrics [5], called structural complexity metrics, have 

been proposed in order to achieve this goal. In the software engineering literature, structural 

                                                                                                                                                         
2 Algorithmic complexity deals with the difficulty of implementing a problem solving algorithm 
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complexity is often referred to as product complexity [1, 18, 34], as the complexity of the 

product (source code) is highly dependent on the underlying structure. A complex structure 

makes it more difficult to understand and maintain a software product. The proposed 

structural complexity metrics offer monitoring of structural complexity through the 

assessment of a variety of structural aspects. These aspects and thereby the metrics 

themselves can be classified as follows: size, logical structure, data structure, cohesion, 

coupling and information flow [18]. Through the combination of these metrics a prediction 

for the product complexity can be made [44]. However, they ought to be interpreted as 

indicators. [18, 33]. Chapter 4 presents software metrics that capture structural aspects of the 

source code. Thus e.g., the LOC metric measures the size of a program and the software 

metric Cyclomatic Complexity is used to quantify the complexity of the underlying logical 

structure. 
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3.5 Code complexity vs. code distribution 

In this dissertation the term code distribution is understood as the way the source code of a 

program, as a whole, is organised over a number of files, classes, and methods. As an 

example, a program’s code can be placed in a single method within one file, whereas for the 

same program, in a different code distribution approach, the code may be distributed over 

several methods within different programming files. Figure 3.3 illustrates this point further. 

Method1
...
...
...
...
...

Method1
...
...
...
...
...

Method1
...
...

Method2
...
...

Method1
...
...

Method2
...
...

PROGRAM‘S SOURCE CODE

A single file with
one very large method

Method1
...
...

Method2
...
...

....................

........................................
....................Method1
...
...

Method2
...
...

A single file in wich the code 
is split over several methods

A few single files with
several large methods

Many files with
many small methods

Extract of possible code distribution approaches

 

Figure 3.3: Code distribution example 

Which code distribution is the most suitable, is highly dependent on the project, the 

programming language used, and the environment [10].  Thus, there is no clearly defined 

optimal approach for the textual code length of methods, classes, and files. Nevertheless, 

different views about an ideal length exist in the software engineering literature [10, 45]. In 

this dissertation the discussion about a possible ideal or maximum size (length) is not of 

interest. What is of interest is the actual choice of size and code distribution. Before the 

relationship between code distribution and code complexity is further explained, two 

important issues about the code distribution require to be considered:  
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(1) Long3 files, classes, and methods (with regard to their size, e.g. lines of code) are 

potentially difficult to understand [46]. With regard to the capabilities of the human 

brain, it is easier to understand small pieces of information rather than the full story at 

once [46]. However, to be able to sub-divide information into suitable pieces, a 

reasonable overview of the information must be constructed. As an example, scientific 

books and papers are organised into several chapters and sections. Thus, the authors 

present the full information in pre-selected units of information, helping the readers to 

follow their argument. How difficult a chapter or section (or a piece of source code) is 

to follow and understand also depends on the reader and is thus somewhat subjective.   

(2) Using a large number of files, classes, and methods can help to divide the information 

(a program’ source code) into smaller and more easily manageable pieces. The higher 

this number is the lower the average textual length of the individual pieces will be; thus 

resulting in small, easy to understand sections of code. However, the more files, classes 

and methods used, the harder the organisation of the program will become. By this is 

meant that if code is distributed over just one file, the programmers responsible for 

maintaining the system know exactly where to look for the code. When a program 

consists of a large number of files, the task of finding a particular source code file, 

might not be so easy and will be highly dependent on how the files are managed 

(subdirectories and labelling). A large number of classes will most likely result in a 

design, which is difficult to understand. Similarly with a large number of methods 

within a file or a class.  

In summary, a balance between section length and manageability should be found. Long 

code sections are considered less desirable, but on the other hand, short sections may not 

always provide an ideal solution [47]. However, to understand the underlying complexity of a 

code section, the actual code distribution i.e. the organisation of the code between classes and 

files, has to be known beforehand. 

For this dissertation, this last point is of great importance, and thus will be discussed in 

more detail. Complexity metrics measure particular quantifiable aspects of the source code, 

and store the quantity measured in a measure for a particular program, file, class or method. 

Thus, a measure produced can be defined for program, file, class, or method scope. To 

understand the individual measure, the measure has to be seen in relation to the environment 

                                                 
3 At which point a file, class, or method is to be considered as long is difficult to decide [47]. As stated above, 

the goal of the code distribution aspect in this dissertation is not to define an optimal length, but to understand 
which code distribution is used for a particular program. 
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of the related scope. By just looking at the weight measure of a unknown person, for example, 

you will see a value, but to grasp the meaning of the weight measure for this particular person, 

you most likely either see him/her in person or consider his/her height, age, and gender 

measures. Thus, you are consulting the person’s other physical characteristics. 

The same goes for complexity measure of a program (in the example above replaced by the 

weight measure for a person). Just seeing a value of 500 for this complexity measure will not 

tell us much, unless we either look at the program in detail or consider other measures 

describing the program scope environment.  

A program’s code distribution can be seen as analogous to the person’s height information 

in this matter 

3.6 Summary 

Aspects of measurement theory and, internal and external code attributes are all part of the 

foundation for later chapters. The definition and meaning of a particular software metric has 

to be kept in mind when the measure produced are interpreted. One difficult to measure 

internal attribute is code complexity. The code complexity can not be captured in a single 

measure [1, 33]. To describe the underlying complexity, software metrics targeting different 

aspects of software complexity should be combined. Furthermore aspects about the code 

distribution of a program require to be considered when complexity measures are interpreted. 
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4 Software metrics: Static code metrics 

This chapter gives an overview of existing static code metrics. Furthermore, the important 

software metrics for this study are explained and discussed. Not all metrics listed will be 

applied in the later code measurements (see in Chapter 6 Table 6.1 for an overview of the 

metrics used).  

4.1 Introduction 

This section illustrates the most common software metrics in the area of static code analysis. 

As well as illustrating the metrics, the areas of application and the advantages and 

disadvantages were taken into consideration. In addition, some examples are provided to 

clarify these metrics in more detail. 

Static code metrics are applied to quantify attributes of source code before run-time; such 

attributes are size, reuse, coupling, complexity. See Figure 3.1 for further examples. Basic and 

derived metrics are presented and discussed in this chapter. Basic software metrics are 

directly applied; whereas computed software metrics are derived using existing basic software 

metrics.  

4.2 Program size 

These metrics include the lines of code including comments (LOC), lines of code excluding 

comments (NCLOC), number of statements, operands and operators. 

4.2.1 Lines of code 

Lines of code metrics count the number of lines in a program. However, some lines might be 

of more interest than others with regard to the measurement purpose [1, 10]; i.e. lines of code 

may need to be further classified. 

The content of one physical line of code can be classified as follows [1]: 

o Blank line (line with no content) 

o Comment line 

o Statement line4 

                                                 
4 A statement can be a data declaration, a data definition, a simple statement, or a compound statement. 
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Line of code metrics can therefore focus on a set of aspects of this content classification. 

For example the line of code metric CLOC (Comment Lines of Code) focuses only on 

comment lines, whereas NCLOC (Non-Comment Lines of Code) focuses only on lines 

containing statements. In this way, several useful metrics can be defined and the following 

section presents them as well as their usage. A defined standard for measuring the lines of 

code does not exist [43]. 

The general positive aspects of the lines of code metrics can be seen as follows. When 

applied, they can give a quick overview of the size of a program. Furthermore, like other 

countable metrics, lines of code metrics are easy to compute and to apply. In addition, lines of 

code metrics are not restricted by programming language. 

However, when applying lines of code metrics, it is important to know that the complexity 

of a program is not considered.  

 

 Physical lines of code (LOC) 

LOC counts all lines with no regard to their content. The advantage of LOC is that it is 

easy to understand. [10].  

 

 Non-comment lines of code (NCLOC) 

The metric NCLOC counts lines that are not blank and not comment lines. NLOC is also 

called eLOC (for effective lines of code).  

 

 Comment lines of code (CLOC) 

The metric CLOC counts only lines of code that contain one or more comments. The 

quality of the comments is not considered. An interesting derived measure in this context 

is the comment rate (CLOC/LOC) which is described later in Section 4.6.1. 

4.2.2 Number of constructs 

The program size can also be measured in terms of number of programming constructs used 

within the code. The number of constructs is independent of the number of lines since several 

constructs may appear on one line for example writing several statements on one line.  

 

 Numer of statements (#STAT) 

The metric #STAT counts the total number of statements in the program. Since one 

source code line may contain several statements, the number of statements may be higher 
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than the number of non comment lines of code (NCLOC) [1]. Counting the number of 

statements in the code is not as straight forward as counting the lines of code. Here it 

depends on how a statement is defined.  

 

 Number of operators (N1) 

Operators are all keywords of a programming language (such as while, for, and switch) 

and symbols, which represent an action.  

 

 Number of operands (N2) 

Operands are all code items which represent data (such as variables, constants). 

 

 Halstead program length (HL) 

The Halstead program length is one of the linguistic software metrics5 introduced by 

Maurice Halstead in 1977. The so called Halstead software science metrics were created 

in order to measure the program size (which is discussed in this section) and the textual 

code complexity (see Section 4.3) [2, 13].  

The Halstead length (HL) is based on counting the total number of operators (N1) and 

operands (N2). Halstead introduced the Halstead length of a program as an estimation of 

the length of the program excluding comments as an alternative to NCLOC [13]. The 

metric definition is as follows: 

21 NNHL +=  

As such HL is thus a well defined metric, defined in terms of the number of instances of 

operands and operators used. [48] [1] [14]. 

4.2.3 Comments and examples 

Program size metrics (especially the lines of code metrics) are widespread and accepted. Care 

must be taken when a lines of code metric is discussed, to distinguish between LOC, NCLOC 

and CLOC. The lines of code metrics are a reasonable indicator for a program’s size and also 

offer potential for derived metrics. Following is an example (Table 4.1) to illustrate how the 

different program size metrics vary in the measures produced.  

 

 

                                                 
5 Linguistic metrics are quantifying properties of program or specification text without the text’s semantics. For 

example : lines of code, number of statements, number of unique operators 
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 LOC NCLOC CLOC #STAT HL

// switches the values of two integers 1 1  

function switch(int &a, &b) { 1 1 1 7

  Int tmp; 1 1 1 2

  tmp = a; a = b; b = tmp; // switch values 1 1 1 3 9

} 1 1  1

 5 4 2 5 19

Table 4.1: Program size example 

4.3 Code distribution 

Section 3.5 illustrated the importance of considering the code distribution aspects for the 

interpretation of measures produced. This section gives a brief overview on how the code 

distribution can be quantified. 

4.3.1 Measuring code distribution 

The code distribution of a program can be measured by considering the size (i.e. length) of the 

individual files, classes and methods together with the number of these files, classes and 

methods. The files, classes and methods are considered to be program/code sections in the 

program, which hold parts of the code. The following metrics measure for a program section 

group defined (e.g. all methods) the code distribution among these code sections defined. 

4.3.2 Code distribution metrics 

 Number of program sections 

The Number of program sections metrics count the number of specific program sections in 

a program. Within this group of metrics are the following metrics: 

• The number of file (#files)  

• The number of classes (#classes) 

• The number of methods (#methods) 

Combined with the program size metrics, these metrics can give information about the 

organisation of the underlying program. For example, LOC/#files gives the average lines 

of code per file. A pathological case is the monolithic program i.e. all the code is in one 

file.  
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 Size per program section 

The size per program section metrics measure the size (length) for particular code sections 

(such as methods). As size metric, one of the program size metrics listed can be selected. 

For example the Statements per method metric measures the number of statements in a 

method. Here, extremely long methods can be difficult to comprehend. Refer back to 

Section 3.5 for a discussion on code distribution aspects. 

4.3.3 Summary 

The code distribution metrics are simple to understand and compute. In order to understand 

the code distribution of a program, more than the average values (e.g. average LOC per file) 

require to be considered.  

4.4 Halstead code complexity 

4.4.1 Halstead’s software science 

The software science metrics, introduced by Halstead in 1977, were created as means of 

quantitatifying the complexity of a program [2, 13]. As linguistic software metrics6, however, 

the Halstead metrics were found not to capture the complexity of a program, but the textual 

complexity of the code [14]. 

The Halstead software metrics are a good example of how a set of derived metrics can be 

created from a set of simple metrics. Halstead bases his software metrics on counting the 

number of operators and operands (see Section 4.2.2.). Halstead further classified into total 

and distinct number of operators and operands. The four resulting simple metrics are as 

follows [14, 48]: 

n1 : number of distinct operators 

n2 : number of distinct operands 

N1 : number of actual operators 

N2 : number of actual operands 

In the following section the Halstead software science metrics are explained. The Halstead 

program length (HL) was previously introduced in Section 4.2.2) 

                                                 
6 Linguistic metrics are quantifying properties of program or specification text without the text’s semantics. For 

example : lines of code, number of statements, number of unique operators 
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4.4.2 Halstead’s complexity metrics 

 

 Halstead vocabulary (Hvoc) 

The Halstead vocabulary is an indicator for vocabulary size of a program. It is calculated 

as the sum of the number of unique operators and operands [13]. 

21 nnHvoc +=  

A small program vocabulary can indicate two possible aspects. (1) In the program 

measures, the same operands and operators are used frequently, thus making the program 

less complicated to understand. (2) The program measured uses a small number of 

operands and operators, as it is small in program size, which consequently results in a 

small program vocabulary. 

 

 Halstead Volume (HV) 

Halstead's volume (HV) metric was intended by Halstead to measure the volume of a 

program.[48]. For the computation of HV, the number of operations performed and 

operands handled are considered [1]. The computation of V is performed as follows. 

)(log* 2 HvocHLV =  

The Halstead volume is a “count of the number of mental comparisons required to 

generate a program” [13]. Halstead believed that the Halstead volume indicates the size of 

any implemented algorithm. 

 

 Halstead Difficulty (HD) 

The program difficulty was intended to measure the difficulty to implement the program 

[13].  

N2 * n2) / (n1 * 0.5    n2) * (2 / N2) * (n1  HD ==  

 

 Halstead Effort (HE) 

According to Halstead [13], the program effort, as the ratio of program volume and 

program level, represents the number of mental decisions (effort) required for the 

implementation of the program.  

HV * HD  HE =  
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4.4.3 Comments on the Halstead metrics 

Halstead’s software science metrics are based on countable measures and therefore can be 

computed easily. However, the rules for identifying operators and operands have to be 

determined for every programming language. The Halstead difficulty and effort have been 

much discussed [48]. Halstead intended them as complexity metrics, but they have been under 

severe criticism since their publication. The main criticism is that the measurements show 

lexical and textual complexity rather than structural or logical complexity (for more on 

complexity see Chapter 3.4). Some authors [14, 49] argue that when the drawbacks are known 

and accounted for, the Halstead software science metrics can deliver good results. 

4.5 Control flow complexity 

4.5.1 Simple control flow metrics 

The metrics presented help in later experiments, in combination with the complexity metrics 

(such as CC or Halstead difficulty), to gain information about the structure and complexity of 

a program. 

 

 Nested block depth (NBD) 

The nested block depth metric measures the depth of conditional nesting in a method or 

module. The nesting depth is indicated by the width of the methods/modules flow graph 

(see Figure 4.1). Therefore the metric is an indicator of complex control flow within the 

program. Deeply nested conditional statements increases the conceptual complexity of the 

code and are more likely to be error-prone [38]. 

 

 Brach percentage (BP) 

This metric considers the percentage of statements that cause a break in the sequential 

execution (i.e. creating a branch in the programs flow graph) over all statements (#STAT). 

A high branch percentage indicates a complex control flow within the program. 
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4.5.2 Cyclomatic and Essential Complexity 

 

 Cyclomatic Complexity (CC) 

The Cyclomatic Complexity, which was introduced by Thomas McCabe in 1976 [12], 

measures the structural complexity of a module by counting the number of linearly-

independent paths through the program module. Cyclomatic Complexity is sometimes 

referred to as McCabe complexity or simply as program complexity. For a flow graph F, 

the Cyclomatic Complexity is calculated from the number of arcs (e) and the number of 

nodes (n) as follows: 

2 n  - e   V(F) +=  

In a given flow graph example shown in Figure 4.1, we 

have 8 edges and 7 nodes. The Cyclomatic Complexity for 

this flow graph is calculated as follows: 

3  2  7 - 8   v(F) CC
2 n  - e   v(F) CC
=+==

+==
 

The number of linearly-independent paths through the 

module can be clearly captured with flow graphs. Another 

way of calculating the Cyclomatic Complexity for a 

module is to count the number of single/multiway 

decisions, which in program languages are indicated by 

keywords (such as if and switch). In Figure 4.1, the 

intersections illustrate the decision points, which in the 

source code is presented through if – else constructs. 

 

Figure 4.1: Control flow 

Because of CC’s simple computation and the ability to indicate how difficult a module 

will be to test or maintain, it is widely used and used it several software measurement 

tools [1]. 

The key benefits of Cyclomatic Complexity can be seen as following [5, 50]: 

• The metric is independent of source code layout and only loosely bound to the 

programming language used, as different single/multiway decision statements (such as 

if, case, switch) might be available. The decision making constructs are common 

among programming languages but the naming (e.g. switch and case) of these can 

differ. 
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• As the cyclomatic number indicates the number of independent paths through the 

program module, CC itself represents the minimal number of tests needed to confirm a 

program’s preconditions [51][34]. 

 

The disadvantage of this metric is that the CC metric gives no representation of 

relationships between methods. Thus, the metric does not show coherence and coupling of 

methodss [5]. 

According to van Doren [52], CC finds its areas of application in code development 

risk analysis, change risk analysis in maintenance, test planning, and reengineering. When 

it comes to threshold values for CC, McCabe suggested the value of 10 to be a good 

indicator for when a module might need to be reviewed [1]. In 1994, Grady concluded that 

the CC value for a module under maintenance should not exceed 15 [1]. 

 

 Extended Cyclomatic Complexity (ECC) 

This metric is an extension of the McCabe Cyclomatic Complexity metric. ECC extends 

the original CC metric by including Boolean operators in the decision count [53]. I.e. the 

value of ECC is always higher or equal to the CC value of a module measured. Regarding 

the computation of ECC, the general CC computation is extended by increasing the 

complexity count whenever a Boolean operator (And, Or, Xor, Not) is found within a 

conditional statement (see Cyclomatic Complexity). In software measurement tools 

Extended Cyclomatic Complexity is often used (see Chapter 5) instead of the CC metric, 

since a Boolean operator increases [51] the internal complexity of a branch. E.g. the same 

complexity level can be achieved through sub-dividing the code into sub-conditions 

without Boolean operators.  

 

 Essential Complexity (EC) 

In 1977, McCabe [12] proposed another complexity metric named Essential Complexity 

metric [1]. The essential complexity metric measures the level of structured logic in a 

program [1, 51, 52]. For the computation of EC, the Cyclomatic Complexity of program’s 

reduced flow graph is evaluated. For the control flow graph reduction, structured 

programming primitives (sequential, selection and iteration nodes) are removed until the 

graph cannot be reduced further [12, 51]. I.e. the reduced flow graph will not produce a 

higher CC value then the original flow graph, having EC always less or equal to CC. 

Thereby the definition of EC looks as follows: 
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EC = CC – m = v(F) – m 

Where m is the number of subgraphs (in the control graph) with sole entry and exit points 

[1, 12]. Figure 4.2 illustrates a control flow graph reduction to a single statement in the 

essential complexity computation process. I.e. the corresponding program sequence can be 

reduced to a program of unit complexity [54]. 

 

 

Figure 4.2: Tree reduction [51] 

Not all control flow graphs can be reduced in the same manner. Further, McCabe [51] 

states that even primitive constructs containing module calls can be removed. At this point 

only a brief introduction to the essential complexity is presented. For further readings on 

the topic please see the McCabe literature listed under Chapter 10, especially [51]. 

4.5.3 Comments on the control flow complexity metrics 

Further complexity measures have been designed especially for object oriented designs. These 

are discussed in Section 4.7. So, several complexity metrics that try to quantify software 

complexity exist. However, as Fenton [33] and other authors [8] have expressed, the 

complexity metrics have to be treated with caution. The metrics presented can be used as 

indicators of program complexity, thus, should not be used alone as a basis for the general 

complexity of a system. Laird [34] states that complexity metrics can be more helpful when 

used in combination. In Chapter 3.4 software complexity is discussed in more detail. 

4.6 Code maintainability 

Code maintainability is, as Sommerville [38] sees it, a code attribute that characterizes how 

easy existing source code can be modified to provide new or changed functionality, correct 
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faults, improve performance, or adapt to a changed environment. According to ISO 9126, can 

maintainability be classified into the attributes stability, analyzability, changeability and 

testability. Since software products should preferably stay maintainable [55], there have been 

several attempts to quantify the maintainability of a software system. The most widely spread 

software metric trying to quantify the maintainability is the Maintainability Index which is 

presented in 4.6.2 [56].  

4.6.1 Comment Rate 

The Comment Rate (CR) metric measures the ratio between the number of physical lines, 

LOC, and CLOC and therefore gives an indicator of how much the source code is 

commented. A high comment rate can be beneficial in terms of code maintainability, however 

the quality and usefulness of the code has to be considered to determine this. The Comment 

Rate does not quantify the quality of the comments but the quantity, thus has to be treated 

with care, when the code maintainability is analyzed. 

4.6.2 Maintainability Index (MI) 

The Maintainability Index (MI) was introduced by Dr. Paul W. Oman [49] in 1992 as a 

predictor of maintainability. The MI has been subject of several studies [53, 56, 57], which 

state a high correlation between a system’s maintainability and the MI value. Furthermore, the 

MI metric is still today a widely used indicator for maintainability [53]. Oman combined in 

the MI the following four widely used unrelated software metrics [56]: 

 The average Halstead Volume (Avg_HV) per program section (e.g. file, class, ..) 

 The average Extended Cyclomatic Complexity (Avg_ECC) per program section  

 The average number of lines of code (Avg_LOC) per program section  

 The percentage of comment lines (CR) per program section  

 
These metrics are discussed in detail in preceding subsections of this chapter.  

 

The Maintainability Index is defined as  

) CR) * (2.4 sin( * 50 

 ) avg_LOC ln( * 16.2 -          
 avg_ECC * 0.23 -          

 ) avg_HV ln( * 5.2 - 171    MI

+

=
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According to [56, 57] the computation of the CR (Comment Rate) in the MI metric is 

optional. A general understanding is that good commented code is easier to maintain, however 

the CR does not indicate the quality of the comments written. The coefficients used in the 

definition were derived throughout numerous calibration tests of the MI metric [56]. On 

application of the MI metric, measures typically range from 100 to -200 [53]. Here the higher 

the MI value, the more maintainable [53, 56, 57] a system is considered to be.  
 

The advantages of MI: 

The calculation of the MI metric is considered simple and straightforward [56]. In 

addition, through the combination of the McCabe and Halstead metrics, the MI targets 

individual aspects of software complexity (structural & lexical complexity).  
 

The disadvantages of MI:  

Since the MI is derived from three or optional four unrelated metrics, a change in value 

in the MI requires examination of all the metrics used in the derivation to furnish a 

explanation for the change [57]. In object oriented systems the possibility of a high number 

of methods with low complexity (e.g. getter & setter) may affect the MI via the ECC. The 

use of an average Extended Cyclomatic Complexity can result in flawed outcomes [57].  

 

4.6.3 Maintainability Index summarized 

As van Doren [56] states, there have been several attempts to quantify software 

maintainability. MI is a good approach to do so as it tries to quantify a program's 

maintainability through the combination of widely-used and commonly-available metrics. The 

main drawback of MI, as it produces a composite measure, is problem of identifying the 

particular cause for a value change.  
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4.7 Object oriented metrics 

The metrics presented in this section were designed to fit the object oriented software 

approaches. The work of Chidamber and Kemerer [20] is a widely used and frequently cited 

[58] set of object oriented metrics. In addition, the MOOD metrics set from Abreu [21] is 

presented and discussed. More object oriented metrics exist and are briefly mentioned. 

However, for a more complete picture [59], [60] and [18] are suggested.  

4.7.1 Chidamber and Kemerer metrics (CK) 

The metrics set introduced by Chidamber and Kemerer [20]. In 1994 considers structural 

characteristics and design of object oriented programs and is considered one of the most 

widely spread OO metrics [59]. The CK metrics set contains six metrics which are presented 

and discussed below:  

 

 Weighted Method per Class (WMC) 

This metric measures the total complexity of a class. For this, the number of methods and 

the complexity level of the methods involved are considered. The authors state that the 

number of methods and the complexity of these are indicators for the time and effort 

required to develop and maintain the class [20]. The WMC metric is calculated as follows: 

∑ =
=

n

1i ic  WMC  

Here ci is equivalent to the complexity of the respective method and n the total number 

of methods involved. To construct the WMC metric flexible, the authors intentionally did 

not specify a method for computing the complexity ci and thereby left the users to choose 

the best fitting approach [20]. The available software measurement tools use the 

Cyclomatic Complexity metric (CC) for computing the complexity of the methods. 

However other static complexity metrics could be used instead (e.g. ECC) [18]. A high 

value of the WMC metric indicates a class which should be redesigned into smaller 

classes [20] [18]. 

 

 Depth of Inheritance Tree (DIT) 

The Depth of the Inheritance Tree (DIT) is defined as the longest path from the current 

node back to the root of the tree [20]. With a growing inheritance tree, more classes are 

involved, the design complexity as a whole grows and it becomes more difficult to 
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calculate the behaviour of a class [59]. A lower DIT value is worthwhile, however a low 

average DIT value may suggest the presence of little reuse by inheritance [58]. 

 

 Number of Children (NOC) 

The Number of Children metric measures the level of reuse in a system by counting the 

numbers of immediate subclasses of a defined object in the class hierarchy. A growing 

NOC value indicates a higher level of reuse. However, the higher the NOC value the 

higher the amount of testing required due to the increase in class responsibilities [59]. 

 

 Coupling between Object classes (CBO) 

For each object this metric returns the number of objects to which it is coupled. Two 

objects are seen to be coupled if object methods or instance variables are used from each 

other. High coupling between classes complicates the reuse of these modules, since the 

classes will require exactly the same conditions in the new system and are thereby limited 

in maintainability and reusability. The CBO value should be kept low, since higher values 

indicate more testing effort [59]. 

 

 Response for a Class (RFC) 

The RFC metric measures the number of called methods plus the number of class owned 

methods. The RFC measure reveals the maximum number of methods which can be 

invoked through a message to an object of this class [20]. A high value is an indicator for 

high class design complexity [59] and lower values indicate higher reusability due to 

greater polymorphism.  

 

 Lack of cohesion in Methods (LCOM) 

The LCOM metric measures the lack of cohesion within a class by evaluating the 

dissimilarities between methods of a class. A high dissimilarity between methods 

indicates that the class fulfils different purposes and should be divided into several 

subclasses. In addition to the lack of cohesion, the metric is intended by [20] to reveal the 

complexity of a class and the design quality of the system [61]. CK defined the LCOM 

metric as follows [20]: 

|P| - |Q| ,  if |P| < |Q| LCOM = 
0,  otherwise 

where  

 45 



 

P = all disjoint attribute sets used by class methods 

Q = all not disjoint attribute sets used by class methods 

However, since the introduction of LCOM, the metric has been under severe criticism 

and other definitions for LCOM have been proposed. Two suggestions for LCOM by 

Henry & Li and Henderson-Sellers will be presented later in this chapter. 

4.7.1.1 CK summary  

The CK metrics present the headstone for object oriented design metrics and are the basis for 

several other OO metrics, some of which will be presented subsequently in this chapter. 

Regarding the criticism on the six CK metrics, WCM and LCOM have emerged as the most 

criticised [1]. The WMC’s advantage of leaving the metric adjustable regarding the 

complexity method used can be seen as a disadvantage from the point of view of lack of  

precise description, since CK does not indicate which complexity metric to use [58]. In 

addition, the complexity metrics used need to be adapted to object oriented design 

approaches. Henderson-Sellers [18] points out that setter and getter methods can bias the 

WMC metric by considerably lowering the mean complexity measure if a non OO complexity 

metric is applied, for example the Cyclomatic Complexity (CC). Setter methods are methods 

with no other purpose than setting a value or state of a class property. Getter methods are used 

for retrieving a class property. Additionally, [62] highlights that the WMC description 

altogether lacks the differentiation about which metrics should be considered in the WMC. 

Regarding the NOC value, Reißing [62] and Sarker [59] point out the ambiguity of striving 

for a high or low value. Both high and low values have drawbacks. The LCOM metric was 

criticized heavily and has been target for many suggestions for improvement, because the 

version proposed by Chidamer and Kemerer does not react sensitively enough to cases of high 

cohesion and lacks coverage of special cohesion cases [18]. 

4.7.2 The MOOD metrics set 

The MOOD (Metrics for Object Oriented Design) metrics set developed by Abreu et at. [21] 

can be categorized into the four object oriented paradigms namely encapsulation, inheritance, 

coupling and polymorphism [63]. Abreu based the six software metrics in the MOOD metric 

set on two key elements of object oriented programming: object methods (M) and object 

attributes (A). Furthermore, the visibility (visible/invisible) of methods and attributes outside 

the class is considered [21]. The six Abreu metrics (MHF, AHF, MIF, AIF, POF and COF) 

are presented below. 
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4.7.2.1 Encapsulation 

The MHF and AHF metrics measure the invisibility of methods and attributes in classes. 

The invisibility of a method/attribute is the percentage of the classes/(total number of classes) 

from which the method/attribute is not visible [58]. 

 

 Method Hiding Factor (MHF) 

The MHF metric measures the invisibility of methods in all classes (TC). 
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Md (Ci) = the number of all methods defined in the classi 

A MHF measure of 0% indicates that all methods are defined as visible, whereas a 

MHF measure of 100% indicates that all methods are hidden. The latter scenario provides 

little functionality, since the classes in the system cannot communicate well with each 

other [59]. 

 

 Attribute Hiding Factor (AHF) 

The AHF metric computation is very similar to MHF. Instead of hidden methods in a 

classi, hidden attributes in a classi are considered. Thus, the AHF metric measures the 

invisibility of attributes in all classes (TC). 

∑

∑ ∑

=

= =

−
= TC

j jd

TC

i

CA

m
mi

CA

AV
AHF

id

1

1

)(

1

)(

))(1(
, where 

1

),(_
)( 1

−
=
∑ =

TC

CAvisibleis
AV

TC

j jmi
mi  

According to object oriented design principles, attributes should be kept hidden 

within a class [55] Therefore, the AHF measure is expected to be high, indicating high 

attribute invisibility. 

4.7.2.2 Inheritance 

The MIF and AIF metric measure the inheritance level in a system.  

 

 Method Inheritance Factor (MIF) 

The MIF metric is computed through the number of inherited methods (Minh) in all 

classes (TC) and indicates the percentage of inherited methods in a system. 
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Ma (Ci) = the number of all methods in the classi 

Ma (Ci) = Md (Ci) + Minh (Ci) 

 

 Attribute Inheritance Factor (AIF) 

The AIF metric is computed through the number of inherited attributes (Ainh) in all 

classes (TC) and indicates the percentage of inherited methods in a system. 
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Aa (Ci) = the number of all attributes in the classi 

Aa (Ci) = Ad (Ci) + Ainh (Ci) 

 

4.7.2.3 Polymorphism 

Polymorphism can be measured as degree of overriding in the inheritance tree.  

 Polymorphism Factor (PF) 

The PF metric is computed as the number of methods that redefine inherited methods 

divided by the actual number of possible different polymorphic situations. The PF is 

defined as follows: 
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Mn (Ci) = the number of new methods defined in classi 

Mo (Ci) = the number of overriding methods in classi 

DC (Ci) = the descendants count in Ci 

TC = total number of classes 

4.7.2.4 Coupling 

 Coupling Factor (CF) 

The CF metric measures the coupling degree excluding inheritance coupling. The 

computation is done as follows: 
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The numerator represents the actual number of couplings not attributable to 

inheritance. TC is defined as the total number of classes. The denominator is computed 

as the maximum number of couplings with TC classes. The CF measures can vary 

between 0 and 1. High values indicate a very high coupling degree and should be 

avoided [59]. 

4.7.2.5 MOOD Summary 

The MOOD metrics have become an accepted object oriented metrics set. They cover the 

object oriented aspects of encapsulation, inheritance, coupling and polymorphism. Studies 

indicate that the metrics are valid [58, 59, 63] and that only minor problems, such as the 

imprecise definition of the concept “attribute”, exist [63]. 

4.7.3 Henry and Kafura metrics 

In 1981 Henry and Kafura introduced metrics of intermodule coupling [18]. 

4.7.3.1 Fan-in 

The Fan-in (Informational fan-in) metric measures the fan-in of a module. The fan-

in of a module A is the number of modules that pass control into module A. 

4.7.3.2 Fan-out 

The Fan-out metric measures the number of the number of modules that are called 

by a given module. 

4.7.3.3 Information Flow 

The Information Flow metric, which was proposed as structural complexity metric, 

is derived from a modules fan-in and fan-out measures. The metric is calculated as 

the square of the product of the fan-in and fan-out of a single module.  

4.7.3.4 Summary 

High values for Fan-out indicates a high complexity of a certain module due to the 

control logic needed to coordinate the called methods/modules [38]. A high value 

for Fan-in indicates the particular module is tightly coupled to the system. Tight 

coupling should be avoided if possible, since in a tightly coupled system a single 

module change will result in changes to other modules [38]. 
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4.7.4 Other OO metrics 

More OO metrics have been proposed but are not as widely spread and analyzed as the CK 

and MOOD set [58], and are therefore are not discussed in detail. 

4.7.4.1 Li and Henry 

Li and Henry reused five of the six Chidamber and Kemerer metrics and introduced five new 

metrics. These five new metrics are listed below: 

 Message Passing Coupling (MPC) 

 Data Abstraction Coupling (DAC) 

 The Number of Methods (NOM) 

 The number of semicolons (SIZE1) 

 The number of properties (SIZE2) 

 

 

4.7.4.2 Chen and Lu 

Chen and Lu developed an object oriented metric set in 1993 which mainly focuses on class 

complexity [58]. These metrics are the follwing: 

 Operation Complexity (OpCom) 

 Operation argument complexity (OAC) 

 Attribute complexity (AC) 

 Reuse (Re) 

 

 Operation coupling (OpCpl) 

 Class coupling (ClCpl) 

 Cohesion (Coh) 

 Class hierarchy (CH) 

 

4.7.4.3 Moreau and Dominick 

 Message vocabulary size (MVS) 

 Inheritance complexity (IC) 

 Message domain size (MDS) 

 

 

4.7.4.4 Abbott, Korson and McGreggor 

 Interaction level (IL)  Interface size (IS) 

 

4.7.4.5 Hitz and Montazeri 

 Object Level Coupling (OLC)  Class Level Coupling (CLC) 
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4.8 Summary 

The Cyclomatic Complexity (CC) and the Halstead complexity (HC) metrics are important 

contributions to the area of software measurement, but should be used be used in combination 

with other metrics to provide a context in which these two metrics (CC, HC) may be 

interpreted. 

A wide variety of object oriented metrics have been designed to quantify aspects of object 

oriented systems. The CK metric set focuses on class hierarchy, complexity, coupling and 

cohesion. Whereas, the MOOD metric set focuses on encapsulation, inheritance, message 

passing and polymorphism within the system level. Other object oriented metrics that have 

not been discussed in this chapter, can be reviewed in [18, 19, 58-62]. 
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5 Software measurement tools: Static code analysis 

This chapter presents the results from the survey of available static code analysis conducted. 

A list of available software measurement tools is presented as well as an analysis and 

comparison of these tools in order to select the tools used in this study. 

5.1 Introduction 

Several commercial and open source software measurement tools are available, but the 

majority of the static code analysis tools were found to mainly focus on one specific 

programming language. Since the implementation of software metrics can differ [2] from one 

tool to another, the application of several tools for the same metric should be avoided. For this 

project, tools supporting the analysis of C, C++ and Java programs were required. The 

following section presents a list of available software measurement tools which focus on code 

analysis.  

5.2 List of tools 

Many static code analysis tools exist, both commercial and non commercial. The following 

list of tools was created during the software measurement tool survey, presenting an overview 

on the number and the names of the tools available. The tools were found with the help of 

internet search engines, wikipedia and ‘http://www.testingfaqs.org’. 

 

A-C 

AccVerify SE for FrontPage, Aivosto Project Analyzer, ASSENT, Axivion Bauhaus Suite, 

Ccount, CCCC, Cleanscape LintPlus, ClearMaker, CMT++/CMTjava, CodeCompanion, 

CodeReports, CodeSurfer, Coverity Prevent and Extend 

 

D-K 
DeepCover, Dependency Walker, Discover, Eclipse Metrics, Enerjy CQ2, ES1, ES2, 

Flawfinder, floppy/fflow, ftnchek, FxCop, Hindsight/SQA, HP_Mas, Jtest, JHawk, JMetric, 

JDepend, Jstyle, Klocwork K7, Krakatau, Essential Metrics 
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L-P 
LDRA Testbed (static analysis), Lind, Logiscope, Malpas, McCabe QA, METRIC, Metrics 

Tools, NStatic, Optimal Advisor, ParaSoft CodeWizard, Project Analyzer, PC-lint/FlexeLint, 

PC-Metric, PMD, PolySpace, Plum Hall SQS 

 

Q-Z 

QStudio for Java Pro, RSM (Resource Standard Metrics), Safer C Toolset, SCLC, SDMetrics, 

SemmleCode, Splint, SofAudit, SourceMonitor, SSW Code Auditor, STATIC, Team in a 

Box, Together ControlCenter 

Table 5.1: Static code analysis tools list 

Since the above list is long, only a handful of tools were considered for the tool comparison.  

Here, the tools which passed the given requirements were examined closer. These 

requirements included the programming languages, the metrics supported, the reliability and 

the availability. Only tools with C, C++ and Java support were of interest. A mix of software 

measurement tools can bias the measures produced for different programming languages (as 

indicated in Section 5.1), thus one tool should cover all three selected programming 

languages. In addition, the measures produced should be reliable. Thus, the metric 

computation was expected to come close to originally intended metric definition (listed in 

Chapter 4). Moreover, for commercial software measurement tools, a sufficient trial version 

was expected to be available on request.  

Finally three commercial and two non commercial software measurement tools were 

selected based on the requirements listed.  In the following sections the selected tools, namely 

CCCC, CMT, Essential Metrics, Logiscope and SourceMonitor, are introduced. In Section 5.3 

the tools are analyzed and compared with regard to the metrics support, the metrics 

implementation, reliability, and usage. 

 

5.2.1 CCCC 

CCCC (C and C++ Code Counter) is a free software measurement tool for static code 

analysis. Tim Littlefair [35] developed the tool as a part of his PhD software metric project in 

2001 [64]. Since then, it has been under continuous maintenance and is available through the 

open source development and download repository SourceForge.net. The programming 
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languages supported by CCCC are C, C++ and Java. Earlier versions of CCCC also provided 

Ada (83, 95) programming language support. This static source code analysis tool supports a 

variety of software metrics including LOC, Cyclomatic Complexity and metrics proposed by 

Chidamber & Kemerer and Henry & Kafura. The tool can be found at 

http://cccc.sourceforge.net/. 

 

5.2.2 CMT 

The commercial software measurement toolset CMT (Complexity Measurement Tool), 

containing the tools CMT++ and CMTjava, is a product of the company Testwell and is 

distributed through Verisoft. These tools are intended for static source code analysis and 

mainly focus on code complexity metrics (such as the Halstead metrics or Cyclomatic 

Complexity). CMT++ supports the analysis of C and C++ programs and CMTjava similarly 

supports java programs. The traditional software metrics implemented are CC, MI, Halstead 

metrics and LOC metrics. The tools are advertised as being able to measure many thousand 

source lines per second. More Information about the tool can be found at the Testwell website 

at http://www.testwell.fi/.  

 

5.2.3 Essential Metrics 

Essential Metrics is a commercial command line software measurement tool which is 

distributed through Power Software (“http://www.powersoftware.com/”). Essential Metrics 

supports the static analysis of C, C++ and Java source code. As well as traditional software 

metrics, such as LOC and Cyclomatic Complexity, Essential Metrics also supports several 

object oriented metrics (such as the CK and MOOD metrics). More Information about the tool 

can be obtained from the company website at http://www.powersoftware.com/em/. As well as 

Essential Metrics, Power Software also offers five other products that are intended for 

software measurement (such as tools for software project measurement). 

 

5.2.4 Logiscope 

Telelogic Logiscope is a commercial software package developed for software quality 

assurance. Static and dynamic complexity analysis of software code can be performed and a 

wide variety of software metrics (over 40) are supported in Logiscope. As graphical software 

measurement tool Logiscope supports metrics for C, C++, Java and Ada. Furthermore, 
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functions for new custom software metrics can be defined. This tool was provided by 

Telelogic as a trial version for this dissertation. More information about the tool can be 

gathered on the Telelogic website at http://www.telelogic.com/. 

 

5.2.5 SourceMonitor 

The freeware tool SourceMonitor by Campwood Software is a graphical software 

measurement tool with focus on static code analysis comparison and code review. This means 

SM provides functionality for comparing source code versions via checkpoints. Additionally, 

SourceMonitor supports a wide variety of programming languages including C, C++, C#, 

Java, VB.NET, Delphi, Visual Basic (VB6) and HTML. The measures produced may be 

graphed, printed, or exported and analyzed through diagrams. However, only a small selection 

of software metrics is supported by SourceMonitor. The tool can be found at 

http://www.campwoodsw.com/. 

5.3 Tool comparison 

After the introduction to the selected tools in the previous section, a more detailed 

examination is presented in this section. Here, the focus lies on the metrics support, the 

metrics implementation, reliability, and usage.  

5.3.1 Tools in detail: Usage and the metrics supported 

CCCC (version 3.1.4) 

The documentation provides a section for the metrics description and a separate section for 

the metric computation. In addition, the documentation explains the application of the 

command line tool as well as the options available. However, since CCCC is a command line 

tool, extra time for understanding and adjusting to its usage was required. Once comfortable 

with the tool, various programs can be measured in one command line. As an open source 

project, CCCC was intended to be platform-independent and still is; however a windows 

installer has been added to remove the duty of compiling from the user. The results produced 

by running CCCC are exported as HTML and xml files. The output in the html file is well 

structured and colours indicate measures outwith specified boundaries. As briefly mentioned 

in Section 5.2, CCCC also provides object oriented metrics from Chidamber & Kemerer (CK) 

and Henry & Kafura besides the LOC and CC metrics. However, the CK metrics set 

supported is not complete, since the RFC and LCOM metrics have not been implemented in 

 55 



 

the static code analysis tool at present.  The Henry & Kafura metrics implemented are: Fan-in, 

Fan-out, and Information flow.  

 

CMT (version 4.1) 

CMT++ and CMTjava (version 2.1) are alike in their usage. The difference between the two 

tools lies in the programming languages supported. Due to the different programming 

languages, different programming constructs have to be taken into account. For example, the 

‘#define’ construct in C and C++ is not valid for Java which results in minor differences in 

the metric computation. The differences however, can also be found in tools which combine 

the analysis of Java, C, and C++. The graphical user interface (GUI) provided (please see the 

Appendix for screenshots) is very clear and the functionality is self-explanatory. The GUI is, 

compared to other evaluated software measurement tools like Logiscope or SourceMonitor, 

rather simple, and due to this simplicity further reading of the documentation is not required. 

Several report types are supported in CMT, and in this project, the xml output has been used. 

The xml output file is structured clearly and logical names are used to label the measures 

produced. A disadvantage of CMT is that it does not display results using graphs and 

diagrams. On the other hand this deficiency is acceptable, regarding the simplicity of the 

tools. Furthermore, the graphs required can be build manually (e.g. in excel) from the output 

files. The full name of CMT (Complexity Measurement Tool) indicates the integration of 

complexity metrics. However, the tool does not take into consideration the complexity of 

object oriented designs. Neither CK and Mood, nor HK metrics are implemented. The metrics 

covered are: LOCs, Halstead, block depth, CC and MI. Table 5.2 presents the metrics support 

in more detail.  

 

Essential Metrics (version 1.2) 

The available documentation for Essential Metrics is somewhat insufficient. The 

documentation provided after installing the software is available in the form of a 46-line long 

README text file, most of which is used for company contact information and 

acknowledgments. The essential point in the README file is to explain how to create a file 

list via the DOS dir command. Since more emphasis was placed on how the product can be 

licensed, the user needs to figure out the application of the command line tool through trial 

and error approaches. Information and a detailed guide for licensing the software can be found 

both online on the company website as well as in the installation path of Essential Metrics.  
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Once the use of the tool has been mastered, the lack of progress messages becomes 

noticeable. When running the tool, no information is given about which source code file is 

currently being processed or which metric is applied; the command line screen stays almost 

blank. Only a short start text and three characters are shown (“abc”), for which the intended 

meaning is unknown. The lack of error message coverage of the tool is also quite noticeable; 

however, this aspect is more discussed in Section 5.4. 

Compared to the other tools analyzed, Essential Metrics supports a wide variety of 

software metrics. These range from LOC and comment ratio to Halstead metrics and 

Cyclomatic Complexity to the object oriented metric sets CK and MOOD. However, the 

Henry and Kafura metrics are not implemented. Table 5.1 presents which metrics in detail are 

supported by Essential Metrics. 

The tool does not provide an option for selecting which metrics should be applied and 

therefore all metrics are applied automatically. This can create unnecessarily complex output-

files. The results can be stored in html, xml, or csv file format.  

 

Logiscope (version 6.2.30) 

As indicated in the previous section, Telelogic Logiscope is a graphical software 

measurement package. The graphical user interface was found to support ease of use. 

However, not all computed metrics are accessible over the GUI (e.g. object oriented metrics 

are not displayed). Additionally, measuring several projects via the GUI is very time 

consuming. Therefore, the usage of the provided command line tools is of interest. The full 

functionality of each command line tool is explained in separate documentation.  

The information about the tools is extensive and the variety of metrics supported is not 

clearly explained. Unfortunately, the list of metrics supported and information regarding the 

metrics is not available through the company’s official webpage. Whereas, for the other 

software measurement tools evaluated, the software metrics supported were mostly listed on 

the specific company website and sufficient information about the product was given.  

After getting acquainted with Telelogic and its command line tools, it was noted that the 

metrics supported were different for different programming languages. Thus, for C++ and 

Java, both being object oriented programming languages, a major difference in metric support 

was detected. This meant in detail that the object oriented metrics described in Chapter 4 

(such as CK and MOOD) were supported for C++, but not for Java.  This difference resulted 

in reconsidering the tools application for the code measurements planned.  
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SourceMonitor (version 2.3.6.1) 

The build-in Documentation in SourceMonitor explains the metric computation for the 

different programming languages supported. Each metric is mentioned in a small paragraph. 

In addition, chapters on “Getting started”, explanation of the user interface, and how to export 

the data are provided. All in all, the documentation is complete, but the computation could 

have been explained in more detail. The metric implementation is not entirely clear and 

therefore test scenarios are required.  

Another drawback of the tool is that object oriented metrics are not fully supported. By 

this, is meant that neither the CK nor the MOOD metrics are included and the ones which are, 

only barely capture OO design aspects. The two OO metrics included are the number of 

classes and interfaces and the number of methods per class. The metrics which are supported 

mainly focus on flow graphs and can be classified into complexity (cyclomatic complexity) 

and branch level (nested block depth) metrics. Regarding complexity aspects, the following 

measures can be produced: 

• The line number of the most complex method, the name of the most complex 

method, the maximum complexity and the average complexity 

All complexity measures produced are not based on the CC metric as the SM 

documentation indicates, but actually on the ECC metric (as later shown in Section 5.3.2). For 

the branch level the following measures are producible: 

• The percentage of branch statements, the line number of the deepest block, the 

maximum block depth and the average block depth  

In addition, some more measures such as the lines of code in a program are included (see 

Table 5.2 for a complete list).  
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CCCC CMT Source 
Monitor

Essential 
Metrics Logiscope

LOC Lines Of Code - + + + +
NCLOC Non Comment LOC + + - + -
#STAT Number of Statements - - + - +
HL Halstead Length - + - + +
# Files Number of Files - - + + +
# Methods Number of Methods + - + + +

Hvoc Halstead Vocabulary - + - + +
HV Halstead Volume - + - + +
HD Halstead Difficulty - + - + +
HE Halstead Effort - + - + +

NBD Nested Block Depth - + + - +
BP Branch Percentage - - + - +
CC Cyclomatic Complexity - - - + +
ECC Extended CC + + + - -
ESC Essential Complexity - - - - -

CR Comment Rate + - + + -
MI Maintainability Index - + - + -

WMC Weighted Methods + - - + +
DIT Depth of Inheritance Tree + - - + +
NOC Number Of Children + - - + +
CBO Coupling Between Objects + - - + +
RFC Response for a class - - - + -
LCOM Lack of cohesion - - - + +
MHF, AHF Hiding factor - - - + +/-
MIF, AIF Inheritance factor - - - + +/-
PF Polymorphism factor - - - + +/-
CF Coupling factor - - - + +/-
FI Fan-in + - - - -
FO Fan-out + - - - -
IF4 IFlow + - - - -

+ The tool does support the metric

- The tool does not support the metric

+/- Metric is for ether C++ or Java not supported

Legend:

Program size & Code distribution

Textual code complexity

Control flow complexity

Maintainability

Object Orientation

 

Table 5.2: Tools' metric support 
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5.3.2 How the original metrics are implemented 

In this section a brief overview is given on the interpretation and implementation metrics 

provided by these tools. If a software metric can be applied by several tools, the tool chosen is 

that which computes the metric in the manner closest to the definition given in Chapter 4. Due 

to difficulties experienced, Essential Metrics and Telelogic Logiscope are not included in this 

comparison (more detail on this issue is presented in Section 5.4.). In order for the measures 

produced to be comparable, the same tool must be used.  

In the following paragraphs, the metrics implementation is analyzed and compared. With 

regard to the LOC metrics, SourceMonitor and CMT produce different results. CMT and 

SourceMonitor produced different results for measuring the lines of code in a program.  

Although, one might expect that different tools count the number of physical lines of a 

program in the same way, this was found not to be the case. For a set of programs, lower 

values were produced in some cases by CMT and in other cases by SourceMonitor. Neither 

the documentation nor test cases revealed the source of the differences.  

Both CCCC and CMT support the NCLOC metric, though CCCC counts per module rather 

than per file and not all lines are considered during the measurement. 

The computation of the cyclomatic complexity needs also to be reviewed in more detail. 

The tools’ product-feature lists indicate that the tools support the Cyclomatic Complexity 

(CC) metric. However, on closer inspection it was revealed that they actually have the 

Extended Cyclomatic Complexity (ECC) metric implemented. This feature is not necessarily 

a drawback, but it has to be known before the measures are interpreted. Once again, as 

indicated in Chapter 4, the difference between ECC and CC is that ECC considers Boolean 

operators in the decision count, whereas CC does not. For the three tools mentioned (CCCC, 

CMT and SourceMonitor), the Extended Cyclomatic Complexity is implemented as follows: 

- if statements increase the complexity count by 1 

- boolean operations increase the count by 1 

- for and while loop increase the count by 1 

- switch statements and switch cases increase the count by 1, 

however CMT does not increase the count for switch default cases 

- methods increase the count by 1, however not for CCCC  

- else statements do not increase the count, however in SourceMonitor they 

increase the count by 1 
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Within the scope of a file, CMT computes the Extended Cyclomatic Complexity as follows: 

∑=
−+=

methods

i imethodECCECCscopefile #

1
1)(1  

Using this method, getter and setter functions (with intentionally low complexity) do not 

influence the complexity measure. 

Only CMT supports the application of the Halstead metrics. The implementations of 

Halstead length, vocabulary, volume, difficulty, level and effort, which all rely on the 

operator and operand count, follow the equations presented in Chapter 4. Tokens in the 

following categories are all counted as operands by CMT: identifiers, type names, type 

specifiers, constants. Tokens in the following categories are all counted as operators by CMT: 

storage class specifiers, type qualifiers, and operators (+,-, &&, {,}…}, reserved words, pre-

processors directives. 

CMT has the Maintainability Index implemented according to the definition presented (see 

Chapter 4). On file-level CMT does not calculate the MI measures via the averages of its 

participating modules as suspected, but directly through averaged file-level V, ECC, and LOC 

measures. If the module count is zero the number 1 is taken as average divider for the three 

stated metrics. 

The WMC metric is interpreted and implemented by CCCC as the number of methods in 

the class. Thereby the integrated complexity function in this tool (see 4.7.1) is not represented 

by the cyclomatic complexity of the method but by the value of 1. Since this interpretation 

does not seem to be that useful, this metric will not be used for the code measurements. 

Other metric implementations will not be discussed further at this point. The 

documentation provided by the tool can be consulted for further understanding. 

5.3.3 How to compare the results  

Since the software measurement tools listed, computed the software metrics differently, only 

one specific tool per metric was chosen for all three programming languages. Using different 

tools for the same metric can result in different measures. In this dissertation, the application 

and interpretation of these metrics were of interest rather than the reasons for computational 

differences. Therefore, the most suitable software measurement tool for each metric was 

selected at the author’s discretion. The list, explaining the metrics tool selection, is given in 

the measurement description in Table 6.2. 
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5.4 Difficulties experienced while comparing the tools 

During the tool comparison, difficulties with the Essential Metrics and Logiscope tools were 

experienced. In this section these problems are presented. 

Essential Metrics worked as advertised for smaller software projects, such as the test code 

examples and the students’ code. However, for six of the larger code programs measured 

(7Zip, Emule, FileZilla, Gimp, Miranda and VIM) the tool did not complete the code 

measurements. For these larger projects, the tool became literally ‘stuck’ (see the Appendix 

for the screenshots in A.5.4) and no measures were produced. Other software measurement 

tools required only a few seconds, whereas Essential Metrics was not finished after several 

hours. The problem was not system dependent, because the same problem occurred on other 

computers. Since the insufficient support for process and error message handling (see Section 

5.3.1) did not help in finding the source of the problem, the issue was brought up with the 

vendor. However, the vendor did not show much interest in fixing the problem and a later 

request for a debug mode version (displaying encountered problems) of the tool was left 

unanswered. Therefore, the decision was made to omit the tool from the later code 

measurements and to forgo the metrics supported. 

Also with the Logiscope tool, difficulties were encountered. These difficulties were related 

to a lack of clarity in the vendor product description. The initial tool selection was made due 

to the wide variety of software metrics and the programming language support as well as to 

previous studies [28] in which the tool has been used  .  

The product description did not distinguish between the metric support for Java and C++, 

neither on the official website nor in the PDF product description (which was available for 

download). Therefore, the author assumed that metric support for the two object oriented 

programming languages C++ and Java were very similar with regard to the available object 

oriented metrics. That this was not the case is indicated in Table 5.2. The difference was 

discovered while studying the manuals provided. The manuals did not state this difference 

directly, but the missing software metrics were simply not listed in the Java manual. As one of 

the requirements for this dissertation was to avoid the mixing software measurement tools for 

different programming languages (see Section 5.1) the Logiscope tool was not selected for the 

later code measurements. 
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5.5 Summary 

As presented in this chapter, a large number of software measurement tools exist. The 

analysis and comparison of the selected tools indicated a difference in the metric 

implementation and in the metric sets supported. Three software measurement tools, namely 

CCCC, CMT and SourceMonitor, were found helpful for this dissertation project and were 

used for the student and industry code measurements. For the measurements, one of the tools 

was selected for each software metric of interest. The selection process is described in the 

following chapter. 
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6 Code analysis: Measuring 

To avoid any misconception at this point, the distinction made in Chapter 3 between the 

measurement process, the measurement stage and the individual code measurements is 

reiterated. The measurement process is split up into two parts, the measurement stage and the 

analysis stage. This chapter is about the measurement stage, and thus deals with the 

preparations taken for the code measurements as well as with the individual code 

measurements themselves.  

The following chapter will then deal with the second part of the measurement process, the 

measure analysis. There, the code measurement results are presented and analyzed. 

6.1 Introduction 

In preparation for the measurement, software metrics of interest were selected. This selection 

and the metric interpretation for this dissertation project are discussed in Section 6.2. Then in 

Section 6.3, the measurement stage is described. The first part of Section 6.3 summarises the 

tool selection process performed and explains the metric tools assignment taken. Additionally, 

the different code programs measured (sample programs) are briefly introduced. The later 

sections of 6.3 then describe the preparatory steps required, as well as present a brief 

summary of the code measurements. Expected differences between students, open source and 

closed code are discussed and expectations with regard to the results are presented.  

6.2 Metrics of interest 

Chapter 4 gave a broad overview on what software metrics are available. This section presents 

the metrics of interest for the code measurements performed and explains the metrics 

interpretation. Furthermore, aspects about metrics combinations are considered. 

6.2.1 Metrics interpretation 

Software metrics are in the best case only indicators for a particular code attribute [1] and 

therefore cannot describe this attribute fully, thus interpretations of the measures produced 

should not be over emphasized. Table 6.1 lists the metrics of interest and explains how low 

and high values for the measures produced will be interpreted in this dissertation.  
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Low values indicate Software metrics High values indicate 

small project LOC, NCLOC large project 

small project that is based on few 

statements / operators and operands 

HN, #Stat large projects based on many 

statements / operators and operands 

code is distributed over a small 

number of files. For big projects this 

should be avoided. 

#Files code distributed over a large number 

of files 

the program actions are based on a 

small number of methods. For big 

projects this should be avoided 

#Methods the program actions are based on a 

large number of methods. 

small underlying functionality HVoc large underlying token vocabulary 

low textual complexity HV, HL, HD, HE high textual complexity 

simple control flow structure of the 

program 

NBD wide control flow structure 

simple control flow structure of the 

program 

BP complex control flow throughout the 

program 

method contains a simple control flow ECC per method method contains a complex control 

flow 

the file is small and contains a simple 

control flow 

ECC per file the file is presumably big and / or 

complex 

rather difficult to maintain MI rather easy to maintain 

code is not highly commented CR code is commented, but the comment 

quality is unknown 

low polymorphism DIT complex inheritance tree 

low polymorphism NOC high polymorphism but maybe too 

complex inheritance tree 

low coupling and thus flexible to 

requirement changes 

CBO high coupling, changes might be 

difficult to perform 

low communication within the 

program 

IFlow high communication and thus 

coupling of programming parts 

(modules) 

Table 6.1: Metrics interpretation 

 

When the measures produced are analysed, metric combinations have to be considered to 

fully understand a measure produced. For many software metrics, just looking at a single 
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measure will not tell you much other than the value itself. It is important to understand what 

caused the measure to be high or low. Recall the person’s weight example from Chapter 3, 

where not only the weight but also the size and age measures are required for the 

interpretation of the weight measure. This metric combination aspect is discussed further in 

the next section. 

6.2.2 Metrics combination 

As seen in Chapter 4, software metrics can be combined pre application to form new metrics 

(such as the MI which is a combination of LOC, HV and ECC) [56] or to normalise existing 

metrics (such as dividing HE by NCLOC) [65].  

Post metrics application, the metric measures produced can be combined to understand 

those aspects which influenced the measures in reaching a specific value and thus understand 

what this value indicates. The possible combinations of post application metric performed in 

this dissertation are discussed in the list below.  

• When considering the ECC measures produced, the size measures for a particular 

program section indicate whether the ECC has a high value due to control flow 

complexity or due to length. In addition, the branch percentage (BP), nested block 

depth (NDB) and Cyclomatic Complexity must be combined to understand the 

underlying control flow complexity. 

• Similar to the ECC metric, the textual code complexity metrics also can be combined 

with the size metrics by using normalization. Long program sections are likely to result 

in a higher textual code value, simply because they hold more text. Thus, the Halstead 

Difficulty, normalized by the size metric NCLOC, can indicate how high the textual 

code complexity is per line. 

• The Maintainability Index (MI) can be combined with the metrics it is derived from to 

understand why a certain value of a MI measure was produced. For example, a low MI 

measure can indicate low code maintainability. In order to understand which aspect 

requires improvement, analysing each of the composite metrics of the MI can help in 

determining the reason. 

• When average measures (such as the average extended CC per file) are used, the code 

distribution (see Section 3.5) plays an important role for understanding these average 

measures. An average value alone is not enough to determine whether a value is high 

or low.  
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6.3 Measurement stage description 

This section takes a closer look at the steps taken before the individual code measurements 

were performed. 

6.3.1 Measurement tools used 

Before the metrics of interest were applied, suitable software measurement tools were 

selected. The tool comparison and selection is described in Chapter 5 and now in a 

summarized form displayed in Figure 6.1 below. 

 

Software
measurement 

tools

CCCC

CMT

EM

SM

Logiscope

test &
compare

CCCC

CMT

SM

TOOLS

selected for the code 
measurements

filter

Requirements:
availability, reliability, 

metric & language support

Requirements:
reasonable metric implementation, 

applicable for the selected code 
programs

Software
measurement 

tools

CCCC

CMT

EM

SM

Logiscope

test &
compare

CCCC

CMT

SM

CCCC

CMT

SM

TOOLS

selected for the code 
measurements

filter

Requirements:
availability, reliability, 

metric & language support

Requirements:
reasonable metric implementation, 

applicable for the selected code 
programs  

Figure 6.1: Tool selection process 

A wide variety of software measurement tools is available. After filtering by and testing 

for the requirements (see Chapter 5), the tools CCCC, CMT and SourceMonitor were selected 

for the code measurements. Since, as depicted in Table 5.2, the tools supported a common set 

of metrics, one of the 3 tools was chosen for each software metric. This choice is presented in 

the following section. 

6.3.2 The choice of tool for each metric 

The table below (Table 6.2) shows the selected tool/metric pairing. The specific decisions, for 

or against a tool metric combination, are presented and discussed. 
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CCCC CMT Source 
Monitor

LOC Lines Of Code - + +
NCLOC Non Comment LOC + + -
#STAT Number of Statements - - +
HL Halstead Length - + -
# Files Number of Files - +* +
# Methods Number of Methods - +* +

Hvoc Halstead Vocabulary - + -
HV Halstead Volume - + -
HD Halstead Difficulty - + -
HE Halstead Effort - + -

NBD Nested Block Depth - + +
BP Branch Percentage - - +
ECC Extended CC + + +

CR Comment Rate + +* +
MI Maintainability Index - + -

DIT Depth of Inheritance Tree + - -
NOC Number Of Children + - -
CBO Coupling Between Objects + - -
FI Fan-in + - -
FO Fan-out + - -
IF4 IFlow + - -

Metrics

Control flow complexity

Maintainability

Object Orientation

Textual code complexity

Program size & Code distribution

 
Legend:

+ The tool does support the metric

- The tool does not support the metric

+* Tool's output used for computation

+ This tool is selected for the metric  

Table 6.2: Tools and metrics selection 

 

For the measure of NCLOC, the CMT tool was chosen over CCCC. Since the majority of 

metrics were computed per file and method rather than per module, the idea was to leave 

room for later metric combinations (see Chapter 5). The #Files, #Methods metrics were 

applied with CMT. As only CMT out of the three tools selected supports the Halstead metrics 

and the Maintainability Index, the decision was simple. The same was the case for CCCC and 

the object oriented metrics. The ECC metric was computed by CMT as the implementation 

 68 



 

came close to the original definition (see Chapter 5). For the Cyclomatic Complexity, CMT 

was selected, since the other tools were not as suitable with regard to the metric computation 

(see Section 5.3.2). 

6.3.3 The set of source programs measured 

For the code measurement, several software programs were selected. These can be 

categorized into student, open source and closed source programs.  

The student programs were collected from volunteer students at Karlstad University. Their 

code was made anonymous and thus is referred to as for example: Student1 code.  The 

university courses, for which the code was produced, range from A- (first year) to D-level 

(final year) courses. One of the student courses (OODM – Object Oriented Design Methods) 

especially focused on the design and program structure of the student programs. Thus extra 

attention will be given to measurement result difference between this and the other courses in 

Chapter 7. The following is a brief introduction to the different courses. 

 

First year course (A-Level) 

• A.OOPJ  (Object Oriented Programming with Java) 

The course gives elementary mechanisms for object oriented programming (such as 

inheritance, polymorphism, cohesion and data abstraction). Additionally object oriented 

design and design patterns are introduced.  

Measured: 5 different java lab assignments from the same student 

 

Second year course (B-Level) 

• B.OS (Operating System)  

This course describes the elementary principles of how an operating system is constructed 

and functions and how the principles are implemented in today’s operating systems.  

Measured: 5 different lab assignments programmed in C by a single student 

 

Third year course (C-Level) 

• C.PL (Programming languages) 

The course provides an awareness of different kinds of programming languages as well as 

an understanding of how syntax and semantics are described. The course further aims to 

give a deeper knowledge of imperative languages and their design. The functional, logic 

and object-oriented paradigms are introduced. 
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Measured: 7 programs from different students, implemented for the same lab assignment 

The task in this single lab assignment was to implement a program that can parse code 

using a given grammar (a reduced Pascal grammar). For the lab, the students had the 

choice of using C or C++. Four out of the seven programs are written in C++, the other 

three in C. 

 

Fourth year courses (D-level) 

• D.CC (Compiler Construction) 

The goals of the course are to give an introduction to programming languages and 

compiler implementation. A background in the history and development of computer 

languages and compiler construction theory is presented. Further course goals are the 

construction and implementation of a compiler for a simpler imperative language. 

Measured: 15 programs from 4 students and the course teacher for 3 lab assignments 

The task for the first lab was to implement a recursive descent parser with symbol table 

support and basic syntax and semantic error handling. Lab2 built on Lab1 and required the 

students to add the functionality of generating 3 address code (3ac) or stack machine code 

to their programs. The final lab assignment was to implement an interpreter for the in lab2 

produced 3ac or stack machine code. 

 

• D.OODM – Object Oriented Design Methods 

The goal of this course was to teach object oriented design methods and patterns, as well 

as their practical application to the students. Several design patterns, such as singleton, 

factory, decorator, composite, etc. were discussed in great detail. 

Measured: 5 java programs from different students for the same lab assignment 

The lab assignment was to design and implement a game factory to configure and arrange 

board games (such as chess and checkers). In this lab assignment special attention had to 

be given to the design and in the course presented design patterns (such as abstract 

factory, singleton and factory method) 

 

The open source code was collected via the open source code development and download 

repository Sourceforge (http://www.sourceforge.net). The selection was made in accordance 

to the number of previous downloads and the programming language used to implement the 

project. High download frequency counts were seen as rough indicators for good and typical 

open source projects with several developers involved. For each programming language six 
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open source projects were selected. Two of the 18 projects were selected, since a previous 

software measurement study distinguished them as “good” and “bad” regarding their design 

and programming background [65]. These are namely FitNesse and BonForum. The open 

source programs are presented sorted by programming language. The following programs 

descriptions were gathered through Sourceforge and [65]. 

 

C Projects: 

• GIMP – version 2.2.15  

GIMP (GNU Image Manipulation Program) 

is a raster graphics editor, which is used to 

process digital graphics and photographs. 

 

• Miranda – version 0.6.8 

Miranda is an instant messenger with support 

for multiple protocols including AIM, Jabber, 

ICQ, IRC, MSN, Yahoo. 

 

• Null Webmail – version 0.9.0 

Null Webmail is POP3/SMTP Webmail 

Common Gateway Interface. 

• Panda – version 0.5.4 

Panda is A PDF generation application 

programming interface. 

 

 

• SDCC – version 2.7.0 

SDCC (Small Device C Compiler) is 

an ANSI - C compiler. 

 

 

• VIM – version 7.1 

VIM is a text editor, which originated 

from ‘vi’ one of the standard text 

editors on UNIX systems. 

 

C++ projects: 

• 7-Zip – version 4.5.3 

7-Zip is a file archiver tool with support of 

several compression formats (including 7z, 

ZIP, RAR, ARJ, and so on…) 

 

• DiskCleaner – version 1.5.7 

DiskCleaner is a tool to free disk space that is 

used by temporary files (such as temporary 

system files and internet cookies and cache).  

 

• FileZilla – version 3.0.1 

FileZilla is a file transfer protocol and 

simple file transfer protocol client for 

Windows. 

 

• HexView – version unknown 

HexView is a standalone multiple 

document hexadecimal viewer for 

windows that can display and print a 

file as a hex dump.  
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• eMule – version 0.4.7.c 

eMule is a filesharing client which is based 

on the eDonkey2000 network. 

• Notepad++ – version 4.2.2 

Notepad++ is a source code editor and 

intended as windows Notepad re-

placement. 

 

Java projects: 

• BonForum – version 0.5.2 

BonForum is a chat application, that was 

developed for technology demonstration 

purposes as part of the book “XML, XSLT, 

Java and JSP” and not much attention was 

given to design and implementation [65]. 

 

• FitNesse – version  20050301 

FitNesse is a software development colla-

boration tool, that is administrated by Robert 

Cecile Martin, an author of several books in 

the area of object oriented design patterns 

and design principles, and CEO of a 

worldwide acting company specialist in 

object-oriented programming and software 

design consulting. [65] 

 

• HTML Unit – version 1.13 

HTML Unit is a unit testing frame-work 

intended for html based web site testing. 

• JSS – version 0.1 

Java Internet Spreadsheet is a 

spreadsheet application intended for 

online use.  

 

• JSettlers – version 1.0.6 

Java Settlers is a web-based version of 

the board game ‘Settlers of Catan’. 

JSettlers was developed as part of a 

doctor degree dissertation in the area 

of artificial intelligence. 

 

• Nekohtml – version 0.95 

NekoHTML is a simple HTML 

scanner and tag balancer that enables 

application programmers to parse 

HTML documents and access the 

information using standard XML 

interfaces. 

 

The industry code (closed source code) was collected at Sogeti Sverige AB in Karlstad. 

Sogeti, as a wholly owned subsidiary of Cap Gemini, is a consultancy specialized in local 

professional IT services with locations in 13 different countries and revenue of EUR 1,309 

million in 2006. The measured source code belongs to project Production Planing System 

(PPS). As the name indicates, the system can be used for production planning. The program is 

written in Java and will be referred to as CS.PPS (closed source production planning system) 

in this dissertation. 
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6.3.4 Code measurement preparations 

For each of the above mentioned software programs the software metrics of interest (see 

Section 6.2) had to be applied and the measurement data be properly stored for later 

comparison. Since three different software measurement tools were used, the analysis could 

not be done with the tools itself but the sets of measures produced needed to be exported and 

then united in order to facilitate comparison (Figure 6.2).  

DB
Source

programs

Source

programs

CCCC

CMT

SM

Sets of

Measurement stage

measure produce

Using the tools to..

VBA
and

export

unify

into

measures

 

Figure 6.2: Measurement stage 

In order to automate the collection of the individual code measurements and the measure 

export, batch files were implemented that triggered the tools’ measurement processes with the 

specific measurement options. Thus, the code measurements were easily reproducible.  

In order to unite the measures exported, Visual Basic Application modules were created 

that read the data into an MS Access database. Since more than one software measurement 

tool was used, the export file layout had to be considered and covered by the implemented 

import modules as well. In addition, as the export file layout also differed depending on the 

programming language measured, the VBA modules were adjusted further. This last step, 

however, was not initially expected to be required. The previous setups steps can be 

figuratively followed by means of Figure 6.2. 
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The database created contained 5 tables, as depicted in Figure 6.3, which were used to 

store the measures with regards to their scope (project scope, file scope, class scope and 

method scope).  

DB

project_id
project_name
project_language
project_category
project_path

tbl_project_information

project_id
project_name
project_language
project_category
project_path

tbl_project_information

project_id
tool
(+) project_measures

tbl_project_scope

project_id
tool
(+) project_measures

tbl_project_scope
project_id
tool
class_name
(+) class_measures

tbl_class_scope
project_id
tool
class_name
(+) class_measures

tbl_class_scope
project_id
tool
file_name
(+) file_measures

tbl_file_scope
project_id
tool
file_name
(+) file_measures

tbl_file_scope
project_id
tool
method_id
file_id
(+) method_measures

tbl_method_scope
project_id
tool
method_id
file_id
(+) method_measures

tbl_method_scope

 

Figure 6.3: Database tables 

One table was used for storing project information, such as name, programming language, 

and whether it is student, open source, or industry code. The other four tables were covering 

project-, file-, class-, and method scope measures. This table setup was found to be a 

sufficient basis for allowing tool independent and flexible measure analysis.  

6.3.5 The code measurements performed 

The code measurements were then, after these extensive measurement preparations, 

performed rather quickly. The batch files were executed to produce all necessary measures for 

CCCC and CMT. As SourceMonitor did not include a command line access, the measures 

here had to be produced for each program individually. After all measurement data was 

exported, the VBA import process was manually triggered to automatically read the data into 

the prepared and specified database tables. Thus, except for the code measurement with 

SourceMonitor, the code measurements and data union was quickly reproducible. For all 

measurements, reproducibility should be a determining factor [1, 2]. Reproducibility is very 

important, especially for continuous code measurements (such as in industry for different 

software realises) and for multiple code measurements (such as in education measuring a 

large number of different student programs).  
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6.4 Expected differences 

Before taking a look at the empirical differences in Chapter 7, let us consider expected 

differences between the different areas of student programming, open source programming 

and industry programming. 

6.4.1 Students vs. industry 

One immediately noticeable difference is that computer science students deal with smaller 

projects and problems than professionals do in industry [66]. According to [66], programmers 

and software engineers should get involved in bigger programming projects during their 

education to gain necessary experience for industrial scale programming. 

Not only the size of the programs produced differs but also the way the two groups of 

programmers approach problems. Students tend to use a trial and error approach [67]. In order 

to learn a programming language, this method is initially very effective, however students 

tend to use this method for too long [67]. This means that students tend to use insufficient 

time to analyze the underlying problem and design a solution [68], but start programming 

right away. If no clear plan towards the solution is known beforehand, more time is needed to 

implement the program, as new problems are encountered. Thus the program is updated in an 

ad hoc manner to solve the current problem or difficulty. This not only results in low 

productivity [69] but also most likely results in complex and poor code structure [29] and 

program design [70].  

Without a good design and simple implementation, the code maintenance can become 

difficult [70], as the solution is likely to be too specialized on a specific problem [69]. 

According to [69], students are usually not graded on program structure, program design and 

code readability, but it “is expected that design effort and quality will indirectly benefit 

students, with better (more accurate) programs and reduced time spent on projects” [69]. 

However a majority of graduate students still cannot create good program designs [70]. Next 

to a good design, code readability and maintainability are required factors in industry. 

Students tend not to focus enough on the readability [71] and maintainability aspects of their 

code [70, 72] and rather direct their efforts towards creating a correct program [72].  

Common poor programming practices among students can be listed as follows [29, 72]: 

• Too many loop and conditional statements 

• Not enough methods 

• Use of global variables rather than parameters to a method 

• Use of too many parameters for a single function 
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• Too large methods 

• Improper identifier-naming 

• Unused variables 

• Perform unnecessary checking with Boolean expression 

• Un-initialised variables 

• Inappropriate access modifiers 

Some of these programming practices can be identified in the code with the software metrics 

used in this dissertation. More on this aspect, however, will be presented in Section 6.5. 

6.4.2 Open source vs. closed source 

Open Source Software is computer software whose source code is freely available together 

with the executable program (e.g. via sourceforge). Furthermore, OSS includes a license 

allowing anyone to modify and redistribute the software [73]. As stated by Aberdour [74], 

OSS projects are characterized by highly distributed teams of volunteer programmers who 

contribute to and maintain the existing code and write documentation for the product [75]. 

Advocates of OSS argue that through the open available source code, reliability and 

security are increased as more pairs of eyes are reviewing the code; thus finding errors and 

bugs [76].  An additional benefit of the potentially unlimited number of people involved is 

seen in the inevitable requirement of modular, self-contained and self explanatory code [73, 

76] which itself would result in high readability, maintainability and flexibility of the program 

[76]. 

The disadvantages of OSS development lie in the area of task coordination. [74]. Here, 

Stamelos [73] and Berry [76] find that OSS projects can suffer from weak project 

management and development processes which are not well defined. This is reflected by 

activities such as system testing and documentation, which are often ignored [73], improper 

requirement definition performed by the programmers themselves, no formal risk assessment 

process, too much effort dedicated to programming rather than a detailed design [73, 76].  

Despite differences in the development processes and quality assurance, is it seen that OSS 

and CSS are comparable in terms of software quality [74, 76] and also in terms of structural 

code quality [73].  

In this dissertation project, the single industry project will be placed in the same group as 

the OSS projects for the later code measurement.  
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6.4.3 Expected measurement results 

With regard to the different project backgrounds and the expected differences between 

student, open source and closed source code, several assumptions about the expected 

measurement results can be made. In what intervals will the results lie and what are the major 

differences between the three areas are typical questions. 

Since students have to deal with rather small problems compared to the ones in industry 

[66], it is expected that the program size measures for the latter are clearly higher. It is 

expected that the student projects will be within the range of 100 lines to 5000 lines of code. 

Whereas, the OSS and CSS projects are expected to range from 4000 lines and upward.  

The potentially poor programming practices present among students, might be reflected by 

high NLOC per method measures (large methods) and high NBD, BP, ECC measures (not 

enough methods, and to many loop and conditional statements). With regard to the design of 

student programs, the CBO measure might indicate too tight coupling. 

For the open source projects high Maintainability Index measures are expected, since the 

code (indicated in Section 6.4.2) is supposedly self-contained and self explanatory. However, 

all in all the differences between OSS and CSS should not be highly noticeable as the two are 

comparable (see Section 4.4.2). If major differences are found, then no solid conclusions 

should be drawn from these, as only a single CSS project was available for this dissertation 

project. Here the difference between student and industry code is more of interest. 

6.5 Summary 

When applying different software measurement tools for code measurements, special 

attention has to be paid to the aggregation of the data produced and the automation of the code 

measurements. Without any automation in the code measurements the results are costly to 

produce and reproduce for single and especially multiple programs. Certainly teachers and 

tutors would prefer running the code measurements for all selected students via a single click, 

rather than performing the code measurement for each student individually.  

As presented in this chapter, the areas of student, open source and closed source show 

disparities. The following chapter will take a closer look on whether these differences are 

reflected by the code measurement results. 
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7 Code analysis: Measure interpretation 

7.1 Introduction 

At this point, the programs introduced in Chapter 6 are presented in summarized and 

numbered form. The industry projects, which are sorted by programming language, are 

numbered from 1 to 19 (the closed source program from Sogeti is listed last in this group). 

The student programs, which are sorted by course level (A-D) and course name, range from 

the number 20 to 56. Rather than the full program titles, the program numbers are used in the 

diagrams in this chapter (Table 7.1 represents a look-up table in this matter). 

    

Industry Programs  Student Programs 

ID Program name Lan  ID Program name Lan  ID Program name Lan 

01 GIMP C  20 A.OOPJ Java 39 D.CC_L2_st2 C 
02 Miranda C  21 A.OOPJ Java 40 D.CC_L2_st3 C 
03 NullWebmail C  22 A.OOPJ Java 41 D.CC_L2_st4 C 
04 Panda C  23 A.OOPJ Java 42 D.CC_L3_teacher C 
05 SDCC C  24 A.OOPJ Java 43 D.CC_L3_st1 C 
06 VIM C  25 B.OS_L1_st1 C 44 D.CC_L3_st2 C 
07 7-Zip C++  26 B.OS_L2_st1 C 45 D.CC_L3_st3 C 
08 DiskCleaner C++  27 B.OS_L3_st1 C 46 D.CC_L3_st4 C 
09 Emule C++  28 B.OS_L4_st1 C 47 D.CC_L4_teacher C 
10 FileZilla C++  29 B.OS_L5_st1 C 48 D.CC_L4_st1 C 
11 HexView C++  30 C.PL_L1_st1 C+ 49 D.CC_L4_st2 C 
12 Notepad++ C++  31 C.PL_L1_st2 C 50 D.CC_L4_st3 Java 
13 BonForum Java  32 C.PL_L1_st3 C 51 D.CC_L4_st4 Java 
14 FitNesse Java  33 C.PL_L1_st4 C+ 52 D.OODM_L4_st1 Java 
15 HTML Unit Java  34 C.PL_L1_st5 C+ 53 D.OODM_L4_st2 Java 
16 NekoHTML Java  35 C.PL_L1_st6 C 54 D.OODM_L4_st3 Java 
17 Jsettlers Java  36 C.PL_L1_st7 C++ 55 D.OODM_L4_st4 Java 
18 JSS Java  37 D.CC_L2_teac C 56 D.OODM_L4_st5 Java 
19 Sogeti.PPS Java  38 D.CC_L2_st1 C  

Table 7.1: List of programs measured 
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7.2 Program size 

The program size was measured in terms of lines of code, number of statements and number 

of tokens (operands and operators). 

7.2.1 Measurement results 

The lines of code (both LOC and NCLOC), the number of statements (#STAT) and the 

Halstead length (HL) indicate the size of the programs. The following table (Table 7.2) 

illustrates the results for these aspects. 

 

 Total values   Total values 
Open Source LOC NCLOC #STAT HL  Closed Source LOC NCLOC #STAT HL
HexView 1856 1121 721 5131  CS.PPS 120778 76338 65109 493258
JSS 3029 1198 1762 8521      
DiskCleaner 7470 5430 3765 25748      
BonForum *8584 4077 3086 21545  Average Values for the course 
NullWebmail 9912 8925 6961 63583  Student LOC NCLOC #STAT HL
NekoHTML 11482 6478 4890 34247  B.OS 228 172 123 760
Panda *26049 13848 6706 148989  D.CC 869 673 585 3438
Miranda 34029 28823 23892 196620  C.PL 886 679 562 3416
FitNesse 35347 27122 20399 138937  A.OOPJ **1034 578 382 2513
HTML Unit *42482 14188 11203 70533  D.OODM *1487 594 449 2855
Notepad++ 48233 35677 27285 195363      
JSettlers 56768 30724 20801 154519      
FileZilla 112208 81934 58600 450582  *  -> LOC values pushed up by a high CR > 40% 
7-Zip 117789 95889 64469 469066  ** -> percent of blank lines ~10% and CR ~ 30% 
SDCC 207690 144892 96970 757764  CR = comment rate   
Emule 221641 169635 124427 947371     
VIM 320531 239693 123416 1111573     
GIMP 732157 526279 290981 2755645     

        

Table 7.2: Different program sizes 

The measures in Table 7.2 are sorted in ascending order by the LOC column. For the open 

source programs, a major difference between lowest (1856, HexView) and highest (732157, 

GIMP) LOC measure was detected. The student code measures are presented grouped by the 

course for which they were produced. They lie in the same size range and their highest 

average LOC measure is below the lowest LOC measure found in the industry group.  

7.2.2 Definition revisions and correlations 

The observed measures for NCLOC and #STAT follow the ascending order of the LOC 

measures (see the scatter charts in Appendix A.3.2). While this relationship will in general be 
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expected to be true, it need not necessarily hold in all cases, for example when (say) 90% of 

the program text is composed of comments.  Note that the LOC value is highly influenced by 

the number of blank lines and the comment rate (see Chapter 4) which itself differs from 

programmer to programmer and from program to program. The correlation values in Table 

7.3 confirm that the trend depends on the range measured. Student programs which have a 

much lower LOC value show less correlation with the other program size metrics than the 

larger Industry programs. 

 total_NCLOC total_#STAT total_HL 

Student 0,811 0,741 0,783 

Industry 0,997 0,989 0,997 

ALL 0,999 0,991 0,998 

Table 7.3: Correlations7 with the total_LOC measures 

The other three program size metrics show a high correlation for small and large ranged 

groups (see Table 7.4). Since a statement is a collection of operands and operators [2], the 

Halstead length (as the total number of operands and operators in the code, see Chapter 4) 

correlates to the total number of statements (see Table 7.4 and scatter plot in the Appendix). 

Both #STAT and HL, however, are dependent on the programming language used by their 

definition (see Chapter 4). By definition NCLOC is not dependent on the programming 

language used, as the metric counts non comment lines of code rather than language specific 

constructs.  

 NCLOC vs. #STAT NCLOC vs. HL #STAT vs. HL 

Student 0,969 0,952 0,958 

Industry 0,991 0,997 0,994 

ALL 0,992 0,998 0,995 

Table 7.4: Correlations7, NCLOC, #STAT, HN 

7.2.3 Defining lines of code size groups 

Since for the industry programs the range of the program size measures is rather large, a 

division into size groups seemed reasonable. For this dissertation the author finds the NCLOC 

metric the most suitable. NCLOC was chosen over LOC, #STAT and HN since this metric is 

not affected by the comment rate and its computation is not affected by the programming 

language used. 

                                                 
7 Spearman correlation 
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The industry programs were divided into the following three groups: small, medium and 

large. 

• The small group contains programs with a NLOC measure < 10.0000 

• The medium group ranges from 10.000 NCLOC to 100.000 NLCOC 

• The large group contains the programs above 100.000 NCLOC 
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Figure 7.1: Industry NCLOC groups 

Since the program size measures for the student programs lie within a much tighter range, the 

programs are not sub-divided into size groups. The values for these programs can be seen in 

Figure 7.2 below. 
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Figure 7.2: Student NCLOC values 
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7.3 Code distribution 

As discussed in Chapter 3 (Section 3.5), program source code can be distributed in several 

ways among files, classes and methods. In this section, the results for the code distribution 

metrics are presented and discussed. The code distribution is presented and discussed for a set 

of sample programs. The complete set of measures is given in Appendix A.3. 

7.3.1 Measure ranges and measure outliers 

Table 7.5 presents the ranges measured for the code distribution measures in file scope. 

 NCLOC measures per file  

 average max min #files 

Group From to from to from to from to 

Student 17 960 52 960 4 960 1 29

Small 70 307 230 2298 1 33 15 58

Medium 55 294 386 16786 1 10 70 915

Large 255 2282 4723 16512 0 2 104 2036

Table 7.5: Code distribution measure ranges (file scope) 

Both the average and minimum NCLOC measures per file seem rather high for the student 

group, when compared to the ranges of the three industry groups. These high values belong to 

the same student program (D.CC_L3_st3) which only consists of one file; thus the average, 

min, max and total measures per file are equal for this particular program. This example 

indicates the importance of combining measures to understand their meaning. When looking 

at a single measure, other measures should be used to gain an understanding of what this 

value indicates (more on this aspect is presented in the next section and Section 7.4.6). 

The number of files used increases noticeably for larger programs. However, as indicated 

in Chapter 3.5, this need not necessarily have to be the case.  

The maximum NCLOC measures per file for both the large and the medium length group 

were unexpectedly high. Figure 7.3 illustrates these aspects further. In the next section 

(Section 7.3.2) the outliers are investigated in more detail. 
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Figure 7.3: Industry NCLOC per file (avg, max) 

 Figure 7.3 shows that three of the programs measured have source files with more than 

10000 non comment lines of code. Understanding the content of such a programming file can 

possibly be rather difficult (see Chapter 3.5 for the discussion on length per file). 

The measures for the method scope show values within a similarly high range. Before 

these measures are discussed, the full measure ranges are presented in Table 7.6. 

 NCLOC measures per method  

 average max min #methods 

Group From to from to from to from to 

Student 4.1 49.7 23 131 1 10 3 100

Small 13.5 39,8 112 505 1 4 66 414

Medium 6.1 37.0 86 1691 1 2 261 4279

Large 23.4 33.4 922 2326 1 2 1592 14795

Table 7.6: Code distribution measure ranges (method scope) 

The average NCLOC measures for the method scope lie within similar ranges for the four 

groups (see the corresponding charts in the appendix A.3 for more detail). As with the number 

of files, the number of methods also increases for each size groups (small vs. medium vs. 

large).  The maximum method size measures indicate the use of methods which are 

presumably too large. Here, 9 out of the 19 industry programs have at least one method with a 

code length above 700 NCLOC. Three out of the 19 have at least one method with a code 

length above 1600 NCLOC. As stated in Chapter 3.5, defining a clear optimal length or limit 

is difficult; however methods with a NCLOC measure above 700 should evidently be 

refactored.  A programmer would need to read 46 to 77 screen pages (if 30 to 50 lines fit on 

one page) to see the full content of the longest method measured (2326 NLOC long in 
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program 9). Understanding this content would be a totally different task (see chapter 3 for the 

discussion on code distribution and optimal method and file size). 

The class scope has been left out in this presentation, since the measures produced for the 

code distribution were very similar to the measures produced on file scope. One class is stored 

in one file and a file does not contain more than one class except for a few cases.  

Since the individual code distributions can not be captured by the measure ranges 

presented, a closer look at individual example programs will be taken in the following section. 

7.3.2 A closer look and measure combination 

When comparing different programs or program versions, the code distribution can help to 

identify problem areas. In this matter, the results for the C level course C.PL showed 

interesting results in terms of number of files. Two of the student programs differed greatly 

from the course average of 10 files. Student1 of the C.PL course decided to keep all his code 

in a single file, whereas Student5 divided his code over 22 files. As stated in Chapter 3, 

defining an optimal code distribution for a program is difficult. However, when a group of 

programs designed for the same problem differ greatly, it is advisable to double check with 

the programmers (in this case the two students) to understand what they did and why.  

In order to grasp the code distribution of a program, the measures produced must be 

combined. Just looking at single measures (like the number of files) is useful to capture the 

group outliers, but does not indicate much about the individual code distribution.  

At this point a set of sample programs will be used to show the differences in code 

distribution. The three file size outliers from Figure 7.3 and the program FitNesse (ID 14) are 

used as samples in this matter. Let us now consider the combined code distribution measures 

in Table 7.8 and Table 7.9 together with the total program size measures in Table 7.7.  

 SDCC (5) VIM (6) FitNesse (14) CS.PPS (19)

Total_NCLOC 144,892 239,693 27,122 76,338

Table 7.7: Program size (ID 5,6,14,19) 

 NCLOC measures per file  

ID Mean median max min stdev #files

5 728 123 11,077 1 1,681 199

6 2,282 1420 16,512 1 2,714 104

14 55 37 386 4 54 493

19 207 88 16,786 3 925 368

Table 7.8: Code distribution sample group (file scope) 
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 NCLOC measures per method  

ID Mean median max min stdev #methods

5 33,4 17 1763 1 58,38 3874

6 25,9 13 1070 1 50,87 1592

14 7,5 6 86 1 5,00 3254

19 17,1 4 716 1 42,15 4279

Table 7.9: Code distribution sample group (method scope) 

Combined, the measures help build a picture about the actual code distribution. Thus, 

program 5 and 6 with respect to program size, have rather few files and consequently a high 

average file length. Especially program 6 consists of mainly long files (average per file of 

2,282 NCLOC and mean per file of 1,420 NCLOC). In method scope, both programs seem to 

have a couple of very long methods, but the majority of methods lie within a fairly narrow 

range. Program 19 shows a similar code distribution for file and method scope (a few very 

long file and methods, but the majority short). For the FitNesse (program 14) the code for 

both file and method scopes lies within a fairly narrow range with low values. 

It is very important to understand the underlying code distribution scenario for the 

interpretation of other measures produced as we will find out later.  

7.3.3 The big picture 

As described in the previous section, a variety of measures have to be combined in order to 

understand the code distribution of an underlying program. It would be an advantage to have a 

single measure describing a program’s code distribution. However, the more information is 

combined in a single measure, the greater is the risk of loss of information about particular 

aspects [8]. Even with looking at 6 measures per scope, not all aspects of the code distribution 

are considered.  In order to see the distribution to the full extent, either the individual files and 

lengths of methods or the graphical representation of these lengths should be inspected. 

Below in Figure 7.4 this is done for the four sample programs, for which the code 

distribution measures were presented in detail.  
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Figure 7.4: Code distribution charts on file scope (5, 6, 14, 19) 

The charts combined with the measures produced capture the different code distributions. 

In the following sections the code distribution of a program will be used for understanding 

and explaining the value of particular measures. Measures (such as complexity measures) 

have to be combined with the information about the underlying measure scope, in a similar 

way to considering a person’s physical aspects (such as height, age and gender) before any 

decision is made, i.e. whether a certain weight measure is too high, low or acceptable.  
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7.4 Textual code complexity 

Selected examples of the textual code complexity measures produced will be displayed in this 

section. See the corresponding section in the appendix (A.2.3) for a full view on the textual 

code complexity measures.  

7.4.1 Problematic aspects 

The total measure for the Halstead vocabulary (total_Hvoc), as the sum over all file Hvoc 

measures, is not useful for this dissertation since the information about the actual vocabulary 

size gets lost through summing up. By this is meant that the vocabulary for a program (by 

Halstead defined as the distinct number of operands and operators) will contain double entries 

when several presumably non disjunctive vocabularies are joined. This is not due to an error 

in the metric definition, but to deficiencies in the software measurement tool applied. 

 For the total Halstead Difficulty (total_HD) a similar aspect came to light. The more files 

the code was distributed over, the higher the total_HD measures found. However, since the 

overall number of operands and operators is independent to the number of files used, this 

should not be the case. Thus, a similar problem as for the total_Hvoc was experienced.  

To what extent the total formation of the HV and HE measures biased the corresponding 

total values is not clear8. Here, however, no strong indicators for a measure distortion were 

found. Nevertheless the total values of these should be treated with care. 

The mean values are highly dependent on the code distribution aspects. Programs with a 

high mean program size showed high textual code complexity measures. Here again, the trend 

is especially due to the high size range of the underlying program sample. 

7.4.2 Results & normalisations 

In this section the total values of HV and HE will be presented and discussed.  Furthermore, 

as suggested by [14] and [65], the total values for the textual code complexity measures will 

be presented in combination with the underlying code size; thus normalized.  

 

                                                 
8 As described in chapter 4 the Halstead Difficulty (HD) and Halstead Effort (HE) metrics are based on the 

Halstead vocabulary aspects. However, the total measures produced for these metrics are not affected by the 
total_Hvoc. Even though the total measures are again the sum of the file scope measures, the computation for 
these file scope measures was performed on the file scope level as well, thus unbiased Halstead vocabulary 
measures were applied. 
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Figure 7.5: Halstead Volume results (industry & student) 

Figure 7.5 displays the total_HV measures combined with the normalized values (HV_N9) 

and ordered by the program size (NCLOC value). The different program size groups show 

clear range disparities for the total values measured. However the normalized values range 

between 19.2 and 80.6 (or 57.7 if the one outlier is ignored) for all groups displayed. Another 

observation is that, for the large group just a minimal fluctuation of the normalized measure 

can be noticed. Since only 4 programs are in the group, this might be due to coincidence. Also 

possible is that for very large programs, the normalized measure runs towards a constant 

value.  However, this will not be analyzed at this point and thus will be left for future work. 

 The normalized Halstead Effort measures9, on the other hand, show a very high fluctuation 

and range (from 19.9 to 10,103.5) for the group of small programs such as the student 

programs. The industry programs fluctuate less and less with increasing program size (small: 

43.3 - 276.6, medium: 2 - 59.9 [without program 4: 582.3], large: 7.2 – 101.4). The 

comparison between student and industry programs in this matter is depicted in Figure 7.6.  

 

 

                                                 
9 The Halstead measures were normalized by dividing the underlying NCLOC measure.  
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Figure 7.6: Halstead Effort results (industry & student) 

7.4.3 Result interpretation 

As described above, the normalized Halstead Volume measures lie within a tight range and 

seems for this specific set of programs to be independent of program size and the number of 

files. Since the HV metric is intended to measure the information content of a program (see 

Chapter 4) the normalized Halstead Volume could be interpreted as compactness and density 

of the information content per lines of code. Whether this is a valid conclusion may be shown 

by later program comparisons (presented in Section 7.7.2).  
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7.4.4 Control flow complexity results 

At this point a summary of the group results is given. See the corresponding section in the 

appendix (A.2.4) for a full view on the control flow complexity measures. 

 total_ECC avg_file_ECC avg_method_ECC max_method_ECC 

 from to from to from to from to

Student 7 253 2,0 253,0 1,33 11,5 4 41

Small 118 2421 7,4 83,5 2,27 13,41 19 111

Medium 1580 14212 3,2 63,9 1,33 7,89 25 474

Large 28756 59548 24,6 567,1 4,04 9,00 143 515

Table 7.10: ECC range measures (industry & student) 

 

 BP avg_NBD max_NBD ECC_N10
 

 from to from to from to from to

Student 0,03 0,41 0,80 3,51 2 8 0,034 0,264

Small 0,10 0,25 1,32 2,86 6 10 0,105 0,271

Medium 0,05 0,28 0,79 3,14 6 10 0,058 0,217

Large 0,18 0,30 1,57 2,25 10 10 0,097 0,248

Table 7.11: BP, NBD, ECC_N range measures (industry & student) 

Table 7.10 and Table 7.11 display the measure ranges for the control flow complexity 

measures produced. Except for four outliers, the average ECC per file (avg_file_ECC) ranged 

between 2 and 84 for all program groups (see the corresponding chart in the appendix). These 

four outlying programs are discussed in the following section. Additionally, the normalized 

Extended Cyclomatic Complexity measures will be used, as well as the code distribution 

aspects, to help understand the full meaning behind the ECC measures produced. The 

normalized ECC metric seems to hold good potential in this respect, since the metric 

quantifies the cyclomatic complexity per line of code. To what extent the normalized ECC 

contributes will be indicated by the following comparisons. 

The measures for the branch percentage (BP), the average nesting depth (avg_NBD) and 

the average Extended Cyclomatic Complexity per method (avg_method_ECC) were found to 

be similar for the different groups (see the appendix A.3.1 for the corresponding charts). 

                                                 
10 ECC_N stands for the normalized Extended Cyclomatic Complexity for the program. The measure is 

normalized with the program size metric NCLOC. 
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However, the programs require to be compared on an individual basis in order to explore the 

full potential behind the measures.  

7.4.5 Individual differences 

No large group differences were noted for the structural complexity measures produced, apart 

from increasing total_ECC measures, which as total measures are related to program size 

groups. Thus, at this point, the comparison level is moved to the level of individual programs.  

The four outliers for the average file ECC measures mentioned in Section 7.4.4, are two 

student programs (ID 40 and 45) and two industry programs (ID 5 and 6). These student 

programs were written for the course D.CC by the same student (student 3). The industry 

programs, which are written in C, both belong to the size group large and namely are, SDCC 

and VIM.  The code distributions for programs SDCC (5) and VIM (6) were already 

presented in Section 7.3.2; thus their high average file ECC, resulted most likely from their 

long code length per file. For the two student programs a similar situation was found (the 

average textual code length per file was high). In order to better understand these high ECC 

values, Table 7.12 presents measures used for the interpretation. 

 

ID Avg_file_NCLOC Avg_file_ECC ECC_N BP Avg_NBD 

5 728 161 0,22 0,30 2,19

6 2,282 567 0,25 0,28 2,25

40 557 147 0,26 0,33 1,24

45 960 253 0,26 0,33 1,54

Table 7.12: Control flow complexity results (5, 6, 40, 45) 

With this table (Table 7.12) and the ranges measured (Table 7.11), it becomes clear that the 

high average file ECC measures are not just caused by long code files. Both the branch 

percentage and the normalized ECC measures have high values. Even though the average 

nesting block depth measures seem still acceptable for the two student programs, the other 

two measures (BP and ECC_N) indicate a very complex control flow throughout the program. 

As the student programs are rather short, a very detailed look at the full source code was 

possible. The programs indeed show a very complex control flow. The majority of the other 

students in the course, managed to hold the BP and ECC_N values significantly lower (see 

Figure 7.7). Program 48, however shows similar results and an even higher branch 
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percentage. Due to a relatively low average file ECC (=46), this program was not detected 

before. Thus to find the outliers, all aspects require to be considered and combined.  
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Figure 7.7: BP and ECC_N for D.CC 

7.4.6 The importance of measure combination 

As the previous section reveals, measures produced have to be combined to understand their 

full potential. The measures should not only be combined with the code distribution aspects, 

but also with measures which quantify the same code characteristic (such as the control flow 

complexity) in a different approach. The measures require to be viewed from different angles 

to understand their meaning for the particular program [44].  

7.5 Maintainability 

In this section the results for the Maintainability Index (MI) and the comment rate (CR) are 

presented and discussed.  

7.5.1 Maintainability measure results 

The Maintainability Index metric, as pointed out in Chapter 4, measures the maintainability of 

a program. High measures indicate a good maintainability whereas low measures indicate the 

opposite [56]. The results for the program selection are presented in the line diagrams below 

(Figure 7.8).  
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Figure 7.8: Maintainability Index results 

Another definition (see Chapter 4) for the Maintainability Index includes the comment 

rate. Thus the comment rate results are presented (Figure 7.9) but are not used to draw 

conclusions about the maintainability of particular programs. Although, a well documented 

code can be easy to maintain [56], the comment rate does not convey the quality of the 

comments found in a program code. 
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Figure 7.9: Comment rate results 

 As seen above in Figure 7.8, the MI measures ranged from 65 to 104 for student programs 

and from 24 to 107 (small: 54 - 87, medium: 52 - 107, large: 24 -75) for the industry 

programs. For the group of student programs the majority (89%) showed results above an MI 

measure of 80, whereas in the group of industry programs only 42% went above this value. 

The next section takes a closer look at the outlying measures seen in Figure 7.8 (program 6 

and 14).  

7.5.2 Investigating group outliers 

For the individual investigation two extreme points within the group of industry programs 

were chosen. The industry programs are VIM (ID: 6, MI: 24.0) and FitNesse (ID: 14, MI: 
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107.2). Since the Maintainability Index metric is composed of the Cyclomatic Complexity, 

the Halstead Volume and the average size (see Chapter 4), these metrics have to be 

considered when the MI measures are interpreted.   

 

 File scope measures  

ID avg_MI avg_NCLOC Avg_HV avg_ECC HV_N ECC_N

6 24.0 2282 107,662 567 47.2 0.25

14 107.2 55 1,851 3 33.6 0.06

Table 7.13: MI measure comparison (6, 14) 

The definition for the Maintainability Index used in this dissertation is as follows (see Chapter 

4 for more information about the MI metric): 

 ) avg(NCLOC) ln( * 16.2 - avg(ECC) * 0.23 - ) avg(HV) ln( * 5.2 - 171    MI =  

With this definition in mind, we now consider the measures produced for the sample 

programs listed in Table 7.13. The two extreme MI measures for programs 6 and 14 can be 

easily explained. VIM (program 6), as shown in the previous sections about code distribution 

and control flow complexity, consists of mainly long and complex files, and consequently is 

rather difficult to maintain (low MI measure). FitNesse (program 14) is this matter the 

complete opposite to VIM, and shows the highest Maintainability Index measure of all 

programs measured. 

7.5.3 Interpretation 

The Maintainability Index measures can be used to quickly determine a program’s 

maintainability [65]. However, it would not be wise to rely only on the results for this metric 

in order to understand the maintainability of a program (as the previous section illustrates). 

Here the important issue should again be the combination of measures produced. 

7.6 Object oriented aspects 

This section presents and discusses the results for the object oriented metrics. Out of the 56 

measured programs, 29 were written in object oriented programming languages (10 in C++, 

19 in Java). As described in Chapter 5, the tool selected for the object oriented aspect, had 

some difficulties measuring all lines of code for a program. Thus, not too much emphasis will 

be placed on the measures produced. 
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7.6.1 Information flow and object coupling 

For the information flow and object coupling the following result ranges were measured: 

  Total Mean Max 

 Group From to from to from to 

Student 0 6061 0 275 0 3136 

Small 0 11699 0 111 0 9216 

Medium 37098 6775496 116 21441 9216 6285049 IF
lo

w
 

Large 783824 783824 1139 1139 492804 492804 

Student 6 192 1 5 3 18 

Small 42 500 1 4 6 30 

Medium 952 4120 5 7 43 312 C
B

O
 

Large 4734 4734 6 6 122 122 

Table 7.14: Information flow and object coupling measure ranges 

How much information should flow, is unknown and highly related to the program task 

and problem size. The information flow measures produced can, however, help to filter out 

students who might have to reconsider their program design (see Figure 7.10 left and right, 

and for example program 56 which exhibits high values for those measures) and compare 

different programs for the same task with each other. In order to compare two independent 

programs, the information flow value requires to be normalized (similarly to the ECC_N and 

HV_N), but the question here is which denominator should be chosen. 
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Figure 7.10: Information flow D.OODM 

Similar to the IF measures, the measures produced with the CBO metric, should be 

compared within a group of programs written for the same problem. Otherwise, understanding 

which measures are too high becomes very difficult. 
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7.6.2 Inheritance and polymorphism 

The DIT (Depth of the Inheritance Tree) metric was found to present no valuable information 

for this particular set of programs (student and industry programs). The corresponding line 

diagram charts are to be found in the appendix A.3.1. Also, the Uppsala study [65] did not 

find the metric that useful for their set of programs. The depth of the inheritance tree ranged 

from 0 to 7 for the programs measured. Thus, no clear indicators for a too long and complex 

inheritance tree were found. Often programs have only an indirectly deep inheritance tree, due 

to the reuse of existing libraries (such as Java libraries). However these libraries are not and 

also should not be considered in the DIT metric [65].  

The NOC metric, similar to the DIT metric, did not produce useful measures for the set of 

programs measured in this dissertation. The industry programs were found to have a high 

number of children, but this is very likely for extremely large programs. 

7.6.3 Is high good or bad? 

One problem for most object oriented measures produced in this dissertation was that 

without analyzing the programs in depth (meaning understanding and mentally reconstructing 

the underlying object oriented design), the measures do not provide much information. 

Whether a measure is high or low can at this point only be identified by comparing this 

particular measure to measures of programs which were created for the same task (such as 

student programs for the same assignment). 
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7.7 Individual comparisons 

In this section, the comparison is made from a group view down to individual programs. In 

order to conclude the group view comparison, the group results from the previous sections in 

Chapter 7 are presented in summarized form. 

7.7.1 Group differences summarized 

The results from the Student vs. Industry comparison revealed major differences in the 

program size and code distribution. The average non comment lines of code per program was 

583 NCLOC for the student and 79,593 NCLOC for the industry programs. With regard to the 

number of files and methods the code was distributed over, these numbers differed greatly as 

well. Besides these, also the maximum values of lines per file and per method showed large 

differences between the two groups. 

Apart from these major differences, a few minor differences were found in three of the 

other code characteristic areas. Here the textual code complexity, the control flow complexity 

(in terms of nesting block depth) and the maintainability results differed slightly for the 

industry and student programs measured. Since in both groups good and not so good 

candidate programs were found, the comparison will be made at the individual level. 

Considering the programming languages used, the differences can be summarized as 

follows: 

With regard to the code distribution, the java programs showed the same tendencies in 

code as the C++ programs. The results for the programs written in C indicate longer files and 

methods than the object oriented languages. Nevertheless, just because the language is object 

oriented does not mean the programmers follow this paradigm [77]. Thus for Java and C++, 

similar long cases were found. In general, the Java programs measured showed especially 

good results for the Maintainability Index (which however is influenced by the code 

distribution aspect). Apart from these characteristics, no major differences were spotted. 

7.7.2 Individual comparison: BonForum vs. FitNesse 

In this section the measures produced are combined in full detail for the two industry 

programs BonForum and FitNesse. Even though they differ in program size (BonForum: 8584 

NCLOC, FitNesse: 35347 NCLOC), the two programs may be compared. 
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 NCLOC measures per file  

Program max min mean median stdev #files

BonForum 1287 9 239,82 100 367,00 17

FitNesse 386 4 55,01 37 53,96 493

Table 7.15: File scope code distribution (BonForum vs. FitNesse) 
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Figure 7.11: File scope code distribution (BonForum vs. FitNesse) 

It is important to notice for the following charts that, BonForum contains 3 files above than 

500 NCLOC, whereas the remaining 14 files are below 250 NCLOC (see Table 7.15 and 

Figure 7.11). For FitNesse only a small number of files (<10) are slightly above 250 non 

comment lines of code.  

 NCLOC measures per method  

Program max min mean median stdev #methods

BonForum 505 3 21,8 9 50,34 180

FitNesse 86 1 7,5 6 5,00 3254

Table 7.16: Method scope code distribution (BonForum vs. FitNesse) 
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Figure 7.12: Method scope code distribution (BonForum vs. FitNesse) 

As Table 7.16 and Figure 7.12 indicate, BonForum has on average methods which are 

almost 3 times longer than FitNesse. About one quarter of BonForum’s methods are longer 

than 20 non comment lines of code. The code distribution on file and method scope requires 

to be considered for the following measure comparisons. 
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Figure 7.13: Textual code complexity (BonForum vs. FitNesse) 

The average Halstead Volume per file is about 5 times larger for BonForum (see Figure 

7.13 left), but this result has to be seen in relation to the number of lines per file, as the code 

distribution differs greatly. Also, since the normalized Halstead Volume is higher (see the 

right chart in see Figure 7.13), the results suggest that FitNesse has a lower textual code 

complexity. 
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Figure 7.14: ECC file & method scope (BonForum vs. FitNesse) 

The control flow complexity measures (ECC measures, BP and NBD presented in Figure 

7.14, Figure 7.15 and Figure 7.16) require to be combined to obtain an overview of the 

underlying control flow. The average file and method complexity was found to be high for 

BonForum, but since the code distribution affected the measures, the normalized ECC 

measure had to be taken into consideration as well.  
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Figure 7.15: Branch percentage & nesting level (BonForum vs. FitNesse) 

The Branch Percentage (BP) and the nesting block depth confirm the difference in control 

flow complexity for the two programs. Thus, together the charts indicate a much more 

complex control flow for BonForum than for FitNesse. Besides the control flow complexity, 

also the Maintainability Index is noticeably lower for BonForum (see the right chart in Figure 

7.16). FitNesse reached the best Maintainability Index results among all programs measured. 
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Figure 7.16: ECC_N and Maintainability Index (BonForum vs. FitNesse) 

A previous study [65] of BonForum and FitNesse, indicated a poor object oriented design 

quality for BonForum and good object oriented design quality for FitNesse. The measures 

produced show that this difference in quality is not just to be found for the design but also for 

the source code.  Here, BonForum was behind FitNesse in all aspects measured.  
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7.7.3 Creating an individual code profile 

As seen in the previous section (7.7.2), comparing measures for two or more projects can be 

an extensive task. A better solution might be to generate a code profile for each program, 

which allows the programs to be compared quickly and easily. The next chapter deals with 

this aspect of generating a code profile for the programs. The programs BonForum and 

FitNesse can help understand a good choice of profile metrics, since the two programs have 

now been discussed in detail. 

7.8 Summary 

When software projects are analyzed by means of software measurements, a considerable 

amount of data is produced. The task here is to organize the data and draw meaningful 

information from the measures produced [8]. At this point, the importance of measure 

combination should be reviewed. Measures produced need to be combined, as illustrated in 

this chapter, to avoid drawing hasty decisions about a particular code characteristic measured.  
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8 Code profiling 

This chapter deals with the generation of code profiles in general and for the programs 

measured. 

8.1 Introduction 

As suggested in Chapter 7, the comparison should be brought to the individual level due to 

large amounts of data produced. In Section 7.7.2, this individual comparison was illustrated 

by the example BonForum vs. FitNesse. Even if only two programs are compared, the 

comparison is not simple and the number of measures, tables and charts can still feel 

overwhelming. The creation of code profiles can improve the comparison process, as a 

summary of data is compared rather than the full number of measures produced (in this 

dissertation, for each program 66 measures were produced).  

Before the topic of code profiling is discussed in more depth, the definition of profile listed 

in Chapter 2 is presented again: 

A profile is “a formal summary or analysis of data, often in the form of a graph or table, 

representing distinctive features or characteristics” [7]. 

Thus code profiling is the activity of creating a formal summary of distinctive characteristics 

of a program’s source code. A literature survey revealed that mostly data concerning the 

(dynamic) performance of software is profiled such as in [53] and [78], rather than the static 

characteristics of the code. Nevertheless in this dissertation the static code characteristics 

(such as the control flow complexity) are profiled. 

8.2 Reasoning and usage 

A program code profile can help to present a quick overview about code characteristics. 

Instead of reviewing a large number of measures, a reduced set of summarizing measures can 

be sufficient to determine whether changes have to be made. If the code profile indicates 

problematic code characteristics, these particular characteristics can be inspected further by 

consulting the remaining measures, which were not included in the profile, or by going 

directly to the source code level (see Figure 8.1).    
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Figure 8.1: Code profiling illustrated 

Several scenarios of application seem reasonable for both industry and education. Four of 

these scenarios are presented in the following sections. 

8.2.1 For industry 

Scenario 1: 

The use of code profiles allows a quick comparison of different releases for the same 

program. A code profile for a particular program could be generated each time a new release 

is made. Over time, when the current release profile indicates a large change compared to the 

previous profiles the areas of change can be inspected and through refactoring adjusted. Thus 

the program profile history will be stored, and used in order to have a deeper basis for 

answering questions similar to the following ones:  

• Did the project code become more complex, when the last change was made? 

• Is a trend visible? Does the maintainability become better or worse?  

• If worse, then why and how can it be improved? 

 

Scenario 2 

Before acquiring a new software product, the source code can quickly be checked in terms of 

maintainability. As the code of the software is possibly unknown beforehand, a profile can 

give a quick overview about the code characteristics. If the profile indicates a very complex 

source code, an alternative product with better maintainability aspects might be considered 

instead.  
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8.2.2 For education 

Scenario 1: 

Profiles for different student programs in the same course can be compared. When one profile 

is significantly different to the ones of the other student programs, the code of this particular 

program should be inspected further. Inspecting all student programs in detail is rarely 

performed and the more students who are in course, the more difficult it becomes to conduct. 

With code profiles, students who might need help can be detected rather quickly, without 

having the teacher look through all student programs in detail.  

 

Scenario 2: 

Every time a student hands in a programming assignment a code profile for the particular 

program can be generated. These profiles can then according to date and course level be 

stored in a profile portfolio for the student. This way the student’s programming improvement 

can be tracked from the first year assignments to the final year assignments. Whether the 

profile indicate better programs over the years would be interesting to see.   

8.3 The code profile 

8.3.1 Defining areas of importance 

In this dissertation the following areas of code characteristics will be considered for the code 

profiling: 

• Code distribution 

• Textual code complexity 

• Control flow complexity 

• Maintainability aspects 

Since the results for the object oriented metrics applied in this dissertation were not found 

very useful for the underlying program, these metrics will be covered to a lesser extent in the 

code profiles. The maintainability aspects can be seen as combination of code distribution 

textual code complexity and control graph complexity (the MI metric covers these three 

areas). 
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8.3.2 Selecting metrics of importance 

In this section, two sets of metrics (comparative and descriptive) will be presented and 

discussed. A distinction was made to guarantee a low complexity of the profile and thus 

allowing a quick comparison of two individual profiles. The measures for the comparative 

metrics (comparative measures) will receive, as means of comparison, the main attention in 

the profile. When anomalies in those measures are detected, the measures for the descriptive 

metrics (descriptive measures) can be consulted to further interpret the program’s code 

characteristics.  

Since the student and industry programs differ greatly in their textual length, the 

comparative metrics where chosen to be program length independent. In detail, 8 comparative 

metrics were selected11. The selected comparative metrics cover the defined areas of 

importance and are listed and explained below: 

• Code distribution 

o Since it is difficult to say which code distribution is to be preferred for a single 

program (see Chapter 3), the metrics are more to be seen as supportive metrics 

and thus are mostly within the set of descriptive metrics. Nevertheless, one 

adjusted code distribution metric was included: the lines of code per method. 

The average lines per method were not measured, but instead the percentage of 

large methods determined by the number of non comment lines of code used. 

This adjusted metric was labelled:  

- LPM>X (Lines per Method greater than a defined limit)  

• Textual code complexity 

o As representative for the textual code complexity the normalized Halstead 

Volume (see Section 7.4) was chosen: 

- HV_N (normalized Halstead Volume | code distribution independent) 

• Control flow complexity 

o The control flow complexity was measured through the branch percentage, the 

nesting block level and the Extended Cyclomatic Complexity (ECC). As 

Chapter 7 shows these three aspects require to be combined to grasp the 

complexity of the control flow. Here 5 representative metrics were selected 

(from which one was adjusted similar to LPM>X): 

                                                 
11 Any number of comparative metrics can be chosen. The number 8 was found to be a good balance between 

high granularity and lucidity. 
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- avg_BP (average Branch Percentage) 

- avg_NBD (average Nesting Block Depth) 

- ECC_N (normalized ECC | code distribution independent) 

- avg_file_ECC (average ECC per file | file scope code distribution dependent) 

- ECC>X (percentage of methods with an ECC above X | method scope code 

distribution dependent) 

• Maintainability 

o The maintainability aspects are covered in the set of primary metrics by the 

combination of the metrics above and the Maintainability Index (MI). 

- MI (Maintainability Index | file scope code distribution dependent) 

The set of descriptive metrics cover code the textual length of a program and more aspects of 

the above stated four code characteristic areas (such as code distribution and control flow). 

Additionally, object oriented aspects are integrated in form of the coupling between object 

metric. The full list of descriptive metrics can be found in the corresponding section of the 

appendix (see A.4.1). 

8.3.3 Defining measure intervals 

The two newly defined metrics (LPM>X, and ECC>X) are required to be adjusted further, as 

the value of X was not set. For LPM, this value was set to 20 and for ECC to 10. 

Consequently, methods fulfilling the following conditions were counted:   

• Lines per method > 20 

• ECC per method > 10 

As discussed in Chapter 3, no clear understanding about how many lines a method should 

have exists. In this dissertation, methods with a length above 20 NCLOC are not essentially 

considered to be fault prone and do not require to be redesigned without consulting other 

measures beforehand. However, knowing the percentage of long methods in a program can 

improve understanding about the code distribution and thus supports the interpretation of 

other metrics (such as ECC>X).  

Long methods are not essentially complex [51]. Thus, the complexity measures for a 

method have to be considered together with the method length. For the complexity per 

method (i.e. ECC per method) the counting limit of 10 was chosen in conformance with the 

selected LPM limit. 
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8.3.4 Profile visualisation 

The visualisation of measurement data has been well researched, thus several different 

visualization methods exist [79], [80]. Figure 8.2 displays two out of many of those methods 

within the area of software measurement.  

Multivariate visualization of  

fan-in and code smell 

3D perspective visualization with  

15 metrics per component 

 
Source: [79] Source: [80] 

Figure 8.2: Examples for data visualization 

In this dissertation, a rather less complex visualisation form is chosen. When comparing the 

profiles of different students in class, a very detailed profile can reduce the clarity and 

usability. Thus, here the ease of comparison and simplicity is chosen over the granularity 

level of the representation.  

The measures for the comparative metrics will be visualized by using a kiviat diagram 

(also called spider or radar diagram), which is presented in Figure 8.3. The file scope code 

distribution will be presented in visualized form as well (see 7.3.3). The measures for other 

descriptive metrics will be listed in textual form next to the kiviat diagram.   
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Figure 8.3: Example kiviat diagram 

6 Therefore, the layout for the code profile in this dissertation is a combination of literal and 

figurative elements.  A brief explanation of the profile layout follows in the next section. 
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8.3.5 Profile revision  

Figure 8.4 shows the layout selected and explains the different sections briefly 

Programming language
Program length
Comment Rate
Maintainability
Textual code compl.
File complexity
Method complexity
Average nesting
Maximal nesting
Branch Percentage
Maximal coupling

Number of files
Lines per file (avg)
Lines per file (max)
Number of methods
Lines per method (avg)
Lines per method (max)
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Figure 8.4: Profile layout explanation 

Six of the comparative metrics were normalized and renamed (these are indicated with a 

‘^’ symbol), for the purpose of display (the new computation can be found in Appendix 

A.4.1). In order to keep the original values, the measures for these adjusted metrics were 

included in the program summary section (see Figure 8.4). In this way the adjusted 

Maintainability Index12 (^MI) is used for the kiviat diagram and the kiviat data section, 

whereas the original MI measure is included in the project summary. Table 8.1 gives a brief 

overview of the selected primary metrics (adjusted and not adjusted).  

Name description name description 

^MI Maintainability Index ^BP Branch percentage 

^HV_N Normalized Halstead Volume ^ECC_N Normalized Extended CC 

^NBD Nesting Block Depth per file LPM>20 Lines (NCLOC) per method > 20 

^ECC_F Cyclomatic complexity per file ECC>10 Extended CC per method > 10 

Table 8.1: List of comparative metrics 

The measures for these comparative metrics are presented as surface on the kiviat diagram. In 

terms of interpretation, single spikes on the kiviat diagram indicate possible problems in 

particular code characteristics (such as textual code complexity). Here the smaller the area on 

kiviat diagram (face) the better the program code. The code distribution aspects are displayed 

in figurative and literal form in the bottom right corner. 

                                                 
12 The Maintainability Index did not only required to be adjusted due to the measure range, but also was reversed 

as for this metric originally high values indicate a good maintainability and low values a poor maintainability 
[57].   
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8.4 Profiling the programs 

8.4.1 BonForum vs. FitNesse 

Consider the following profiles for BonForum and FitNesse.  

Programming language
Program length
Comment Rate
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Textual code compl.
File complexity
Method complexity
Average nesting
Maximal nesting
Branch Percentage
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Number of files
Lines per file (avg)
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Number of methods
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Number of methods
Lines per method (avg)
Lines per method (max)

^MI 0.02 ^ECC_N 0.09 ECC>10 0.00 ^BP 0.07
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A detailed comparison between the programs BonForum and FitNesse was performed in 

Chapter 7. At this point, with the differences of the two programs in mind, the profile 

generation can be examined. 

The first immediately visible difference between the two profiles is the size of the shaded 

area on the kiviat diagram (surface), thus indicating an overall worse outcome for the program 

BonForum. The surface is in all 8 directions (the eight selected comparative metrics) bigger 

than the surface for FitNesse. The following sectors on the surface should to be viewed in 

combination as these can quickly reveal information about the code characteristics (see Figure 

8.5):  
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Figure 8.5: Kiviat diagram section example 

• Sector 1 (^MI - ^BP) presents the control flow complexity measured independent 

from the code distribution 

• Sector 2 (^BP - ^ECC_F) represents a combination of code distribution and control 

flow complexity 

• Sector 3 (^ECC_F - ^MI) shows the textual code complexity of the program 

With regard to the information in these 3 sectors and the two program profiles, the conclusion 

about these programs which was drawn in the previous chapter, can quickly be confirmed. In 

the following section the elements within the three sections will be considered closer.   
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8.4.2 Student vs. Student 

In Figure 8.6, the kiviat diagrams are shown for the programs of the course D.CC and 

programming assignment L4. The full code profiles are presented in the corresponding section 

in Appendix A.4.2.  

Student 1 (C) Student 2 (C) Student 3 (Java) 

^MI

^NBD

^ECC_N

^BP

ECC>10

LPM>20

^ECC_F

^HV_N

 

^MI
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^ECC_N

^BP

ECC>10

LPM>20

^ECC_F

^HV_N

 

^MI
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^ECC_N

^BP

ECC>10

LPM>20

^ECC_F

^HV_N

 

Student 4 (Java) Teacher (C)  

^MI

^NBD

^ECC_N

^BP

ECC>10

LPM>20

^ECC_F

^HV_N

 

^MI

^NBD

^ECC_N

^BP

ECC>10

LPM>20

^ECC_F

^HV_N

 

 

Figure 8.6: kiviat diagrams for course D.CC_L4 

The kiviat surfaces spike out for student 1 and 3. The code from student 1 in particular 

shows a high control flow complexity. The results for Student 3’s program indicate overall 

high values for the textual code complexity and the control flow complexity. As the teacher 

version indicates, the programming assignment required a rather complex control flow. 

Nevertheless, Student 2 and 4 showed, with this in mind, good results. The spike in the 

bottom right corner (LPM>20) for Student 2 together with the minimal value for the method 

complexity (ECC>10) indicate that the code is distributed over predominantly long but rather 

non complex methods. In conclusion, the 5 kiviat diagrams can be compared quickly; and the 

comparison points to further inspection of the programs of Student 1 and 3, by considering the 

full code profile (1), the full measures (2), and finally the code itself (3) (see Figure 8.1).  
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8.4.3 General comparison 

The course, in which the design and implementation was graded (D.OODM), the code 

profiles show, compared to the other profiles generated, good results. These programs were 

written in Java. That Java programs do not necessarily produce good profiles is shown by the 

BonForum vs. FitNesse comparison.  

When comparing the industry with the student programs (see Appendices A.4.2 and 

A.4.3), no clear group difference is visible. Both large and small kiviat surfaces can be found 

among student and industry programs. As indicated in Chapter 7, the difference is mostly to 

be found in the areas of program size and code distribution.  

8.5 Profile drawbacks 

Code profiles allow a quick overview about code characteristics, as pointed out in Section 8.2. 

However, as not the source code itself, but only a set of metrics quantifying code 

characteristics are considered, the profiles should not be over emphasized. When a set of 

metrics is chosen, a balance between high granularity level and clarity has to be found. A 

profile high in granularity can capture more aspects about the code, but will be lacking in ease 

of comparison and analysis.   

 In this dissertation, four areas of importance were selected (see Section 8.3.1); the object 

oriented aspects were not included in the group of comparable metrics. Thus, the profile does 

not indicate possible issues in the design, but focuses more on the implementation and the 

code itself.  

8.6 Summary 

For code profiling several application scenarios seem reasonable, in both education and 

industry. The definition of a code profile is straight forward, though several decisions (such as 

the granularity level, the areas of importance, and the metrics of choice) have to be made in 

the definition process.  The programs profiled in this dissertation show, with regards to their 

area (education vs. industry), that apart from program size and code distribution, there were 

only minor differences. However, the profiles generated were used to find individual 

differences. Here, the results found through a detailed result analysis of the industry programs 

BonForum and FitNesse (see 7.7.2), were confirmed by the profiles generated for these two 

programs. In conclusion, using code profiles to quickly compare (without an intensive and in 
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depth measure analysis) software programs in terms of code characteristics was found to be 

very reasonable. 

 113 



 

9 Conclusion 

In this chapter conclusions from the theoretical and practical part of this dissertation are 

presented together with suggestions for related studies and future work. 

9.1 Review 

In this dissertation, a survey on software metrics and software measurement tools was 

conducted. A set of tools was selected and compared in terms of metric support, 

implementation and interpretation. Three tools (CCCC, CMT and SourceMonitor), which 

fulfilled previously defined requirements, were used for measuring student and industry 

programs with regard to the source code characteristics. The measures produced were 

compared and analyzed in terms of programming language groups, textual length groups, area 

groups (student vs. education) and individually. Since an individual comparison was found to 

be quite an extensive task, the idea of code profiling was used and implemented to reduce the 

complexity from the individual program comparisons (such as BonForum vs. FitNesse). 

Finally, the student and industry code profiles generated were for a subset of programs which 

were discussed and analyzed in detail. 

9.2 Project evaluation 

In the first part of the evaluation, the three key questions of the dissertation are answered and 

the goal achievement evaluated. The following section discusses problematic aspects during 

the dissertation and proposes suggestions for related work within this area. 

 

(1) Is it useful to perform software measurements in software engineering education?  

Yes, the project and the source code measurements involved show that software measurement 

in education is useful. The software measurement process can be, as experienced, realized in 

almost fully automated form, thus allowing the investigator to quickly produce and to 

reproduce measurement results for a group of students. Nevertheless, the preparations for an 

automated software measurement system can be extensive. Especially when different software 

measurement tools are used, extra effort is needed to unify the measurement results. Learning 
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to understand what the measures produced indicate and how these should be interpreted is 

feasible, though practical experience is needed.  

 

• Which software metrics are available and useful for the analysis of source code?  

The survey conducted (see Chapter 4) illustrates that a variety of software metrics can be used 

and applied in the software measurement process to measure code characteristics. In this 

dissertation the metrics were classified into the following six areas of code characteristics:  

1. Program size 

2. Code distribution 

3. Textual code complexity 

4. Control flow complexity 

5. Code maintainability 

6. Object oriented aspects 

Here no single metrics were found to be useful for the analysis of source code but instead a 

combination of several metrics (such as control flow complexity metrics supported by code 

distribution metrics). A distinction between code distribution (how the source code is 

distributed over a number of files and methods) dependent and independent metrics was 

made. While interpreting measures produced by the former, code distribution aspects have to 

be considered. One area of code characteristics (namely object oriented aspects) was found 

not to be particularly useful for this dissertation and the profile generation, since determining 

whether a measure produced is too high or low was found to be very difficult for this area; 

especially if the program and the program design is not known. 

The variety of software metrics available can be an issue; using and applying software 

metrics just because these are available can result in an overwhelming amount of data 

(measures) produced [2]. Depending on the scope level of interest one single metric can result 

in a handful of measures for one particular program measured (measures for program scope, 

file scope, class scope, and method scope). 

• Which software measurement tools are available and how do they differ?  

The survey of software measurement tools in the area of static code analysis conducted 

(presented in Chapter 5) points out that here a great variety also exists. For the tools surveyed, 

a difference in programming language support as well as in software metric support was 

noted. No clearly defined set of metrics was observed; each tool vendor defined their own set 

of interest.  
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None of the chosen tools presented a metrics set covering the list of metrics selected, thus 

a combination of tools was used. For further studies in the same area, the selection of a single 

tool is however advisable, since the measure unification process can present an extensive task 

which should be avoided if possible. The issue is that the tools export the measures produced 

in different formats, as no clear standard exists.  

• Are the measures produced by different tools comparable? 

The interpretation and computation of a single metric was found to differ somewhat from tool 

to tool. Thus, even for small programs noticeable differences in the values of the measures 

produced were found. The quality of the tools’ documentation varied. In this dissertation, the 

creation and application of test cases was found useful to determine the metric 

implementation and the tool’s documentation was rather seen as support in this area. A 

difference in metric computation results in comparison problems. Measures produced by 

different tools require to be transformed before any comparison.  For instance, one has to 

transform Fahrenheit measures to Celsius measures or visa versa, for making valid 

comparisons of temperatures. As the metric computation can be difficult to grasp and also 

differ from tool to tool (see chapter 5), measure comparisons became very difficult and almost 

meaningless. In order to avoid these problematic aspects, each metric was computed by just 

one tool for all three programming languages.  

 

(2) How does student source code differ from industry source code? Are students 

prepared for industrial size programming? 

Since the set of source samples was small (56 programs) and not completely randomly chosen 

(it was acquired from what was available), this question is difficult to answer. For the set of 

sample programs, complex and non complex cases were found for both industry and student 

programs. A large difference was nevertheless found in the program size and code 

distribution. Thus the idea that students in software engineering education rarely face 

industrial scale problems was supported.  Here the student assignments considered dealt with 

the creation of new solutions rather than with the maintenance of existing ones. Since the 

development of larger software system takes several months to years, students never become, 

when not assigned with maintenance aspects, involved with the life cycle process of these 

systems in their courses. The dilemma is that university courses are generally short and thus 

do not allow large scale assignments. Nevertheless, different computer science courses could 

be coordinated to have students work on the same large scale program in different courses. 

One course can focus on the design aspects, another on the program extension, yet another 
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one on the program maintenance and quality assurance. This way the students become closely 

familiar with the system and gain experience with and understanding of large scale programs.  

• What code characteristics can be compared?  

A variety of code characteristics (such as size) can be compared. The set of these is 

depending on the software metrics used. 

• When is a code complex, and what does complex in this sense mean? 

The definition of the term complex is difficult to specify precisely. Chapter 3 illustrated that 

different views about the related aspect of code complexity exist in the software measurement 

literature. Thus, it is not easy to determine what code complexity actually means. In this 

dissertation, code complexity was measured in terms of the control flow complexity and the 

textual code complexity.  

 

(3) Is student code profiling feasible in means of quick program comparison? 

For the set of programs samples, code profiling was found useful for observing a program’s 

code characteristics and for means of quick program comparison. The profiles generated are 

to be seen as overview of the program’s program size, code distribution, textual code 

complexity, control flow complexity, and maintainability. Once the preparations for the 

profile generation are completed, the profile generation itself is literally one click away; thus 

allowing such use in the education sector. Teachers and tutors can quickly browse over and 

compare student profiles on the fly, or save them for later comparison. In order to understand 

the profiles generated, surface patterns require to be interpreted. Since the profile 

visualization was chosen to be rather simple and immediate, the understanding and 

interpretation of the profiles can be taught quickly. Furthermore the profiles can be used to for 

different programming language, as the measures and profiles generated for programs of 

different programming languages were found to be comparable. Nevertheless, code 

distribution tendencies of the different programming languages should be noted. 

 

• What is a code profile?  

A code profile is in this dissertation defined as a formal summary of distinctive 

characteristics of a program source code. 
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• What is needed for a code profile?  

In order to profile code, code characteristics of interest and software metrics which can 

quantify these require to be defined. In addition, a form of representation has to be selected 

and a balance between granularity level and overview be found. 

 

• Can code profiling be used to improve the students programming knowledge? 

Since the students were not measured continuously in this dissertation, this question can not 

be answered to the full extent at this point. However, since the results indicate the possibility 

of quick program comparisons, it seems reasonable that code profiling can used to determine 

areas which can be improved.  

9.3 Future Work 

With regard to future work the following aspects can be noted: 

A continuous measurement and profiling of student programs may be started in order to 

collect historical data and analyse which code characteristic areas showed improvement. Once 

problematic and well understood areas are detected, teaching can be adjusted accordingly. 

Since only a small set of sample programs (56 programs) were used, a study on student 

code and industry code differences may be conducted on much larger scale. 

Another interesting aspect may be, to further investigate the use of object oriented metrics 

for code profiling. Due to difficulties experienced with the tools, the set of object oriented 

metrics applied was reduced and the ones which could be used were found not that useful for 

this study.   The difficulties experienced with the tools as well as with the tool selection point 

out that a project regarding the creation of a software measurement tool for education may be 

of interest. The support for all taught programming languages and the automated generation 

of code profile could be seen as possible requirement for this tool.  
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11 Appendix 

A.1 Software measurement process 
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A.2 Measurement result tables 

A.2.1 List of software metrics applied 

  Scope applied in… 
Abb. Full name Program File Class Method 

LOC (Physical) Lines of Code X X  X 
NCLOC Non Comment Lines of Code X X X X 
#STAT Number of statements X X  X 
HL Halstead Length X X   
LPM Lines (of code) per Method X X   
SPM Statements per Method X X   
#files Number of files X    
#methods Number of methods X X   
LPM>20 Percentage of methods with LPM bigger than 20 X    
Hvoc Halstead vocabulary X X   
HV Halstead Volume X X   
HD Halstead Difficulty X X   
HE Halstead Effort X X   
HV_N Normalized Halstead Volume X    
HE_N Normalized Halstead Effort X    
CR Comment Rate X X   
MI Maintainability Index (without comments) X X   
MIwc Maintainability Index (with comments) X X   
NBD Nesting Block Depth X X  X 
BP Branch Percentage X X   
ECC Extended Cyclomatic Complexity X X X X 
ECC_N Normalized ECC X    
ECC>8 Percentage of methods with ECC bigger than 8 X    
ECC>10 Percentage of methods with ECC bigger than 10 X    
WMC Weighted Methods per Class  X  X  
DIT Depth of Inheritance Tree X  X  
NOC Number of Children X  X  
CBO Coupling Between Objects X  X  
FI Fan In X  X  
FO Fan Out X  X  
IF4 Information Flow X  X  
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A.2.2 Program size & code distribution 
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A.2.3 Textual code complexity and code maintainability 
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A.2.4 Structural code complexity 

 pi
d

la
n

na
m

e
av

g_
N

B
D

m
ax

_N
B

D
av

g_
B

P
av

g_
m

et
ho

d_
EC

C
m

ax
_m

et
ho

d_
EC

C
to

ta
l_

EC
C

av
g_

Fi
le

_E
C

C
m

ax
_F

ile
_E

C
C

st
de

v_
EC

C
EC

C
_N

EC
C

>8
EC

C
>1

0
1

C
G

IM
P

1.
57

10
0.

18
4.

04
14

3
50

84
2

24
.6

4
90

1
52

.5
3

0.
10

0.
11

0.
08

2
C

M
ira

nd
a

2.
65

10
0.

28
7.

89
27

7
62

63
63

.9
31

3
61

.3
5

0.
22

0.
22

0.
17

3
C

N
ul

lW
eb

m
ai

l
1.

84
8

0.
23

13
.4

1
11

1
24

21
83

.4
8

30
6

89
.6

6
0.

27
0.

42
0.

38
4

C
Pa

nd
a

0.
79

10
0.

07
3.

15
51

17
51

25
.0

1
32

6
56

.2
1

0.
13

0.
09

0.
07

5
C

SD
C

C
2.

19
10

0.
30

8.
99

46
6

32
04

3
16

1.
02

22
59

36
7.

28
0.

22
0.

28
0.

22
6

C
VI

M
2.

25
10

0.
28

6.
56

35
2

59
54

8
56

7.
12

35
82

72
1.

56
0.

25
0.

18
0.

14
7

C
++

7-
Zi

p
1.

65
10

0.
19

3.
96

94
14

21
2

15
.4

6
27

8
30

.3
6

0.
15

0.
10

0.
08

8
C

++
D

is
kC

le
an

er
1.

65
8

0.
18

3.
85

22
72

1
12

.4
3

13
1

23
.2

9
0.

13
0.

12
0.

09
9

C
++

Em
ul

e
2.

03
10

0.
21

5.
18

51
5

28
75

6
43

.7
6

12
84

10
5.

34
0.

17
0.

13
0.

10
10

C
++

Fi
le

Zi
lla

1.
71

10
0.

17
6.

50
47

4
11

93
2

40
.5

8
12

48
12

5.
35

0.
15

0.
18

0.
15

11
C

++
H

ex
Vi

ew
1.

32
6

0.
15

2.
27

19
11

8
7.

37
59

14
.1

4
0.

11
0.

03
0.

03
12

C
++

N
ot

ep
ad

++
2.

29
10

0.
25

7.
25

26
8

58
36

41
.0

9
11

98
12

3.
12

0.
16

0.
21

0.
15

13
Ja

va
Bo

nF
or

um
2.

81
10

0.
25

5.
09

10
4

75
3

44
.2

9
21

9
68

.0
5

0.
18

0.
11

0.
09

14
Ja

va
Fi

tN
es

se
1.

58
6

0.
05

1.
33

40
15

80
3.

2
41

4.
40

0.
06

0.
00

0.
00

15
Ja

va
H

TM
L_

U
ni

t
1.

77
8

0.
13

1.
64

25
16

00
7.

33
15

7
16

.9
6

0.
11

0.
01

0.
01

16
Ja

va
N

ek
oH

TM
L

2.
86

10
0.

21
3.

81
44

12
05

41
.5

5
55

7
10

4.
08

0.
19

0.
11

0.
07

17
Ja

va
Js

et
tle

rs
3.

14
10

0.
22

3.
59

38
6

45
06

30
.4

4
61

3
92

.5
7

0.
15

0.
06

0.
05

18
Ja

va
JS

S
2.

57
8

0.
10

3.
37

20
17

7
11

.8
44

11
.6

6
0.

15
0.

11
0.

08
19

Ja
va

C
S.

PP
S

2.
61

10
0.

10
2.

85
72

82
56

22
.4

3
13

69
81

.2
1

0.
11

0.
06

0.
04

20
Ja

va
A.

O
O

PJ
_L

1_
st

1
2.

21
5

0.
31

2.
00

10
18

9
17

11
.3

1
0.

10
0.

06
0.

00
21

Ja
va

A.
O

O
PJ

_L
2_

st
1

2.
56

8
0.

24
2.

44
13

54
10

.8
36

14
.7

9
0.

11
0.

03
0.

03
22

Ja
va

A.
O

O
PJ

_L
3_

st
1

1.
56

5
0.

03
1.

12
4

20
2

7
2.

16
0.

03
0.

00
0.

00
23

Ja
va

A.
O

O
PJ

_L
4_

st
1

1.
6

4
0.

09
1.

66
4

27
3.

37
7

1.
77

0.
08

0.
00

0.
00

24
Ja

va
A.

O
O

PJ
_L

5_
st

1
1.

92
6

0.
11

1.
84

8
10

2
4.

85
16

4.
05

0.
09

0.
00

0.
00

25
C

B.
O

S_
L1

_s
t1

0.
88

3
0.

16
3.

33
9

17
5.

66
13

6.
35

0.
14

0.
17

0.
00

26
C

B.
O

S_
L2

_s
t1

0.
8

2
0.

07
2.

08
5

17
4.

25
5

0.
50

0.
09

0.
00

0.
00

27
C

B.
O

S_
L3

_s
t1

1.
02

3
0.

14
3.

00
5

7
7

7
-

0.
13

0.
00

0.
00

28
C

B.
O

S_
L4

_s
t1

2.
02

6
0.

22
7.

40
19

33
33

33
-

0.
17

0.
20

0.
20

29
C

B.
O

S_
L5

_s
t1

3.
51

7
0.

28
10

.5
0

19
58

58
58

-
0.

19
0.

50
0.

50
30

C
++

C
.P

L_
L1

_s
t1

1.
22

4
0.

16
2.

78
10

11
8

8.
42

53
13

.7
3

0.
15

0.
02

0.
00

31
C

C
.P

L_
L1

_s
t2

1.
14

4
0.

21
4.

15
15

12
4

11
.2

7
59

18
.2

2
0.

18
0.

09
0.

09
32

C
C

.P
L_

L1
_s

t3
1.

65
6

0.
22

4.
90

41
11

9
29

.7
5

65
26

.8
9

0.
18

0.
10

0.
10

33
C

++
C

.P
L_

L1
_s

t4
1.

14
5

0.
13

2.
48

18
11

4
9.

5
43

12
.7

5
0.

15
0.

02
0.

02
34

C
++

C
.P

L_
L1

_s
t5

1.
34

5
0.

19
2.

65
26

18
7

8.
5

61
14

.9
8

0.
18

0.
02

0.
02

35
C

C
.P

L_
L1

_s
t6

1.
06

4
0.

19
2.

38
10

69
13

.8
37

15
.9

4
0.

14
0.

02
0.

00
36

C
++

C
.P

L_
L1

_s
t7

1.
5

5
0.

18
3.

26
11

54
54

54
-

0.
16

0.
04

0.
04

37
C

D
.C

C
_L

2_
te

ac
he

r
1.

23
5

0.
20

3.
07

13
16

0
32

13
2

56
.5

8
0.

18
0.

04
0.

01
38

C
D

.C
C

_L
2_

st
1

1.
61

4
0.

24
3.

79
11

79
79

79
-

0.
15

0.
04

0.
04

39
C

D
.C

C
_L

2_
st

2
1.

36
4

0.
28

4.
89

10
14

3
28

.6
12

3
52

.9
7

0.
21

0.
14

0.
00

40
C

D
.C

C
_L

2_
st

3
1.

24
3

0.
33

3.
41

9
14

7
14

7
14

7
-

0.
26

0.
03

0.
00

41
C

D
.C

C
_L

2_
st

4
1.

59
4

0.
31

4.
93

33
16

8
84

16
6

11
5.

97
0.

22
0.

10
0.

07
42

C
D

.C
C

_L
3_

te
ac

he
r

1.
2

5
0.

18
2.

76
13

17
0

34
14

2
61

.0
0

0.
16

0.
03

0.
01

43
C

D
.C

C
_L

3_
st

1
1.

61
4

0.
24

3.
79

11
79

79
79

-
0.

15
0.

04
0.

04
44

C
D

.C
C

_L
3_

st
2

1.
37

4
0.

23
4.

53
13

15
9

31
.8

13
5

58
.0

4
0.

18
0.

14
0.

09
45

C
D

.C
C

_L
3_

st
3

1.
54

5
0.

33
5.

17
25

25
3

25
3

25
3

-
0.

26
0.

15
0.

14
46

C
D

.C
C

_L
3_

st
4

1.
54

4
0.

26
4.

65
34

20
1

28
.7

1
15

8
57

.8
6

0.
19

0.
10

0.
06

47
C

D
.C

C
_L

4_
te

ac
he

r
1.

32
4

0.
26

3.
55

16
80

80
80

-
0.

18
0.

10
0.

06
48

C
D

.C
C

_L
4_

st
1

1.
83

5
0.

41
6.

29
19

92
46

47
1.

41
0.

25
0.

24
0.

18
49

C
D

.C
C

_L
4_

st
2

1.
16

3
0.

17
3.

42
19

67
22

.3
3

45
21

.5
9

0.
14

0.
04

0.
04

50
Ja

va
D

.C
C

_L
4_

st
3

2.
97

7
0.

18
4.

67
37

67
67

67
-

0.
18

0.
06

0.
06

51
Ja

va
D

.C
C

_L
4_

st
4

2.
12

5
0.

14
2.

68
25

76
10

.8
5

39
13

.1
7

0.
14

0.
02

0.
02

52
Ja

va
D

.O
O

D
M

_L
4_

st
1

1.
85

5
0.

24
1.

77
9

89
4.

04
17

5.
01

0.
13

0.
01

0.
00

53
Ja

va
D

.O
O

D
M

_L
4_

st
2

1.
51

5
0.

14
1.

57
21

86
2.

96
24

4.
58

0.
17

0.
01

0.
01

54
Ja

va
D

.O
O

D
M

_L
4_

st
3

1.
48

5
0.

10
1.

47
7

73
2.

8
10

2.
28

0.
13

0.
00

0.
00

55
Ja

va
D

.O
O

D
M

_L
4_

st
4

2.
09

6
0.

19
2.

29
25

12
8

4.
41

33
7.

62
0.

19
0.

06
0.

04
56

Ja
va

D
.O

O
D

M
_L

4_
st

5
1.

79
6

0.
18

1.
84

30
10

1
5.

31
32

9.
53

0.
18

0.
02

0.
01

 129 



 

A.2.5 Object oriented aspects 
pi

d
la

n
na

m
e

to
ta

l_
W

M
C

av
g_

W
M

C
to

ta
l_

D
IT

av
g_

D
IT

m
ax

_D
IT

to
ta

l_
N

O
C

av
g_

N
O

C
m

ax
_N

O
C

to
ta

l_
C

B
O

av
g_

C
B

O
m

ax
_C

B
O

to
ta

l_
FI

/F
O

av
g_

FI
/F

O
m

ax
_F

I
m

ax
_F

O
to

ta
l_

IF
av

g_
IF

m
ax

_I
F

1
C

G
IM

P
13

02
4

23
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
2

C
M

ira
nd

a
68

0
14

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

3
C

N
ul

lW
eb

m
ai

l
35

9
11

9
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
4

C
Pa

nd
a

51
7

7
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
5

C
SD

C
C

25
20

50
4

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

6
C

VI
M

47
2

5
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
7

C
++

7-
Zi

p
38

15
6

21
9

0
4

32
3

0
71

35
30

5
12

4
17

65
2

12
4

53
81

50
41

13
58

40
44

96
8

C
++

D
is

kC
le

an
er

14
4

5
7

0
1

7
0

4
42

1
6

21
0

6
6

0
0

0
9

C
++

Em
ul

e
68

37
9

25
0

0
6

21
3

0
16

47
34

6
12

2
23

67
3

12
2

38
78

38
24

11
39

49
28

04
10

C
++

Fi
le

Zi
lla

46
74

14
11

4
0

2
91

0
21

16
24

5
64

81
2

2
64

37
37

09
8

11
6

92
16

11
C

++
H

ex
Vi

ew
59

1
8

0
1

8
0

2
54

1
8

27
0

3
8

0
0

0
12

C
++

N
ot

ep
ad

++
14

34
7

10
1

0
3

64
0

20
95

2
5

43
47

6
2

43
39

37
36

5
19

8
11

66
4

13
Ja

va
Bo

nF
or

um
18

0
3

13
0

1
13

0
4

15
4

3
15

77
1

15
11

28
50

60
19

36
14

Ja
va

Fi
tN

es
se

32
37

5
69

0
1

6
46

6
0

69
41

20
7

31
2

20
60

3
31

2
15

28
08

40
3

48
33

17
03

02
5

15
Ja

va
H

TM
L_

U
ni

t
21

64
6

66
1

2
7

21
4

0
46

23
48

7
18

4
11

74
3

18
4

30
67

75
49

6
21

44
1

62
85

04
9

16
Ja

va
N

ek
oH

TM
L

36
2

3
37

0
3

27
0

6
50

0
4

30
25

0
2

30
25

11
69

9
11

1
92

16
17

Ja
va

Js
et

tle
rs

16
74

7
19

9
0

2
15

5
0

70
15

82
7

11
0

79
1

3
11

0
72

32
15

70
14

68
82

94
4

18
Ja

va
JS

S
10

0
1

17
0

1
17

0
6

19
0

3
14

95
1

10
8

21
12

39
16

00
19

Ja
va

C
S.

PP
S

42
20

8
48

3
0

3
29

8
0

17
5

31
44

6
22

2
15

72
3

22
2

58
50

42
80

3
10

24
9

41
20

90
0

20
Ja

va
A.

O
O

PJ
_L

1_
st

1
16

2
0

0
0

0
0

0
10

1
3

5
0

1
3

4
0

4
21

Ja
va

A.
O

O
PJ

_L
2_

st
1

34
3

0
0

0
0

0
0

22
2

4
11

1
3

4
9

0
4

22
Ja

va
A.

O
O

PJ
_L

3_
st

1
82

4
11

0
2

8
0

4
84

4
12

42
2

10
12

42
8

25
25

6
23

Ja
va

A.
O

O
PJ

_L
4_

st
1

31
1

6
0

1
13

0
3

84
3

11
42

1
4

10
37

8
17

14
4

24
Ja

va
A.

O
O

PJ
_L

5_
st

1
98

2
13

0
2

15
0

5
19

2
4

13
96

2
13

13
10

13
22

57
6

25
C

B.
O

S_
L1

_s
t1

5
5

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

26
C

B.
O

S_
L2

_s
t1

6
6

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

27
C

B.
O

S_
L3

_s
t1

3
3

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

28
C

B.
O

S_
L4

_s
t1

5
5

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

29
C

B.
O

S_
L5

_s
t1

6
6

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

30
C

++
C

.P
L_

L1
_s

t1
56

5
0

0
0

0
0

0
28

2
7

14
1

4
7

19
1

9
31

C
C

.P
L_

L1
_s

t2
34

34
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
32

C
C

.P
L_

L1
_s

t3
29

29
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
33

C
++

C
.P

L_
L1

_s
t4

62
6

0
0

0
0

0
0

24
2

5
12

1
3

5
35

3
16

34
C

++
C

.P
L_

L1
_s

t5
78

7
0

0
0

0
0

0
28

2
7

14
1

5
4

12
4

12
10

0
35

C
C

.P
L_

L1
_s

t6
44

44
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
36

C
++

C
.P

L_
L1

_s
t7

22
4

0
0

0
0

0
0

8
1

4
4

0
1

4
0

0
0

37
C

D
.C

C
_L

2_
te

ac
he

r
75

75
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
38

C
D

.C
C

_L
2_

st
1

28
14

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

39
C

D
.C

C
_L

2_
st

2
6

6
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
40

C
D

.C
C

_L
2_

st
3

11
11

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

41
C

D
.C

C
_L

2_
st

4
41

41
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
42

C
D

.C
C

_L
3_

te
ac

he
r

94
94

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

43
C

D
.C

C
_L

3_
st

1
28

14
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
44

C
D

.C
C

_L
3_

st
2

25
25

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

45
C

D
.C

C
_L

3_
st

3
11

11
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
46

C
D

.C
C

_L
3_

st
4

54
54

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

47
C

D
.C

C
_L

4_
te

ac
he

r
31

31
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
48

C
D

.C
C

_L
4_

st
1

17
17

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

49
C

D
.C

C
_L

4_
st

2
13

13
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
50

Ja
va

D
.C

C
_L

4_
st

3
18

4
0

0
0

0
0

0
6

1
3

3
0

1
3

0
0

0
51

Ja
va

D
.C

C
_L

4_
st

4
41

3
0

0
0

0
0

0
46

4
7

23
2

5
6

21
6

19
64

52
Ja

va
D

.O
O

D
M

_L
4_

st
1

69
2

15
0

1
15

0
7

11
2

4
13

56
2

11
7

10
89

40
48

4
53

Ja
va

D
.O

O
D

M
_L

4_
st

2
10

1
2

37
0

3
23

0
6

17
2

4
15

86
2

15
8

57
12

14
6

20
25

54
Ja

va
D

.O
O

D
M

_L
4_

st
3

87
2

19
0

1
19

0
7

15
0

3
12

75
1

11
7

14
69

37
10

24
55

Ja
va

D
.O

O
D

M
_L

4_
st

4
77

2
36

1
2

23
0

6
13

6
4

15
68

2
15

5
27

09
82

16
00

56
Ja

va
D

.O
O

D
M

_L
4_

st
5

98
4

12
0

1
12

0
4

13
0

5
18

65
2

14
6

60
61

27
5

31
36

 

 130 



 

A.3 Measurement result diagrams 

A.3.1 Line diagrams 
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A.3.2 Scatter plots 

ALL: total_LOC (x-axis) vs. total_NCLOC (y-axis)
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A.4 Program profiles 

A.4.1 Metric information 

 

Competitive metrics 

• Reversed MI 

• Nested Block Depth 

• Normalized ECC 

• Branch Percentage 

• Method ECC > 10 

• Lines per method > 20 

• Average File ECC 

• Normalized Halstead Volume 

 

 

Descriptive metrics 

• Program length 

• Comment rate 

• Maintainability Index 

• Average file complexity 

• Average method complexity 

• Maximal coupling 

• Code distribution aspects 

o Number of files & methods 

o Average Lines per file & method 

o Maximal lines per file & method 

o Full code distribution on file scope 

 

 

 

Metric adjustment 

Metric Computation 

^MI (1 - (MI - 40)/70) * 0.6 

^ECC_F (avg_File_ECC/150)*0.6 

^HV_N  ((HV_N-15)/70)*0.6 

^NBD ((avg_NDB-0.7)/4)*0.6 

^BP (avg_BP*1.4) 

^ECC_N (ECC_N*1.5) 
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A.4.2 Kiviat diagrams (competitive measures) 
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13. BonForum (Java) 14. FitNesse (Java) 15. HTML_Unit (Java) 
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35. C.PL_L1_st6 36. C.PL_L1_st7 37. D.CC_L2_teacher 
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47. D.CC_L4_teacher 48. D.CC_L4_st1 49. D.CC_L4_st2 
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A.4.3 Program profiles (full view) 

Programming language
Program length
Comment Rate
Maintainability
Textual code compl.
File complexity
Method complexity
Average nesting
Maximal nesting
Branch Percentage
Maximal coupling

Number of files
Lines per file (avg)
Lines per file (max)
Number of methods
Lines per method (avg)
Lines per method (max)

^MI 0.31 ^ECC_N 0.14 ECC>10 0.08 ^BP 0.25
^HV_N 0.24 ^ECC_F 0.10 LPM>20 0.42 ^NBD 0.13

Diagram data
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C
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Programming language
Program length
Comment Rate
Maintainability
Textual code compl.
File complexity
Method complexity
Average nesting
Maximal nesting
Branch Percentage
Maximal coupling

Number of files
Lines per file (avg)
Lines per file (max)
Number of methods
Lines per method (avg)
Lines per method (max)

^MI 0.33 ^ECC_N 0.33 ECC>10 0.17 ^BP 0.39
^HV_N 0.36 ^ECC_F 0.26 LPM>20 0.35 ^NBD 0.29

Diagram data
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0
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Programming language
Program length
Comment Rate
Maintainability
Textual code compl.
File complexity
Method complexity
Average nesting
Maximal nesting
Branch Percentage
Maximal coupling

Number of files
Lines per file (avg)
Lines per file (max)
Number of methods
Lines per method (avg)
Lines per method (max)

^MI 0.48 ^ECC_N 0.41 ECC>10 0.38 ^BP 0.32
^HV_N 0.37 ^ECC_F 0.33 LPM>20 0.58 ^NBD 0.17

Diagram data
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Program summary
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Programming language
Program length
Comment Rate
Maintainability
Textual code compl.
File complexity
Method complexity
Average nesting
Maximal nesting
Branch Percentage
Maximal coupling

Number of files
Lines per file (avg)
Lines per file (max)
Number of methods
Lines per method (avg)
Lines per method (max)

^MI 0.49 ^ECC_N 0.19 ECC>10 0.07 ^BP 0.10
^HV_N 0.56 ^ECC_F 0.10 LPM>20 0.22 ^NBD 0.01

Diagram data
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Program summary
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Programming language
Program length
Comment Rate
Maintainability
Textual code compl.
File complexity
Method complexity
Average nesting
Maximal nesting
Branch Percentage
Maximal coupling

Number of files
Lines per file (avg)
Lines per file (max)
Number of methods
Lines per method (avg)
Lines per method (max)

^MI 0.30 ^ECC_N 0.33 ECC>10 0.22 ^BP 0.42
^HV_N 0.30 ^ECC_F 0.64 LPM>20 0.44 ^NBD 0.22

Diagram data
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199
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Code distribution

0

SDCC (5)

49.92
75.01
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Program summary
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Programming language
Program length
Comment Rate
Maintainability
Textual code compl.
File complexity
Method complexity
Average nesting
Maximal nesting
Branch Percentage
Maximal coupling

Number of files
Lines per file (avg)
Lines per file (max)
Number of methods
Lines per method (avg)
Lines per method (max)

^MI 0.74 ^ECC_N 0.37 ECC>10 0.14 ^BP 0.39
^HV_N 0.28 ^ECC_F 2.27 LPM>20 0.31 ^NBD 0.23

Diagram data
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2,283
104

C

Code distribution

0

VIM (6)
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Program summary

10
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Programming language
Program length
Comment Rate
Maintainability
Textual code compl.
File complexity
Method complexity
Average nesting
Maximal nesting
Branch Percentage
Maximal coupling

Number of files
Lines per file (avg)
Lines per file (max)
Number of methods
Lines per method (avg)
Lines per method (max)

^MI 0.16 ^ECC_N 0.22 ECC>10 0.08 ^BP 0.27
^HV_N 0.19 ^ECC_F 0.06 LPM>20 0.25 ^NBD 0.14

Diagram data
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915
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Program summary
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Programming language
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Comment Rate
Maintainability
Textual code compl.
File complexity
Method complexity
Average nesting
Maximal nesting
Branch Percentage
Maximal coupling

Number of files
Lines per file (avg)
Lines per file (max)
Number of methods
Lines per method (avg)
Lines per method (max)

^MI 0.19 ^ECC_N 0.20 ECC>10 0.09 ^BP 0.25
^HV_N 0.18 ^ECC_F 0.05 LPM>20 0.32 ^NBD 0.14

Diagram data
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58
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Program summary
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Programming language
Program length
Comment Rate
Maintainability
Textual code compl.
File complexity
Method complexity
Average nesting
Maximal nesting
Branch Percentage
Maximal coupling

Number of files
Lines per file (avg)
Lines per file (max)
Number of methods
Lines per method (avg)
Lines per method (max)

^MI 0.30 ^ECC_N 0.25 ECC>10 0.10 ^BP 0.29
^HV_N 0.29 ^ECC_F 0.18 LPM>20 0.28 ^NBD 0.20

Diagram data
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656
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Program summary
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Programming language
Program length
Comment Rate
Maintainability
Textual code compl.
File complexity
Method complexity
Average nesting
Maximal nesting
Branch Percentage
Maximal coupling

Number of files
Lines per file (avg)
Lines per file (max)
Number of methods
Lines per method (avg)
Lines per method (max)

^MI 0.40 ^ECC_N 0.22 ECC>10 0.15 ^BP 0.24
^HV_N 0.29 ^ECC_F 0.16 LPM>20 0.34 ^NBD 0.15

Diagram data
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294

C++

Code distribution

64
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Program summary
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Programming language
Program length
Comment Rate
Maintainability
Textual code compl.
File complexity
Method complexity
Average nesting
Maximal nesting
Branch Percentage
Maximal coupling

Number of files
Lines per file (avg)
Lines per file (max)
Number of methods
Lines per method (avg)
Lines per method (max)

^MI 0.20 ^ECC_N 0.16 ECC>10 0.03 ^BP 0.21
^HV_N 0.16 ^ECC_F 0.03 LPM>20 0.23 ^NBD 0.09

Diagram data
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Program summary
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Programming language
Program length
Comment Rate
Maintainability
Textual code compl.
File complexity
Method complexity
Average nesting
Maximal nesting
Branch Percentage
Maximal coupling

Number of files
Lines per file (avg)
Lines per file (max)
Number of methods
Lines per method (avg)
Lines per method (max)

^MI 0.35 ^ECC_N 0.25 ECC>10 0.15 ^BP 0.35
^HV_N 0.29 ^ECC_F 0.16 LPM>20 0.45 ^NBD 0.24

Diagram data
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43
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48.40
69.48
0.12

35,677

37
893

5,711

Program summary

10
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Programming language
Program length
Comment Rate
Maintainability
Textual code compl.
File complexity
Method complexity
Average nesting
Maximal nesting
Branch Percentage
Maximal coupling

Number of files
Lines per file (avg)
Lines per file (max)
Number of methods
Lines per method (avg)
Lines per method (max)

^MI 0.28 ^ECC_N 0.28 ECC>10 0.09 ^BP 0.35
^HV_N 0.24 ^ECC_F 0.18 LPM>20 0.24 ^NBD 0.32

Diagram data
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Program summary
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Programming language
Program length
Comment Rate
Maintainability
Textual code compl.
File complexity
Method complexity
Average nesting
Maximal nesting
Branch Percentage
Maximal coupling

Number of files
Lines per file (avg)
Lines per file (max)
Number of methods
Lines per method (avg)
Lines per method (max)

^MI 0.02 ^ECC_N 0.09 ECC>10 0.00 ^BP 0.07
^HV_N 0.16 ^ECC_F 0.01 LPM>20 0.02 ^NBD 0.13

Diagram data
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312
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Program summary
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Programming language
Program length
Comment Rate
Maintainability
Textual code compl.
File complexity
Method complexity
Average nesting
Maximal nesting
Branch Percentage
Maximal coupling

Number of files
Lines per file (avg)
Lines per file (max)
Number of methods
Lines per method (avg)
Lines per method (max)

^MI 0.07 ^ECC_N 0.17 ECC>10 0.01 ^BP 0.18
^HV_N 0.18 ^ECC_F 0.03 LPM>20 0.05 ^NBD 0.16

Diagram data
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2.
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07

65
218

Java

Code distribution

184

HTML_Unit (15)
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101.72

0.53
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6
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843

Program summary
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Programming language
Program length
Comment Rate
Maintainability
Textual code compl.
File complexity
Method complexity
Average nesting
Maximal nesting
Branch Percentage
Maximal coupling

Number of files
Lines per file (avg)
Lines per file (max)
Number of methods
Lines per method (avg)
Lines per method (max)

^MI 0.19 ^ECC_N 0.28 ECC>10 0.07 ^BP 0.29
^HV_N 0.24 ^ECC_F 0.17 LPM>20 0.17 ^NBD 0.32

Diagram data
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29
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30

NekoHTML (16)

43.44
87.58
0.32

6,478

14
414

2,298

Program summary
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Programming language
Program length
Comment Rate
Maintainability
Textual code compl.
File complexity
Method complexity
Average nesting
Maximal nesting
Branch Percentage
Maximal coupling

Number of files
Lines per file (avg)
Lines per file (max)
Number of methods
Lines per method (avg)
Lines per method (max)

^MI 0.12 ^ECC_N 0.22 ECC>10 0.05 ^BP 0.31
^HV_N 0.23 ^ECC_F 0.12 LPM>20 0.17 ^NBD 0.37

Diagram data
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07

208
148

Java

Code distribution

110

Jsettlers (17)
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0.30
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3,465

Program summary

10
0.22

3.14
3.59

30.44

1,338

^MI

^NBD

^ECC_N

^BP

ECC>10

LPM>20

^ECC_F

^HV_N

0

500

1000

1500

2000

2500

3000

3500

4000

1 148

pr
of

ile
 c

re
at

ed
 o

n

Programming language
Program length
Comment Rate
Maintainability
Textual code compl.
File complexity
Method complexity
Average nesting
Maximal nesting
Branch Percentage
Maximal coupling

Number of files
Lines per file (avg)
Lines per file (max)
Number of methods
Lines per method (avg)
Lines per method (max)

^MI 0.29 ^ECC_N 0.22 ECC>10 0.08 ^BP 0.14
^HV_N 0.31 ^ECC_F 0.05 LPM>20 0.27 ^NBD 0.28

Diagram data
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07

80
15

Java

Code distribution

14
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0.25

1,198
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Program summary

8
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Programming language
Program length
Comment Rate
Maintainability
Textual code compl.
File complexity
Method complexity
Average nesting
Maximal nesting
Branch Percentage
Maximal coupling

Number of files
Lines per file (avg)
Lines per file (max)
Number of methods
Lines per method (avg)
Lines per method (max)

^MI 0.25 ^ECC_N 0.16 ECC>10 0.04 ^BP 0.14
^HV_N 0.36 ^ECC_F 0.09 LPM>20 0.22 ^NBD 0.29

Diagram data

07
.1

2.
20

07

207
368

Java

Code distribution

222

CS.PPS (19)
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80.26
0.20

76,338

17
4,279

16,786

Program summary

10
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Programming language
Program length
Comment Rate
Maintainability
Textual code compl.
File complexity
Method complexity
Average nesting
Maximal nesting
Branch Percentage
Maximal coupling

Number of files
Lines per file (avg)
Lines per file (max)
Number of methods
Lines per method (avg)
Lines per method (max)

^MI 0.06 ^ECC_N 0.16 ECC>10 0.00 ^BP 0.43
^HV_N 0.04 ^ECC_F 0.04 LPM>20 0.06 ^NBD 0.23

Diagram data
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Code distribution
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Program summary
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Programming language
Program length
Comment Rate
Maintainability
Textual code compl.
File complexity
Method complexity
Average nesting
Maximal nesting
Branch Percentage
Maximal coupling

Number of files
Lines per file (avg)
Lines per file (max)
Number of methods
Lines per method (avg)
Lines per method (max)

^MI 0.11 ^ECC_N 0.16 ECC>10 0.03 ^BP 0.34
^HV_N 0.09 ^ECC_F 0.04 LPM>20 0.26 ^NBD 0.28

Diagram data
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Code distribution

4
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Program summary
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Programming language
Program length
Comment Rate
Maintainability
Textual code compl.
File complexity
Method complexity
Average nesting
Maximal nesting
Branch Percentage
Maximal coupling

Number of files
Lines per file (avg)
Lines per file (max)
Number of methods
Lines per method (avg)
Lines per method (max)

^MI 0.07 ^ECC_N 0.05 ECC>10 0.00 ^BP 0.04
^HV_N 0.14 ^ECC_F 0.01 LPM>20 0.01 ^NBD 0.13

Diagram data
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Code distribution
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Program summary
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Programming language
Program length
Comment Rate
Maintainability
Textual code compl.
File complexity
Method complexity
Average nesting
Maximal nesting
Branch Percentage
Maximal coupling

Number of files
Lines per file (avg)
Lines per file (max)
Number of methods
Lines per method (avg)
Lines per method (max)

^MI 0.14 ^ECC_N 0.13 ECC>10 0.00 ^BP 0.13
^HV_N 0.09 ^ECC_F 0.01 LPM>20 0.07 ^NBD 0.14

Diagram data
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40
13

Java

Code distribution

11

A.OOPJ_L4_st1 (23)

25.69
93.87
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318
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Program summary

4
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Programming language
Program length
Comment Rate
Maintainability
Textual code compl.
File complexity
Method complexity
Average nesting
Maximal nesting
Branch Percentage
Maximal coupling

Number of files
Lines per file (avg)
Lines per file (max)
Number of methods
Lines per method (avg)
Lines per method (max)

^MI 0.16 ^ECC_N 0.13 ECC>10 0.00 ^BP 0.15
^HV_N 0.11 ^ECC_F 0.02 LPM>20 0.14 ^NBD 0.18

Diagram data
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Program summary

6
0.11

1.92
1.84
4.85

43

^MI

^NBD

^ECC_N

^BP

ECC>10

LPM>20

^ECC_F

^HV_N

0

20

40

60

80

100

120

140

160

1 6 11 16 21

pr
of

ile
 c

re
at

ed
 o

n

 159 



 

Programming language
Program length
Comment Rate
Maintainability
Textual code compl.
File complexity
Method complexity
Average nesting
Maximal nesting
Branch Percentage
Maximal coupling

Number of files
Lines per file (avg)
Lines per file (max)
Number of methods
Lines per method (avg)
Lines per method (max)

^MI 0.18 ^ECC_N 0.21 ECC>10 0.00 ^BP 0.22
^HV_N 0.05 ^ECC_F 0.02 LPM>20 0.17 ^NBD 0.03

Diagram data
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40
3
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Code distribution

0
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120

15
6

68

Program summary

3
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Programming language
Program length
Comment Rate
Maintainability
Textual code compl.
File complexity
Method complexity
Average nesting
Maximal nesting
Branch Percentage
Maximal coupling

Number of files
Lines per file (avg)
Lines per file (max)
Number of methods
Lines per method (avg)
Lines per method (max)

^MI 0.19 ^ECC_N 0.13 ECC>10 0.00 ^BP 0.10
^HV_N 0.06 ^ECC_F 0.02 LPM>20 0.08 ^NBD 0.02

Diagram data
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Code distribution
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Program summary
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Programming language
Program length
Comment Rate
Maintainability
Textual code compl.
File complexity
Method complexity
Average nesting
Maximal nesting
Branch Percentage
Maximal coupling

Number of files
Lines per file (avg)
Lines per file (max)
Number of methods
Lines per method (avg)
Lines per method (max)

^MI 0.33 ^ECC_N 0.26 ECC>10 0.20 ^BP 0.31
^HV_N 0.17 ^ECC_F 0.13 LPM>20 0.40 ^NBD 0.20

Diagram data
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Program summary
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Programming language
Program length
Comment Rate
Maintainability
Textual code compl.
File complexity
Method complexity
Average nesting
Maximal nesting
Branch Percentage
Maximal coupling

Number of files
Lines per file (avg)
Lines per file (max)
Number of methods
Lines per method (avg)
Lines per method (max)

^MI 0.39 ^ECC_N 0.29 ECC>10 0.50 ^BP 0.39
^HV_N 0.12 ^ECC_F 0.23 LPM>20 0.67 ^NBD 0.42

Diagram data
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Code distribution
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Program summary

7
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Programming language
Program length
Comment Rate
Maintainability
Textual code compl.
File complexity
Method complexity
Average nesting
Maximal nesting
Branch Percentage
Maximal coupling

Number of files
Lines per file (avg)
Lines per file (max)
Number of methods
Lines per method (avg)
Lines per method (max)

^MI 0.24 ^ECC_N 0.23 ECC>10 0.00 ^BP 0.22
^HV_N 0.15 ^ECC_F 0.03 LPM>20 0.11 ^NBD 0.08

Diagram data
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14
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Code distribution
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Program summary

4
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Programming language
Program length
Comment Rate
Maintainability
Textual code compl.
File complexity
Method complexity
Average nesting
Maximal nesting
Branch Percentage
Maximal coupling

Number of files
Lines per file (avg)
Lines per file (max)
Number of methods
Lines per method (avg)
Lines per method (max)

^MI 0.23 ^ECC_N 0.27 ECC>10 0.09 ^BP 0.29
^HV_N 0.11 ^ECC_F 0.05 LPM>20 0.24 ^NBD 0.07

Diagram data
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Code distribution
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4
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Programming language
Program length
Comment Rate
Maintainability
Textual code compl.
File complexity
Method complexity
Average nesting
Maximal nesting
Branch Percentage
Maximal coupling

Number of files
Lines per file (avg)
Lines per file (max)
Number of methods
Lines per method (avg)
Lines per method (max)

^MI 0.24 ^ECC_N 0.27 ECC>10 0.10 ^BP 0.31
^HV_N 0.21 ^ECC_F 0.12 LPM>20 0.24 ^NBD 0.14

Diagram data
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Code distribution
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Program summary

6
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Programming language
Program length
Comment Rate
Maintainability
Textual code compl.
File complexity
Method complexity
Average nesting
Maximal nesting
Branch Percentage
Maximal coupling

Number of files
Lines per file (avg)
Lines per file (max)
Number of methods
Lines per method (avg)
Lines per method (max)

^MI 0.21 ^ECC_N 0.22 ECC>10 0.02 ^BP 0.18
^HV_N 0.17 ^ECC_F 0.04 LPM>20 0.11 ^NBD 0.07

Diagram data
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Code distribution

5

C.PL_L1_st4 (33)
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85.50
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Program summary

5
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Programming language
Program length
Comment Rate
Maintainability
Textual code compl.
File complexity
Method complexity
Average nesting
Maximal nesting
Branch Percentage
Maximal coupling

Number of files
Lines per file (avg)
Lines per file (max)
Number of methods
Lines per method (avg)
Lines per method (max)

^MI 0.14 ^ECC_N 0.27 ECC>10 0.02 ^BP 0.27
^HV_N 0.15 ^ECC_F 0.03 LPM>20 0.09 ^NBD 0.10

Diagram data

07
.1

2.
20

07

48
22

C++

Code distribution

7

C.PL_L1_st5 (34)
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1,058
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Program summary
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Programming language
Program length
Comment Rate
Maintainability
Textual code compl.
File complexity
Method complexity
Average nesting
Maximal nesting
Branch Percentage
Maximal coupling

Number of files
Lines per file (avg)
Lines per file (max)
Number of methods
Lines per method (avg)
Lines per method (max)

^MI 0.19 ^ECC_N 0.22 ECC>10 0.00 ^BP 0.27
^HV_N 0.18 ^ECC_F 0.06 LPM>20 0.04 ^NBD 0.05

Diagram data

07
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07
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5
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Code distribution

0

C.PL_L1_st6 (35)
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0.00
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Program summary

4
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Programming language
Program length
Comment Rate
Maintainability
Textual code compl.
File complexity
Method complexity
Average nesting
Maximal nesting
Branch Percentage
Maximal coupling

Number of files
Lines per file (avg)
Lines per file (max)
Number of methods
Lines per method (avg)
Lines per method (max)

^MI 0.15 ^ECC_N 0.24 ECC>10 0.04 ^BP 0.25
^HV_N 0.16 ^ECC_F 0.22 LPM>20 0.22 ^NBD 0.12

Diagram data
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5
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Programming language
Program length
Comment Rate
Maintainability
Textual code compl.
File complexity
Method complexity
Average nesting
Maximal nesting
Branch Percentage
Maximal coupling

Number of files
Lines per file (avg)
Lines per file (max)
Number of methods
Lines per method (avg)
Lines per method (max)

^MI 0.18 ^ECC_N 0.27 ECC>10 0.01 ^BP 0.28
^HV_N 0.25 ^ECC_F 0.13 LPM>20 0.12 ^NBD 0.08

Diagram data
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Code distribution
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Programming language
Program length
Comment Rate
Maintainability
Textual code compl.
File complexity
Method complexity
Average nesting
Maximal nesting
Branch Percentage
Maximal coupling

Number of files
Lines per file (avg)
Lines per file (max)
Number of methods
Lines per method (avg)
Lines per method (max)

^MI 0.20 ^ECC_N 0.23 ECC>10 0.04 ^BP 0.34
^HV_N 0.12 ^ECC_F 0.32 LPM>20 0.39 ^NBD 0.14

Diagram data
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Code distribution
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Programming language
Program length
Comment Rate
Maintainability
Textual code compl.
File complexity
Method complexity
Average nesting
Maximal nesting
Branch Percentage
Maximal coupling

Number of files
Lines per file (avg)
Lines per file (max)
Number of methods
Lines per method (avg)
Lines per method (max)

^MI 0.14 ^ECC_N 0.31 ECC>10 0.00 ^BP 0.39
^HV_N 0.17 ^ECC_F 0.11 LPM>20 0.34 ^NBD 0.10

Diagram data
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Programming language
Program length
Comment Rate
Maintainability
Textual code compl.
File complexity
Method complexity
Average nesting
Maximal nesting
Branch Percentage
Maximal coupling

Number of files
Lines per file (avg)
Lines per file (max)
Number of methods
Lines per method (avg)
Lines per method (max)

^MI 0.06 ^ECC_N 0.40 ECC>10 0.00 ^BP 0.46
^HV_N 0.12 ^ECC_F 0.59 LPM>20 0.09 ^NBD 0.08

Diagram data
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3
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Programming language
Program length
Comment Rate
Maintainability
Textual code compl.
File complexity
Method complexity
Average nesting
Maximal nesting
Branch Percentage
Maximal coupling

Number of files
Lines per file (avg)
Lines per file (max)
Number of methods
Lines per method (avg)
Lines per method (max)

^MI 0.34 ^ECC_N 0.33 ECC>10 0.07 ^BP 0.43
^HV_N 0.25 ^ECC_F 0.34 LPM>20 0.29 ^NBD 0.13

Diagram data
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Programming language
Program length
Comment Rate
Maintainability
Textual code compl.
File complexity
Method complexity
Average nesting
Maximal nesting
Branch Percentage
Maximal coupling

Number of files
Lines per file (avg)
Lines per file (max)
Number of methods
Lines per method (avg)
Lines per method (max)

^MI 0.18 ^ECC_N 0.23 ECC>10 0.01 ^BP 0.25
^HV_N 0.27 ^ECC_F 0.14 LPM>20 0.14 ^NBD 0.08

Diagram data
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Programming language
Program length
Comment Rate
Maintainability
Textual code compl.
File complexity
Method complexity
Average nesting
Maximal nesting
Branch Percentage
Maximal coupling

Number of files
Lines per file (avg)
Lines per file (max)
Number of methods
Lines per method (avg)
Lines per method (max)

^MI 0.20 ^ECC_N 0.23 ECC>10 0.04 ^BP 0.34
^HV_N 0.12 ^ECC_F 0.32 LPM>20 0.39 ^NBD 0.14

Diagram data
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Code distribution

0
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Programming language
Program length
Comment Rate
Maintainability
Textual code compl.
File complexity
Method complexity
Average nesting
Maximal nesting
Branch Percentage
Maximal coupling

Number of files
Lines per file (avg)
Lines per file (max)
Number of methods
Lines per method (avg)
Lines per method (max)

^MI 0.16 ^ECC_N 0.27 ECC>10 0.09 ^BP 0.32
^HV_N 0.22 ^ECC_F 0.13 LPM>20 0.37 ^NBD 0.10

Diagram data
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Programming language
Program length
Comment Rate
Maintainability
Textual code compl.
File complexity
Method complexity
Average nesting
Maximal nesting
Branch Percentage
Maximal coupling

Number of files
Lines per file (avg)
Lines per file (max)
Number of methods
Lines per method (avg)
Lines per method (max)

^MI 0.17 ^ECC_N 0.40 ECC>10 0.14 ^BP 0.46
^HV_N 0.17 ^ECC_F 1.01 LPM>20 0.25 ^NBD 0.13
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Average nesting
Maximal nesting
Branch Percentage
Maximal coupling

Number of files
Lines per file (avg)
Lines per file (max)
Number of methods
Lines per method (avg)
Lines per method (max)

^MI 0.24 ^ECC_N 0.29 ECC>10 0.06 ^BP 0.36
^HV_N 0.25 ^ECC_F 0.11 LPM>20 0.29 ^NBD 0.13
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Programming language
Program length
Comment Rate
Maintainability
Textual code compl.
File complexity
Method complexity
Average nesting
Maximal nesting
Branch Percentage
Maximal coupling

Number of files
Lines per file (avg)
Lines per file (max)
Number of methods
Lines per method (avg)
Lines per method (max)

^MI 0.18 ^ECC_N 0.27 ECC>10 0.06 ^BP 0.36
^HV_N 0.23 ^ECC_F 0.32 LPM>20 0.16 ^NBD 0.09
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File complexity
Method complexity
Average nesting
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Branch Percentage
Maximal coupling

Number of files
Lines per file (avg)
Lines per file (max)
Number of methods
Lines per method (avg)
Lines per method (max)

^MI 0.23 ^ECC_N 0.38 ECC>10 0.18 ^BP 0.57
^HV_N 0.23 ^ECC_F 0.18 LPM>20 0.29 ^NBD 0.17
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Programming language
Program length
Comment Rate
Maintainability
Textual code compl.
File complexity
Method complexity
Average nesting
Maximal nesting
Branch Percentage
Maximal coupling

Number of files
Lines per file (avg)
Lines per file (max)
Number of methods
Lines per method (avg)
Lines per method (max)

^MI 0.24 ^ECC_N 0.21 ECC>10 0.04 ^BP 0.24
^HV_N 0.20 ^ECC_F 0.09 LPM>20 0.35 ^NBD 0.07
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^MI 0.27 ^ECC_N 0.28 ECC>10 0.06 ^BP 0.25
^HV_N 0.36 ^ECC_F 0.27 LPM>20 0.33 ^NBD 0.34
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Programming language
Program length
Comment Rate
Maintainability
Textual code compl.
File complexity
Method complexity
Average nesting
Maximal nesting
Branch Percentage
Maximal coupling

Number of files
Lines per file (avg)
Lines per file (max)
Number of methods
Lines per method (avg)
Lines per method (max)

^MI 0.10 ^ECC_N 0.22 ECC>10 0.02 ^BP 0.20
^HV_N 0.22 ^ECC_F 0.04 LPM>20 0.12 ^NBD 0.21
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Programming language
Program length
Comment Rate
Maintainability
Textual code compl.
File complexity
Method complexity
Average nesting
Maximal nesting
Branch Percentage
Maximal coupling

Number of files
Lines per file (avg)
Lines per file (max)
Number of methods
Lines per method (avg)
Lines per method (max)

^MI 0.05 ^ECC_N 0.26 ECC>10 0.01 ^BP 0.20
^HV_N 0.11 ^ECC_F 0.01 LPM>20 0.01 ^NBD 0.12
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Method complexity
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Branch Percentage
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Number of files
Lines per file (avg)
Lines per file (max)
Number of methods
Lines per method (avg)
Lines per method (max)

^MI 0.10 ^ECC_N 0.20 ECC>10 0.00 ^BP 0.14
^HV_N 0.15 ^ECC_F 0.01 LPM>20 0.03 ^NBD 0.12
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Programming language
Program length
Comment Rate
Maintainability
Textual code compl.
File complexity
Method complexity
Average nesting
Maximal nesting
Branch Percentage
Maximal coupling

Number of files
Lines per file (avg)
Lines per file (max)
Number of methods
Lines per method (avg)
Lines per method (max)

^MI 0.08 ^ECC_N 0.28 ECC>10 0.04 ^BP 0.27
^HV_N 0.06 ^ECC_F 0.02 LPM>20 0.13 ^NBD 0.21
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Programming language
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Textual code compl.
File complexity
Method complexity
Average nesting
Maximal nesting
Branch Percentage
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Number of files
Lines per file (avg)
Lines per file (max)
Number of methods
Lines per method (avg)
Lines per method (max)

^MI 0.04 ^ECC_N 0.27 ECC>10 0.01 ^BP 0.25
^HV_N 0.15 ^ECC_F 0.02 LPM>20 0.06 ^NBD 0.16

Diagram data

07
.1

2.
20

07

29
19

Java

Code distribution

18

D.OODM_L4_st5 (56)

32.64
104.94

0.48
552

5
98

150

Program summary

6
0.18

1.79
1.84
5.31

30

^MI

^NBD

^ECC_N

^BP

ECC>10

LPM>20

^ECC_F

^HV_N

0

20

40

60

80

100

120

140

160

1 6 11 16

pr
of

ile
 c

re
at

ed
 o

n

 

 

 

 175 



 

A.5 Measurement tools screenshots 

A.5.1 CCCC 
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A.5.2 CMT (CMT++ / CMTJava) 
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A.5.3 SourceMonitor 
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A.5.4 Essential Metrics 

Essential Metrics displays a blank screen while running. 
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A.5.5 Logiscope 
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